WO2012120933A1 - Device and method for processing chlorine bypass exhaust gas - Google Patents

Device and method for processing chlorine bypass exhaust gas Download PDF

Info

Publication number
WO2012120933A1
WO2012120933A1 PCT/JP2012/051519 JP2012051519W WO2012120933A1 WO 2012120933 A1 WO2012120933 A1 WO 2012120933A1 JP 2012051519 W JP2012051519 W JP 2012051519W WO 2012120933 A1 WO2012120933 A1 WO 2012120933A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
chlorine bypass
solid
gas
liquid separation
Prior art date
Application number
PCT/JP2012/051519
Other languages
French (fr)
Japanese (ja)
Inventor
淳一 寺崎
鈴木 崇幸
Original Assignee
太平洋セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太平洋セメント株式会社 filed Critical 太平洋セメント株式会社
Publication of WO2012120933A1 publication Critical patent/WO2012120933A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/364Avoiding environmental pollution during cement-manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/008Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases cleaning gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/604Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0233Other waste gases from cement factories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/20Sulfur; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2217/00Intercepting solids
    • F23J2217/50Intercepting solids by cleaning fluids (washers or scrubbers)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2217/00Intercepting solids
    • F23J2217/60Intercepting solids using settling/precipitation chambers

Definitions

  • the present invention relates to an apparatus and a method for treating gas discharged from a chlorine bypass facility for extracting chlorine from a kiln exhaust gas passage from a kiln bottom of a cement kiln to a lowermost cyclone to remove chlorine.
  • a chlorine bypass facility for extracting chlorine from a kiln exhaust gas passage from a kiln bottom of a cement kiln to a lowermost cyclone to remove chlorine.
  • a chlorine bypass facility for extracting a part of combustion gas and removing chlorine is used.
  • the chlorine bypass facility includes a probe 53 for extracting a part of combustion gas from a kiln exhaust gas flow path from the bottom of the kiln 52 to the lowermost cyclone (not shown), and a probe 53.
  • a cooling fan 54 for rapidly cooling the extraction gas G1 by supplying cold air therein, a cyclone 55 as a classifier for separating the coarse dust D1 contained in the extraction gas G1, and a fine powder D2 discharged from the cyclone 55
  • a cooler 56 that cools the extracted gas G2, a cooling fan 57 that supplies cool air to the cooler 56, a bag filter 58 that collects dust dust D2 in the extracted gas G2 cooled by the cooler 56, and cooling
  • a dust tank 59 for collecting the fine powder D2 discharged from the vessel 56 and the bag filter 58, a dissolution tank 60 for dissolving the fine powder D2 from the dust tank 59 in water,
  • a solid-liquid separation device 61 for solid-liquid separation of the slurry S1 from the cracking tank 60
  • the present invention was made in view of the problems in the above-described conventional technology, and the gas discharged from the chlorine bypass facility (chlorine bypass exhaust gas) without increasing the heat loss of the cement firing system,
  • the objective is to process at low cost while ensuring stable operation of the cement firing system.
  • the present invention is a chlorine bypass exhaust gas treatment apparatus, which bleeds while cooling a part of combustion gas from a kiln exhaust gas passage from a kiln bottom of a cement kiln to a lowermost cyclone.
  • a desulfurization tower for desulfurization of the exhaust gas by contacting the exhaust gas with the exhaust gas of the chlorine bypass facility.
  • chlorine bypass dust by adding an alkali agent to the chlorine bypass dust, varying the CaCl 2 and CaCO 3 contained in the chlorine bypass dust to Ca (OH) 2, chlorine bypass the Ca (OH) 2 Since it is used for desulfurization of equipment exhaust gas, calcium contained in chlorine bypass dust can be effectively used for desulfurization, and stable operation of the cement firing system is ensured without increasing the heat loss of the cement firing system.
  • the chlorine bypass exhaust gas can be treated at a low cost.
  • the chlorine content of the re-dissolved slurry is low, and it is possible to minimize the dissolution of gypsum causing scale trouble, It is possible to suppress the production of singenite (K 2 Ca (SO 4 ) 2 ) or the like that hinders the effective use of the recovered material.
  • lead (Pb) and selenium (Se) among the heavy metals contained in the chlorine bypass dust are contained in the filtrate side by adding an alkali agent. Since selenium is included in the recovered industrial salt, there is no problem, so that lead and selenium can be efficiently removed from the chlorine bypass dust.
  • a second solid-liquid separation device for solid-liquid separation of the slurry discharged from the desulfurization tower, and a filtrate solid-liquid separated by the second solid-liquid separation device are used for the second treatment.
  • a sulfiding agent and a pH adjuster are added to the filtrate separated by solid-liquid separation in the first solid-liquid separation device, and an adjustment tank is provided that insolubilizes heavy metals contained in the filtrate. Can do. As a result, lead or the like can be insolubilized and efficiently recovered at a later stage.
  • the chlorine bypass exhaust gas treatment apparatus may include a third solid-liquid separation device for solid-liquid separation of the filtrate discharged from the adjustment tank. As a result, heavy metals such as lead can be recovered on the cake side.
  • the chlorine bypass exhaust gas treatment apparatus may further include a salt recovery device that recovers salt from the filtrate discharged from the third solid-liquid separation device, and further, heat recovered from the extracted gas is supplied to the salt recovery device.
  • a gas gas heater used for salt recovery can be provided. Thereby, salt can be recovered while effectively using the heat of the chlorine bypass exhaust gas.
  • the gas gas heater can recover heat from the exhaust gas of a high-temperature dust collector that collects the extracted gas, and heat efficiency is improved by recovering heat from the removed high-temperature gas.
  • the present invention is a method for treating chlorine bypass exhaust gas, wherein a part of the combustion gas is extracted from the kiln exhaust gas flow path from the bottom of the kiln of the cement kiln to the lowest cyclone, and extracted from the extracted gas.
  • a chlorine bypass facility for recovering chlorine bypass dust after slurrying while adding an alkali agent to the recovered chlorine bypass dust, the slurry is dehydrated, the resulting cake is redissolved, and the cake is redissolved The slurry is brought into contact with the exhaust gas of the chlorine bypass facility, and the exhaust gas is desulfurized.
  • the present invention similarly to the above-described invention, it is possible to treat the chlorine bypass exhaust gas by effectively using calcium contained in the chlorine bypass dust for desulfurization, and minimize the dissolution of gypsum causing scale trouble.
  • lead and selenium can be efficiently removed from the chlorine bypass dust.
  • the pH of the slurry can be adjusted to 13 or more and 14 or less, and CaCl 2 and CaCO 3 contained in the chlorine bypass dust are efficiently changed to Ca (OH) 2 in this pH region. Can be made.
  • chlorine bypass exhaust gas can be processed at low cost while ensuring stable operation of the cement firing system without increasing the heat loss of the cement firing system.
  • FIG. 1 shows a chlorine bypass facility provided with a first embodiment of a chlorine bypass exhaust gas treatment apparatus according to the present invention.
  • the chlorine bypass facility 1 is arranged from the kiln bottom of a cement kiln 2 to a lowermost cyclone (not shown).
  • a probe 3 for extracting a part of the combustion gas while being cooled by cold air from the cooling fans 4 and 5, and coarse dust of dust contained in the extracted gas G1 extracted by the probe 3 A cyclone 6 that separates D1, a cooler 7 that cools the extracted gas G2 containing fine powder D2 discharged from the cyclone 6, a bag filter 8 that collects the extracted gas G3 from the cooler 7, and a bag filter 8
  • a desulfurization tower 11 that performs a desulfurization treatment of the exhaust gas G4 supplied through the fan 10 and a dust D5 (D3 + D4) discharged from the cooler 7 and the bag filter 8 are stored.
  • the solid tank 9, the first dissolution tank 12 that is slurried while adding an alkali agent to the dust (chlorine bypass dust) D 6 discharged from the dust tank 9, and the slurry S 1 discharged from the first dissolution tank 12 are solidified.
  • the first solid-liquid separation device 13 for liquid separation, the second solid-liquid separation device 15 for solid-liquid separation of the slurry S3 generated in the desulfurization tower 11, and the cake C1 discharged from the first solid-liquid separation device 13 Is dissolved in the filtrate L2 (circulated water CW) from the second solid-liquid separator 15 and the filtrate L1 discharged from the first solid-liquid separator 13 is added with a sulfiding agent and pH adjustment.
  • the first dissolution tank 12 slurries the dust D6 from the dust tank 9 using water (or hot water) and adds an alkali agent such as NaOH to convert CaCl 2 and CaCO 3 contained in the dust D6 into Ca. Provided to change to (OH) 2 .
  • the first solid-liquid separator 13 is provided for solid-liquid separation of the slurry S1 discharged from the first dissolution tank 12.
  • the cake C1 subjected to the solid-liquid separation is supplied to the second dissolution tank 14, and the filtrate L1 is supplied to the adjustment tank 16.
  • the second dissolution tank 14 is provided for re-dissolving the cake C1 discharged from the first solid-liquid separator 13, and the slurry S2 obtained by dissolving the cake C1 in the circulating water CW is a bug in the desulfurization tower 11. It is used for desulfurization of the exhaust gas G4 of the filter 8.
  • the desulfurization tower 11 is provided to desulfurize the exhaust gas G4 supplied from the bag filter 8 via the fan 10 using the slurry S2 supplied from the second dissolution tank 14.
  • the slurry S3 containing dihydrate gypsum generated by the desulfurization is returned to the second solid-liquid separator 15, and the desulfurized exhaust gas G5 is returned to the exhaust gas system of the cement kiln 2.
  • the second solid-liquid separation device 15 is provided for solid-liquid separation of the slurry S3 supplied from the desulfurization tower 11, and the filtrate L2 obtained by solid-liquid separation is recirculated in the second dissolution tank 14 as circulating water CW. Used. On the other hand, dihydrate gypsum Gy is recovered on the cake C2 side where the solid-liquid separation is performed.
  • the adjustment tank 16 is provided to add a sulfurizing agent such as NaSH or a pH adjusting agent to the filtrate L1 discharged from the first solid-liquid separation device 13 so as to insolubilize heavy metals such as lead.
  • a sulfurizing agent such as NaSH or a pH adjusting agent
  • a pH adjuster NaOH, Ca (OH) 2 , CaO, Mg (OH) 2 , sulfuric acid or the like can be used.
  • the third solid-liquid separation device 17 is provided for solid-liquid separation of the filtrate L3 discharged from the adjustment tank 16, and industrial salt may be recovered from the filtrate L4 subjected to solid-liquid separation by a salt recovery device, Waste water can also be treated. Further, heavy metals such as lead are recovered on the cake C3 side where the solid-liquid separation is performed.
  • the extraction gas G2 containing the fine powder D2 separated by the cyclone 6 is introduced into the cooler 7, and heat exchange between the extraction gas G2 and the medium is performed.
  • the extracted gas G3 cooled by heat exchange is introduced into the bag filter 8, and the bag filter 8 collects the dust D4 contained in the extracted gas G3.
  • the dust D4 collected by the bag filter 8 is temporarily stored in the dust tank 9 as the dust D5 together with the dust D3 discharged from the cooler 7, and is introduced into the first dissolution tank 12 as the dust D6.
  • the dust D6 introduced into the first dissolution tank 12 is mixed with water (or warm water) and an alkaline agent such as NaOH in the first dissolution tank 12 to generate a slurry S1.
  • an alkaline agent such as NaOH in the first dissolution tank 12
  • the pH in the first dissolution tank 12 is adjusted to 13.5 ⁇ 0.5.
  • CaCl 2 and CaCO 3 contained in the dust D6 react with the alkali agent to generate Ca (OH) 2 , and these calcium components can be effectively used for desulfurization in the desulfurization tower 11 at the subsequent stage.
  • KOH or the like can be used in addition to NaOH.
  • the slurry S1 discharged from the first dissolution tank 12 is subjected to solid-liquid separation by the first solid-liquid separation device 13, and the cake obtained by solid-liquid separation while solid-liquid separation of the slurry S1 is washed with water.
  • Remove chlorine The cake C1 from which the chlorine content has been removed is supplied to the second dissolution tank 14 and the re-dissolved slurry S2 is supplied to the desulfurization tower 11 and used for desulfurization.
  • the exhaust gas G5 after desulfurization is introduced into the exhaust gas system of the cement kiln 2.
  • Ca (OH) 2 present in the re-dissolved slurry S2 reacts with SO 2 contained in the exhaust gas G4 of the bag filter 8 in the desulfurization tower 11, and dihydrate gypsum (CaSO 4 .2H 2 O). Converted to At this time, since the potassium and chlorine contents were removed in the first solid-liquid separator 13, the chlorine content of the slurry S2 obtained by re-dissolving the cake C1 is low, and the dissolution of gypsum causing scale trouble is minimized. In addition, it is possible to suppress the formation of singenite (K 2 Ca (SO 4 ) 2 ). In addition, when syngenite is added to cement, the production must be suppressed because it affects cement quality, particularly strength.
  • the slurry S3 discharged from the desulfurization tower 11 is solid-liquid separated by the second solid-liquid separator 15 and the dihydrate gypsum Gy obtained on the cake C2 side is pulverized together with the cement clinker by a cement mill to produce cement. Can be used.
  • the separated filtrate L2 can be reused for the production of the slurry S2 in the second dissolution tank 14 as the circulating water CW.
  • the filtrate L1 solid-liquid separated by the first solid-liquid separator 13 is supplied to the adjustment tank 16, and a sulfurizing agent such as NaSH or a pH adjuster is added to the filtrate L1 to precipitate heavy metals such as lead. Then, the solid-liquid separation is performed by the third solid-liquid separation device 17 to recover the heavy metal on the cake C3 side. If necessary, a filter aid is added before the filtrate L3 is supplied to the third solid-liquid separator 17. Further, industrial salt may be recovered from the filtrate L4 subjected to solid-liquid separation by the third solid-liquid separation device 17, and the filtrate L4 may be discharged after the waste water treatment. When the industrial salt is recovered, CaCl 2 is changed to Ca (OH) 2 as described above, so that an industrial salt having a low calcium concentration and a high KCl content can be obtained.
  • a sulfurizing agent such as NaSH or a pH adjuster
  • the chlorine bypass facility 31 includes a high-temperature dust collector 32 instead of the cooler 7 and the bag filter 8 of the chlorine bypass facility 1, and a gas gas heater 33 is disposed at the subsequent stage of the high-temperature dust collector 32, and the atmosphere heated by the gas gas heater 33. Is used for salt recovery. Since the other components of the chlorine bypass facility 31 are the same as those of the chlorine bypass facility 1 shown in FIG. 1, the same reference numerals are given and description thereof is omitted.
  • the high-temperature dust collector 32 is, for example, a heat-resistant bag filter having a heat resistance up to about 900 ° C. or a high-temperature processing type electric dust collector having a heat resistance up to about 900 ° C., and the fine dust D2 discharged from the cyclone 6 is collected.
  • the extracted gas G2 is collected without cooling, and the collected dust (chlorine bypass dust) D3 is supplied to the dust tank 9.
  • the gas gas heater 33 is provided to heat the air A1 taken from the surroundings by the extracted gas G3 discharged from the high temperature dust collector 32 and to use the high temperature air A2 heated by the gas gas heater 33 for subsequent salt recovery. Further, the heat exchange with the air A2 enables the temperature of the exhaust gas G4 to be desulfurized in the desulfurization tower 11 to be adjusted, and the occurrence of consolidation can be suppressed. Further, the heat recovered by the gas gas heater 33 may be used for raising the temperature of the exhaust gas G5 in the desulfurization tower 11.
  • the extraction gas G2 containing the fine powder D2 separated by the cyclone 6 is introduced into the high temperature dust collector 32, the dust D2 contained in the extraction gas G2 is collected in the high temperature dust collector 32, and the dust D3 discharged from the high temperature dust collector 32 is collected. Is temporarily stored in the dust tank 9 and introduced into the first dissolution tank 12 as dust D4.
  • the air A1 taken from the surroundings and the exhaust gas G3 of the high temperature dust collector 32 are introduced into the gas gas heater 33, and after heat exchange between them, the high temperature air A2 is used for salt recovery and discharged from the gas gas heater 33.
  • the exhaust gas G4 is introduced into the desulfurization tower 11 and then desulfurized. Other flows are the same as in the case of the chlorine bypass facility 1.
  • the chlorine bypass exhaust gas treatment apparatus has the same effect as that of the first embodiment, and uses the sensible heat of the chlorine bypass exhaust gas for salt recovery. Can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Environmental Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

[Problem] To process chlorine bypass exhaust gas at low cost without increasing heat loss of a cement burning system while ensuring safe operation of the cement burning system. [Solution] A device for processing chlorine bypass exhaust gas associated with a chlorine bypass system (1) which cools and extracts a part (G) of a combustion gas from a kiln exhaust gas passage from the kiln bottom of a cement kiln (2) to a lowermost cyclone and which recovers chlorine bypass dust (D6) from extraction gas (G1), the device comprising: a first dissolution tank (12) for slurrying the recovered chlorine bypass dust while adding an alkali agent thereto; a solid-liquid separation device (13) for separating solids and liquids in a slurry (S1) generated in the first dissolution tank; a second dissolution tank (14) for redissolving a cake (C1) generated in the solid-liquid separation device; and a desulfurization tower (11) for contacting a slurry (S2) after redissolution generated in the second dissolution tank with an exhaust gas (G4) of the chlorine bypass system and desulfurizing the exhaust gas.

Description

塩素バイパス排ガスの処理装置及び処理方法Chlorine bypass exhaust gas treatment device and treatment method
 本発明は、セメントキルンの窯尻から最下段サイクロンに至るまでのキルン排ガス流路より、燃焼ガスの一部を抽気して塩素を除去する塩素バイパス設備から排出されるガスを処理する装置及び方法に関する。 The present invention relates to an apparatus and a method for treating gas discharged from a chlorine bypass facility for extracting chlorine from a kiln exhaust gas passage from a kiln bottom of a cement kiln to a lowermost cyclone to remove chlorine. About.
 従来、セメント製造設備におけるプレヒータの閉塞等の問題を引き起こす原因となる塩素、硫黄、アルカリ等の中で、塩素が特に問題となることに着目し、セメントキルンの窯尻から最下段サイクロンに至るまでのキルン排ガス流路より、燃焼ガスの一部を抽気して塩素を除去する塩素バイパス設備が用いられている。 Focusing on chlorine, sulfur, alkali, etc., which causes problems such as blockage of preheaters in cement manufacturing facilities, from the bottom of the kiln kiln to the bottom cyclone From the kiln exhaust gas flow path, a chlorine bypass facility for extracting a part of combustion gas and removing chlorine is used.
 塩素バイパス設備は、図3に示すように、セメントキルン52の窯尻から最下段サイクロン(不図示)に至るまでのキルン排ガス流路より、燃焼ガスの一部を抽気するプローブ53と、プローブ53内に冷風を供給して抽気ガスG1を急冷する冷却ファン54と、抽気ガスG1に含まれるダストの粗粉D1を分離する分級機としてのサイクロン55と、サイクロン55から排出された微粉D2を含む抽気ガスG2を冷却する冷却器56と、冷却器56に冷風を供給する冷却ファン57と、冷却器56で冷却された抽気ガスG2中のダストの微粉D2を集塵するバグフィルタ58と、冷却器56及びバグフィルタ58から排出された微粉D2を回収するダストタンク59と、ダストタンク59からの微粉D2を水に溶解させる溶解槽60と、溶解槽60からのスラリーS1を固液分離して水洗ケークCと排水Lとに固液分離する固液分離装置61とを備え、固液分離された水洗ケークC及び排水処理後の残渣Rをキルン系へ戻し、排水Lを排水処理後に放流する。 As shown in FIG. 3, the chlorine bypass facility includes a probe 53 for extracting a part of combustion gas from a kiln exhaust gas flow path from the bottom of the kiln 52 to the lowermost cyclone (not shown), and a probe 53. A cooling fan 54 for rapidly cooling the extraction gas G1 by supplying cold air therein, a cyclone 55 as a classifier for separating the coarse dust D1 contained in the extraction gas G1, and a fine powder D2 discharged from the cyclone 55 A cooler 56 that cools the extracted gas G2, a cooling fan 57 that supplies cool air to the cooler 56, a bag filter 58 that collects dust dust D2 in the extracted gas G2 cooled by the cooler 56, and cooling A dust tank 59 for collecting the fine powder D2 discharged from the vessel 56 and the bag filter 58, a dissolution tank 60 for dissolving the fine powder D2 from the dust tank 59 in water, A solid-liquid separation device 61 for solid-liquid separation of the slurry S1 from the cracking tank 60 into solid-liquid separation into a water-washed cake C and waste water L is provided. Return to the kiln system and discharge the waste water L after waste water treatment.
 上記塩素バイパス設備51では、バグフィルタ58の排ガスG3に多量のSO2が含まれるため、この排ガスG3をそのまま系外へ放出することができず、排気ファン(不図示)を介してキルン系に戻していた。この際、排ガスG3をセメントキルン52の排ガスを誘引するファン(IDF)の出口側に戻すと、煙突から大気に放出される排ガス中のSO2が増加するという問題がある。また、上記排ガスG3をセメントキルン52に付設されるプレヒータに戻すと、セメント焼成系の熱損失の増加、及びクリンカ生産量の低下を招くと共に、硫黄分の濃縮によるコーチングトラブルなどを引き起こすという問題がある。 In the chlorine bypass facility 51, since a large amount of SO 2 is contained in the exhaust gas G3 of the bag filter 58, the exhaust gas G3 cannot be discharged out of the system as it is, and a kiln system is provided via an exhaust fan (not shown). I was returning. At this time, if the exhaust gas G3 is returned to the outlet side of the fan (IDF) for attracting the exhaust gas from the cement kiln 52, there is a problem that SO 2 in the exhaust gas released from the chimney to the atmosphere increases. Moreover, when the exhaust gas G3 is returned to the preheater attached to the cement kiln 52, there is a problem that the heat loss of the cement firing system and the clinker production amount are reduced, and that the trouble of coaching due to the concentration of sulfur is caused. is there.
 そこで、本発明は、上記従来の技術における問題点に鑑みてなされたものであって、塩素バイパス設備から排出されるガス(塩素バイパス排ガス)を、セメント焼成系の熱損失を増加させることなく、セメント焼成系の安定運転を確保しながら、低コストで処理することを目的とする。 Therefore, the present invention was made in view of the problems in the above-described conventional technology, and the gas discharged from the chlorine bypass facility (chlorine bypass exhaust gas) without increasing the heat loss of the cement firing system, The objective is to process at low cost while ensuring stable operation of the cement firing system.
 上記目的を達成するため、本発明は、塩素バイパス排ガスの処理装置であって、セメントキルンの窯尻から最下段サイクロンに至るまでのキルン排ガス流路より燃焼ガスの一部を冷却しながら抽気し、該抽気ガスから塩素バイパスダストを回収する塩素バイパス設備に付設され、前記回収された塩素バイパスダストにアルカリ剤を添加しながらスラリー化する第1の溶解槽と、該第1の溶解槽で生成されたスラリーを固液分離する固液分離装置と、該固液分離装置で生成されたケークを再溶解させる第2の溶解槽と、前記第2の溶解槽で生成された再溶解後のスラリーを該塩素バイパス設備の排ガスに接触させ、該排ガスの脱硫を行う脱硫塔とを備えることを特徴とする。 In order to achieve the above-mentioned object, the present invention is a chlorine bypass exhaust gas treatment apparatus, which bleeds while cooling a part of combustion gas from a kiln exhaust gas passage from a kiln bottom of a cement kiln to a lowermost cyclone. A first dissolution tank attached to a chlorine bypass facility for recovering chlorine bypass dust from the extracted gas, and slurried while adding an alkaline agent to the recovered chlorine bypass dust, and produced in the first dissolution tank A solid-liquid separation device for solid-liquid separation of the formed slurry, a second dissolution tank for re-dissolving the cake generated in the solid-liquid separation device, and a slurry after re-dissolution generated in the second dissolution tank And a desulfurization tower for desulfurization of the exhaust gas by contacting the exhaust gas with the exhaust gas of the chlorine bypass facility.
 そして、本発明によれば、塩素バイパスダストにアルカリ剤を添加することで、塩素バイパスダストに含まれるCaCl2及びCaCO3をCa(OH)2に変化させ、このCa(OH)2を塩素バイパス設備の排ガスの脱硫に利用するため、塩素バイパスダストに含まれるカルシウム分を脱硫に有効に利用することができ、セメント焼成系の熱損失の増加を招くことなく、セメント焼成系の安定運転を確保しながら、低コストで塩素バイパス排ガスを処理することができる。 Then, according to the present invention, by adding an alkali agent to the chlorine bypass dust, varying the CaCl 2 and CaCO 3 contained in the chlorine bypass dust to Ca (OH) 2, chlorine bypass the Ca (OH) 2 Since it is used for desulfurization of equipment exhaust gas, calcium contained in chlorine bypass dust can be effectively used for desulfurization, and stable operation of the cement firing system is ensured without increasing the heat loss of the cement firing system. However, the chlorine bypass exhaust gas can be treated at a low cost.
 また、固液分離装置においてスラリー中のカリウム分や塩素分を除去するため、再溶解したスラリーの塩素含有率が低く、スケールトラブルの原因となる石膏の溶解を最小限に抑えることができると共に、回収物の有効利用を阻害するシンゲナイト(K2Ca(SO42)等の生成を抑制することができる。 In addition, in order to remove potassium and chlorine in the slurry in the solid-liquid separator, the chlorine content of the re-dissolved slurry is low, and it is possible to minimize the dissolution of gypsum causing scale trouble, It is possible to suppress the production of singenite (K 2 Ca (SO 4 ) 2 ) or the like that hinders the effective use of the recovered material.
 さらに、また、CaCl2は水に溶解するため、Ca(OH)2に変化させなければ、後段で回収した工業塩に含まれることとなり、工業塩の純度を低下させる要因になるが、アルカリ剤との反応で水に溶解し難いCa(OH)2に変化させているため、工業塩の純度の低下を防止することもできる。 Furthermore, since CaCl 2 dissolves in water, if it is not changed to Ca (OH) 2 , it will be contained in the industrial salt recovered later, and this will cause a decrease in the purity of the industrial salt. since the varied hard Ca (OH) 2 dissolved in water by reaction with, it is also possible to prevent a reduction in the purity of the industrial salt.
 また、アルカリ剤の添加により、塩素バイパスダストに含まれる重金属のうち鉛(Pb)とセレン(Se)が、ろ液側に多く含まれることなるため、後段で硫化剤等を用いて鉛を回収することができ、セレンは回収した工業塩に含まれることとなっても問題はないため、塩素バイパスダストから効率よく鉛及びセレンを除去することができる。 In addition, lead (Pb) and selenium (Se) among the heavy metals contained in the chlorine bypass dust are contained in the filtrate side by adding an alkali agent. Since selenium is included in the recovered industrial salt, there is no problem, so that lead and selenium can be efficiently removed from the chlorine bypass dust.
 上記塩素バイパス排ガスの処理装置において、前記脱硫塔から排出されたスラリーを固液分離する第2の固液分離装置と、該第2の固液分離装置で固液分離されたろ液を前記第2の溶解槽に供給する供給手段とを備えることができる。これによって、固液分離されたろ液を循環使用して有効利用することができると共に、ケーク側に石膏を回収することができる。 In the chlorine bypass exhaust gas treatment device, a second solid-liquid separation device for solid-liquid separation of the slurry discharged from the desulfurization tower, and a filtrate solid-liquid separated by the second solid-liquid separation device are used for the second treatment. Supply means for supplying to the dissolution tank. As a result, the filtrate separated from the solid and the liquid can be recycled and used effectively, and gypsum can be recovered on the cake side.
 上記塩素バイパス排ガスの処理装置において、前記第1の固液分離装置で固液分離されたろ液に硫化剤及びpH調整剤を添加し、該ろ液に含まれる重金属を不溶化させる調整槽を備えることができる。これによって、鉛等を不溶化させて後段で効率よく回収することができる。 In the chlorine bypass exhaust gas treatment apparatus, a sulfiding agent and a pH adjuster are added to the filtrate separated by solid-liquid separation in the first solid-liquid separation device, and an adjustment tank is provided that insolubilizes heavy metals contained in the filtrate. Can do. As a result, lead or the like can be insolubilized and efficiently recovered at a later stage.
 上記塩素バイパス排ガスの処理装置において、前記調整槽から排出されたろ液を固液分離する第3の固液分離装置を備えることができる。これによって、鉛等の重金属をケーク側に回収することができる。 The chlorine bypass exhaust gas treatment apparatus may include a third solid-liquid separation device for solid-liquid separation of the filtrate discharged from the adjustment tank. As a result, heavy metals such as lead can be recovered on the cake side.
 上記塩素バイパス排ガスの処理装置において、前記第3の固液分離装置から排出されたろ液から塩を回収する塩回収装置を備えることができ、さらに、前記抽気ガスから回収した熱を前記塩回収装置における塩回収に利用するガスガスヒータを備えることができる。これにより、塩素バイパス排ガスの保有する熱を有効利用しながら塩を回収することができる。 The chlorine bypass exhaust gas treatment apparatus may further include a salt recovery device that recovers salt from the filtrate discharged from the third solid-liquid separation device, and further, heat recovered from the extracted gas is supplied to the salt recovery device. A gas gas heater used for salt recovery can be provided. Thereby, salt can be recovered while effectively using the heat of the chlorine bypass exhaust gas.
 前記ガスガスヒータは、前記抽気ガスを集塵する高温集塵機の排ガスから熱回収することができ、除塵した高温ガスから熱回収することで熱効率が向上する。 The gas gas heater can recover heat from the exhaust gas of a high-temperature dust collector that collects the extracted gas, and heat efficiency is improved by recovering heat from the removed high-temperature gas.
 また、本発明は、塩素バイパス排ガスの処理方法であって、セメントキルンの窯尻から最下段サイクロンに至るまでのキルン排ガス流路より燃焼ガスの一部を冷却しながら抽気し、該抽気ガスから塩素バイパスダストを回収する塩素バイパス設備において、前記回収された塩素バイパスダストにアルカリ剤を添加しながらスラリー化した後、該スラリーを脱水し、得られたケークを再溶解させ、該ケークが再溶解したスラリーを該塩素バイパス設備の排ガスに接触させ、該排ガスの脱硫を行うことを特徴とする。本発明によれば、上記発明と同様に、塩素バイパスダストに含まれるカルシウム分を脱硫に有効に利用して塩素バイパス排ガスを処理することができ、スケールトラブルの原因となる石膏の溶解を最小限に抑えることができると共に、回収物の有効利用を阻害するシンゲナイト(K2Ca(SO42)等の生成を抑制することができ、回収する工業塩の純度の低下を防止することもでき、塩素バイパスダストから効率よく鉛及びセレンを除去することもできる。 Further, the present invention is a method for treating chlorine bypass exhaust gas, wherein a part of the combustion gas is extracted from the kiln exhaust gas flow path from the bottom of the kiln of the cement kiln to the lowest cyclone, and extracted from the extracted gas. In a chlorine bypass facility for recovering chlorine bypass dust, after slurrying while adding an alkali agent to the recovered chlorine bypass dust, the slurry is dehydrated, the resulting cake is redissolved, and the cake is redissolved The slurry is brought into contact with the exhaust gas of the chlorine bypass facility, and the exhaust gas is desulfurized. According to the present invention, similarly to the above-described invention, it is possible to treat the chlorine bypass exhaust gas by effectively using calcium contained in the chlorine bypass dust for desulfurization, and minimize the dissolution of gypsum causing scale trouble. In addition, it is possible to suppress the production of syngenite (K 2 Ca (SO 4 ) 2 ) that inhibits the effective use of the recovered material, and it is possible to prevent a decrease in the purity of the industrial salt to be recovered. Further, lead and selenium can be efficiently removed from the chlorine bypass dust.
 上記塩素バイパス排ガスの処理方法において、前記スラリーのpHを13以上14以下に調整することができ、このpH領域で効率よく塩素バイパスダストに含まれるCaCl2及びCaCO3をCa(OH)2に変化させることができる。 In the chlorine bypass exhaust gas treatment method, the pH of the slurry can be adjusted to 13 or more and 14 or less, and CaCl 2 and CaCO 3 contained in the chlorine bypass dust are efficiently changed to Ca (OH) 2 in this pH region. Can be made.
 以上のように、本発明によれば、塩素バイパス排ガスを、セメント焼成系の熱損失を増加させることなく、セメント焼成系の安定運転を確保しながら、低コストで処理することができる。 As described above, according to the present invention, chlorine bypass exhaust gas can be processed at low cost while ensuring stable operation of the cement firing system without increasing the heat loss of the cement firing system.
本発明にかかる塩素バイパス排ガスの処理装置の第1の実施形態を示す全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram which shows 1st Embodiment of the processing apparatus of the chlorine bypass waste gas concerning this invention. 本発明にかかる塩素バイパス排ガスの処理装置の第2の実施形態を示す全体構成図である。It is a whole block diagram which shows 2nd Embodiment of the processing apparatus of the chlorine bypass waste gas concerning this invention. 従来の塩素バイパス設備を示す全体構成図である。It is a whole block diagram which shows the conventional chlorine bypass installation.
  次に、本発明を実施するための形態について図面を参照しながら説明する。 Next, embodiments for carrying out the present invention will be described with reference to the drawings.
 図1は、本発明にかかる塩素バイパス排ガスの処理装置の第1の実施形態を設けた塩素バイパス設備を示し、この塩素バイパス設備1は、セメントキルン2の窯尻から最下段サイクロン(不図示)に至るまでのキルン排ガス流路より、燃焼ガスの一部Gを冷却ファン4、5からの冷風で冷却しながら抽気するプローブ3と、プローブ3で抽気した抽気ガスG1に含まれるダストの粗粉D1を分離するサイクロン6と、サイクロン6から排出された微粉D2を含む抽気ガスG2を冷却する冷却器7と、冷却器7からの抽気ガスG3を集塵するバグフィルタ8と、バグフィルタ8からファン10を介して供給された排ガスG4の脱硫処理を行う脱硫塔11と、冷却器7及びバグフィルタ8から排出されたダストD5(D3+D4)を貯留するダストタンク9と、ダストタンク9から排出されたダスト(塩素バイパスダスト)D6にアルカリ剤を添加しながらスラリー化する第1の溶解槽12と、第1の溶解槽12から排出されたスラリーS1を固液分離する第1の固液分離装置13と、脱硫塔11で発生したスラリーS3を固液分離する第2の固液分離装置15と、第1の固液分離装置13から排出されたケークC1を第2の固液分離装置15からのろ液L2(循環水CW)に溶解させる第2の溶解槽14と、第1の固液分離装置13から排出されたろ液L1に硫化剤やpH調整剤を添加する調整槽16と、調整槽16から排出されたろ液L3を固液分離する第3の固液分離装置17等で構成される。プローブ3~ダストタンク9の構成については、2基の冷却ファン4、5で燃焼ガスGを冷却する点を除き、従来の塩素バイパス設備と同様の構成であるため、詳細説明を省略する。 FIG. 1 shows a chlorine bypass facility provided with a first embodiment of a chlorine bypass exhaust gas treatment apparatus according to the present invention. The chlorine bypass facility 1 is arranged from the kiln bottom of a cement kiln 2 to a lowermost cyclone (not shown). From the kiln exhaust gas flow path leading to the air, a probe 3 for extracting a part of the combustion gas while being cooled by cold air from the cooling fans 4 and 5, and coarse dust of dust contained in the extracted gas G1 extracted by the probe 3 A cyclone 6 that separates D1, a cooler 7 that cools the extracted gas G2 containing fine powder D2 discharged from the cyclone 6, a bag filter 8 that collects the extracted gas G3 from the cooler 7, and a bag filter 8 A desulfurization tower 11 that performs a desulfurization treatment of the exhaust gas G4 supplied through the fan 10 and a dust D5 (D3 + D4) discharged from the cooler 7 and the bag filter 8 are stored. The solid tank 9, the first dissolution tank 12 that is slurried while adding an alkali agent to the dust (chlorine bypass dust) D 6 discharged from the dust tank 9, and the slurry S 1 discharged from the first dissolution tank 12 are solidified. The first solid-liquid separation device 13 for liquid separation, the second solid-liquid separation device 15 for solid-liquid separation of the slurry S3 generated in the desulfurization tower 11, and the cake C1 discharged from the first solid-liquid separation device 13 Is dissolved in the filtrate L2 (circulated water CW) from the second solid-liquid separator 15 and the filtrate L1 discharged from the first solid-liquid separator 13 is added with a sulfiding agent and pH adjustment. The adjustment tank 16 to which the agent is added, the third solid-liquid separation device 17 for solid-liquid separation of the filtrate L3 discharged from the adjustment tank 16, and the like. Since the configuration of the probe 3 to the dust tank 9 is the same as that of the conventional chlorine bypass equipment except that the combustion gas G is cooled by the two cooling fans 4 and 5, detailed description thereof is omitted.
 第1の溶解槽12は、ダストタンク9からのダストD6を水(又は温水)を用いてスラリー化すると共に、NaOH等のアルカリ剤を添加してダストD6に含まれるCaCl2及びCaCO3をCa(OH)2に変化させるために設けられる。 The first dissolution tank 12 slurries the dust D6 from the dust tank 9 using water (or hot water) and adds an alkali agent such as NaOH to convert CaCl 2 and CaCO 3 contained in the dust D6 into Ca. Provided to change to (OH) 2 .
 第1の固液分離装置13は、第1の溶解槽12から排出されたスラリーS1を固液分離するために備えられる。固液分離されたケークC1は第2の溶解槽14へ、ろ液L1は調整槽16へ供給される。 The first solid-liquid separator 13 is provided for solid-liquid separation of the slurry S1 discharged from the first dissolution tank 12. The cake C1 subjected to the solid-liquid separation is supplied to the second dissolution tank 14, and the filtrate L1 is supplied to the adjustment tank 16.
  第2の溶解槽14は、第1の固液分離装置13から排出されたケークC1を再溶解させるために備えられ、ケークC1を循環水CWに溶解させたスラリーS2は、脱硫塔11においてバグフィルタ8の排ガスG4の脱硫に利用される。 The second dissolution tank 14 is provided for re-dissolving the cake C1 discharged from the first solid-liquid separator 13, and the slurry S2 obtained by dissolving the cake C1 in the circulating water CW is a bug in the desulfurization tower 11. It is used for desulfurization of the exhaust gas G4 of the filter 8.
 脱硫塔11は、バグフィルタ8からファン10を介して供給された排ガスG4を第2の溶解槽14から供給されたスラリーS2を利用して脱硫するために備えられる。脱硫によって生じた二水石膏を含むスラリーS3は第2の固液分離装置15へ、脱硫された排ガスG5は、セメントキルン2の排ガス系へ戻される。 The desulfurization tower 11 is provided to desulfurize the exhaust gas G4 supplied from the bag filter 8 via the fan 10 using the slurry S2 supplied from the second dissolution tank 14. The slurry S3 containing dihydrate gypsum generated by the desulfurization is returned to the second solid-liquid separator 15, and the desulfurized exhaust gas G5 is returned to the exhaust gas system of the cement kiln 2.
 第2の固液分離装置15は、脱硫塔11から供給されたスラリーS3を固液分離するために備えられ、固液分離されたろ液L2は、循環水CWとして第2の溶解槽14で再利用される。一方、固液分離されたケークC2側に二水石膏Gyが回収される。 The second solid-liquid separation device 15 is provided for solid-liquid separation of the slurry S3 supplied from the desulfurization tower 11, and the filtrate L2 obtained by solid-liquid separation is recirculated in the second dissolution tank 14 as circulating water CW. Used. On the other hand, dihydrate gypsum Gy is recovered on the cake C2 side where the solid-liquid separation is performed.
 調整槽16は、第1の固液分離装置13から排出されたろ液L1にNaSH等の硫化剤やpH調整剤を添加し、鉛等の重金属を不溶化させるために備えられる。pH調整剤として、NaOH、Ca(OH)2、CaO、Mg(OH)2、さらに硫酸等を用いることができる。 The adjustment tank 16 is provided to add a sulfurizing agent such as NaSH or a pH adjusting agent to the filtrate L1 discharged from the first solid-liquid separation device 13 so as to insolubilize heavy metals such as lead. As the pH adjuster, NaOH, Ca (OH) 2 , CaO, Mg (OH) 2 , sulfuric acid or the like can be used.
 第3の固液分離装置17は、調整槽16から排出されたろ液L3を固液分離するために備えられ、固液分離されたろ液L4から塩回収装置によって工業塩を回収してもよく、排水処理することもできる。また、固液分離されたケークC3側に鉛等の重金属が回収される。 The third solid-liquid separation device 17 is provided for solid-liquid separation of the filtrate L3 discharged from the adjustment tank 16, and industrial salt may be recovered from the filtrate L4 subjected to solid-liquid separation by a salt recovery device, Waste water can also be treated. Further, heavy metals such as lead are recovered on the cake C3 side where the solid-liquid separation is performed.
 次に、上記構成を有する塩素バイパス設備1の動作について、図1を参照しながら説明する。 Next, the operation of the chlorine bypass facility 1 having the above configuration will be described with reference to FIG.
 セメントキルン2の窯尻から最下段サイクロンに至るまでのキルン排ガス流路からの燃焼ガスの一部Gをプローブ3によって抽気しながら、冷却ファン4、5からの冷風によって冷却する。これによって、塩素化合物の微結晶が生成される。この塩素化合物の微結晶は、抽気ガスG1に含まれるダストの微粉側に偏在しているため、サイクロン6で分級した粗粉D1をセメントキルン2に付設されたプレヒータ等にセメント原料として戻す。 While the part 3 of the combustion gas from the kiln exhaust gas flow path from the bottom of the kiln 2 of the cement kiln 2 to the lowermost cyclone is extracted by the probe 3, it is cooled by the cold air from the cooling fans 4 and 5. Thereby, microcrystals of the chlorine compound are generated. Since the fine crystals of the chlorine compound are unevenly distributed on the fine powder side of the dust contained in the extraction gas G1, the coarse powder D1 classified by the cyclone 6 is returned to the preheater or the like attached to the cement kiln 2 as a cement raw material.
 サイクロン6によって分離された微粉D2を含む抽気ガスG2を冷却器7に導入し、抽気ガスG2と媒体との熱交換を行う。熱交換によって冷却された抽気ガスG3をバグフィルタ8に導入し、バグフィルタ8において抽気ガスG3に含まれるダストD4を回収する。バグフィルタ8で回収したダストD4は、冷却器7から排出されたダストD3と共にダストD5としてダストタンク9に一旦貯留し、第1の溶解槽12にダストD6として導入する。 The extraction gas G2 containing the fine powder D2 separated by the cyclone 6 is introduced into the cooler 7, and heat exchange between the extraction gas G2 and the medium is performed. The extracted gas G3 cooled by heat exchange is introduced into the bag filter 8, and the bag filter 8 collects the dust D4 contained in the extracted gas G3. The dust D4 collected by the bag filter 8 is temporarily stored in the dust tank 9 as the dust D5 together with the dust D3 discharged from the cooler 7, and is introduced into the first dissolution tank 12 as the dust D6.
 第1の溶解槽12に導入されたダストD6は、第1の溶解槽12内において水(又は温水)及びNaOH等のアルカリ剤と混合されてスラリーS1が生成される。ここで、第1の溶解槽12内のpHを13.5±0.5に調整する。これにより、ダストD6に含まれるCaCl2及びCaCO3がアルカリ剤と反応してCa(OH)2が生成され、これらのカルシウム分を後段の脱硫塔11における脱硫に有効に利用することができる。尚、アルカリ剤には、NaOHの他、KOHなどを用いることもできる。 The dust D6 introduced into the first dissolution tank 12 is mixed with water (or warm water) and an alkaline agent such as NaOH in the first dissolution tank 12 to generate a slurry S1. Here, the pH in the first dissolution tank 12 is adjusted to 13.5 ± 0.5. As a result, CaCl 2 and CaCO 3 contained in the dust D6 react with the alkali agent to generate Ca (OH) 2 , and these calcium components can be effectively used for desulfurization in the desulfurization tower 11 at the subsequent stage. As the alkaline agent, KOH or the like can be used in addition to NaOH.
 また、CaCl2は水に溶解するため、上記アルカリ剤と反応させてCa(OH)2に変化させなければ、後段の第3の固液分離装置17のろ液L4に含まれ、回収した工業塩に含まれることとなる。その結果、工業塩の純度を低下させることとなるため、上記アルカリ剤との反応は、工業塩の純度の低下を防止するという効果も奏する。 In addition, since CaCl 2 is dissolved in water, it is contained in the recovered filtrate L4 of the third solid-liquid separation device 17 in the subsequent stage unless it is converted into Ca (OH) 2 by reacting with the alkali agent. It will be included in the salt. As a result, since the purity of the industrial salt is lowered, the reaction with the alkali agent also has an effect of preventing the purity of the industrial salt from being lowered.
 さらに、上記アルカリ剤の添加により、ダストD6に含まれる重金属のうち鉛(Pb)とセレン(Se)が、ろ液L1とろ液L2に各々図1に示す割合で分離され、調整槽16側に多く供給されるため、後段の調整槽16及び第3の固液分離装置17を介して鉛を効率よく回収することができる。尚、セレンは調整槽16及び第3の固液分離装置17によって回収されることは少ないが、回収した工業塩に含まれることとなっても問題はないため、ダストD6から効率よく除去することができる。一方、ケークC1に含まれるカドミウム、銅、亜鉛、鉛、セレン等の不溶金属及びフッ素化合物は、最終的に第2の固液分離装置15において石膏Gyと共に系外に排出される。 Furthermore, lead (Pb) and selenium (Se) among heavy metals contained in the dust D6 are separated into the filtrate L1 and the filtrate L2 in the ratio shown in FIG. Since a large amount is supplied, lead can be efficiently recovered through the adjustment tank 16 and the third solid-liquid separator 17 at the subsequent stage. Selenium is rarely recovered by the adjustment tank 16 and the third solid-liquid separation device 17, but there is no problem even if it is included in the recovered industrial salt, so it should be efficiently removed from the dust D6. Can do. On the other hand, insoluble metals such as cadmium, copper, zinc, lead, selenium and fluorine compounds contained in the cake C1 are finally discharged out of the system together with the gypsum Gy in the second solid-liquid separator 15.
 次に、第1の溶解槽12から排出されたスラリーS1を第1の固液分離装置13によって固液分離し、スラリーS1を固液分離しながら固液分離して得られるケークを水洗して塩素分を除去する。塩素分が除去されたケークC1を第2の溶解槽14へ供給して再溶解させたスラリーS2を脱硫塔11に供給して脱硫に利用する。尚、脱硫後の排ガスG5は、セメントキルン2の排ガス系へ導入する。 Next, the slurry S1 discharged from the first dissolution tank 12 is subjected to solid-liquid separation by the first solid-liquid separation device 13, and the cake obtained by solid-liquid separation while solid-liquid separation of the slurry S1 is washed with water. Remove chlorine. The cake C1 from which the chlorine content has been removed is supplied to the second dissolution tank 14 and the re-dissolved slurry S2 is supplied to the desulfurization tower 11 and used for desulfurization. The exhaust gas G5 after desulfurization is introduced into the exhaust gas system of the cement kiln 2.
 ここで、上記再溶解したスラリーS2中に存在するCa(OH)2が、脱硫塔11でバグフィルタ8の排ガスG4に含まれるSO2と反応して二水石膏(CaSO4・2H2O)へと転換される。この際、第1の固液分離装置13においてカリウム分や塩素分を除去したため、ケークC1を再溶解したスラリーS2の塩素含有率が低く、スケールトラブルの原因となる石膏の溶解を最小限に抑えることができると共に、シンゲナイト(K2Ca(SO42)の生成を抑制することができる。尚、シンゲナイトがセメントに添加されると、セメント品質、特に強度に影響を及ぼすため生成を抑制しなければならない。 Here, Ca (OH) 2 present in the re-dissolved slurry S2 reacts with SO 2 contained in the exhaust gas G4 of the bag filter 8 in the desulfurization tower 11, and dihydrate gypsum (CaSO 4 .2H 2 O). Converted to At this time, since the potassium and chlorine contents were removed in the first solid-liquid separator 13, the chlorine content of the slurry S2 obtained by re-dissolving the cake C1 is low, and the dissolution of gypsum causing scale trouble is minimized. In addition, it is possible to suppress the formation of singenite (K 2 Ca (SO 4 ) 2 ). In addition, when syngenite is added to cement, the production must be suppressed because it affects cement quality, particularly strength.
 次に、第2の固液分離装置15によって、脱硫塔11から排出されたスラリーS3を固液分離してケークC2側に得られる二水石膏Gyをセメントミルでセメントクリンカと共に粉砕してセメント製造に供することができる。一方、分離されたろ液L2を循環水CWとして第2の溶解槽14でのスラリーS2の生成に再利用することができる。 Next, the slurry S3 discharged from the desulfurization tower 11 is solid-liquid separated by the second solid-liquid separator 15 and the dihydrate gypsum Gy obtained on the cake C2 side is pulverized together with the cement clinker by a cement mill to produce cement. Can be used. On the other hand, the separated filtrate L2 can be reused for the production of the slurry S2 in the second dissolution tank 14 as the circulating water CW.
 一方、第1の固液分離装置13によって固液分離されたろ液L1を調整槽16に供給し、ろ液L1にNaSH等の硫化剤やpH調整剤を添加し、鉛等の重金属を沈殿化させ、第3の固液分離装置17で固液分離してケークC3側に重金属を回収する。尚、必要であれば、ろ液L3を第3の固液分離装置17に供給する前にろ過助剤を添加する。また、第3の固液分離装置17で固液分離されたろ液L4から工業塩を回収してもよく、ろ液L4を排水処理後に放流してもよい。工業塩を回収した場合には、上述のようにCaCl2をCa(OH)2に変化させたため、低カルシウム濃度でKCl含有率の高い工業塩を得ることができる。 On the other hand, the filtrate L1 solid-liquid separated by the first solid-liquid separator 13 is supplied to the adjustment tank 16, and a sulfurizing agent such as NaSH or a pH adjuster is added to the filtrate L1 to precipitate heavy metals such as lead. Then, the solid-liquid separation is performed by the third solid-liquid separation device 17 to recover the heavy metal on the cake C3 side. If necessary, a filter aid is added before the filtrate L3 is supplied to the third solid-liquid separator 17. Further, industrial salt may be recovered from the filtrate L4 subjected to solid-liquid separation by the third solid-liquid separation device 17, and the filtrate L4 may be discharged after the waste water treatment. When the industrial salt is recovered, CaCl 2 is changed to Ca (OH) 2 as described above, so that an industrial salt having a low calcium concentration and a high KCl content can be obtained.
 次に、本発明にかかる塩素バイパス排ガスの処理装置の第2の実施形態について、図2を参照しながら説明する。 Next, a second embodiment of the chlorine bypass exhaust gas treatment apparatus according to the present invention will be described with reference to FIG.
 この塩素バイパス設備31は、塩素バイパス設備1の冷却器7及びバグフィルタ8に代えて高温集塵機32を備え、高温集塵機32の後段にガスガスヒータ33を配置し、ガスガスヒータ33で昇温された大気を塩回収に利用することを特徴とする。塩素バイパス設備31の他の構成要素については、図1に示した塩素バイパス設備1と同様であるため、同一の参照番号を付してそれらについての説明を省略する。 The chlorine bypass facility 31 includes a high-temperature dust collector 32 instead of the cooler 7 and the bag filter 8 of the chlorine bypass facility 1, and a gas gas heater 33 is disposed at the subsequent stage of the high-temperature dust collector 32, and the atmosphere heated by the gas gas heater 33. Is used for salt recovery. Since the other components of the chlorine bypass facility 31 are the same as those of the chlorine bypass facility 1 shown in FIG. 1, the same reference numerals are given and description thereof is omitted.
 高温集塵機32は、例えば、セラミックフィルタを備え、900℃程度までの耐熱性を有する耐熱型のバグフィルタや耐熱性を有する高温処理タイプの電気集塵機であって、サイクロン6から排出された微粉D2を含む抽気ガスG2を冷却せずに集塵し、集塵したダスト(塩素バイパスダスト)D3をダストタンク9に供給する。 The high-temperature dust collector 32 is, for example, a heat-resistant bag filter having a heat resistance up to about 900 ° C. or a high-temperature processing type electric dust collector having a heat resistance up to about 900 ° C., and the fine dust D2 discharged from the cyclone 6 is collected. The extracted gas G2 is collected without cooling, and the collected dust (chlorine bypass dust) D3 is supplied to the dust tank 9.
 ガスガスヒータ33は、高温集塵機32から排出された抽気ガスG3によって周囲から取り入れた空気A1を加熱し、ガスガスヒータ33で加熱された高温空気A2を後段の塩回収に利用するために備えられる。また、空気A2との熱交換により、脱硫塔11で脱硫する排ガスG4の温度の調整が可能となり、固結の発生を抑制することができる。さらに、ガスガスヒータ33で回収した熱を脱硫塔11の排ガスG5の昇温に利用してもよい。 The gas gas heater 33 is provided to heat the air A1 taken from the surroundings by the extracted gas G3 discharged from the high temperature dust collector 32 and to use the high temperature air A2 heated by the gas gas heater 33 for subsequent salt recovery. Further, the heat exchange with the air A2 enables the temperature of the exhaust gas G4 to be desulfurized in the desulfurization tower 11 to be adjusted, and the occurrence of consolidation can be suppressed. Further, the heat recovered by the gas gas heater 33 may be used for raising the temperature of the exhaust gas G5 in the desulfurization tower 11.
 上記構成により、サイクロン6によって分離された微粉D2を含む抽気ガスG2を高温集塵機32に導入し、高温集塵機32において抽気ガスG2に含まれるダストD2を回収し、高温集塵機32から排出されたダストD3は、ダストタンク9に一旦貯留し、第1の溶解槽12にダストD4として導入する。また、周囲から取り入れた空気A1及び高温集塵機32の排ガスG3は、ガスガスヒータ33に導入され、両者間で熱交換がなされた後、高温空気A2は、塩回収に利用され、ガスガスヒータ33から排出された排ガスG4は、脱硫塔11に導入後脱硫される。その他のフローは塩素バイパス設備1の場合と同様である。 With the above configuration, the extraction gas G2 containing the fine powder D2 separated by the cyclone 6 is introduced into the high temperature dust collector 32, the dust D2 contained in the extraction gas G2 is collected in the high temperature dust collector 32, and the dust D3 discharged from the high temperature dust collector 32 is collected. Is temporarily stored in the dust tank 9 and introduced into the first dissolution tank 12 as dust D4. In addition, the air A1 taken from the surroundings and the exhaust gas G3 of the high temperature dust collector 32 are introduced into the gas gas heater 33, and after heat exchange between them, the high temperature air A2 is used for salt recovery and discharged from the gas gas heater 33. The exhaust gas G4 is introduced into the desulfurization tower 11 and then desulfurized. Other flows are the same as in the case of the chlorine bypass facility 1.
 以上のように、本実施の形態における塩素バイパス排ガスの処理装置は、第1の実施形態と同様の効果を奏すると共に、塩素バイパス排ガスの顕熱を塩回収に利用することで、塩回収のコストを低減することなどが可能となる。 As described above, the chlorine bypass exhaust gas treatment apparatus according to the present embodiment has the same effect as that of the first embodiment, and uses the sensible heat of the chlorine bypass exhaust gas for salt recovery. Can be reduced.
 また、上記実施の形態においては、溶解槽12にダストD6を溶解させる場合について説明したが、カルシウム分が不足する場合には、サイクロン6で分離した粗粉D1を分取し、溶解槽12や溶解槽14に溶解させてカルシウム分を補うこともできる。 Moreover, in the said embodiment, although the case where the dust D6 was dissolved in the dissolution tank 12 was demonstrated, when calcium content is insufficient, the coarse powder D1 isolate | separated with the cyclone 6 is fractionated, and dissolution tank 12 or It can also be dissolved in the dissolution tank 14 to supplement the calcium content.
1 塩素バイパス設備
2 セメントキルン
3 プローブ
4、5 冷却ファン
6 サイクロン
7 冷却器
8 バグフィルタ
9 ダストタンク
10 ファン
11 脱硫塔
12 第1の溶解槽
13 第1の固液分離装置
14 第2の溶解槽
15 第2の固液分離装置
16 調整槽
17 第3の固液分離装置
31 塩素バイパス設備
32 高温集塵機
33 ガスガスヒータ
DESCRIPTION OF SYMBOLS 1 Chlorine bypass facility 2 Cement kiln 3 Probe 4, 5 Cooling fan 6 Cyclone 7 Cooler 8 Bag filter 9 Dust tank 10 Fan 11 Desulfurization tower 12 1st dissolution tank 13 1st solid-liquid separation apparatus 14 2nd dissolution tank 15 Second solid-liquid separator 16 Adjustment tank 17 Third solid-liquid separator 31 Chlorine bypass facility 32 High-temperature dust collector 33 Gas gas heater

Claims (9)

  1.  セメントキルンの窯尻から最下段サイクロンに至るまでのキルン排ガス流路より燃焼ガスの一部を冷却しながら抽気し、該抽気ガスから塩素バイパスダストを回収する塩素バイパス設備に付設され、
     前記回収された塩素バイパスダストにアルカリ剤を添加しながらスラリー化する第1の溶解槽と、
     該第1の溶解槽で生成されたスラリーを固液分離する固液分離装置と、
     該固液分離装置で生成されたケークを再溶解させる第2の溶解槽と、
     前記第2の溶解槽で生成された再溶解後のスラリーを該塩素バイパス設備の排ガスに接触させ、該排ガスの脱硫を行う脱硫塔とを備えることを特徴とする塩素バイパス排ガスの処理装置。
    Extracted while cooling a part of the combustion gas from the kiln exhaust gas flow path from the bottom of the kiln of the cement kiln to the bottom cyclone, and attached to a chlorine bypass facility for recovering chlorine bypass dust from the extracted gas,
    A first dissolution tank that is slurried while adding an alkali agent to the recovered chlorine bypass dust;
    A solid-liquid separation device for solid-liquid separation of the slurry produced in the first dissolution tank;
    A second dissolution tank for re-dissolving the cake produced by the solid-liquid separator;
    An apparatus for treating chlorine bypass exhaust gas, comprising: a desulfurization tower configured to contact the exhaust gas of the chlorine bypass facility with the redissolved slurry generated in the second dissolution tank and desulfurize the exhaust gas.
  2.  前記脱硫塔から排出されたスラリーを固液分離する第2の固液分離装置と、該第2の固液分離装置で固液分離されたろ液を前記第2の溶解槽に供給する供給手段とを備えることを特徴とする請求項1に記載の塩素バイパス排ガスの処理装置。 A second solid-liquid separation device for solid-liquid separation of the slurry discharged from the desulfurization tower, and a supply means for supplying the filtrate separated by the second solid-liquid separation device to the second dissolution tank The chlorine bypass exhaust gas treatment device according to claim 1, comprising:
  3.  前記第1の固液分離装置で固液分離されたろ液に硫化剤及びpH調整剤を添加し、該ろ液に含まれる重金属を不溶化させる調整槽を備えることを特徴とする請求項1又は2に記載の塩素バイパス排ガスの処理装置。 3. A control tank for adding a sulfiding agent and a pH adjuster to the filtrate solid-liquid separated by the first solid-liquid separator and insolubilizing heavy metals contained in the filtrate is provided. An apparatus for treating chlorine bypass exhaust gas as described in 1.
  4.  前記調整槽から排出されたろ液を固液分離する第3の固液分離装置を備えることを特徴とする請求項1、2又は3に記載の塩素バイパス排ガスの処理装置。 The chlorine bypass exhaust gas treatment device according to claim 1, 2 or 3, further comprising a third solid-liquid separation device for solid-liquid separation of the filtrate discharged from the adjustment tank.
  5.  前記第3の固液分離装置から排出されたろ液から塩を回収する塩回収装置を備えることを特徴とする請求項4に記載の塩素バイパス排ガスの処理装置。 The chlorine bypass exhaust gas treatment device according to claim 4, further comprising a salt recovery device that recovers salt from the filtrate discharged from the third solid-liquid separation device.
  6.  前記抽気ガスから回収した熱を前記塩回収装置における塩回収に利用するガスガスヒータを備えることを特徴とする請求項5に記載の塩素バイパス排ガスの処理装置。 The chlorine bypass exhaust gas treatment device according to claim 5, further comprising a gas gas heater that uses heat recovered from the extracted gas for salt recovery in the salt recovery device.
  7.  前記ガスガスヒータは、前記抽気ガスを集塵する高温集塵機の排ガスから熱回収することを特徴とする請求項6に記載の塩素バイパス排ガスの処理装置。 The chlorine bypass exhaust gas treatment device according to claim 6, wherein the gas gas heater recovers heat from the exhaust gas of a high-temperature dust collector that collects the extracted gas.
  8.  セメントキルンの窯尻から最下段サイクロンに至るまでのキルン排ガス流路より燃焼ガスの一部を冷却しながら抽気し、該抽気ガスから塩素バイパスダストを回収する塩素バイパス設備において、
     前記回収された塩素バイパスダストにアルカリ剤を添加しながらスラリー化した後、該スラリーを脱水し、
     得られたケークを再溶解させ、
     該ケークが再溶解したスラリーを該塩素バイパス設備の排ガスに接触させ、該排ガスの脱硫を行うことを特徴とする塩素バイパス排ガスの処理方法。
    In the chlorine bypass facility for extracting the chlorine bypass dust from the extracted gas while extracting a part of the combustion gas from the kiln exhaust gas passage from the kiln bottom of the cement kiln to the lowermost cyclone,
    After slurrying while adding an alkali agent to the recovered chlorine bypass dust, the slurry is dehydrated,
    Redissolve the resulting cake,
    A method for treating a chlorine bypass exhaust gas, wherein the slurry in which the cake is re-dissolved is brought into contact with the exhaust gas of the chlorine bypass facility to desulfurize the exhaust gas.
  9.  前記スラリーのpHを13以上14以下に調整することを特徴とする請求項8に記載の塩素バイパス排ガスの処理方法。 9. The chlorine bypass exhaust gas treatment method according to claim 8, wherein the pH of the slurry is adjusted to 13 or more and 14 or less.
PCT/JP2012/051519 2011-03-09 2012-01-25 Device and method for processing chlorine bypass exhaust gas WO2012120933A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-051103 2011-03-09
JP2011051103A JP5680450B2 (en) 2011-03-09 2011-03-09 Chlorine bypass exhaust gas treatment device and treatment method

Publications (1)

Publication Number Publication Date
WO2012120933A1 true WO2012120933A1 (en) 2012-09-13

Family

ID=46797904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051519 WO2012120933A1 (en) 2011-03-09 2012-01-25 Device and method for processing chlorine bypass exhaust gas

Country Status (3)

Country Link
JP (1) JP5680450B2 (en)
TW (1) TWI547306B (en)
WO (1) WO2012120933A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106669397A (en) * 2015-11-05 2017-05-17 宁夏琪凯节能设备有限公司 Energy-saving waste gas treatment facility
JP2020001963A (en) * 2018-06-28 2020-01-09 宇部興産株式会社 Method and system for producing cement composition

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6012071B2 (en) * 2012-12-03 2016-10-25 太平洋セメント株式会社 Chlorine bypass exhaust gas treatment method
CN106132896B (en) * 2013-09-25 2018-05-18 太平洋水泥株式会社 Extract cooling device, chlorine bypass system, the processing method of cement kiln gas bleeding and cement burning apparatus out
DE102014116532A1 (en) * 2014-11-12 2016-05-12 Thyssenkrupp Ag A method for reducing a pollutant content of an exhaust gas stream produced or used during a thermal treatment of a material
CN106000045B (en) * 2016-06-17 2019-04-16 王骞 Boiler smoke depth dust-removal and desulfurizing denitration device
KR101998997B1 (en) * 2017-12-21 2019-07-10 현대제철 주식회사 Method for removing impurities in sinter flue gas dust

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009196860A (en) * 2008-02-22 2009-09-03 Taiheiyo Cement Corp Method of treating dust containing lead component, potassium component and chlorine component
JP2010001176A (en) * 2008-06-19 2010-01-07 Taiheiyo Cement Corp System and method for treating cement kiln extraction gas
WO2012020691A1 (en) * 2010-08-10 2012-02-16 太平洋セメント株式会社 Method and device for treating chlorine bypass dust and discharge gas

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4105466B2 (en) * 2002-03-29 2008-06-25 太平洋セメント株式会社 Cement kiln extraction gas processing method
JP5023469B2 (en) * 2005-10-31 2012-09-12 住友大阪セメント株式会社 Method and apparatus for treating chlorine-containing waste
JP4986958B2 (en) * 2008-08-27 2012-07-25 太平洋セメント株式会社 Water washing method and water washing system for incineration ash and cement kiln combustion gas extraction dust

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009196860A (en) * 2008-02-22 2009-09-03 Taiheiyo Cement Corp Method of treating dust containing lead component, potassium component and chlorine component
JP2010001176A (en) * 2008-06-19 2010-01-07 Taiheiyo Cement Corp System and method for treating cement kiln extraction gas
WO2012020691A1 (en) * 2010-08-10 2012-02-16 太平洋セメント株式会社 Method and device for treating chlorine bypass dust and discharge gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106669397A (en) * 2015-11-05 2017-05-17 宁夏琪凯节能设备有限公司 Energy-saving waste gas treatment facility
JP2020001963A (en) * 2018-06-28 2020-01-09 宇部興産株式会社 Method and system for producing cement composition

Also Published As

Publication number Publication date
TW201244808A (en) 2012-11-16
JP2012187458A (en) 2012-10-04
JP5680450B2 (en) 2015-03-04
TWI547306B (en) 2016-09-01

Similar Documents

Publication Publication Date Title
WO2012120933A1 (en) Device and method for processing chlorine bypass exhaust gas
JP4785438B2 (en) Heavy metal recovery from cement manufacturing process
CN102892708B (en) Process for the production of lithium carbonate
TWI552796B (en) Method and apparatus for treating chlorine bypass dust and exhaust gas
JP5833002B2 (en) Treatment method of chlorine bypass dust
TWI604157B (en) Apparatus and method for recovering valuable material
JP5355431B2 (en) Method and apparatus for treating incinerated fly ash and cement kiln combustion gas bleed dust
JP6357009B2 (en) Raw materials for refining valuable metals and raw material recovery methods for refining valuable metals
WO2015046200A1 (en) Treatment method for cement kiln extracted gas, chlorine bypass system, and cement firing device
JP5854499B2 (en) Chlorine bypass exhaust gas treatment method
JP5652950B2 (en) Chlorine bypass system and chlorine bypass extraction gas processing method
JP2004211114A (en) Method of producing rubidium
JP2003225633A (en) Method of treating chloride-containing dust
JP5652947B2 (en) Cement kiln combustion gas extraction dust processing method and processing apparatus
JP6864648B2 (en) Raw material recovery method for valuable metal refining
JP5131764B2 (en) Method for recovering thallium from cement manufacturing process
JP2008075139A (en) Method for treating dust in bled combustion gas of cement kiln
JP6223791B2 (en) Method for removing lead from cement firing equipment
JP6012071B2 (en) Chlorine bypass exhaust gas treatment method
JP2008230942A (en) Method for treating cement kiln combustion gas extracted dust
JP2012192389A (en) Treatment method of fine powder containing chlorine and lead
JP3933509B2 (en) Potassium chloride recovery method and recovery device
CN117107074A (en) Method and system for extracting lithium from lithium resource
JP4170007B2 (en) Method for producing cement clinker or cement raw material
JP2004210554A (en) Preparation method of rubidium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12754552

Country of ref document: EP

Kind code of ref document: A1