WO2012117940A1 - 通信経路制御装置、通信装置、通信経路制御方法、通信方法、及びプログラム - Google Patents

通信経路制御装置、通信装置、通信経路制御方法、通信方法、及びプログラム Download PDF

Info

Publication number
WO2012117940A1
WO2012117940A1 PCT/JP2012/054423 JP2012054423W WO2012117940A1 WO 2012117940 A1 WO2012117940 A1 WO 2012117940A1 JP 2012054423 W JP2012054423 W JP 2012054423W WO 2012117940 A1 WO2012117940 A1 WO 2012117940A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
route
flow
communication
backup
Prior art date
Application number
PCT/JP2012/054423
Other languages
English (en)
French (fr)
Inventor
淳 西岡
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US14/001,224 priority Critical patent/US20130329564A1/en
Priority to CN2012800107883A priority patent/CN103404089A/zh
Priority to JP2013502272A priority patent/JP5884996B2/ja
Priority to BR112013020985A priority patent/BR112013020985A2/pt
Publication of WO2012117940A1 publication Critical patent/WO2012117940A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management

Definitions

  • the present invention relates to path control in a mobile backhaul network, and more particularly to a network configured with a wireless link having an adaptive modulation function.
  • a network constructed by a wireless link such as a fixed wireless access (FWA) using a wireless system using a frequency such as a millimeter wave band capable of broadband transmission is used in a mobile phone network or the like.
  • FWA fixed wireless access
  • the communication quality of the radio link varies depending on the SNR (Signal to Noise Ratio) of the received signal. Therefore, in order to realize a further wide band of the radio link, an adaptive modulation technique has attracted attention (for example, Patent Document 1).
  • the adaptive modulation technique is a technique for adaptively discovering and using a modulation scheme with the highest transmission efficiency from the radio conditions of the radio link. With adaptive modulation technology, it is possible to perform optimal wireless communication according to the wireless environment, and improvement in frequency efficiency can be expected.
  • 1 + 1 protection In order to improve flow reliability, there is a technique called 1 + 1 protection in which the same data is sent to two routes, a normal route and a backup route. With 1 + 1 protection, even if a failure occurs in one path, communication can be maintained using the other path, so that the reliability of the flow can be improved.
  • the problem is that even if the route is set using 1 + 1 protection, if the transmission rate decreases in both routes, the bandwidth required by the traffic cannot be secured, and a part of the traffic is discarded. The route that satisfies the communication quality is lost.
  • the problem to be solved by the present invention is to solve the above-mentioned problem, and when a 1 + 1 protection is used in a network configured by a radio link that can use the adaptive modulation function, the transmission rate by adaptive modulation.
  • the purpose is to maintain communication without causing loss of data even if the drop occurs.
  • the present invention for solving the above-mentioned problem is a communication path control device, wherein a free band that is a band that can be allocated when a transmission rate between a normal path and a backup path decreases is assigned to the normal path and the backup path. Packets of the same flow in the normal route and the backup route based on the investigation means for each communication method that can be used for each route, the examined free bandwidth, and the bandwidth requested by the flow Control means for setting markings so as to complement each other.
  • the present invention for solving the above problems is a communication device, and is assigned when the transmission rate of both the normal path and the backup path decreases, and is assigned to each communication method usable in each of the both paths. Based on the free bandwidth and the bandwidth requested by the flow, marking each packet of the flow according to the marking information set so that the packets of the same flow can be complemented in both routes, and the normal route When the transmission rate of both the route and the backup route decreases, the marked packet is transferred.
  • the present invention for solving the above problem is a communication path control method, wherein a free band, which is a band that can be allocated when a transmission rate between a normal path and a backup path decreases, is assigned to the normal path and the backup path. Packets of the same flow in the normal route and the backup route based on the investigation step for each communication method that can be used with each route, the free bandwidth that has been examined, and the bandwidth requested by the flow And a control step for setting the marking so as to complement each other.
  • a free band which is a band that can be allocated when a transmission rate between a normal path and a backup path decreases
  • the present invention for solving the above-mentioned problem is a communication method, and is assigned when the transmission rate of both the normal route and the backup route is lowered, and is used for each communication method usable in each of the two routes. Based on the free bandwidth and the bandwidth requested by the flow, marking each packet of the flow according to the marking information set so that the packets of the same flow can be complemented in both routes, and the normal route When the transmission rate of both the route and the backup route decreases, the marked packet is transferred.
  • the present invention for solving the above-mentioned problem is a program for a communication path control device, and the program can allocate a bandwidth to the communication path control device when a transmission rate between a normal path and a backup path decreases. Based on the investigation step of investigating the available bandwidth for each communication method that can be used in each of the normal route and the backup route, the examined available bandwidth, and the bandwidth requested by the flow, And a control step for setting marking so that packets of the same flow can be complemented by the normal route and the backup route.
  • the present invention for solving the above-mentioned problem is a program for a communication device, wherein the program is assigned to the communication device when the transmission rates of both the normal route and the backup route are reduced. Based on the available bandwidth for each communication method that can be used in each of the above and the bandwidth requested by the flow, according to the marking information set so that packets of the same flow can be complemented in both paths. A marking step for marking each packet and a transfer step for transferring the marked packet when the transmission rates of both the normal route and the backup route are lowered are executed.
  • the present invention utilizes the fact that a certain amount of bandwidth can be secured when the transmission rate is reduced by adaptive modulation, unlike a link failure in a wired network. If the total of these remaining bandwidths is more than necessary, data loss can be prevented by transferring data that complements each route, so that communication quality can be maintained.
  • each packet is marked, and even when the transmission rate decreases between the normal route and the backup route, packets with different markings are displayed. It is transferred. As a result, even if packet loss occurs in both routes, packets with different markings arrive from each route, and packet loss can be prevented by summing the arrival packets.
  • the present invention is configured by a communication network system including a route control device 201 and communication devices 202-205 as shown in FIG.
  • FIG. 3 is a flow for explaining the operation of the present invention.
  • the route control device 201 searches for a normal route and a redundant route (301). After that, when the transmission rate is lowered at the link in each path, a flow distribution method necessary for preventing data loss is calculated from the bandwidth that can be used by the flow (302). Marking is set based on the result, and the information is notified to each communication device (303). Each communication device 202-205 performs a transfer process based on the state of its wireless link and the notified information.
  • the route control device 201 performs processing of notification from the service user to the network provider, such as a flow route setting request and the end of the flow, and acquires link information from each communication device.
  • the route control device 201 Upon receiving the flow route setting request, the route control device 201 searches for a route that can satisfy the bandwidth and reliability, which are the flow request conditions.
  • the path control device 201 searches for a normal path and a backup path that satisfy the flow requirements.
  • the path control device 201 examines how much the transmission rate is reduced in the radio links configuring each path. This prediction is performed based on data collected periodically from the quality of the radio link.
  • the path control apparatus 201 reduces the bandwidth that can be used by the flow in the wireless link when the transmission rate is lowered due to the bandwidth allocation to the existing flow that already uses the same wireless link. Do or calculate. Based on the result, the path control device calculates how the bandwidth that can be used in each path changes.
  • the route control device 201 When setting the route between the normal route and the backup route, the route control device 201 has data that can be complemented by the normal route and the backup route according to the available bandwidth for the communication device where the normal route and the backup route are branched. Set the marking so that it can be sent. Similarly, the route control device 201 notifies the communication device in each route of information about which marked packet is transferred when a transmission rate drop occurs in the wireless link connected to the route control device 201.
  • each communication device 202-205 after setting is as follows.
  • the communication device for which the normal route and the backup route branch mark the packets sent to the normal route and the backup route based on the setting. Further, when the transmission rate of the radio link is reduced, each communication device 202-205 transfers a packet with a specific marking based on a pre-designated setting. When a communication device that joins the normal route and backup route detects that the transmission rate is decreasing in both routes, it reconfigures the packets coming from each route to the original flow based on the markings applied to the packets. To do.
  • the communication network system of the present invention includes a route control device 201 and subordinate communication devices 202-205.
  • the route control device 201 manages the entire network, and the route control device 201 performs all reception and termination of new flows.
  • the path control device 201 periodically acquires link quality information related to the link quality such as the bit error rate of the radio link and the modulation method used from each communication device 202-205.
  • the route control device 201 includes a communication unit 401, a route control unit 402, a topology information management unit 403, a traffic information management unit 404, and a link information management unit 405, as shown in FIG.
  • the topology information management unit 403 manages topology information.
  • the traffic information management unit 404 manages information on flows that flow through the network.
  • the link information management unit 405 manages link information such as link quality information acquired from each communication device 202-205, available bandwidth, a list of flows using the link, and a bandwidth allocated to the flow for each modulation method. To do.
  • Requests for new communication flows and notifications of termination sent to the route control device 201, notifications of radio link quality changes from the respective communication devices 202-205, etc. are processed by the route control unit 402, and the topology information management unit 403 is processed. Necessary information is acquired from the traffic information management unit 404 and the link information management unit 405, and route setting, bandwidth allocation, and the like are performed.
  • the route control unit 403 performs calculation of marking settings, which is a feature of the present invention.
  • the link information management unit 405 receives the notification of the link quality change from each communication device through the route control unit 402, the link information management unit 405 updates the link information.
  • the communication devices 202 to 205 include a communication unit 501, a traffic control unit 502, and a resource management unit 503 as shown in FIG.
  • the traffic control unit 502 performs bandwidth control and path control for a flow using a link.
  • the resource management unit 503 manages information related to the flow such as the allocated bandwidth of the flow using the link, the transfer destination, and the operation for each marking of the packet when the bandwidth changes.
  • Each communication device 202-205 stores in the resource management unit 503 resource allocation information such as the bandwidth allocated to each flow sent from the routing device, the transfer destination of each flow, and the transfer processing for each marking. Then, the traffic control unit 502 performs traffic control based on the information stored in the resource management unit 503. As a feature of the present invention, when the traffic control unit 502 detects a decrease in the transmission rate, the traffic control unit 502 transfers only a packet with a specific marking based on the information of the resource management unit 503 and discards other packets. .
  • the resource management unit 503 monitors the communication unit 501 and, when detecting a change in the link quality of the radio link, notifies the route control device of the information.
  • the path control device 201 searches for a communication path and a redundant path of the flow (301).
  • the route control device 201 notifies the communication device of which the route is branched of the marking setting for the packet, and notifies the communication device in the route of the marking information of the packet to be transferred in accordance with the decrease in the transmission rate. (303).
  • Step 301 The route control unit 402 searches the normal route and the backup route of the flow from the topology information management unit 403, the traffic information management unit 404, and the link information management unit 405.
  • Step 302 The path control unit 402 checks, through the link information management unit 405, the bandwidth that can be used by the flow when the transmission rate decreases in each of the normal path and the backup path. Based on the result, the path control unit 402 investigates how the flow can be distributed without loss of data when the transmission rate decreases at the normal path and the backup path at the same time. Determine the marking method for the packet.
  • Step 303 After setting the normal route and the backup route, the route control unit 402 notifies the communication device on which the route branches about the marking for the packet. Further, the path control device 402 notifies the communication device in the path of the packet transfer process for each marking performed when the transmission rate is lowered. Each communication device stores the information in the resource management unit 503.
  • the traffic control unit 502 marks the packets at a predesignated rate based on the information in the resource management unit 503.
  • the traffic control unit 502 performs a flow from a packet arriving from each route based on information of the resource management unit 503. Rebuild. At this time, the packet with the duplicate marking is discarded, and the original flow is reconstructed from the different marked packets.
  • the traffic control unit 502 pre-defines for each transmission rate based on the information of the resource management unit 503. Only packets with the specified marking are transferred, and other packets are discarded.
  • a marking determination method for the flow performed in step 302 For the marking, for example, DSCP (DiffServ Code Point) of the IP header of each packet is used.
  • marking such as A, ⁇ ⁇ ⁇ ⁇ B, C, and D is performed.
  • a bandwidth that can be secured by each modulation method of the radio link is allocated to each flow. The bandwidth allocated for each modulation scheme can be used unless the radio link uses a modulation scheme lower than the modulation scheme.
  • the available bandwidth for each modulation method is examined in each wireless link constituting the route.
  • a virtual link configured with the minimum free bandwidth of each modulation method is created for each of the normal route and the backup route.
  • n and p are the number of modulation schemes in which free bandwidth remains.
  • min_r min ( ⁇ b1, .., bn ⁇ , ⁇ c1, ..., cp ⁇ )
  • the traffic T is divided by m and divided into T / m Mbps, and different markings such as A, B, C, and D are assigned. Next, a band of each modulation method is assigned for each marking.
  • bands corresponding to the traffic amount are allocated to the markings of A, B, C, and D in order from the lowest modulation scheme.
  • the bands of the respective modulation schemes are allocated in the reverse order. If a low modulation scheme band is assigned in the order of A, B, C, and D on the normal path, on the other hand, a lower modulation scheme band is assigned in the order of D, C, B, A on the backup path. Assign.
  • the allocation of marking and the allocation of bandwidth as described above are determined.
  • the marking setting is performed from E, and the marking setting uses a symbol that does not overlap with the symbol used last time.
  • the modulation scheme may be limited to only a modulation scheme in which a certain band or more remains.
  • the network system includes a route control device 600, a wireless link 691 that connects the route control device 600 and the communication device 601, a wireless link 611 that connects the communication device 601 and the communication device 603, and a wireless link that connects the communication device 601 and the communication device 602. 612 and a wireless link 613 connecting the communication devices 602 and 603.
  • QPSK, 16QAM, 32QAM, and 128QAM modulation schemes can be used for the wireless links 611, 612, and 613.
  • the bandwidth of each modulation method is 40 Mbps, 80 Mbps, 108 Mbps, and 155 Mbps.
  • a route is set between the communication devices 601 and 603 using a 1 + 1 protection flow of 40 Mbps. It is assumed that a normal route 601-603 using the wireless link 611 and a backup route 601-602-603 using the wireless links 612 and 613 are found as a result of the route search by the route control device 600.
  • the QPSK band is used for packets marked A
  • the 16QAM band is used for packets marked B
  • the packet is marked C 32QAM bandwidth is allocated for each packet
  • 128QAM bandwidth is allocated for each packet marked with D by 10Mbps.
  • the QPSK band is used for packets marked D
  • the 16QAM band is used for packets marked C
  • a bandwidth of 32 QAM is allocated for the marked packet
  • a bandwidth of 128 QAM is allocated for the packet marked A by 10 Mbps.
  • Marking such as A, B, C, D is performed in the communication device 601 where the normal route and the backup route are branched.
  • Each communication device controls a packet to be transferred according to the modulation method of the radio link.
  • all packets are transferred in both the normal route and the backup route when the modulation method is 128QAM in each wireless link.
  • each radio link on the backup path transfers only packets that are marked with D, C, B when the modulation method is 32QAM, D, C when 16QAM, and D when QPSK.
  • the AD packet reaches the communication device 603 that joins the route. It becomes possible to prevent loss.
  • the wireless link 611 is QPSK and the wireless link 612 or 613 is 32QAM, even when the wireless links constituting both routes are 16QAM, the communication device 603 is joined to the communication device 603 where the routes merge. Packet loss can be prevented.
  • the QPSK band is used for packets marked A
  • the 16QAM band is used for packets marked B
  • the packet is marked C. Allocate 32QAM bandwidth and 10QMbps each for 128QAM bandwidth for packets marked D.
  • the QPSK band is used for the packet marked with D
  • the 16QAM band is used for the packet marked C
  • the B mark is used.
  • a 32QAM band is allocated for the marked packets
  • a 128QAM band is allocated for the packets marked with A by 10 Mbps.
  • a QPSK band is used for packets marked E
  • a 16QAM band is used for packets marked F
  • a packet is marked G.
  • Each 128 QAM band is allocated 8 Mbps.
  • the QPSK band is used for packets marked G
  • the 32QAM band is used for packets marked F
  • E is marked.
  • a bandwidth of 128 QAM is allocated for each 8 Mbps.
  • the route control device 600 notifies the communication devices 601, 602, and 603 in the route of the above marking and band allocation results. In the communication device 601 where the path branches, each packet of the flow is given any marking up to AG.
  • the modulation method When the modulation method is lower than 128QAM in the wireless link 611 configuring the normal path 601-603, only a packet with a specific marking is transferred.
  • the modulation method is 32QAM
  • A, B, C, E, F, and 16QAM transfer packets with A, B, E, F, and ⁇ ⁇ ⁇ ⁇ QPSK with A and E markings.
  • radio links 612 and 13613 constituting the backup paths 601-602-603, D, C, F, G when the modulation method is 32QAM, D, C, G, and QPSK with D and 16G when 16QAM is used. Only packets that are marked are forwarded.
  • the modulation method of the wireless link 611 used in the normal route is 32QAM and one of the wireless links 612 and 613 constituting the backup route is QPSK, the modulation is performed on the wireless link constituting both routes. Even when the method is 16QAM, since the AG packet reaches the communication device 603, packet loss can be prevented. On the contrary, when the modulation method of the wireless link 611 is QPSK and the modulation method is 32QAM in either of the wireless links 612 and 613, when the modulation method is 16QAM on the wireless links constituting both paths. However, since the AG packet reaches the communication device 603, packet loss can be prevented.
  • each component of the route control device is configured in a communication device.
  • the present invention is not limited to 1 + 1 protection, and can be similarly realized with 1 + N protection. Further, even if it is not path protection that is protection of the entire path, it can be similarly performed in segment protection that is protection for a part of the path.
  • each device of the present invention described above can be configured by hardware, but can also be realized by a computer program.
  • a communication path control device Investigation means for investigating an available bandwidth, which is a bandwidth that can be allocated when the transmission rate between the normal route and the backup route decreases, for each communication method that can be used in each of the normal route and the backup route; Control means for setting marking so that packets of the same flow can be complemented by the normal route and the backup route, based on the investigated free bandwidth and the bandwidth requested by the flow.
  • a communication path control device Investigation means for investigating an available bandwidth, which is a bandwidth that can be allocated when the transmission rate between the normal route and the backup route decreases, for each communication method that can be used in each of the normal route and the backup route;
  • Control means for setting marking so that packets of the same flow can be complemented by the normal route and the backup route, based on the investigated free bandwidth and the bandwidth requested by the flow.
  • Appendix 2 The control means, according to a comparison result between a value of the minimum free band in the checked free band and a value obtained by dividing the bandwidth requested by the flow by the number of modulation schemes having a free band, The communication path control device according to appendix 1, wherein a marking method and a method of assigning a band to each modulation method are changed.
  • the control means when the value of the minimum available bandwidth in the examined available bandwidth is larger than the value obtained by dividing the bandwidth value requested by the flow by the number of modulation methods with available bandwidth, The communication according to appendix 1 or appendix 2, wherein the bandwidth requested by the flow is divided by the number of modulation schemes having a free bandwidth, and a band is allocated to each modulation scheme, and marking is performed for each modulation scheme. Routing device.
  • the control means when the value of the minimum free bandwidth in the free bandwidth investigated is smaller than the value obtained by dividing the bandwidth value requested by the flow by the number of modulation schemes with free bandwidth, Allocate the smallest available bandwidth in the surveyed available bandwidth to the modulation method, and further add the amount less than the bandwidth requested by the flow to the smallest available bandwidth in the examined available bandwidth for each modulation method.
  • the communication path control device according to Supplementary Note 1 or Supplementary Note 2, which is assigned.
  • a communication device Based on the free bandwidth for each communication method that can be used in each of the two routes, and the bandwidth requested by the flow, assigned when the transmission rates of both the normal route and the backup route are reduced, Marking each packet of the flow according to the marking information set to complement the packets of the same flow in both routes, A communication apparatus, wherein a marked packet is transferred when a transmission rate of both a normal path and a backup path decreases.
  • a communication path control method An investigation step for investigating a free bandwidth that is a bandwidth that can be allocated when the transmission rate between the normal route and the backup route decreases for each communication method that can be used in each of the normal route and the backup route; And a control step of setting marking so that packets of the same flow can be complemented by the normal route and the backup route based on the investigated free bandwidth and the bandwidth requested by the flow.
  • a characteristic communication path control method An investigation step for investigating a free bandwidth that is a bandwidth that can be allocated when the transmission rate between the normal route and the backup route decreases for each communication method that can be used in each of the normal route and the backup route.
  • a communication method Based on the free bandwidth for each communication method that can be used in each of the two routes, and the bandwidth requested by the flow, assigned when the transmission rates of both the normal route and the backup route are reduced, Marking each packet of the flow according to the marking information set to complement the packets of the same flow in both routes, A communication method, wherein a marked packet is transferred when a transmission rate of both a normal route and a backup route decreases.
  • a program for a communication path control device wherein the program is stored in the communication path control device, An investigation step for investigating a free bandwidth that is a bandwidth that can be allocated when the transmission rate between the normal route and the backup route decreases for each communication method that can be used in each of the normal route and the backup route; Executing a control step for setting marking so that packets of the same flow can be complemented by the normal route and the backup route, based on the checked free bandwidth and the bandwidth requested by the flow.
  • a communication device program the program being stored in the communication device, Based on the free bandwidth for each communication method that can be used in each of the two routes, and the bandwidth requested by the flow, assigned when the transmission rates of both the normal route and the backup route are reduced, Marking step for marking each packet of the flow according to marking information set to complement the packets of the same flow in both paths; A program for executing a transfer step of transferring a marked packet when the transmission rate of both the normal route and the backup route decreases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 本発明の課題は、適応変調機能が利用可能な無線リンクで構成されたネットワークにおいて、1+1プロテクションを用いた時に、適応変調による伝送レート低下してもデータの欠落を発生させずに通信を維持させることにある。本願発明は、通常経路と予備経路との伝送レートが低下した際に割り当てることができる帯域である空き帯域を、前記通常経路と前記予備経路とのそれぞれで使用可能な通信方式毎に調査する調査手段と、前記調査した空き帯域と、フローが要求している帯域とに基づいて、前記通常経路と前記予備経路とで同一フローのパケットを補完しあえるようにマーキングの設定を行う制御手段とを有することを特徴とする。

Description

通信経路制御装置、通信装置、通信経路制御方法、通信方法、及びプログラム
 本発明は、モバイルバックホールネットワークにおける経路制御に関し、特に適応変調機能を持った無線リンクで構成されたネットワークに関する。
 近年の情報化の進展に伴い、データ通信などによるデータ通信トラヒックの需要が増加している。そこで、ネットワークに対して広帯域化やオペレーションコストの低減が求められている。広帯域の伝送が可能であるミリ波帯などの周波数を利用した無線方式を用いる固定無線アクセス(FWA:Fixed broadband Wireless Access)など無線リンクによって構築されたネットワークが携帯電話網などで利用されている。
 無線リンクの通信品質は、受信信号のSNR(Signal to Noise Ratio)によって変動する。そこで、無線リンクの更なる広帯域を実現するために、適応変調技術が着目されている(例えば、特許文献1)。適応変調技術は、無線リンクの無線状況から、最も伝送効率の良い変調方式を適応的に発見し、使用する技術である。適応変調技術により無線環境に応じた最適な無線通信を行うことが可能となり、周波数効率の向上が期待できる。
 また、フローの信頼性を向上させるために、通常経路と予備経路の二つの経路に同じデータを流す、1+1プロテクションという技術がある。1+1プロテクションにより、片方の経路に障害が発生しても、もう一方の経路を使用して通信を維持できるため、フローの信頼性を向上させることができる。
特開2009-290547号公報
 帯域が変動する無線リンクで構成されたネットワークにおいて、1+1プロテクションをそのまま行った場合、両方の経路で適応変調機能により伝送レートが低下してしまうと、両方の経路で障害が発生してしまうことになり、データの欠落が発生してしまう。
 問題点は、1+1プロテクションを用いて経路を設定しても、両方の経路で、伝送レートが低下した場合、トラヒックが必要とする帯域を確保できず、トラヒックの一部が破棄されてしまい、要求通信品質を満たす経路でなくなってしまうことである。
 そこで、本発明が解決しようとする課題は、上記問題点を解決することであり、適応変調機能が利用可能な無線リンクで構成されたネットワークにおいて、1+1プロテクションを用いた時に、適応変調による伝送レート低下してもデータの欠落を発生させずに通信を維持させることにある。
 上記課題を解決するための本願発明は、通信経路制御装置であって、通常経路と予備経路との伝送レートが低下した際に割り当てることができる帯域である空き帯域を、前記通常経路と前記予備経路とのそれぞれで使用可能な通信方式毎に調査する調査手段と、前記調査した空き帯域と、フローが要求している帯域とに基づいて、前記通常経路と前記予備経路とで同一フローのパケットを補完しあえるようにマーキングの設定を行う制御手段とを有することを特徴とする。
 上記課題を解決するための本願発明は、通信装置であって、通常経路と予備経路との両経路の伝送レートが低下した際に割り当てられる、前記両経路のそれぞれで使用可能な通信方式毎の空き帯域と、フローが要求している帯域とに基づいて、前記両経路で同一フローのパケットを補完しあえるように設定されたマーキング情報に従って、前記フローの各パケットに対してマーキングし、通常経路と予備経路との両経路の伝送レートが低下すると、マーキングされたパケットを転送することを特徴とする。
 上記課題を解決するための本願発明は、通信経路制御方法であって、通常経路と予備経路との伝送レートが低下した際に割り当てることができる帯域である空き帯域を、前記通常経路と前記予備経路とのそれぞれで使用可能な通信方式毎に調査する調査ステップと、前記調査した空き帯域と、フローが要求している帯域とに基づいて、前記通常経路と前記予備経路とで同一フローのパケットを補完しあえるようにマーキングの設定を行う制御ステップとを有することを特徴とする。
 上記課題を解決するための本願発明は、通信方法であって、通常経路と予備経路との両経路の伝送レートが低下した際に割り当てられる、前記両経路のそれぞれで使用可能な通信方式毎の空き帯域と、フローが要求している帯域とに基づいて、前記両経路で同一フローのパケットを補完しあえるように設定されたマーキング情報に従って、前記フローの各パケットに対してマーキングし、通常経路と予備経路との両経路の伝送レートが低下すると、マーキングされたパケットを転送することを特徴とする。
 上記課題を解決するための本願発明は、通信経路制御装置のプログラムであって、前記プログラムは前記通信経路制御装置に、通常経路と予備経路との伝送レートが低下した際に割り当てることができる帯域である空き帯域を、前記通常経路と前記予備経路とのそれぞれで使用可能な通信方式毎に調査する調査ステップと、前記調査した空き帯域と、フローが要求している帯域とに基づいて、前記通常経路と前記予備経路とで同一フローのパケットを補完しあえるようにマーキングの設定を行う制御ステップとを実行させることを特徴とする。
 上記課題を解決するための本願発明は、通信装置のプログラムであって、前記プログラムは前記通信装置に、通常経路と予備経路との両経路の伝送レートが低下した際に割り当てられる、前記両経路のそれぞれで使用可能な通信方式毎の空き帯域と、フローが要求している帯域とに基づいて、前記両経路で同一フローのパケットを補完しあえるように設定されたマーキング情報に従って、前記フローの各パケットに対してマーキングするマーキングステップと、通常経路と予備経路との両経路の伝送レートが低下すると、マーキングされたパケットを転送する転送ステップとを実行させることを特徴とする。
 本発明によると、通常経路と冗長経路の両方の経路で、同時に伝送レート低下が発生しても、それぞれの経路で補完しあうようにパケットを送信することで、経路全体で、データパケットの欠落を防ぎ、もともと確保した帯域の通信を維持することができる。
本発明の効果を示す図である。 ネットワークの一構成例を示す図である。 経路制御装置の基本動作手順を示すフローチャートである。 経路制御装置の一構成例を示すブロック図である。 通信装置の一構成例を示すブロック図である。 実施例におけるネットワークの一構成例を示す図である
 本発明の特徴を説明するために、以下において、図面を参照して具体的に述べる。
 本願発明は、有線網のリンク障害とは違い、適応変調による伝送レート低下では、ある程度の帯域は確保できることを利用する。これら残った帯域の合計が必要以上であれば、それぞれの経路で補完し合うデータを転送することでデータの欠落を防げるため、通信品質を維持することができる。
 図1を用いて本発明について述べる。
 本発明を用いない場合、101に示されているとおり、通常経路と予備経路とで伝送レート低下が発生してしまうと、両方の経路でパケットロスが発生してしまう。特にパケット毎に送信経路の区別を設けていないため、通常経路と予備経路とが合流する通信装置において同じパケットが失われてしまい、両方の経路から届いたパケットを合わせてもパケットロスを回避できない。
 しかし、本発明を用いた場合、102に示されているように、各パケットにマーキングを施し、通常経路と予備経路とで伝送レートの低下が生じた場合でも、それぞれ異なるマーキングがされたパケットを転送させている。これにより、両方の経路でパケットロスが発生しても、それぞれの経路から別々のマーキングがされたパケットが到着するため、到着パケットを合計することでパケットロスを防ぐことができる。
 本発明は、図2に示されるような、経路制御装置201と通信装置202-205とで構成された通信ネットワークシステムで構成される。
 図3は、本発明の動作を説明するためのフローである。
 経路制御装置201は、通常経路と冗長経路とを探索する(301)。その後、各経路中のリンクで伝送レートが低下した場合において、フローが使用できる帯域から、データの欠落を防ぐために必要なフローの分散方法を計算する(302)。その結果をもとにマーキング設定を行い、各通信装置にその情報を通知する(303)。各通信装置202-205は、自身の無線リンクの状態と、通知された情報にもとづいて転送処理を行う。
 経路制御装置201は、フローの経路設定要求やフローの終了といったサービス利用者からネットワーク事業者への通知の処理を行うとともに、各通信装置からリンク情報を取得する。経路制御装置201は、フローの経路設定要求を受け取ると、フローの要求条件である帯域、信頼性を満たすことができる経路を探索する。ここでは、経路制御装置201は、フローの要求条件を満たす通常経路と予備経路を探索する。次に、経路制御装置201は、各経路を構成する無線リンクにおいて、どの程度の伝送レート低下が起きるかどうかを調べる。この予測は、無線リンクからの品質を定期的に収集したデータを基に行う。ここで、経路制御装置201は、既に同じ無線リンクを使用している既存フローへの帯域割り当て状況から、伝送レート低下が起きた場合に同無線リンクで、フローが使用できる帯域がどの程度まで低下するか計算する。その結果をもとに、経路制御装置は、各経路で使用できる帯域がどう変化するかを計算する。
 経路制御装置201は、通常経路と予備経路との経路を設定する際、通常経路と予備経路が分岐する通信装置に対し、使用できる帯域に合わせ、通常経路と予備経路でそれぞれ補完し合えるデータが送れるように、マーキングを設定する。同様に、経路制御装置201は各経路中の通信装置に対し、自身に接続している無線リンクで伝送レート低下が起きた場合、どのマーキングがされたパケットを転送するかの情報を通知する。
 設定後の各通信装置202-205の動作は次のとおりである。
 通常経路と予備経路とが分岐する通信装置は、その設定に基づき、通常経路、予備経路に送るパケットにそれぞれマーキングする。また、各通信装置202-205は、無線リンクの伝送レートの低下が発生すると、予め指定された設定に基づき、特定のマーキングがされたパケットを転送する。通常経路と予備経路が合流する通信装置では、両方の経路で伝送レート低下が起きていることを検知すると、パケットに施されたマーキングを基に、各経路から来るパケットをもともとのフローに再構成する。
 以上の動作により、1+1プロテクションを行っているフローにおいて通常経路、予備経路の両方で伝送レート低下が起きても、データの欠落を防ぎ、通信品質を維持することができる。
 本発明の詳細について、図2を用いて説明する。
 本発明の通信ネットワークシステムは、経路制御装置201および配下の各通信装置202‐205で構成されている。経路制御装置201がネットワーク全体を管理し、新規フローの受付や終了などはすべて経路制御装置201が行う。経路制御装置201は定期的に各通信装置202‐205から無線リンクのビットエラーレート、使用している変調方式等のリンク品質に関するリンク品質情報を取得する。
 経路制御装置201は、図4に示す通り、通信部401、経路制御部402、トポロジー情報管理部403、トラヒック情報管理部404、リンク情報管理部405で構成される。
 トポロジー情報管理部403は、トポロジー情報を管理する。
 トラヒック情報管理部404は、ネットワークを流れるフローの情報を管理する。
 リンク情報管理部405は、各通信装置202‐205から取得したリンク品質情報、空き帯域、リンクを使用しているフローのリストおよび変調方式毎にフローに割り当てられる帯域等の各リンクの情報を管理する。
 経路制御装置201に送られてくる新規通信フローのリクエストや終了の通知、各通信装置202-205からの無線リンクの品質変化の通知などは、経路制御部402で処理され、トポロジー情報管理部403、トラヒック情報管理部404、リンク情報管理部405から必要な情報を取得し、経路の設定や、帯域の割り当てなどを行う。本発明の特徴である、マーキング設定の計算などはこの経路制御部403で行われる。リンク情報管理部405は、経路制御部402を通して各通信装置からのリンク品質変化の通知を受け取ると、リンク情報を更新する。
 通信装置202-205は、図5に示す通り、通信部501、トラヒック制御部502、リソース管理部503で構成される。
 トラヒック制御部502は、リンクを使用するフローに対する帯域制御、経路制御を行う。
 リソース管理部503は、リンクを使用するフローの割り当て帯域や転送先、帯域変動時のパケットのマーキング毎の動作等のフローに関する情報を管理する。
 各通信装置202-205は、経路制御装置から送られてくる各フローに対する割り当て帯域や、各フローの転送先、マーキング毎の転送処理等のリソース割り当て情報をリソース管理部503に保存する。そして、トラヒック制御部502は、リソース管理部503に保存した情報を元にトラヒック制御を行う。本発明の特徴として、トラヒック制御部502は、伝送レートの低下を検知したときは、リソース管理部503の情報をもとに特定のマーキングがされたパケットのみ転送し、それ以外のパケットは破棄する。
 また、リソース管理部503は、通信部501を監視し、無線リンクのリンク品質の変化を検知した場合は、その情報を経路制御装置に通知する。
 次に本発明における経路制御装置201の動作の詳細について、図3、4、5を用いて説明する。尚、以下の動作は、新規に通信フローが発生した際に行われる。
 本発明において、経路制御装置201は、フローの通信経路と冗長経路とを探索する(301)。
 これら二つの経路に関し、伝送レート低下による使用可能帯域の低下がどの程度起きるかについて過去の統計情報などから予測をし、各経路における伝送レート低下が発生したときに、パケットにどのようなマーキングを施し、各経路中の通信装置が伝送レート低下時にどのパケットを転送すべきかを計算する(302)。
 経路制御装置201は、経路が分岐する通信装置に対し、パケットに対するマーキングの設定を通知し、経路中の通信装置に対しては、伝送レート低下に合わせて、転送すべきパケットのマーキング情報を通知する(303)。
 各ステップの詳細な動作を以下に示す。
 301のステップ:経路制御部402は、トポロジー情報管理部403、トラヒック情報管理部404、リンク情報管理部405から、フローの通常経路と予備経路を探索する。
 302のステップ:経路制御部402は、通常経路と予備経路とのそれぞれで、伝送レートの低下が起きたときに、フローが使用できる帯域についてリンク情報管理部405を通して調べる。経路制御部402は、その結果を元に、通常経路と予備経路で同時に伝送レートが低下した場合、どのようにフローを分散すれば、データの欠落がなく通信を維持できるか調べ、フローの各パケットに対するマーキング方法を決定する。
 303のステップ:経路制御部402は、通常経路と予備経路との設定後に、経路が分岐する通信装置に対し、パケットに対するマーキングについて通知する。また、経路中の通信装置に対し、経路制御装置402は、伝送レート低下時に行うマーキング毎のパケットの転送処理を通知する。各通信装置は、その情報をリソース管理部503に保存する。
 設定後の各通信装置の動作について説明する。なお、通信装置は、それぞれの役割に応じて異なる動作を行う。
 通常経路と予備経路とが分岐する通信装置では、トラヒック制御部502において、リソース管理部503での情報を元に、予め指定された割合でパケットに対し、マーキングを施す。
 通常経路と予備経路とが合流する通信装置では、両方の経路で伝送レートが低下した場合、トラヒック制御部502は、リソース管理部503の情報に基づいて、それぞれの経路から到着するパケットからフローを再構築する。このとき、重複したマーキングがされたパケットは破棄し、それぞれ異なるマーキングされたパケットから、もとのフローを再構築する。
 経路中のすべての通信装置は、自身が管理する無線リンクにおいて伝送レートの低下を通信部501で検知すると、リソース管理部503の情報を元に、トラヒック制御部502において、その伝送レート毎に予め指定されたマーキングのパケットのみ転送し、それ以外のパケットは破棄する。
 次に、302のステップで行われるフローに対するマーキングの決定方法の一例について説明する。マーキングには、例えば各パケットのIPヘッダのDSCP(DiffServ Code Point)を用いるが、ここでは、便宜上、A, B, C, Dといったマーキングが施されるとする。また、ここでは、無線リンクの各変調方式で確保できる帯域をそれぞれフローに割り当てるものとする。変調方式毎に割り当てた帯域は、無線リンクがその変調方式より低い変調方式を用いない限り使用できる。
 まず、予め探索した通常経路と予備経路とのそれぞれについて、経路を構成する各無線リンクにおいて、それぞれ変調方式毎の空き帯域を調べる。各変調方式の最小の空き帯域で構成された仮想リンクを通常経路、予備経路についてそれぞれ作成する。
 仮に、通常経路の仮想リンクをv1、予備経路の仮想リンクをv2とし、仮想リンクv1, v2の各変調方式の空き帯域が
  v1={b1, b2, ..., bn}
  v2={c1, c2, ..., cp}
であったとする。ここで、n, p はそれぞれ空き帯域が残っている変調方式の数である。
フローが必要とする帯域Tに対して、両者の中で最小の空き帯域となる変調方式の空き帯域min_rを基準に、
  min_r = min({b1, .., bn}, {c1, ..., cp})
  m = min(n, p)
  min_r >= T / m
の条件を満たすか調べる。なお、mには、v1, v2の割り当て可能な変調方式の数n, pのうち最小の数min(n, p)を用いる。
 もし、上記の条件を満たす場合、トラヒックTをmで割った値T/m Mbps毎にわけ、それぞれA,B,C,Dといった異なるマーキングを割り当てる。次に、それぞれのマーキング毎に各変調方式の帯域を割り当てていく。
 通常経路で用いられる無線リンクでは、低い変調方式から順にA, B, C, Dのマーキング分にトラヒック量に対応した帯域を割り当てていく。予備経路で用いられる無線リンクでは、逆の順で各変調方式の帯域を割り当てる。仮に、通常経路でマーキングがA, B, C, Dの順で低い変調方式の帯域を割り当てた場合、予備経路では、逆に、D, C, B, Aの順で低い変調方式の帯域を割り当てていく。
 一方、
min_r * m <T
となり、条件を満たさない場合、まず、min_r * m 分だけ、先程の通りに、マーキング設定と各変調方式の帯域の割り当てとを行うる。各リンクの変調方式毎の空き帯域を用いて再度仮想リンクv1, v2を作成する。未割り当てのフローT’
T’ = T - min_r * m
に対しては空き帯域がまだ残っている変調方式の帯域を用いて割り当てを行う。
 仮想リンクv1, v2の空き帯域は、
v1 = {b1’, ..., bg’}
v2 = {c1’, ..., ch’}
となる。先程と同様に、空き帯域がまだ残っている変調方式の中で最小の空き帯域min_r’と変調方式の数m’を再度求める。
min_r' = min({b1’, .., bg’}, {c1’, ..., ch’})
m’ = min(g, h)
 そして、残りのトラヒックT’に対して先程のようなマーキングの割り当てと帯域の割り当てを決める。このとき、例えば、前回A-Dまで使用した場合は、Eからマーキング設定を行う等、マーキング設定は、前回使用した記号とは重複しない記号を用いる。
 以上の割り当てをすべてのトラヒックに対してマーキングと帯域割当が行えるまで繰り返す。なお、上記説明では、空き帯域が残っている変調方式を用いたが、ある一定以上の帯域が残っている変調方式のみに限定しても良い。
 本発明の実施例を図6のネットワークシステムの概要図を用いて説明する。
 ネットワークシステムは、経路制御装置600、経路制御装置600と通信装置601とを結ぶ無線リンク691、通信装置601と通信装置603とを結ぶ無線リンク611、通信装置601と通信装置602とを結ぶ無線リンク612、及び通信装置602と603とを結ぶ無線リンク613で構成されている。
 また、無線リンク611, 612, 613ともに、QPSK、16QAM、32QAM、128QAMの変調方式が使用できるとする。それぞれの変調方式の帯域は、40Mbps, 80Mbps, 108Mbps, 155Mbpsとする。この場合、各変調方式において割り当て可能な帯域は、
{QPSK, 16QAM, 32QAM, 128QAM} = {40, 40, 28, 55}
となる。
 ここで、このネットワークにおいて、通信装置601と603との間に40Mbpsのフローを1+1プロテクションを用いて経路を設定する。経路制御装置600の経路探索の結果、無線リンク611を用いる通常経路601‐603と、無線リンク612と613とを用いる予備経路601‐602‐603が見つかったとする。既存フローに割り当てられ済みの帯域があり、各無線リンクの変調方式毎の空き帯域が
無線リンク611:{QPSK, 16QAM, 32QAM, 128QAM} = {30, 30, 28, 30}
無線リンク612:{QPSK, 16QAM, 32QAM, 128QAM} = {30, 40, 28, 40}
無線リンク613:{QPSK, 16QAM, 32QAM, 128QAM} = {40, 20, 28, 40}
であったとする。そうすると、通常経路601‐603と予備経路601‐602‐603の仮想リンクv1, v2はそれぞれ
V1:{QPSK, 16QAM, 32QAM, 128QAM} = {30, 30, 28, 30}
V2:{QPSK, 16QAM, 32QAM, 128QAM} = {30, 20, 28, 40}
となり、最小の空き帯域min_rおよび変調方式の数mは、
min_r = 20
m = min(4,4) = 4
となる。
 ここで、フローが使用する帯域は、40MbpsであるのでT=40、空き帯域がある変調方式の数m = 4であることから20> 40 / 4より、
min_r >= T / m
が成立する。そこで、フローを40/4 = 10Mbpsずつに分割し、それぞれA,B,C,Dのマーキングを割り当てることを決める。
 そして、通常経路601‐603を構成する無線リンク611において、Aのマーキングがされたパケット用にQPSKの帯域を、Bのマーキングがされたパケット用に16QAMの帯域を、Cのマーキングがされたパケット用に32QAMの帯域を、Dのマーキングがされたパケット用に128QAMの帯域をそれぞれ10Mbpsずつ割り当てる。
 予備経路601‐602‐603を構成する無線リンク612, 613に対しては、Dのマーキングがされたパケット用にQPSKの帯域を、Cのマーキングがされたパケット用に16QAMの帯域を、Bのマーキングがされたパケット用に32QAMの帯域を、Aのマーキングがされたパケット用に128QAMの帯域をそれぞれ10Mbpsずつ割り当てる。これらのマーキング情報および帯域割り当ての情報は、経路制御装置600から、経路中の各通信装置601, 602, 603に通知される。
 通常経路と予備経路が分岐する通信装置601においてA, B, C, Dといったマーキングは行われる。各通信装置は、無線リンクの変調方式に応じて転送するパケットを制御する。この実施例では,通常経路、予備経路ともに、各無線リンクで変調方式が128QAMの場合はすべてのパケットを転送される。
 通常経路の各無線リンクにおいて、変調方式が32QAMではA, B, C、16QAMではA, B、QPSKではAのマーキングがされたパケットを転送する。予備経路の各無線リンクでは逆に、変調方式が32QAMではD, C, B、16QAMではD, C、QPSKではDのマーキングがされたパケットのみ転送する。
 以上により、通常経路で使用する無線リンク611が32QAMで、予備経路を構成する無線リンク612又は613でQPSKとなった場合、経路が合流する通信装置603にA-Dのパケットが届くため、パケットロスを防ぐことが可能になる。また、この逆で、無線リンク611がQPSKで、無線リンク612又は613が32QAMの場合、双方の経路を構成する無線リンクが16QAMとなった場合においても経路が合流する通信装置603にA-Dのパケットが届くため、パケットロスを防ぐことが可能になる。
 実施例1での動作が行われた後に、更に同様の通常経路601‐603、予備経路601‐602‐603を使用する64Mbpsのフローを収容する場合の実施例について説明する。
 仮想リンクv1, v2の各変調方式の空き帯域は以下の通りになる。
V1:{QPSK, 16QAM, 32QAM, 128QAM} = {20, 20, 18, 20}
V2:{QPSK, 16QAM, 32QAM, 128QAM} = {20, 10, 18, 30}
 ここで、min_r = 10, T=64, m = 4で、64/4 = 16となることから、
min_r < T /m
となってしまう。
 そこで、まずフローをmin_r * m = 40 Mbps と64 - 40 = 24Mbpsとに分ける。A, B, C, Dのマーキングをそれぞれ10Mbpsずつに対して割り当てることを決める。
 通常経路601‐603を構成する無線リンク611では、Aのマーキングがされたパケット用にQPSKの帯域を、Bのマーキングがされたパケット用に16QAMの帯域を、Cのマーキングがされたパケット用に32QAMの帯域を、Dのマーキングがされたパケット用に128QAMの帯域をそれぞれ10Mbpsずつ割り当てる。
 予備経路601‐602‐603を構成する無線リンク612, 613では、Dのマーキングがされたパケット用に、QPSKの帯域を、Cのマーキングがされたパケットに用に16QAMの帯域を、Bのマーキングがされたパケット用に32QAMの帯域を、Aのマーキングがされたパケット用に128QAMの帯域をそれぞれ10Mbpsずつ割り当てる。
 その結果、仮想リンクv1, v2の各変調方式の空き帯域は
V1:{QPSK, 16QAM, 32QAM, 128QAM} = {10, 10, 8, 10}
V2:{QPSK, 16QAM, 32QAM, 128QAM} = {10, 0, 8, 20}
となり、空き帯域が0以上の変調方式の数はm’ = min(4, 3) = 3で、その中で最小の空き帯域min_r’ = 8Mbpsより、8 = 24/3となり、
min_r’ >= T’/m
が成立するので、T’=24Mbpsを8 * 3に分ける。
 先程と同様に、残りの8Mbpsずつに対するマーキングと帯域の割り当てを決める。ここで、マーキングには、Dの次のE, F, Gを用いる。
 通常経路601‐603を構成する無線リンク611では、Eのマーキングがされたパケット用にQPSKの帯域を、Fのマーキングがされたパケット用に16QAMの帯域を、Gのマーキングがされたパケット用に128QAMの帯域をそれぞれ8Mbpsずつ割り当てる。
 予備経路601‐602‐603を構成する無線リンク612, 613では、Gのマーキングがされたパケット用にQPSKの帯域を、Fのマーキングがされたパケット用に32QAMの帯域を、Eのマーキングがされたパケット用に128QAMの帯域をそれぞれ8Mbpsずつ割り当てる。
 以上のマーキングおよび帯域割り当て結果を、経路制御装置600は、経路中の各通信装置601, 602, 603に通知される。経路が分岐する通信装置601において、フローの各パケットはA-Gまでのいずれかのマーキングが施される。
 通常経路601‐603を構成する無線リンク611において変調方式が128QAMより低い場合、特定のマーキングがされたパケットのみが転送される。変調方式が32QAMでは、A, B, C, E, F、16QAMではA, B, E, F、 QPSKではA, Eのマーキングがされたパケットが転送される。
 一方、予備経路601‐602‐603を構成する無線リンク612, 613では、変調方式が32QAMでは、D, C, B, F, G、16QAMではD, C, G、 QPSKではD, Gのマーキングがされたパケットのみ転送される。
 これにより、通常経路で使用する無線リンク611の変調方式が32QAMで、予備経路を構成する無線リンク612, 613の一方で変調方式がQPSKとなった場合、双方の経路を構成する無線リンクで変調方式が16QAMとなった場合においても、A-Gのパケットが通信装置603まで届くため、パケットロスを防ぐことが可能になる。また、その逆で、無線リンク611の変調方式がQPSKとなり、無線リンク612, 613のいずれかで変調方式が32QAMの場合、双方の経路を構成する無線リンクで変調方式が16QAMとなった場合においても、A-Gのパケットが通信装置603まで届くため、パケットロスを防ぐことが可能になる。
 通常経路で使用する無線リンクの変調方式が32QAMで、通常経路で使用する無線リンクの変調方式が16QAMとなった場合等では、双方の経路から一部マーキングが重複したパケットが通信装置603に届くことになるが、重複パケットを通信装置603で破棄することで、もとのフローに戻すことができる。
 尚、本発明は、経路制御装置の機能を通信装置が持つ構成であっても実現できる。そのような構成の場合、上記経路制御装置の各構成部が通信装置に構成される。
 また、本発明は、1+1プロテクションに限らず、1+Nプロテクションでも同様に実現できる。更に、経路全体のプロテクションであるパスプロテクションでなくとも、経路の一部に対するプロテクションであるセグメントプロテクションにおいても同様に実施できる。
 また、マルチキャストのような1対N型の通信であっても、予備のマルチキャストツリーを用いる場合、同様に実現できる。
 さらに、上述した本発明の各装置は、上記説明からも明らかなように、ハードウェアで構成することも可能であるが、コンピュータプログラムにより実現することも可能である。
 プログラムメモリに格納されているプログラムで動作するプロセッサによって、上述した実施の形態と同様の機能、動作を実現させる。尚、上述した実施の形態の一部の機能のみをコンピュータプログラムにより実現することも可能である。
 以上、実施の形態及び実施例をあげて本発明を説明したが、本発明は必ずしも上記実施の形態及び実施例に限定されるものではなく、その技術的思想の範囲内において様々に変形し実施することが出来る。
 本出願は、2011年2月28日に出願された日本出願特願2011-042964号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
(付記1)
 通信経路制御装置であって、
 通常経路と予備経路との伝送レートが低下した際に割り当てることができる帯域である空き帯域を、前記通常経路と前記予備経路とのそれぞれで使用可能な通信方式毎に調査する調査手段と、
 前記調査した空き帯域と、フローが要求している帯域とに基づいて、前記通常経路と前記予備経路とで同一フローのパケットを補完しあえるようにマーキングの設定を行う制御手段と
を有することを特徴とする通信経路制御装置。
(付記2)
 前記制御手段は、前記調査した空き帯域の中の最小の空き帯域の値と、前記フローが要求している帯域を空き帯域がある変調方式の数で割った値との比較結果に応じて、マーキングの方法と、各変調方式に帯域を割り当てる方法とを変更することを特徴とする付記1に記載の通信経路制御装置。
(付記3)
 前記制御手段は、前記フローが要求している帯域値を空き帯域がある変調方式の数で割った値より、前記調査した空き帯域の中の最小の空き帯域の値の方が大きい場合、前記フローが要求している帯域を空き帯域がある変調方式の数で割った値ずつ、各変調方式に帯域を割り当て、変調方式毎にマーキングすることを特徴とする付記1又は付記2に記載の通信経路制御装置。
(付記4)
 前記制御手段は、前記フローが要求している帯域値を空き帯域がある変調方式の数で割った値より、前記調査した空き帯域の中の最小の空き帯域の値の方が小さい場合、各変調方式に前記調査した空き帯域の中の最小の空き帯域分ずつ割り当て、フローが要求している帯域に満たない分を更に各変調方式に前記調査した空き帯域の中の最小の空き帯域分ずつ割り当てていくことを特徴とする付記1又は付記2に記載の通信経路制御装置。
(付記5)
 通信装置であって、
 通常経路と予備経路との両経路の伝送レートが低下した際に割り当てられる、前記両経路のそれぞれで使用可能な通信方式毎の空き帯域と、フローが要求している帯域とに基づいて、前記両経路で同一フローのパケットを補完しあえるように設定されたマーキング情報に従って、前記フローの各パケットに対してマーキングし、
 通常経路と予備経路との両経路の伝送レートが低下すると、マーキングされたパケットを転送する
ことを特徴とする通信装置。
(付記6)
 同一フローの前記マーキングされたパケットを、前記通常経路と前記予備経路とから受信した後、前記同一フローのパケットを重複が無いように再構築することを特徴とする付記5に記載の通信装置。
(付記7)
 通信経路制御方法であって、
 通常経路と予備経路との伝送レートが低下した際に割り当てることができる帯域である空き帯域を、前記通常経路と前記予備経路とのそれぞれで使用可能な通信方式毎に調査する調査ステップと、
 前記調査した空き帯域と、フローが要求している帯域とに基づいて、前記通常経路と前記予備経路とで同一フローのパケットを補完しあえるようにマーキングの設定を行う制御ステップと
を有することを特徴とする通信経路制御方法。
(付記8)
 前記制御ステップは、前記調査した空き帯域の中の最小の空き帯域の値と、前記フローが要求している帯域を空き帯域がある変調方式の数で割った値との比較結果に応じて、マーキングの方法と、各変調方式に帯域を割り当てる方法とを変更することを特徴とする付記7に記載の通信経路制御方法。
(付記9)
 前記制御ステップは、前記フローが要求している帯域値を空き帯域がある変調方式の数で割った値より、前記調査した空き帯域の中の最小の空き帯域の値の方が大きい場合、前記フローが要求している帯域を空き帯域がある変調方式の数で割った値ずつ、各変調方式に帯域を割り当て、変調方式毎にマーキングすることを特徴とする付記7又は付記8に記載の通信経路制御方法。
(付記10)
 前記制御ステップは、前記フローが要求している帯域値を空き帯域がある変調方式の数で割った値より、前記調査した空き帯域の中の最小の空き帯域の値の方が小さい場合、各変調方式に前記調査した空き帯域の中の最小の空き帯域分ずつ割り当て、フローが要求している帯域に満たない分を更に各変調方式に前記調査した空き帯域の中の最小の空き帯域分ずつ割り当てていくことを特徴とする付記7又は付記8に記載の通信経路制御方法。
(付記11)
 通信方法であって、
 通常経路と予備経路との両経路の伝送レートが低下した際に割り当てられる、前記両経路のそれぞれで使用可能な通信方式毎の空き帯域と、フローが要求している帯域とに基づいて、前記両経路で同一フローのパケットを補完しあえるように設定されたマーキング情報に従って、前記フローの各パケットに対してマーキングし、
 通常経路と予備経路との両経路の伝送レートが低下すると、マーキングされたパケットを転送する
ことを特徴とする通信方法。
(付記12)
 同一フローの前記マーキングされたパケットを、前記通常経路と前記予備経路とから受信した後、前記同一フローのパケットを重複が無いように再構築することを特徴とする付記11に記載の通信方法。
(付記13)
 通信経路制御装置のプログラムであって、前記プログラムは前記通信経路制御装置に、
 通常経路と予備経路との伝送レートが低下した際に割り当てることができる帯域である空き帯域を、前記通常経路と前記予備経路とのそれぞれで使用可能な通信方式毎に調査する調査ステップと、
 前記調査した空き帯域と、フローが要求している帯域とに基づいて、前記通常経路と前記予備経路とで同一フローのパケットを補完しあえるようにマーキングの設定を行う制御ステップと
を実行させることを特徴とするプログラム。
(付記14)
 通信装置のプログラムであって、前記プログラムは前記通信装置に、
 通常経路と予備経路との両経路の伝送レートが低下した際に割り当てられる、前記両経路のそれぞれで使用可能な通信方式毎の空き帯域と、フローが要求している帯域とに基づいて、前記両経路で同一フローのパケットを補完しあえるように設定されたマーキング情報に従って、前記フローの各パケットに対してマーキングするマーキングステップと、
 通常経路と予備経路との両経路の伝送レートが低下すると、マーキングされたパケットを転送する転送ステップと
を実行させることを特徴とするプログラム。
201 経路制御装置
202 通信装置
203 通信装置
204 通信装置
205 通信装置
401 通信部
402 経路制御部
403 トポロジー情報管理部
404 トラヒック情報管理部
405 リンク情報管理部
501 通信部
502 トラヒック制御部
503 リソース管理部
600 経路制御装置
601 通信装置
602 通信装置
603 通信装置
611 無線リンク
612 無線リンク
613 無線リンク

Claims (10)

  1.  通信経路制御装置であって、
     通常経路と予備経路との伝送レートが低下した際に割り当てることができる帯域である空き帯域を、前記通常経路と前記予備経路とのそれぞれで使用可能な通信方式毎に調査する調査手段と、
     前記調査した空き帯域と、フローが要求している帯域とに基づいて、前記通常経路と前記予備経路とで同一フローのパケットを補完しあえるようにマーキングの設定を行う制御手段と
    を有することを特徴とする通信経路制御装置。
  2.  前記制御手段は、前記調査した空き帯域の中の最小の空き帯域の値と、前記フローが要求している帯域を空き帯域がある変調方式の数で割った値との比較結果に応じて、マーキングの方法と、各変調方式に帯域を割り当てる方法とを変更することを特徴とする請求項1に記載の通信経路制御装置。
  3.  前記制御手段は、前記フローが要求している帯域値を空き帯域がある変調方式の数で割った値より、前記調査した空き帯域の中の最小の空き帯域の値の方が大きい場合、前記フローが要求している帯域を空き帯域がある変調方式の数で割った値ずつ、各変調方式に帯域を割り当て、変調方式毎にマーキングすることを特徴とする請求項1又は請求項2に記載の通信経路制御装置。
  4.  前記制御手段は、前記フローが要求している帯域値を空き帯域がある変調方式の数で割った値より、前記調査した空き帯域の中の最小の空き帯域の値の方が小さい場合、各変調方式に前記調査した空き帯域の中の最小の空き帯域分ずつ割り当て、フローが要求している帯域に満たない分を更に各変調方式に前記調査した空き帯域の中の最小の空き帯域分ずつ割り当てていくことを特徴とする請求項1又は請求項2に記載の通信経路制御装置。
  5.  通信装置であって、
     通常経路と予備経路との両経路の伝送レートが低下した際に割り当てられる、前記両経路のそれぞれで使用可能な通信方式毎の空き帯域と、フローが要求している帯域とに基づいて、前記両経路で同一フローのパケットを補完しあえるように設定されたマーキング情報に従って、前記フローの各パケットに対してマーキングし、
     通常経路と予備経路との両経路の伝送レートが低下すると、マーキングされたパケットを転送する
    ことを特徴とする通信装置。
  6.  同一フローの前記マーキングされたパケットを、前記通常経路と前記予備経路とから受信した後、前記同一フローのパケットを重複が無いように再構築することを特徴とする請求項5に記載の通信装置。
  7.  通信経路制御方法であって、
     通常経路と予備経路との伝送レートが低下した際に割り当てることができる帯域である空き帯域を、前記通常経路と前記予備経路とのそれぞれで使用可能な通信方式毎に調査する調査ステップと、
     前記調査した空き帯域と、フローが要求している帯域とに基づいて、前記通常経路と前記予備経路とで同一フローのパケットを補完しあえるようにマーキングの設定を行う制御ステップと
    を有することを特徴とする通信経路制御方法。
  8.  通信方法であって、
     通常経路と予備経路との両経路の伝送レートが低下した際に割り当てられる、前記両経路のそれぞれで使用可能な通信方式毎の空き帯域と、フローが要求している帯域とに基づいて、前記両経路で同一フローのパケットを補完しあえるように設定されたマーキング情報に従って、前記フローの各パケットに対してマーキングし、
     通常経路と予備経路との両経路の伝送レートが低下すると、マーキングされたパケットを転送する
    ことを特徴とする通信方法。
  9.  通信経路制御装置のプログラムであって、前記プログラムは前記通信経路制御装置に、
     通常経路と予備経路との伝送レートが低下した際に割り当てることができる帯域である空き帯域を、前記通常経路と前記予備経路とのそれぞれで使用可能な通信方式毎に調査する調査ステップと、
     前記調査した空き帯域と、フローが要求している帯域とに基づいて、前記通常経路と前記予備経路とで同一フローのパケットを補完しあえるようにマーキングの設定を行う制御ステップと
    を実行させることを特徴とするプログラム。
  10.  通信装置のプログラムであって、前記プログラムは前記通信装置に、
     通常経路と予備経路との両経路の伝送レートが低下した際に割り当てられる、前記両経路のそれぞれで使用可能な通信方式毎の空き帯域と、フローが要求している帯域とに基づいて、前記両経路で同一フローのパケットを補完しあえるように設定されたマーキング情報に従って、前記フローの各パケットに対してマーキングするマーキングステップと、
     通常経路と予備経路との両経路の伝送レートが低下すると、マーキングされたパケットを転送する転送ステップと
    を実行させることを特徴とするプログラム。
PCT/JP2012/054423 2011-02-28 2012-02-23 通信経路制御装置、通信装置、通信経路制御方法、通信方法、及びプログラム WO2012117940A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/001,224 US20130329564A1 (en) 2011-02-28 2012-02-23 Communication path control device, communication device, communication path control method, communication method, and program
CN2012800107883A CN103404089A (zh) 2011-02-28 2012-02-23 通信路径控制设备、通信设备、通信路径控制方法、通信方法和程序
JP2013502272A JP5884996B2 (ja) 2011-02-28 2012-02-23 通信経路制御装置、通信装置、通信経路制御方法、通信方法、及びプログラム
BR112013020985A BR112013020985A2 (pt) 2011-02-28 2012-02-23 dispositivo de controle de trajetória de comunicação, dispositivo de comunicação, método de controle de trajetória de comunicação, método de comunicação, programa de um dispositivo de controle de trajetória de comunicação e programa de um dispositivo de comunicação.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-042964 2011-02-28
JP2011042964 2011-02-28

Publications (1)

Publication Number Publication Date
WO2012117940A1 true WO2012117940A1 (ja) 2012-09-07

Family

ID=46757877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054423 WO2012117940A1 (ja) 2011-02-28 2012-02-23 通信経路制御装置、通信装置、通信経路制御方法、通信方法、及びプログラム

Country Status (5)

Country Link
US (1) US20130329564A1 (ja)
JP (1) JP5884996B2 (ja)
CN (1) CN103404089A (ja)
BR (1) BR112013020985A2 (ja)
WO (1) WO2012117940A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014068812A1 (ja) * 2012-10-30 2016-09-08 日本電気株式会社 制御装置、通信システム、通信制御方法、及びプログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006504307A (ja) * 2002-10-28 2006-02-02 シーメンス アクチエンゲゼルシヤフト 自己組織化無線通信システムでの分散同期方法
WO2010022792A1 (en) * 2008-08-29 2010-03-04 Telefonaktiebolaget Lm Ericsson (Publ) Efficient working standby radio protection scheme

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2814304B1 (fr) * 2000-09-21 2003-02-07 Cit Alcatel Procede de gestion de ressources de protection et reseau de communication mettant en oeuvre ce procede
US7660241B2 (en) * 2004-07-20 2010-02-09 Alcatel Lucent Load balancing in a virtual private network
KR100966044B1 (ko) * 2005-02-24 2010-06-28 삼성전자주식회사 다중 셀 통신 시스템에서 주파수 자원 할당 시스템 및 방법
US7636309B2 (en) * 2005-06-28 2009-12-22 Alcatel-Lucent Usa Inc. Multi-path routing using intra-flow splitting
CN101379766B (zh) * 2006-03-29 2011-12-14 株式会社日立制作所 宽带无线通信中的资源分配方法、基站装置以及终端装置
US8509062B2 (en) * 2006-08-07 2013-08-13 Ciena Corporation Smart ethernet edge networking system
US8081579B2 (en) * 2006-11-28 2011-12-20 Kyocera Corporation Communication control apparatus, wireless communication apparatus, communication control method and wireless communication method
US8897132B2 (en) * 2010-03-31 2014-11-25 Blue Coat Systems, Inc. Enhanced random early discard for networked devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006504307A (ja) * 2002-10-28 2006-02-02 シーメンス アクチエンゲゼルシヤフト 自己組織化無線通信システムでの分散同期方法
WO2010022792A1 (en) * 2008-08-29 2010-03-04 Telefonaktiebolaget Lm Ericsson (Publ) Efficient working standby radio protection scheme

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014068812A1 (ja) * 2012-10-30 2016-09-08 日本電気株式会社 制御装置、通信システム、通信制御方法、及びプログラム

Also Published As

Publication number Publication date
CN103404089A (zh) 2013-11-20
JP5884996B2 (ja) 2016-03-15
BR112013020985A2 (pt) 2018-07-10
JPWO2012117940A1 (ja) 2014-07-07
US20130329564A1 (en) 2013-12-12

Similar Documents

Publication Publication Date Title
JP5423689B2 (ja) 経路制御システム、経路制御装置、通信装置、経路制御方法およびプログラム
US9001656B2 (en) Dynamic route branching system and dynamic route branching method
CA2617641C (en) Method and apparatus for maximizing data transmission capacity of a mesh network
US8396012B2 (en) Adaptive wireless process control system and method
US8862774B2 (en) Dynamic keepalive parameters for reverse path validation in computer networks
US8385921B1 (en) Backhaul aware radio access networks
WO2013125177A1 (ja) 通信装置とトラヒック制御方法
US20130121331A1 (en) Adaptive reoptimization rate for unstable network topologies
JP5423678B2 (ja) 経路制御システム、経路制御装置、経路制御方法およびプログラム
JP2007306206A (ja) 通信システム
US8929199B2 (en) Path control device and path control method
JP5884996B2 (ja) 通信経路制御装置、通信装置、通信経路制御方法、通信方法、及びプログラム
EP2540058A2 (en) A system and method for aggregating bandwidth of multiple active physical interfaces on application layer
Niephaus et al. QoS-aware wireless back-haul network for rural areas in practice
Srikitja et al. On providing survivable QoS services in the next generation Internet
WO2017130893A1 (ja) 通信システム、制御装置、通信制御方法およびプログラム
US8830906B1 (en) Integrated quality of service interface for ethernet radio
WO2013128874A1 (ja) ネットワークシステムとトラヒック制御方法とノード装置
TWI757887B (zh) 用以促進一資料流從一發送端透過多路徑傳輸至一接收端的方法、網路控制器以及電腦程式產品
JP5045683B2 (ja) フロー単位でトラフィック制御を行う通信システム、該通信システムで使用する管理装置及びプログラム
FI124649B (en) Method and system for finding the lowest hop-per-bit rate
JP2023108289A (ja) 通信システム
Abramkina Analysis of the effectiveness of the eigrp routing protocol

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012224147

Country of ref document: AU

Date of ref document: 20120223

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013502272

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14001224

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12752251

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013020985

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013020985

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130816