WO2012120863A1 - Video coding method and video decoding method - Google Patents

Video coding method and video decoding method Download PDF

Info

Publication number
WO2012120863A1
WO2012120863A1 PCT/JP2012/001471 JP2012001471W WO2012120863A1 WO 2012120863 A1 WO2012120863 A1 WO 2012120863A1 JP 2012001471 W JP2012001471 W JP 2012001471W WO 2012120863 A1 WO2012120863 A1 WO 2012120863A1
Authority
WO
WIPO (PCT)
Prior art keywords
video
data
motion vector
accuracy
slice
Prior art date
Application number
PCT/JP2012/001471
Other languages
French (fr)
Japanese (ja)
Inventor
敏康 杉尾
西 孝啓
陽司 柴原
寿郎 笹井
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012120863A1 publication Critical patent/WO2012120863A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/523Motion estimation or motion compensation with sub-pixel accuracy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/109Selection of coding mode or of prediction mode among a plurality of temporal predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Definitions

  • the present invention relates to a moving image encoding method and a moving image decoding method for encoding or decoding image data with reference to a predicted image.
  • the present invention relates to encoding and decoding of a reference position indicated by a motion vector.
  • Non-patent Document 2 Various studies have been made to increase the encoding efficiency (Non-patent Document 2).
  • Non-patent Document 1 proposes a method of updating which value (for example, 0) is 1 ⁇ 4 pixel accuracy and which is a value indicating 8 pixel accuracy is binary.
  • FIG. 1 is a diagram for explaining data processing of a data structure from the viewpoint of decoding processing for a data structure of a stream described in Section 5.1.14 “Prediction ⁇ ⁇ Unit syntax” of Non-Patent Document 1. It is.
  • PredMode the prediction mode of the prediction unit (PU) to be decoded indicates inter (step S101). In this determination, true is returned when the slice to be decoded is a P slice or a B slice and the prediction mode is 1.
  • Table 1 below shows PredMode determination rules according to the slice type (the pair of P and B and I) proposed in this document (Non-patent Document 1, Table 5-13 “Specification of prediction mode”) ).
  • I shown in the next step is a value indicating how many blocks a 1 PU block is divided into. For example, if 2N ⁇ 2N is specified as the shape of the section, i (number of sections) is “1”, and if N ⁇ N, i is “4”.
  • next step it is determined by a flag merge_flag whether or not a motion vector can be predicted and generated from adjacent blocks such as blocks having different i (step S103). If it cannot be predicted (TRUE in step S103), decoding from the bits is necessary, and the process proceeds to the next step.
  • x indicates a number that determines whether the current processing target is L0 or L1 out of the two motion vectors L0 and L1.
  • step S107 based on entropy_coding_mode_flag, it is determined based on entropy_coding_mode_flag which mvres_flag for Lx (L0 and L1) for each block (block number i) is encoded (step S107).
  • the subsequent decoding process is switched according to the encoding method (step S107 and subsequent steps).
  • step S107 When the determination result in step S107 returns that the value of the flag of mvres_flag (or a sequence of flag values) is encoded by CABAC (Context-based Adaptive Binary Arithmetic Coding), it directly corresponds to the value of this flag.
  • mvres_lx is decoded (value is acquired) according to the context (step S111). For example, the value of the mvres_flag flag of the surrounding block is used as the context.
  • a ref_idx_mvres_l0 (ref_idx_mvres_l1) flag is acquired (step S113). If the ref_idx_mvres_lx flag is explicitly present (in the case of “0”, “1”), or if the field does not exist, in which case the value of mvres_lx indicating the precision is (0 or 1). Is interpreted inside the decoding side. For example, when ref_idx_mvres_lx [i] explicitly indicates “0”, the value of mvres_lx [i] is set to “1” (1/4 pixel).
  • the motion vector difference value (mvd_lx [partition number] [x]) is decoded (step S115).
  • the value of the difference value mvd_lx [section number] [direction] is the difference value (Diff) of the motion vector (MV) whose accuracy is determined by the flag mvres_flag.
  • the accuracy of the motion vector difference value mvd decoded in step S115 is given by the value of the flag mvres_flag.
  • mvd — 10 [partition number] [0] indicates the horizontal component of the difference of motion vectors.
  • mvd — 10 [partition number] [1] indicates the vertical component of the difference of the same vector.
  • mvres_l0 [i] that is, the value of mvres_flag
  • the motion vector is 1 ⁇ 4 precision in both the horizontal and vertical directions.
  • the accuracy is 1/8.
  • JCT-VC Joint Collaborative Team on Video Coding
  • an AMVRES flag (mvres_flag_lx) is defined for each motion vector (the same applies hereinafter including a motion vector difference value).
  • the same data structure is given for mvres_flag in the P slice and the B slice. This means that the field for the mvres_flag flag is reserved in an area in the stream regardless of whether it is B or P.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a moving image encoding method and a moving image decoding method capable of improving the encoding efficiency.
  • the video decoding method includes a step of determining the number of motion vectors of a predetermined block, and when the number of motion vectors is 1, the number of motion vectors is 2 And a step of obtaining information on motion vectors for the block with a higher pixel accuracy value and a step of obtaining predicted pixels according to the number of motion vectors associated with the block.
  • the moving picture encoding method includes a step of determining the number of motion vectors for a block to be encoded, and the number of motion vectors is 2 when the number of motion vectors is 1.
  • the determination at the time of decoding the value of the motion vector accuracy (value of the AMVRES flag) is switched according to the slice type.
  • the value of the flag is decoded by using different interpretations (judgments) for the decoding method in the block that is the P slice and the decoding method in the B slice.
  • the AMVRES flag is always on, that is, the motion vector is always determined to be 1/8 precision, and in the case of the B slice, it is always off, that is, the motion vector is always determined to be 1/4 precision. Hold.
  • the interpretation of the value is changed depending on whether the B slice is a single direction or two directions. For example, if the prediction direction is one direction of L0 or L1, the AMVRES flag is always on, that is, the motion vector is always determined to be 1/8 accuracy, and if the prediction direction is 2 directions (Bi), 1/4 accuracy is determined. Judge.
  • the present invention can be realized not only as such a moving image encoding method and a moving image decoding method but also as a characteristic step included in such a moving image encoding method and a moving image decoding method. It can also be realized as a moving image encoding device and a moving image decoding device, or as a program for causing a computer to execute these steps.
  • a program can be realized as a recording medium such as a computer-readable CD-ROM, or can be realized as information, data, or a signal indicating the program.
  • These programs, information, data, and signals may be distributed via a communication network such as the Internet.
  • the coding efficiency is improved by switching the value determination according to the slice type while deleting the AMVRES flag for each motion vector and reducing overhead.
  • FIG. 1 is a flowchart showing a motion vector accuracy decoding processing method in the prior art.
  • FIG. 2 is a flowchart showing a decoding processing method (value holding method) in the first embodiment.
  • FIG. 3 is a diagram for explaining the positional accuracy (integer part, decimal part) of the motion vector.
  • FIG. 4A is a flowchart showing a process flow of the moving picture coding method according to the present invention.
  • FIG. 4B is a block diagram showing a configuration of an embodiment for realizing the moving picture coding method according to the present invention.
  • FIG. 5 is a flowchart showing a processing flow of the moving picture decoding method according to the present invention.
  • FIG. 6 is an overall configuration diagram of a content supply system that realizes a content distribution service.
  • FIG. 6 is an overall configuration diagram of a content supply system that realizes a content distribution service.
  • FIG. 7 is an overall configuration diagram of a digital broadcasting system.
  • FIG. 8 is a block diagram illustrating a configuration example of a television.
  • FIG. 9 is a block diagram illustrating a configuration example of an information reproducing / recording unit that reads and writes information from and on a recording medium that is an optical disk.
  • FIG. 10 is a diagram illustrating a structure example of a recording medium that is an optical disk.
  • FIG. 11A illustrates an example of a mobile phone.
  • FIG. 11B is a block diagram illustrating a configuration example of a mobile phone.
  • FIG. 12 is a diagram showing a structure of multiplexed data.
  • FIG. 13 is a diagram schematically showing how each stream is multiplexed in the multiplexed data.
  • FIG. 14 is a diagram showing in more detail how the video stream is stored in the PES packet sequence.
  • FIG. 15 is a diagram showing the structure of TS packets and source packets in multiplexed data.
  • FIG. 16 is a diagram illustrating a data structure of the PMT.
  • FIG. 17 is a diagram showing an internal configuration of multiplexed data information.
  • FIG. 18 is a diagram showing the internal structure of the stream attribute information.
  • FIG. 19 is a diagram illustrating steps for identifying video data.
  • FIG. 20 is a block diagram illustrating a configuration example of an integrated circuit that realizes the moving picture coding method and the moving picture decoding method according to each embodiment.
  • FIG. 21 is a diagram illustrating a configuration for switching the driving frequency.
  • FIG. 21 is a diagram illustrating a configuration for switching the driving frequency.
  • FIG. 22 is a diagram illustrating steps for identifying video data and switching between driving frequencies.
  • FIG. 23 is a diagram illustrating an example of a lookup table in which video data standards are associated with driving frequencies.
  • FIG. 24A is a diagram illustrating an example of a configuration for sharing a module of a signal processing unit.
  • FIG. 24B is a diagram illustrating another example of a configuration for sharing a module of a signal processing unit.
  • R2 In the case of a P slice using one motion vector MV, encoding is performed with 1 / 2n accuracy (for example, 1/8 accuracy). In the P slice having only one motion vector MV, it is possible to prevent the quality of the predicted image due to motion compensation from being lowered at the same 1/4 accuracy as that of the B slice.
  • a code string is generated with a value that conforms to the above rule as a default value (a value with a higher probability of occurrence).
  • an implied value (or a local default value, a value that has a higher probability of occurrence)
  • the AMVRES flag is always on, that is, the motion vector is always determined to be 1/8 precision
  • the AMVRES flag is always off, that is, the motion vector is always determined to be 1/4 precision
  • FIG. 2 is a flowchart for explaining a decoding method for decoding a code string according to the encoding / decoding rule of the first embodiment.
  • FIG. 2 the same steps as those in FIG. 1 are denoted by the same reference numerals.
  • step S107 it is determined whether or not the encoded data of the block is encoded in the CABAC encoding mode in step S107 (step S107).
  • step S201 it is determined whether or not the slice type is P (step S201). Then, using the distinction as to whether the slice type is P or B, the value (or the implicit meaning of the code string) is interpreted.
  • a default value (a value when there is no value or a value with a higher probability of occurrence, for example, “0”) is set to 1/8 precision. (Step S203).
  • step S201 If the result of determination in step S201 does not indicate that it is a P slice (if it is a block of a B slice), a default value (a value when there is no value or a value with a higher probability of occurrence) It is assumed that the accuracy is lower than the P slice (for example, 1/4 accuracy) (step S205).
  • step S101 in FIG. 1 P or B is interpreted in a unified manner, but a data structure that can distinguish between the P slice and the B slice at the time of step S101 is defined. Also good.
  • sample interpolation process example interpolation process
  • control unit starts the inter prediction process when a P slice or a B slice is input.
  • This process basically corresponds to the contents of section 8.4.1 in Non-Patent Document 2 or Non-Patent Document 3.
  • the value of mvd_lX from the bitstream is distinguished between the P slice and the B slice. Obtain with accuracy according to the rules described above.
  • the value of the motion vector difference mvd_L0 is held in the memory assuming that the value is expressed with 1/8 precision. If the input slices are B slices, the values of the motion vector difference mvd_l0 and the value of the motion vector difference mvd_l1 are stored in the memory, assuming that both of them are 1/4 precision values.
  • a motion vector prediction value mvp corresponding to this motion vector difference value mvd is acquired.
  • the middle value of the motion vector value of the upper left block is acquired.
  • Equation 1 the difference value mvdLx [0. . 1] and the motion vector mvLx [0. . 1].
  • the x-direction component and the y-component of the derived motion vector mvLx are converted into an integer part (xInt L , yInt L ) and a decimal part (xFrac L , yFrac L ) as shown in the following equations 2 to 5. It is divided.
  • Non-patent document 2 corresponds to formula 8-84 or 85
  • non-patent document 3 corresponds to formulas 8-227 and 228.
  • Table 8-7 of Non-Patent Document 2 is used.
  • FIG. 3 is a 1/4 precision pixel position indicated by the alphabet (A, d, h, n,... R) in the table.
  • xIntL indicates a position (integer unit accuracy) where the horizontal pixel position is xIntL.
  • the hatched pixel positions in the figure indicate pixel samples located at integer pixel positions in both the x and y directions.
  • yIntL indicates a position (integer unit accuracy) where the pixel position is yIntL in the vertical direction.
  • the position of the sample of the predicted sample pixel is the pixel at the position of q in the figure. .
  • the previous position indicated by the motion vector can be obtained with a predetermined pixel accuracy (in the example, 1/4 pixel accuracy).
  • the motion vector accuracy is 1/8 pixel position accuracy (in the case of 3 bits below the decimal point, xFracL and yFracL in Table 2 are each expanded to 0.7, and 64 positions are within one pixel unit. What is necessary is just to provide.
  • the accuracy of the position corresponds to “sample and coefficient used for interpolation”.
  • the value of the pixel b (position of f, j, q) at the 1/2 pixel position in the horizontal direction is expressed by the following formula 6 from the pixel values of E, F, A, H, I, J. May be derived.
  • the value of the pixel a which is a pixel at a 1/4 pixel accuracy position in the horizontal direction is expressed by the following equation 7 by averaging the pixel value of the pixel b at the 1/2 pixel position and the pixel value of the pixel A obtained. Derived as shown.
  • a pixel with decimal pixel precision is a value generated by calculation from a pixel value at an integer position (a pixel indicated by a capital letter in the figure).
  • PredPartC [x, y] (predPartL0C [x, y] + predPartL1C [x, y] +1) >> 1 (Equation 8)
  • the case where one of L0 and L1 does not exist is typically a block in a P slice.
  • the determination at the time of decoding the value of the motion vector accuracy is switched according to the slice type. For example, in the case of the P slice, the AMVRES flag is always on, that is, the motion vector is always determined to be 1/8 precision, and in the case of the B slice, the AMVRES flag is always off, that is, the motion vector is always 1/4 precision. It is judged and held.
  • the accuracy derived from the accuracy of the motion vector indicates that PredPartLx is expressed by a pixel position of 1/8 accuracy unless the accuracy is lost in the calculation process. Pixel value.
  • PredPartC [x, y] (predPartL0C [x, y] + predPartL1C [x, y] +1) >> 1 (Equation 9)
  • the PredPartLx obtained here is the average of the pixels at the 1 ⁇ 4 precision pixel position and the pixels at the 1 ⁇ 4 precision pixel position, and can be said to be a pixel value of 1 / pixel precision substantially.
  • a motion vector for a block having only one motion vector (P slice) is encoded with an accuracy of 1 bit higher than the accuracy when there are two motion vectors (B slice).
  • FIG. 4A is a flowchart showing the flow of processing of the video encoding method according to the present invention
  • FIG. 4B is a block diagram showing the configuration of an embodiment for realizing the video encoding method according to the present invention. It is.
  • the encoding method shown in FIG. 4A is executed by functional blocks called inter-picture prediction encoding unit 11 and entropy encoding unit 12 shown in FIG. 4B.
  • an optimal prediction image for a block to be encoded is created using a predetermined number of motion vectors by evaluation from the viewpoint of encoding efficiency and the like (step S401).
  • step S402 a determination is made according to the number of motion vectors of the encoding target block (or whether the slice type is a P slice or a B slice) (step S402). Note that this determination is not limited to the slice type as long as the information is related to the acquisition of motion vector accuracy.
  • the accuracy of the motion vector is determined to be the first accuracy (step S403).
  • the accuracy of the motion vector is determined to be a second accuracy higher than the first accuracy (step S405).
  • the motion vector difference value is encoded and output according to the determined number of bits (step S407).
  • the motion vector (or motion vector difference value) is held on the assumption that the accuracy of the motion vector differs depending on the slice type.
  • FIG. 5 is a flowchart showing a process flow of the moving picture decoding method according to the present invention.
  • the number of motion vectors is determined based on whether the decoding target block (or the slice to which the block belongs) is a P slice or a B slice (step S501). Note that this determination is not limited to the slice type as long as it is information related to the acquisition of motion vector accuracy.
  • the accuracy of the motion vector is determined to be the first accuracy (for example, 1 ⁇ 4 pixel accuracy) (step S503).
  • the motion vector difference value is higher in accuracy (for example, 1/8 pixel accuracy) than the first accuracy (for example, 1/4 pixel accuracy).
  • the motion vector difference value (mvd) is decoded and acquired with this accuracy (for example, the expected number of bits) (step S507).
  • a predicted pixel value is acquired or derived so as to have the same accuracy (for example, 1/8 pixel accuracy) regardless of whether the number of motion vectors is a number b or a number a according to the acquired motion vector ( Step S509).
  • the discrimination of motion vector accuracy by distinguishing between the slice type P block and the slice type B block is a relative one in which the other is determined if one can be determined. Therefore, the implementation is not limited to the above example as long as a value having 1 bit accuracy higher than the value of the B slice that refers to two can be implicitly interpreted as the accuracy of the MV of a block that uses one motion vector.
  • the encoding side only needs to perform encoding so that as few bit strings as possible are generated, and the decoding side can confirm the rules.
  • inter_pred_idc decoded before the AMVREF flag is used as the prediction direction.
  • the above two determinations are switched according to the value of this inter_pred_idc. Thereby, the accuracy of one-way prediction can be improved even for the B slice.
  • the discrimination of the flag value of the motion vector accuracy by distinguishing whether the B slice is unidirectional or bi-directional is a relative one in which the other is determined if one can be determined. Therefore, the number of bits is not limited to the above example as long as a value that is 1 bit higher than the value of a B slice that refers to two can be implicitly interpreted as the accuracy of a motion vector (MV) of a block that uses one motion vector.
  • MV motion vector
  • the storage medium may be any medium that can record a program, such as a magnetic disk, an optical disk, a magneto-optical disk, an IC card, and a semiconductor memory.
  • the system has an image encoding / decoding device including an image encoding device using an image encoding method and an image decoding device using an image decoding method.
  • image encoding / decoding device including an image encoding device using an image encoding method and an image decoding device using an image decoding method.
  • Other configurations in the system can be appropriately changed according to circumstances.
  • FIG. 6 is a diagram showing an overall configuration of a content supply system ex100 that realizes a content distribution service.
  • a communication service providing area is divided into desired sizes, and base stations ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations, are installed in each cell.
  • This content supply system ex100 includes a computer ex111, a PDA (Personal Digital Assistant) ex112, a camera ex113, a mobile phone ex114, a game machine ex115 via the Internet ex101, the Internet service provider ex102, the telephone network ex104, and the base stations ex106 to ex110. Etc. are connected.
  • PDA Personal Digital Assistant
  • each device may be directly connected to the telephone network ex104 without going from the base station ex106, which is a fixed wireless station, to ex110.
  • the devices may be directly connected to each other via short-range wireless or the like.
  • the camera ex113 is a device that can shoot moving images such as a digital video camera
  • the camera ex116 is a device that can shoot still images and movies such as a digital camera.
  • the mobile phone ex114 is a GSM (registered trademark) (Global System for Mobile Communications) system, a CDMA (Code Division Multiple Access) system, a W-CDMA (Wideband-Code Division Multiple Access) system, or an LTE (Long Term Evolution). It is possible to use any of the above-mentioned systems, HSPA (High Speed Packet Access) mobile phone, PHS (Personal Handyphone System), or the like.
  • the camera ex113 and the like are connected to the streaming server ex103 through the base station ex109 and the telephone network ex104, thereby enabling live distribution and the like.
  • live distribution the content (for example, music live video) captured by the user using the camera ex113 is encoded as described in the above embodiments (that is, the image encoding of the present invention).
  • Function as a device Function as a device) and transmit to the streaming server ex103.
  • the streaming server ex103 stream-distributes the content data transmitted to the requested client. Examples of the client include a computer ex111, a PDA ex112, a camera ex113, a mobile phone ex114, and a game machine ex115 that can decode the encoded data.
  • Each device that receives the distributed data decodes the received data and reproduces it (that is, functions as the image decoding device of the present invention).
  • the captured data may be encoded by the camera ex113, the streaming server ex103 that performs data transmission processing, or may be shared with each other.
  • the decryption processing of the distributed data may be performed by the client, the streaming server ex103, or may be performed in common with each other.
  • still images and / or moving image data captured by the camera ex116 may be transmitted to the streaming server ex103 via the computer ex111.
  • the encoding process in this case may be performed by any of the camera ex116, the computer ex111, and the streaming server ex103, or may be performed in a shared manner.
  • these encoding / decoding processes are generally performed in the computer ex111 and the LSI ex500 included in each device.
  • the LSI ex500 may be configured as a single chip or a plurality of chips.
  • moving image encoding / decoding software is incorporated into some recording medium (CD-ROM, flexible disk, hard disk, etc.) that can be read by the computer ex111, etc., and encoding / decoding processing is performed using the software. May be.
  • moving image data acquired by the camera may be transmitted.
  • the moving image data at this time is data encoded by the LSI ex500 included in the mobile phone ex114.
  • the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, and distribute data in a distributed manner.
  • the encoded data can be received and reproduced by the client.
  • the information transmitted by the user can be received, decrypted and reproduced by the client in real time, and personal broadcasting can be realized even for a user who does not have special rights or facilities.
  • the digital broadcast system ex200 also includes at least the moving image encoding device (image encoding device) or the moving image decoding of each of the above embodiments. Any of the devices (image decoding devices) can be incorporated.
  • the broadcast station ex201 multiplexed data obtained by multiplexing music data and the like on video data is transmitted to a communication or satellite ex202 via radio waves.
  • This video data is data encoded by the moving image encoding method described in the above embodiments (that is, data encoded by the image encoding apparatus of the present invention).
  • the broadcasting satellite ex202 transmits a radio wave for broadcasting, and this radio wave is received by a home antenna ex204 capable of receiving satellite broadcasting.
  • the received multiplexed data is decoded and reproduced by an apparatus such as the television (receiver) ex300 or the set top box (STB) ex217 (that is, functions as the image decoding apparatus of the present invention).
  • a reader / recorder ex218 that reads and decodes multiplexed data recorded on a recording medium ex215 such as a DVD or a BD, or encodes a video signal on the recording medium ex215 and, in some cases, multiplexes and writes it with a music signal. It is possible to mount the moving picture decoding apparatus or moving picture encoding apparatus described in the above embodiments. In this case, the reproduced video signal is displayed on the monitor ex219, and the video signal can be reproduced in another device or system using the recording medium ex215 on which the multiplexed data is recorded.
  • a moving picture decoding apparatus may be mounted in a set-top box ex217 connected to a cable ex203 for cable television or an antenna ex204 for satellite / terrestrial broadcasting and displayed on the monitor ex219 of the television.
  • the moving picture decoding apparatus may be incorporated in the television instead of the set top box.
  • FIG. 8 is a diagram illustrating a television (receiver) ex300 that uses the video decoding method and the video encoding method described in each of the above embodiments.
  • the television ex300 obtains or outputs multiplexed data in which audio data is multiplexed with video data via the antenna ex204 or the cable ex203 that receives the broadcast, and demodulates the received multiplexed data.
  • the modulation / demodulation unit ex302 that modulates multiplexed data to be transmitted to the outside, and the demodulated multiplexed data is separated into video data and audio data, or the video data and audio data encoded by the signal processing unit ex306 Is provided with a multiplexing / demultiplexing unit ex303.
  • the television ex300 decodes each of the audio data and the video data, or encodes the respective information, the audio signal processing unit ex304, the video signal processing unit ex305 (function as the image encoding device or the image decoding device of the present invention). ), A speaker ex307 for outputting the decoded audio signal, and an output unit ex309 having a display unit ex308 such as a display for displaying the decoded video signal.
  • the television ex300 includes an interface unit ex317 including an operation input unit ex312 that receives an input of a user operation.
  • the television ex300 includes a control unit ex310 that performs overall control of each unit, and a power supply circuit unit ex311 that supplies power to each unit.
  • the interface unit ex317 includes a bridge unit ex313 connected to an external device such as a reader / recorder ex218, a recording unit ex216 such as an SD card, and an external recording unit such as a hard disk.
  • a driver ex315 for connecting to a medium, a modem ex316 for connecting to a telephone network, and the like may be included.
  • the recording medium ex216 is capable of electrically recording information by using a nonvolatile / volatile semiconductor memory element to be stored.
  • Each part of the television ex300 is connected to each other via a synchronous bus.
  • the television ex300 receives a user operation from the remote controller ex220 or the like, and demultiplexes the multiplexed data demodulated by the modulation / demodulation unit ex302 by the multiplexing / demultiplexing unit ex303 based on the control of the control unit ex310 having a CPU or the like. Furthermore, in the television ex300, the separated audio data is decoded by the audio signal processing unit ex304, and the separated video data is decoded by the video signal processing unit ex305 using the decoding method described in each of the above embodiments.
  • the decoded audio signal and video signal are output from the output unit ex309 to the outside. At the time of output, these signals may be temporarily stored in the buffers ex318, ex319, etc. so that the audio signal and the video signal are reproduced in synchronization. Also, the television ex300 may read multiplexed data from recording media ex215 and ex216 such as a magnetic / optical disk and an SD card, not from broadcasting. Next, a configuration in which the television ex300 encodes an audio signal or a video signal and transmits the signal to the outside or to a recording medium will be described.
