WO2012120905A1 - Crosslinked metallic organic structure and crosslinked organic material, and processes for producing same - Google Patents

Crosslinked metallic organic structure and crosslinked organic material, and processes for producing same Download PDF

Info

Publication number
WO2012120905A1
WO2012120905A1 PCT/JP2012/001659 JP2012001659W WO2012120905A1 WO 2012120905 A1 WO2012120905 A1 WO 2012120905A1 JP 2012001659 W JP2012001659 W JP 2012001659W WO 2012120905 A1 WO2012120905 A1 WO 2012120905A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
metal
mof
crosslinked
organic structure
Prior art date
Application number
PCT/JP2012/001659
Other languages
French (fr)
Japanese (ja)
Inventor
和己 佐田
憲太 小門
拓己 石渡
幸太 杉川
雄基 古川
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Publication of WO2012120905A1 publication Critical patent/WO2012120905A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/041,2,3-Triazoles; Hydrogenated 1,2,3-triazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic System
    • C07F1/06Potassium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic System
    • C07F3/06Zinc compounds

Definitions

  • the present invention relates to a crosslinked metal organic structure and a novel covalent organic structure.
  • Covalent organic structures (COF: Covalent-Organic® Framework) and metal organic structures (MOF: Metal-Organic® Framework) are known as organic porous materials with organic skeletons and nano-order pores. ing.
  • a covalent organic structure is a structure in which rigid organic molecules are accumulated by covalent bonds.
  • the metal organic structure is a structure in which organic ligands are accumulated by coordination bonds with metal ions.
  • Non-Patent Document 1 It has been reported that metal organic structures and covalent organic structures have gas storage properties (see Non-Patent Document 1) or catalytic properties (see Non-Patent Document 2). ing. To enhance such properties, the interaction between the structure and its guest molecule is important. In view of this, a contrivance has been proposed to increase the interaction between the structure and its guest molecule by introducing a specific functional group or structure into the organic molecule of the structure.
  • Non-Patent Document 3 an amino group introduced into the skeleton of a covalent organic structure and an isocyanate derivative are reacted (see Non-Patent Document 3), or an acetylene derivative is reacted with an azide group introduced into the skeleton of a metal organic structure. (See Non-Patent Document 4), a method for post-modifying the structure has been proposed.
  • the inventor of the present invention focused on producing a network polymer using a metal organic structure as a template. That is, the organic ligands of the metal organic structure are cross-linked to obtain a cross-linked metal organic structure; and subsequently, metal ions are extracted from the cross-linked metal organic structure to obtain a metal organic structure (MOF). )
  • MOF metal organic structure
  • both the metal organic structure and the covalently bonded organic structure have a problem that they decompose in an acidic solvent and dissolve themselves or lose organic porosity.
  • the skeleton of the metal organic structure is cross-linked by a covalent bond (chemical reaction), so that the material does not decompose even in various solvents.
  • the present inventor has found that an organic cross-linked product prepared by extracting metal ions from a cross-linked metal organic structure is regenerated into a cross-linked metal organic structure by adsorbing metal ions. That is, the present invention provides a new metal ion adsorbent.
  • the first of the present invention relates to a method for producing a crosslinked metal organic structure and an organic crosslinked product shown below.
  • Step A for preparing a metal organic structure containing an organic ligand and a metal ion linking the organic ligand; and cross-linking the ligand with a cross-linking agent;
  • a step B for producing a cross-linked metal organic structure.
  • a method for producing an organic structure wherein the organic ligand has a functional group, and the crosslinking agent has two or more functional groups that can react with the functional group to form a covalent bond.
  • a method of producing a crosslinked organic material comprising: a step B; and a step C of removing a part or all of the metal ions from the crosslinked metal-organic structure.
  • the second of the present invention relates to the following cross-linked metal organic structure and covalent organic structure.
  • a crosslinked metal organic structure comprising an organic ligand, a metal ion that links the organic ligand, and a crosslinking group that bridges the organic ligand.
  • An organic crosslinked product obtained by removing a part or all of the metal ions from the crosslinked metal-organic structure according to [4].
  • the cross-linked organic material according to [5] wherein the cross-linked organic material can become the cross-linked metal organic structure by adsorbing metal ions.
  • a new design policy of a covalently bonded organic structure is provided, and a covalently bonded organic structure having an unprecedented structure can be provided. Furthermore, since the crosslinked organic substance provided by the present invention has a metal ion adsorption ability, it can be applied to a metal recovery raw material.
  • FIG. 5A shows an optical micrograph before immersion (left side) and an optical micrograph after immersion (right side) of sample No. 5 in Table 1;
  • FIG. 6 is a chart showing ATR-IR spectra of metal organic structure N 3 -MOF-15, cross-linked metal organic structure CL-MOF-15, and organic cross-linked substance PG-MOF-15.
  • FIG. 5 is a chart showing XPS spectra of a metal organic structure IR-MOF-9, a crosslinkable metal organic structure CL-MOF-15, and an organic crosslinker PG-MOF-15 that are not reacted with a crosslinking agent.
  • thermogravimetric analysis (TGA) test of the metal organic structure N 3 -MOF-15, the cross-linked metal organic structure CL-MOF-15, and the organic cross-linked product PG-MOF-15 not reacted with the cross-linking agent is shown. It is a graph. ATR-IR of metal organic structure N 3 -MOF-15, cross-linked metal organic structure CL-MOF-15, organic cross-linked body PG-MOF-15 and regenerated cross-linked metal organic structure ReCL-MOF-15 It is a chart figure showing a spectrum. The state in which the cross-linked metal organic structure CL-CD-MOF is changed to the organic cross-linked product PG-CD-MOF in a solvent is observed with an optical microscope.
  • FIG. 5 is a graph showing the degree of swelling of the organic crosslinked product PG-CD-MOF.
  • the horizontal axis represents the concentration of the crosslinking agent L1, and the vertical axis represents the degree of swelling.
  • FIG. 4 is a chart showing FT-IR spectra of metal organic structure CD-MOF, cross-linked metal organic structure CL-CD-MOF, and organic cross-linked product PG-CD-MOF.
  • 2 is a scanning electron microscope image of metal organic structure CD-MOF, cross-linked metal organic structure CL-CD-MOF, and organic cross-linked product PG-CD-MOF.
  • A (b) CD-MOF, (c) (d) CL-CD-MOF, (e) (f) PG-CD-MOF.
  • a ball-and-stick model of CD-MOF (referred to as ( ⁇ -CD) 6) in which 6 molecules of ⁇ -CD are associated.
  • a space-filling model of CD-MOF in which a plurality of ( ⁇ -CD) 6 are associated in a body-centered cubic lattice structure.
  • a metal organic structure 30 can be obtained by reacting an organic ligand 10 and a metal ion 20.
  • the organic ligand 10 has a functional group 11 having reactivity with a crosslinking agent 40 described later.
  • the crosslinkable metal organic structure 50 is obtained by reacting the crosslinker 40 with the functional group 11 of the metal organic structure 30.
  • the organic crosslinked body 60 is a covalent organic structure reflecting the structure of the crosslinked metal organic structure 50. Therefore, when the metal ion 20 is provided to the organic crosslinked body 60, the metal ion 20 is taken in and regenerated into the crosslinked metal organic structure 50.
  • the metal organic structure 30, the cross-linked metal organic structure 50, and the organic cross-linked body 60 will be described in this order.
  • the metal organic structure 30 is obtained by reacting the organic ligand 10 and the metal ion 20.
  • Organic ligand 10 has a molecular structure called “rigid molecule”.
  • a rigid molecule is a molecule in which rotation and bending within the molecule are restricted, and examples thereof include a cyclic molecule, an aromatic ring, or a rod-like molecule in which aromatic rings are connected.
  • Examples of cyclic molecules include cyclodextrins.
  • Examples of the aromatic ring include phenylene, naphthylene, anthracenylene, pentacene, porphyrin, carborane, thiophene, pyridine, C60 and the like.
  • a rigid molecule is obtained by connecting one or more of these aromatic rings.
  • a rigid molecule has a phenylene structure, a diphenylene structure in which two phenylenes are linked, and a terphenylene structure in which three phenylene groups are linked.
  • the organic ligand 10 has two or more functional groups (coordinating functional groups) that can coordinate to metal atoms.
  • functional groups that can be coordinated to a metal atom include a carboxyl group, a pyridinyl group, an amino group, a porphyrinyl group, an acetylacetonate group, a hydroxyl group, a Schiff base, an amino acid residue, and the like.
  • the organic ligand 10 has a functional group 11 having reactivity with a cross-linking agent 40 described later.
  • One functional group 11 may be introduced into the organic ligand 10, or two or more functional groups 11 may be introduced.
  • the kind of the functional group 11 is not particularly limited, and may be an azide group, an amino group, a carboxyl group and analogs thereof, a double bond, a triple bond, an isocyanate group, a hydroxyl group, and the like.
  • the functional group 11 is an azide group, it can be reacted with the crosslinking agent 40 introduced with an acetylene group; if the functional group 11 is an amino group, it can be reacted with the crosslinking agent 40 introduced with an isocyanate group. it can.
  • Examples of the preferred organic ligand 10 include the following compounds.
  • the metal ion 20 is, for example, a metal ion of an actinide element or lanthanide element, and is an ion of a metal element belonging to Group 1 to Group 16 of the periodic table.
  • Specific examples of the metal ion 20 include Li + , Na + , K + , Rb + , Be 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Sc 3+ , Y 3+ , Ti 4+ , Zr 4+ , Hf 4+.
  • the organic metal structure 30 is manufactured by, for example, solvothermal reaction of the organic ligand 10 and the metal ion 20 based on a conventional method.
  • the solvothermal reaction is usually carried out in the presence of an acid or base, and the solvent and raw materials are charged from room temperature to high temperature (300 degrees), at atmospheric pressure or in a pressure vessel, and the temperature is raised to the boiling point or higher. The inside pressure is higher than atmospheric pressure.
  • N, N-diethylformamide (DEF) or N, N-dimethylformamide (DMF) is used as a solvent in the solvothermal reaction. This is because they decompose slowly at high temperatures to form amine bases slowly.
  • the conditions for the solvothermal reaction are appropriately set.
  • the metal organic structure 30 preferably has a crystal structure.
  • the metal organic structure 30 is a porous material having nano-order pores. The size of the pores is controlled by the length of the organic ligand 10 (distance between coordination functional groups) and the like.
  • the crosslinkable metal organic structure 50 is obtained by reacting the metal organic structure 30 and the crosslinker 40.
  • the cross-linking agent 40 has two or more groups that react with the functional group 11 introduced into the organic ligand 10 of the metal organic structure 30.
  • the crosslinking agent may be a divalent crosslinking agent or a trivalent or higher crosslinking agent.
  • Specific examples of the crosslinking agent 40 when the functional group 11 is an azide group include the following compounds.
  • the design of the crosslinking agent 40 is performed in consideration of the distance between the functional groups 11 in the metal organic structure 30.
  • the reaction between the metal organic structure 30 and the crosslinking agent 40 is not particularly limited, but is preferably performed under mild conditions. That is, the reaction with the crosslinking agent 40 is completed while maintaining the crystal structure of the metal organic structure 30.
  • the organic cross-linked body 60 is obtained by removing the metal ions 20 from the cross-linked metal organic structure 50.
  • the removal of the metal ion 20 is realized by cutting the coordination bond between the coordination functional group of the organic ligand 10 and the metal ion 20.
  • the coordination functional group of the organic ligand 10 is a carboxyl group
  • the metal ion 20 is dissociated by immersing the cross-linked metal organic structure 50 in a protonated solvent, and the porosity is utilized. It can be removed by washing.
  • a basic solvent may be used in place of the protonated solvent.
  • the proton source of the protonation solvent may be hydrochloric acid, nitric acid or the like.
  • the solvent for the protonated solvent is preferably a mixed solvent of water and an organic solvent. This is because the organic solvent is preferably a good solvent for the crosslinkable metal organic structure 50, whereby the protonated solvent easily penetrates into the crosslinkable metal organic structure 50 and promotes the cleavage of the coordination bond. .
  • the organic cross-linked body 60 can regenerate the cross-linked metal organic structure 50 by adsorbing the metal ions 20.
  • the regenerated crosslinkable metal organic structure 50 is not necessarily the same structure, and crystallinity may be changed.
  • the metal ions 20 to be adsorbed are not necessarily the same ions as the removed metal ions 20 and may be other metal ions.
  • the cross-linked metal organic structure and organic cross-linked product thus produced have voids inside as well as the metal organic structure, and therefore adsorbents of specific molecules other than metal ions in gases and liquids. Can also be used.
  • Toluene was added to the residue obtained by evaporating the solvent under reduced pressure, washed with a saturated aqueous sodium chloride solution, and then dried over anhydrous sodium sulfate. After the solvent was distilled off under reduced pressure, the residue was purified by column chromatography (silica gel, chloroform) to obtain a yellowish white solid.
  • FIG. 2 shows an ATR-IR spectrum of the metal organic structure N 3 -MOF-15 and an ATR-IR spectrum of sample No. 5 in Table 1. As shown in FIG. 2, in sample No. 5, it can be seen that the peak at 2090 cm ⁇ 1 has disappeared.
  • FIG. 3 shows an optical micrograph of the metal organic structure N 3 -MOF-15 and an optical micrograph of sample No. 5 in Table 1.
  • Sample No. 5 is also a cubic yellow crystal similar to the metal organic structure N 3 -MOF-15.
  • FIG. 4 shows the XRPD pattern of the metal organic structure N 3 -MOF-15 and the XRPD pattern of sample No. 5 in Table 1.
  • any XRPD pattern since the peaks are coincident, it can be understood that the crosslinking reaction has progressed while maintaining the crystal structure.
  • FIG. 5A shows an optical micrograph before immersion (left side) and an optical micrograph after immersion (right side) of sample No. 5 in Table 1. As shown in FIG. 5A, it can be seen that the volume is increased by about 4.34 times due to swelling by immersion.
  • FIG. 5B shows an optical micrograph before immersion (left side) and an optical micrograph after immersion (right side) of sample No. 7 in Table 1. As shown in FIG. 5B, it can be seen that the volume is increased by about 2.37 times due to swelling by immersion.
  • the swelling ratios of No5, No7 and No8 are shown in the following table. As shown in Table 2, it was suggested that the higher the concentration of the crosslinking agent during the crosslinking reaction, the higher the swelling ratio (Comparison between No5 and No7 to No8). When the concentration of the crosslinking agent is too high, it is considered that the crosslinking rate is lowered because the ligands of the metal structure cannot be crosslinked by the crosslinking agent.
  • FIG. 6 shows a metal organic structure not reacted with a crosslinking agent (reference sample; metal organic structure composed of 4,4′-biphenyldicarboxylic acid and zinc ions), and a crosslinked metal organic structure CL-MOF-15.
  • 2 shows an ATR-IR spectrum of the organic crosslinked product PG-MOF-15.
  • a peak around 1390 to 1400 cm ⁇ 1 observed with the metal organic structure N 3 -MOF-15 and the crosslinked metal organic structure CL-MOF-15 C—O It can be seen that (surface deflection) has disappeared.
  • FIG. 7 shows a metal organic structure IR-MOF-9 that is not reacted with a crosslinking agent (a metal organic structure synthesized by using a dicarboxylic acid having a biphenyl group as a linker and zinc ions as metal ions), a crosslinked type 2 shows XPS spectra of metal-organic structure CL-MOF-15 and organic crosslinked product PG-MOF-15.
  • the XPS spectrum was observed by using a sample substrate cast / dried on an indium substrate as a measurement substrate. As shown in FIG.
  • FIG. 8 shows guests of the metal organic structure N 3 -MOF-15, the cross-linked metal organic structure CL-MOF-15, and the organic cross-linked product PG-MOF-15 that were not reacted with the cross-linking agent (diethyl as a solvent).
  • the results of a thermogravimetric analysis (TGA) test to evaluate the inclusion ability of formamide DEF) are shown.
  • the thermogravimetric analysis (TGA) test was performed under the conditions of a sample amount of about 5 mg, a measurement temperature region of 30 to 500 ° C., a temperature rising rate of 3.0 ° C./min, and a nitrogen gas flow rate of 200 ml / min.
  • the first mass decrease occurs rapidly from 30 ° C. to 150 ° C .; the second mass decrease occurs near 200 ° C .; from 380 ° C. to 450 ° C.
  • a third mass loss has occurred.
  • the first decrease in mass appears to be caused by the removal of the guest solvent diethylformamide.
  • the second mass loss is believed to be due to the decomposition of the azido group.
  • the third mass loss is believed to be due to the decomposition of the structural skeleton itself.
  • the second mass reduction (around 200 ° C.) is not observed. This is probably because the crosslinked metal organic structure CL-MOF-15 has no azide group. Further, the first mass decrease in the mass curve of the cross-linked metal organic structure CL-MOF-15 is less than the first mass decrease in the mass curve of the metal organic structure N 3 -MOF-15. This is presumably because the volume of pores in the cross-linked metal organic structure CL-MOF-15 is reduced by cross-linking.
  • Regeneration from crosslinked organic material PG-MOF-15 to crosslinked metal organic structure CL-MOF-15 Re-coordination of zinc ions to crosslinked organic material PG-MOF-15 from which metal ions (zinc ions) have been removed Thus, it was regenerated into a cross-linked metal organic structure CL-MOF-15.
  • the regenerated crosslinked organic metal structure is called ReCL-MOF-15.
  • the metal was re-coordinated under the conditions shown in Table 3. Specifically, for example, in No. 2 in the table below, the organic crosslinked product PG-MOF-15 was infiltrated into a 0.25 mM zinc nitrate hexahydrate / DEF solution and allowed to stand at 80 ° C. for 36 hours.
  • FIG. 9 shows metal organic structure N 3 -MOF-15, cross-linked metal organic structure CL-MOF-15, organic cross-linked body PG-MOF-15, and regenerated cross-linked metal organic structure ReCL-MOF- 15 ATR-IR spectra are shown.
  • Example 2 Synthesis of metal organic structure CD-MOF ([(C 48 H 80 O 40 ) (KOH) 2 ] n.) ⁇ -cyclodextrin ( ⁇ -CD) represented by the following structural formula is the smallest structural unit, A CD-MOF having a structure in which ⁇ -CD is regularly and three-dimensionally associated by a coordinate bond between a hydroxyl group of ⁇ -CD and a potassium ion was synthesized.
  • the composition formula of CD-MOF is represented by [(C 48 H 80 O 40 ) (KOH) 2 ] n. Specifically, it was synthesized according to the method described in Angew. Chem. Int. Ed. 2010, 49, 8630.
  • FIG. 14 shows a ball-and-stick model of CD-MOF (referred to as ( ⁇ -CD) 6) in which six molecules of ⁇ -CD are associated, and CD in which a plurality of ( ⁇ -CD) 6 are associated in a body-centered cubic lattice structure
  • ⁇ -CD CD-MOF
  • metal organic structure CD-MOF 20 mg is taken in a sample of the synthesis of cross-linked metal organic structure CL-CD-MOF, and ethylene glycol diglycidyl ether (crosslinking agent L1) / ethanol solution at a concentration of 1.5 to 5.0 M And allowed to stand at 65 ° C. for 3 days to carry out an internal crosslinking reaction to obtain a crosslinked metal organic structure CL-CD-MOF as transparent crystals.
  • FIG. 10 shows a state in which the cross-linked metal organic structure CL-CD-MOF is changed to the organic cross-linked product PG-CD-MOF in a solvent, as observed with an optical microscope. The shape did not change, only the size changed due to swelling.
  • FIG. 11 shows the degree of swelling of the organic crosslinked product PG-CD-MOF obtained by carrying out an internal crosslinking reaction in various concentration regions of the crosslinking agent L1 and removing the coordination of potassium ions.
  • L PG-CD-MOF represents the length of one side of the crystal of the organic crosslinked product PG-CD-MOF
  • L CL-CD-MOF represents the length of one side of the crosslinked metal-organic structure CL-CD-MOF.
  • the concentration of the crosslinking agent L1 is 1.5 to 2.0M
  • the degree of swelling is the lowest, indicating that the crosslinking reaction proceeds at the highest density. Thereafter, the experiment was conducted with the concentration of the cross-linking agent L1 unified at 1.5M.
  • FIG. 12 shows the result of measuring the FT-IR spectrum of the cross-linked metal organic structure CL-CD-MOF produced by the cross-linking agent L1.
  • the stretching intensity of C—O—C derived from ⁇ -CD (1150-1120 cm-1) is broad, and the peak intensity derived from the methylene chain due to modification of the crosslinking agent L1 (2920-2850 cm-1) was confirmed to increase. From this, it is thought that the crosslinking agent L1 is reacting as expected.
  • the metal organic structure CD-MOF which is a crystal has a cubic shape
  • the crosslinked metal organic structure CL-CD-MOF which is a product of the crosslinking reaction and the organic compound crosslinked body PG-CD-MOF after hydrolysis Both of them were found to maintain the form of the metal organic structure CD-MOF.
  • the dried sample In addition to the sample swollen with the solvent, the dried sample also had a structure with linear sides and vertices derived from the crystals from which the organic crosslinked product PG-CD-MOF was derived.
  • a new design policy of a covalently bonded organic structure is provided, and a covalently bonded organic structure having an unprecedented structure can be provided. Furthermore, since the organic cross-linked product provided by the present invention has a metal ion adsorption ability, it can be applied to a metal recovery raw material such as metal ions or a sustained release system of a drug.

Abstract

Provided is a process for producing a novel crosslinked organic material, which relies on the idea of producing a covalently bonded organic structure that reflects the structure of a metallic organic structure. Provided is a process for producing a crosslinked organic material, comprising: a step (A) of preparing a metallic organic structure comprising organic ligands and metal ions that connect the organic ligands; a step (B) of crosslinking the ligands with a crosslinking agent to produce a crosslinked metallic organic structure; and a step (C) removing at least some of the metal ions from the crosslinked metallic organic structure.

Description

架橋型金属有機構造体および有機物架橋体、およびそれらの製造方法Cross-linked metal-organic structure, organic cross-linked body, and production method thereof
 本発明は、架橋型金属有機構造体および共有結合性の新規有機構造体に関する。 The present invention relates to a crosslinked metal organic structure and a novel covalent organic structure.
 有機物を基本骨格にもち、ナノオーダーの空孔を有する有機多孔性物質として、共有結合性有機構造体(COF:Covalent-Organic Framework)および金属有機構造体(MOF:Metal-Organic Framework)が知られている。共有結合性有機構造体は、剛直な有機分子を共有結合により集積させた構造体である。一方、金属有機構造体は、有機配位子を金属イオンとの配位結合で集積させた構造体である。 Covalent organic structures (COF: Covalent-Organic® Framework) and metal organic structures (MOF: Metal-Organic® Framework) are known as organic porous materials with organic skeletons and nano-order pores. ing. A covalent organic structure is a structure in which rigid organic molecules are accumulated by covalent bonds. On the other hand, the metal organic structure is a structure in which organic ligands are accumulated by coordination bonds with metal ions.
 金属有機構造体や共有結合性有機構造体は、ガス吸蔵特性を有していたり(非特許文献1を参照)、触媒特性を有していたりする(非特許文献2を参照)ことが報告されている。そのような特性を高めるには、構造体とそのゲスト分子との相互作用が重要である。そこで、構造体の有機分子に特定の官能基や構造を導入することで、構造体とそのゲスト分子との相互作用を高めようとする工夫が提案されている。 It has been reported that metal organic structures and covalent organic structures have gas storage properties (see Non-Patent Document 1) or catalytic properties (see Non-Patent Document 2). ing. To enhance such properties, the interaction between the structure and its guest molecule is important. In view of this, a contrivance has been proposed to increase the interaction between the structure and its guest molecule by introducing a specific functional group or structure into the organic molecule of the structure.
 例えば、共有結合性有機構造体の骨格に導入したアミノ基と、イソシアネート誘導体とを反応させたり(非特許文献3を参照)、金属有機構造体の骨格に導入したアジド基にアセチレン誘導体を反応させたりして(非特許文献4を参照)、構造体を事後修飾する手法が提案されている。 For example, an amino group introduced into the skeleton of a covalent organic structure and an isocyanate derivative are reacted (see Non-Patent Document 3), or an acetylene derivative is reacted with an azide group introduced into the skeleton of a metal organic structure. (See Non-Patent Document 4), a method for post-modifying the structure has been proposed.
 本発明者は、金属有機構造体を鋳型としてネットワークポリマーを作製することに着目した。すなわち、金属有機構造体の有機配位子間を架橋させて、架橋型金属有機構造体を得て;続いて、架橋型金属有機構造体から金属イオンを引き抜くことで、金属有機構造体(MOF)構造を反映した新たな共有結合性の有機構造体(以下、有機物架橋体という)を作製するに至った。 The inventor of the present invention focused on producing a network polymer using a metal organic structure as a template. That is, the organic ligands of the metal organic structure are cross-linked to obtain a cross-linked metal organic structure; and subsequently, metal ions are extracted from the cross-linked metal organic structure to obtain a metal organic structure (MOF). ) A new covalent organic structure reflecting the structure (hereinafter referred to as an organic cross-linked product) has been produced.
 つまり、金属有機構造体および共有結合性有機構造体とも、酸性溶媒中などで分解し、それ自体が溶解してしまったり、有機多孔性を喪失したりするという問題点があった。これに対して本発明では、金属有機構造体の骨格を、共有結合(化学反応)によって架橋することで、様々な溶媒中でも分解しない材料とする。 That is, both the metal organic structure and the covalently bonded organic structure have a problem that they decompose in an acidic solvent and dissolve themselves or lose organic porosity. In contrast, in the present invention, the skeleton of the metal organic structure is cross-linked by a covalent bond (chemical reaction), so that the material does not decompose even in various solvents.
 さらに本発明者は、架橋型金属有機構造体から金属イオンを引き抜いて作製した有機物架橋体は、金属イオンを吸着することで、架橋型金属有機構造体に再生されることを見出した。つまり、本発明は新しい金属イオン吸着体を提供する。 Furthermore, the present inventor has found that an organic cross-linked product prepared by extracting metal ions from a cross-linked metal organic structure is regenerated into a cross-linked metal organic structure by adsorbing metal ions. That is, the present invention provides a new metal ion adsorbent.
 すなわち本発明の第一は、以下に示す架橋型金属有機構造体および有機物架橋体の製造方法に関する。
 [1]有機配位子と、前記有機配位子を連結する金属イオンを含む金属有機構造体を用意するステップAと;前記配位子を架橋剤で架橋して架橋型金属有機構造体とするステップBとを有する、架橋型金属有機構造体の製造方法。
 [2]前記有機配位子は官能基を有し、かつ前記架橋剤は、前記官能基と反応して共有結合を形成できる2以上の官能基を有する、[1]に記載の架橋型金属有機構造体の製造方法。
 [3]有機配位子と、前記有機配位子を連結する金属イオンを含む金属有機構造体を用意するステップAと;前記配位子を架橋剤で架橋して架橋型金属有機構造体とするステップBと;前記架橋型金属有機構造体から、前記金属イオンのうちの一部または全部を除去するステップCとを有する、有機物架橋体を製造する方法。
That is, the first of the present invention relates to a method for producing a crosslinked metal organic structure and an organic crosslinked product shown below.
[1] Step A for preparing a metal organic structure containing an organic ligand and a metal ion linking the organic ligand; and cross-linking the ligand with a cross-linking agent; A step B for producing a cross-linked metal organic structure.
[2] The crosslinked metal according to [1], wherein the organic ligand has a functional group, and the crosslinking agent has two or more functional groups that can react with the functional group to form a covalent bond. A method for producing an organic structure.
[3] Step A of preparing an organic ligand and a metal organic structure containing a metal ion linking the organic ligand; and cross-linking the ligand with a cross-linking agent; A method of producing a crosslinked organic material, comprising: a step B; and a step C of removing a part or all of the metal ions from the crosslinked metal-organic structure.
 本発明の第二は、以下に示す架橋型金属有機構造体および共有結合性有機構造体に関する。
 [4]有機配位子と、前記有機配位子を連結する金属イオンと、前記有機配位子を架橋する架橋基とを含む、架橋型金属有機構造体。
 [5]前記[4]に記載の架橋型金属有機構造体から、前記金属イオンのうちの一部または全部を除去して得られる、有機物架橋体。
 [6]前記有機物架橋体は、金属イオンを吸着することで前記架橋型金属有機構造体となることができる、[5]に記載の有機物架橋体。
The second of the present invention relates to the following cross-linked metal organic structure and covalent organic structure.
[4] A crosslinked metal organic structure comprising an organic ligand, a metal ion that links the organic ligand, and a crosslinking group that bridges the organic ligand.
[5] An organic crosslinked product obtained by removing a part or all of the metal ions from the crosslinked metal-organic structure according to [4].
[6] The cross-linked organic material according to [5], wherein the cross-linked organic material can become the cross-linked metal organic structure by adsorbing metal ions.
 本発明により、共有結合性有機構造体の新しい設計方針が提供され、これまでにない構造を有する共有結合性の有機構造体の提供が可能となる。さらには、本発明により提供される有機物架橋体は、金属イオン吸着能を有するので、金属回収原料への応用なども可能である。 According to the present invention, a new design policy of a covalently bonded organic structure is provided, and a covalently bonded organic structure having an unprecedented structure can be provided. Furthermore, since the crosslinked organic substance provided by the present invention has a metal ion adsorption ability, it can be applied to a metal recovery raw material.
架橋型金属有機構造体および共有結合性有機構造体の製造プロセスの概略を示す図である。It is a figure which shows the outline of the manufacturing process of a bridge | crosslinking type metal organic structure and a covalent bond organic structure. 金属有機構造体N-MOF-15のATR-IRスペクトルと、表1のサンプルNo5のATR-IRスペクトルとを示すチャートである。2 is a chart showing an ATR-IR spectrum of metal organic structure N 3 -MOF-15 and an ATR-IR spectrum of sample No. 5 in Table 1. FIG. 金属有機構造体N-MOF-15の光学顕微鏡写真と、表1のサンプルNo5の光学顕微鏡写真である。They are an optical micrograph of metal organic structure N 3 -MOF-15 and an optical micrograph of sample No. 5 in Table 1. 金属有機構造体N-MOF-15のXRPDパターンと、表1のサンプルNo5のXRPDパターンとを示すチャート図である。2 is a chart showing an XRPD pattern of a metal organic structure N 3 -MOF-15 and an XRPD pattern of sample No. 5 in Table 1. FIG. 図5Aには、表1のサンプルNo5の、浸漬前の光学顕微鏡写真(左側)と、浸漬後の光学顕微鏡写真(右側)が示され;図5Bには、表1のサンプルNo7の、浸漬前の光学顕微鏡写真(左側)と、浸漬後の光学顕微鏡写真(右側)が示される。FIG. 5A shows an optical micrograph before immersion (left side) and an optical micrograph after immersion (right side) of sample No. 5 in Table 1; FIG. An optical micrograph (left side) and an optical micrograph after immersion (right side) are shown. 金属有機構造体N-MOF-15、架橋型金属有機構造体CL-MOF-15および有機物架橋体PG-MOF-15の、ATR-IRスペクトルを示すチャート図である。FIG. 6 is a chart showing ATR-IR spectra of metal organic structure N 3 -MOF-15, cross-linked metal organic structure CL-MOF-15, and organic cross-linked substance PG-MOF-15. 架橋剤と反応させていない金属有機構造体IR-MOF-9、架橋型金属有機構造体CL-MOF-15および有機物架橋体PG-MOF-15の、XPSスペクトルを示すチャート図である。FIG. 5 is a chart showing XPS spectra of a metal organic structure IR-MOF-9, a crosslinkable metal organic structure CL-MOF-15, and an organic crosslinker PG-MOF-15 that are not reacted with a crosslinking agent. 架橋剤と反応させていない金属有機構造体N-MOF-15、架橋型金属有機構造体CL-MOF-15および有機物架橋体PG-MOF-15の熱重量分析(TGA)試験の結果を示すグラフである。The result of the thermogravimetric analysis (TGA) test of the metal organic structure N 3 -MOF-15, the cross-linked metal organic structure CL-MOF-15, and the organic cross-linked product PG-MOF-15 not reacted with the cross-linking agent is shown. It is a graph. 金属有機構造体N-MOF-15、架橋型金属有機構造体CL-MOF-15、有機物架橋体PG-MOF-15および再生された架橋型金属有機構造体ReCL-MOF-15のATR-IRスペクトルを示すチャート図である。ATR-IR of metal organic structure N 3 -MOF-15, cross-linked metal organic structure CL-MOF-15, organic cross-linked body PG-MOF-15 and regenerated cross-linked metal organic structure ReCL-MOF-15 It is a chart figure showing a spectrum. 架橋型金属有機構造体CL-CD-MOFが、溶媒中で有機物架橋体PG-CD-MOFに変化する様子を光学顕微鏡で観察したものである。The state in which the cross-linked metal organic structure CL-CD-MOF is changed to the organic cross-linked product PG-CD-MOF in a solvent is observed with an optical microscope. 有機物架橋体PG-CD-MOFの膨潤度を示すグラフである。横軸は架橋剤L1の濃度、縦軸は膨潤度を示す。5 is a graph showing the degree of swelling of the organic crosslinked product PG-CD-MOF. The horizontal axis represents the concentration of the crosslinking agent L1, and the vertical axis represents the degree of swelling. 金属有機構造体CD-MOF、架橋型金属有機構造体CL-CD-MOF、有機物架橋体PG-CD-MOFのFT-IRスペクトルを示すチャート図である。FIG. 4 is a chart showing FT-IR spectra of metal organic structure CD-MOF, cross-linked metal organic structure CL-CD-MOF, and organic cross-linked product PG-CD-MOF. 金属有機構造体CD-MOF、架橋型金属有機構造体CL-CD-MOF、有機物架橋体PG-CD-MOFの走査型電子顕微鏡像である。(a)(b)CD-MOF、(c)(d)CL-CD-MOF、(e)(f)PG-CD-MOF。2 is a scanning electron microscope image of metal organic structure CD-MOF, cross-linked metal organic structure CL-CD-MOF, and organic cross-linked product PG-CD-MOF. (A) (b) CD-MOF, (c) (d) CL-CD-MOF, (e) (f) PG-CD-MOF. 6分子のγ-CDが会合したCD-MOF((γ-CD)6と称する)のボールアンドスティックモデル。A ball-and-stick model of CD-MOF (referred to as (γ-CD) 6) in which 6 molecules of γ-CD are associated. 複数の(γ-CD)6が体心立方格子構造で会合したCD-MOFの空間充填モデル。A space-filling model of CD-MOF in which a plurality of (γ-CD) 6 are associated in a body-centered cubic lattice structure.
 まず初めに、本発明の架橋型金属有機構造体および有機物架橋体の製造プロセスの概略を、図1を参照して説明する。 First, the outline of the production process of the cross-linked metal organic structure and organic cross-linked product of the present invention will be described with reference to FIG.
 図1に示されるように、有機配位子10と、金属イオン20とを反応させることで、金属有機構造体30を得ることができる。有機配位子10は、後述の架橋剤40との反応性を有する官能基11を有している。金属有機構造体30の官能基11に架橋剤40を反応させることで、架橋型金属有機構造体50が得られる。 As shown in FIG. 1, a metal organic structure 30 can be obtained by reacting an organic ligand 10 and a metal ion 20. The organic ligand 10 has a functional group 11 having reactivity with a crosslinking agent 40 described later. The crosslinkable metal organic structure 50 is obtained by reacting the crosslinker 40 with the functional group 11 of the metal organic structure 30.
 架橋型金属有機構造体50から金属イオン20を引き抜く(除去する)と、有機物架橋体60が得られる。有機物架橋体60は、架橋型金属有機構造体50の構造を反映した共有結合性の有機構造体である。そのため、有機物架橋体60に金属イオン20を提供すると、金属イオン20を取り込んで、架橋型金属有機構造体50に再生する。 When the metal ions 20 are extracted (removed) from the cross-linked metal organic structure 50, the organic cross-linked body 60 is obtained. The organic crosslinked body 60 is a covalent organic structure reflecting the structure of the crosslinked metal organic structure 50. Therefore, when the metal ion 20 is provided to the organic crosslinked body 60, the metal ion 20 is taken in and regenerated into the crosslinked metal organic structure 50.
 以下において、金属有機構造体30と、架橋型金属有機構造体50と、有機物架橋体60の順に説明する。 Hereinafter, the metal organic structure 30, the cross-linked metal organic structure 50, and the organic cross-linked body 60 will be described in this order.
 金属有機構造体30について
 前述の通り、金属有機構造体30は、有機配位子10と、金属イオン20とを反応させることで得られる。
About Metal Organic Structure 30 As described above, the metal organic structure 30 is obtained by reacting the organic ligand 10 and the metal ion 20.
 有機配位子10は、いわゆる「剛直分子」と称される分子構造を有する。剛直分子とは、分子内の回転や屈曲が制限されている分子であり、環状分子や芳香環または芳香環が連結した棒状分子が挙げられる。環状分子の例にはシクロデキストリンが挙げられる。芳香環の例には、フェニレン、ナフチレン、アントラセニレン、ペンタセン、ポルフィリン、カルボラン、チオフェン、ピリジン、C60などが含まれる。例えば、剛直分子は、これらの芳香環を1つまたは2つ以上連結したものである。例えば剛直分子は、フェニレン構造、2つのフェニレンが連結したジフェニレン構造、3つのフェニレン基が連結したターフェニレン構造を有する。 Organic ligand 10 has a molecular structure called “rigid molecule”. A rigid molecule is a molecule in which rotation and bending within the molecule are restricted, and examples thereof include a cyclic molecule, an aromatic ring, or a rod-like molecule in which aromatic rings are connected. Examples of cyclic molecules include cyclodextrins. Examples of the aromatic ring include phenylene, naphthylene, anthracenylene, pentacene, porphyrin, carborane, thiophene, pyridine, C60 and the like. For example, a rigid molecule is obtained by connecting one or more of these aromatic rings. For example, a rigid molecule has a phenylene structure, a diphenylene structure in which two phenylenes are linked, and a terphenylene structure in which three phenylene groups are linked.
 有機配位子10は、金属原子に配位可能な官能基(配位官能基)を2以上有する。金属原子に配位可能な官能基の例には、カルボキシル基、ピリジニル基、アミノ基、ポルフィリニル基、アセチルアセトナート基、水酸基、シッフ塩基、アミノ酸残基などが含まれる。 The organic ligand 10 has two or more functional groups (coordinating functional groups) that can coordinate to metal atoms. Examples of functional groups that can be coordinated to a metal atom include a carboxyl group, a pyridinyl group, an amino group, a porphyrinyl group, an acetylacetonate group, a hydroxyl group, a Schiff base, an amino acid residue, and the like.
 さらに、有機配位子10は、後述の架橋剤40との反応性を有する官能基11を有している。有機配位子10には、1つの官能基11が導入されていてもよいし、2以上の官能基11が導入されていてもよい。官能基11の種類は特に限定されず、アジド基、アミノ基、カルボキシル基およびその類縁体、二重結合、三重結合、イソシアナート基、水酸基などでありうる。例えば、官能基11がアジド基であれば、アセチレン基を導入した架橋剤40と反応させることができ;官能基11がアミノ基であれば、イソシアネート基を導入した架橋剤40と反応させることができる。 Furthermore, the organic ligand 10 has a functional group 11 having reactivity with a cross-linking agent 40 described later. One functional group 11 may be introduced into the organic ligand 10, or two or more functional groups 11 may be introduced. The kind of the functional group 11 is not particularly limited, and may be an azide group, an amino group, a carboxyl group and analogs thereof, a double bond, a triple bond, an isocyanate group, a hydroxyl group, and the like. For example, if the functional group 11 is an azide group, it can be reacted with the crosslinking agent 40 introduced with an acetylene group; if the functional group 11 is an amino group, it can be reacted with the crosslinking agent 40 introduced with an isocyanate group. it can.
 好ましい有機配位子10の例には、以下の化合物が含まれる。
Figure JPOXMLDOC01-appb-C000001
Examples of the preferred organic ligand 10 include the following compounds.
Figure JPOXMLDOC01-appb-C000001
 金属イオン20は、例えば、アクチニド元素やランタニド元素の金属イオンであり、元素周期表の第1族~第16族の金属元素のイオンである。金属イオン20の具体例には、Li、Na、K、Rb、Be2+、Mg2+、Ca2+、Sr2+、Ba2+、Sc3+、Y3+、Ti4+、Zr4+、Hf4+、V4+、V3+、V2+、Nb3+、Ta3+、Cr3+、Mo3+、W3+、Mn3+、Mn2+、Re3+、Re2+、Fe3+、Fe2+、Ru3+、Ru2+、Os3+、Os2+、Co3+、Co2+、Rh2+、Rh、Ir2+、Ir、Ni2+、Ni、Pd2+、Pd、Pt2+、Pt、Cu2+、Cu、Ag、Au、Zn2+、Cd2+、Hg2+、Al3+、Ga3+、In3+、Tl3+、Si4+、Si2+、Ge4+、Ge2+、Sn4+、Sn2+、Pb4+、Pb2+、As5+、As3+、As、Sb5+、Sb3+、Sb、Bi5+、Bi3+、Bi及びこれらの組み合わせが含まれる。 The metal ion 20 is, for example, a metal ion of an actinide element or lanthanide element, and is an ion of a metal element belonging to Group 1 to Group 16 of the periodic table. Specific examples of the metal ion 20 include Li + , Na + , K + , Rb + , Be 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Sc 3+ , Y 3+ , Ti 4+ , Zr 4+ , Hf 4+. , V 4+ , V 3+ , V 2+ , Nb 3+ , Ta 3+ , Cr 3+ , Mo 3+ , W 3+ , Mn 3+ , Mn 2+ , Re 3+ , Re 2+ , Fe 3+ , Fe 2+ , Ru 3+ , Ru 2+ , Ru 2+ , 3+ , Os 2+ , Co 3+ , Co 2+ , Rh 2+ , Rh + , Ir 2+ , Ir + , Ni 2+ , Ni + , Pd 2+ , Pd + , Pt 2+ , Pt + , Cu 2+ , Cu + , Ag + , au +, Zn 2+, Cd 2+ , Hg 2+, Al 3+, Ga 3+, In 3+, Tl 3+, Si 4+, Si 2+, Ge 4+, Ge 2+, Sn 4+ Sn 2+, Pb 4+, Pb 2+ , As 5+, As 3+, As +, Sb 5+, Sb 3+, Sb +, Bi 5+, Bi 3+, include Bi +, and combinations thereof.
 有機配位子10と金属イオン20とを、定法に基づいて例えばソルボサーマル反応させることで、金属有機構造体30が製造される。ソルボサーマル反応は、通常、酸または塩基の存在下で行われ、常温から高温(300度)まで、大気圧下または圧力容器中に溶媒と原料を投入し、沸点温度以上まで昇温し、容器内の圧力が大気圧以上の条件で行う。ソルボサーマル反応における溶媒として、また、水以外のN,N-ジエチルホルムアミド(DEF)またはN,N-ジメチルホルムアミド(DMF)が用いられる。これらは高温で分解して緩やかにアミン塩基を生成するからである。ソルボサーマル反応の条件は、適宜設定される。 The organic metal structure 30 is manufactured by, for example, solvothermal reaction of the organic ligand 10 and the metal ion 20 based on a conventional method. The solvothermal reaction is usually carried out in the presence of an acid or base, and the solvent and raw materials are charged from room temperature to high temperature (300 degrees), at atmospheric pressure or in a pressure vessel, and the temperature is raised to the boiling point or higher. The inside pressure is higher than atmospheric pressure. As a solvent in the solvothermal reaction, N, N-diethylformamide (DEF) or N, N-dimethylformamide (DMF) other than water is used. This is because they decompose slowly at high temperatures to form amine bases slowly. The conditions for the solvothermal reaction are appropriately set.
 金属有機構造体30は、結晶構造を有していることが好ましい。また、金属有機構造体30は、ナノオーダーの空孔を有する多孔性物質である。空孔のサイズは、有機配位子10の長さ(配位官能基同士の距離)などによって制御される。 The metal organic structure 30 preferably has a crystal structure. The metal organic structure 30 is a porous material having nano-order pores. The size of the pores is controlled by the length of the organic ligand 10 (distance between coordination functional groups) and the like.
 架橋型金属有機構造体50について
 架橋型金属有機構造体50は、金属有機構造体30と架橋剤40とを反応させることで得られる。架橋剤40は、金属有機構造体30の有機配位子10に導入された官能基11と反応する基を2以上有する。架橋剤は、二価性架橋剤であってもよく、三価性以上の架橋剤であってもよい。官能基11がアジド基である場合の、架橋剤40の具体例には以下の化合物が含まれる。
Figure JPOXMLDOC01-appb-C000002
About Crosslinkable Metal Organic Structure 50 The crosslinkable metal organic structure 50 is obtained by reacting the metal organic structure 30 and the crosslinker 40. The cross-linking agent 40 has two or more groups that react with the functional group 11 introduced into the organic ligand 10 of the metal organic structure 30. The crosslinking agent may be a divalent crosslinking agent or a trivalent or higher crosslinking agent. Specific examples of the crosslinking agent 40 when the functional group 11 is an azide group include the following compounds.
Figure JPOXMLDOC01-appb-C000002
 架橋剤40の設計は、金属有機構造体30における官能基11同士の距離を考慮して行う。 The design of the crosslinking agent 40 is performed in consideration of the distance between the functional groups 11 in the metal organic structure 30.
 金属有機構造体30と架橋剤40との反応は特に限定されないが、好ましくは温和な条件で行う。つまり、金属有機構造体30の結晶構造を維持したまま、架橋剤40との反応を完結させる。 The reaction between the metal organic structure 30 and the crosslinking agent 40 is not particularly limited, but is preferably performed under mild conditions. That is, the reaction with the crosslinking agent 40 is completed while maintaining the crystal structure of the metal organic structure 30.
 有機物架橋体60について
 有機物架橋体60は、架橋型金属有機構造体50から金属イオン20を除去することにより得られる。金属イオン20の除去は、有機配位子10の配位官能基と金属イオン20との配位結合を切断することで実現される。有機配位子10の配位官能基がカルボキシル基である場合には、架橋型金属有機構造体50をプロトン化溶媒に浸漬することで、金属イオン20を解離させ、多孔質性を利用して洗浄することにより除去することができる。プロトン化溶媒の代わりに塩基性溶媒を用いてもよい。また、キレート剤(EDTAなど)などの、金属イオンと錯体を形成する化合物と反応させて、架橋型金属有機構造体50から金属イオン20を除去することも考えられる。
Regarding Organic Cross-Linked Body 60 The organic cross-linked body 60 is obtained by removing the metal ions 20 from the cross-linked metal organic structure 50. The removal of the metal ion 20 is realized by cutting the coordination bond between the coordination functional group of the organic ligand 10 and the metal ion 20. When the coordination functional group of the organic ligand 10 is a carboxyl group, the metal ion 20 is dissociated by immersing the cross-linked metal organic structure 50 in a protonated solvent, and the porosity is utilized. It can be removed by washing. A basic solvent may be used in place of the protonated solvent. It is also conceivable to remove the metal ion 20 from the cross-linked metal organic structure 50 by reacting with a compound that forms a complex with the metal ion, such as a chelating agent (such as EDTA).
 プロトン化溶媒のプロトン源は、塩酸、硝酸などであればよい。プロトン化溶媒の溶媒は、水と有機溶媒との混合溶媒であることが好ましい。有機溶媒は、架橋型金属有機構造体50の良溶媒であることが好ましく、それによりプロトン化溶媒が架橋型金属有機構造体50に浸透しやすくなり、配位結合の切断を促進するからである。 The proton source of the protonation solvent may be hydrochloric acid, nitric acid or the like. The solvent for the protonated solvent is preferably a mixed solvent of water and an organic solvent. This is because the organic solvent is preferably a good solvent for the crosslinkable metal organic structure 50, whereby the protonated solvent easily penetrates into the crosslinkable metal organic structure 50 and promotes the cleavage of the coordination bond. .
 有機物架橋体60は、金属イオン20を吸着して、架橋型金属有機構造体50を再生することができることが好ましい。再生された架橋性金属有機構造体50は、必ずしも同一の構造体である必要はなく、結晶性が変わっていたりしてもよい。吸着させる金属イオン20も、除去された金属イオン20と必ずしも同一のイオンである必要はなく、他の金属イオンであっても構わない。また、このようにして作られた架橋型金属有機構造体や有機物架橋体は金属有機構造体と同様に内部に空隙を持つことから、気体中や液体中の金属イオン以外の特定分子の吸着剤としても使用できる。 It is preferable that the organic cross-linked body 60 can regenerate the cross-linked metal organic structure 50 by adsorbing the metal ions 20. The regenerated crosslinkable metal organic structure 50 is not necessarily the same structure, and crystallinity may be changed. The metal ions 20 to be adsorbed are not necessarily the same ions as the removed metal ions 20 and may be other metal ions. In addition, the cross-linked metal organic structure and organic cross-linked product thus produced have voids inside as well as the metal organic structure, and therefore adsorbents of specific molecules other than metal ions in gases and liquids. Can also be used.
 以下において実施例を参照して本発明をより具体的に説明するが、これらによって、本発明の範囲は限定して解釈されない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not construed as being limited thereto.
[実施例1](1)有機配位子N-TPDCの合成 [Example 1] (1) Synthesis of organic ligand N 3 -TPDC
Figure JPOXMLDOC01-appb-C000003
 三方コック、ジムロート冷却管、セプタムラバー付き300ml二口丸底フラスコにヨウ素29.0g(110mmol,0.8eq/p-キシレン)、オルト過ヨウ素酸10.0g(44mmol,0.3eq/p-キシレン)を入れ、脱気アルゴン置換した。そこにp-キシレン15.0g(140mmol)、酢酸94ml、四塩化炭素30ml、30%硫酸水溶液 16.6mlを入れ、85℃で加熱還流を行った。18時間後、メタノールを用いた再沈殿により目的の生産物を確認し、系を室温まで放冷した。過剰の蒸留水、メタノールを加え不要物をろ別し、得られた個体をメタノールで固液洗浄、減圧乾燥し桃白色固体を得た。
Figure JPOXMLDOC01-appb-C000003
Three-way cock, Dimroth condenser, 300 ml two-necked round bottom flask with septum rubber, iodine 29.0 g (110 mmol, 0.8 eq / p-xylene), orthoperiodic acid 10.0 g (44 mmol, 0.3 eq / p-xylene) ) And purged with argon. 15.0 g (140 mmol) of p-xylene, 94 ml of acetic acid, 30 ml of carbon tetrachloride, and 16.6 ml of 30% sulfuric acid aqueous solution were added thereto, and the mixture was heated to reflux at 85 ° C. After 18 hours, the desired product was confirmed by reprecipitation with methanol, and the system was allowed to cool to room temperature. Excess distilled water and methanol were added and unnecessary substances were filtered off. The obtained solid was washed with methanol and dried under reduced pressure to obtain a peach-white solid.
Figure JPOXMLDOC01-appb-C000004
 セプタムラバー、三方コック、ジムロート付き100ml二口丸底フラスコに化合物S1を2.5g(7.0mmol)、フッ化セシウム6.4g(42mmol,6eq/S1)を加え脱気窒素置換を行った。1,4-ジオキサン50ml、蒸留水20mlを加え、窒素バブリングを1時間行った。その後、4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)安息香酸メチル4.0g(15mmol,2.2eq/S1)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II) ジクロロメタン錯体0.5g(0.025eq/S1)を加え、加熱還流を行った。6時間後、TLC(シリカゲル、クロロホルム)による反応追跡を行い、原料の消失を確認後、反応を停止した。溶媒を減圧留去した残渣にトルエンを加え、飽和塩化ナトリウム水溶液にて洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去後、残渣をカラムクロマトグラフィー(シリカゲル、クロロホルム)により精製を行い、黄白色固体を得た。
Figure JPOXMLDOC01-appb-C000004
2.5 g (7.0 mmol) of compound S1 and 6.4 g (42 mmol, 6 eq / S1) of compound S1 were added to a 100 ml two-necked round bottom flask equipped with a septa rubber, a three-way cock and a Jimroth to perform deaeration and nitrogen substitution. 50 ml of 1,4-dioxane and 20 ml of distilled water were added, and nitrogen bubbling was performed for 1 hour. Thereafter, 4.0 g (15 mmol, 2.2 eq / S1) of methyl 4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzoate, [1,1′- Bis (diphenylphosphino) ferrocene] dichloropalladium (II) dichloromethane complex 0.5 g (0.025 eq / S1) was added, and the mixture was heated to reflux. After 6 hours, the reaction was traced by TLC (silica gel, chloroform), and after confirming disappearance of the raw materials, the reaction was stopped. Toluene was added to the residue obtained by evaporating the solvent under reduced pressure, washed with a saturated aqueous sodium chloride solution, and then dried over anhydrous sodium sulfate. After the solvent was distilled off under reduced pressure, the residue was purified by column chromatography (silica gel, chloroform) to obtain a yellowish white solid.
Figure JPOXMLDOC01-appb-C000005
 三方コック、ジムロート冷却管、セプタムラバー付き100ml二口丸底フラスコに、化合物S2を2.0g(5.3mmol)、N-ブロモスクシンイミド2.0g(11mmol, 2.1eq/S2)を入れ脱気窒素置換した。ベンゼン25mlを加え、1時間窒素バブリングを行った。その後、過酸化ベンゾイル0.10g(0.5mmol,0.2eq/S2)を加え、加熱還流を行った。5時間後反応を停止し、溶媒を減圧留去後、残渣をカラムクロマトグラフィー(シリカゲル、クロロホルム)により精製を行い、黄白固体を得た。
Figure JPOXMLDOC01-appb-C000005
Compound S2 (2.0 g, 5.3 mmol) and N-bromosuccinimide (2.0 mmol, 11 eq, 2.1 eq / S2) were placed in a 100 ml two-necked round bottom flask equipped with a three-way cock, Dimroth condenser, and septum rubber, and degassed. Replaced with nitrogen. 25 ml of benzene was added and nitrogen bubbling was performed for 1 hour. Thereafter, 0.10 g (0.5 mmol, 0.2 eq / S2) of benzoyl peroxide was added, and the mixture was heated to reflux. After 5 hours, the reaction was stopped, the solvent was distilled off under reduced pressure, and the residue was purified by column chromatography (silica gel, chloroform) to obtain a yellowish white solid.
Figure JPOXMLDOC01-appb-C000006
 ジムロート付き25ml二口丸底フラスコに化合物S3を0.50g(0.94mmol)を加え、脱気アルゴン置換を行った。脱水DMF20ml、アジ化ナトリウム0.15g(2.3mmol,2.5eq/S3)を加え、60℃にて加熱還流を4時間行った。その後、酢酸エチルにて希釈し、抽出操作(塩化ナトリウム水溶液2回、蒸留水1回)を行い、無水硫酸ナトリウムにて乾燥した。溶媒を減圧留去し、白色固体を得た。
Figure JPOXMLDOC01-appb-C000006
0.50 g (0.94 mmol) of Compound S3 was added to a 25 ml two-necked round bottom flask equipped with a Dimroth, and purged with argon. 20 ml of dehydrated DMF and 0.15 g (2.3 mmol, 2.5 eq / S3) of sodium azide were added, and the mixture was heated to reflux at 60 ° C. for 4 hours. Then, it diluted with ethyl acetate, extraction operation (2 times of sodium chloride aqueous solution, 1 time of distilled water) was performed, and it dried with anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain a white solid.
Figure JPOXMLDOC01-appb-C000007
 ジムロート付き50ml二口丸底フラスコに化合物S4を0.41g(0.53mmol)、THF20ml、飽和水酸化カリウム水溶液3mlを加え、75℃にて加熱還流を4時間行った。TLC(シリカゲル、クロロホルム)にて、原料成分の消失を確認し、THFを減圧留去した。1N塩酸を加え、生じた沈殿をろ別することで黄白色固体を得た。
Figure JPOXMLDOC01-appb-C000007
0.41 g (0.53 mmol) of Compound S4, 20 ml of THF, and 3 ml of a saturated aqueous potassium hydroxide solution were added to a 50 ml two-necked round bottom flask equipped with a Dimroth, and the mixture was heated to reflux at 75 ° C. for 4 hours. The disappearance of the raw material components was confirmed by TLC (silica gel, chloroform), and THF was distilled off under reduced pressure. 1N hydrochloric acid was added, and the resulting precipitate was filtered to obtain a yellowish white solid.
(2)架橋剤C1~C3の合成 (2) Synthesis of crosslinking agents C1 to C3
Figure JPOXMLDOC01-appb-C000008
 50ml二口ナスフラスコに0℃の条件下でエチレングリコール1.1g(18mmol)、乾燥DMF20 ml、水素化ナトリウム2.1g(89mmol,4.9eq/エチレングリコール)を加え、15分間攪拌した。プロパルギルブロミド6ml(50mmol,2.8eq/エチレングリコール)を加え、室温にて攪拌した。24時間後反応を停止し、分液操作(ジエチルエーテル、蒸留水) を行った。有機相を無水硫酸マグネシウムにて乾燥し、溶媒を減圧留去した。残渣をカラムクロマトグラフィー(シリカゲル、ヘキサン : 酢酸エチル = 8:2)により精製を行い、黄色液体を得た。
Figure JPOXMLDOC01-appb-C000008
To a 50 ml two-necked eggplant flask, 1.1 g (18 mmol) of ethylene glycol, 20 ml of dry DMF, and 2.1 g (89 mmol, 4.9 eq / ethylene glycol) of sodium hydride were added at 0 ° C. and stirred for 15 minutes. 6 ml (50 mmol, 2.8 eq / ethylene glycol) of propargyl bromide was added and stirred at room temperature. After 24 hours, the reaction was stopped, and a liquid separation operation (diethyl ether, distilled water) was performed. The organic phase was dried over anhydrous magnesium sulfate and the solvent was distilled off under reduced pressure. The residue was purified by column chromatography (silica gel, hexane: ethyl acetate = 8: 2) to obtain a yellow liquid.
Figure JPOXMLDOC01-appb-C000009
 100ml二口ナスフラスコにフロログルシノール(脱水)を0.43g(3.3mmol)、炭酸カリウム1.8g(13mmol,1.5eq/-OH 1unit)を加え、乾燥DMF10mlを加え1.5時間50℃にて加熱攪拌した。プロパルギルブロミド1.0ml(13mmol,1.5eq/-OH 1unit)加え、65℃にて加熱攪拌した。9.5時間後反応を停止し、分液操作(ジクロロメタン, 蒸留水) を行い、有機相を無水硫酸ナトリウムにて乾燥した。溶媒を減圧留去後、残渣をカラムクロマトグラフィー(シリカゲル、ジクロロメタン)にて精製を行い、黄白色固体を得た。
Figure JPOXMLDOC01-appb-C000009
To a 100 ml two-necked eggplant flask, 0.43 g (3.3 mmol) of phloroglucinol (dehydrated) and 1.8 g (13 mmol, 1.5 eq / -OH 1 unit) of potassium carbonate were added, and 10 ml of dry DMF was added for 1.5 hours. The mixture was heated and stirred at ° C. Propargyl bromide 1.0 ml (13 mmol, 1.5 eq / -OH 1 unit) was added, and the mixture was heated and stirred at 65 ° C. After 9.5 hours, the reaction was stopped, liquid separation operation (dichloromethane, distilled water) was performed, and the organic phase was dried over anhydrous sodium sulfate. After evaporating the solvent under reduced pressure, the residue was purified by column chromatography (silica gel, dichloromethane) to obtain a yellowish white solid.
Figure JPOXMLDOC01-appb-C000010
 50ml二口ナスフラスコにペンタエリトリトール1.50g(11mmol)、水素化ナトリウム2.11g(88mmol,8eq/C2)を入れ、脱気窒素置換した。乾燥DMF20mlを加え0℃で3時間攪拌した。プロパルギルブロミド10.0g(84mmol,12eq/C2)を加え、室温にて加熱攪拌した。24時間後反応を停止し、分液操作(ジエチルエーテル、蒸留水) を行った。有機相を無水硫酸マグネシウムにて乾燥し、溶媒を減圧留去した。残渣をカラムクロマトグラフィー(シリカゲル、ヘキサン : 酢酸エチル = 8:2)により精製を行い、黄色液体を得た。
Figure JPOXMLDOC01-appb-C000010
A 50 ml two-necked eggplant flask was charged with 1.50 g (11 mmol) of pentaerythritol and 2.11 g (88 mmol, 8 eq / C2) of sodium hydride and purged with nitrogen. 20 ml of dry DMF was added and stirred at 0 ° C. for 3 hours. Propargyl bromide 10.0 g (84 mmol, 12 eq / C2) was added, and the mixture was heated and stirred at room temperature. After 24 hours, the reaction was stopped, and a liquid separation operation (diethyl ether, distilled water) was performed. The organic phase was dried over anhydrous magnesium sulfate and the solvent was distilled off under reduced pressure. The residue was purified by column chromatography (silica gel, hexane: ethyl acetate = 8: 2) to obtain a yellow liquid.
 金属有機構造体N-MOF-15の合成
 サンプル管に、N-TPDC28mg、硝酸亜鉛六水和物57mg、DEF5mlを加えて溶解させた。80℃にて3日間、加熱静置して立方晶系の黄色結晶を得た。
Synthesis of Metal Organic Structure N 3 -MOF-15 To a sample tube, 28 mg of N 3 -TPDC, 57 mg of zinc nitrate hexahydrate and 5 ml of DEF were added and dissolved. The mixture was allowed to stand at 80 ° C. for 3 days to obtain cubic yellow crystals.
 架橋型金属有機構造体CL-MOF-15の合成
 スライドガラス上に、数粒の金属有機構造体N-MOF-15を静置して、架橋剤C3のN,N-ジエチルホルムアミド溶液および触媒である塩化銅(I)のN,N-ジエチルホルムアミド溶液を滴下した(表1のサンプルNo1および2)。また、バイアル管に、数粒の金属有機構造体N-MOF-15を添加し、架橋剤C3および触媒である塩化銅(I)のN,N-ジエチルホルムアミド溶液を加えた(表1のサンプルNo3~10)。例えば、サンプルNo9では、サンプル管に金属有機構造体N-MOF-15 約10mg、架橋剤C3/DEF溶液(0.1M)1mlを加え、塩化銅(I)/DEF溶液20μl、80℃にて7日間加熱静置して、立方晶系の黄色結晶を得た。
Synthesis of cross-linked metal organic structure CL-MOF-15 A few particles of metal organic structure N 3 -MOF-15 were allowed to stand on a slide glass, and an N, N-diethylformamide solution of a cross-linking agent C3 and a catalyst An N, N-diethylformamide solution of copper (I) chloride was dropped (samples No. 1 and 2 in Table 1). In addition, several particles of metal organic structure N 3 -MOF-15 were added to the vial tube, and a N, N-diethylformamide solution of copper (I) chloride as a cross-linking agent C3 and a catalyst was added (in Table 1). Sample No. 3-10). For example, in sample No. 9, about 10 mg of metal organic structure N 3 -MOF-15 and 1 ml of cross-linking agent C3 / DEF solution (0.1 M) are added to the sample tube, and 20 μl of copper (I) chloride / DEF solution at 80 ° C. For 7 days to obtain cubic yellow crystals.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 アジド基の消滅は、ATR-IRの測定において、2090cm-1のピークの消失によって確認した。図2には、金属有機構造体N-MOF-15のATR-IRスペクトルと、表1のサンプルNo5のATR-IRスペクトルとを示す。図2に示されるように、サンプルNo5では、2090cm-1のピークが消失していることがわかる。 The disappearance of the azide group was confirmed by the disappearance of the 2090 cm −1 peak in the ATR-IR measurement. FIG. 2 shows an ATR-IR spectrum of the metal organic structure N 3 -MOF-15 and an ATR-IR spectrum of sample No. 5 in Table 1. As shown in FIG. 2, in sample No. 5, it can be seen that the peak at 2090 cm −1 has disappeared.
 図3には、金属有機構造体N-MOF-15の光学顕微鏡写真と、表1のサンプルNo5の光学顕微鏡写真とを示す。サンプルNo5も、金属有機構造体N-MOF-15と同様の立方晶形黄色結晶であることがわかる。 FIG. 3 shows an optical micrograph of the metal organic structure N 3 -MOF-15 and an optical micrograph of sample No. 5 in Table 1. Sample No. 5 is also a cubic yellow crystal similar to the metal organic structure N 3 -MOF-15.
 図4には、金属有機構造体N-MOF-15のXRPDパターンと、表1のサンプルNo5のXRPDパターンとを示す。いずれのXRPDパターンにおいても、ピークが一致していることから、結晶構造が維持されたまま架橋反応が進行したことがわかる。 FIG. 4 shows the XRPD pattern of the metal organic structure N 3 -MOF-15 and the XRPD pattern of sample No. 5 in Table 1. In any XRPD pattern, since the peaks are coincident, it can be understood that the crosslinking reaction has progressed while maintaining the crystal structure.
 有機物架橋体PG-MOF-15の合成
 表1のサンプルNo5,No7およびNo8の架橋型金属有機構造体CL-MOF-15を、プロトン化溶媒(35%HCl水溶液/ジエチルホルムアミド、1/7.5,v/v)に浸漬させた。浸漬により架橋型金属有機構造体CL-MOF-15が膨潤していく様子が確認された。図5Aには、表1のサンプルNo5の、浸漬前の光学顕微鏡写真(左側)と、浸漬後の光学顕微鏡写真(右側)が示される。図5Aに示されるように、浸漬により膨潤して体積が約4.34倍になっていることがわかる。図5Bには、表1のサンプルNo7の、浸漬前の光学顕微鏡写真(左側)と、浸漬後の光学顕微鏡写真(右側)が示される。図5Bに示されるように、浸漬により膨潤して体積が約2.37倍になっていることがわかる。
Synthesis of crosslinked organic substance PG-MOF-15 The crosslinked metal organic structures CL-MOF-15 of samples No. 5, No. 7 and No. 8 in Table 1 were converted into protonated solvents (35% HCl aqueous solution / diethylformamide, 1 / 7.5 , V / v). It was confirmed that the cross-linked metal organic structure CL-MOF-15 was swollen by the immersion. FIG. 5A shows an optical micrograph before immersion (left side) and an optical micrograph after immersion (right side) of sample No. 5 in Table 1. As shown in FIG. 5A, it can be seen that the volume is increased by about 4.34 times due to swelling by immersion. FIG. 5B shows an optical micrograph before immersion (left side) and an optical micrograph after immersion (right side) of sample No. 7 in Table 1. As shown in FIG. 5B, it can be seen that the volume is increased by about 2.37 times due to swelling by immersion.
 No5,No7およびNo8の膨潤率を、下記表に示す。表2に示されるように、架橋反応させるときの架橋剤濃度が高いと、膨潤率が高くなることが示唆された(No5と、No7~8との比較)。架橋剤濃度が高すぎると、架橋剤によって金属構造体の配位子間を架橋できずに架橋率が低下するためであると考えられる。
Figure JPOXMLDOC01-appb-T000002
The swelling ratios of No5, No7 and No8 are shown in the following table. As shown in Table 2, it was suggested that the higher the concentration of the crosslinking agent during the crosslinking reaction, the higher the swelling ratio (Comparison between No5 and No7 to No8). When the concentration of the crosslinking agent is too high, it is considered that the crosslinking rate is lowered because the ligands of the metal structure cannot be crosslinked by the crosslinking agent.
Figure JPOXMLDOC01-appb-T000002
 一方、架橋剤と反応させていない金属有機構造体N-MOF-15を、同様にプロトン化溶媒(35%HCl水溶液/ジエチルホルムアミド、1/7.5,v/v)に浸漬させたところ、すぐに分解して構造を維持できなかった。よって、架橋型金属有機構造体CL-MOF-15では、架橋により配位子が固定されていることがわかる。 On the other hand, when the metal organic structure N 3 -MOF-15 not reacted with the crosslinking agent was similarly immersed in a protonated solvent (35% HCl aqueous solution / diethylformamide, 1 / 7.5, v / v) The structure could not be maintained by breaking down immediately. Therefore, it can be seen that in the crosslinked metal organic structure CL-MOF-15, the ligand is fixed by crosslinking.
 図6には、架橋剤と反応させていない金属有機構造体(参照サンプル;4,4'-ビフェニルジカルボン酸と亜鉛イオンからなる金属有機構造体)、架橋型金属有機構造体CL-MOF-15および有機物架橋体PG-MOF-15の、ATR-IRスペクトルを示す。有機物架橋体PG-MOF-15のスペクトルでは、金属有機構造体N-MOF-15および架橋型金属有機構造体CL-MOF-15で観察された1390~1400cm-1付近のピーク(C-O面変角)が、消失していることがわかる。そして、有機物架橋体PG-MOF-15のスペクトルにおけるカルボニル1680~1700cm-1のピーク(C=O伸縮)は、金属有機構造体N-MOF-15および架橋型金属有機構造体CL-MOF-15におけるピークからシフトしていることがわかる。 FIG. 6 shows a metal organic structure not reacted with a crosslinking agent (reference sample; metal organic structure composed of 4,4′-biphenyldicarboxylic acid and zinc ions), and a crosslinked metal organic structure CL-MOF-15. 2 shows an ATR-IR spectrum of the organic crosslinked product PG-MOF-15. In the spectrum of the organic crosslinked product PG-MOF-15, a peak around 1390 to 1400 cm −1 observed with the metal organic structure N 3 -MOF-15 and the crosslinked metal organic structure CL-MOF-15 (C—O It can be seen that (surface deflection) has disappeared. The peak of carbonyl 1680-1700 cm −1 (C═O stretching) in the spectrum of the organic crosslinked product PG-MOF-15 indicates the metal organic structure N 3 —MOF-15 and the crosslinked metal organic structure CL-MOF—. It can be seen that there is a shift from the peak at 15.
 これらのATR-IRスペクトルの観察結果から、有機物架橋体PG-MOF-15では亜鉛の配位結合が開裂しており、亜鉛が除去されていることがわかる。 From the observation results of these ATR-IR spectra, it can be seen that in the organic crosslinked product PG-MOF-15, the coordinate bond of zinc is cleaved and the zinc is removed.
 図7には、架橋剤と反応させていない金属有機構造体IR-MOF-9(ビフェニル基を持つジカルボン酸をリンカーとし、亜鉛イオンを金属イオンとして合成した金属有機構造体である)、架橋型金属有機構造体CL-MOF-15および有機物架橋体PG-MOF-15の、XPSスペクトルを示す。XPSスペクトルの観察は、インジウム基板に試料をキャスト/乾燥させたものを測定基板とした。図7に示されるように、有機物架橋体PG-MOF-15のXPSスペクトルでは、金属有機構造体IR-MOF-9および架橋型金属有機構造体CL-MOF-15では観察された亜鉛のピーク(Zn 2P,1000eV付近)が、消失していることがわかる。この結果からも、有機物架橋体PG-MOF-15では亜鉛が除去されていることがわかる。 FIG. 7 shows a metal organic structure IR-MOF-9 that is not reacted with a crosslinking agent (a metal organic structure synthesized by using a dicarboxylic acid having a biphenyl group as a linker and zinc ions as metal ions), a crosslinked type 2 shows XPS spectra of metal-organic structure CL-MOF-15 and organic crosslinked product PG-MOF-15. The XPS spectrum was observed by using a sample substrate cast / dried on an indium substrate as a measurement substrate. As shown in FIG. 7, in the XPS spectrum of the organic crosslinked product PG-MOF-15, the zinc peak observed in the metal organic structure IR-MOF-9 and the crosslinked metal organic structure CL-MOF-15 ( It can be seen that Zn 2P, around 1000 eV) has disappeared. This result also shows that zinc is removed from the organic crosslinked product PG-MOF-15.
 図8には、架橋剤と反応させていない金属有機構造体N-MOF-15、架橋型金属有機構造体CL-MOF-15および有機物架橋体PG-MOF-15のゲスト(溶媒であるジエチルホルムアミドDEF)包接能を評価するための、熱重量分析(TGA)試験の結果が示される。熱重量分析(TGA)試験は、試料量約5mg,測定温度領域30~500℃,昇温速度3.0℃/分,窒素ガス流速200ml/分の条件で行った。 FIG. 8 shows guests of the metal organic structure N 3 -MOF-15, the cross-linked metal organic structure CL-MOF-15, and the organic cross-linked product PG-MOF-15 that were not reacted with the cross-linking agent (diethyl as a solvent). The results of a thermogravimetric analysis (TGA) test to evaluate the inclusion ability of formamide DEF) are shown. The thermogravimetric analysis (TGA) test was performed under the conditions of a sample amount of about 5 mg, a measurement temperature region of 30 to 500 ° C., a temperature rising rate of 3.0 ° C./min, and a nitrogen gas flow rate of 200 ml / min.
 金属有機構造体N-MOF-15の質量曲線では、30℃から150℃にまで急激な1回目の質量減少が起こり;200℃付近で2回目の質量減少が起こり;380℃から450℃にかけて3回目の質量減少が起こっている。1回目の質量減少は、ゲストである溶媒のジエチルホルムアミドが除去されることで生じているものと思われる。2回目の質量減少は、アジド基の分解によるものと思われる。3回目の質量減少は、構造の骨格自体が分解することによるものと思われる。 In the mass curve of the metal organic structure N 3 -MOF-15, the first mass decrease occurs rapidly from 30 ° C. to 150 ° C .; the second mass decrease occurs near 200 ° C .; from 380 ° C. to 450 ° C. A third mass loss has occurred. The first decrease in mass appears to be caused by the removal of the guest solvent diethylformamide. The second mass loss is believed to be due to the decomposition of the azido group. The third mass loss is believed to be due to the decomposition of the structural skeleton itself.
 架橋型金属有機構造体CL-MOF-15の質量曲線では、2回目の質量減少(200℃付近)が見られない。架橋型金属有機構造体CL-MOF-15にはアジド基がないためであると考えられる。さらに、架橋型金属有機構造体CL-MOF-15の質量曲線での1回目の質量減少は、金属有機構造体N-MOF-15の質量曲線での1回目の質量減少よりも少ない。このことは、架橋型金属有機構造体CL-MOF-15は、架橋により空孔の体積が減少しているためであると考えられる。 In the mass curve of the crosslinked metal organic structure CL-MOF-15, the second mass reduction (around 200 ° C.) is not observed. This is probably because the crosslinked metal organic structure CL-MOF-15 has no azide group. Further, the first mass decrease in the mass curve of the cross-linked metal organic structure CL-MOF-15 is less than the first mass decrease in the mass curve of the metal organic structure N 3 -MOF-15. This is presumably because the volume of pores in the cross-linked metal organic structure CL-MOF-15 is reduced by cross-linking.
 有機物架橋体PG-MOF-15の質量曲線では、1回目の質量減少が大きいことがわかる。このことは、配位結合が開裂したために、空孔の体積が高まり、ゲスト包接能が向上しているためであると考えられる。 In the mass curve of the organic crosslinked product PG-MOF-15, it is understood that the first mass reduction is large. This is probably because the coordination bond was cleaved, so that the volume of the vacancies increased and the guest inclusion ability was improved.
 有機物架橋体PG-MOF-15から架橋型金属有機構造体CL-MOF-15への再生
 金属イオン(亜鉛イオン)を除去した有機物架橋体PG-MOF-15に、亜鉛イオンを再配位させることで、架橋型金属有機構造体CL-MOF-15に再生させた。ここで再生された架橋型金属有機構造体をReCL-MOF-15と呼ぶ。
Regeneration from crosslinked organic material PG-MOF-15 to crosslinked metal organic structure CL-MOF-15 Re-coordination of zinc ions to crosslinked organic material PG-MOF-15 from which metal ions (zinc ions) have been removed Thus, it was regenerated into a cross-linked metal organic structure CL-MOF-15. The regenerated crosslinked organic metal structure is called ReCL-MOF-15.
 有機物架橋体PG-MOF-15を、表3に示す条件にて金属を再配位させた。具体的には、例えば下記表のNo2では、有機物架橋体PG-MOF-15を0.25mM 硝酸亜鉛六水和物/DEF溶液に浸透させ、36時間、80℃にて静置した。
Figure JPOXMLDOC01-appb-T000003
In the organic crosslinked product PG-MOF-15, the metal was re-coordinated under the conditions shown in Table 3. Specifically, for example, in No. 2 in the table below, the organic crosslinked product PG-MOF-15 was infiltrated into a 0.25 mM zinc nitrate hexahydrate / DEF solution and allowed to stand at 80 ° C. for 36 hours.
Figure JPOXMLDOC01-appb-T000003
 図9には、金属有機構造体N-MOF-15、架橋型金属有機構造体CL-MOF-15、有機物架橋体PG-MOF-15および再生された架橋型金属有機構造体ReCL-MOF-15のATR-IRスペクトルを示す。 FIG. 9 shows metal organic structure N 3 -MOF-15, cross-linked metal organic structure CL-MOF-15, organic cross-linked body PG-MOF-15, and regenerated cross-linked metal organic structure ReCL-MOF- 15 ATR-IR spectra are shown.
 図9に示されるように、再生された架橋型金属有機構造体ReCL-MOF-15のIRスペクトルでは、有機物架橋体PG-MOF-15のIRスペクトルでは消失していた1390cm-1のピーク(C-O面変角)が、再び現れていることがわかる。また、再生された架橋型金属有機構造体ReCL-MOF-15のスペクトルにおけるカルボニル1680~1700cm-1のピーク(C=O伸縮振動)は、有機物架橋体PG-MOF-15のピークからシフトしていることがわかる。これらのATR-IRスペクトルの観察結果から、再生された架橋型金属有機構造体ReCL-MOF-15には金属イオン(亜鉛イオン)が再配位していることがわかる。 As shown in FIG. 9, in the IR spectrum of the regenerated crosslinked metal-organic structure ReCL-MOF-15, the peak of 1390 cm −1 disappeared in the IR spectrum of the organic crosslinked product PG-MOF-15 (C It can be seen that -O-plane deflection) appears again. In addition, the peak of carbonyl 1680-1700 cm −1 (C═O stretching vibration) in the spectrum of the regenerated crosslinked metal organic structure ReCL-MOF-15 is shifted from the peak of the organic crosslinked product PG-MOF-15. I understand that. From the observation results of these ATR-IR spectra, it can be seen that metal ions (zinc ions) are re-coordinated to the regenerated crosslinked metal organic structure ReCL-MOF-15.
(実施例2)
 金属有機構造体CD-MOF([(C48H80O40)(KOH)2]n.)の合成
 以下の構造式で示されるγ-シクロデキストリン(γ-CD)を最小の構成単位とし、γ-CDの水酸基とカリウムイオンの配位結合によりγ-CDが3次元的に規則正しく会合した構造を持つ、CD-MOFを合成した。CD-MOFの組成式は、[(C48H80O40)(KOH)2]nで表される。具体的には、Angew. Chem. Int. Ed. 2010, 49, 8630.に記載の方法に従って合成した。
Figure JPOXMLDOC01-appb-C000011
(Example 2)
Synthesis of metal organic structure CD-MOF ([(C 48 H 80 O 40 ) (KOH) 2 ] n.) Γ-cyclodextrin (γ-CD) represented by the following structural formula is the smallest structural unit, A CD-MOF having a structure in which γ-CD is regularly and three-dimensionally associated by a coordinate bond between a hydroxyl group of γ-CD and a potassium ion was synthesized. The composition formula of CD-MOF is represented by [(C 48 H 80 O 40 ) (KOH) 2 ] n. Specifically, it was synthesized according to the method described in Angew. Chem. Int. Ed. 2010, 49, 8630.
Figure JPOXMLDOC01-appb-C000011
 6分子のγ-CDが会合したCD-MOF((γ-CD)6と称する)のボールアンドスティックモデルを図14に、複数の(γ-CD)6が体心立方格子構造で会合したCD-MOFの空間充填モデルを図15示す。 FIG. 14 shows a ball-and-stick model of CD-MOF (referred to as (γ-CD) 6) in which six molecules of γ-CD are associated, and CD in which a plurality of (γ-CD) 6 are associated in a body-centered cubic lattice structure A space filling model of -MOF is shown in FIG.
 架橋型金属有機構造体CL-CD-MOFの合成サンプル菅に金属有機構造体CD-MOFを20mg取り、1.5~5.0Mの濃度でエチレングリコールジグリシジルエーテル(架橋剤L1)/エタノール溶液を加え、65℃で3日間加熱静置させ内部架橋反応を行ない、透明結晶として架橋型金属有機構造体CL-CD-MOFを得た。 20 mg of metal organic structure CD-MOF is taken in a sample of the synthesis of cross-linked metal organic structure CL-CD-MOF, and ethylene glycol diglycidyl ether (crosslinking agent L1) / ethanol solution at a concentration of 1.5 to 5.0 M And allowed to stand at 65 ° C. for 3 days to carry out an internal crosslinking reaction to obtain a crosslinked metal organic structure CL-CD-MOF as transparent crystals.
有機物架橋体PG-CD-MOFの合成スライドガラス上に取り出した架橋型金属有機構造体CL-CD-MOFを水とエタノールの混合溶媒(1:1)、水の順に浸漬させ、加水分解により、カリウムイオンの配位を除去することでアモルファス状の物質を得た。図10には、架橋型金属有機構造体CL-CD-MOFが溶媒中で有機物架橋体PG-CD-MOFに変化する様子を光学顕微鏡で観察したものを示す。形状は変化せず、膨潤によりサイズのみが変化した。 Synthesis of organic crosslinked product PG-CD-MOF The crosslinked metal organic structure CL-CD-MOF taken out on the slide glass was immersed in a mixed solvent of water and ethanol (1: 1) in order of water, and then hydrolyzed. An amorphous substance was obtained by removing the coordination of potassium ions. FIG. 10 shows a state in which the cross-linked metal organic structure CL-CD-MOF is changed to the organic cross-linked product PG-CD-MOF in a solvent, as observed with an optical microscope. The shape did not change, only the size changed due to swelling.
 図11では架橋剤L1のさまざまな濃度領域で内部架橋反応を行い、カリウムイオンの配位を除去することで得られた有機物架橋体PG-CD-MOFの膨潤度を示す。膨潤度QはQ=(LPG-CD-MOF/LCL-CD-MOFで計算した。ここでLPG-CD-MOFは有機物架橋体PG-CD-MOFの結晶の一辺の長さ、LCL-CD-MOFは架橋型金属有機構造体CL-CD-MOFの一辺の長さを表す。架橋剤L1の濃度が1.5~2.0M の場合で最も膨潤度が低く、架橋反応が最も高密度で進行していることを示している。以降、架橋剤L1の濃度は1.5Mで統一して実験を行なった。 FIG. 11 shows the degree of swelling of the organic crosslinked product PG-CD-MOF obtained by carrying out an internal crosslinking reaction in various concentration regions of the crosslinking agent L1 and removing the coordination of potassium ions. The degree of swelling Q was calculated by Q = ( LPG-CD-MOF / LCL-CD-MOF ) 3 . Here, L PG-CD-MOF represents the length of one side of the crystal of the organic crosslinked product PG-CD-MOF, and L CL-CD-MOF represents the length of one side of the crosslinked metal-organic structure CL-CD-MOF. . When the concentration of the crosslinking agent L1 is 1.5 to 2.0M, the degree of swelling is the lowest, indicating that the crosslinking reaction proceeds at the highest density. Thereafter, the experiment was conducted with the concentration of the cross-linking agent L1 unified at 1.5M.
 架橋剤L1により生成する架橋型金属有機構造体CL-CD-MOFのFT-IRスペクトルを測定した結果が図12に示される。γ-CDに由来するC-O-Cの伸縮振動(1150-1120cm-1)がブロードしていること、及び架橋剤L1を修飾したことによるメチレン鎖由来のピーク強度(2920-2850cm-1)が増加していることが確認された。このことから、架橋剤L1が予想通りに反応していると考えられる。 FIG. 12 shows the result of measuring the FT-IR spectrum of the cross-linked metal organic structure CL-CD-MOF produced by the cross-linking agent L1. The stretching intensity of C—O—C derived from γ-CD (1150-1120 cm-1) is broad, and the peak intensity derived from the methylene chain due to modification of the crosslinking agent L1 (2920-2850 cm-1) Was confirmed to increase. From this, it is thought that the crosslinking agent L1 is reacting as expected.
 形態観察
 作製した金属有機構造体CD-MOFおよび架橋型金属有機構造体CL-CD-MOF、有機物架橋体PG-CD-MOFの形態を評価するため、走査型電子顕微鏡(SEM)観察を行なった。本実験で用いたサンプルは、24時間メタノールで蒸気拡散させ作製した金属有機構造体CD-MOF、1.5Mの架橋剤L1溶液で内部架橋した架橋型金属有機構造体CL-CD-MOF、それに水を添加しカリウムイオンの配位を除去して作製した有機物架橋体PG-CD-MOFである。測定は80℃で一晩放置し、その後12時間真空乾燥したサンプルをカーボンテープに乗せ、白金蒸着して行なった。
Morphological observation In order to evaluate the morphology of the prepared metal organic structure CD-MOF, crosslinked metal organic structure CL-CD-MOF, and organic crosslinked substance PG-CD-MOF, scanning electron microscope (SEM) observation was performed. . Samples used in this experiment were a metal organic structure CD-MOF prepared by vapor diffusion with methanol for 24 hours, a cross-linked metal organic structure CL-CD-MOF internally cross-linked with a 1.5M cross-linking agent L1 solution, This is an organic crosslinked product PG-CD-MOF prepared by adding water to remove coordination of potassium ions. The measurement was carried out overnight at 80 ° C., and then a vacuum-dried sample for 12 hours was placed on a carbon tape and deposited with platinum.
 SEM観察の結果、図13に示す通り、いずれも立方体形状の物体であった。結晶である金属有機構造体CD-MOFは立方体の形状をしており、架橋反応の生成物である架橋型金属有機構造体CL-CD-MOFや加水分解後の有機物架橋体PG-CD-MOFのどちらも金属有機構造体CD-MOFの形態を維持していることがわかった。また溶媒で膨潤したサンプルだけでなく、乾燥したサンプルにおいても有機物架橋体PG-CD-MOFが原料である結晶由来の直線的な辺と頂点をもつ構造体であった。 As a result of SEM observation, as shown in FIG. 13, all were cubic objects. The metal organic structure CD-MOF which is a crystal has a cubic shape, and the crosslinked metal organic structure CL-CD-MOF which is a product of the crosslinking reaction and the organic compound crosslinked body PG-CD-MOF after hydrolysis. Both of them were found to maintain the form of the metal organic structure CD-MOF. In addition to the sample swollen with the solvent, the dried sample also had a structure with linear sides and vertices derived from the crystals from which the organic crosslinked product PG-CD-MOF was derived.
 本発明により、共有結合性有機構造体の新しい設計方針が提供され、これまでにない構造を有する共有結合性の有機構造体の提供が可能となる。さらには、本発明により提供される有機物架橋体は、金属イオン吸着能を有するので、金属イオンなどの金属回収原料への応用や、薬剤の徐放システムなどへの応用も可能である。 According to the present invention, a new design policy of a covalently bonded organic structure is provided, and a covalently bonded organic structure having an unprecedented structure can be provided. Furthermore, since the organic cross-linked product provided by the present invention has a metal ion adsorption ability, it can be applied to a metal recovery raw material such as metal ions or a sustained release system of a drug.
 10 有機配位子
 11 官能基
 20 金属イオン
 30 金属有機構造体
 40 架橋剤
 50 架橋型金属有機構造体
 60 有機物架橋体
 
DESCRIPTION OF SYMBOLS 10 Organic ligand 11 Functional group 20 Metal ion 30 Metal organic structure 40 Crosslinking agent 50 Crosslinking type metal organic structure 60 Organic substance crosslinked body

Claims (6)

  1.  有機配位子と、前記有機配位子を連結する金属イオンを含む金属有機構造体を用意するステップAと、
     前記配位子を架橋剤で架橋して架橋型金属有機構造体とするステップBと、
     を有する、架橋型金属有機構造体の製造方法。
    Preparing a metal organic structure containing an organic ligand and a metal ion linking the organic ligand; and
    Step B in which the ligand is crosslinked with a crosslinking agent to form a crosslinked metal organic structure,
    The manufacturing method of a bridge | crosslinking type metal organic structure which has these.
  2.  前記有機配位子は官能基を有し、かつ前記架橋剤は、前記官能基と反応して共有結合を形成できる2以上の官能基を有する、請求項1に記載の架橋型金属有機構造体の製造方法。 The cross-linked metal organic structure according to claim 1, wherein the organic ligand has a functional group, and the cross-linking agent has two or more functional groups capable of reacting with the functional group to form a covalent bond. Manufacturing method.
  3.  有機配位子と、前記有機配位子を連結する金属イオンを含む金属有機構造体を用意するステップAと、
     前記配位子を架橋剤で架橋して架橋型金属有機構造体とするステップBと、
     前記架橋型金属有機構造体から、前記金属イオンのうちの一部または全部を除去するステップCと、
     を有する、有機物架橋体を製造する方法。
    Preparing a metal organic structure containing an organic ligand and a metal ion linking the organic ligand; and
    Step B in which the ligand is crosslinked with a crosslinking agent to form a crosslinked metal organic structure,
    Removing some or all of the metal ions from the cross-linked metal organic structure; and
    A method for producing a crosslinked organic material, comprising:
  4.  有機配位子と、前記有機配位子を連結する金属イオンと、前記有機配位子を架橋する架橋基とを含む、架橋型金属有機構造体。 A crosslinked metal organic structure comprising an organic ligand, a metal ion that links the organic ligand, and a crosslinking group that bridges the organic ligand.
  5.  請求項4に記載の架橋型金属有機構造体から、前記金属イオンのうちの一部または全部を除去して得られる、有機物架橋体。 5. A crosslinked organic substance obtained by removing a part or all of the metal ions from the crosslinked metal-organic structure according to claim 4.
  6.  前記有機物架橋体は、金属イオンを吸着することで前記架橋型金属有機構造体となることができる、請求項5に記載の有機物架橋体。
     
    The said organic bridge | crosslinking body is an organic substance bridge | crosslinking body of Claim 5 which can become the said bridge | crosslinking type metal organic structure by adsorbing a metal ion.
PCT/JP2012/001659 2011-03-09 2012-03-09 Crosslinked metallic organic structure and crosslinked organic material, and processes for producing same WO2012120905A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011051649 2011-03-09
JP2011-051649 2011-03-09

Publications (1)

Publication Number Publication Date
WO2012120905A1 true WO2012120905A1 (en) 2012-09-13

Family

ID=46797876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001659 WO2012120905A1 (en) 2011-03-09 2012-03-09 Crosslinked metallic organic structure and crosslinked organic material, and processes for producing same

Country Status (1)

Country Link
WO (1) WO2012120905A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513796A (en) * 1978-07-13 1980-01-30 Chinoin Gyogyszer Es Vegyeszet Cyclodextrinnpolyvinyl alcohol*polymer and process for polymerizing same in form of particles*fibers*block or film
JPS5757701A (en) * 1980-08-07 1982-04-07 Chinoin Gyogyszer Es Vegyeszet Cellulose derivative and manufacture
WO2006012569A1 (en) * 2004-07-22 2006-02-02 The Scripps Research Institute Polymeric materials via click chemistry
JP2011213743A (en) * 2010-03-31 2011-10-27 Aomori Prefectural Industrial Technology Research Center Granular cyclodextrin polymer and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513796A (en) * 1978-07-13 1980-01-30 Chinoin Gyogyszer Es Vegyeszet Cyclodextrinnpolyvinyl alcohol*polymer and process for polymerizing same in form of particles*fibers*block or film
JPS5757701A (en) * 1980-08-07 1982-04-07 Chinoin Gyogyszer Es Vegyeszet Cellulose derivative and manufacture
WO2006012569A1 (en) * 2004-07-22 2006-02-02 The Scripps Research Institute Polymeric materials via click chemistry
JP2011213743A (en) * 2010-03-31 2011-10-27 Aomori Prefectural Industrial Technology Research Center Granular cyclodextrin polymer and manufacturing method therefor

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHWALEK, M. ET AL.: "Synthesis and biological evaluation of multivalent carbohydrate ligands obtained by click assembly of pseudo-rotaxanes", ORGANIC & BIOMOLECULAR CHEMISTRY, vol. 7, no. 8, 2009, pages 1680 - 8, PAGE 1682 *
GOTO, Y. ET AL.: "''Clickable'' Metal-Organic Framework", J. AM. CHEM. SOC., vol. 130, no. 44, 2008, pages 14354 - 5 *
KENTA KOKADO ET AL.: "Takosei Haii Ko Bunshi no Jigo Shushoku ni yoru 3 Jigen Network Polymer no Gosei", POLYMER PREPRINTS, JAPAN, vol. 60, no. L, 10 May 2011 (2011-05-10), pages 1PB012 *
KOTA SUGIKAWA ET AL.: "Click Chemistry o Riyo shita Haii Ko Bunshi eno Jigo Shushoku Hanno", POLYMER PREPRINTS, JAPAN, vol. 59, no. 2, pages 3R04 *
SMALDONE, R.A. ET AL.: "Metal-Organic Frameworks from Edible Natural Products", ANGEW. CHEM. INT. ED., vol. 49, 2010, pages 8630 - 4 *
TAKUMI ISHIWATARI ET AL.: "Takosei Haii Ko Bunshi o Igata to shita 3 Jigen Network Polymer no Kochiku", CSJ: THE CHEMICAL SOCIETY OF JAPAN KOEN YOKOSHU, vol. 91, no. 3, 11 March 2011 (2011-03-11), pages 872 *
YAO, F. ET AL.: "Sliding-Graft Interpenetrating Polymer Networks from Simultaneous ''Click Chemistry'' and Atom Transfer Radical Polymerization", MACROMOLECULES, vol. 43, no. 23, 2010, WASHINGTON, DC, UNITED STATES, pages 9761 - 70 *

Similar Documents

Publication Publication Date Title
Gadipelli et al. Postsynthesis annealing of MOF-5 remarkably enhances the framework structural stability and CO2 uptake
JP5496676B2 (en) Metal complex and method for producing the same
KR101687771B1 (en) The preparation method of scaffold materials-transition metal hydride complexes and intermediates therefor
US8262775B2 (en) Tetratopic phenyl compounds, related metal-organic framework materials and post-assembly elaboration
CN108503853A (en) A kind of covalent organic frame material and its preparation method and application based on secondary amine bonding
JP5787665B2 (en) Metal complex, adsorbent, occlusion material and separation material comprising the same
JP5725784B2 (en) Metal complex and separation material comprising the same
JP2010180199A (en) Metal complex and method for producing the same
JP5437554B2 (en) Method for producing porous metal complex, porous metal complex, adsorbent, separation material, gas adsorbent and hydrogen adsorbent
JP2011051949A (en) Metal complex and method for producing the same
KR101676442B1 (en) Method for regeneration of metal-organic framework
Jiang et al. Mechanochemistry-assisted linker exchange of metal-organic framework for efficient kinetic separation of propene and propane
JP5642148B2 (en) Method for producing a porous organometallic framework material based on magnesium formate without solvent
JP2010180200A (en) Metal complex, and method for producing the same
JP5292679B2 (en) Method for producing porous metal complex as hydrogen storage material
WO2012120905A1 (en) Crosslinked metallic organic structure and crosslinked organic material, and processes for producing same
EP2347821B1 (en) Gas adsorbing material, precursor of the gas adsorbing material, and process for producing gas adsorbing material
KR101721907B1 (en) Cobalt Supramolecular Triple-Stranded Helicate-based Superb-Cage and Synthetic method thereof
JP2018126678A (en) Selective adsorbent material
KR20190124478A (en) A carbon monoxide adsorbents with carbon monoxide selectivity and manufacturing method of the same
KR20190123944A (en) A carbon monoxide adsorbents with carbon monoxide selectivity and manufacturing method of the same
JP5010805B2 (en) Method for heat treatment of metal-organic framework
CN114632551B (en) Difunctional chiral catalyst and preparation method and application thereof
JP5452074B2 (en) Metal complex and method for producing the same
CN107226913B (en) Frame coordination material with tetranuclear cobalt as node and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12754728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP