WO2012118573A1 - Régulation de la lumière dans les visiocasques - Google Patents

Régulation de la lumière dans les visiocasques Download PDF

Info

Publication number
WO2012118573A1
WO2012118573A1 PCT/US2012/022492 US2012022492W WO2012118573A1 WO 2012118573 A1 WO2012118573 A1 WO 2012118573A1 US 2012022492 W US2012022492 W US 2012022492W WO 2012118573 A1 WO2012118573 A1 WO 2012118573A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
image
see
control element
scene
Prior art date
Application number
PCT/US2012/022492
Other languages
English (en)
Inventor
John N. Border
Joseph Bietry
John D. Haddick
Robert Michael Lohse
Original Assignee
Osterhout Group, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/037,335 external-priority patent/US20110213664A1/en
Priority claimed from US13/037,324 external-priority patent/US20110214082A1/en
Application filed by Osterhout Group, Inc. filed Critical Osterhout Group, Inc.
Priority to CA2828407A priority Critical patent/CA2828407A1/fr
Priority to DE112012001032.9T priority patent/DE112012001032T5/de
Publication of WO2012118573A1 publication Critical patent/WO2012118573A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/281Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for attenuating light intensity, e.g. comprising rotatable polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1066Beam splitting or combining systems for enhancing image performance, like resolution, pixel numbers, dual magnifications or dynamic range, by tiling, slicing or overlapping fields of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings

Definitions

  • the present disclosure pertains to see-through head mounted displays and the control of light entering and exiting the head mounted display.
  • See-through head mounted displays allow a user to view a displayed image or a see-through view of the scene in front of the user. See-through head mounted displays can also allow the user to view a combined image comprised of a displayed image and a see-through view of the scene in front of the user in which the displayed image is overlaid on the see-through view.
  • the see-through head mounted display can present the displayed image so that the area of the displayed image is transparent, semitransparent or opaque.
  • the see-through view of the scene is unblocked and an overlaid displayed image can be provided with low contrast.
  • the semitransparent mode the see- through view of the scene is partially blocked and an overlaid displayed image can be provided with higher contrast.
  • the opaque mode the se-through view of the scene is fully blocked and an overlaid displayed image can be provided with high contrast.
  • some head-mounted displays provide a see-through display for an augmented reality view in which real-world scenes are visible to a user but additional image information is overlaid on the real-world scenes.
  • Such an augmented reality view is provided by helmet mounted see-through displays found in military applications and by heads-up displays (HUDs) in the windshields of automobiles. In this case, there can be multiple areas for displaying images over the see-through view.
  • HUDs heads-up displays
  • U.S. Pat. No. 5151722 describes a head mounted display with a folded optical path and a beam splitter with a curved mirror to present an image from a CRT image source to the user's eye.
  • the image source is positioned on the side of the user's head with the optical path multiply folded to present the image light from the image source into the user's eye.
  • the curved mirror is positioned between the user's eye and the scene in front of the user.
  • a see-through version of the head mounted display is also discussed wherein the curved mirror is a partially reflective mirror so the user can see through the curved mirror to view the scene in front of the user.
  • the CRT image source is large and heavy so that it is not well suited for head mounted displays.
  • the multiply folded geometry with the image source located on the side of the user's head makes for a larger beam splitter and a thicker geometry in front of the user's eye so that the overall size of the head mounted display is larger.
  • Image light that passes through the partially reflecting mirror is uncontrolled and as such, a portion of the image light escapes through the front of the see-through head mounted display and is seen externally as eyeglow.
  • U.S. Pat. No. 5699194 discloses a see-through head mounted display with a waveguide wherein the outer surface is a partially reflecting mirror.
  • image light from the image source is reflected multiple times from different areas of the partially reflecting mirror before the image light is presented to the user's eye.
  • a corrective lens is provided so that distortions of the see-through view of the scene are reduced.
  • a liquid crystal shutter is provided to block incoming light from the scene so that the see-through headmounted display can be operated in an opaque mode. Image light that passes through the partially reflecting mirror is uncontrolled and as such, a portion of the image light escapes through the front of the see-through head mounted display and is seen externally as eyeglow.
  • U.S. Pat. No. 6693749 describes a head mounted display with a polarizing beam splitter cube to reduce light losses and improve efficiency.
  • An image source is positioned above the user's eye and the optical path is folded once to present the image light from the image source to the user's eye.
  • a curved fully reflecting mirror is positioned below the user's eye to focus the image light at the user's eye.
  • An unpolarized image source is used so that half of the image light from the image source passes through the polarizing beam splitter while the other half of the light is reflected away from the user's eye and toward the scene in front of the user.
  • a polarizer is positioned in front of the polarizing beam splitter cube to block the half of the light that is reflected away from the user's eye and thereby make the user less observable by others in the neighboring environment.
  • the polarizing beam splitter cube is large and heavy, so that it is not well suited for use in a head mounted display.
  • the curved mirror is also relatively large so that by locating the mirror below the user's eye, the thickness of the see-through head mounted display is necessarily larger.
  • the present disclosure provides a see-through head mounted display that is thin and light in weight with a light control element to selectively block escaping image light and thereby reduce eyeglow.
  • a see-through head mounted display apparatus includes a see-through display assembly including an image source and a partially reflecting mirror.
  • the partially reflecting mirror reflects and transmits respective portions of image light from the image source and scene light from a see-through view of an external environment.
  • a combined image comprised of portions of the reflected image light and the transmitted scene light is provided to a user's eye.
  • a light control element is provided to block escaping light comprised of the transmitted portion of image light and the reflected portion of scene light, while allowing a portion of incoming scene light to be transmitted from the external environment to the see-through display assembly.
  • the light control element transmits a higher percentage of incoming scene light than the percentage of escaping light that is not blocked.
  • a method for viewing an image with reduced eyeglow on a see-through head mounted display having a front and a back includes steps of providing image light to a partially reflecting mirror from an image displayed on an image source and reflecting a first portion of the image light from the partially reflecting mirror while transmitting a second portion of the image light through the partially reflecting mirror.
  • the method also includes steps of transmitting a first portion of scene light from the external environment through a light control element at the front of the see-through head mounted display.
  • Additional steps include transmitting a second portion of the scene light through the partially reflecting mirror while reflecting a third portion of the scene light from the partially reflecting mirror, and combining the first portion of the image light with the second portion of the scene light to provide a combined image to a viewer's eye at the back of the see-through head mounted display comprised of the image displayed on the image source overlaid on a view of the external environment.
  • the method also includes a step of using the light control element to block the transmitted second portion of the image light and the reflected third portion of the scene light to reduce eyeglow.
  • FIG. 1 is an illustration of a see-through head mounted display device
  • FIG. 1A is an illustration of a user with a see-through head mounted display device wherein eyeglow is depicted
  • FIG. 2 is an illustration of a combination image as seen by a user when the see-through display device is operated in a transparent mode
  • FIG. 3 is an illustration of a combination image as seen by a user when the see-through display device is operated in a semi-transparent mode
  • FIG. 4 is a schematic view of a cross-section of a see-through display assembly
  • FIG. 5 is a schematic view of a cross-section of a see-through display assembly
  • FIG. 6 is an illustration of an example of the polarization control used to reduce eyeglow
  • FIG. 7 is a schematic cross-section of a light control element
  • FIG. 8 is a schematic cross-section of a see-through display assembly with a light control element mounted in a glasses frame.
  • FIG. 9 is a flowchart describing a method disclosed herein.
  • FIG. 1 shows an illustration of a see-through head mounted display device 100.
  • the device includes a frame 105 with lenses 110 that have display areas 115 and clear areas 102.
  • the device also has image sources and associated optics (not shown) to present image light from the image source to the display areas 115, wherein the image sources and associated optics can be located at the top, bottom or side of the display areas 115.
  • the frame 105 is supported on the viewer's head with arms 130.
  • the arms 130 also contain electronics 125 including a processor to drive the displays and peripheral electronics 127 including batteries and wireless connection(s) to other information sources such as can be obtained on the internet or from localized servers through Wi-Fi, Bluetooth, cellular or other wireless technologies.
  • a camera 120 can be included to capture images of the surrounding environment.
  • the locations of the various components in the see-through head mounted display device 100 are shown as an example, other locations are possible.
  • the see-through head-mounted display device 100 can further include controllable darkening layers in the display areas 115 wherein the controllable darkening layers can change opacity behind the respective portions of the display area 115 to enable changes in operating mode between transparent, semi-transparent and opaque in the areas where images are displayed.
  • the controllable darkening layers can be segmented so that images can be displayed over different areas of the lenses 110.
  • FIG. 2 shows an example of a combined image as seen by a user using a see- through head mounted display device 100 wherein the see-through head mounted display device 100 is operating in a transparent mode. As can be seen in FIG. 2, the displayed image seen by the user has a low contrast and objects from the see-through view are easily seen in the display area 115.
  • FIG. 3 shows an example of a combined image as seen by a user using a see-through head mounted display device 100 wherein the see-through head mounted display device 100 is operating in a semi- transparent mode.
  • the displayed image seen by the user has a higher contrast and objects from the see-through view are very dim in the display area 115.
  • see-through head mounted display devices 100 can provide image information to one eye of the user or both eyes of the user. See-through head mounted display devices 100 that present image information to both eyes of the user can have one or two image sources. Monoscopic viewing in which the same image information is presented to both eyes is done with see-through head mounted display devices 100 that have one or two image sources. Stereoscopic viewing typically requires a head-mounted display device 100 that has two image sources with different images being presented to the user's eyes wherein the different images have different perspectives of the same scene.
  • image sources to provide images for display are known in the art including, for example, organic light-emitting diode (OLED) displays, quantum dot based light emitting diodes (QLED) displays, liquid crystal displays (LCDs), or liquid crystal on silicon (LCOS) displays.
  • OLED organic light-emitting diode
  • QLED quantum dot based light emitting diodes
  • LCDs liquid crystal displays
  • LCOS liquid crystal on silicon
  • the image sources can be microprojectors or microdisplays with associated optics to present the image light to the display areas 115 so that the user can view the displayed images with his/her eyes.
  • the optics associated with the image sources relay the image light from the image sources to the display areas 115.
  • the optics can comprise refractive lenses, reflective lenses, mirrors, diffractive lenses, holographic lenses or waveguides.
  • the user should be provided with at least a partial view of the scene in front of the see-through head-mounted display device 100 within the user's field of view.
  • the present disclosure concerns see- through head mounted display devices 100 that have optics associated with the image source that include a partially reflective mirror for simultaneously presenting image light and scene light to the user so that the user is provided with a displayed image overlaid on at least a partial see-through view of the scene in front of the user.
  • the partially reflective mirror can be any type of reflecting mirror surface that also allows some portion of the incident light to be transmitted such as for example a partially metalized coated surface or a dielectric multilayer mirror coated surface.
  • This disclosure provides methods and apparatus that reduce eyeglow in see-through head mounted displays such as the see-through head mounted display devices 100 which include a partially reflective mirror in the optics associated with the image source.
  • FIGS. 4 and 5 provide examples of optics associated with image sources for see-through head mounted display devices 100 that include partially reflective mirrors 440 and 540.
  • Light control elements 480 and 580 block image light that passes through the partially reflective mirrors 440 and 540 respectively to reduce escaping light that contributes to eyeglow.
  • the image source includes a projection system (not shown) to provide image light with an optical layout that includes a first horizontal optical axis located in or along the upper portion of the frame 105 in the see-through head mounted display device 100.
  • the optics along this first horizontal axis can include lenses to focus the image light 470 to provide a focused displayed image from the image source to the user's eye 410.
  • a folding mirror 460 then redirects the image light 470 from the first horizontal axis to a non-vertical optical axis 452 that proceeds to a see-through display assembly 400 with a beam splitter layer 420 and a second horizontal optical axis 450.
  • the beam splitter layer 420 can be a partially reflecting mirror or a polarizing beam splitter layer.
  • the beam splitter layer 420 in the see-through display assembly 400 is oriented at an angle to the non- vertical optical axis and the second horizontal optical axis 450 to provide a thinner see-through display assembly 400.
  • the beam splitter layer 420 reflects and redirects at least a portion of the image light 470 along the second horizontal optical axis 450 in a direction away from the user's eye 410. A first portion of the image light 470 that has been reflected by the beam splitter layer 420, is then reflected back toward the user's eye 410 by a partially reflecting mirror 440.
  • the partially reflecting mirror 440 can be spherical or aspheric as appropriate to present a focused image to the user's eye 410.
  • the reflected first portion of the image light 470 then passes back through the beam splitter and is focused at the user's eye 410.
  • Light control element 480 blocks the second portion of the image light 470 thereby reducing escaping light and reducing eyeglow.
  • the light control element 480, the partially reflecting mirror 440, the beam splitter layer 420 and the user's eye 410 are all located along a common optical axis, the second horizontal optical axis 450.
  • a first portion of scene light from the external environment 465 passes through the light control element 480.
  • a second portion of the scene light 465 then passes through the partially reflective mirror 440 and the beam splitter layer 420 to combine with the first portion of the image light 470 to present a combined image to the user's eye 410.
  • the combined image includes the displayed image from the image source overlaid onto at least a partial see-through view of the external environment in front of the user.
  • a third portion of the scene light 465 is reflected by the partially reflecting mirror 440.
  • This third portion of scene light 465 also contributes to eyeglow since it escapes from the see-through display assembly 400.
  • the third portion of scene light 465 contributes a generally reflected light from the environment and as such does not contribute to the observable image 190 that can be seen by external viewers.
  • the eyeglow produced by the third portion of scene light 465 is seen by external viewers as a general brightness in the lenses 110 or as a reflected image of the external scene in front of the user.
  • the image source provides linearly polarized image light 470 and the beam splitter layer 420 is a partially reflective mirror.
  • Linearly polarized image light can be provided by various means including microdisplays with linearly polarized illumination such as LCOS displays or LCD displays, alternately self-luminous displays (such as OLED, QLED and transmissive LCOS) with a linear polarizer can be used to provide linearly polarized image light 470.
  • the light control element 480 is a linear polarizer.
  • the linear polarizer in the light control element 480 is oriented relative to the linearly polarized image light 470 so that the second portion of the linearly polarized image light 470 that passes through the partially reflecting mirror 440 is blocked and eyeglow is reduced.
  • the beam splitter layer 420 is a polarizing beam splitter, or the image source provides polarized image light 470 and the beam splitter layer 420 is a polarizing beam splitter, so that the reflected image light 470 is linearly polarized light, this embodiment and the associated polarization control is shown in FIG. 6.
  • the polarization state of the image light is aligned to the polarizing beam splitter so that the image light 470 is reflected by the polarizing beam splitter.
  • FIG. 6 shows the reflected image light as having S state polarization.
  • a first quarter wave film 430 is provided between the beam splitter layer 420 and the partially reflecting mirror 440.
  • the first quarter wave film 430 converts the linearly polarized image light to circularly polarized image light (shown as S being converted to CR in FIG. 6).
  • the reflected first portion of image light 470 is then also circularly polarized where the circular polarization state is reversed (shown as CL in FIG. 6) so that after passing back through the quarter wave film, the polarization state of the reflected first portion of image light 470 is reversed (to P polarization) compared to the polarization state of the image light 470 provided by the image source (shown as S).
  • the reflected first portion of the image light 470 passes through the polarizing beam splitter without reflection losses.
  • the beam splitter layer 420 is a polarizing beam splitter and the see-through display assembly 400 includes a first quarter wave film 430
  • the light control element 480 is a second quarter wave film 653 and a linear polarizer 654.
  • the second quarter wave film 653 converts the second portion of the circularly polarized image light 470 into linearly polarized image light 470 (shown as CR being converted to S) with a polarization state that is blocked by the linear polarizer 654 in the light control element 480 so that eyeglow is reduced.
  • the light control element 480 includes a linear polarizer 654 and a quarter wave film 653, incoming unpolarized scene light 465 from the external environment in front of the user is converted to linearly polarized light (shown as P polarization state in FIG. 6) while 50% of the light is blocked.
  • the first portion of scene light 465 that passes through the linear polarizer 654 is linearly polarized light which is converted by the quarter wave film to circularly polarized light (shown as P being converted to CL in FIG. 6).
  • the third portion of scene light that is reflected from the partially reflecting mirror 440 has reversed circular polarization (shown as converting from CL to CR in FIG.
  • the linear polarizer 654 then blocks the reflected third portion of the scene light thereby reducing escaping light and reducing eyeglow.
  • the reflected first portion of image light 470 and the transmitted second portion of scene light have the same circular polarization state (shown as CL) so that they combine and are converted by the first quarter wave film 430 into linearly polarized light (shown as P) which passes through the beam splitter when the beam splitter layer 420 is a polarizing beam splitter.
  • the linearly polarized combined light 690 then provides a combined image to the user's eye 410 located at the back of the see-through display assembly 400, where the combined image is comprised of overlaid portions of the displayed image from the image source and the see-through view of the external environment in front of the user.
  • an image source 520 that provides linearly polarized image light 570 is used.
  • the linearly polarized image light 570 enters a waveguide 555 wherein the light is first reflected by total internal reflection from the back surface 530, a first portion of the image light 570 is reflected from a partially reflecting mirror 540 and then transmitted through surface 530 to present an image from the image source 520 to the user's eye 410.
  • the user looks through the waveguide 555 and the partially reflecting mirror 540 to obtain a see-through view of the external scene in front of the user.
  • a corrective element 560 is provided to reduce distortions in the see-through view seen by the user.
  • the combined image presented to the user's eye 410 comprised of the displayed image from the image source 520 overlaid on at least a portion of a see-through view of the external scene, is formed from the image light 570 and the scene light 565.
  • eyeglow comes from a second portion of image light 570 that is transmitted through the partially reflecting mirror 540 where it passes through the corrective element 560 and escapes from the see-through display assembly 500.
  • the linear polarization of the image light 570 is maintained so that the second portion of image light 570 that escapes from the see-through display assembly 500 has the same linear polarization as the image light 570 provided by the image source 520.
  • the light control element 580 for this embodiment comprises a linear polarizer that is oriented along with the image source 520 so that escaping light is blocked.
  • the polarization state of the image light 570 and the orientation of the linear polarizer in the light control element 580 are chosen together to block escaping light.
  • the linear polarizer in the light control element 580 is oriented to block S polarized light. As shown in FIG.
  • the light control element 580, the corrective element 560, the partially reflective mirror 540, the waveguide 555 and the user's eye 410 are all located on a common optical axis 550.
  • FIG. 5 shows image light 570 being reflected once on surface 530 and once on partially reflecting mirror 540, waveguides can be used where multiple reflections of the image light 570 occur on either the surface 530 or the partially reflective mirror 540.
  • the embodiments may include see-through display assemblies 400 and 500 where partially reflective mirrors 440 and 540 respectively are located on common optical axes with the user's eye 410 and light control elements 480 and 580 respectively.
  • This optical layout has been selected to provide the additional benefit of providing a thin see-through display assembly with a large displayed field of view overlaid onto the see-through field of view.
  • the portion of the partially reflective mirror where the image is displayed must be relatively large.
  • an angled beam splitter layer as shown in FIG. 4, it is possible to locate the partially reflective mirror above or below the see-through field of view.
  • the partially refiective mirror is located with an optical axis that is perpendicular to the optical axis associated with the see-through field of view, the lateral dimension of the partially reflective mirror increases the thickness of the see-through display assembly substantially.
  • the embodiments may include partially reflective mirrors that share an optical axis with the see-through field of view so that the large dimension of the partially reflective mirror that is associated with the large displayed field of view is vertical and as such does not contribute to the thickness of the see-through display assembly.
  • the partially reflective mirror since the partially reflective mirror is located on the optical axis of the see-through field of view, the partially reflective mirror must be both partially reflective to provide the displayed image and partially transparent to provide the see- through view.
  • a see-through display assembly was designed similar to that shown in FIG. 4 for a 30 degree field of view displayed image. The partially reflective mirror was then 15 mm high. By positioning the partially reflective mirror in front of the user, the thickness of the see-through display assembly from the front of the partially reflective mirror to the back of the beam splitter layer was reduced to 10 mm.
  • the light control layer includes an electrically controllable darkening layer to reduce the amount of scene light entering the see- through head mounted display.
  • the controllable darkening layer is controlled in response to detected changes in the environment, changes in the user's movements or changes in the type of images being displayed.
  • the controllable darkening layer is segmented to provide differential control in the display areas and the clear areas of the lens to provide a displayed image with higher contrast. Examples of controllable darkening layers include various types of liquid crystal layers, electrowetting layers or electrochromic layers.
  • FIG. 7 shows a cross-sectional view of a light control element 700.
  • Light control element 700 includes a controllable darkening layer 652, a quarter wave film 653, a linear polarizer 654 and a support layer 740.
  • light control element 700 can be a separate replaceable element in the see-through head mounted display device 100.
  • different levels of functionality can be built into the light control element 700 such as different color tints or thicker support layers 740 to provide increased impact resistance, ballistic protection or laser protection.
  • Impact resistance can be provided with a high impact plastic such as polycarbonate and ballistic protection can be provided with a laminated component, as in bullet proof glass.
  • Laser protection can also be provided, for example, with cut filters to block laser wavelengths.
  • the support layer 740 can include photochromic materials which automatically darken when in bright environments to block a portion of the scene light thereby making it easier to view displayed images.
  • controllable darkening layer 652 can be included in some versions of the light control element 700 to block a portion of the scene light to provide improved viewing conditions with higher contrast displayed images in portions of the combined image Simpler versions of light control element 700 may simply omit the controllable darkening layer 652.
  • the quarter wave film 653 should be left out of the light control element 700 when used with certain types of see-through display assemblies 400 such as when the image source provides linearly polarized image light 470 and the beam splitter layer 420 is a partially reflective mirror or when a see-through display assembly 500 is used.
  • FIG. 8 shows an example of a see-through display assembly with a light control element 480 in a glasses frame.
  • the glasses cross-section 800 shows the components of see-through display assembly 400 in a glasses frame 805.
  • the light control element 480 covers the entire see-through view seen by the user.
  • Supporting members 887 and 885 are shown supporting the partially reflecting mirror 440 and the beam splitter layer 420 respectively in the field of view of the user's eye 410.
  • the supporting members 885 and 887 along with the light control element 700 are connected to the glasses frame 805.
  • the other components such as the folding mirror 460 and the first quarter wave film 430 are also connected to the supporting members 887 and 885 so that the combined assembly is structurally sound.
  • FIG. 9 describes a method of using the present disclosure.
  • image light is provided by an image source, such as a microdisplay, to a partially reflecting mirror.
  • the partially reflecting mirror reflects a first portion of the image light while transmitting a second portion of image light.
  • a first portion of scene light is transmitted through a light control element.
  • a second portion of the scene light is transmitted through the partially reflecting mirror while a third portion of the scene light is reflected from the partially reflecting mirror in step 940.
  • step 950 the first portion of image light and the second portion of scene light are combined to provide a combined image to the user's eye wherein the combined image is comprised of the displayed image from the image source overlaid on a see-through view of the external scene in front of the user.
  • step 960 the light control element blocks escaping light from the second portion of the image light and the third portion of the scene light to thereby reduce eyeglow. Wherein the percentage of light in the first portion of scene light that is transmitted through the light control element is larger than the percentage of escaping light from the second portion of image light and the third portion of scene light that is not blocked by the light control element.
  • the partially reflecting mirror included in the apparatus can have a range of reflectivity from 20% to 80%.
  • the lower levels of reflectivity provide for more scene light to be presented to the user's eye so that the see-through view is brighter but, higher levels of image light will escape so that power usage for the image source will be increased to provide a displayed image with a given level of brightness.
  • higher levels of reflectivity provide for less scene light to be presented to the user's eye so that the see-through view is dimmer and lower levels of image light will escape, so that power usage for the image source will be reduced to provide a displayed image with a given level of brightness.
  • Linear polarizers typically block 99.9% or greater of one linear polarization state while allowing 99.9% of the other linear polarization state to pass through.
  • Unpolarized light is comprised of a mixture of the two linear polarization states so that 50%> of the unpolarized light is blocked and 50%> passes through the linear polarizer. Purely absorbing filters or purely reflecting filters cannot block a higher percentage of light than they pass under any circumstances.
  • the polarization states of the various portions of the image light and the scene light are controlled in the see-through display assembly and the light control element such that a high percentage of scene light is allowed to pass into the see- through display assembly while a higher percentage of escaping light is blocked so that a bright see-through view is presented to the user and eyeglow is reduced.
  • the image light or the scene light may take on some elliptical polarization, it is reasonable to expect that the light control element blocks greater than 90% of the escaping light while allowing greater than 30% of the scene light to be transmitted.
  • the polarizing beam splitter in the embodiments discussed herein can be of several different types. While the examples shown in FIGS. 4, 6 and 8 show wiregrid plates or wiregrid films applied to support plates as the polarizing beam splitters, MacNeil prism type polarizing beam splitters can also be used.
  • light absorbing structures are included on one or more of the edges of the frame 105 to absorb light that is reflected or scattered from the user's face.
  • the light absorbing structures can include black areas or textured areas.
  • the light absorbing structures can also be flexible to conform to the user's face.
  • optical axis 652 controllable

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Processing Or Creating Images (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

L'invention se rapporte à un visiocasque semi-transparent qui réduit l'effet de brillance des yeux. Deux images d'une scène sont combinées et présentées à un utilisateur, l'image combinée comprenant des parties de la lumière de l'image qui sont réfléchies et de la lumière provenant d'une vue en transparence de l'environnement extérieur. Ce visiocasque comporte un élément de régulation de la lumière destiné à bloquer les parties de la lumière de l'image qui s'échappent et les parties de la lumière de la scène qui sont réfléchies, cet élément de régulation de la lumière permettant en même temps la transmission, en provenance de l'environnement extérieur, de la lumière de la scène qui entre. Les images sont produites à l'aide d'un miroir partiellement réfléchissant et d'un élément de régulation de la lumière. Une partie de la lumière de la scène est transmise par l'intermédiaire du miroir partiellement réfléchissant et combinée à une partie de la lumière de l'image qui est réfléchie par ledit miroir partiellement réfléchissant. Un élément de régulation de la lumière sert à bloquer une partie de la lumière de l'image et une partie de la lumière de la scène afin de réduire l'effet de brillance des yeux.
PCT/US2012/022492 2011-02-28 2012-01-25 Régulation de la lumière dans les visiocasques WO2012118573A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA2828407A CA2828407A1 (fr) 2011-02-28 2012-01-25 Regulation de la lumiere dans les visiocasques
DE112012001032.9T DE112012001032T5 (de) 2011-02-28 2012-01-25 Lichtsteuerung in am Kopf zu tragenden Displays

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US13/037,335 US20110213664A1 (en) 2010-02-28 2011-02-28 Local advertising content on an interactive head-mounted eyepiece
US13/037,324 US20110214082A1 (en) 2010-02-28 2011-02-28 Projection triggering through an external marker in an augmented reality eyepiece
US13/037,335 2011-02-28
US13/037,324 2011-02-28

Publications (1)

Publication Number Publication Date
WO2012118573A1 true WO2012118573A1 (fr) 2012-09-07

Family

ID=46758533

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2012/022492 WO2012118573A1 (fr) 2011-02-28 2012-01-25 Régulation de la lumière dans les visiocasques
PCT/US2012/022568 WO2012118575A2 (fr) 2011-02-28 2012-01-25 Commande d'alignement dans un casque à réalité augmentée

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2012/022568 WO2012118575A2 (fr) 2011-02-28 2012-01-25 Commande d'alignement dans un casque à réalité augmentée

Country Status (3)

Country Link
CA (2) CA2828407A1 (fr)
DE (2) DE112012001032T5 (fr)
WO (2) WO2012118573A1 (fr)

Cited By (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8467133B2 (en) 2010-02-28 2013-06-18 Osterhout Group, Inc. See-through display with an optical assembly including a wedge-shaped illumination system
US8472120B2 (en) 2010-02-28 2013-06-25 Osterhout Group, Inc. See-through near-eye display glasses with a small scale image source
US8477425B2 (en) 2010-02-28 2013-07-02 Osterhout Group, Inc. See-through near-eye display glasses including a partially reflective, partially transmitting optical element
US8482859B2 (en) 2010-02-28 2013-07-09 Osterhout Group, Inc. See-through near-eye display glasses wherein image light is transmitted to and reflected from an optically flat film
US8488246B2 (en) 2010-02-28 2013-07-16 Osterhout Group, Inc. See-through near-eye display glasses including a curved polarizing film in the image source, a partially reflective, partially transmitting optical element and an optically flat film
US8814691B2 (en) 2010-02-28 2014-08-26 Microsoft Corporation System and method for social networking gaming with an augmented reality
WO2014078037A3 (fr) * 2012-11-13 2015-02-19 Qualcomm Incorporated Modification des propriétés d'affichage d'objet virtuel pour augmenter la performance de puissance des dispositifs de réalité augmentée
US9091851B2 (en) 2010-02-28 2015-07-28 Microsoft Technology Licensing, Llc Light control in head mounted displays
US9097891B2 (en) 2010-02-28 2015-08-04 Microsoft Technology Licensing, Llc See-through near-eye display glasses including an auto-brightness control for the display brightness based on the brightness in the environment
US9097890B2 (en) 2010-02-28 2015-08-04 Microsoft Technology Licensing, Llc Grating in a light transmissive illumination system for see-through near-eye display glasses
US9122054B2 (en) 2014-01-24 2015-09-01 Osterhout Group, Inc. Stray light suppression for head worn computing
US9128281B2 (en) 2010-09-14 2015-09-08 Microsoft Technology Licensing, Llc Eyepiece with uniformly illuminated reflective display
US9129295B2 (en) 2010-02-28 2015-09-08 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a fast response photochromic film system for quick transition from dark to clear
US9134534B2 (en) 2010-02-28 2015-09-15 Microsoft Technology Licensing, Llc See-through near-eye display glasses including a modular image source
WO2015142654A1 (fr) * 2014-03-18 2015-09-24 3M Innovative Properties Company Combineur d'image à faible profil pour dispositifs d'affichage proches de l'œil
US9158116B1 (en) 2014-04-25 2015-10-13 Osterhout Group, Inc. Temple and ear horn assembly for headworn computer
US9182596B2 (en) 2010-02-28 2015-11-10 Microsoft Technology Licensing, Llc See-through near-eye display glasses with the optical assembly including absorptive polarizers or anti-reflective coatings to reduce stray light
USD743963S1 (en) 2014-12-22 2015-11-24 Osterhout Group, Inc. Air mouse
US9223134B2 (en) 2010-02-28 2015-12-29 Microsoft Technology Licensing, Llc Optical imperfections in a light transmissive illumination system for see-through near-eye display glasses
US9229227B2 (en) 2010-02-28 2016-01-05 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a light transmissive wedge shaped illumination system
US9285589B2 (en) 2010-02-28 2016-03-15 Microsoft Technology Licensing, Llc AR glasses with event and sensor triggered control of AR eyepiece applications
USD751552S1 (en) 2014-12-31 2016-03-15 Osterhout Group, Inc. Computer glasses
US9298002B2 (en) 2014-01-21 2016-03-29 Osterhout Group, Inc. Optical configurations for head worn computing
US9298007B2 (en) 2014-01-21 2016-03-29 Osterhout Group, Inc. Eye imaging in head worn computing
USD753114S1 (en) 2015-01-05 2016-04-05 Osterhout Group, Inc. Air mouse
US9310610B2 (en) 2014-01-21 2016-04-12 Osterhout Group, Inc. See-through computer display systems
US9316833B2 (en) 2014-01-21 2016-04-19 Osterhout Group, Inc. Optical configurations for head worn computing
US9329387B2 (en) 2014-01-21 2016-05-03 Osterhout Group, Inc. See-through computer display systems
US9341843B2 (en) 2010-02-28 2016-05-17 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a small scale image source
US9366862B2 (en) 2010-02-28 2016-06-14 Microsoft Technology Licensing, Llc System and method for delivering content to a group of see-through near eye display eyepieces
US9366867B2 (en) 2014-07-08 2016-06-14 Osterhout Group, Inc. Optical systems for see-through displays
US9366868B2 (en) 2014-09-26 2016-06-14 Osterhout Group, Inc. See-through computer display systems
US9401540B2 (en) 2014-02-11 2016-07-26 Osterhout Group, Inc. Spatial location presentation in head worn computing
US9423842B2 (en) 2014-09-18 2016-08-23 Osterhout Group, Inc. Thermal management for head-worn computer
US9423612B2 (en) 2014-03-28 2016-08-23 Osterhout Group, Inc. Sensor dependent content position in head worn computing
WO2016133886A1 (fr) * 2015-02-17 2016-08-25 Osterhout Group, Inc. Systèmes informatiques d'affichage transparent
US9448409B2 (en) 2014-11-26 2016-09-20 Osterhout Group, Inc. See-through computer display systems
US9494800B2 (en) 2014-01-21 2016-11-15 Osterhout Group, Inc. See-through computer display systems
JP2016212147A (ja) * 2015-04-30 2016-12-15 ソニー株式会社 表示装置及び表示装置の初期設定方法
US9523856B2 (en) 2014-01-21 2016-12-20 Osterhout Group, Inc. See-through computer display systems
US9529195B2 (en) 2014-01-21 2016-12-27 Osterhout Group, Inc. See-through computer display systems
US9532714B2 (en) 2014-01-21 2017-01-03 Osterhout Group, Inc. Eye imaging in head worn computing
US9547465B2 (en) 2014-02-14 2017-01-17 Osterhout Group, Inc. Object shadowing in head worn computing
US9575321B2 (en) 2014-06-09 2017-02-21 Osterhout Group, Inc. Content presentation in head worn computing
US9651787B2 (en) 2014-04-25 2017-05-16 Osterhout Group, Inc. Speaker assembly for headworn computer
US9651784B2 (en) 2014-01-21 2017-05-16 Osterhout Group, Inc. See-through computer display systems
US9672210B2 (en) 2014-04-25 2017-06-06 Osterhout Group, Inc. Language translation with head-worn computing
US9671613B2 (en) 2014-09-26 2017-06-06 Osterhout Group, Inc. See-through computer display systems
US9684172B2 (en) 2014-12-03 2017-06-20 Osterhout Group, Inc. Head worn computer display systems
US9715112B2 (en) 2014-01-21 2017-07-25 Osterhout Group, Inc. Suppression of stray light in head worn computing
US9720234B2 (en) 2014-01-21 2017-08-01 Osterhout Group, Inc. See-through computer display systems
US9740280B2 (en) 2014-01-21 2017-08-22 Osterhout Group, Inc. Eye imaging in head worn computing
US9746686B2 (en) 2014-05-19 2017-08-29 Osterhout Group, Inc. Content position calibration in head worn computing
US9753288B2 (en) 2014-01-21 2017-09-05 Osterhout Group, Inc. See-through computer display systems
US9759917B2 (en) 2010-02-28 2017-09-12 Microsoft Technology Licensing, Llc AR glasses with event and sensor triggered AR eyepiece interface to external devices
US9766463B2 (en) 2014-01-21 2017-09-19 Osterhout Group, Inc. See-through computer display systems
US9784973B2 (en) 2014-02-11 2017-10-10 Osterhout Group, Inc. Micro doppler presentations in head worn computing
US9810906B2 (en) 2014-06-17 2017-11-07 Osterhout Group, Inc. External user interface for head worn computing
US9811152B2 (en) 2014-01-21 2017-11-07 Osterhout Group, Inc. Eye imaging in head worn computing
US9829707B2 (en) 2014-08-12 2017-11-28 Osterhout Group, Inc. Measuring content brightness in head worn computing
CN107422481A (zh) * 2017-08-07 2017-12-01 杭州太若科技有限公司 用于实现增强现实的装置和方法
US9836122B2 (en) 2014-01-21 2017-12-05 Osterhout Group, Inc. Eye glint imaging in see-through computer display systems
US9841599B2 (en) 2014-06-05 2017-12-12 Osterhout Group, Inc. Optical configurations for head-worn see-through displays
CN107589546A (zh) * 2017-10-23 2018-01-16 北京小米移动软件有限公司 光学***及增强现实眼镜
US9910284B1 (en) 2016-09-08 2018-03-06 Osterhout Group, Inc. Optical systems for head-worn computers
US9939934B2 (en) 2014-01-17 2018-04-10 Osterhout Group, Inc. External user interface for head worn computing
US9952664B2 (en) 2014-01-21 2018-04-24 Osterhout Group, Inc. Eye imaging in head worn computing
US9965681B2 (en) 2008-12-16 2018-05-08 Osterhout Group, Inc. Eye imaging in head worn computing
US10062182B2 (en) 2015-02-17 2018-08-28 Osterhout Group, Inc. See-through computer display systems
CN108572457A (zh) * 2018-07-12 2018-09-25 王锐 一种光学显示***
CN108594441A (zh) * 2018-07-04 2018-09-28 王锐 一种光学***
CN108681073A (zh) * 2018-07-17 2018-10-19 王锐 一种增强现实光学显示***
WO2018229329A1 (fr) * 2017-06-14 2018-12-20 Varjo Technologies Oy Appareil d'affichage et procédé d'affichage utilisant des polariseurs
US10180572B2 (en) 2010-02-28 2019-01-15 Microsoft Technology Licensing, Llc AR glasses with event and user action control of external applications
US10191279B2 (en) 2014-03-17 2019-01-29 Osterhout Group, Inc. Eye imaging in head worn computing
CN109387942A (zh) * 2018-03-28 2019-02-26 深圳惠牛科技有限公司 一种光学***及增强现实设备
US10254856B2 (en) 2014-01-17 2019-04-09 Osterhout Group, Inc. External user interface for head worn computing
CN109991744A (zh) * 2018-01-02 2019-07-09 京东方科技集团股份有限公司 显示装置、显示方法及平视显示装置
WO2019154432A1 (fr) * 2018-02-12 2019-08-15 杭州太若科技有限公司 Dispositif de réalité augmentée et système optique utilisé en son sein
CN110146978A (zh) * 2018-02-12 2019-08-20 杭州太若科技有限公司 Ar显示装置和穿戴式ar设备
US10394036B2 (en) 2012-10-18 2019-08-27 Arizona Board Of Regents On Behalf Of The University Of Arizona Stereoscopic displays with addressable focus cues
US10416452B2 (en) 2009-04-20 2019-09-17 The Arizona Board Of Regents On Behalf Of The University Of Arizona Optical see-through free-form head-mounted display
US10422995B2 (en) 2017-07-24 2019-09-24 Mentor Acquisition One, Llc See-through computer display systems with stray light management
US10469833B2 (en) 2014-03-05 2019-11-05 The Arizona Board Of Regents On Behalf Of The University Of Arizona Wearable 3D augmented reality display with variable focus and/or object recognition
WO2019226269A2 (fr) 2018-04-24 2019-11-28 Mentor Acquisition One, Llc Systèmes d'affichage d'ordinateur transparent avec correction de la vision et densité de contenu accrue
US10495859B2 (en) 2008-01-22 2019-12-03 The Arizona Board Of Regents On Behalf Of The University Of Arizona Head-mounted projection display using reflective microdisplays
US10539787B2 (en) 2010-02-28 2020-01-21 Microsoft Technology Licensing, Llc Head-worn adaptive display
US10558050B2 (en) 2014-01-24 2020-02-11 Mentor Acquisition One, Llc Haptic systems for head-worn computers
US10578869B2 (en) 2017-07-24 2020-03-03 Mentor Acquisition One, Llc See-through computer display systems with adjustable zoom cameras
US10593507B2 (en) 2015-02-09 2020-03-17 Arizona Board Of Regents On Behalf Of The University Of Arizona Small portable night vision system
US10598939B2 (en) 2012-01-24 2020-03-24 Arizona Board Of Regents On Behalf Of The University Of Arizona Compact eye-tracked head-mounted display
JP2020510228A (ja) * 2017-02-23 2020-04-02 マジック リープ, インコーポレイテッドMagic Leap,Inc. 偏光変換に基づく可変焦点画像デバイス
US10649220B2 (en) 2014-06-09 2020-05-12 Mentor Acquisition One, Llc Content presentation in head worn computing
US10663740B2 (en) 2014-06-09 2020-05-26 Mentor Acquisition One, Llc Content presentation in head worn computing
WO2020114582A1 (fr) * 2018-12-04 2020-06-11 Telefonaktiebolaget Lm Ericsson (Publ) Dispositif de visualisation transparent optique amélioré et procédé de fourniture d'objets visuels chevauchant un contenu virtuel
US10684687B2 (en) 2014-12-03 2020-06-16 Mentor Acquisition One, Llc See-through computer display systems
CN111474715A (zh) * 2020-04-23 2020-07-31 歌尔股份有限公司 光学***及增强现实设备
US10739578B2 (en) 2016-08-12 2020-08-11 The Arizona Board Of Regents On Behalf Of The University Of Arizona High-resolution freeform eyepiece design with a large exit pupil
US10853589B2 (en) 2014-04-25 2020-12-01 Mentor Acquisition One, Llc Language translation with head-worn computing
CN112051671A (zh) * 2019-06-06 2020-12-08 舜宇光学(浙江)研究院有限公司 一种近眼显示光机及其方法和近眼显示设备
US10860100B2 (en) 2010-02-28 2020-12-08 Microsoft Technology Licensing, Llc AR glasses with predictive control of external device based on event input
US10969584B2 (en) 2017-08-04 2021-04-06 Mentor Acquisition One, Llc Image expansion optic for head-worn computer
EP3754412A4 (fr) * 2018-02-12 2021-06-02 Matrixed Reality Technology Co., Ltd. Système portatif de réalité augmentée et dispositif d'affichage en réalité augmentée
US11079596B2 (en) 2009-09-14 2021-08-03 The Arizona Board Of Regents On Behalf Of The University Of Arizona 3-dimensional electro-optical see-through displays
US11104272B2 (en) 2014-03-28 2021-08-31 Mentor Acquisition One, Llc System for assisted operator safety using an HMD
US11103122B2 (en) 2014-07-15 2021-08-31 Mentor Acquisition One, Llc Content presentation in head worn computing
WO2021197062A1 (fr) * 2020-03-31 2021-10-07 优奈柯恩(北京)科技有限公司 Appareil optique et dispositif monté sur la tête
US11227294B2 (en) 2014-04-03 2022-01-18 Mentor Acquisition One, Llc Sight information collection in head worn computing
US11269182B2 (en) 2014-07-15 2022-03-08 Mentor Acquisition One, Llc Content presentation in head worn computing
US11409105B2 (en) 2017-07-24 2022-08-09 Mentor Acquisition One, Llc See-through computer display systems
US11474359B2 (en) 2015-03-16 2022-10-18 Magic Leap, Inc. Augmented and virtual reality display systems and methods for diagnosing health conditions based on visual fields
US11487110B2 (en) 2014-01-21 2022-11-01 Mentor Acquisition One, Llc Eye imaging in head worn computing
US11546575B2 (en) 2018-03-22 2023-01-03 Arizona Board Of Regents On Behalf Of The University Of Arizona Methods of rendering light field images for integral-imaging-based light field display
US11609430B2 (en) 2010-04-30 2023-03-21 The Arizona Board Of Regents On Behalf Of The University Of Arizona Wide angle and high resolution tiled head-mounted display device
US11669163B2 (en) 2014-01-21 2023-06-06 Mentor Acquisition One, Llc Eye glint imaging in see-through computer display systems
WO2023131980A1 (fr) * 2022-01-07 2023-07-13 Tesseract Imaging Limited Appareil de visualisation d'images optiques et procédé associé
US11737666B2 (en) 2014-01-21 2023-08-29 Mentor Acquisition One, Llc Eye imaging in head worn computing
US11892644B2 (en) 2014-01-21 2024-02-06 Mentor Acquisition One, Llc See-through computer display systems

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9619021B2 (en) 2013-01-09 2017-04-11 Lg Electronics Inc. Head mounted display providing eye gaze calibration and control method thereof
US20140191927A1 (en) * 2013-01-09 2014-07-10 Lg Electronics Inc. Head mount display device providing eye gaze calibration and control method thereof
KR20140090552A (ko) 2013-01-09 2014-07-17 엘지전자 주식회사 시선 캘리브레이션을 제공하는 헤드 마운트 디스플레이 및 그 제어 방법
US9965030B2 (en) * 2014-07-31 2018-05-08 Samsung Electronics Co., Ltd. Wearable glasses and method of displaying image via the wearable glasses
DE102017217923A1 (de) 2017-10-09 2019-04-11 Audi Ag Verfahren zum Betrieb einer Anzeigeeinrichtung in einem Kraftfahrzeug
US20240045211A1 (en) * 2020-12-09 2024-02-08 Innotonix Gmbh Increased Optical Performance of Head-Mounted Displays inside Laser Safety Eyewear

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151722A (en) * 1990-11-05 1992-09-29 The Johns Hopkins University Video display on spectacle-like frame
JPH08136852A (ja) * 1994-11-02 1996-05-31 Olympus Optical Co Ltd 接眼光学系を有する光学装置
US5699194A (en) * 1996-02-13 1997-12-16 Olympus Optical Co., Ltd. Image display apparatus comprising an internally reflecting ocular optical system
US6040945A (en) * 1996-03-11 2000-03-21 Seiko Epson Corporation Head mount display device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625765A (en) * 1993-09-03 1997-04-29 Criticom Corp. Vision systems including devices and methods for combining images for extended magnification schemes
US6753828B2 (en) 2000-09-25 2004-06-22 Siemens Corporated Research, Inc. System and method for calibrating a stereo optical see-through head-mounted display system for augmented reality
US7369101B2 (en) * 2003-06-12 2008-05-06 Siemens Medical Solutions Usa, Inc. Calibrating real and virtual views
US7805003B1 (en) 2003-11-18 2010-09-28 Adobe Systems Incorporated Identifying one or more objects within an image
US7755667B2 (en) 2005-05-17 2010-07-13 Eastman Kodak Company Image sequence stabilization method and camera having dual path image sequence stabilization
US7898504B2 (en) * 2007-04-06 2011-03-01 Sony Corporation Personal theater display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151722A (en) * 1990-11-05 1992-09-29 The Johns Hopkins University Video display on spectacle-like frame
JPH08136852A (ja) * 1994-11-02 1996-05-31 Olympus Optical Co Ltd 接眼光学系を有する光学装置
US5699194A (en) * 1996-02-13 1997-12-16 Olympus Optical Co., Ltd. Image display apparatus comprising an internally reflecting ocular optical system
US6040945A (en) * 1996-03-11 2000-03-21 Seiko Epson Corporation Head mount display device

Cited By (285)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10495859B2 (en) 2008-01-22 2019-12-03 The Arizona Board Of Regents On Behalf Of The University Of Arizona Head-mounted projection display using reflective microdisplays
US11150449B2 (en) 2008-01-22 2021-10-19 Arizona Board Of Regents On Behalf Of The University Of Arizona Head-mounted projection display using reflective microdisplays
US11592650B2 (en) 2008-01-22 2023-02-28 Arizona Board Of Regents On Behalf Of The University Of Arizona Head-mounted projection display using reflective microdisplays
US9965681B2 (en) 2008-12-16 2018-05-08 Osterhout Group, Inc. Eye imaging in head worn computing
US10416452B2 (en) 2009-04-20 2019-09-17 The Arizona Board Of Regents On Behalf Of The University Of Arizona Optical see-through free-form head-mounted display
US11300790B2 (en) 2009-04-20 2022-04-12 Arizona Board Of Regents On Behalf Of The University Of Arizona Optical see-through free-form head-mounted display
US11803059B2 (en) 2009-09-14 2023-10-31 The Arizona Board Of Regents On Behalf Of The University Of Arizona 3-dimensional electro-optical see-through displays
US11079596B2 (en) 2009-09-14 2021-08-03 The Arizona Board Of Regents On Behalf Of The University Of Arizona 3-dimensional electro-optical see-through displays
US10539787B2 (en) 2010-02-28 2020-01-21 Microsoft Technology Licensing, Llc Head-worn adaptive display
US9341843B2 (en) 2010-02-28 2016-05-17 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a small scale image source
US9097890B2 (en) 2010-02-28 2015-08-04 Microsoft Technology Licensing, Llc Grating in a light transmissive illumination system for see-through near-eye display glasses
US9091851B2 (en) 2010-02-28 2015-07-28 Microsoft Technology Licensing, Llc Light control in head mounted displays
US8467133B2 (en) 2010-02-28 2013-06-18 Osterhout Group, Inc. See-through display with an optical assembly including a wedge-shaped illumination system
US9129295B2 (en) 2010-02-28 2015-09-08 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a fast response photochromic film system for quick transition from dark to clear
US9134534B2 (en) 2010-02-28 2015-09-15 Microsoft Technology Licensing, Llc See-through near-eye display glasses including a modular image source
US9759917B2 (en) 2010-02-28 2017-09-12 Microsoft Technology Licensing, Llc AR glasses with event and sensor triggered AR eyepiece interface to external devices
US9875406B2 (en) 2010-02-28 2018-01-23 Microsoft Technology Licensing, Llc Adjustable extension for temple arm
US9182596B2 (en) 2010-02-28 2015-11-10 Microsoft Technology Licensing, Llc See-through near-eye display glasses with the optical assembly including absorptive polarizers or anti-reflective coatings to reduce stray light
US8472120B2 (en) 2010-02-28 2013-06-25 Osterhout Group, Inc. See-through near-eye display glasses with a small scale image source
US9223134B2 (en) 2010-02-28 2015-12-29 Microsoft Technology Licensing, Llc Optical imperfections in a light transmissive illumination system for see-through near-eye display glasses
US9229227B2 (en) 2010-02-28 2016-01-05 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a light transmissive wedge shaped illumination system
US9285589B2 (en) 2010-02-28 2016-03-15 Microsoft Technology Licensing, Llc AR glasses with event and sensor triggered control of AR eyepiece applications
US10180572B2 (en) 2010-02-28 2019-01-15 Microsoft Technology Licensing, Llc AR glasses with event and user action control of external applications
US10268888B2 (en) 2010-02-28 2019-04-23 Microsoft Technology Licensing, Llc Method and apparatus for biometric data capture
US8477425B2 (en) 2010-02-28 2013-07-02 Osterhout Group, Inc. See-through near-eye display glasses including a partially reflective, partially transmitting optical element
US8482859B2 (en) 2010-02-28 2013-07-09 Osterhout Group, Inc. See-through near-eye display glasses wherein image light is transmitted to and reflected from an optically flat film
US10860100B2 (en) 2010-02-28 2020-12-08 Microsoft Technology Licensing, Llc AR glasses with predictive control of external device based on event input
US9366862B2 (en) 2010-02-28 2016-06-14 Microsoft Technology Licensing, Llc System and method for delivering content to a group of see-through near eye display eyepieces
US8814691B2 (en) 2010-02-28 2014-08-26 Microsoft Corporation System and method for social networking gaming with an augmented reality
US8488246B2 (en) 2010-02-28 2013-07-16 Osterhout Group, Inc. See-through near-eye display glasses including a curved polarizing film in the image source, a partially reflective, partially transmitting optical element and an optically flat film
US9329689B2 (en) 2010-02-28 2016-05-03 Microsoft Technology Licensing, Llc Method and apparatus for biometric data capture
US9097891B2 (en) 2010-02-28 2015-08-04 Microsoft Technology Licensing, Llc See-through near-eye display glasses including an auto-brightness control for the display brightness based on the brightness in the environment
US11609430B2 (en) 2010-04-30 2023-03-21 The Arizona Board Of Regents On Behalf Of The University Of Arizona Wide angle and high resolution tiled head-mounted display device
US9128281B2 (en) 2010-09-14 2015-09-08 Microsoft Technology Licensing, Llc Eyepiece with uniformly illuminated reflective display
US10969592B2 (en) 2012-01-24 2021-04-06 Arizona Board Of Regents On Behalf Of The University Of Arizona Compact eye-tracked head-mounted display
US11181746B2 (en) 2012-01-24 2021-11-23 Arizona Board Of Regents On Behalf Of The University Of Arizona Compact eye-tracked head-mounted display
US10613328B2 (en) 2012-01-24 2020-04-07 The Arizona Board Of Regents On Behalf Of The University Of Arizona Compact eye-tracked head-mounted display
US10606080B2 (en) 2012-01-24 2020-03-31 The Arizona Board Of Regents On Behalf Of The University Of Arizona Compact eye-tracked head-mounted display
US10598939B2 (en) 2012-01-24 2020-03-24 Arizona Board Of Regents On Behalf Of The University Of Arizona Compact eye-tracked head-mounted display
US10394036B2 (en) 2012-10-18 2019-08-27 Arizona Board Of Regents On Behalf Of The University Of Arizona Stereoscopic displays with addressable focus cues
US10598946B2 (en) 2012-10-18 2020-03-24 The Arizona Board Of Regents On Behalf Of The University Of Arizona Stereoscopic displays with addressable focus cues
US11347036B2 (en) 2012-10-18 2022-05-31 The Arizona Board Of Regents On Behalf Of The University Of Arizona Stereoscopic displays with addressable focus cues
US9448404B2 (en) 2012-11-13 2016-09-20 Qualcomm Incorporated Modifying virtual object display properties to increase power performance of augmented reality devices
WO2014078037A3 (fr) * 2012-11-13 2015-02-19 Qualcomm Incorporated Modification des propriétés d'affichage d'objet virtuel pour augmenter la performance de puissance des dispositifs de réalité augmentée
CN104781853A (zh) * 2012-11-13 2015-07-15 高通股份有限公司 修改虚拟对象显示性质以增加增强现实装置的电力性能
US9727996B2 (en) 2012-11-13 2017-08-08 Qualcomm Incorporated Modifying virtual object display properties to increase power performance of augmented reality devices
US9619911B2 (en) 2012-11-13 2017-04-11 Qualcomm Incorporated Modifying virtual object display properties
US11169623B2 (en) 2014-01-17 2021-11-09 Mentor Acquisition One, Llc External user interface for head worn computing
US10254856B2 (en) 2014-01-17 2019-04-09 Osterhout Group, Inc. External user interface for head worn computing
US11507208B2 (en) 2014-01-17 2022-11-22 Mentor Acquisition One, Llc External user interface for head worn computing
US9939934B2 (en) 2014-01-17 2018-04-10 Osterhout Group, Inc. External user interface for head worn computing
US11231817B2 (en) 2014-01-17 2022-01-25 Mentor Acquisition One, Llc External user interface for head worn computing
US11782529B2 (en) 2014-01-17 2023-10-10 Mentor Acquisition One, Llc External user interface for head worn computing
US9715112B2 (en) 2014-01-21 2017-07-25 Osterhout Group, Inc. Suppression of stray light in head worn computing
US10007118B2 (en) 2014-01-21 2018-06-26 Osterhout Group, Inc. Compact optical system with improved illumination
US10890760B2 (en) 2014-01-21 2021-01-12 Mentor Acquisition One, Llc See-through computer display systems
US9594246B2 (en) 2014-01-21 2017-03-14 Osterhout Group, Inc. See-through computer display systems
US9615742B2 (en) 2014-01-21 2017-04-11 Osterhout Group, Inc. Eye imaging in head worn computing
US9538915B2 (en) 2014-01-21 2017-01-10 Osterhout Group, Inc. Eye imaging in head worn computing
US11002961B2 (en) 2014-01-21 2021-05-11 Mentor Acquisition One, Llc See-through computer display systems
US9651784B2 (en) 2014-01-21 2017-05-16 Osterhout Group, Inc. See-through computer display systems
US9651788B2 (en) 2014-01-21 2017-05-16 Osterhout Group, Inc. See-through computer display systems
US9651783B2 (en) 2014-01-21 2017-05-16 Osterhout Group, Inc. See-through computer display systems
US9651789B2 (en) 2014-01-21 2017-05-16 Osterhout Group, Inc. See-Through computer display systems
US9658457B2 (en) 2014-01-21 2017-05-23 Osterhout Group, Inc. See-through computer display systems
US9658458B2 (en) 2014-01-21 2017-05-23 Osterhout Group, Inc. See-through computer display systems
US11054902B2 (en) 2014-01-21 2021-07-06 Mentor Acquisition One, Llc Eye glint imaging in see-through computer display systems
US10698223B2 (en) 2014-01-21 2020-06-30 Mentor Acquisition One, Llc See-through computer display systems
US9684171B2 (en) 2014-01-21 2017-06-20 Osterhout Group, Inc. See-through computer display systems
US11947126B2 (en) 2014-01-21 2024-04-02 Mentor Acquisition One, Llc See-through computer display systems
US9684165B2 (en) 2014-01-21 2017-06-20 Osterhout Group, Inc. Eye imaging in head worn computing
US11892644B2 (en) 2014-01-21 2024-02-06 Mentor Acquisition One, Llc See-through computer display systems
US9532715B2 (en) 2014-01-21 2017-01-03 Osterhout Group, Inc. Eye imaging in head worn computing
US9329387B2 (en) 2014-01-21 2016-05-03 Osterhout Group, Inc. See-through computer display systems
US9720235B2 (en) 2014-01-21 2017-08-01 Osterhout Group, Inc. See-through computer display systems
US9720227B2 (en) 2014-01-21 2017-08-01 Osterhout Group, Inc. See-through computer display systems
US9720234B2 (en) 2014-01-21 2017-08-01 Osterhout Group, Inc. See-through computer display systems
US9532714B2 (en) 2014-01-21 2017-01-03 Osterhout Group, Inc. Eye imaging in head worn computing
US11099380B2 (en) 2014-01-21 2021-08-24 Mentor Acquisition One, Llc Eye imaging in head worn computing
US9740012B2 (en) 2014-01-21 2017-08-22 Osterhout Group, Inc. See-through computer display systems
US9740280B2 (en) 2014-01-21 2017-08-22 Osterhout Group, Inc. Eye imaging in head worn computing
US9377625B2 (en) 2014-01-21 2016-06-28 Osterhout Group, Inc. Optical configurations for head worn computing
US9746676B2 (en) 2014-01-21 2017-08-29 Osterhout Group, Inc. See-through computer display systems
US9753288B2 (en) 2014-01-21 2017-09-05 Osterhout Group, Inc. See-through computer display systems
US9529192B2 (en) 2014-01-21 2016-12-27 Osterhout Group, Inc. Eye imaging in head worn computing
US9766463B2 (en) 2014-01-21 2017-09-19 Osterhout Group, Inc. See-through computer display systems
US9772492B2 (en) 2014-01-21 2017-09-26 Osterhout Group, Inc. Eye imaging in head worn computing
US11103132B2 (en) 2014-01-21 2021-08-31 Mentor Acquisition One, Llc Eye imaging in head worn computing
US11126003B2 (en) 2014-01-21 2021-09-21 Mentor Acquisition One, Llc See-through computer display systems
US10579140B2 (en) 2014-01-21 2020-03-03 Mentor Acquisition One, Llc Eye glint imaging in see-through computer display systems
US9811152B2 (en) 2014-01-21 2017-11-07 Osterhout Group, Inc. Eye imaging in head worn computing
US9811153B2 (en) 2014-01-21 2017-11-07 Osterhout Group, Inc. Eye imaging in head worn computing
US9811159B2 (en) 2014-01-21 2017-11-07 Osterhout Group, Inc. Eye imaging in head worn computing
US9829703B2 (en) 2014-01-21 2017-11-28 Osterhout Group, Inc. Eye imaging in head worn computing
US9316833B2 (en) 2014-01-21 2016-04-19 Osterhout Group, Inc. Optical configurations for head worn computing
US11796805B2 (en) 2014-01-21 2023-10-24 Mentor Acquisition One, Llc Eye imaging in head worn computing
US9836122B2 (en) 2014-01-21 2017-12-05 Osterhout Group, Inc. Eye glint imaging in see-through computer display systems
US9310610B2 (en) 2014-01-21 2016-04-12 Osterhout Group, Inc. See-through computer display systems
US9298001B2 (en) 2014-01-21 2016-03-29 Osterhout Group, Inc. Optical configurations for head worn computing
US9298007B2 (en) 2014-01-21 2016-03-29 Osterhout Group, Inc. Eye imaging in head worn computing
US9298002B2 (en) 2014-01-21 2016-03-29 Osterhout Group, Inc. Optical configurations for head worn computing
US10481393B2 (en) 2014-01-21 2019-11-19 Mentor Acquisition One, Llc See-through computer display systems
US11796799B2 (en) 2014-01-21 2023-10-24 Mentor Acquisition One, Llc See-through computer display systems
US9529199B2 (en) 2014-01-21 2016-12-27 Osterhout Group, Inc. See-through computer display systems
US9885868B2 (en) 2014-01-21 2018-02-06 Osterhout Group, Inc. Eye imaging in head worn computing
US9436006B2 (en) 2014-01-21 2016-09-06 Osterhout Group, Inc. See-through computer display systems
US11353957B2 (en) 2014-01-21 2022-06-07 Mentor Acquisition One, Llc Eye glint imaging in see-through computer display systems
US9927612B2 (en) 2014-01-21 2018-03-27 Osterhout Group, Inc. See-through computer display systems
US9933622B2 (en) 2014-01-21 2018-04-03 Osterhout Group, Inc. See-through computer display systems
US11487110B2 (en) 2014-01-21 2022-11-01 Mentor Acquisition One, Llc Eye imaging in head worn computing
US9529195B2 (en) 2014-01-21 2016-12-27 Osterhout Group, Inc. See-through computer display systems
US9952664B2 (en) 2014-01-21 2018-04-24 Osterhout Group, Inc. Eye imaging in head worn computing
US9958674B2 (en) 2014-01-21 2018-05-01 Osterhout Group, Inc. Eye imaging in head worn computing
US9523856B2 (en) 2014-01-21 2016-12-20 Osterhout Group, Inc. See-through computer display systems
US9971156B2 (en) 2014-01-21 2018-05-15 Osterhout Group, Inc. See-through computer display systems
US9494800B2 (en) 2014-01-21 2016-11-15 Osterhout Group, Inc. See-through computer display systems
US10001644B2 (en) 2014-01-21 2018-06-19 Osterhout Group, Inc. See-through computer display systems
US10866420B2 (en) 2014-01-21 2020-12-15 Mentor Acquisition One, Llc See-through computer display systems
US10012840B2 (en) 2014-01-21 2018-07-03 Osterhout Group, Inc. See-through computer display systems
US10012838B2 (en) 2014-01-21 2018-07-03 Osterhout Group, Inc. Compact optical system with improved contrast uniformity
US10222618B2 (en) 2014-01-21 2019-03-05 Osterhout Group, Inc. Compact optics with reduced chromatic aberrations
US11737666B2 (en) 2014-01-21 2023-08-29 Mentor Acquisition One, Llc Eye imaging in head worn computing
US11619820B2 (en) 2014-01-21 2023-04-04 Mentor Acquisition One, Llc See-through computer display systems
US11669163B2 (en) 2014-01-21 2023-06-06 Mentor Acquisition One, Llc Eye glint imaging in see-through computer display systems
US10191284B2 (en) 2014-01-21 2019-01-29 Osterhout Group, Inc. See-through computer display systems
US10139632B2 (en) 2014-01-21 2018-11-27 Osterhout Group, Inc. See-through computer display systems
US11622426B2 (en) 2014-01-21 2023-04-04 Mentor Acquisition One, Llc See-through computer display systems
US11650416B2 (en) 2014-01-21 2023-05-16 Mentor Acquisition One, Llc See-through computer display systems
US9122054B2 (en) 2014-01-24 2015-09-01 Osterhout Group, Inc. Stray light suppression for head worn computing
US9400390B2 (en) 2014-01-24 2016-07-26 Osterhout Group, Inc. Peripheral lighting for head worn computing
US10558050B2 (en) 2014-01-24 2020-02-11 Mentor Acquisition One, Llc Haptic systems for head-worn computers
US9939646B2 (en) 2014-01-24 2018-04-10 Osterhout Group, Inc. Stray light suppression for head worn computing
US11822090B2 (en) 2014-01-24 2023-11-21 Mentor Acquisition One, Llc Haptic systems for head-worn computers
US9401540B2 (en) 2014-02-11 2016-07-26 Osterhout Group, Inc. Spatial location presentation in head worn computing
US9843093B2 (en) 2014-02-11 2017-12-12 Osterhout Group, Inc. Spatial location presentation in head worn computing
US9841602B2 (en) 2014-02-11 2017-12-12 Osterhout Group, Inc. Location indicating avatar in head worn computing
US9784973B2 (en) 2014-02-11 2017-10-10 Osterhout Group, Inc. Micro doppler presentations in head worn computing
US9547465B2 (en) 2014-02-14 2017-01-17 Osterhout Group, Inc. Object shadowing in head worn computing
US9928019B2 (en) 2014-02-14 2018-03-27 Osterhout Group, Inc. Object shadowing in head worn computing
US11350079B2 (en) 2014-03-05 2022-05-31 Arizona Board Of Regents On Behalf Of The University Of Arizona Wearable 3D augmented reality display
US10805598B2 (en) 2014-03-05 2020-10-13 The Arizona Board Of Regents On Behalf Of The University Of Arizona Wearable 3D lightfield augmented reality display
EP3114527B1 (fr) * 2014-03-05 2021-10-20 Arizona Board of Regents on Behalf of the University of Arizona Affichage à réalité augmentée en 3d portable à focale variable et/ou reconnaissance d'objet
US10469833B2 (en) 2014-03-05 2019-11-05 The Arizona Board Of Regents On Behalf Of The University Of Arizona Wearable 3D augmented reality display with variable focus and/or object recognition
US10191279B2 (en) 2014-03-17 2019-01-29 Osterhout Group, Inc. Eye imaging in head worn computing
US10345598B2 (en) 2014-03-18 2019-07-09 3M Innovative Properties Company Low profile image combiner for near-eye displays
CN106104353A (zh) * 2014-03-18 2016-11-09 3M创新有限公司 用于近眼显示器的低轮廓图像组合器
EP3264145A1 (fr) * 2014-03-18 2018-01-03 3M Innovative Properties Company Combinateur optique
EP3260892A1 (fr) * 2014-03-18 2017-12-27 3M Innovative Properties Company Optique
US9977246B2 (en) 2014-03-18 2018-05-22 3M Innovative Properties Company Low profile image combiner for near-eye displays
WO2015142654A1 (fr) * 2014-03-18 2015-09-24 3M Innovative Properties Company Combineur d'image à faible profil pour dispositifs d'affichage proches de l'œil
US9423612B2 (en) 2014-03-28 2016-08-23 Osterhout Group, Inc. Sensor dependent content position in head worn computing
US11104272B2 (en) 2014-03-28 2021-08-31 Mentor Acquisition One, Llc System for assisted operator safety using an HMD
US11227294B2 (en) 2014-04-03 2022-01-18 Mentor Acquisition One, Llc Sight information collection in head worn computing
US10634922B2 (en) 2014-04-25 2020-04-28 Mentor Acquisition One, Llc Speaker assembly for headworn computer
US9672210B2 (en) 2014-04-25 2017-06-06 Osterhout Group, Inc. Language translation with head-worn computing
US9651787B2 (en) 2014-04-25 2017-05-16 Osterhout Group, Inc. Speaker assembly for headworn computer
US11474360B2 (en) 2014-04-25 2022-10-18 Mentor Acquisition One, Llc Speaker assembly for headworn computer
US11880041B2 (en) 2014-04-25 2024-01-23 Mentor Acquisition One, Llc Speaker assembly for headworn computer
US9158116B1 (en) 2014-04-25 2015-10-13 Osterhout Group, Inc. Temple and ear horn assembly for headworn computer
US11727223B2 (en) 2014-04-25 2023-08-15 Mentor Acquisition One, Llc Language translation with head-worn computing
US10853589B2 (en) 2014-04-25 2020-12-01 Mentor Acquisition One, Llc Language translation with head-worn computing
US9746686B2 (en) 2014-05-19 2017-08-29 Osterhout Group, Inc. Content position calibration in head worn computing
US11402639B2 (en) 2014-06-05 2022-08-02 Mentor Acquisition One, Llc Optical configurations for head-worn see-through displays
US11960089B2 (en) 2014-06-05 2024-04-16 Mentor Acquisition One, Llc Optical configurations for head-worn see-through displays
US10877270B2 (en) 2014-06-05 2020-12-29 Mentor Acquisition One, Llc Optical configurations for head-worn see-through displays
US9841599B2 (en) 2014-06-05 2017-12-12 Osterhout Group, Inc. Optical configurations for head-worn see-through displays
US11327323B2 (en) 2014-06-09 2022-05-10 Mentor Acquisition One, Llc Content presentation in head worn computing
US9720241B2 (en) 2014-06-09 2017-08-01 Osterhout Group, Inc. Content presentation in head worn computing
US11887265B2 (en) 2014-06-09 2024-01-30 Mentor Acquisition One, Llc Content presentation in head worn computing
US10663740B2 (en) 2014-06-09 2020-05-26 Mentor Acquisition One, Llc Content presentation in head worn computing
US11790617B2 (en) 2014-06-09 2023-10-17 Mentor Acquisition One, Llc Content presentation in head worn computing
US11022810B2 (en) 2014-06-09 2021-06-01 Mentor Acquisition One, Llc Content presentation in head worn computing
US11360318B2 (en) 2014-06-09 2022-06-14 Mentor Acquisition One, Llc Content presentation in head worn computing
US10139635B2 (en) 2014-06-09 2018-11-27 Osterhout Group, Inc. Content presentation in head worn computing
US11663794B2 (en) 2014-06-09 2023-05-30 Mentor Acquisition One, Llc Content presentation in head worn computing
US10976559B2 (en) 2014-06-09 2021-04-13 Mentor Acquisition One, Llc Content presentation in head worn computing
US9575321B2 (en) 2014-06-09 2017-02-21 Osterhout Group, Inc. Content presentation in head worn computing
US10649220B2 (en) 2014-06-09 2020-05-12 Mentor Acquisition One, Llc Content presentation in head worn computing
US10698212B2 (en) 2014-06-17 2020-06-30 Mentor Acquisition One, Llc External user interface for head worn computing
US11789267B2 (en) 2014-06-17 2023-10-17 Mentor Acquisition One, Llc External user interface for head worn computing
US11294180B2 (en) 2014-06-17 2022-04-05 Mentor Acquisition One, Llc External user interface for head worn computing
US11054645B2 (en) 2014-06-17 2021-07-06 Mentor Acquisition One, Llc External user interface for head worn computing
US9810906B2 (en) 2014-06-17 2017-11-07 Osterhout Group, Inc. External user interface for head worn computing
US10564426B2 (en) 2014-07-08 2020-02-18 Mentor Acquisition One, Llc Optical configurations for head-worn see-through displays
US11940629B2 (en) 2014-07-08 2024-03-26 Mentor Acquisition One, Llc Optical configurations for head-worn see-through displays
US11409110B2 (en) 2014-07-08 2022-08-09 Mentor Acquisition One, Llc Optical configurations for head-worn see-through displays
US10775630B2 (en) 2014-07-08 2020-09-15 Mentor Acquisition One, Llc Optical configurations for head-worn see-through displays
US9798148B2 (en) 2014-07-08 2017-10-24 Osterhout Group, Inc. Optical configurations for head-worn see-through displays
US9366867B2 (en) 2014-07-08 2016-06-14 Osterhout Group, Inc. Optical systems for see-through displays
US11103122B2 (en) 2014-07-15 2021-08-31 Mentor Acquisition One, Llc Content presentation in head worn computing
US11786105B2 (en) 2014-07-15 2023-10-17 Mentor Acquisition One, Llc Content presentation in head worn computing
US11269182B2 (en) 2014-07-15 2022-03-08 Mentor Acquisition One, Llc Content presentation in head worn computing
US11630315B2 (en) 2014-08-12 2023-04-18 Mentor Acquisition One, Llc Measuring content brightness in head worn computing
US11360314B2 (en) 2014-08-12 2022-06-14 Mentor Acquisition One, Llc Measuring content brightness in head worn computing
US10908422B2 (en) 2014-08-12 2021-02-02 Mentor Acquisition One, Llc Measuring content brightness in head worn computing
US9829707B2 (en) 2014-08-12 2017-11-28 Osterhout Group, Inc. Measuring content brightness in head worn computing
US9423842B2 (en) 2014-09-18 2016-08-23 Osterhout Group, Inc. Thermal management for head-worn computer
US10078224B2 (en) 2014-09-26 2018-09-18 Osterhout Group, Inc. See-through computer display systems
US9671613B2 (en) 2014-09-26 2017-06-06 Osterhout Group, Inc. See-through computer display systems
US9366868B2 (en) 2014-09-26 2016-06-14 Osterhout Group, Inc. See-through computer display systems
US9448409B2 (en) 2014-11-26 2016-09-20 Osterhout Group, Inc. See-through computer display systems
US9684172B2 (en) 2014-12-03 2017-06-20 Osterhout Group, Inc. Head worn computer display systems
US11262846B2 (en) 2014-12-03 2022-03-01 Mentor Acquisition One, Llc See-through computer display systems
US11809628B2 (en) 2014-12-03 2023-11-07 Mentor Acquisition One, Llc See-through computer display systems
US10684687B2 (en) 2014-12-03 2020-06-16 Mentor Acquisition One, Llc See-through computer display systems
USD743963S1 (en) 2014-12-22 2015-11-24 Osterhout Group, Inc. Air mouse
USD792400S1 (en) 2014-12-31 2017-07-18 Osterhout Group, Inc. Computer glasses
USD751552S1 (en) 2014-12-31 2016-03-15 Osterhout Group, Inc. Computer glasses
USD753114S1 (en) 2015-01-05 2016-04-05 Osterhout Group, Inc. Air mouse
USD794637S1 (en) 2015-01-05 2017-08-15 Osterhout Group, Inc. Air mouse
US10593507B2 (en) 2015-02-09 2020-03-17 Arizona Board Of Regents On Behalf Of The University Of Arizona Small portable night vision system
US11205556B2 (en) 2015-02-09 2021-12-21 Arizona Board Of Regents On Behalf Of The University Of Arizona Small portable night vision system
WO2016133886A1 (fr) * 2015-02-17 2016-08-25 Osterhout Group, Inc. Systèmes informatiques d'affichage transparent
US10062182B2 (en) 2015-02-17 2018-08-28 Osterhout Group, Inc. See-through computer display systems
US11747627B2 (en) 2015-03-16 2023-09-05 Magic Leap, Inc. Augmented and virtual reality display systems and methods for diagnosing health conditions based on visual fields
US11474359B2 (en) 2015-03-16 2022-10-18 Magic Leap, Inc. Augmented and virtual reality display systems and methods for diagnosing health conditions based on visual fields
JP2016212147A (ja) * 2015-04-30 2016-12-15 ソニー株式会社 表示装置及び表示装置の初期設定方法
US11333878B2 (en) 2015-04-30 2022-05-17 Sony Corporation Display apparatus and initial setting method for display apparatus
US10739578B2 (en) 2016-08-12 2020-08-11 The Arizona Board Of Regents On Behalf Of The University Of Arizona High-resolution freeform eyepiece design with a large exit pupil
US11366320B2 (en) 2016-09-08 2022-06-21 Mentor Acquisition One, Llc Optical systems for head-worn computers
US9910284B1 (en) 2016-09-08 2018-03-06 Osterhout Group, Inc. Optical systems for head-worn computers
US10534180B2 (en) 2016-09-08 2020-01-14 Mentor Acquisition One, Llc Optical systems for head-worn computers
US11604358B2 (en) 2016-09-08 2023-03-14 Mentor Acquisition One, Llc Optical systems for head-worn computers
JP7158395B2 (ja) 2017-02-23 2022-10-21 マジック リープ, インコーポレイテッド 偏光変換に基づく可変焦点画像デバイス
US11300844B2 (en) 2017-02-23 2022-04-12 Magic Leap, Inc. Display system with variable power reflector
US11982916B2 (en) 2017-02-23 2024-05-14 Magic Leap, Inc. Variable-focus virtual image devices based on polarization conversion
JP2020510228A (ja) * 2017-02-23 2020-04-02 マジック リープ, インコーポレイテッドMagic Leap,Inc. 偏光変換に基づく可変焦点画像デバイス
US11714326B2 (en) 2017-02-23 2023-08-01 Magic Leap, Inc. Variable-focus virtual image devices based on polarization conversion
JP2022140589A (ja) * 2017-02-23 2022-09-26 マジック リープ, インコーポレイテッド 偏光変換に基づく可変焦点画像デバイス
WO2018229329A1 (fr) * 2017-06-14 2018-12-20 Varjo Technologies Oy Appareil d'affichage et procédé d'affichage utilisant des polariseurs
US10495895B2 (en) 2017-06-14 2019-12-03 Varjo Technologies Oy Display apparatus and method of displaying using polarizers
US11409105B2 (en) 2017-07-24 2022-08-09 Mentor Acquisition One, Llc See-through computer display systems
US11971554B2 (en) 2017-07-24 2024-04-30 Mentor Acquisition One, Llc See-through computer display systems with stray light management
US10578869B2 (en) 2017-07-24 2020-03-03 Mentor Acquisition One, Llc See-through computer display systems with adjustable zoom cameras
US11042035B2 (en) 2017-07-24 2021-06-22 Mentor Acquisition One, Llc See-through computer display systems with adjustable zoom cameras
US10422995B2 (en) 2017-07-24 2019-09-24 Mentor Acquisition One, Llc See-through computer display systems with stray light management
US11226489B2 (en) 2017-07-24 2022-01-18 Mentor Acquisition One, Llc See-through computer display systems with stray light management
US11960095B2 (en) 2017-07-24 2024-04-16 Mentor Acquisition One, Llc See-through computer display systems
US11550157B2 (en) 2017-07-24 2023-01-10 Mentor Acquisition One, Llc See-through computer display systems
US11567328B2 (en) 2017-07-24 2023-01-31 Mentor Acquisition One, Llc See-through computer display systems with adjustable zoom cameras
US11668939B2 (en) 2017-07-24 2023-06-06 Mentor Acquisition One, Llc See-through computer display systems with stray light management
US11789269B2 (en) 2017-07-24 2023-10-17 Mentor Acquisition One, Llc See-through computer display systems
US11500207B2 (en) 2017-08-04 2022-11-15 Mentor Acquisition One, Llc Image expansion optic for head-worn computer
US10969584B2 (en) 2017-08-04 2021-04-06 Mentor Acquisition One, Llc Image expansion optic for head-worn computer
US11947120B2 (en) 2017-08-04 2024-04-02 Mentor Acquisition One, Llc Image expansion optic for head-worn computer
CN107422481A (zh) * 2017-08-07 2017-12-01 杭州太若科技有限公司 用于实现增强现实的装置和方法
CN107589546A (zh) * 2017-10-23 2018-01-16 北京小米移动软件有限公司 光学***及增强现实眼镜
CN107589546B (zh) * 2017-10-23 2024-05-24 北京小米移动软件有限公司 光学***及增强现实眼镜
US11300786B2 (en) 2018-01-02 2022-04-12 Boe Technology Group Co., Ltd. Display apparatus, display method thereof, and head-up display apparatus
CN109991744A (zh) * 2018-01-02 2019-07-09 京东方科技集团股份有限公司 显示装置、显示方法及平视显示装置
CN109991744B (zh) * 2018-01-02 2020-12-01 京东方科技集团股份有限公司 显示装置、显示方法及平视显示装置
US11693244B2 (en) 2018-02-12 2023-07-04 Matrixed Reality Technology Co., Ltd. Augmented reality apparatus and optical system therefor
CN110546550A (zh) * 2018-02-12 2019-12-06 优奈柯恩(北京)科技有限公司 增强现实设备及其中所采用的光学***
US11693245B2 (en) 2018-02-12 2023-07-04 Matrixed Reality Technology Co., Ltd. Wearable AR system, AR display device and its projection source module
US11988839B2 (en) 2018-02-12 2024-05-21 Matrixed Reality Technology Co., Ltd. Augmented reality apparatus and optical system therefor
CN110537135A (zh) * 2018-02-12 2019-12-03 优奈柯恩(北京)科技有限公司 增强现实设备及其中所采用的光学***和半反射镜
CN110146978A (zh) * 2018-02-12 2019-08-20 杭州太若科技有限公司 Ar显示装置和穿戴式ar设备
EP3754411A4 (fr) * 2018-02-12 2022-03-30 Matrixed Reality Technology Co., Ltd. Système à réalité augmentée portable, dispositif d'affichage à réalité augmentée, et module source de projection associé
WO2019154426A1 (fr) * 2018-02-12 2019-08-15 杭州太若科技有限公司 Dispositif de réalité augmentée et système optique utilisé dans ledit dispositif
US11460704B2 (en) 2018-02-12 2022-10-04 Matrixed Reality Technology Co., Ltd. Augmented reality apparatus and optical system therefor
WO2019154428A1 (fr) * 2018-02-12 2019-08-15 杭州太若科技有限公司 Dispositif de réalité augmentée, système optique et demi-miroir utilisé en son sein
EP3754409A4 (fr) * 2018-02-12 2021-04-14 Matrixed Reality Technology Co., Ltd. Dispositif de réalité augmentée et système optique utilisé en son sein
WO2019154432A1 (fr) * 2018-02-12 2019-08-15 杭州太若科技有限公司 Dispositif de réalité augmentée et système optique utilisé en son sein
EP3754412A4 (fr) * 2018-02-12 2021-06-02 Matrixed Reality Technology Co., Ltd. Système portatif de réalité augmentée et dispositif d'affichage en réalité augmentée
US11874466B2 (en) 2018-02-12 2024-01-16 Matrixed Reality Technology Co., Ltd. Augmented reality apparatus, and optical system and semi-reflector therefor
US11867906B2 (en) 2018-02-12 2024-01-09 Matrixed Reality Techology Co., Ltd. Wearable AR system and AR display device
US11500205B2 (en) 2018-02-12 2022-11-15 Matrixed Reality Technology Co., Ltd. Wearable AR system, AR display device and its projection source module
US11042040B2 (en) 2018-02-12 2021-06-22 Matrixed Reality Technology Co., Ltd. Augmented reality apparatus and optical system therefor
US11546575B2 (en) 2018-03-22 2023-01-03 Arizona Board Of Regents On Behalf Of The University Of Arizona Methods of rendering light field images for integral-imaging-based light field display
CN109387942B (zh) * 2018-03-28 2024-05-10 深圳惠牛科技有限公司 一种光学***及增强现实设备
CN109387942A (zh) * 2018-03-28 2019-02-26 深圳惠牛科技有限公司 一种光学***及增强现实设备
EP3785067A4 (fr) * 2018-04-24 2021-06-23 Mentor Acquisition One, LLC Systèmes d'affichage d'ordinateur transparent avec correction de la vision et densité de contenu accrue
WO2019226269A2 (fr) 2018-04-24 2019-11-28 Mentor Acquisition One, Llc Systèmes d'affichage d'ordinateur transparent avec correction de la vision et densité de contenu accrue
US11204501B2 (en) 2018-04-24 2021-12-21 Mentor Acquisition One, Llc See-through computer display systems with vision correction and increased content density
US11988837B2 (en) 2018-04-24 2024-05-21 Mentor Acquisition One, Llc See-through computer display systems with vision correction and increased content density
CN108594441A (zh) * 2018-07-04 2018-09-28 王锐 一种光学***
CN108572457A (zh) * 2018-07-12 2018-09-25 王锐 一种光学显示***
CN108681073A (zh) * 2018-07-17 2018-10-19 王锐 一种增强现实光学显示***
WO2020114582A1 (fr) * 2018-12-04 2020-06-11 Telefonaktiebolaget Lm Ericsson (Publ) Dispositif de visualisation transparent optique amélioré et procédé de fourniture d'objets visuels chevauchant un contenu virtuel
US11749142B2 (en) 2018-12-04 2023-09-05 Telefonaktiebolaget Lm Ericsson (Publ) Optical see-through viewing device and method for providing virtual content overlapping visual objects
CN112051671B (zh) * 2019-06-06 2023-10-13 舜宇光学(浙江)研究院有限公司 一种近眼显示光机及其方法和近眼显示设备
CN112051671A (zh) * 2019-06-06 2020-12-08 舜宇光学(浙江)研究院有限公司 一种近眼显示光机及其方法和近眼显示设备
WO2021197062A1 (fr) * 2020-03-31 2021-10-07 优奈柯恩(北京)科技有限公司 Appareil optique et dispositif monté sur la tête
CN111474715A (zh) * 2020-04-23 2020-07-31 歌尔股份有限公司 光学***及增强现实设备
WO2023131980A1 (fr) * 2022-01-07 2023-07-13 Tesseract Imaging Limited Appareil de visualisation d'images optiques et procédé associé

Also Published As

Publication number Publication date
CA2828407A1 (fr) 2012-09-07
DE112012001032T5 (de) 2014-01-30
WO2012118575A3 (fr) 2013-03-14
DE112012001022T5 (de) 2013-12-19
WO2012118575A2 (fr) 2012-09-07
CA2828413A1 (fr) 2012-09-07

Similar Documents

Publication Publication Date Title
US9091851B2 (en) Light control in head mounted displays
WO2012118573A1 (fr) Régulation de la lumière dans les visiocasques
CA2981652C (fr) Surface nanostructuree de forme libre pour affichage proche de l'oeil en realite virtuelle et augmentee
EP3290991B1 (fr) Procédé et appareil permettant un affichage proche de l' il
CN111587393B (zh) 用于遮挡功能的紧凑显示器的方法和***
CN108490614B (zh) 显示装置和图像显示方法
US9335549B2 (en) Imaging lightguide with holographic boundaries
KR101556839B1 (ko) 다중 반사기를 구비하는 눈 인접 디스플레이를 위한 접안렌즈
US7656585B1 (en) Embedded relay lens for head-up displays or the like
CN108398791B (zh) 一种基于偏光隐形眼镜的近眼显示装置
TW202026685A (zh) 具有反射鏡的光導顯示器
CN112654902A (zh) 具有空间变化相移器光学器件的头戴式显示器(hmd)
WO2014085102A1 (fr) Inclinaison de faisceau optique interne double axe pour oculaire de dispositif d'affichage monté sur tête (hmd)
EP2828703A1 (fr) Inclinaison de faisceau optique pour visiocasque décalé
US9612439B2 (en) Transmissive display apparatus
US11474357B2 (en) Augmented reality display device
JP2016126134A (ja) 表示装置およびウェアラブルデバイス
EP3230789A1 (fr) Système d'affichage
US9519092B1 (en) Display method
JPWO2017090289A1 (ja) 調光手段を備える画像表示装置
CN113767319A (zh) 图像显示装置和显示装置
WO2014115260A1 (fr) Dispositif de création d'images virtuelles et système d'affichage
Sarayeddine et al. Applications of OLED Microdisplays
Lee et al. 79‐1: Invited Paper: Accommodative AR HMD Using Birefringent Crystal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752920

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2828407

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1120120010329

Country of ref document: DE

Ref document number: 112012001032

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12752920

Country of ref document: EP

Kind code of ref document: A1