  • the television ex300 receives a user operation from the remote controller ex220 and the like, encodes an audio signal with the audio signal processing unit ex304, and converts the video signal with the video signal processing unit ex305 based on the control of the control unit ex310. Encoding is performed using the encoding method described in (1).
  • the encoded audio signal and video signal are multiplexed by the multiplexing / demultiplexing unit ex303 and output to the outside. When multiplexing, these signals may be temporarily stored in the buffers ex320, ex321, etc. so that the audio signal and the video signal are synchronized.
  • a plurality of buffers ex318, ex319, ex320, and ex321 may be provided as illustrated, or one or more buffers may be shared. Further, in addition to the illustrated example, data may be stored in the buffer as a buffer material that prevents system overflow and underflow, for example, between the modulation / demodulation unit ex302 and the multiplexing / demultiplexing unit ex303.
  • the television ex300 has a configuration for receiving AV input of a microphone and a camera, and performs encoding processing on the data acquired from them. Also good.
  • the television ex300 has been described as a configuration capable of the above-described encoding processing, multiplexing, and external output, but these processing cannot be performed, and only the above-described reception, decoding processing, and external output are possible. It may be a configuration.
  • the decoding process or the encoding process may be performed by either the television ex300 or the reader / recorder ex218,
  • the reader / recorder ex218 may share with each other.
  • FIG. 9 shows a configuration of the information reproducing / recording unit ex400 when data is read from or written to an optical disk.
  • the information reproducing / recording unit ex400 includes elements ex401, ex402, ex403, ex404, ex405, ex406, and ex407 described below.
  • the optical head ex401 irradiates a laser spot on the recording surface of the recording medium ex215 that is an optical disk to write information, and detects reflected light from the recording surface of the recording medium ex215 to read the information.
  • the modulation recording unit ex402 electrically drives a semiconductor laser built in the optical head ex401 and modulates the laser beam according to the recording data.
  • the reproduction demodulator ex403 amplifies the reproduction signal obtained by electrically detecting the reflected light from the recording surface by the photodetector built in the optical head ex401, separates and demodulates the signal component recorded on the recording medium ex215, and is necessary To play back information.
  • the buffer ex404 temporarily holds information to be recorded on the recording medium ex215 and information reproduced from the recording medium ex215.
  • the disk motor ex405 rotates the recording medium ex215.
  • the servo controller ex406 moves the optical head ex401 to a predetermined information track while controlling the rotational drive of the disk motor ex405, and performs a laser spot tracking process.
  • the system control unit ex407 controls the entire information reproduction / recording unit ex400.
  • the system control unit ex407 uses various kinds of information held in the buffer ex404, and generates and adds new information as necessary, and the modulation recording unit ex402, the reproduction demodulation unit This is realized by recording / reproducing information through the optical head ex401 while operating the ex403 and the servo control unit ex406 in a coordinated manner.
  • the system control unit ex407 is composed of, for example, a microprocessor, and executes these processes by executing a read / write program.
  • the optical head ex401 has been described as irradiating a laser spot.
  • a configuration in which higher-density recording is performed using near-field light may be used.
  • FIG. 10 shows a schematic diagram of a recording medium ex215 that is an optical disk.
  • Guide grooves grooves
  • address information indicating the absolute position on the disc is recorded in advance on the information track ex230 by changing the shape of the groove.
  • This address information includes information for specifying the position of the recording block ex231 that is a unit for recording data, and the recording block is specified by reproducing the information track ex230 and reading the address information in a recording or reproducing apparatus.
  • the recording medium ex215 includes a data recording area ex233, an inner peripheral area ex232, and an outer peripheral area ex234.
  • the area used for recording user data is the data recording area ex233, and the inner circumference area ex232 and the outer circumference area ex234 arranged on the inner or outer circumference of the data recording area ex233 are used for specific purposes other than user data recording. Used.
  • the information reproducing / recording unit ex400 reads / writes encoded audio data, video data, or multiplexed data obtained by multiplexing these data with respect to the data recording area ex233 of the recording medium ex215.
  • an optical disk such as a single-layer DVD or BD has been described as an example.
  • the present invention is not limited to these, and an optical disk having a multilayer structure and capable of recording other than the surface may be used.
  • an optical disc with a multi-dimensional recording / reproducing structure such as recording information using light of different wavelengths in the same place on the disc, or recording different layers of information from various angles. It may be.
  • the car ex210 having the antenna ex205 can receive data from the satellite ex202 and the like, and the moving image can be reproduced on a display device such as the car navigation ex211 that the car ex210 has.
  • the configuration of the car navigation ex211 may include a configuration in which a GPS receiving unit is added to the configuration illustrated in FIG.
  • FIG. 11A is a diagram showing the mobile phone ex114 using the moving picture decoding method and the moving picture encoding method described in the above embodiment.
  • the mobile phone ex114 includes an antenna ex350 for transmitting and receiving radio waves to and from the base station ex110, a camera unit ex365 capable of capturing video and still images, a video captured by the camera unit ex365, a video received by the antenna ex350, and the like Is provided with a display unit ex358 such as a liquid crystal display for displaying the decrypted data.
  • the mobile phone ex114 further includes a main body unit having an operation key unit ex366, an audio output unit ex357 such as a speaker for outputting audio, an audio input unit ex356 such as a microphone for inputting audio, a captured video,
  • an audio input unit ex356 such as a microphone for inputting audio
  • a captured video In the memory unit ex367 for storing encoded data or decoded data such as still images, recorded audio, received video, still images, mails, or the like, or an interface unit with a recording medium for storing data
  • a slot ex364 is provided.
  • the mobile phone ex114 has a power supply circuit part ex361, an operation input control part ex362, and a video signal processing part ex355 with respect to a main control part ex360 that comprehensively controls each part of the main body including the display part ex358 and the operation key part ex366.
  • a camera interface unit ex363, an LCD (Liquid Crystal Display) control unit ex359, a modulation / demodulation unit ex352, a multiplexing / demultiplexing unit ex353, an audio signal processing unit ex354, a slot unit ex364, and a memory unit ex367 are connected to each other via a bus ex370. ing.
  • the power supply circuit unit ex361 starts up the mobile phone ex114 in an operable state by supplying power from the battery pack to each unit.
  • the cellular phone ex114 converts the audio signal collected by the audio input unit ex356 in the voice call mode into a digital audio signal by the audio signal processing unit ex354 based on the control of the main control unit ex360 having a CPU, a ROM, a RAM, and the like. Then, this is subjected to spectrum spread processing by the modulation / demodulation unit ex352, digital-analog conversion processing and frequency conversion processing are performed by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
  • the mobile phone ex114 also amplifies the received data received via the antenna ex350 in the voice call mode, performs frequency conversion processing and analog-digital conversion processing, performs spectrum despreading processing by the modulation / demodulation unit ex352, and performs voice signal processing unit After being converted into an analog audio signal by ex354, this is output from the audio output unit ex357.
  • the text data of the e-mail input by operating the operation key unit ex366 of the main unit is sent to the main control unit ex360 via the operation input control unit ex362.
  • the main control unit ex360 performs spread spectrum processing on the text data in the modulation / demodulation unit ex352, performs digital analog conversion processing and frequency conversion processing in the transmission / reception unit ex351, and then transmits the text data to the base station ex110 via the antenna ex350.
  • almost the reverse process is performed on the received data and output to the display unit ex358.
  • the video signal processing unit ex355 compresses the video signal supplied from the camera unit ex365 by the moving image encoding method described in the above embodiments. Encode (that is, function as the image encoding apparatus of the present invention), and send the encoded video data to the multiplexing / demultiplexing unit ex353.
  • the audio signal processing unit ex354 encodes the audio signal picked up by the audio input unit ex356 while the camera unit ex365 images a video, a still image, etc., and sends the encoded audio data to the multiplexing / separating unit ex353. To do.
  • the multiplexing / demultiplexing unit ex353 multiplexes the encoded video data supplied from the video signal processing unit ex355 and the encoded audio data supplied from the audio signal processing unit ex354 by a predetermined method, and is obtained as a result.
  • the multiplexed data is subjected to spread spectrum processing by the modulation / demodulation unit (modulation / demodulation circuit unit) ex352, digital-analog conversion processing and frequency conversion processing by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
  • the multiplexing / separating unit ex353 separates the multiplexed data into a video data bit stream and an audio data bit stream, and performs video signal processing on the video data encoded via the synchronization bus ex370.
  • the encoded audio data is supplied to the audio signal processing unit ex354 while being supplied to the unit ex355.
  • the video signal processing unit ex355 decodes the video signal by decoding using the video decoding method corresponding to the video encoding method shown in each of the above embodiments (that is, functions as the image decoding device of the present invention).
  • video and still images included in the moving image file linked to the home page are displayed from the display unit ex358 via the LCD control unit ex359.
  • the audio signal processing unit ex354 decodes the audio signal, and the audio is output from the audio output unit ex357.
  • the terminal such as the mobile phone ex114 is referred to as a transmission terminal having only an encoder and a receiving terminal having only a decoder.
  • a transmission terminal having only an encoder
  • a receiving terminal having only a decoder.
  • multiplexed data in which music data or the like is multiplexed with video data is received and transmitted, but data in which character data or the like related to video is multiplexed in addition to audio data It may be video data itself instead of multiplexed data.
  • the moving picture encoding method or the moving picture decoding method shown in each of the above embodiments can be used in any of the above-described devices / systems. The described effect can be obtained.
  • Embodiment 4 The moving picture coding method or apparatus shown in the above embodiments and the moving picture coding method or apparatus compliant with different standards such as MPEG-2, MPEG4-AVC, and VC-1 are appropriately switched as necessary. Thus, it is also possible to generate video data.
  • multiplexed data obtained by multiplexing audio data or the like with video data is configured to include identification information indicating which standard the video data conforms to.
  • identification information indicating which standard the video data conforms to.
  • FIG. 12 is a diagram showing a structure of multiplexed data.
  • multiplexed data is obtained by multiplexing one or more of a video stream, an audio stream, a presentation graphics stream (PG), and an interactive graphics stream.
  • the video stream indicates the main video and sub-video of the movie
  • the audio stream (IG) indicates the main audio portion of the movie and the sub-audio mixed with the main audio
  • the presentation graphics stream indicates the subtitles of the movie.
  • the main video indicates a normal video displayed on the screen
  • the sub-video is a video displayed on a small screen in the main video.
  • the interactive graphics stream indicates an interactive screen created by arranging GUI components on the screen.
  • the video stream is encoded by the moving image encoding method or apparatus shown in the above embodiments, or the moving image encoding method or apparatus conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1. ing.
  • the audio stream is encoded by a method such as Dolby AC-3, Dolby Digital Plus, MLP, DTS, DTS-HD, or linear PCM.
  • Each stream included in the multiplexed data is identified by PID. For example, 0x1011 for video streams used for movie images, 0x1100 to 0x111F for audio streams, 0x1200 to 0x121F for presentation graphics, 0x1400 to 0x141F for interactive graphics streams, 0x1B00 to 0x1B1F are assigned to video streams used for sub-pictures, and 0x1A00 to 0x1A1F are assigned to audio streams used for sub-audio mixed with the main audio.
  • FIG. 13 is a diagram schematically showing how multiplexed data is multiplexed.
  • a video stream ex235 composed of a plurality of video frames and an audio stream ex238 composed of a plurality of audio frames are converted into PES packet sequences ex236 and ex239, respectively, and converted into TS packets ex237 and ex240.
  • the data of the presentation graphics stream ex241 and interactive graphics ex244 are converted into PES packet sequences ex242 and ex245, respectively, and further converted into TS packets ex243 and ex246.
  • the multiplexed data ex247 is configured by multiplexing these TS packets into one stream.
  • FIG. 14 shows in more detail how the video stream is stored in the PES packet sequence.
  • the first level in FIG. 14 shows a video frame sequence of the video stream.
  • the second level shows a PES packet sequence.
  • a plurality of Video Presentation Units in a video stream are divided for each picture and stored in the payload of the PES packet.
  • Each PES packet has a PES header, and a PTS (Presentation Time-Stamp) that is a display time of a picture and a DTS (Decoding Time-Stamp) that is a decoding time of a picture are stored in the PES header.
  • PTS Presentation Time-Stamp
  • DTS Decoding Time-Stamp
  • FIG. 15 shows the format of TS packets that are finally written in the multiplexed data.
  • the TS packet is a 188-byte fixed-length packet composed of a 4-byte TS header having information such as a PID for identifying a stream and a 184-byte TS payload for storing data.
  • the PES packet is divided and stored in the TS payload.
  • a 4-byte TP_Extra_Header is added to a TS packet, forms a 192-byte source packet, and is written in multiplexed data.
  • TP_Extra_Header information such as ATS (Arrival_Time_Stamp) is described.
  • ATS indicates the transfer start time of the TS packet to the PID filter of the decoder.
  • source packets are arranged in the multiplexed data, and the number incremented from the head of the multiplexed data is called SPN (source packet number).
  • TS packets included in the multiplexed data include PAT (Program Association Table), PMT (Program Map Table), PCR (Program Clock Reference), and the like in addition to each stream such as video / audio / caption.
  • PAT indicates what the PID of the PMT used in the multiplexed data is, and the PID of the PAT itself is registered as 0.
  • the PMT has the PID of each stream such as video / audio / subtitles included in the multiplexed data and the attribute information of the stream corresponding to each PID, and has various descriptors related to the multiplexed data.
  • the descriptor includes copy control information for instructing permission / non-permission of copying of multiplexed data.
  • the PCR corresponds to the ATS in which the PCR packet is transferred to the decoder. Contains STC time information.
  • FIG. 16 is a diagram for explaining the data structure of the PMT in detail.
  • a PMT header describing the length of data included in the PMT is arranged at the head of the PMT.
  • a plurality of descriptors related to multiplexed data are arranged.
  • the copy control information and the like are described as descriptors.
  • a plurality of pieces of stream information regarding each stream included in the multiplexed data are arranged.
  • the stream information includes a stream descriptor in which a stream type, a stream PID, and stream attribute information (frame rate, aspect ratio, etc.) are described to identify a compression codec of the stream.
  • the multiplexed data is recorded together with the multiplexed data information file.
  • the multiplexed data information file is management information of multiplexed data, has a one-to-one correspondence with the multiplexed data, and includes multiplexed data information, stream attribute information, and an entry map.
  • the multiplexed data information includes a system rate, a reproduction start time, and a reproduction end time as shown in FIG.
  • the system rate indicates a maximum transfer rate of multiplexed data to a PID filter of a system target decoder described later.
  • the ATS interval included in the multiplexed data is set to be equal to or less than the system rate.
  • the playback start time is the PTS of the first video frame of the multiplexed data
  • the playback end time is set by adding the playback interval for one frame to the PTS of the video frame at the end of the multiplexed data.
  • attribute information about each stream included in the multiplexed data is registered for each PID.
  • the attribute information has different information for each video stream, audio stream, presentation graphics stream, and interactive graphics stream.
  • the video stream attribute information includes the compression codec used to compress the video stream, the resolution of the individual picture data constituting the video stream, the aspect ratio, and the frame rate. It has information such as how much it is.
  • the audio stream attribute information includes the compression codec used to compress the audio stream, the number of channels included in the audio stream, the language supported, and the sampling frequency. With information. These pieces of information are used for initialization of the decoder before the player reproduces it.
  • the stream type included in the PMT is used.
  • video stream attribute information included in the multiplexed data information is used.
  • the video encoding shown in each of the above embodiments for the stream type or video stream attribute information included in the PMT.
  • FIG. 19 shows the steps of the moving picture decoding method according to the present embodiment.
  • step exS100 the stream type included in the PMT or the video stream attribute information included in the multiplexed data information is acquired from the multiplexed data.
  • step exS101 it is determined whether or not the stream type or the video stream attribute information indicates multiplexed data generated by the moving picture encoding method or apparatus described in the above embodiments. To do.
  • step exS102 the above embodiments are performed. Decoding is performed by the moving picture decoding method shown in the form.
  • the conventional information Decoding is performed by a moving image decoding method compliant with the standard.
  • FIG. 20 shows a configuration of LSI ex500 that is made into one chip.
  • the LSI ex500 includes elements ex501, ex502, ex503, ex504, ex505, ex506, ex507, ex508, and ex509 described below, and each element is connected via a bus ex510.
  • the power supply circuit unit ex505 is activated to an operable state by supplying power to each unit when the power supply is on.
  • the LSI ex500 when performing the encoding process, performs the microphone ex117 and the camera ex113 by the AV I / O ex509 based on the control of the control unit ex501 including the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like.
  • the AV signal is input from the above.
  • the input AV signal is temporarily stored in an external memory ex511 such as SDRAM.
  • the accumulated data is divided into a plurality of times as appropriate according to the processing amount and the processing speed and sent to the signal processing unit ex507, and the signal processing unit ex507 encodes an audio signal and / or video. Signal encoding is performed.
  • the encoding process of the video signal is the encoding process described in the above embodiments.
  • the signal processing unit ex507 further performs processing such as multiplexing the encoded audio data and the encoded video data according to circumstances, and outputs the result from the stream I / Oex 506 to the outside.
  • the output multiplexed data is transmitted to the base station ex107 or written to the recording medium ex215. It should be noted that data should be temporarily stored in the buffer ex508 so as to be synchronized when multiplexing.
  • the memory ex511 is described as an external configuration of the LSI ex500.
  • a configuration included in the LSI ex500 may be used.
  • the number of buffers ex508 is not limited to one, and a plurality of buffers may be provided.
  • the LSI ex500 may be made into one chip or a plurality of chips.
  • control unit ex501 includes the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like, but the configuration of the control unit ex501 is not limited to this configuration.
  • the signal processing unit ex507 may further include a CPU.
  • the CPU ex502 may be configured to include a signal processing unit ex507 or, for example, an audio signal processing unit that is a part of the signal processing unit ex507.
  • the control unit ex501 is configured to include a signal processing unit ex507 or a CPU ex502 having a part thereof.
  • LSI LSI
  • IC system LSI
  • super LSI ultra LSI depending on the degree of integration
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • FIG. 21 shows a configuration ex800 in the present embodiment.
  • the drive frequency switching unit ex803 sets the drive frequency high when the video data is generated by the moving image encoding method or apparatus described in the above embodiments.
  • the decoding processing unit ex801 that executes the moving picture decoding method described in each of the above embodiments is instructed to decode the video data.
  • the video data is video data compliant with the conventional standard, compared to the case where the video data is generated by the moving picture encoding method or apparatus shown in the above embodiments, Set the drive frequency low. Then, it instructs the decoding processing unit ex802 compliant with the conventional standard to decode the video data.
  • the drive frequency switching unit ex803 includes the CPU ex502 and the drive frequency control unit ex512 in FIG.
  • the decoding processing unit ex801 that executes the video decoding method shown in each of the above embodiments and the decoding processing unit ex802 that complies with the conventional standard correspond to the signal processing unit ex507 in FIG.
  • the CPU ex502 identifies which standard the video data conforms to. Then, based on the signal from the CPU ex502, the drive frequency control unit ex512 sets the drive frequency. Further, based on the signal from the CPU ex502, the signal processing unit ex507 decodes the video data.
  • the identification information described in the fourth embodiment may be used.
  • the identification information is not limited to that described in the fourth embodiment, and any information that can identify which standard the video data conforms to may be used. For example, it is possible to identify which standard the video data conforms to based on an external signal that identifies whether the video data is used for a television or a disk. In some cases, identification may be performed based on such an external signal.
  • the selection of the driving frequency in the CPU ex502 may be performed based on, for example, a lookup table in which video data standards and driving frequencies are associated with each other as shown in FIG. The look-up table is stored in the buffer ex508 or the internal memory of the LSI, and the CPU ex502 can select the drive frequency by referring to the look-up table.
  • FIG. 22 shows steps for executing the method of the present embodiment.
  • the signal processing unit ex507 acquires identification information from the multiplexed data.
  • the CPU ex502 identifies whether the video data is generated by the encoding method or apparatus described in each of the above embodiments based on the identification information.
  • the CPU ex502 sends a signal for setting the drive frequency high to the drive frequency control unit ex512. Then, the drive frequency control unit ex512 sets a high drive frequency.
  • step exS203 the CPU ex502 drives the signal for setting the drive frequency low. This is sent to the frequency control unit ex512. Then, in the drive frequency control unit ex512, the drive frequency is set to be lower than that in the case where the video data is generated by the encoding method or apparatus described in the above embodiments.
  • the power saving effect can be further enhanced by changing the voltage applied to the LSI ex500 or the device including the LSI ex500 in conjunction with the switching of the driving frequency. For example, when the drive frequency is set low, it is conceivable that the voltage applied to the LSI ex500 or the device including the LSI ex500 is set low as compared with the case where the drive frequency is set high.
  • the setting method of the driving frequency may be set to a high driving frequency when the processing amount at the time of decoding is large, and to a low driving frequency when the processing amount at the time of decoding is small. It is not limited to the method.
  • the amount of processing for decoding video data compliant with the MPEG4-AVC standard is larger than the amount of processing for decoding video data generated by the moving picture encoding method or apparatus described in the above embodiments. It is conceivable that the setting of the driving frequency is reversed to that in the case described above.
  • the method for setting the drive frequency is not limited to the configuration in which the drive frequency is lowered.
  • the voltage applied to the LSIex500 or the apparatus including the LSIex500 is set high.
  • the driving of the CPU ex502 is stopped.
  • the CPU ex502 is temporarily stopped because there is room in processing. Is also possible. Even when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in each of the above embodiments, if there is a margin for processing, the CPU ex502 is temporarily driven. It can also be stopped. In this case, it is conceivable to set the stop time shorter than in the case where the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1.
  • a plurality of video data that conforms to different standards may be input to the above-described devices and systems such as a television and a mobile phone.
  • the signal processing unit ex507 of the LSI ex500 needs to support a plurality of standards in order to be able to decode even when a plurality of video data complying with different standards is input.
  • the signal processing unit ex507 corresponding to each standard is used individually, there is a problem that the circuit scale of the LSI ex500 increases and the cost increases.
  • a decoding processing unit for executing the moving picture decoding method shown in each of the above embodiments and a decoding conforming to a standard such as MPEG-2, MPEG4-AVC, or VC-1
  • the processing unit is partly shared.
  • An example of this configuration is shown as ex900 in FIG. 24A.
  • the moving picture decoding method shown in each of the above embodiments and the moving picture decoding method compliant with the MPEG4-AVC standard are processed in processes such as entropy coding, inverse quantization, deblocking filter, and motion compensation. Some contents are common.
  • the decoding processing unit ex902 corresponding to the MPEG4-AVC standard is shared, and for the other processing content unique to the present invention not corresponding to the MPEG4-AVC standard, the dedicated decoding processing unit ex901 is used.
  • Configuration is conceivable.
  • the decoding processing unit for executing the moving picture decoding method described in each of the above embodiments is shared, and the processing content specific to the MPEG4-AVC standard As for, a configuration using a dedicated decoding processing unit may be used.
  • ex1000 in FIG. 24B shows another example in which processing is partially shared.
  • a dedicated decoding processing unit ex1001 corresponding to processing content unique to the present invention
  • a dedicated decoding processing unit ex1002 corresponding to processing content specific to other conventional standards
  • a moving picture decoding method of the present invention A common decoding processing unit ex1003 corresponding to processing contents common to other conventional video decoding methods is used.
  • the dedicated decoding processing units ex1001 and ex1002 are not necessarily specialized in the processing content specific to the present invention or other conventional standards, and may be capable of executing other general-purpose processing.
  • the configuration of the present embodiment can be implemented by LSI ex500.
  • the circuit scale of the LSI is reduced, and the cost is reduced. It is possible to reduce.
  • the moving image encoding method and the moving image decoding method according to the present invention can be applied to any multimedia data, and can improve the compression rate.
  • a mobile phone, a DVD device, a personal computer, etc. It is useful as a moving image encoding method and a moving image decoding method in storage, transmission, communication, etc. used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

Provided are a video coding method and a video decoding method capable of improving coding efficiency. In the video coding method, a motion vector for a block (P slice) with only one motion vector is coded with an accuracy that is 1 bit higher than the accuracy of a motion vector (B slice) in the case when there are two motion vectors. In the video decoding method, a decision made during decoding as to the motion vector accuracy value (AMVRES flag value) is switched in accordance with the type of slice. In the case of a P slice, the AMVRES flag is always on, or in other words it is decided that the motion vector always has 1/8 accuracy. In the case of a B slice, the AMVRES flag is always off, or in other words it is decided that the motion vector always has 1/4 accuracy.

Description

動画像符号化方法および動画像復号方法Video encoding method and video decoding method
 本発明は、予測画像を参照して画像データを符号化または復号する動画像符号化方法および動画像復号方法に関する。特に、動きベクトルの示す参照位置の精度の符号化および復号に関する。 The present invention relates to a moving image encoding method and a moving image decoding method for encoding or decoding image data with reference to a predicted image. In particular, the present invention relates to encoding and decoding of a reference position indicated by a motion vector.
 符号化効率を高めるための検討が種々行われている(非特許文献2)。 Various studies have been made to increase the encoding efficiency (Non-patent Document 2).
 動きベクトルの表現精度(1/4画素精度、又は、1/8画素精度)を動きベクトル毎に変更する(Adaptive Motion Vector Resolution(AMVRES))ことが検討されている(非特許文献1)。個々の動きベクトルが2つの表現精度のうちどちらの表現精度を用いているか復号側には1ビットのflag(以下、AMVRESflag、mvresflag、フラグは同じ意味)により通知される。非特許文献1におけるデータ構造中ではこのフラグを「motion vector resolution flag (mvres_flag)」と呼んでいる。例えば非特許文献1では、どちらかの値(例えば0)を1/4画素精度とし、1/8画素精度を示す値を2値のどちらとするか更新する方法を提案している。 It has been studied to change the motion vector representation accuracy (1/4 pixel accuracy or 1/8 pixel accuracy) for each motion vector (Adaptive Motion Vector Resolution (AMVRES)) (Non-patent Document 1). Which one of the two representation precisions is used for each motion vector is notified to the decoding side by a 1-bit flag (hereinafter, AMVRESflag, mvresflag, and flags have the same meaning). In the data structure in Non-Patent Document 1, this flag is called “motion vector vector resolution flag (mvres_flag)”. For example, Non-Patent Document 1 proposes a method of updating which value (for example, 0) is ¼ pixel accuracy and which is a value indicating 8 pixel accuracy is binary.
 図1は、非特許文献1の5.1.14節「予測単位シンタックス(Prediction Unit syntax)」に記載されたストリームのデータ構造について、データ構造のデータ処理を復号処理の観点から説明する図である。 FIG. 1 is a diagram for explaining data processing of a data structure from the viewpoint of decoding processing for a data structure of a stream described in Section 5.1.14 “Prediction 予 測 Unit syntax” of Non-Patent Document 1. It is.
 まず、復号対象とする予測単位(PU)の予測モード(PredMode)がインターを示すか否かを判定する(ステップS101)。この判定では、復号対象のスライスがPスライスまたはBスライスであって予測モードが1である場合に真を返す。以下の表1はこの文献で提案されているスライスタイプ(PとBの組、及び、I)の区分によるPredModeの決定ルールである(非特許文献1、表5-13“Specification of prediction mode”)。 First, it is determined whether or not the prediction mode (PredMode) of the prediction unit (PU) to be decoded indicates inter (step S101). In this determination, true is returned when the slice to be decoded is a P slice or a B slice and the prediction mode is 1. Table 1 below shows PredMode determination rules according to the slice type (the pair of P and B and I) proposed in this document (Non-patent Document 1, Table 5-13 “Specification of prediction mode”) ).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 このテーブルでは、スライスタイプが「Pの場合またはBの場合の両方の場合」において、予測モードが1を示す場合にはPredModeとしてMODE_INTERの値を返すように決定される。 In this table, when the slice type is “P or B” and the prediction mode indicates 1, it is determined to return the value of MODE_INTER as PredMode.
 次のステップに示すiは1PUブロックが何個のブロックに区分されているかを示す値である。例えば区分の形状として2N×2Nが指定されている場合は、i(区分の数)は「1」であり、N×Nであればiは「4」である。 I shown in the next step is a value indicating how many blocks a 1 PU block is divided into. For example, if 2N × 2N is specified as the shape of the section, i (number of sections) is “1”, and if N × N, i is “4”.
 次のステップでは、iの異なるブロック等隣接ブロックから動きベクトルが予測生成できないかできるかがフラグmerge_flagにより判定される(ステップS103)。予測できない場合(ステップS103でTRUE)にはビットからの復号が必要であり、従って次のステップにすすむ。 In the next step, it is determined by a flag merge_flag whether or not a motion vector can be predicted and generated from adjacent blocks such as blocks having different i (step S103). If it cannot be predicted (TRUE in step S103), decoding from the bits is necessary, and the process proceeds to the next step.
 以下のステップの表記において、「x」は、2つの動きベクトルL0及びL1のうち、現在の処理対象がL0かL1かを決定する数字を示している。 In the following step notation, “x” indicates a number that determines whether the current processing target is L0 or L1 out of the two motion vectors L0 and L1.
 Pスライスであり一方しか動きベクトルがない場合(Pred_L1がない場合)、あるいはBスライスであり一方の動きベクトルが他方の動きベクトルと違う場合(ステップS105でTRUE)には、ビット列からの復号が必要であり次のステップに進む。 If it is a P slice and there is only one motion vector (when there is no Pred_L1), or if it is a B slice and one motion vector is different from the other motion vector (TRUE in step S105), decoding from the bit string is necessary. And go to the next step.
 次に、ブロック毎(ブロック番号i)の Lx(L0とL1)のためのmvres_flagがどのエントロピー符号化の方式(モード)により符号化されているかをentropy_coding_mode_flagに基づいて判定(ステップS107)し、エントロピー符号化の方式に応じて、以降の復号処理を切り替える(ステップS107~)。 Next, based on entropy_coding_mode_flag, it is determined based on entropy_coding_mode_flag which mvres_flag for Lx (L0 and L1) for each block (block number i) is encoded (step S107). The subsequent decoding process is switched according to the encoding method (step S107 and subsequent steps).
 ステップS107の判定結果がmvres_flagのフラグの値(あるいはフラグ値の列)がCABAC(Context-based Adaptive Binary Arithmetic Coding)により符号化されていることを返す場合には、このフラグの値に直接対応するmvres_lxをコンテキストに応じて復号(値を取得)する(ステップS111)。例えば、コンテキストとして周囲ブロックのmvres_flagフラグの値等を利用する。 When the determination result in step S107 returns that the value of the flag of mvres_flag (or a sequence of flag values) is encoded by CABAC (Context-based Adaptive Binary Arithmetic Coding), it directly corresponds to the value of this flag. mvres_lx is decoded (value is acquired) according to the context (step S111). For example, the value of the mvres_flag flag of the surrounding block is used as the context.
 他方、ステップS107の判定結果がこのフラグに対応する値がCABACとは異なるエントロピー符号化のモードを示す場合には、ref_idx_mvres_l0(ref_idx_mvres_l1)フラグを取得する(ステップS113)。ref_idx_mvres_lxフラグが明示的に存在するか(「0」の場合、「1」の場合)、あるいはフィールドが存在しない場合に、これらの場合において精度を示すmvres_lxの値がどちら(0または1)となるかが復号側内部で解釈される。例えば、ref_idx_mvres_lx[i]が明示的に「0」をさす場合はmvres_lx[i]の値を「1」(1/4画素)とする。 On the other hand, if the determination result in step S107 indicates an entropy coding mode in which the value corresponding to this flag is different from that of CABAC, a ref_idx_mvres_l0 (ref_idx_mvres_l1) flag is acquired (step S113). If the ref_idx_mvres_lx flag is explicitly present (in the case of “0”, “1”), or if the field does not exist, in which case the value of mvres_lx indicating the precision is (0 or 1). Is interpreted inside the decoding side. For example, when ref_idx_mvres_lx [i] explicitly indicates “0”, the value of mvres_lx [i] is set to “1” (1/4 pixel).
 次に、動きベクトルの差分値(mvd_lx[区分番号][x])を復号する(ステップS115)。この差分値mvd_lx[区分番号][向き]の値が、フラグmvres_flagにより精度が定められる動きベクトル(MV)の差分値(Diff)である。このステップS115によりデコードした動きベクトル差分値mvdの精度は、フラグmvres_flagの値によってあたえられる。mvd_l0[区分番号][0]は動きベクトルの差分の水平成分を示す。mvd_l0[区分番号][1]は同ベクトルの差分の垂直成分を示す。 Next, the motion vector difference value (mvd_lx [partition number] [x]) is decoded (step S115). The value of the difference value mvd_lx [section number] [direction] is the difference value (Diff) of the motion vector (MV) whose accuracy is determined by the flag mvres_flag. The accuracy of the motion vector difference value mvd decoded in step S115 is given by the value of the flag mvres_flag. mvd — 10 [partition number] [0] indicates the horizontal component of the difference of motion vectors. mvd — 10 [partition number] [1] indicates the vertical component of the difference of the same vector.
 ストリーム中のmvres_l0[i](つまりはmvres_flagの値)が1であれば、水平・垂直両方向共に動きベクトルは1/4精度である。mvres_flagの値が明示的に「1」でない場合(例えば明示的に「0」である場等)は1/8精度である。 If mvres_l0 [i] (that is, the value of mvres_flag) in the stream is 1, the motion vector is ¼ precision in both the horizontal and vertical directions. When the value of mvres_flag is not explicitly “1” (for example, when it is explicitly “0”), the accuracy is 1/8.
 この非特許文献1記載の技術では、動きベクトル(動きベクトル差分値含む以下同じ)毎にAMVRESフラグ(mvres_flag_lx)を定義している。 In the technique described in Non-Patent Document 1, an AMVRES flag (mvres_flag_lx) is defined for each motion vector (the same applies hereinafter including a motion vector difference value).
 また、予測のためのデータ構造(Prediction Unit syntax)には、PスライスとBスライスとでmvres_flagについて同じデータ構造が与えられている。これはmvres_flagフラグのためのフィールドはBであれPであれ区別なくストリーム中の領域に確保されることを意味する。 Also, in the data structure for prediction (Prediction Unit syntax), the same data structure is given for mvres_flag in the P slice and the B slice. This means that the field for the mvres_flag flag is reserved in an area in the stream regardless of whether it is B or P.
 更に、このmvres_flagの値の解釈(明示的に値が「0」である場合やデフォルトの場合に1/8画素精度を指し、明示的に「1」である場合に1/4画素精度を指す)についてもPスライスとBスライスとで区別はない。 Further, interpretation of the value of this mvres_flag (when the value is explicitly “0” or default, it indicates 1/8 pixel accuracy, and when it is explicitly “1”, it indicates 1/4 pixel accuracy. )), There is no distinction between P slices and B slices.
 そこで、本発明は上記の事情に鑑みてなされたものであり、符号化効率を向上することができる動画像符号化方法および動画像復号方法を提供することを目的とする。 Therefore, the present invention has been made in view of the above circumstances, and an object thereof is to provide a moving image encoding method and a moving image decoding method capable of improving the encoding efficiency.
 上記目的を達成するため、本発明に係る動画像復号方法は、所定のブロックの動きベクトルの数を判定するステップと、前記動きベクトルの数が1である場合に、前記動きベクトルの数が2である場合に比して高い画素精度の値で前記ブロックに対する動きベクトルに関する情報を取得するステップと、前記ブロックに関連付けられた数の動きベクトルに応じて予測画素を取得するステップとを含む。 In order to achieve the above object, the video decoding method according to the present invention includes a step of determining the number of motion vectors of a predetermined block, and when the number of motion vectors is 1, the number of motion vectors is 2 And a step of obtaining information on motion vectors for the block with a higher pixel accuracy value and a step of obtaining predicted pixels according to the number of motion vectors associated with the block.
 また、本発明に係る動画像符号化方法は、符号化対象のブロックについての動きベクトルの数を決定するステップと、前記動きベクトルの数が1である場合に、前記動きベクトルの数が2である場合に比して高い画素精度で前記動きベクトルを符号化するステップと、前記動きベクトルと前記ブロックの符号化データとをストリームに含めるストリーム生成ステップとを含む。 The moving picture encoding method according to the present invention includes a step of determining the number of motion vectors for a block to be encoded, and the number of motion vectors is 2 when the number of motion vectors is 1. A step of encoding the motion vector with higher pixel accuracy than in a case; and a stream generation step of including the motion vector and the encoded data of the block in a stream.
 また、本発明では、動きベクトル精度(AMVRESフラグの値)の値の復号時の判断をスライスタイプに応じて切り替える。 In the present invention, the determination at the time of decoding the value of the motion vector accuracy (value of the AMVRES flag) is switched according to the slice type.
 具体的には、Pスライスであるブロックにおける復号方法とBスライスにおける復号方式とで異なる値の解釈(判断)を用いてフラグの値を復号する。 Specifically, the value of the flag is decoded by using different interpretations (judgments) for the decoding method in the block that is the P slice and the decoding method in the B slice.
 例えば、Pスライスの場合には、AMVRESフラグは常にオン、つまり動きベクトルを常に1/8精度と判断して、Bスライスの場合は、常にオフ、つまり動きベクトルを常に1/4精度と判断して保持する。 For example, in the case of the P slice, the AMVRES flag is always on, that is, the motion vector is always determined to be 1/8 precision, and in the case of the B slice, it is always off, that is, the motion vector is always determined to be 1/4 precision. Hold.
 例えば、Bスライスにおいて単一方向か2方向かによって値(あるいはフィールドが存在しない場合も含む)の解釈を変更する。例えば、予測方向がL0かL1かの1方向ならばAMVRESフラグは常にオン、つまり動きベクトルを常に1/8精度と判断し、予測方向が2方向(Bi)である場合は、1/4精度と判断する。 For example, the interpretation of the value (or the case where the field does not exist) is changed depending on whether the B slice is a single direction or two directions. For example, if the prediction direction is one direction of L0 or L1, the AMVRES flag is always on, that is, the motion vector is always determined to be 1/8 accuracy, and if the prediction direction is 2 directions (Bi), 1/4 accuracy is determined. Judge.
 なお、本発明は、このような動画像符号化方法および動画像復号方法として実現することができるだけでなく、このような動画像符号化方法および動画像復号方法が含む特徴的なステップを手段とする動画像符号化装置および動画像復号装置として実現したり、それらのステップをコンピュータに実行させるプログラムとして実現したりすることもできる。そして、そのようなプログラムは、コンピュータ読み取り可能なCD-ROMなどの記録媒体として実現したり、そのプログラムを示す情報、データ又は信号として実現したりすることもできる。そして、それらプログラム、情報、データ及び信号は、インターネット等の通信ネットワークを介して配信してもよい。 Note that the present invention can be realized not only as such a moving image encoding method and a moving image decoding method but also as a characteristic step included in such a moving image encoding method and a moving image decoding method. It can also be realized as a moving image encoding device and a moving image decoding device, or as a program for causing a computer to execute these steps. Such a program can be realized as a recording medium such as a computer-readable CD-ROM, or can be realized as information, data, or a signal indicating the program. These programs, information, data, and signals may be distributed via a communication network such as the Internet.
 本発明によれば、動きベクトル毎のAMVRESフラグを削除してオーバーヘッドを削減しながら、スライスタイプによる値の判断の切替により、符号化効率を向上させることが見込まれる。 According to the present invention, it is expected that the coding efficiency is improved by switching the value determination according to the slice type while deleting the AMVRES flag for each motion vector and reducing overhead.
図1は、従来技術における動きベクトル精度の復号処理方法を示すフロー図である。FIG. 1 is a flowchart showing a motion vector accuracy decoding processing method in the prior art. 図2は、実施の形態1における復号処理方法(値の保持方法)を示すフロー図である。FIG. 2 is a flowchart showing a decoding processing method (value holding method) in the first embodiment. 図3は、動きベクトルの位置精度(整数部、小数部)について説明する図である。FIG. 3 is a diagram for explaining the positional accuracy (integer part, decimal part) of the motion vector. 図4Aは、本発明に係る動画像符号化方法の処理の流れを示すフロー図である。FIG. 4A is a flowchart showing a process flow of the moving picture coding method according to the present invention. 図4Bは、本発明に係る動画像符号化方法を実現する一実施の形態の構成を示すブロック図である。FIG. 4B is a block diagram showing a configuration of an embodiment for realizing the moving picture coding method according to the present invention. 図5は、本発明に係る動画像復号方法の処理の流れを示すフロー図である。FIG. 5 is a flowchart showing a processing flow of the moving picture decoding method according to the present invention. 図6は、コンテンツ配信サービスを実現するコンテンツ供給システムの全体構成図である。FIG. 6 is an overall configuration diagram of a content supply system that realizes a content distribution service. 図7は、デジタル放送用システムの全体構成図である。FIG. 7 is an overall configuration diagram of a digital broadcasting system. 図8は、テレビの構成例を示すブロック図である。FIG. 8 is a block diagram illustrating a configuration example of a television. 図9は、光ディスクである記録メディアに情報の読み書きを行う情報再生/記録部の構成例を示すブロック図である。FIG. 9 is a block diagram illustrating a configuration example of an information reproducing / recording unit that reads and writes information from and on a recording medium that is an optical disk. 図10は、光ディスクである記録メディアの構造例を示す図である。FIG. 10 is a diagram illustrating a structure example of a recording medium that is an optical disk. 図11Aは、携帯電話の一例を示す図である。FIG. 11A illustrates an example of a mobile phone. 図11Bは、携帯電話の構成例を示すブロック図である。FIG. 11B is a block diagram illustrating a configuration example of a mobile phone. 図12は、多重化データの構成を示す図である。FIG. 12 is a diagram showing a structure of multiplexed data. 図13は、各ストリームが多重化データにおいてどのように多重化されているかを模式的に示す図である。FIG. 13 is a diagram schematically showing how each stream is multiplexed in the multiplexed data. 図14は、PESパケット列に、ビデオストリームがどのように格納されるかを更に詳しく示した図である。FIG. 14 is a diagram showing in more detail how the video stream is stored in the PES packet sequence. 図15は、多重化データにおけるTSパケットとソースパケットの構造を示す図である。FIG. 15 is a diagram showing the structure of TS packets and source packets in multiplexed data. 図16は、PMTのデータ構成を示す図である。FIG. 16 is a diagram illustrating a data structure of the PMT. 図17は、多重化データ情報の内部構成を示す図である。FIG. 17 is a diagram showing an internal configuration of multiplexed data information. 図18は、ストリーム属性情報の内部構成を示す図である。FIG. 18 is a diagram showing the internal structure of the stream attribute information. 図19は、映像データを識別するステップを示す図である。FIG. 19 is a diagram illustrating steps for identifying video data. 図20は、各実施の形態の動画像符号化方法および動画像復号化方法を実現する集積回路の構成例を示すブロック図である。FIG. 20 is a block diagram illustrating a configuration example of an integrated circuit that realizes the moving picture coding method and the moving picture decoding method according to each embodiment. 図21は、駆動周波数を切り替える構成を示す図である。FIG. 21 is a diagram illustrating a configuration for switching the driving frequency. 図22は、映像データを識別し、駆動周波数を切り替えるステップを示す図である。FIG. 22 is a diagram illustrating steps for identifying video data and switching between driving frequencies. 図23は、映像データの規格と駆動周波数を対応づけたルックアップテーブルの一例を示す図である。FIG. 23 is a diagram illustrating an example of a lookup table in which video data standards are associated with driving frequencies. 図24Aは、信号処理部のモジュールを共有化する構成の一例を示す図である。FIG. 24A is a diagram illustrating an example of a configuration for sharing a module of a signal processing unit. 図24Bは、信号処理部のモジュールを共有化する構成の他の一例を示す図である。FIG. 24B is a diagram illustrating another example of a configuration for sharing a module of a signal processing unit.
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。本発明は、請求の範囲だけによって限定特定される。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、本発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Each of the embodiments described below shows a preferred specific example of the present invention. The numerical values, shapes, materials, constituent elements, arrangement positions and connecting forms of the constituent elements, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. The present invention is limited and specified only by the claims. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept of the present invention are not necessarily required to achieve the object of the present invention. It will be described as constituting a preferred form.
 (実施の形態1)
 実施の形態1では、BスライスとPスライスとで、動きベクトルの参照位置の精度(画素精度)の値(あるいは暗示される値)の解釈について以下の区別を行う。同時に、この区別に対応する動きベクトル精度の情報を最小の符号列で済むように判断するようにビット列の生成、及び、ビット列からの値の復号を行う。
(Embodiment 1)
In the first embodiment, the following distinction is made regarding the interpretation of the value (or implied value) of the accuracy (pixel accuracy) of the reference position of the motion vector between the B slice and the P slice. At the same time, generation of a bit string and decoding of a value from the bit string are performed so as to determine that the motion vector accuracy information corresponding to this distinction can be minimized.
 (R1)2本の動きベクトルMVを用いるBスライスには、1/n 精度(例えば1/4精度)で同一ピクチャを参照して1/8精度位置の画素を生成する。 (R1) For a B slice using two motion vectors MV, a pixel at a 1/8 accuracy position is generated with reference to the same picture with 1 / n accuracy (for example, 1/4 accuracy).
 (R2)1本の動きベクトルMVを用いるPスライスの場合は、1/2n精度(例えば1/8精度)で符号化する。動きベクトルMVが1本しかないPスライスにおいてBスライスと同じ1/4精度では動き補償による予測画像の質が低くなる場合があるのを防ぐ。 (R2) In the case of a P slice using one motion vector MV, encoding is performed with 1 / 2n accuracy (for example, 1/8 accuracy). In the P slice having only one motion vector MV, it is possible to prevent the quality of the predicted image due to motion compensation from being lowered at the same 1/4 accuracy as that of the B slice.
 符号化装置(符号化方法)では上記ルールに適合する値をデフォルトの値(発生確率が高いととする方の値)として符号列を生成する。 In the encoding device (encoding method), a code string is generated with a value that conforms to the above rule as a default value (a value with a higher probability of occurrence).
 復号装置(符号列の復号方法)では、暗示される値(あるいはローカルに有するデフォルトの値、発生確率が高いとされる方の値)について、
・Pスライスの場合には、AMVRESフラグを常にオン、つまり動きベクトルを常に1/8精度と判断し、
・Bスライスの場合は、AMVRESフラグを常にオフ、つまり動きベクトルを常に1/4精度と判断し、
符号列を解釈する。
In the decoding device (decoding method of the code string), an implied value (or a local default value, a value that has a higher probability of occurrence)
In the case of P slice, the AMVRES flag is always on, that is, the motion vector is always determined to be 1/8 precision,
In the case of B slice, the AMVRES flag is always off, that is, the motion vector is always determined to be 1/4 precision,
Interpret the code string.
 図2は、実施の形態1の符号化・復号化ルールによる符号列を復号する復号方法を説明するフロー図である。なお、図2では、図1と同じステップには同じ参照符号を付している。 FIG. 2 is a flowchart for explaining a decoding method for decoding a code string according to the encoding / decoding rule of the first embodiment. In FIG. 2, the same steps as those in FIG. 1 are denoted by the same reference numerals.
 まず、図1同様にPスライスまたはBスライスのブロックについてのデータが入力される。 First, as in FIG. 1, data about a P slice or B slice block is input.
 図1同様、ステップS107において当該ブロックの符号化データがCABAC符号化モードで符号化されているか否か等を判定する(ステップS107)。 As in FIG. 1, it is determined whether or not the encoded data of the block is encoded in the CABAC encoding mode in step S107 (step S107).
 判定の結果がCABAC符号化されたデータであることを示す場合には、スライスタイプがPであるか否かを判定する(ステップS201)。そして、スライスタイプがPであるかBであるかに区別を用いて、値(あるいは符号列の暗示的な意味)の解釈を行う。 If the determination result indicates that the data is CABAC encoded data, it is determined whether or not the slice type is P (step S201). Then, using the distinction as to whether the slice type is P or B, the value (or the implicit meaning of the code string) is interpreted.
 ステップS201の判定の結果が、Pスライスのブロックであることを示す場合は、デフォルトの値(値がない場合の値、あるいは発生確率の高い方の値、例えば「0」)を1/8精度であるとする(ステップS203)。 When the result of the determination in step S201 indicates that the block is a P-slice block, a default value (a value when there is no value or a value with a higher probability of occurrence, for example, “0”) is set to 1/8 precision. (Step S203).
 ステップS201の判定の結果が、Pスライスであることを示さない場合(Bスライスのブロックである場合)は、デフォルトの値(値がない場合の値、あるいは発生確率の高いほうの値)を、Pスライスより低い精度(例えば、1/4精度)であるとする(ステップS205)。 If the result of determination in step S201 does not indicate that it is a P slice (if it is a block of a B slice), a default value (a value when there is no value or a value with a higher probability of occurrence) It is assumed that the accuracy is lower than the P slice (for example, 1/4 accuracy) (step S205).
 このように、スライスタイプに応じて値の示す画素の解釈基準を切り替えることにより、PスライスとBスライスとで精度に区別を設けつつ、かつ、その符号量を抑えることができる。 Thus, by switching the interpretation standard of the pixel indicated by the value according to the slice type, it is possible to distinguish the accuracy between the P slice and the B slice and to suppress the code amount.
 尚、図1のステップS101において、PまたはBに統一的な解釈をすることとしたが、ステップS101の時点でPスライスとBスライスとで区別を設けることができるようなデータ構造を規定してもよい。 In step S101 in FIG. 1, P or B is interpreted in a unified manner, but a data structure that can distinguish between the P slice and the B slice at the time of step S101 is defined. Also good.
 以下、上述ルールに基づいて取得した動きベクトル精度によるサンプル補間(sample interpolation process)の動作例を説明する。 Hereinafter, an operation example of sample interpolation (sample interpolation process) based on the motion vector accuracy acquired based on the above-described rules will be described.
 まず、制御部はPスライスまたはBスライスを入力するとインター予測プロセスを起動する。このプロセスは、基本的には、非特許文献2または非特許文献3における8.4.1節の内容に対応する。 First, the control unit starts the inter prediction process when a P slice or a B slice is input. This process basically corresponds to the contents of section 8.4.1 in Non-Patent Document 2 or Non-Patent Document 3.
 ここで、本実施の形態の復号方法では、予測単位のブロック毎に観念される動きベクトルの差分mvd_LX[予測単位]について、ビットストリームからmvd_lXの値についてPスライスとBスライスとで区別を設けた前述のルールに従った精度で取得する。 Here, in the decoding method of the present embodiment, for the motion vector difference mvd_LX [prediction unit] considered for each block of the prediction unit, the value of mvd_lX from the bitstream is distinguished between the P slice and the B slice. Obtain with accuracy according to the rules described above.
 Pスライスに含まれるブロックである場合は1/8精度で表現された値であるとして動きベクトルの差分mvd_L0の値をメモリに保持する。また入力されたスライスがBスライスの場合は各々2つともが1/4精度の値であるとして動きベクトルの差分mvd_l0の値と動きベクトルの差分mvd_l1の値とをメモリに格納する。 When the block is included in the P slice, the value of the motion vector difference mvd_L0 is held in the memory assuming that the value is expressed with 1/8 precision. If the input slices are B slices, the values of the motion vector difference mvd_l0 and the value of the motion vector difference mvd_l1 are stored in the memory, assuming that both of them are 1/4 precision values.
 次に、この動きベクトルの差分値mvdに対応する動きベクトル予測値mvpを取得する。例えば上、左ブロックの動きベクトル値の中位値を取得する。 Next, a motion vector prediction value mvp corresponding to this motion vector difference value mvd is acquired. For example, the middle value of the motion vector value of the upper left block is acquired.
 最後に、以下の式1に示すように予測値mvpLxに所定の精度で保持している差分値mvdLx[0..1]を加算して復号対象ブロックの動きベクトルmvLx[0..1]を取得する。 Finally, as shown in Equation 1 below, the difference value mvdLx [0. . 1] and the motion vector mvLx [0. . 1].
 mvLx[0..1]=mvpLx[0..1]+mvdLx[0..1] …(式1) MvLx [0. . 1] = mvpLx [0. . 1] + mvdLx [0. . 1] ... (Formula 1)
 尚、この処理は非特許文献2では式(8-52、53)に該当し、非特許文献3では式(8-174、175)に該当する。 Note that this processing corresponds to Expressions (8-52, 53) in Non-Patent Document 2, and corresponds to Expressions (8-174, 175) in Non-Patent Document 3.
 以下、上述決定精度での補間プロセスが実行される。このプロセスは、非特許文献2の8.4.2.2.2Feractional sample interpolation processに、非特許文献3では8.4.2.2Fractional sample interpolation processに対応するものである。 Hereinafter, the interpolation process with the above-described determination accuracy is executed. This process corresponds to 8.4.2.2.2 Feraltal sample interpolation process of Non-Patent Document 2, and 8.4.2.2Fractional sample interpolationpolprocess in Non-Patent Document 3.
 まず、導出された動きベクトルmvLxのx方向成分とy成分とが、以下の式2~式5に示すように整数部(xInt,yInt)と小数部(xFrac,yFrac)とに区分される。 First, the x-direction component and the y-component of the derived motion vector mvLx are converted into an integer part (xInt L , yInt L ) and a decimal part (xFrac L , yFrac L ) as shown in the following equations 2 to 5. It is divided.
 整数(Int)部
  xInt=xP+(mvLX[0]>>2)+x …(式2)
  yInt=yP+(mvLX[1]>>2)+y …(式3)
 小数精度(Frac)部
  xFrac=mvLX[0]&3 …(式4)
  yFrac=mvLX[1]&3 …(式5)
Integer (Int) part xInt L = xP + (mvLX [0] >> 2) + x L (Formula 2)
yInt L = yP + (mvLX [1] >> 2) + y L (Formula 3)
Decimal precision (Frac) part xFrac L = mvLX [0] & 3 (Formula 4)
yFrac L = mvLX [1] & 3 (Formula 5)
 1/4精度の場合(小数以下2ビットの場合)は、下2bitの値を取得する。1/8精度の場合(小数以下3ビットの場合)は下3bitを抽出する。(非特許文献2では式8-84または85、非特許文献3では式8-227,228に該当する。) In the case of 1/4 precision (in case of 2 bits after the decimal), the lower 2 bits value is acquired. In the case of 1/8 precision (in the case of 3 bits after the decimal), the lower 3 bits are extracted. (Non-patent document 2 corresponds to formula 8-84 or 85, and non-patent document 3 corresponds to formulas 8-227 and 228.)
 次に(interpolation_filter_flag=0(補間フィルタしない場合))場合に以下動作を行う。 Next, when (interpolation_filter_flag = 0 (when no interpolation filter is used)), the following operation is performed.
 xFracLの下2bitの値(xFracL=0,1,2,3)の4値とyFracLの下2bitの4値に応じて16個の要素を用いたTableを利用する。例えば非特許文献2のTable8-7を利用する。 A table using 16 elements is used according to the four values of the lower 2 bits of xFracL (xFracL = 0, 1, 2, 3) and the lower 2 bits of yFracL. For example, Table 8-7 of Non-Patent Document 2 is used.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図3は、表中のアルファベット(A,d,h,n,…r)の示す1/4精度画素位置である。図中xIntLは水平画素位置がxIntLである位置(整数単位精度)を示す。図中ハッチングされた画素位置はx方向、y方向ともに整数画素位置に位置する画素サンプルを示す。図中yIntLは垂直方向について画素位置がyIntLである位置(整数単位精度)を示す。例えば、分数部xFracの2bitの値が「2」でありyFracの値が「3」である場合に表2では、予測サンプル画素(predSampleLxl)のサンプルの位置は図中qの位置の画素となる。このようにL0,L1個々の動きベクトルmvに対応して、その動きベクトル示す先の位置を所定の画素精度(例では1/4画素精度)で得ることができる。 FIG. 3 is a 1/4 precision pixel position indicated by the alphabet (A, d, h, n,... R) in the table. In the figure, xIntL indicates a position (integer unit accuracy) where the horizontal pixel position is xIntL. The hatched pixel positions in the figure indicate pixel samples located at integer pixel positions in both the x and y directions. In the figure, yIntL indicates a position (integer unit accuracy) where the pixel position is yIntL in the vertical direction. For example, when the 2-bit value of the fraction part xFrac is “2” and the yFrac value is “3”, in Table 2, the position of the sample of the predicted sample pixel (predSampleLxl) is the pixel at the position of q in the figure. . In this way, in correspondence with the individual motion vectors mv of L0 and L1, the previous position indicated by the motion vector can be obtained with a predetermined pixel accuracy (in the example, 1/4 pixel accuracy).
 尚、動きベクトルの精度が1/8画素位置精度(小数以下3ビットで示される場合、表2のxFracLとyFracLとを各々0..7まで拡張し、64個の位置を1画素単位内に設ければよい。 Note that the motion vector accuracy is 1/8 pixel position accuracy (in the case of 3 bits below the decimal point, xFracL and yFracL in Table 2 are each expanded to 0.7, and 64 positions are within one pixel unit. What is necessary is just to provide.
 尚、位置の精度とは、「補間に利用されるサンプルと係数」に対応する。例えば、水平方向に1/2画素位置の画素b(f、j、qの位置)の画素の値を、E,F、A、H、I,Jの画素値から以下の式6に示すように導出してもよい。 Note that the accuracy of the position corresponds to “sample and coefficient used for interpolation”. For example, the value of the pixel b (position of f, j, q) at the 1/2 pixel position in the horizontal direction is expressed by the following formula 6 from the pixel values of E, F, A, H, I, J. May be derived.
 b=(E-5×F+20×A+20×H-5×I+J) …(式6) B = (E-5 × F + 20 × A + 20 × H-5 × I + J) (Expression 6)
 また、水平方向に1/4画素精度位置の画素である画素aの値は、得られた1/2画素位置の画素bの画素値と画素Aの画素値との平均により以下の式7に示すように導出する。 Further, the value of the pixel a which is a pixel at a 1/4 pixel accuracy position in the horizontal direction is expressed by the following equation 7 by averaging the pixel value of the pixel b at the 1/2 pixel position and the pixel value of the pixel A obtained. Derived as shown.
 a=(A+b+1)>>1 …(式7) A = (A + b + 1) >> 1 (Expression 7)
 このように、小数画素精度の画素とは整数位置(図中大文字で示す画素)の画素値より演算により生成された値である。 As described above, a pixel with decimal pixel precision is a value generated by calculation from a pixel value at an integer position (a pixel indicated by a capital letter in the figure).
 次に得られたサンプル(predSampleLx)を重み付け加算する処理を実行する。 Next, a process of weighting and adding the obtained sample (predSampleLx) is executed.
 ここで従来のH.264と本実施の形態による画素精度の利用の作用の対比を行う。 Here, conventional H.264 H.264 is compared with the effect of using pixel accuracy according to this embodiment.
 従来のH.264方式では、例えば重みが静的である場合には、非特許文献3における8.4.2.3 Weighted sample prediction processでは以下のように処理をしていた。 Conventional H.264 In the H.264 system, for example, when the weight is static, the following processing is performed in 8.4.2.3 Weighted sample prediction process in Non-Patent Document 3.
 (場合1)L0とL1のうち、一方L0(L1)が存在し他方L1(L0)が存在しない場合は、存在する方の予測値PredPartLxをそのまま利用する。 (Case 1) If one of L0 and L1 is L0 (L1) and the other is not L1 (L0), the existing predicted value PredPartLx is used as it is.
 (場合2)L0とL1とが共に存在する場合は、L0の指定するpredPartL0C[x,y]の値とL1の指定するpredPartL1C[x,y]とを平均する(つまり両者を加算後に1bitシフトする)。 (Case 2) If both L0 and L1 exist, the value of predPartL0C [x, y] specified by L0 and the predPartL1C [x, y] specified by L1 are averaged (that is, 1 bit shift is performed after adding both) To do).
 predPartC[x,y]=(predPartL0C[x,y]+predPartL1C[x,y]+1)>>1 …(式8) PredPartC [x, y] = (predPartL0C [x, y] + predPartL1C [x, y] +1) >> 1 (Equation 8)
 これは、場合1と場合2とで精度が異なることを意味する。例えば場合1では1/4画素精度であるのに場合2では、「2つの位置の画素の値の平均値」を導出しているためである。 This means that the accuracy differs between Case 1 and Case 2. For example, in case 1, the accuracy is 1/4 pixel, but in case 2, “the average value of the values of the pixels at the two positions” is derived.
 本実施の形態1では、上記、L0とL1のうち一方が存在しない場合とは典型的にはPスライス中のブロックである。 In the first embodiment, the case where one of L0 and L1 does not exist is typically a block in a P slice.
 また、L0とL1との両方が存在する場合とは典型的にはBスライス中のブロックである。 Also, the case where both L0 and L1 exist is typically a block in the B slice.
 ここで、本実施の形態では、動きベクトル精度(AMVRESフラグの値)の値の復号時の判断をスライスタイプに応じて切り替えている。例えば、Pスライスの場合には、AMVRESフラグは常にオン、つまり動きベクトルを常に1/8精度と判断して、Bスライスの場合は、AMVRESフラグは常にオフ、つまり動きベクトルを常に1/4精度と判断して保持している。 Here, in this embodiment, the determination at the time of decoding the value of the motion vector accuracy (value of the AMVRES flag) is switched according to the slice type. For example, in the case of the P slice, the AMVRES flag is always on, that is, the motion vector is always determined to be 1/8 precision, and in the case of the B slice, the AMVRES flag is always off, that is, the motion vector is always 1/4 precision. It is judged and held.
 この構成と組み合わせて以下を実施する。 Execute the following in combination with this configuration.
 (場合1)例えばPスライスのブロック(L0とL1のうち一方L0(L1)が存在し他方L1(L0)が存在しない場合)については、予測値PredPartLxをそのまま利用する。 (Case 1) For example, for a P-slice block (when one of L0 and L1 has L0 (L1) and the other L1 (L0) does not exist), the predicted value PredPartLx is used as it is.
 ここで、本実施の形態によれば、動きベクトルの精度(あるいは動きベクトルの差分値)から導出される精度は、その精度を演算過程で失わない限りPredPartLxは1/8精度の画素位置で示される画素値である。 Here, according to the present embodiment, the accuracy derived from the accuracy of the motion vector (or the difference value of the motion vector) indicates that PredPartLx is expressed by a pixel position of 1/8 accuracy unless the accuracy is lost in the calculation process. Pixel value.
 (場合2)例えばBスライスのブロック(L0とL1の両方が存在するブロック)については、
 predPartC[x,y]=(predPartL0C[x,y]+predPartL1C[x,y]+1)>>1 …(式9)
の演算を行う。ここで得られるPredPartLxは、1/4精度の画素位置の画素と1/4精度の画素位置の画素との平均であり実質上1/8画素精度の画素値といえる。
(Case 2) For example, for a block of B slice (a block in which both L0 and L1 exist),
predPartC [x, y] = (predPartL0C [x, y] + predPartL1C [x, y] +1) >> 1 (Equation 9)
Perform the operation. The PredPartLx obtained here is the average of the pixels at the ¼ precision pixel position and the pixels at the ¼ precision pixel position, and can be said to be a pixel value of 1 / pixel precision substantially.
 このように本実施の形態では、符号化・復号化の共通ルールとして以下を実行する。 Thus, in this embodiment, the following is executed as a common rule for encoding and decoding.
 符号化側では、動きベクトルが1つしかない(Pスライス)ブロックのための動きベクトルを動きベクトルが2つある場合(Bスライス)の精度よりも1ビット高い精度で符号化する。 On the encoding side, a motion vector for a block having only one motion vector (P slice) is encoded with an accuracy of 1 bit higher than the accuracy when there are two motion vectors (B slice).
 図4Aは、本発明に係る動画像符号化方法の処理の流れを示すフロー図であり、図4Bは、本発明に係る動画像符号化方法を実現する一実施の形態の構成を示すブロック図である。 FIG. 4A is a flowchart showing the flow of processing of the video encoding method according to the present invention, and FIG. 4B is a block diagram showing the configuration of an embodiment for realizing the video encoding method according to the present invention. It is.
 図4Aに示す符号化方法は、図4Bに示す画面間予測符号化部11およびエントロピー符号化部12といわれる機能ブロックにより実行される。 The encoding method shown in FIG. 4A is executed by functional blocks called inter-picture prediction encoding unit 11 and entropy encoding unit 12 shown in FIG. 4B.
 まず、符号化効率等の観点での評価により、符号化対象のブロックにたいして最適な予測画像を所定の数の動きベクトルを用いて作成する(ステップS401)。 First, an optimal prediction image for a block to be encoded is created using a predetermined number of motion vectors by evaluation from the viewpoint of encoding efficiency and the like (step S401).
 次に、符号化対象ブロックの動きベクトルの数(あるいはスライスタイプがPスライスであるかBスライスであるか等)に応じて判定を行う(ステップS402)。なお、この判定は、動きベクトルの精度の取得において関連した情報であればスライスのタイプに限らない。 Next, a determination is made according to the number of motion vectors of the encoding target block (or whether the slice type is a P slice or a B slice) (step S402). Note that this determination is not limited to the slice type as long as the information is related to the acquisition of motion vector accuracy.
 例えば、動きベクトルの数が数aまたは数b(b<a)であるとする。そして、判定の結果、動きベクトルの数が数aである場合、動きベクトル(動きベクトルの差分値)の精度を第1の精度に決定する(ステップS403)。 For example, assume that the number of motion vectors is number a or number b (b <a). If the number of motion vectors is the number a as a result of the determination, the accuracy of the motion vector (motion vector difference value) is determined to be the first accuracy (step S403).
 一方、動きベクトルの数が数bである場合、動きベクトル(動きベクトルの差分値)の精度を第1の精度より高い第2の精度に決定する(ステップS405)。 On the other hand, when the number of motion vectors is the number b, the accuracy of the motion vector (motion vector difference value) is determined to be a second accuracy higher than the first accuracy (step S405).
 その後、決定されたビット数により動きベクトル差分値を符号化して出力する(ステップS407)。 Thereafter, the motion vector difference value is encoded and output according to the determined number of bits (step S407).
 復号側では、スライスタイプに応じて動きベクトルの精度が異なるものとして、動きベクトル(あるいは動きベクトルの差分値)を保持する。 On the decoding side, the motion vector (or motion vector difference value) is held on the assumption that the accuracy of the motion vector differs depending on the slice type.
 図5は、本発明に係る動画像復号方法の処理の流れを示すフロー図である。 FIG. 5 is a flowchart showing a process flow of the moving picture decoding method according to the present invention.
 復号対象ブロック(あるいはブロックが属するスライス)が、PスライスであるかBスライスであるか等により動きベクトルの数を判定する(ステップS501)。尚、この判定は、動きベクトルの精度の取得において関連した情報であればスライスのタイプに限らない。 The number of motion vectors is determined based on whether the decoding target block (or the slice to which the block belongs) is a P slice or a B slice (step S501). Note that this determination is not limited to the slice type as long as it is information related to the acquisition of motion vector accuracy.
 例えば、動きベクトルの数が数aまたは数b(b<a)であるとする。そして、判定の結果、動きベクトルの数が数aである場合、動きベクトル(動きベクトルの差分値)の精度を第1の精度(例えば1/4画素精度)に決定する(ステップS503)。 For example, assume that the number of motion vectors is number a or number b (b <a). If the number of motion vectors is the number a as a result of the determination, the accuracy of the motion vector (motion vector difference value) is determined to be the first accuracy (for example, ¼ pixel accuracy) (step S503).
 一方、動きベクトルの数が数bである場合(例えばPスライスの場合)、動きベクトル差分値は第1の精度(例えば1/4画素精度)に比して高い精度(例えば1/8画素精度)で符号化されていると決定し(ステップS505)、この精度(例えば、予定されるビット数)により動きベクトル差分値(mvd)を復号し、取得する(ステップS507)。 On the other hand, when the number of motion vectors is the number b (for example, in the case of P slice), the motion vector difference value is higher in accuracy (for example, 1/8 pixel accuracy) than the first accuracy (for example, 1/4 pixel accuracy). ) Is determined (step S505), and the motion vector difference value (mvd) is decoded and acquired with this accuracy (for example, the expected number of bits) (step S507).
 その後、取得した動きベクトルに応じて予測画素値を、動きベクトルの数が数bであっても数aであっても同じ精度(例えば1/8画素精度)となるように取得あるいは導出する(ステップS509)。 Thereafter, a predicted pixel value is acquired or derived so as to have the same accuracy (for example, 1/8 pixel accuracy) regardless of whether the number of motion vectors is a number b or a number a according to the acquired motion vector ( Step S509).
 このような構成により、動きベクトルが1本の場合であっても、2本の場合と同じ精度の画素値を復元することができる。 With such a configuration, even when there is only one motion vector, it is possible to restore pixel values with the same accuracy as when there are two motion vectors.
 尚、スライスタイプPのブロックとスライスタイプBのブロックの区別による動きベクトル精度の判断の差別化は一方が決定できれば他方が定まる相対的なものである。従って、2つを参照するBスライスの値より1ビット精度が高い値を1つの動きベクトルを利用するブロックのMVの精度と暗黙的に解釈できれば実装は上述例に限らない。 Note that the discrimination of motion vector accuracy by distinguishing between the slice type P block and the slice type B block is a relative one in which the other is determined if one can be determined. Therefore, the implementation is not limited to the above example as long as a value having 1 bit accuracy higher than the value of the B slice that refers to two can be implicitly interpreted as the accuracy of the MV of a block that uses one motion vector.
 符号化側ではこの区別をする上でなるべく発生するビット列が少なくなるように符号化し、復号側はそのルールを確認できればよい。 The encoding side only needs to perform encoding so that as few bit strings as possible are generated, and the decoding side can confirm the rules.
 (実施の形態2)
 実施の形態2の動画像符号化方法および動画像復号方法ではBスライスに含まれるブロックの当該値の解釈において、予測方向が1方向(L0orL1)ならば、AMVRESフラグを常にオン、つまり動きベクトルを1/8精度と判断し、2方向予測(Bi)ならば、AMVRESフラグは常にオフ、つまり動きベクトルを1/4精度と判断する。
(Embodiment 2)
In the moving picture coding method and the moving picture decoding method according to the second embodiment, when the prediction direction is one direction (L0 or L1) in the interpretation of the value of the block included in the B slice, the AMVRES flag is always on, that is, the motion vector is set. If it is determined that the accuracy is 1/8 and bi-directional prediction (Bi), the AMVRES flag is always off, that is, the motion vector is determined to be 1/4 accuracy.
 具体的には、予測方向としてAMVREFフラグの前に復号するinter_pred_idcを用いる。切り替え時はこのinter_pred_idcの値に応じて上記2つの判断を切り替える。これにより、Bスライスでも1方向予測の精度が向上できる。 Specifically, inter_pred_idc decoded before the AMVREF flag is used as the prediction direction. At the time of switching, the above two determinations are switched according to the value of this inter_pred_idc. Thereby, the accuracy of one-way prediction can be improved even for the B slice.
 実施の形態1同様、Bスライスが単一方向であるか2方向であるかの区別による動きベクトル精度のフラグ値の判断の差別化は、一方が決定できれば他方が定まる相対的なものである。従って、2つを参照するBスライスの値より1ビット精度が高い値を1つの動きベクトルを利用するブロックの動きベクトル(MV)の精度と暗黙的に解釈できればビット数は上述例に限らない。 As in the first embodiment, the discrimination of the flag value of the motion vector accuracy by distinguishing whether the B slice is unidirectional or bi-directional is a relative one in which the other is determined if one can be determined. Therefore, the number of bits is not limited to the above example as long as a value that is 1 bit higher than the value of a B slice that refers to two can be implicitly interpreted as the accuracy of a motion vector (MV) of a block that uses one motion vector.
 本発明は、該当ブロックについての動きベクトルの表現精度の値が明示的にあるいは暗示的に符号化されている場合の復号方法(値の判断方法)を説明したが、例えば、他の隣接ブロックあるいは参照ブロックの動きベクトル(MV)の表現精度についてでもよい。例えば、以下の変形例が適用できる。 Although the present invention has been described with reference to a decoding method (value determination method) in the case where the motion vector representation accuracy value for the block is explicitly or implicitly encoded, for example, other adjacent blocks or The expression accuracy of the motion vector (MV) of the reference block may be used. For example, the following modifications can be applied.
 (変形例1)
 H.265では、参照ピクチャの動きベクトル(MV)を用いて、自己のブロックの予測ベクトルMVを生成するモードが存在する。この場合に、参照ピクチャがPスライスで、符号化対象ピクチャがBスライスならば動きベクトル(MV)の精度を合わせる。
(Modification 1)
H. In 265, there is a mode for generating a prediction vector MV of its own block using a motion vector (MV) of a reference picture. In this case, if the reference picture is a P slice and the encoding target picture is a B slice, the accuracy of the motion vector (MV) is adjusted.
 (その他の変形例)
 その他、Bスライスの扱いについては、一般的には動きベクトルが2本あると観念されるとして説明したが、一般的にBピクチャタイプであるブロックと呼ばれるブロックであっても、実際には動きベクトル2本分のデータがないピクチャである場合には2倍の精度を初期値として解釈するようにしてもよい。
(Other variations)
In addition, the handling of the B slice has been described on the assumption that there are generally two motion vectors. However, even in the case of a block generally called a B picture type, the motion vector actually If the picture has no data for two lines, double precision may be interpreted as the initial value.
 (実施の形態3)
 上記各実施の形態で示した動画像符号化方法(画像符号化方法)または動画像復号化方法(画像復号方法)の構成を実現するためのプログラムを記憶メディアに記録することにより、上記各実施の形態で示した処理を独立したコンピュータシステムにおいて簡単に実施することが可能となる。記憶メディアは、磁気ディスク、光ディスク、光磁気ディスク、ICカード、半導体メモリ等、プログラムを記録できるものであればよい。
(Embodiment 3)
By recording a program for realizing the configuration of the moving image encoding method (image encoding method) or the moving image decoding method (image decoding method) shown in each of the above embodiments on a storage medium, each of the above embodiments It is possible to easily execute the processing shown in the form in the independent computer system. The storage medium may be any medium that can record a program, such as a magnetic disk, an optical disk, a magneto-optical disk, an IC card, and a semiconductor memory.
 さらにここで、上記各実施の形態で示した動画像符号化方法(画像符号化方法)や動画像復号化方法(画像復号方法)の応用例とそれを用いたシステムを説明する。当該システムは、画像符号化方法を用いた画像符号化装置、及び画像復号方法を用いた画像復号装置からなる画像符号化復号装置を有することを特徴とする。システムにおける他の構成について、場合に応じて適切に変更することができる。 Furthermore, application examples of the moving picture coding method (picture coding method) and the moving picture decoding method (picture decoding method) shown in the above embodiments and a system using the same will be described. The system has an image encoding / decoding device including an image encoding device using an image encoding method and an image decoding device using an image decoding method. Other configurations in the system can be appropriately changed according to circumstances.
 図6は、コンテンツ配信サービスを実現するコンテンツ供給システムex100の全体構成を示す図である。通信サービスの提供エリアを所望の大きさに分割し、各セル内にそれぞれ固定無線局である基地局ex106、ex107、ex108、ex109、ex110が設置されている。 FIG. 6 is a diagram showing an overall configuration of a content supply system ex100 that realizes a content distribution service. A communication service providing area is divided into desired sizes, and base stations ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations, are installed in each cell.
 このコンテンツ供給システムex100は、インターネットex101にインターネットサービスプロバイダex102および電話網ex104、および基地局ex106からex110を介して、コンピュータex111、PDA(Personal Digital Assistant)ex112、カメラex113、携帯電話ex114、ゲーム機ex115などの各機器が接続される。 This content supply system ex100 includes a computer ex111, a PDA (Personal Digital Assistant) ex112, a camera ex113, a mobile phone ex114, a game machine ex115 via the Internet ex101, the Internet service provider ex102, the telephone network ex104, and the base stations ex106 to ex110. Etc. are connected.
 しかし、コンテンツ供給システムex100は図6のような構成に限定されず、いずれかの要素を組合せて接続するようにしてもよい。また、固定無線局である基地局ex106からex110を介さずに、各機器が電話網ex104に直接接続されてもよい。また、各機器が近距離無線等を介して直接相互に接続されていてもよい。 However, the content supply system ex100 is not limited to the configuration shown in FIG. 6 and may be connected by combining any of the elements. In addition, each device may be directly connected to the telephone network ex104 without going from the base station ex106, which is a fixed wireless station, to ex110. In addition, the devices may be directly connected to each other via short-range wireless or the like.
 カメラex113はデジタルビデオカメラ等の動画撮影が可能な機器であり、カメラex116はデジタルカメラ等の静止画撮影、動画撮影が可能な機器である。また、携帯電話ex114は、GSM(登録商標)(Global System for Mobile Communications)方式、CDMA(Code Division Multiple Access)方式、W-CDMA(Wideband-Code Division Multiple Access)方式、若しくはLTE(Long Term Evolution)方式、HSPA(High Speed Packet Access)の携帯電話機、またはPHS(Personal Handyphone System)等であり、いずれでも構わない。 The camera ex113 is a device that can shoot moving images such as a digital video camera, and the camera ex116 is a device that can shoot still images and movies such as a digital camera. The mobile phone ex114 is a GSM (registered trademark) (Global System for Mobile Communications) system, a CDMA (Code Division Multiple Access) system, a W-CDMA (Wideband-Code Division Multiple Access) system, or an LTE (Long Term Evolution). It is possible to use any of the above-mentioned systems, HSPA (High Speed Packet Access) mobile phone, PHS (Personal Handyphone System), or the like.
 コンテンツ供給システムex100では、カメラex113等が基地局ex109、電話網ex104を通じてストリーミングサーバex103に接続されることで、ライブ配信等が可能になる。ライブ配信では、ユーザがカメラex113を用いて撮影するコンテンツ(例えば、音楽ライブの映像等)に対して上記各実施の形態で説明したように符号化処理を行い(即ち、本発明の画像符号化装置として機能する)、ストリーミングサーバex103に送信する。一方、ストリーミングサーバex103は要求のあったクライアントに対して送信されたコンテンツデータをストリーム配信する。クライアントとしては、上記符号化処理されたデータを復号化することが可能な、コンピュータex111、PDAex112、カメラex113、携帯電話ex114、ゲーム機ex115等がある。配信されたデータを受信した各機器では、受信したデータを復号化処理して再生する(即ち、本発明の画像復号装置として機能する)。 In the content supply system ex100, the camera ex113 and the like are connected to the streaming server ex103 through the base station ex109 and the telephone network ex104, thereby enabling live distribution and the like. In live distribution, the content (for example, music live video) captured by the user using the camera ex113 is encoded as described in the above embodiments (that is, the image encoding of the present invention). Function as a device) and transmit to the streaming server ex103. On the other hand, the streaming server ex103 stream-distributes the content data transmitted to the requested client. Examples of the client include a computer ex111, a PDA ex112, a camera ex113, a mobile phone ex114, and a game machine ex115 that can decode the encoded data. Each device that receives the distributed data decodes the received data and reproduces it (that is, functions as the image decoding device of the present invention).
 なお、撮影したデータの符号化処理はカメラex113で行っても、データの送信処理をするストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。同様に配信されたデータの復号化処理はクライアントで行っても、ストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。また、カメラex113に限らず、カメラex116で撮影した静止画像および/または動画像データを、コンピュータex111を介してストリーミングサーバex103に送信してもよい。この場合の符号化処理はカメラex116、コンピュータex111、ストリーミングサーバex103のいずれで行ってもよいし、互いに分担して行ってもよい。 Note that the captured data may be encoded by the camera ex113, the streaming server ex103 that performs data transmission processing, or may be shared with each other. Similarly, the decryption processing of the distributed data may be performed by the client, the streaming server ex103, or may be performed in common with each other. In addition to the camera ex113, still images and / or moving image data captured by the camera ex116 may be transmitted to the streaming server ex103 via the computer ex111. The encoding process in this case may be performed by any of the camera ex116, the computer ex111, and the streaming server ex103, or may be performed in a shared manner.
 また、これら符号化・復号化処理は、一般的にコンピュータex111や各機器が有するLSIex500において処理する。LSIex500は、ワンチップであっても複数チップからなる構成であってもよい。なお、動画像符号化・復号化用のソフトウェアをコンピュータex111等で読み取り可能な何らかの記録メディア(CD-ROM、フレキシブルディスク、ハードディスクなど)に組み込み、そのソフトウェアを用いて符号化・復号化処理を行ってもよい。さらに、携帯電話ex114がカメラ付きである場合には、そのカメラで取得した動画データを送信してもよい。このときの動画データは携帯電話ex114が有するLSIex500で符号化処理されたデータである。 Further, these encoding / decoding processes are generally performed in the computer ex111 and the LSI ex500 included in each device. The LSI ex500 may be configured as a single chip or a plurality of chips. It should be noted that moving image encoding / decoding software is incorporated into some recording medium (CD-ROM, flexible disk, hard disk, etc.) that can be read by the computer ex111, etc., and encoding / decoding processing is performed using the software. May be. Furthermore, when the mobile phone ex114 is equipped with a camera, moving image data acquired by the camera may be transmitted. The moving image data at this time is data encoded by the LSI ex500 included in the mobile phone ex114.
 また、ストリーミングサーバex103は複数のサーバや複数のコンピュータであって、データを分散して処理したり記録したり配信するものであってもよい。 Further, the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, and distribute data in a distributed manner.
 以上のようにして、コンテンツ供給システムex100では、符号化されたデータをクライアントが受信して再生することができる。このようにコンテンツ供給システムex100では、ユーザが送信した情報をリアルタイムでクライアントが受信して復号化し、再生することができ、特別な権利や設備を有さないユーザでも個人放送を実現できる。 As described above, in the content supply system ex100, the encoded data can be received and reproduced by the client. Thus, in the content supply system ex100, the information transmitted by the user can be received, decrypted and reproduced by the client in real time, and personal broadcasting can be realized even for a user who does not have special rights or facilities.
 なお、コンテンツ供給システムex100の例に限らず、図7に示すように、デジタル放送用システムex200にも、上記各実施の形態の少なくとも動画像符号化装置(画像符号化装置)または動画像復号化装置(画像復号装置)のいずれかを組み込むことができる。具体的には、放送局ex201では映像データに音楽データなどが多重化された多重化データが電波を介して通信または衛星ex202に伝送される。この映像データは上記各実施の形態で説明した動画像符号化方法により符号化されたデータである(即ち、本発明の画像符号化装置によって符号化されたデータである)。これを受けた放送衛星ex202は、放送用の電波を発信し、この電波を衛星放送の受信が可能な家庭のアンテナex204が受信する。受信した多重化データを、テレビ(受信機)ex300またはセットトップボックス(STB)ex217等の装置が復号化して再生する(即ち、本発明の画像復号装置として機能する)。 In addition to the example of the content supply system ex100, as shown in FIG. 7, the digital broadcast system ex200 also includes at least the moving image encoding device (image encoding device) or the moving image decoding of each of the above embodiments. Any of the devices (image decoding devices) can be incorporated. Specifically, in the broadcast station ex201, multiplexed data obtained by multiplexing music data and the like on video data is transmitted to a communication or satellite ex202 via radio waves. This video data is data encoded by the moving image encoding method described in the above embodiments (that is, data encoded by the image encoding apparatus of the present invention). Receiving this, the broadcasting satellite ex202 transmits a radio wave for broadcasting, and this radio wave is received by a home antenna ex204 capable of receiving satellite broadcasting. The received multiplexed data is decoded and reproduced by an apparatus such as the television (receiver) ex300 or the set top box (STB) ex217 (that is, functions as the image decoding apparatus of the present invention).
 また、DVD、BD等の記録メディアex215に記録した多重化データを読み取り復号化する、または記録メディアex215に映像信号を符号化し、さらに場合によっては音楽信号と多重化して書き込むリーダ/レコーダex218にも上記各実施の形態で示した動画像復号化装置または動画像符号化装置を実装することが可能である。この場合、再生された映像信号はモニタex219に表示され、多重化データが記録された記録メディアex215により他の装置やシステムにおいて映像信号を再生することができる。また、ケーブルテレビ用のケーブルex203または衛星/地上波放送のアンテナex204に接続されたセットトップボックスex217内に動画像復号化装置を実装し、これをテレビのモニタex219で表示してもよい。このときセットトップボックスではなく、テレビ内に動画像復号化装置を組み込んでもよい。 Also, a reader / recorder ex218 that reads and decodes multiplexed data recorded on a recording medium ex215 such as a DVD or a BD, or encodes a video signal on the recording medium ex215 and, in some cases, multiplexes and writes it with a music signal. It is possible to mount the moving picture decoding apparatus or moving picture encoding apparatus described in the above embodiments. In this case, the reproduced video signal is displayed on the monitor ex219, and the video signal can be reproduced in another device or system using the recording medium ex215 on which the multiplexed data is recorded. Alternatively, a moving picture decoding apparatus may be mounted in a set-top box ex217 connected to a cable ex203 for cable television or an antenna ex204 for satellite / terrestrial broadcasting and displayed on the monitor ex219 of the television. At this time, the moving picture decoding apparatus may be incorporated in the television instead of the set top box.
 図8は、上記各実施の形態で説明した動画像復号化方法および動画像符号化方法を用いたテレビ(受信機)ex300を示す図である。テレビex300は、上記放送を受信するアンテナex204またはケーブルex203等を介して映像データに音声データが多重化された多重化データを取得、または出力するチューナex301と、受信した多重化データを復調する、または外部に送信する多重化データに変調する変調/復調部ex302と、復調した多重化データを映像データと、音声データとに分離する、または信号処理部ex306で符号化された映像データ、音声データを多重化する多重/分離部ex303を備える。 FIG. 8 is a diagram illustrating a television (receiver) ex300 that uses the video decoding method and the video encoding method described in each of the above embodiments. The television ex300 obtains or outputs multiplexed data in which audio data is multiplexed with video data via the antenna ex204 or the cable ex203 that receives the broadcast, and demodulates the received multiplexed data. Alternatively, the modulation / demodulation unit ex302 that modulates multiplexed data to be transmitted to the outside, and the demodulated multiplexed data is separated into video data and audio data, or the video data and audio data encoded by the signal processing unit ex306 Is provided with a multiplexing / demultiplexing unit ex303.
 また、テレビex300は、音声データ、映像データそれぞれを復号化する、またはそれぞれの情報を符号化する音声信号処理部ex304、映像信号処理部ex305(本発明の画像符号化装置または画像復号装置として機能する)を有する信号処理部ex306と、復号化した音声信号を出力するスピーカex307、復号化した映像信号を表示するディスプレイ等の表示部ex308を有する出力部ex309とを有する。さらに、テレビex300は、ユーザ操作の入力を受け付ける操作入力部ex312等を有するインタフェース部ex317を有する。さらに、テレビex300は、各部を統括的に制御する制御部ex310、各部に電力を供給する電源回路部ex311を有する。インタフェース部ex317は、操作入力部ex312以外に、リーダ/レコーダex218等の外部機器と接続されるブリッジex313、SDカード等の記録メディアex216を装着可能とするためのスロット部ex314、ハードディスク等の外部記録メディアと接続するためのドライバex315、電話網と接続するモデムex316等を有していてもよい。なお記録メディアex216は、格納する不揮発性/揮発性の半導体メモリ素子により電気的に情報の記録を可能としたものである。テレビex300の各部は同期バスを介して互いに接続されている。 Further, the television ex300 decodes each of the audio data and the video data, or encodes the respective information, the audio signal processing unit ex304, the video signal processing unit ex305 (function as the image encoding device or the image decoding device of the present invention). ), A speaker ex307 for outputting the decoded audio signal, and an output unit ex309 having a display unit ex308 such as a display for displaying the decoded video signal. Furthermore, the television ex300 includes an interface unit ex317 including an operation input unit ex312 that receives an input of a user operation. Furthermore, the television ex300 includes a control unit ex310 that performs overall control of each unit, and a power supply circuit unit ex311 that supplies power to each unit. In addition to the operation input unit ex312, the interface unit ex317 includes a bridge unit ex313 connected to an external device such as a reader / recorder ex218, a recording unit ex216 such as an SD card, and an external recording unit such as a hard disk. A driver ex315 for connecting to a medium, a modem ex316 for connecting to a telephone network, and the like may be included. Note that the recording medium ex216 is capable of electrically recording information by using a nonvolatile / volatile semiconductor memory element to be stored. Each part of the television ex300 is connected to each other via a synchronous bus.
 まず、テレビex300がアンテナex204等により外部から取得した多重化データを復号化し、再生する構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、CPU等を有する制御部ex310の制御に基づいて、変調/復調部ex302で復調した多重化データを多重/分離部ex303で分離する。さらにテレビex300は、分離した音声データを音声信号処理部ex304で復号化し、分離した映像データを映像信号処理部ex305で上記各実施の形態で説明した復号化方法を用いて復号化する。復号化した音声信号、映像信号は、それぞれ出力部ex309から外部に向けて出力される。出力する際には、音声信号と映像信号が同期して再生するよう、バッファex318、ex319等に一旦これらの信号を蓄積するとよい。また、テレビex300は、放送等からではなく、磁気/光ディスク、SDカード等の記録メディアex215、ex216から多重化データを読み出してもよい。次に、テレビex300が音声信号や映像信号を符号化し、外部に送信または記録メディア等に書き込む構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、制御部ex310の制御に基づいて、音声信号処理部ex304で音声信号を符号化し、映像信号処理部ex305で映像信号を上記各実施の形態で説明した符号化方法を用いて符号化する。符号化した音声信号、映像信号は多重/分離部ex303で多重化され外部に出力される。多重化する際には、音声信号と映像信号が同期するように、バッファex320、ex321等に一旦これらの信号を蓄積するとよい。なお、バッファex318、ex319、ex320、ex321は図示しているように複数備えていてもよいし、1つ以上のバッファを共有する構成であってもよい。さらに、図示している以外に、例えば変調/復調部ex302や多重/分離部ex303の間等でもシステムのオーバフロー、アンダーフローを避ける緩衝材としてバッファにデータを蓄積することとしてもよい。 First, a configuration in which the television ex300 decodes and reproduces multiplexed data acquired from the outside by the antenna ex204 and the like will be described. The television ex300 receives a user operation from the remote controller ex220 or the like, and demultiplexes the multiplexed data demodulated by the modulation / demodulation unit ex302 by the multiplexing / demultiplexing unit ex303 based on the control of the control unit ex310 having a CPU or the like. Furthermore, in the television ex300, the separated audio data is decoded by the audio signal processing unit ex304, and the separated video data is decoded by the video signal processing unit ex305 using the decoding method described in each of the above embodiments. The decoded audio signal and video signal are output from the output unit ex309 to the outside. At the time of output, these signals may be temporarily stored in the buffers ex318, ex319, etc. so that the audio signal and the video signal are reproduced in synchronization. Also, the television ex300 may read multiplexed data from recording media ex215 and ex216 such as a magnetic / optical disk and an SD card, not from broadcasting. Next, a configuration in which the television ex300 encodes an audio signal or a video signal and transmits the signal to the outside or to a recording medium will be described. The television ex300 receives a user operation from the remote controller ex220 and the like, encodes an audio signal with the audio signal processing unit ex304, and converts the video signal with the video signal processing unit ex305 based on the control of the control unit ex310. Encoding is performed using the encoding method described in (1). The encoded audio signal and video signal are multiplexed by the multiplexing / demultiplexing unit ex303 and output to the outside. When multiplexing, these signals may be temporarily stored in the buffers ex320, ex321, etc. so that the audio signal and the video signal are synchronized. Note that a plurality of buffers ex318, ex319, ex320, and ex321 may be provided as illustrated, or one or more buffers may be shared. Further, in addition to the illustrated example, data may be stored in the buffer as a buffer material that prevents system overflow and underflow, for example, between the modulation / demodulation unit ex302 and the multiplexing / demultiplexing unit ex303.
 また、テレビex300は、放送等や記録メディア等から音声データ、映像データを取得する以外に、マイクやカメラのAV入力を受け付ける構成を備え、それらから取得したデータに対して符号化処理を行ってもよい。なお、ここではテレビex300は上記の符号化処理、多重化、および外部出力ができる構成として説明したが、これらの処理を行うことはできず、上記受信、復号化処理、外部出力のみが可能な構成であってもよい。 In addition to acquiring audio data and video data from broadcasts, recording media, and the like, the television ex300 has a configuration for receiving AV input of a microphone and a camera, and performs encoding processing on the data acquired from them. Also good. Here, the television ex300 has been described as a configuration capable of the above-described encoding processing, multiplexing, and external output, but these processing cannot be performed, and only the above-described reception, decoding processing, and external output are possible. It may be a configuration.
 また、リーダ/レコーダex218で記録メディアから多重化データを読み出す、または書き込む場合には、上記復号化処理または符号化処理はテレビex300、リーダ/レコーダex218のいずれで行ってもよいし、テレビex300とリーダ/レコーダex218が互いに分担して行ってもよい。 In addition, when reading or writing multiplexed data from a recording medium by the reader / recorder ex218, the decoding process or the encoding process may be performed by either the television ex300 or the reader / recorder ex218, The reader / recorder ex218 may share with each other.
 一例として、光ディスクからデータの読み込みまたは書き込みをする場合の情報再生/記録部ex400の構成を図9に示す。情報再生/記録部ex400は、以下に説明する要素ex401、ex402、ex403、ex404、ex405、ex406、ex407を備える。光ヘッドex401は、光ディスクである記録メディアex215の記録面にレーザスポットを照射して情報を書き込み、記録メディアex215の記録面からの反射光を検出して情報を読み込む。変調記録部ex402は、光ヘッドex401に内蔵された半導体レーザを電気的に駆動し記録データに応じてレーザ光の変調を行う。再生復調部ex403は、光ヘッドex401に内蔵されたフォトディテクタにより記録面からの反射光を電気的に検出した再生信号を増幅し、記録メディアex215に記録された信号成分を分離して復調し、必要な情報を再生する。バッファex404は、記録メディアex215に記録するための情報および記録メディアex215から再生した情報を一時的に保持する。ディスクモータex405は記録メディアex215を回転させる。サーボ制御部ex406は、ディスクモータex405の回転駆動を制御しながら光ヘッドex401を所定の情報トラックに移動させ、レーザスポットの追従処理を行う。システム制御部ex407は、情報再生/記録部ex400全体の制御を行う。上記の読み出しや書き込みの処理はシステム制御部ex407が、バッファex404に保持された各種情報を利用し、また必要に応じて新たな情報の生成・追加を行うと共に、変調記録部ex402、再生復調部ex403、サーボ制御部ex406を協調動作させながら、光ヘッドex401を通して、情報の記録再生を行うことにより実現される。システム制御部ex407は例えばマイクロプロセッサで構成され、読み出し書き込みのプログラムを実行することでそれらの処理を実行する。 As an example, FIG. 9 shows a configuration of the information reproducing / recording unit ex400 when data is read from or written to an optical disk. The information reproducing / recording unit ex400 includes elements ex401, ex402, ex403, ex404, ex405, ex406, and ex407 described below. The optical head ex401 irradiates a laser spot on the recording surface of the recording medium ex215 that is an optical disk to write information, and detects reflected light from the recording surface of the recording medium ex215 to read the information. The modulation recording unit ex402 electrically drives a semiconductor laser built in the optical head ex401 and modulates the laser beam according to the recording data. The reproduction demodulator ex403 amplifies the reproduction signal obtained by electrically detecting the reflected light from the recording surface by the photodetector built in the optical head ex401, separates and demodulates the signal component recorded on the recording medium ex215, and is necessary To play back information. The buffer ex404 temporarily holds information to be recorded on the recording medium ex215 and information reproduced from the recording medium ex215. The disk motor ex405 rotates the recording medium ex215. The servo controller ex406 moves the optical head ex401 to a predetermined information track while controlling the rotational drive of the disk motor ex405, and performs a laser spot tracking process. The system control unit ex407 controls the entire information reproduction / recording unit ex400. In the reading and writing processes described above, the system control unit ex407 uses various kinds of information held in the buffer ex404, and generates and adds new information as necessary, and the modulation recording unit ex402, the reproduction demodulation unit This is realized by recording / reproducing information through the optical head ex401 while operating the ex403 and the servo control unit ex406 in a coordinated manner. The system control unit ex407 is composed of, for example, a microprocessor, and executes these processes by executing a read / write program.
 以上では、光ヘッドex401はレーザスポットを照射するとして説明したが、近接場光を用いてより高密度な記録を行う構成であってもよい。 In the above, the optical head ex401 has been described as irradiating a laser spot. However, a configuration in which higher-density recording is performed using near-field light may be used.
 図10に光ディスクである記録メディアex215の模式図を示す。記録メディアex215の記録面には案内溝(グルーブ)がスパイラル状に形成され、情報トラックex230には、予めグルーブの形状の変化によってディスク上の絶対位置を示す番地情報が記録されている。この番地情報はデータを記録する単位である記録ブロックex231の位置を特定するための情報を含み、記録や再生を行う装置において情報トラックex230を再生し番地情報を読み取ることで記録ブロックを特定することができる。また、記録メディアex215は、データ記録領域ex233、内周領域ex232、外周領域ex234を含んでいる。ユーザデータを記録するために用いる領域がデータ記録領域ex233であり、データ記録領域ex233より内周または外周に配置されている内周領域ex232と外周領域ex234は、ユーザデータの記録以外の特定用途に用いられる。情報再生/記録部ex400は、このような記録メディアex215のデータ記録領域ex233に対して、符号化された音声データ、映像データまたはそれらのデータを多重化した多重化データの読み書きを行う。 FIG. 10 shows a schematic diagram of a recording medium ex215 that is an optical disk. Guide grooves (grooves) are formed in a spiral shape on the recording surface of the recording medium ex215, and address information indicating the absolute position on the disc is recorded in advance on the information track ex230 by changing the shape of the groove. This address information includes information for specifying the position of the recording block ex231 that is a unit for recording data, and the recording block is specified by reproducing the information track ex230 and reading the address information in a recording or reproducing apparatus. Can do. Further, the recording medium ex215 includes a data recording area ex233, an inner peripheral area ex232, and an outer peripheral area ex234. The area used for recording user data is the data recording area ex233, and the inner circumference area ex232 and the outer circumference area ex234 arranged on the inner or outer circumference of the data recording area ex233 are used for specific purposes other than user data recording. Used. The information reproducing / recording unit ex400 reads / writes encoded audio data, video data, or multiplexed data obtained by multiplexing these data with respect to the data recording area ex233 of the recording medium ex215.
 以上では、1層のDVD、BD等の光ディスクを例に挙げ説明したが、これらに限ったものではなく、多層構造であって表面以外にも記録可能な光ディスクであってもよい。また、ディスクの同じ場所にさまざまな異なる波長の色の光を用いて情報を記録したり、さまざまな角度から異なる情報の層を記録したりなど、多次元的な記録/再生を行う構造の光ディスクであってもよい。 In the above description, an optical disk such as a single-layer DVD or BD has been described as an example. However, the present invention is not limited to these, and an optical disk having a multilayer structure and capable of recording other than the surface may be used. Also, an optical disc with a multi-dimensional recording / reproducing structure, such as recording information using light of different wavelengths in the same place on the disc, or recording different layers of information from various angles. It may be.
 また、デジタル放送用システムex200において、アンテナex205を有する車ex210で衛星ex202等からデータを受信し、車ex210が有するカーナビゲーションex211等の表示装置に動画を再生することも可能である。なお、カーナビゲーションex211の構成は例えば図8に示す構成のうち、GPS受信部を加えた構成が考えられ、同様なことがコンピュータex111や携帯電話ex114等でも考えられる。 Also, in the digital broadcasting system ex200, the car ex210 having the antenna ex205 can receive data from the satellite ex202 and the like, and the moving image can be reproduced on a display device such as the car navigation ex211 that the car ex210 has. For example, the configuration of the car navigation ex211 may include a configuration in which a GPS receiving unit is added to the configuration illustrated in FIG.
 図11Aは、上記実施の形態で説明した動画像復号化方法および動画像符号化方法を用いた携帯電話ex114を示す図である。携帯電話ex114は、基地局ex110との間で電波を送受信するためのアンテナex350、映像、静止画を撮ることが可能なカメラ部ex365、カメラ部ex365で撮像した映像、アンテナex350で受信した映像等が復号化されたデータを表示する液晶ディスプレイ等の表示部ex358を備える。携帯電話ex114は、さらに、操作キー部ex366を有する本体部、音声を出力するためのスピーカ等である音声出力部ex357、音声を入力するためのマイク等である音声入力部ex356、撮影した映像、静止画、録音した音声、または受信した映像、静止画、メール等の符号化されたデータもしくは復号化されたデータを保存するメモリ部ex367、又は同様にデータを保存する記録メディアとのインタフェース部であるスロット部ex364を備える。 FIG. 11A is a diagram showing the mobile phone ex114 using the moving picture decoding method and the moving picture encoding method described in the above embodiment. The mobile phone ex114 includes an antenna ex350 for transmitting and receiving radio waves to and from the base station ex110, a camera unit ex365 capable of capturing video and still images, a video captured by the camera unit ex365, a video received by the antenna ex350, and the like Is provided with a display unit ex358 such as a liquid crystal display for displaying the decrypted data. The mobile phone ex114 further includes a main body unit having an operation key unit ex366, an audio output unit ex357 such as a speaker for outputting audio, an audio input unit ex356 such as a microphone for inputting audio, a captured video, In the memory unit ex367 for storing encoded data or decoded data such as still images, recorded audio, received video, still images, mails, or the like, or an interface unit with a recording medium for storing data A slot ex364 is provided.
 さらに、携帯電話ex114の構成例について、図11Bを用いて説明する。携帯電話ex114は、表示部ex358及び操作キー部ex366を備えた本体部の各部を統括的に制御する主制御部ex360に対して、電源回路部ex361、操作入力制御部ex362、映像信号処理部ex355、カメラインタフェース部ex363、LCD(Liquid Crystal Display)制御部ex359、変調/復調部ex352、多重/分離部ex353、音声信号処理部ex354、スロット部ex364、メモリ部ex367がバスex370を介して互いに接続されている。 Furthermore, a configuration example of the mobile phone ex114 will be described with reference to FIG. 11B. The mobile phone ex114 has a power supply circuit part ex361, an operation input control part ex362, and a video signal processing part ex355 with respect to a main control part ex360 that comprehensively controls each part of the main body including the display part ex358 and the operation key part ex366. , A camera interface unit ex363, an LCD (Liquid Crystal Display) control unit ex359, a modulation / demodulation unit ex352, a multiplexing / demultiplexing unit ex353, an audio signal processing unit ex354, a slot unit ex364, and a memory unit ex367 are connected to each other via a bus ex370. ing.
 電源回路部ex361は、ユーザの操作により終話及び電源キーがオン状態にされると、バッテリパックから各部に対して電力を供給することにより携帯電話ex114を動作可能な状態に起動する。 When the end of call and the power key are turned on by a user operation, the power supply circuit unit ex361 starts up the mobile phone ex114 in an operable state by supplying power from the battery pack to each unit.
 携帯電話ex114は、CPU、ROM、RAM等を有する主制御部ex360の制御に基づいて、音声通話モード時に音声入力部ex356で収音した音声信号を音声信号処理部ex354でデジタル音声信号に変換し、これを変調/復調部ex352でスペクトラム拡散処理し、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して送信する。また携帯電話ex114は、音声通話モード時にアンテナex350を介して受信した受信データを増幅して周波数変換処理およびアナログデジタル変換処理を施し、変調/復調部ex352でスペクトラム逆拡散処理し、音声信号処理部ex354でアナログ音声信号に変換した後、これを音声出力部ex357から出力する。 The cellular phone ex114 converts the audio signal collected by the audio input unit ex356 in the voice call mode into a digital audio signal by the audio signal processing unit ex354 based on the control of the main control unit ex360 having a CPU, a ROM, a RAM, and the like. Then, this is subjected to spectrum spread processing by the modulation / demodulation unit ex352, digital-analog conversion processing and frequency conversion processing are performed by the transmission / reception unit ex351, and then transmitted via the antenna ex350. The mobile phone ex114 also amplifies the received data received via the antenna ex350 in the voice call mode, performs frequency conversion processing and analog-digital conversion processing, performs spectrum despreading processing by the modulation / demodulation unit ex352, and performs voice signal processing unit After being converted into an analog audio signal by ex354, this is output from the audio output unit ex357.
 さらにデータ通信モード時に電子メールを送信する場合、本体部の操作キー部ex366等の操作によって入力された電子メールのテキストデータは操作入力制御部ex362を介して主制御部ex360に送出される。主制御部ex360は、テキストデータを変調/復調部ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して基地局ex110へ送信する。電子メールを受信する場合は、受信したデータに対してこのほぼ逆の処理が行われ、表示部ex358に出力される。 Further, when an e-mail is transmitted in the data communication mode, the text data of the e-mail input by operating the operation key unit ex366 of the main unit is sent to the main control unit ex360 via the operation input control unit ex362. The main control unit ex360 performs spread spectrum processing on the text data in the modulation / demodulation unit ex352, performs digital analog conversion processing and frequency conversion processing in the transmission / reception unit ex351, and then transmits the text data to the base station ex110 via the antenna ex350. . In the case of receiving an e-mail, almost the reverse process is performed on the received data and output to the display unit ex358.
 データ通信モード時に映像、静止画、または映像と音声を送信する場合、映像信号処理部ex355は、カメラ部ex365から供給された映像信号を上記各実施の形態で示した動画像符号化方法によって圧縮符号化し(即ち、本発明の画像符号化装置として機能する)、符号化された映像データを多重/分離部ex353に送出する。また、音声信号処理部ex354は、映像、静止画等をカメラ部ex365で撮像中に音声入力部ex356で収音した音声信号を符号化し、符号化された音声データを多重/分離部ex353に送出する。 When transmitting video, still images, or video and audio in the data communication mode, the video signal processing unit ex355 compresses the video signal supplied from the camera unit ex365 by the moving image encoding method described in the above embodiments. Encode (that is, function as the image encoding apparatus of the present invention), and send the encoded video data to the multiplexing / demultiplexing unit ex353. The audio signal processing unit ex354 encodes the audio signal picked up by the audio input unit ex356 while the camera unit ex365 images a video, a still image, etc., and sends the encoded audio data to the multiplexing / separating unit ex353. To do.
 多重/分離部ex353は、映像信号処理部ex355から供給された符号化された映像データと音声信号処理部ex354から供給された符号化された音声データを所定の方式で多重化し、その結果得られる多重化データを変調/復調部(変調/復調回路部)ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理及び周波数変換処理を施した後にアンテナex350を介して送信する。 The multiplexing / demultiplexing unit ex353 multiplexes the encoded video data supplied from the video signal processing unit ex355 and the encoded audio data supplied from the audio signal processing unit ex354 by a predetermined method, and is obtained as a result. The multiplexed data is subjected to spread spectrum processing by the modulation / demodulation unit (modulation / demodulation circuit unit) ex352, digital-analog conversion processing and frequency conversion processing by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
 データ通信モード時にホームページ等にリンクされた動画像ファイルのデータを受信する場合、または映像およびもしくは音声が添付された電子メールを受信する場合、アンテナex350を介して受信された多重化データを復号化するために、多重/分離部ex353は、多重化データを分離することにより映像データのビットストリームと音声データのビットストリームとに分け、同期バスex370を介して符号化された映像データを映像信号処理部ex355に供給するとともに、符号化された音声データを音声信号処理部ex354に供給する。映像信号処理部ex355は、上記各実施の形態で示した動画像符号化方法に対応した動画像復号化方法によって復号化することにより映像信号を復号し(即ち、本発明の画像復号装置として機能する)、LCD制御部ex359を介して表示部ex358から、例えばホームページにリンクされた動画像ファイルに含まれる映像、静止画が表示される。また音声信号処理部ex354は、音声信号を復号し、音声出力部ex357から音声が出力される。 Decode multiplexed data received via antenna ex350 when receiving video file data linked to a homepage, etc. in data communication mode, or when receiving e-mail with video and / or audio attached Therefore, the multiplexing / separating unit ex353 separates the multiplexed data into a video data bit stream and an audio data bit stream, and performs video signal processing on the video data encoded via the synchronization bus ex370. The encoded audio data is supplied to the audio signal processing unit ex354 while being supplied to the unit ex355. The video signal processing unit ex355 decodes the video signal by decoding using the video decoding method corresponding to the video encoding method shown in each of the above embodiments (that is, functions as the image decoding device of the present invention). For example, video and still images included in the moving image file linked to the home page are displayed from the display unit ex358 via the LCD control unit ex359. The audio signal processing unit ex354 decodes the audio signal, and the audio is output from the audio output unit ex357.
 また、上記携帯電話ex114等の端末は、テレビex300と同様に、符号化器・復号化器を両方持つ送受信型端末の他に、符号化器のみの送信端末、復号化器のみの受信端末という3通りの実装形式が考えられる。さらに、デジタル放送用システムex200において、映像データに音楽データなどが多重化された多重化データを受信、送信するとして説明したが、音声データ以外に映像に関連する文字データなどが多重化されたデータであってもよいし、多重化データではなく映像データ自体であってもよい。 In addition to the transmission / reception type terminal having both the encoder and the decoder, the terminal such as the mobile phone ex114 is referred to as a transmission terminal having only an encoder and a receiving terminal having only a decoder. There are three possible mounting formats. Furthermore, in the digital broadcasting system ex200, it has been described that multiplexed data in which music data or the like is multiplexed with video data is received and transmitted, but data in which character data or the like related to video is multiplexed in addition to audio data It may be video data itself instead of multiplexed data.
 このように、上記各実施の形態で示した動画像符号化方法あるいは動画像復号化方法を上述したいずれの機器・システムに用いることは可能であり、そうすることで、上記各実施の形態で説明した効果を得ることができる。 As described above, the moving picture encoding method or the moving picture decoding method shown in each of the above embodiments can be used in any of the above-described devices / systems. The described effect can be obtained.
 また、本発明はかかる上記実施の形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形または修正が可能である。 Further, the present invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the scope of the present invention.
 (実施の形態4)
 上記各実施の形態で示した動画像符号化方法または装置と、MPEG-2、MPEG4-AVC、VC-1など異なる規格に準拠した動画像符号化方法または装置とを、必要に応じて適宜切替えることにより、映像データを生成することも可能である。
(Embodiment 4)
The moving picture coding method or apparatus shown in the above embodiments and the moving picture coding method or apparatus compliant with different standards such as MPEG-2, MPEG4-AVC, and VC-1 are appropriately switched as necessary. Thus, it is also possible to generate video data.
 ここで、それぞれ異なる規格に準拠する複数の映像データを生成した場合、復号する際に、それぞれの規格に対応した復号方法を選択する必要がある。しかしながら、復号する映像データが、どの規格に準拠するものであるか識別できないため、適切な復号方法を選択することができないという課題を生じる。 Here, when a plurality of pieces of video data conforming to different standards are generated, it is necessary to select a decoding method corresponding to each standard when decoding. However, since it is impossible to identify which standard the video data to be decoded complies with, there arises a problem that an appropriate decoding method cannot be selected.
 この課題を解決するために、映像データに音声データなどを多重化した多重化データは、映像データがどの規格に準拠するものであるかを示す識別情報を含む構成とする。上記各実施の形態で示す動画像符号化方法または装置によって生成された映像データを含む多重化データの具体的な構成を以下説明する。多重化データは、MPEG-2トランスポートストリーム形式のデジタルストリームである。 In order to solve this problem, multiplexed data obtained by multiplexing audio data or the like with video data is configured to include identification information indicating which standard the video data conforms to. A specific configuration of multiplexed data including video data generated by the moving picture encoding method or apparatus shown in the above embodiments will be described below. The multiplexed data is a digital stream in the MPEG-2 transport stream format.
 図12は、多重化データの構成を示す図である。図12に示すように多重化データは、ビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム(PG)、インタラクティブグラフィックスストリームのうち、1つ以上を多重化することで得られる。ビデオストリームは映画の主映像および副映像を、オーディオストリーム(IG)は映画の主音声部分とその主音声とミキシングする副音声を、プレゼンテーショングラフィックスストリームは、映画の字幕をそれぞれ示している。ここで主映像とは画面に表示される通常の映像を示し、副映像とは主映像の中に小さな画面で表示する映像のことである。また、インタラクティブグラフィックスストリームは、画面上にGUI部品を配置することにより作成される対話画面を示している。ビデオストリームは、上記各実施の形態で示した動画像符号化方法または装置、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠した動画像符号化方法または装置によって符号化されている。オーディオストリームは、ドルビーAC-3、Dolby Digital Plus、MLP、DTS、DTS-HD、または、リニアPCMのなどの方式で符号化されている。 FIG. 12 is a diagram showing a structure of multiplexed data. As shown in FIG. 12, multiplexed data is obtained by multiplexing one or more of a video stream, an audio stream, a presentation graphics stream (PG), and an interactive graphics stream. The video stream indicates the main video and sub-video of the movie, the audio stream (IG) indicates the main audio portion of the movie and the sub-audio mixed with the main audio, and the presentation graphics stream indicates the subtitles of the movie. Here, the main video indicates a normal video displayed on the screen, and the sub-video is a video displayed on a small screen in the main video. The interactive graphics stream indicates an interactive screen created by arranging GUI components on the screen. The video stream is encoded by the moving image encoding method or apparatus shown in the above embodiments, or the moving image encoding method or apparatus conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1. ing. The audio stream is encoded by a method such as Dolby AC-3, Dolby Digital Plus, MLP, DTS, DTS-HD, or linear PCM.
 多重化データに含まれる各ストリームはPIDによって識別される。例えば、映画の映像に利用するビデオストリームには0x1011が、オーディオストリームには0x1100から0x111Fまでが、プレゼンテーショングラフィックスには0x1200から0x121Fまでが、インタラクティブグラフィックスストリームには0x1400から0x141Fまでが、映画の副映像に利用するビデオストリームには0x1B00から0x1B1Fまで、主音声とミキシングする副音声に利用するオーディオストリームには0x1A00から0x1A1Fが、それぞれ割り当てられている。 Each stream included in the multiplexed data is identified by PID. For example, 0x1011 for video streams used for movie images, 0x1100 to 0x111F for audio streams, 0x1200 to 0x121F for presentation graphics, 0x1400 to 0x141F for interactive graphics streams, 0x1B00 to 0x1B1F are assigned to video streams used for sub-pictures, and 0x1A00 to 0x1A1F are assigned to audio streams used for sub-audio mixed with the main audio.
 図13は、多重化データがどのように多重化されるかを模式的に示す図である。まず、複数のビデオフレームからなるビデオストリームex235、複数のオーディオフレームからなるオーディオストリームex238を、それぞれPESパケット列ex236およびex239に変換し、TSパケットex237およびex240に変換する。同じくプレゼンテーショングラフィックスストリームex241およびインタラクティブグラフィックスex244のデータをそれぞれPESパケット列ex242およびex245に変換し、さらにTSパケットex243およびex246に変換する。多重化データex247はこれらのTSパケットを1本のストリームに多重化することで構成される。 FIG. 13 is a diagram schematically showing how multiplexed data is multiplexed. First, a video stream ex235 composed of a plurality of video frames and an audio stream ex238 composed of a plurality of audio frames are converted into PES packet sequences ex236 and ex239, respectively, and converted into TS packets ex237 and ex240. Similarly, the data of the presentation graphics stream ex241 and interactive graphics ex244 are converted into PES packet sequences ex242 and ex245, respectively, and further converted into TS packets ex243 and ex246. The multiplexed data ex247 is configured by multiplexing these TS packets into one stream.
 図14は、PESパケット列に、ビデオストリームがどのように格納されるかをさらに詳しく示している。図14における第1段目はビデオストリームのビデオフレーム列を示す。第2段目は、PESパケット列を示す。図14の矢印yy1,yy2, yy3, yy4に示すように、ビデオストリームにおける複数のVideo Presentation UnitであるIピクチャ、Bピクチャ、Pピクチャは、ピクチャ毎に分割され、PESパケットのペイロードに格納される。各PESパケットはPESヘッダを持ち、PESヘッダには、ピクチャの表示時刻であるPTS(Presentation Time-Stamp)やピクチャの復号時刻であるDTS(Decoding Time-Stamp)が格納される。 FIG. 14 shows in more detail how the video stream is stored in the PES packet sequence. The first level in FIG. 14 shows a video frame sequence of the video stream. The second level shows a PES packet sequence. As shown by arrows yy1, yy2, yy3, and yy4 in FIG. 14, a plurality of Video Presentation Units in a video stream are divided for each picture and stored in the payload of the PES packet. . Each PES packet has a PES header, and a PTS (Presentation Time-Stamp) that is a display time of a picture and a DTS (Decoding Time-Stamp) that is a decoding time of a picture are stored in the PES header.
 図15は、多重化データに最終的に書き込まれるTSパケットの形式を示している。TSパケットは、ストリームを識別するPIDなどの情報を持つ4ByteのTSヘッダとデータを格納する184ByteのTSペイロードから構成される188Byte固定長のパケットであり、上記PESパケットは分割されTSペイロードに格納される。BD-ROMの場合、TSパケットには、4ByteのTP_Extra_Headerが付与され、192Byteのソースパケットを構成し、多重化データに書き込まれる。TP_Extra_HeaderにはATS(Arrival_Time_Stamp)などの情報が記載される。ATSは当該TSパケットのデコーダのPIDフィルタへの転送開始時刻を示す。多重化データには図15下段に示すようにソースパケットが並ぶこととなり、多重化データの先頭からインクリメントする番号はSPN(ソースパケットナンバー)と呼ばれる。 FIG. 15 shows the format of TS packets that are finally written in the multiplexed data. The TS packet is a 188-byte fixed-length packet composed of a 4-byte TS header having information such as a PID for identifying a stream and a 184-byte TS payload for storing data. The PES packet is divided and stored in the TS payload. The In the case of a BD-ROM, a 4-byte TP_Extra_Header is added to a TS packet, forms a 192-byte source packet, and is written in multiplexed data. In TP_Extra_Header, information such as ATS (Arrival_Time_Stamp) is described. ATS indicates the transfer start time of the TS packet to the PID filter of the decoder. As shown in the lower part of FIG. 15, source packets are arranged in the multiplexed data, and the number incremented from the head of the multiplexed data is called SPN (source packet number).
 また、多重化データに含まれるTSパケットには、映像・音声・字幕などの各ストリーム以外にもPAT(Program Association Table)、PMT(Program Map Table)、PCR(Program Clock Reference)などがある。PATは多重化データ中に利用されるPMTのPIDが何であるかを示し、PAT自身のPIDは0で登録される。PMTは、多重化データ中に含まれる映像・音声・字幕などの各ストリームのPIDと各PIDに対応するストリームの属性情報を持ち、また多重化データに関する各種ディスクリプタを持つ。ディスクリプタには多重化データのコピーを許可・不許可を指示するコピーコントロール情報などがある。PCRは、ATSの時間軸であるATC(Arrival Time Clock)とPTS・DTSの時間軸であるSTC(System Time Clock)の同期を取るために、そのPCRパケットがデコーダに転送されるATSに対応するSTC時間の情報を持つ。 In addition, TS packets included in the multiplexed data include PAT (Program Association Table), PMT (Program Map Table), PCR (Program Clock Reference), and the like in addition to each stream such as video / audio / caption. PAT indicates what the PID of the PMT used in the multiplexed data is, and the PID of the PAT itself is registered as 0. The PMT has the PID of each stream such as video / audio / subtitles included in the multiplexed data and the attribute information of the stream corresponding to each PID, and has various descriptors related to the multiplexed data. The descriptor includes copy control information for instructing permission / non-permission of copying of multiplexed data. In order to synchronize the ATC (Arrival Time Clock), which is the ATS time axis, and the STC (System Time Clock), which is the PTS / DTS time axis, the PCR corresponds to the ATS in which the PCR packet is transferred to the decoder. Contains STC time information.
 図16はPMTのデータ構造を詳しく説明する図である。PMTの先頭には、そのPMTに含まれるデータの長さなどを記したPMTヘッダが配置される。その後ろには、多重化データに関するディスクリプタが複数配置される。上記コピーコントロール情報などが、ディスクリプタとして記載される。ディスクリプタの後には、多重化データに含まれる各ストリームに関するストリーム情報が複数配置される。ストリーム情報は、ストリームの圧縮コーデックなどを識別するためストリームタイプ、ストリームのPID、ストリームの属性情報(フレームレート、アスペクト比など)が記載されたストリームディスクリプタから構成される。ストリームディスクリプタは多重化データに存在するストリームの数だけ存在する。 FIG. 16 is a diagram for explaining the data structure of the PMT in detail. A PMT header describing the length of data included in the PMT is arranged at the head of the PMT. After that, a plurality of descriptors related to multiplexed data are arranged. The copy control information and the like are described as descriptors. After the descriptor, a plurality of pieces of stream information regarding each stream included in the multiplexed data are arranged. The stream information includes a stream descriptor in which a stream type, a stream PID, and stream attribute information (frame rate, aspect ratio, etc.) are described to identify a compression codec of the stream. There are as many stream descriptors as the number of streams existing in the multiplexed data.
 記録媒体などに記録する場合には、上記多重化データは、多重化データ情報ファイルと共に記録される。 When recording on a recording medium or the like, the multiplexed data is recorded together with the multiplexed data information file.
 多重化データ情報ファイルは、図17に示すように多重化データの管理情報であり、多重化データと1対1に対応し、多重化データ情報、ストリーム属性情報とエントリマップから構成される。 As shown in FIG. 17, the multiplexed data information file is management information of multiplexed data, has a one-to-one correspondence with the multiplexed data, and includes multiplexed data information, stream attribute information, and an entry map.
 多重化データ情報は図17に示すようにシステムレート、再生開始時刻、再生終了時刻から構成されている。システムレートは多重化データの、後述するシステムターゲットデコーダのPIDフィルタへの最大転送レートを示す。多重化データ中に含まれるATSの間隔はシステムレート以下になるように設定されている。再生開始時刻は多重化データの先頭のビデオフレームのPTSであり、再生終了時刻は多重化データの終端のビデオフレームのPTSに1フレーム分の再生間隔を足したものが設定される。 The multiplexed data information includes a system rate, a reproduction start time, and a reproduction end time as shown in FIG. The system rate indicates a maximum transfer rate of multiplexed data to a PID filter of a system target decoder described later. The ATS interval included in the multiplexed data is set to be equal to or less than the system rate. The playback start time is the PTS of the first video frame of the multiplexed data, and the playback end time is set by adding the playback interval for one frame to the PTS of the video frame at the end of the multiplexed data.
 ストリーム属性情報は図18に示すように、多重化データに含まれる各ストリームについての属性情報が、PID毎に登録される。属性情報はビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム、インタラクティブグラフィックスストリーム毎に異なる情報を持つ。ビデオストリーム属性情報は、そのビデオストリームがどのような圧縮コーデックで圧縮されたか、ビデオストリームを構成する個々のピクチャデータの解像度がどれだけであるか、アスペクト比はどれだけであるか、フレームレートはどれだけであるかなどの情報を持つ。オーディオストリーム属性情報は、そのオーディオストリームがどのような圧縮コーデックで圧縮されたか、そのオーディオストリームに含まれるチャンネル数は何であるか、何の言語に対応するか、サンプリング周波数がどれだけであるかなどの情報を持つ。これらの情報は、プレーヤが再生する前のデコーダの初期化などに利用される。 As shown in FIG. 18, in the stream attribute information, attribute information about each stream included in the multiplexed data is registered for each PID. The attribute information has different information for each video stream, audio stream, presentation graphics stream, and interactive graphics stream. The video stream attribute information includes the compression codec used to compress the video stream, the resolution of the individual picture data constituting the video stream, the aspect ratio, and the frame rate. It has information such as how much it is. The audio stream attribute information includes the compression codec used to compress the audio stream, the number of channels included in the audio stream, the language supported, and the sampling frequency. With information. These pieces of information are used for initialization of the decoder before the player reproduces it.
 本実施の形態においては、上記多重化データのうち、PMTに含まれるストリームタイプを利用する。また、記録媒体に多重化データが記録されている場合には、多重化データ情報に含まれる、ビデオストリーム属性情報を利用する。具体的には、上記各実施の形態で示した動画像符号化方法または装置において、PMTに含まれるストリームタイプ、または、ビデオストリーム属性情報に対し、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示す固有の情報を設定するステップまたは手段を設ける。この構成により、上記各実施の形態で示した動画像符号化方法または装置によって生成した映像データと、他の規格に準拠する映像データとを識別することが可能になる。 In this embodiment, among the multiplexed data, the stream type included in the PMT is used. Also, when multiplexed data is recorded on the recording medium, video stream attribute information included in the multiplexed data information is used. Specifically, in the video encoding method or apparatus shown in each of the above embodiments, the video encoding shown in each of the above embodiments for the stream type or video stream attribute information included in the PMT. There is provided a step or means for setting unique information indicating that the video data is generated by the method or apparatus. With this configuration, it is possible to discriminate between video data generated by the moving picture encoding method or apparatus described in the above embodiments and video data compliant with other standards.
 また、本実施の形態における動画像復号化方法のステップを図19に示す。ステップexS100において、多重化データからPMTに含まれるストリームタイプ、または、多重化データ情報に含まれるビデオストリーム属性情報を取得する。次に、ステップexS101において、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成された多重化データであることを示しているか否かを判断する。そして、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成されたものであると判断された場合には、ステップexS102において、上記各実施の形態で示した動画像復号方法により復号を行う。また、ストリームタイプ、または、ビデオストリーム属性情報が、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠するものであることを示している場合には、ステップexS103において、従来の規格に準拠した動画像復号方法により復号を行う。 FIG. 19 shows the steps of the moving picture decoding method according to the present embodiment. In step exS100, the stream type included in the PMT or the video stream attribute information included in the multiplexed data information is acquired from the multiplexed data. Next, in step exS101, it is determined whether or not the stream type or the video stream attribute information indicates multiplexed data generated by the moving picture encoding method or apparatus described in the above embodiments. To do. When it is determined that the stream type or the video stream attribute information is generated by the moving image encoding method or apparatus described in the above embodiments, in step exS102, the above embodiments are performed. Decoding is performed by the moving picture decoding method shown in the form. If the stream type or video stream attribute information indicates that it conforms to a standard such as conventional MPEG-2, MPEG4-AVC, or VC-1, in step exS103, the conventional information Decoding is performed by a moving image decoding method compliant with the standard.
 このように、ストリームタイプ、または、ビデオストリーム属性情報に新たな固有値を設定することにより、復号する際に、上記各実施の形態で示した動画像復号化方法または装置で復号可能であるかを判断することができる。従って、異なる規格に準拠する多重化データが入力された場合であっても、適切な復号化方法または装置を選択することができるため、エラーを生じることなく復号することが可能となる。また、本実施の形態で示した動画像符号化方法または装置、または、動画像復号方法または装置を、上述したいずれの機器・システムに用いることも可能である。 In this way, by setting a new unique value in the stream type or video stream attribute information, whether or not decoding is possible with the moving picture decoding method or apparatus described in each of the above embodiments is performed. Judgment can be made. Therefore, even when multiplexed data conforming to different standards is input, an appropriate decoding method or apparatus can be selected, and therefore decoding can be performed without causing an error. In addition, the moving picture encoding method or apparatus or the moving picture decoding method or apparatus described in this embodiment can be used in any of the above-described devices and systems.
 (実施の形態5)
 上記各実施の形態で示した動画像符号化方法および装置、動画像復号化方法および装置は、典型的には集積回路であるLSIで実現される。一例として、図20に1チップ化されたLSIex500の構成を示す。LSIex500は、以下に説明する要素ex501、ex502、ex503、ex504、ex505、ex506、ex507、ex508、ex509を備え、各要素はバスex510を介して接続している。電源回路部ex505は電源がオン状態の場合に各部に対して電力を供給することで動作可能な状態に起動する。
(Embodiment 5)
The moving picture encoding method and apparatus and moving picture decoding method and apparatus described in the above embodiments are typically realized by an LSI that is an integrated circuit. As an example, FIG. 20 shows a configuration of LSI ex500 that is made into one chip. The LSI ex500 includes elements ex501, ex502, ex503, ex504, ex505, ex506, ex507, ex508, and ex509 described below, and each element is connected via a bus ex510. The power supply circuit unit ex505 is activated to an operable state by supplying power to each unit when the power supply is on.
 例えば符号化処理を行う場合には、LSIex500は、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有する制御部ex501の制御に基づいて、AV I/Oex509によりマイクex117やカメラex113等からAV信号を入力する。入力されたAV信号は、一旦SDRAM等の外部のメモリex511に蓄積される。制御部ex501の制御に基づいて、蓄積したデータは処理量や処理速度に応じて適宜複数回に分けるなどされ信号処理部ex507に送られ、信号処理部ex507において音声信号の符号化および/または映像信号の符号化が行われる。ここで映像信号の符号化処理は上記各実施の形態で説明した符号化処理である。信号処理部ex507ではさらに、場合により符号化された音声データと符号化された映像データを多重化するなどの処理を行い、ストリームI/Oex506から外部に出力する。この出力された多重化データは、基地局ex107に向けて送信されたり、または記録メディアex215に書き込まれたりする。なお、多重化する際には同期するよう、一旦バッファex508にデータを蓄積するとよい。 For example, when performing the encoding process, the LSI ex500 performs the microphone ex117 and the camera ex113 by the AV I / O ex509 based on the control of the control unit ex501 including the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like. The AV signal is input from the above. The input AV signal is temporarily stored in an external memory ex511 such as SDRAM. Based on the control of the control unit ex501, the accumulated data is divided into a plurality of times as appropriate according to the processing amount and the processing speed and sent to the signal processing unit ex507, and the signal processing unit ex507 encodes an audio signal and / or video. Signal encoding is performed. Here, the encoding process of the video signal is the encoding process described in the above embodiments. The signal processing unit ex507 further performs processing such as multiplexing the encoded audio data and the encoded video data according to circumstances, and outputs the result from the stream I / Oex 506 to the outside. The output multiplexed data is transmitted to the base station ex107 or written to the recording medium ex215. It should be noted that data should be temporarily stored in the buffer ex508 so as to be synchronized when multiplexing.
 なお、上記では、メモリex511がLSIex500の外部の構成として説明したが、LSIex500の内部に含まれる構成であってもよい。バッファex508も1つに限ったものではなく、複数のバッファを備えていてもよい。また、LSIex500は1チップ化されてもよいし、複数チップ化されてもよい。 In the above description, the memory ex511 is described as an external configuration of the LSI ex500. However, a configuration included in the LSI ex500 may be used. The number of buffers ex508 is not limited to one, and a plurality of buffers may be provided. The LSI ex500 may be made into one chip or a plurality of chips.
 また、上記では、制御部ex501が、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有するとしているが、制御部ex501の構成は、この構成に限らない。例えば、信号処理部ex507がさらにCPUを備える構成であってもよい。信号処理部ex507の内部にもCPUを設けることにより、処理速度をより向上させることが可能になる。また、他の例として、CPUex502が信号処理部ex507、または信号処理部ex507の一部である例えば音声信号処理部を備える構成であってもよい。このような場合には、制御部ex501は、信号処理部ex507、またはその一部を有するCPUex502を備える構成となる。 In the above description, the control unit ex501 includes the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like, but the configuration of the control unit ex501 is not limited to this configuration. For example, the signal processing unit ex507 may further include a CPU. By providing a CPU also in the signal processing unit ex507, the processing speed can be further improved. As another example, the CPU ex502 may be configured to include a signal processing unit ex507 or, for example, an audio signal processing unit that is a part of the signal processing unit ex507. In such a case, the control unit ex501 is configured to include a signal processing unit ex507 or a CPU ex502 having a part thereof.
 なお、ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 In addition, although it was set as LSI here, it may be called IC, system LSI, super LSI, and ultra LSI depending on the degree of integration.
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Further, the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適応等が可能性としてありえる。 Furthermore, if integrated circuit technology that replaces LSI emerges as a result of progress in semiconductor technology or other derived technology, it is naturally possible to integrate functional blocks using this technology. Biotechnology can be applied.
 (実施の形態6)
 上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データを復号する場合、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データを復号する場合に比べ、処理量が増加することが考えられる。そのため、LSIex500において、従来の規格に準拠する映像データを復号する際のCPUex502の駆動周波数よりも高い駆動周波数に設定する必要がある。しかし、駆動周波数を高くすると、消費電力が高くなるという課題が生じる。
(Embodiment 6)
When decoding the video data generated by the moving picture encoding method or apparatus shown in the above embodiments, the video data conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1 is decoded. It is conceivable that the amount of processing increases compared to the case. Therefore, in LSI ex500, it is necessary to set a driving frequency higher than the driving frequency of CPU ex502 when decoding video data compliant with the conventional standard. However, when the drive frequency is increased, there is a problem that power consumption increases.
 この課題を解決するために、テレビex300、LSIex500などの動画像復号化装置は、映像データがどの規格に準拠するものであるかを識別し、規格に応じて駆動周波数を切替える構成とする。図21は、本実施の形態における構成ex800を示している。駆動周波数切替え部ex803は、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合には、駆動周波数を高く設定する。そして、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801に対し、映像データを復号するよう指示する。一方、映像データが、従来の規格に準拠する映像データである場合には、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合に比べ、駆動周波数を低く設定する。そして、従来の規格に準拠する復号処理部ex802に対し、映像データを復号するよう指示する。 In order to solve this problem, moving picture decoding devices such as the television ex300 and LSI ex500 are configured to identify which standard the video data conforms to and switch the driving frequency in accordance with the standard. FIG. 21 shows a configuration ex800 in the present embodiment. The drive frequency switching unit ex803 sets the drive frequency high when the video data is generated by the moving image encoding method or apparatus described in the above embodiments. Then, the decoding processing unit ex801 that executes the moving picture decoding method described in each of the above embodiments is instructed to decode the video data. On the other hand, when the video data is video data compliant with the conventional standard, compared to the case where the video data is generated by the moving picture encoding method or apparatus shown in the above embodiments, Set the drive frequency low. Then, it instructs the decoding processing unit ex802 compliant with the conventional standard to decode the video data.
 より具体的には、駆動周波数切替え部ex803は、図20のCPUex502と駆動周波数制御部ex512から構成される。また、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801、および、従来の規格に準拠する復号処理部ex802は、図20の信号処理部ex507に該当する。CPUex502は、映像データがどの規格に準拠するものであるかを識別する。そして、CPUex502からの信号に基づいて、駆動周波数制御部ex512は、駆動周波数を設定する。また、CPUex502からの信号に基づいて、信号処理部ex507は、映像データの復号を行う。ここで、映像データの識別には、例えば、実施の形態4で記載した識別情報を利用することが考えられる。識別情報に関しては、実施の形態4で記載したものに限られず、映像データがどの規格に準拠するか識別できる情報であればよい。例えば、映像データがテレビに利用されるものであるか、ディスクに利用されるものであるかなどを識別する外部信号に基づいて、映像データがどの規格に準拠するものであるか識別可能である場合には、このような外部信号に基づいて識別してもよい。また、CPUex502における駆動周波数の選択は、例えば、図23のような映像データの規格と、駆動周波数とを対応付けたルックアップテーブルに基づいて行うことが考えられる。ルックアップテーブルを、バッファex508や、LSIの内部メモリに格納しておき、CPUex502がこのルックアップテーブルを参照することにより、駆動周波数を選択することが可能である。 More specifically, the drive frequency switching unit ex803 includes the CPU ex502 and the drive frequency control unit ex512 in FIG. Also, the decoding processing unit ex801 that executes the video decoding method shown in each of the above embodiments and the decoding processing unit ex802 that complies with the conventional standard correspond to the signal processing unit ex507 in FIG. The CPU ex502 identifies which standard the video data conforms to. Then, based on the signal from the CPU ex502, the drive frequency control unit ex512 sets the drive frequency. Further, based on the signal from the CPU ex502, the signal processing unit ex507 decodes the video data. Here, for identification of video data, for example, the identification information described in the fourth embodiment may be used. The identification information is not limited to that described in the fourth embodiment, and any information that can identify which standard the video data conforms to may be used. For example, it is possible to identify which standard the video data conforms to based on an external signal that identifies whether the video data is used for a television or a disk. In some cases, identification may be performed based on such an external signal. In addition, the selection of the driving frequency in the CPU ex502 may be performed based on, for example, a lookup table in which video data standards and driving frequencies are associated with each other as shown in FIG. The look-up table is stored in the buffer ex508 or the internal memory of the LSI, and the CPU ex502 can select the drive frequency by referring to the look-up table.
 図22は、本実施の形態の方法を実施するステップを示している。まず、ステップexS200では、信号処理部ex507において、多重化データから識別情報を取得する。次に、ステップexS201では、CPUex502において、識別情報に基づいて映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものであるか否かを識別する。映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合には、ステップexS202において、駆動周波数を高く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、高い駆動周波数に設定される。一方、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、ステップexS203において、駆動周波数を低く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合に比べ、低い駆動周波数に設定される。 FIG. 22 shows steps for executing the method of the present embodiment. First, in step exS200, the signal processing unit ex507 acquires identification information from the multiplexed data. Next, in step exS201, the CPU ex502 identifies whether the video data is generated by the encoding method or apparatus described in each of the above embodiments based on the identification information. When the video data is generated by the encoding method or apparatus shown in the above embodiments, in step exS202, the CPU ex502 sends a signal for setting the drive frequency high to the drive frequency control unit ex512. Then, the drive frequency control unit ex512 sets a high drive frequency. On the other hand, if it indicates that the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1, in step exS203, the CPU ex502 drives the signal for setting the drive frequency low. This is sent to the frequency control unit ex512. Then, in the drive frequency control unit ex512, the drive frequency is set to be lower than that in the case where the video data is generated by the encoding method or apparatus described in the above embodiments.
 さらに、駆動周波数の切替えに連動して、LSIex500またはLSIex500を含む装置に与える電圧を変更することにより、省電力効果をより高めることが可能である。例えば、駆動周波数を低く設定する場合には、これに伴い、駆動周波数を高く設定している場合に比べ、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することが考えられる。 Furthermore, the power saving effect can be further enhanced by changing the voltage applied to the LSI ex500 or the device including the LSI ex500 in conjunction with the switching of the driving frequency. For example, when the drive frequency is set low, it is conceivable that the voltage applied to the LSI ex500 or the device including the LSI ex500 is set low as compared with the case where the drive frequency is set high.
 また、駆動周波数の設定方法は、復号する際の処理量が大きい場合に、駆動周波数を高く設定し、復号する際の処理量が小さい場合に、駆動周波数を低く設定すればよく、上述した設定方法に限らない。例えば、MPEG4-AVC規格に準拠する映像データを復号する処理量の方が、上記各実施の形態で示した動画像符号化方法または装置により生成された映像データを復号する処理量よりも大きい場合には、駆動周波数の設定を上述した場合の逆にすることが考えられる。 In addition, the setting method of the driving frequency may be set to a high driving frequency when the processing amount at the time of decoding is large, and to a low driving frequency when the processing amount at the time of decoding is small. It is not limited to the method. For example, the amount of processing for decoding video data compliant with the MPEG4-AVC standard is larger than the amount of processing for decoding video data generated by the moving picture encoding method or apparatus described in the above embodiments. It is conceivable that the setting of the driving frequency is reversed to that in the case described above.
 さらに、駆動周波数の設定方法は、駆動周波数を低くする構成に限らない。例えば、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を高く設定し、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することも考えられる。また、他の例としては、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、CPUex502の駆動を停止させることなく、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、処理に余裕があるため、CPUex502の駆動を一時停止させることも考えられる。識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合であっても、処理に余裕があれば、CPUex502の駆動を一時停止させることも考えられる。この場合は、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合に比べて、停止時間を短く設定することが考えられる。 Furthermore, the method for setting the drive frequency is not limited to the configuration in which the drive frequency is lowered. For example, when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in the above embodiments, the voltage applied to the LSIex500 or the apparatus including the LSIex500 is set high. However, when it is shown that the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, VC-1, etc., it is also possible to set the voltage applied to the LSIex500 or the device including the LSIex500 low. It is done. As another example, when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in the above embodiments, the driving of the CPU ex502 is stopped. If the video data conforms to the standards such as MPEG-2, MPEG4-AVC, VC-1, etc., the CPU ex502 is temporarily stopped because there is room in processing. Is also possible. Even when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in each of the above embodiments, if there is a margin for processing, the CPU ex502 is temporarily driven. It can also be stopped. In this case, it is conceivable to set the stop time shorter than in the case where the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1.
 このように、映像データが準拠する規格に応じて、駆動周波数を切替えることにより、省電力化を図ることが可能になる。また、電池を用いてLSIex500またはLSIex500を含む装置を駆動している場合には、省電力化に伴い、電池の寿命を長くすることが可能である。 Thus, it is possible to save power by switching the drive frequency according to the standard to which the video data conforms. In addition, when the battery is used to drive the LSI ex500 or the device including the LSI ex500, it is possible to extend the life of the battery with power saving.
 (実施の形態7)
 テレビや、携帯電話など、上述した機器・システムには、異なる規格に準拠する複数の映像データが入力される場合がある。このように、異なる規格に準拠する複数の映像データが入力された場合にも復号できるようにするために、LSIex500の信号処理部ex507が複数の規格に対応している必要がある。しかし、それぞれの規格に対応する信号処理部ex507を個別に用いると、LSIex500の回路規模が大きくなり、また、コストが増加するという課題が生じる。
(Embodiment 7)
A plurality of video data that conforms to different standards may be input to the above-described devices and systems such as a television and a mobile phone. As described above, the signal processing unit ex507 of the LSI ex500 needs to support a plurality of standards in order to be able to decode even when a plurality of video data complying with different standards is input. However, when the signal processing unit ex507 corresponding to each standard is used individually, there is a problem that the circuit scale of the LSI ex500 increases and the cost increases.
 この課題を解決するために、上記各実施の形態で示した動画像復号方法を実行するための復号処理部と、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する復号処理部とを一部共有化する構成とする。この構成例を図24Aのex900に示す。例えば、上記各実施の形態で示した動画像復号方法と、MPEG4-AVC規格に準拠する動画像復号方法とは、エントロピー符号化、逆量子化、デブロッキング・フィルタ、動き補償などの処理において処理内容が一部共通する。共通する処理内容については、MPEG4-AVC規格に対応する復号処理部ex902を共有し、MPEG4-AVC規格に対応しない、本発明特有の他の処理内容については、専用の復号処理部ex901を用いるという構成が考えられる。復号処理部の共有化に関しては、共通する処理内容については、上記各実施の形態で示した動画像復号化方法を実行するための復号処理部を共有し、MPEG4-AVC規格に特有の処理内容については、専用の復号処理部を用いる構成であってもよい。 In order to solve this problem, a decoding processing unit for executing the moving picture decoding method shown in each of the above embodiments and a decoding conforming to a standard such as MPEG-2, MPEG4-AVC, or VC-1 The processing unit is partly shared. An example of this configuration is shown as ex900 in FIG. 24A. For example, the moving picture decoding method shown in each of the above embodiments and the moving picture decoding method compliant with the MPEG4-AVC standard are processed in processes such as entropy coding, inverse quantization, deblocking filter, and motion compensation. Some contents are common. For the common processing content, the decoding processing unit ex902 corresponding to the MPEG4-AVC standard is shared, and for the other processing content unique to the present invention not corresponding to the MPEG4-AVC standard, the dedicated decoding processing unit ex901 is used. Configuration is conceivable. Regarding the sharing of the decoding processing unit, regarding the common processing content, the decoding processing unit for executing the moving picture decoding method described in each of the above embodiments is shared, and the processing content specific to the MPEG4-AVC standard As for, a configuration using a dedicated decoding processing unit may be used.
 また、処理を一部共有化する他の例を図24Bのex1000に示す。この例では、本発明に特有の処理内容に対応した専用の復号処理部ex1001と、他の従来規格に特有の処理内容に対応した専用の復号処理部ex1002と、本発明の動画像復号方法と他の従来規格の動画像復号方法とに共通する処理内容に対応した共用の復号処理部ex1003とを用いる構成としている。ここで、専用の復号処理部ex1001、ex1002は、必ずしも本発明、または、他の従来規格に特有の処理内容に特化したものではなく、他の汎用処理を実行できるものであってもよい。また、本実施の形態の構成を、LSIex500で実装することも可能である。 Further, ex1000 in FIG. 24B shows another example in which processing is partially shared. In this example, a dedicated decoding processing unit ex1001 corresponding to processing content unique to the present invention, a dedicated decoding processing unit ex1002 corresponding to processing content specific to other conventional standards, and a moving picture decoding method of the present invention A common decoding processing unit ex1003 corresponding to processing contents common to other conventional video decoding methods is used. Here, the dedicated decoding processing units ex1001 and ex1002 are not necessarily specialized in the processing content specific to the present invention or other conventional standards, and may be capable of executing other general-purpose processing. Also, the configuration of the present embodiment can be implemented by LSI ex500.
 このように、本発明の動画像復号方法と、従来の規格の動画像復号方法とで共通する処理内容について、復号処理部を共有することにより、LSIの回路規模を小さくし、かつ、コストを低減することが可能である。 As described above, by sharing the decoding processing unit with respect to the processing contents common to the moving picture decoding method of the present invention and the moving picture decoding method of the conventional standard, the circuit scale of the LSI is reduced, and the cost is reduced. It is possible to reduce.
 本発明に係る動画像符号化方法および動画像復号方法は、あらゆるマルチメディアデータに適用することができ、圧縮率を向上させることが可能であり、例えば携帯電話、DVD装置、およびパーソナルコンピュータ等を用いた蓄積、伝送、通信等における動画像符号化方法および動画像復号方法として有用である。 The moving image encoding method and the moving image decoding method according to the present invention can be applied to any multimedia data, and can improve the compression rate. For example, a mobile phone, a DVD device, a personal computer, etc. It is useful as a moving image encoding method and a moving image decoding method in storage, transmission, communication, etc. used.
 11 画面間予測符号化部
 12 エントロピー符号化部
 
11 Inter-screen prediction encoding unit 12 Entropy encoding unit

Claims (2)

  1.  所定のブロックの動きベクトルの数を判定するステップと、
     前記動きベクトルの数が1である場合に、前記動きベクトルの数が2である場合に比して高い画素精度の値で前記ブロックに対する動きベクトルに関する情報を取得するステップと、
     前記ブロックに関連付けられた数の動きベクトルに応じて予測画素を取得するステップと、
     を含む動画像復号方法。
    Determining the number of motion vectors for a given block;
    Obtaining information on the motion vector for the block with a higher pixel accuracy value when the number of motion vectors is 1 than when the number of motion vectors is 2.
    Obtaining predicted pixels according to the number of motion vectors associated with the block;
    A video decoding method including:
  2.  符号化対象のブロックについての動きベクトルの数を決定するステップと、
     前記動きベクトルの数が1である場合に、前記動きベクトルの数が2である場合に比して高い画素精度で前記動きベクトルを符号化するステップと、
     前記動きベクトルと前記ブロックの符号化データとをストリームに含めるストリーム生成ステップと、
     を含む動画像符号化方法。
    Determining the number of motion vectors for the block to be encoded;
    Encoding the motion vector with higher pixel accuracy when the number of motion vectors is 1 than when the number of motion vectors is 2.
    A stream generation step of including the motion vector and the encoded data of the block in a stream;
    A moving picture encoding method including:
PCT/JP2012/001471 2011-03-08 2012-03-02 Video coding method and video decoding method WO2012120863A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161450205P 2011-03-08 2011-03-08
US61/450,205 2011-03-08

Publications (1)

Publication Number Publication Date
WO2012120863A1 true WO2012120863A1 (en) 2012-09-13

Family

ID=46797835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001471 WO2012120863A1 (en) 2011-03-08 2012-03-02 Video coding method and video decoding method

Country Status (1)

Country Link
WO (1) WO2012120863A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9959646B2 (en) 2014-07-11 2018-05-01 Yahoo Japan Corporation Information display device, distribution device, information display method, and non-transitory computer readable storage medium
CN110177274A (en) * 2014-01-08 2019-08-27 微软技术许可有限责任公司 Select motion vector accuracy
WO2020125754A1 (en) * 2018-12-21 2020-06-25 Beijing Bytedance Network Technology Co., Ltd. Motion vector derivation using higher bit-depth precision
US20210152845A1 (en) 2018-11-17 2021-05-20 Beijing Bytedance Network Technology Co., Ltd. Construction of merge with motion vector difference candidates
US11310508B2 (en) 2018-12-21 2022-04-19 Beijing Bytedance Network Technology Co., Ltd. Motion vector precision in merge with motion vector difference mode
US11546629B2 (en) 2014-01-08 2023-01-03 Microsoft Technology Licensing, Llc Representing motion vectors in an encoded bitstream

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003219426A (en) * 2002-01-23 2003-07-31 Sony Corp Picture information encoding and decoding devices and method therefor, and program
JP2004048522A (en) * 2002-07-15 2004-02-12 Hitachi Ltd Encoding and decoding method for moving image

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003219426A (en) * 2002-01-23 2003-07-31 Sony Corp Picture information encoding and decoding devices and method therefor, and program
JP2004048522A (en) * 2002-07-15 2004-02-12 Hitachi Ltd Encoding and decoding method for moving image

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Test Model under Consideration Output Document (draft007)", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG16 WP3 AND ISO/IEC JTC1/SC29/WG11 2ND MEETING: GENEVA, CH, DOCUMENT: JCTVC-B205, ITU-T, October 2010 (2010-10-01), pages 35 - 39, 61-66 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110177274A (en) * 2014-01-08 2019-08-27 微软技术许可有限责任公司 Select motion vector accuracy
US11546629B2 (en) 2014-01-08 2023-01-03 Microsoft Technology Licensing, Llc Representing motion vectors in an encoded bitstream
US11638016B2 (en) 2014-01-08 2023-04-25 Microsoft Technology Licensing, Llc Selection of motion vector precision
US9959646B2 (en) 2014-07-11 2018-05-01 Yahoo Japan Corporation Information display device, distribution device, information display method, and non-transitory computer readable storage medium
US20210152845A1 (en) 2018-11-17 2021-05-20 Beijing Bytedance Network Technology Co., Ltd. Construction of merge with motion vector difference candidates
US11128884B2 (en) 2018-11-17 2021-09-21 Beijing Bytedance Network Technology Co., Ltd. Construction of merge with motion vector difference candidates
US11706443B2 (en) 2018-11-17 2023-07-18 Beijing Bytedance Network Technology Co., Ltd Construction of affine candidates in video processing
US11831901B2 (en) 2018-11-17 2023-11-28 Beijing Bytedance Network Technology Co., Ltd Generalized bi directional prediction mode in video processing
WO2020125754A1 (en) * 2018-12-21 2020-06-25 Beijing Bytedance Network Technology Co., Ltd. Motion vector derivation using higher bit-depth precision
US11197016B2 (en) 2018-12-21 2021-12-07 Beijing Bytedance Network Technology Co., Ltd. Motion vector range based on motion vector precision
US11310508B2 (en) 2018-12-21 2022-04-19 Beijing Bytedance Network Technology Co., Ltd. Motion vector precision in merge with motion vector difference mode
US11843798B2 (en) 2018-12-21 2023-12-12 Beijing Bytedance Network Technology Co., Ltd Motion vector range based on motion vector precision

Similar Documents

Publication Publication Date Title
JP6172485B2 (en) Image encoding method and image encoding apparatus
JP5855570B2 (en) Image decoding method, image encoding method, image decoding device, image encoding device, program, and integrated circuit
KR101790378B1 (en) Image encoding method, image decoding method, image encoding device, image decoding device, and image encoding/decoding device
JP6394966B2 (en) Encoding method, decoding method, encoding device, and decoding device using temporal motion vector prediction
JP5932733B2 (en) Image decoding method and image decoding apparatus
JP6074864B2 (en) Decoding method, decoding device, and program
JP6422011B2 (en) Moving picture encoding method, moving picture decoding method, moving picture encoding apparatus, and moving picture decoding apparatus
JP2018014753A (en) Image decoding method and image decoding device
WO2012102045A1 (en) Image encoding method, and image decoding method
JP6210375B2 (en) Image encoding method, image decoding method, image encoding device, image decoding device, and image encoding / decoding device
JP2013187905A (en) Methods and apparatuses for encoding and decoding video
WO2012120863A1 (en) Video coding method and video decoding method
WO2012108181A1 (en) Methods and apparatuses for encoding and decoding video using multiple reference pictures
JP6078927B2 (en) Moving picture coding method, moving picture coding apparatus, moving picture decoding method, and moving picture decoding apparatus
JP5873029B2 (en) Video encoding method and video decoding method
JP2014236510A (en) Image encoding method, image decoding method, image encoder and image decoder
JP6365924B2 (en) Image decoding method and image decoding apparatus
JP5680812B1 (en) Image encoding method, image decoding method, image encoding device, and image decoding device
WO2012042810A1 (en) Image encoding method, image decoding method, image encoding device, image decoding device, and image processing system
WO2012073481A1 (en) Video-image encoding method and video-image decoding method
WO2012086166A1 (en) Image encoding method and image decoding method
WO2013046616A1 (en) Image encoding apparatus, image decoding apparatus, image encoding method and image decoding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12754282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP