WO2012117552A1 - 触媒劣化判定システム - Google Patents

触媒劣化判定システム Download PDF

Info

Publication number
WO2012117552A1
WO2012117552A1 PCT/JP2011/054918 JP2011054918W WO2012117552A1 WO 2012117552 A1 WO2012117552 A1 WO 2012117552A1 JP 2011054918 W JP2011054918 W JP 2011054918W WO 2012117552 A1 WO2012117552 A1 WO 2012117552A1
Authority
WO
WIPO (PCT)
Prior art keywords
nox
catalyst
fuel ratio
reducing agent
air
Prior art date
Application number
PCT/JP2011/054918
Other languages
English (en)
French (fr)
Inventor
中村 好孝
洋孝 齋藤
徹 木所
裕 澤田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/982,611 priority Critical patent/US20130330234A1/en
Priority to EP11859811.9A priority patent/EP2682576A4/en
Priority to PCT/JP2011/054918 priority patent/WO2012117552A1/ja
Priority to JP2013502116A priority patent/JP5601418B2/ja
Publication of WO2012117552A1 publication Critical patent/WO2012117552A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/10Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using catalysis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/03Monitoring or diagnosing the deterioration of exhaust systems of sorbing activity of adsorbents or absorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/021Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting ammonia NH3
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1616NH3-slip from catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1621Catalyst conversion efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D2041/1468Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an ammonia content or concentration of the exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a catalyst deterioration determination system.
  • NOx catalyst When the reduction control of NOx stored in the NOx storage reduction catalyst (hereinafter also simply referred to as NOx catalyst) is executed, and then the estimated value of the NOx storage amount in the NOx catalyst reaches the reference value, A technique for determining that the NOx catalyst is deteriorated when the NOx concentration detected by the NOx sensor downstream of the NOx catalyst is equal to or higher than a predetermined concentration is known (for example, see Patent Document 1).
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a technique that can quickly and accurately determine the deterioration of the NOx storage reduction catalyst.
  • the catalyst deterioration determination system is: In a catalyst deterioration determination system for determining deterioration of an NOx storage reduction catalyst that is provided in an exhaust passage of an internal combustion engine and stores NOx and reduces the stored NOx by supplying a reducing agent, A supply device for changing the air-fuel ratio of the exhaust gas passing through the NOx storage reduction catalyst by supplying a reducing agent to the NOx storage reduction catalyst; An NH 3 detector for detecting NH 3 in the exhaust downstream of the NOx storage reduction catalyst; A control device that adjusts the amount of the reducing agent so that the air-fuel ratio of the exhaust gas becomes a rich air-fuel ratio when the reducing agent is supplied from the supply device; When NOx is stored in the NOx storage reduction catalyst, the control device supplies the reducing agent from the supply device while adjusting the amount of reducing agent so that the exhaust air-fuel ratio becomes a rich air-fuel ratio. A determination device that determines that the NOx storage reduction catalyst is deteriorated when NOx is stored in the NOx storage reduction catalyst is
  • the NOx storage reduction catalyst stores NOx when the air-fuel ratio is lean, and reduces the stored NOx when a reducing agent is present.
  • the supply device can supply the reducing agent to the NOx storage reduction catalyst.
  • the reducing agent may be supplied into the exhaust gas flowing through the exhaust passage or may be discharged from the internal combustion engine. Then, by supplying the reducing agent, the air-fuel ratio of the exhaust is lowered.
  • H 2 or HC may react with NO to generate NH 3 .
  • the reduction efficiency of the NOx storage reduction catalyst decreases. That is, the amount of NOx stored is reduced, and the amount of NOx desorbed from the NOx storage reduction catalyst when the air-fuel ratio is rich is also reduced. For this reason, the amount of NH 3 produced is also reduced. Therefore, the detection value of the NH 3 detection device when the reducing agent is supplied with the rich air-fuel ratio as a target becomes small according to the degree of deterioration of the storage reduction type NOx catalyst.
  • the deterioration determination can be performed within a predetermined time immediately after the supply of the reducing agent is started.
  • the predetermined time here can be a time during which NH 3 is generated by supplying the reducing agent.
  • the detection value of the NH 3 detection device when the storage reduction type NOx catalyst is at the boundary of whether or not it is deteriorated is set as a threshold value, the detection value of the NH 3 detection device is equal to or less than the threshold value. It can be determined that the NOx storage reduction catalyst has deteriorated.
  • the determination accuracy can be increased by performing the deterioration determination when NH 3 is generated.
  • the deterioration determination can be performed immediately after the supply of the reducing agent, it is possible to quickly determine the deterioration.
  • the predetermined time may be 10 seconds. That is, since NH 3 is generated after 10 seconds have elapsed since the start of the supply of the reducing agent, it is possible to determine the deterioration of the NOx storage reduction catalyst. And since degradation determination can be performed in a short period of 10 seconds, rapid degradation determination is possible.
  • the determination device can determine that the NOx storage reduction catalyst is deteriorated when the maximum value of the detection value of the NH 3 detection device is equal to or less than a threshold value.
  • the threshold value is set as a value at which the maximum value of the detected value of the NH 3 detector becomes unacceptable. That is, the threshold value can be the upper limit value of the maximum value of the detection value of the NH 3 detection device when the NOx storage reduction catalyst is deteriorated. Then, it is possible to determine whether or not the NOx storage reduction catalyst is deteriorated by comparing the maximum value of the detection value of the NH 3 detection device with a threshold value.
  • the deterioration determination can be easily and accurately performed by performing the deterioration determination using the maximum value of the detection value of the NH 3 detection device that is correlated with the degree of deterioration of the NOx storage reduction catalyst.
  • the determination device can determine that the NOx storage reduction catalyst has deteriorated when the integrated value of the detection values of the NH 3 detection device is equal to or less than a threshold value.
  • the maximum value of the detected value of the NH 3 detection device decreases in accordance with the degree of the integrated value of the detected value deterioration of the NOx storage reduction catalyst of the NH 3 detection device.
  • the integrated value is obtained, for example, by adding the detection value of the NH 3 detection device every predetermined time.
  • a threshold value is set as a value at which the integrated value of the detected values of the NH 3 detector becomes unacceptable. Then, it is possible to determine whether or not the NOx storage reduction catalyst is deteriorated by comparing the integrated value of the detection values of the NH 3 detection device with a threshold value.
  • the threshold value can be the upper limit value of the integrated value of the detection values of the NH 3 detection device when the NOx storage reduction catalyst is deteriorated.
  • the deterioration determination can be easily and accurately performed by performing the deterioration determination using the integrated value of the detection values of the NH 3 detection device correlated with the deterioration degree of the NOx storage reduction catalyst.
  • control device can adjust the amount of the reducing agent so that the air-fuel ratio of the exhaust gas is a rich air-fuel ratio and the air-fuel ratio at which the amount of NH 3 generated is maximized.
  • the NH 3 detector may be a NOx sensor that detects NOx and NH 3 in the exhaust gas.
  • the NOx sensor detects NH 3 as well as NOx. For this reason, it cannot be determined whether the detected value of the NOx sensor is, for example, the concentration of NO 2 or the concentration of NH 3 . However, if the reducing agent is supplied until the air-fuel ratio becomes rich, the exhaust gas downstream of the NOx storage reduction catalyst hardly contains NOx. For this reason, the detected value of the NOx sensor indicates the concentration of NH 3 . Therefore, NH 3 can be detected using a NOx sensor.
  • FIG. 5 is a diagram showing the relationship between the air-fuel ratio at the time of supplying a reducing agent and the NH 3 concentration downstream of the NOx catalyst. It is the flowchart which showed the flow of the deterioration judgment of the NOx catalyst.
  • FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine and its exhaust system according to the present embodiment.
  • the internal combustion engine 1 shown in FIG. 1 is a water-cooled four-cycle diesel engine having four cylinders.
  • the exhaust passage 2 is connected to the internal combustion engine 1.
  • An occlusion reduction type NOx catalyst 4 (hereinafter referred to as NOx catalyst 4) is provided in the middle of the exhaust passage 2.
  • the NOx catalyst 4 is constituted by, for example, using alumina (Al 2 O 3 ) as a carrier, and carrying, for example, barium (Ba) and platinum (Pt) on the carrier.
  • alumina Al 2 O 3
  • Pt platinum
  • This NOx catalyst 4 stores NOx in the exhaust when the oxygen concentration of the inflowing exhaust gas is high, and reduces the stored NOx when the oxygen concentration of the inflowing exhaust gas decreases and a reducing agent is present.
  • an injection valve 5 for injecting a reducing agent into the exhaust is attached to the exhaust passage 2 upstream of the NOx catalyst 4.
  • the injection valve 5 is opened by a signal from the ECU 10 described later, and injects the reducing agent into the exhaust.
  • the fuel (light oil) of the internal combustion engine 1 is used as the reducing agent, but the reducing agent is not limited thereto.
  • the fuel injected from the injection valve 5 into the exhaust passage 2 lowers the air-fuel ratio of the exhaust flowing from the upstream of the exhaust passage 2.
  • so-called rich spike control is performed in which the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 4 is decreased in a relatively short cycle by injecting fuel from the injection valve 5.
  • the amount of reducing agent injected from the injection valve 5 is determined based on, for example, the operating state of the internal combustion engine 1 (engine speed and fuel injection amount). The relationship among the amount of reducing agent, engine speed, and engine load can be mapped in advance.
  • an air-fuel ratio sensor may be attached to the exhaust passage 2 and the amount of reducing agent may be feedback controlled so that the air-fuel ratio detected by the air-fuel ratio sensor becomes a target value.
  • the injection valve 5 corresponds to the supply device in the present invention.
  • the reducing agent can also be supplied by discharging unburned fuel from the internal combustion engine 1. That is, an in-cylinder injection valve for injecting fuel into the cylinder is provided, and sub-injection (post-injection) for injecting fuel again during the expansion stroke or exhaust stroke after performing main injection from the in-cylinder injection valve is performed. Alternatively, by delaying the fuel injection timing from the in-cylinder injection valve, the gas containing a large amount of reducing agent can be discharged from the internal combustion engine 1.
  • An upstream NOx sensor 7 for measuring the NOx concentration in the exhaust is attached to the exhaust passage 2 upstream of the injection valve 5.
  • a downstream NOx sensor 8 that measures the NOx concentration in the exhaust and a temperature sensor 9 that measures the temperature of the exhaust are attached to the exhaust passage 2 downstream of the NOx catalyst 4.
  • the downstream NOx sensor 8 corresponds to the NH 3 detector or the NOx sensor in the present invention.
  • the internal combustion engine 1 configured as described above is provided with an ECU 10 that is an electronic control unit for controlling the internal combustion engine 1.
  • the ECU 10 controls the operation state of the internal combustion engine 1 according to the operation conditions of the internal combustion engine 1 and the request of the driver.
  • the ECU 10 outputs an electric signal corresponding to the amount of depression of the accelerator pedal 11 by the driver to detect the engine load, and an accelerator position sensor 12 for detecting the engine speed. 13 are connected via electric wiring, and the output signals of these various sensors are input to the ECU 10.
  • the injection valve 5 is connected to the ECU 10 via electric wiring, and the ECU 10 controls the opening and closing timing of the injection valve 5.
  • the ECU 10 that adjusts the amount of reduction supplied from the injection valve 5 corresponds to the control device in the present invention.
  • the ECU 10 injects the reducing agent from the injection valve 5 within a range where the air-fuel ratio of the exhaust gas becomes rich, and at this time, the deterioration determination of the NOx catalyst 4 based on the NH 3 concentration detected by the downstream NOx sensor 8. I do.
  • NOx and NH 3 are detected as NOx by the downstream NOx sensor 8. For this reason, it is difficult to determine whether NH 3 has been detected by the downstream NOx sensor 8 or whether NOx has been detected.
  • the exhaust gas flowing out from the NOx catalyst 4 hardly contains NOx. Therefore, what is detected by the downstream side NOx sensor 8 at this time is NH 3 .
  • FIG. 2 is a diagram for explaining the NOx occlusion action in the NOx catalyst 4.
  • FIG. 3 is a view for explaining the NOx reduction action in the NOx catalyst 4.
  • the NOx catalyst 4 oxidizes NO with O 2 on Pt when the air-fuel ratio of the exhaust gas is lean, and stores it as Ba (NO 3 ) 2 in Ba.
  • Ba (NO 3 ) 2 is released as NO 2 and further reduced to N 2 on Pt.
  • NO and H 2 react to generate NH 3 and H 2 O.
  • HC and NO react to generate NH 3 , H 2 O, and CO 2 .
  • the NH 3 generated in this manner is detected as NOx because it reacts with H 2 or O 2 in the downstream NOx sensor 8 and becomes NO. That is, NH 3 is detected by the downstream NOx sensor 8.
  • FIG. 4 is a graph showing the relationship between the exhaust air-fuel ratio and the NH 3 concentration downstream of the NOx catalyst 4 during rich spike control according to this embodiment.
  • the solid line indicates the case where the NOx catalyst 4 is normal, and the alternate long and short dash line indicates the case where the NOx catalyst 4 is deteriorated.
  • the air-fuel ratio is lean, and after the reducing agent is supplied, the air-fuel ratio is rich.
  • the air-fuel ratio of the exhaust gas can be adjusted by adjusting the injection period of the reducing agent.
  • FIG. 5 is a diagram showing the relationship between the air-fuel ratio when the reducing agent is supplied and the NH 3 concentration downstream of the NOx catalyst 4.
  • New catalyst indicates the NOx catalyst 4 just installed in the vehicle. This is a state in which the travel distance of the vehicle is 0 to several kilometers and there is almost no deterioration of Pt.
  • Normal catalyst indicates the NOx catalyst 4 in which Pt has deteriorated but the degree of deterioration is within an allowable range.
  • “Deteriorated catalyst” indicates the NOx catalyst 4 whose degree of deterioration exceeds an allowable range.
  • the air / fuel ratio at which the difference in NH 3 concentration between the “normal catalyst” and the “deteriorated catalyst” becomes the largest may be targeted.
  • the amount of NH 3 produced in the NOx catalyst 4 is affected by the amount of NOx stored in the NOx catalyst 4 and the air-fuel ratio. That is, there is an optimal NOx occlusion amount and air-fuel ratio for the production of NH 3 . If the deterioration of the NOx catalyst 4 is determined based on the optimum storage amount of NOx for the generation of NH 3 and the NH 3 concentration at the air-fuel ratio, the determination accuracy can be improved.
  • the normal rich spike control may be performed to reduce the NOx occluded in the NOx catalyst 4 before determining the deterioration of the NOx catalyst 4. As a result, the amount of NOx flowing out from the NOx catalyst 4 when determining the deterioration of the NOx catalyst 4 can be reduced.
  • the deterioration of the NOx catalyst 4 can be determined based on the detection value of the downstream NOx sensor 8 when the valve opening time of the injection valve 5 is controlled so that the air-fuel ratio of the exhaust gas becomes rich. For example, if the maximum detected value of the downstream NOx sensor 8 within a predetermined period after the start of the supply of the reducing agent is equal to or less than the threshold value, it is determined that the NOx catalyst 4 has deteriorated. Further, if the integrated value of the detected values of the downstream NOx sensor 8 in a predetermined period after the start of the supply of the reducing agent is equal to or less than the threshold value, it may be determined that the NOx catalyst 4 has deteriorated.
  • the NOx catalyst 4 When the NOx catalyst 4 is new, that is, when the vehicle travel distance is from 0 to several kilometers, there is no deterioration of Pt. Therefore, even if the reducing agent is supplied so as to achieve a rich air-fuel ratio, NO is H. It reacts actively with 2 or HC and is reduced to N 2 . For this reason, since the detection value of the downstream side NOx sensor 8 becomes small, it becomes difficult to distinguish from the case where the NOx catalyst 4 is deteriorated. On the other hand, for example, when the NOx catalyst 4 is new, the reducing agent supply time at the time of determining the deterioration of the NOx catalyst 4 is made longer than in other cases.
  • the reducing agent supply time at the time of determining the deterioration of the NOx catalyst 4 may be made longer than when the vehicle exceeds the predetermined value.
  • This predetermined value is the upper limit value of the travel distance at which the NOx catalyst 4 is new. That is, after the NO reacts with H 2 or HC and is reduced to N 2 , a reducing agent is further supplied. As a result, NO reacts with H 2 or HC to generate NH 3 . Thereby, even if the NOx catalyst 4 is new, NH 3 is detected by the downstream NOx sensor 8, so that the deterioration determination of the NOx catalyst 4 can be performed accurately.
  • FIG. 6 is a flowchart showing a flow for determining the deterioration of the NOx catalyst 4. This routine is executed every predetermined period.
  • step S101 it is determined whether or not a precondition for determining deterioration of the NOx catalyst 4 is satisfied. For example, it is determined that the precondition is satisfied when the downstream NOx sensor 8 is normal and the temperature of the NOx catalyst 4 is a temperature suitable for NOx reduction. Whether the downstream NOx sensor 8 is normal can be determined by a known technique.
  • the temperature suitable for NOx reduction is, for example, the temperature at which the NOx catalyst 4 is activated.
  • the temperature of the NOx catalyst 4 is detected by a temperature sensor 9.
  • step S101 If an affirmative determination is made in step S101, the process proceeds to step S102, and if a negative determination is made, this routine is terminated.
  • the rich spike execution condition is a condition for performing rich spike control for determining deterioration of the NOx catalyst 4. For example, it is determined that the rich spike execution condition is satisfied when a predetermined amount or more of NOx is stored in the NOx catalyst 4.
  • the amount of NOx stored in the NOx catalyst 4 is calculated based on the NOx concentration detected by the upstream NOx sensor 7.
  • the predetermined amount is obtained in advance by experiments or the like as a value at which NH 3 is generated so that deterioration can be determined when a reducing agent is supplied. That is, if NOx is not occluded in the NOx catalyst 4, NH 3 is not generated even if the NOx catalyst 4 is normal. Since this makes it difficult to determine deterioration, it is a condition that a predetermined amount or more of NOx is occluded in the NOx catalyst 4.
  • step S102 If an affirmative determination is made in step S102, the process proceeds to step S103, and if a negative determination is made, this routine is terminated.
  • step S103 rich spike control for determining deterioration of the NOx catalyst 4 is performed. That is, rich spike control is performed within a richer range than the stoichiometric air-fuel ratio.
  • the amount of reducing agent may be adjusted so that the air-fuel ratio is in the vicinity of the maximum NH 3 concentration.
  • the time for performing the rich spike control may be made longer than when the predetermined distance is exceeded. That is, when the NOx catalyst 4 can be said to be new, rich spike control may be performed until NH 3 is generated.
  • step S104 it is determined whether or not the maximum detected value of the downstream NOx sensor 8 is equal to or less than a threshold value.
  • This threshold value is a detection value that is a boundary for determining whether or not the NOx catalyst 4 is deteriorated, and is set in advance. This maximum value is the maximum value within 10 seconds after the rich spike control is started.
  • This integrated value may be an integrated value during which NH 3 is detected by the downstream NOx sensor 8 by rich spike control, or may be an integrated value during the rich spike control being performed. It may be an integrated value. The integrated value is obtained, for example, by sequentially adding the detection values of the downstream NOx sensor 8 read at a predetermined period.
  • step S104 If an affirmative determination is made in step S104, the process proceeds to step S105, where it is determined that the NOx catalyst 4 has deteriorated. On the other hand, if a negative determination is made in step S104, the process proceeds to step S106, where it is determined that the NOx catalyst 4 is normal.
  • the ECU 10 that processes steps S103 to S106 corresponds to the determination device according to the present invention.
  • the degree of deterioration of the NOx catalyst 4 is higher as the maximum value of the detected value of the downstream side NOx sensor 8 when the rich spike control is performed within the richer range than the stoichiometric air-fuel ratio is smaller. May be determined. Similarly, it may be determined that the degree of deterioration of the NOx catalyst 4 is higher as the integrated value of the detected values of the downstream NOx sensor 8 is smaller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 吸蔵還元型NOx触媒(4)の劣化判定を速やかに且つ正確に行なう。吸蔵還元型NOx触媒(4)にNOxが吸蔵されているときであって、制御装置(10)により排気の空燃比がリッチ空燃比となるように還元剤量を調節しつつ供給装置(5)から還元剤の供給を開始した直後の所定時間内において、NH検出装置(8)の検出値が閾値以下となるときに吸蔵還元型NOx触媒(4)が劣化していると判定する判定装置(10)を備える。

Description

触媒劣化判定システム
 本発明は、触媒劣化判定システムに関する。
 吸蔵還元型NOx触媒(以下、単にNOx触媒ともいう。)に吸蔵されているNOxの還元制御を実行し、その後、NOx触媒でのNOxの吸蔵量の推定値が基準値に達した時点で、NOx触媒よりも下流側のNOxセンサによって検出されるNOx濃度が所定濃度以上であるときは、NOx触媒が劣化していると判定する技術が知られている(例えば、特許文献1参照。)。
 しかし、NOx触媒に多くのNOxが吸蔵されるまで待たなくてはならず、NOx触媒の劣化判定に要する時間が長くなる。このため、NOx触媒が劣化している場合には、劣化判定が完了するまでの間はNOxが流出する虞がある。
 また、NOx触媒よりも下流側のNOxセンサによって空燃比をリッチにしたときのNHの濃度を検出し、該NHの濃度の変化から余剰な還元剤量を求める技術が知られている(例えば、特許文献2参照。)。
 また、還元雰囲気としたときのNOx触媒よりも下流側のNOxセンサの出力値に基づいてNOx 触媒の劣化状態を判定する技術が知られている(例えば、特許文献3参照。)。このNOx触媒の劣化は、NOx触媒の硫黄被毒を指している。この判定は、NOx濃度が安定するまで待ってから行われるため、劣化判定に要する時間が長くなる。
特開2007-162468号公報 特開2002-180865号公報 特開平11-229849号公報
 本発明は、上記したような問題点に鑑みてなされたものであり、吸蔵還元型NOx触媒の劣化判定を速やかに且つ正確に行なうことができる技術の提供を目的とする。
 上記課題を達成するために本発明による触媒劣化判定システムは、
 内燃機関の排気通路に設けられてNOxを吸蔵し、吸蔵していたNOxを還元剤の供給により還元する吸蔵還元型NOx触媒の劣化を判定する触媒劣化判定システムにおいて、
 前記吸蔵還元型NOx触媒へ還元剤を供給することで該吸蔵還元型NOx触媒を通過する排気の空燃比を変化させる供給装置と、
 前記吸蔵還元型NOx触媒よりも下流の排気中のNHを検出するNH検出装置と、
 前記供給装置から還元剤を供給するときに排気の空燃比がリッチ空燃比となるように還元剤量を調節する制御装置と、
 前記吸蔵還元型NOx触媒にNOxが吸蔵されているときであって、前記制御装置により排気の空燃比がリッチ空燃比となるように還元剤量を調節しつつ前記供給装置から還元剤の供給を開始した直後の所定時間内において、前記NH検出装置の検出値が閾値以下となるときに前記吸蔵還元型NOx触媒が劣化していると判定する判定装置と、
 を備える。
 吸蔵還元型NOx触媒は、リーン空燃比のときにNOxを吸蔵し、吸蔵していたNOxを還元剤が存在するときに還元する。供給装置は、吸蔵還元型NOx触媒へ還元剤を供給することができる。還元剤は、排気通路を流通する排気中に供給してもよく、内燃機関から排出させるようにしてもよい。そして、還元剤を供給することで、排気の空燃比が低下する。
 ここで、吸蔵還元型NOx触媒に還元剤を供給すると、HやHCがNOと反応してNHが生成されることがある。そして、吸蔵還元型NOx触媒が劣化すると、該吸蔵還元型NOx触媒における還元効率が低下する。すなわち、吸蔵されるNOx量が少なくなり、リッチ空燃比としたときに吸蔵還元型NOx触媒から脱離するNOx量も少なくなる。このため、生成されるNH量も少なくなる。したがって、リッチ空燃比を目標として還元剤を供給したときのNH検出装置の検出値が、吸蔵還元型NOx触媒の劣化の度合いに応じて小さくなる。
 この現象は、還元剤の供給を開始した後の短い時間で現れる。したがって、還元剤の供給を開始した直後の所定時間内で劣化判定を行うことができる。なお、ここでいう所定時間は、還元剤の供給によりNHが生成される時間とすることができる。
 そして、吸蔵還元型NOx触媒が劣化しているか否かの境にあるときのNH検出装置の検出値を閾値として設定しておけば、NH検出装置の検出値が閾値以下となるときに該吸蔵還元型NOx触媒が劣化していると判定できる。
 このように、NHが生成されるときに劣化判定を行うことで判定精度を高くすることができる。また、還元剤供給後すぐに劣化判定を行うことができるため、速やかな劣化判定が可能となる。
 なお、本発明においては、前記所定時間は10秒であってもよい。すなわち、還元剤の供給を開始してから10秒も経過すれば、NHが生成されるので、吸蔵還元型NOx触媒の劣化判定が可能となる。そして、10秒という短い期間で劣化判定を行うことができるため、速やかな劣化判定が可能となる。
 また、本発明においては、前記判定装置は、前記NH検出装置の検出値の最大値が閾値以下のときに前記吸蔵還元型NOx触媒が劣化していると判定することができる。
 ここで、吸蔵還元型NOx触媒の劣化の度合いが高くなるほど、生成されるNH量が少なくなる。このため、NH検出装置の検出値の最大値が小さくなる。このNH検出装置の検出値の最大値が許容できなくなる値として閾値を設定する。すなわち、閾値は、吸蔵還元型NOx触媒が劣化しているときのNH検出装置の検出値の最大値の上限値とすることができる。そして、NH検出装置の検出値の最大値と閾値とを比較することで、吸蔵還元型NOx触媒が劣化しているか否か判定することができる。なお、NH検出装置の検出値の最大値が閾値よりも大きなときには、吸蔵還元型NOx触媒は正常であると判定する。このように、吸蔵還元型NOx触媒の劣化の度合いと相関関係にあるNH検出装置の検出値の最大値を用いて劣化判定を行うことで、劣化判定を容易且つ正確に行うことができる。
 また、本発明においては、前記判定装置は、前記NH検出装置の検出値の積算値が閾値以下のときに前記吸蔵還元型NOx触媒が劣化していると判定することができる。
 NH検出装置の検出値の最大値と同様に、NH検出装置の検出値の積算値も吸蔵還元型NOx触媒の劣化の度合いに応じて小さくなる。積算値は、たとえばNH検出装置の検出値を所定時間毎に加算していくことで得る。このNH検出装置の検出値の積算値が許容できなくなる値として閾値を設定しておく。そして、NH検出装置の検出値の積算値と閾値とを比較することで、吸蔵還元型NOx触媒が劣化しているか否か判定することができる。この場合、閾値は、吸蔵還元型NOx触媒が劣化しているときのNH検出装置の検出値の積算値の上限値とすることができる。なお、NH検出装置の検出値の積算値が閾値よりも大きなときには、吸蔵還元型NOx触媒は正常であると判定する。このように、吸蔵還元型NOx触媒の劣化の度合いと相関関係にあるNH検出装置の検出値の積算値を用いて劣化判定を行うことで、劣化判定を容易且つ正確に行うことができる。
 また、本発明においては、前記制御装置は、排気の空燃比がリッチ空燃比であって、NHの生成量が最大となる空燃比となるように還元剤量を調節することができる。
 ここで、理論空燃比近傍のリッチ空燃比では、NHの生成量が少なくなるため、吸蔵還元型NOx触媒が正常な場合と劣化している場合とでNH検出装置の検出値の差が小さくなる。このため、劣化判定の精度が低くなる虞がある。これに対し、NHの生成量が最も多くなる空燃比が存在するため、この空燃比を目標とすることで、吸蔵還元型NOx触媒が正常な場合と劣化している場合とでNH検出装置の検出値の差を大きくすることができる。これにより、劣化判定の精度を向上させることができる。
 また、本発明においては、前記NH検出装置は、排気中のNOx及びNHを検出するNOxセンサであってもよい。
 ここで、NOxセンサはNHもNOxと同様に検出してしまう。このため、NOxセンサの検出値が、たとえばNOの濃度なのか、またはNHの濃度なのか判別することができない。しかし、リッチ空燃比となるまで還元剤を供給すると、吸蔵還元型NOx触媒よりも下流側の排気中にはNOxがほとんど含まれなくなる。このため、NOxセンサの検出値は、NHの濃度を示すことになる。したがって、NOxセンサを用いてNHを検出することができる。
 本発明によれば、吸蔵還元型NOx触媒の劣化判定を速やかに且つ正確に行なうことができる。
実施例に係る内燃機関とその排気系の概略構成を示す図である。 NOx触媒におけるNOxの吸蔵作用を説明するための図である。 NOx触媒におけるNOxの還元作用を説明するための図である。 実施例に係るリッチスパイク制御時の排気の空燃比とNOx触媒よりも下流側のNH濃度との関係を示した図である。 還元剤供給時の空燃比とNOx触媒よりも下流側のNH濃度との関係を示した図である。 NOx触媒の劣化判定のフローを示したフローチャートである。
 以下、本発明に係る触媒劣化判定システムの具体的な実施態様について図面に基づいて説明する。
 図1は、本実施例に係る内燃機関とその排気系の概略構成を示す図である。図1に示す内燃機関1は、4つの気筒を有する水冷式の4サイクル・ディーゼルエンジンである。
 内燃機関1には、排気通路2が接続されている。この排気通路2の途中には、吸蔵還元型NOx触媒4(以下、NOx触媒4という。)が備えられている。
 NOx触媒4は、たとえばアルミナ(Al)を担体とし、その担体上に、たとえばバリウム(Ba)及び白金(Pt)を担持して構成されている。
 このNOx触媒4は、流入する排気の酸素濃度が高いときは排気中のNOxを吸蔵し、流入する排気の酸素濃度が低下し且つ還元剤が存在するときは吸蔵していたNOxを還元する機能を有する。
 また、NOx触媒4よりも上流の排気通路2には、排気中に還元剤を噴射する噴射弁5が取り付けられている。噴射弁5は、後述するECU10からの信号により開弁して排気中へ還元剤を噴射する。還元剤には、たとえば内燃機関1の燃料(軽油)が用いられるが、これに限らない。
 噴射弁5から排気通路2内へ噴射された燃料は、排気通路2の上流から流れてきた排気の空燃比を低下させる。そして、NOx触媒4に吸蔵されているNOxの還元時には、噴射弁5から燃料を噴射することにより、NOx触媒4に流入する排気の空燃比を比較的に短い周期で低下させる所謂リッチスパイク制御を実行する。噴射弁5から噴射させる還元剤量は、たとえば内燃機関1の運転状態(機関回転数及び燃料噴射量)に基づいて決定される。還元剤量と機関回転数と機関負荷との関係は予めマップ化しておくことができる。また、排気通路2に空燃比センサを取り付けて、該空燃比センサにより検出される空燃比が目標値となるように還元剤量をフィードバック制御してもよい。
 なお、本実施例においては噴射弁5が、本発明における供給装置に相当する。また、内燃機関1から未燃燃料を排出させることで還元剤を供給することもできる。すなわち、気筒内に燃料を噴射する筒内噴射弁を備え、該筒内噴射弁から主噴射を行なった後の膨張行程中若しくは排気行程中に再度燃料を噴射する副噴射(ポスト噴射)を行なったり、筒内噴射弁からの燃料噴射時期を遅らせたりすることにより、内燃機関1から還元剤を多く含むガスを排出させることもできる。
 また、噴射弁5よりも上流の排気通路2には、排気中のNOx濃度を測定する上流側NOxセンサ7が取り付けられている。また、NOx触媒4よりも下流の排気通路2には、排気中のNOx濃度を測定する下流側NOxセンサ8及び排気の温度を測定する温度センサ9が取り付けられている。なお、本実施例においては下流側NOxセンサ8が、本発明におけるNH検出装置またはNOxセンサに相当する。
 以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニットであるECU10が併設されている。このECU10は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御する。
 また、ECU10には、上記センサの他、運転者がアクセルペダル11を踏み込んだ量に応じた電気信号を出力し機関負荷を検知するアクセル開度センサ12、および機関回転数を検知するクランクポジションセンサ13が電気配線を介して接続され、これら各種センサの出力信号がECU10に入力されるようになっている。
 一方、ECU10には、噴射弁5が電気配線を介して接続されており、該ECU10により噴射弁5の開閉時期が制御される。なお、本実施例では噴射弁5から供給する還元量を調節するECU10が、本発明における制御装置に相当する。
 そして、ECU10は、排気の空燃比がリッチとなる範囲内で噴射弁5から還元剤を噴射させ、このときに下流側NOxセンサ8により検出されるNH濃度に基づいてNOx触媒4の劣化判定を行う。ここで、NOx及びNHは、下流側NOxセンサ8によりNOxとして検出される。このため、下流側NOxセンサ8によりNHが検出されたのか、またはNOxが検出されたのか判別することは困難である。しかし、排気の空燃比をリッチ空燃比とすることで、NOx触媒4から流出する排気中にはNOxがほとんど含まれなくなる。したがって、このときに下流側NOxセンサ8により検出されるのは、NHということになる。
 ここで、図2は、NOx触媒4におけるNOxの吸蔵作用を説明するための図である。また、図3は、NOx触媒4におけるNOxの還元作用を説明するための図である。
 NOx触媒4は、排気の空燃比がリーンのときにNOをPt上でOと酸化させ、BaへBa(NOとして吸蔵する。一方、還元剤を供給して排気の空燃比をリッチとすると、Ba(NOがNOとなって放出され、さらにPt上でNに還元される。このときに、NOx触媒4では、NOとHとが反応して、NHとHOとが生成される。また、HCとNOとが反応して、NHとHOとCOとが生成される。このようにして生成されたNHは、下流側NOxセンサ8においてHまたはOと反応してNOになるため、NOxとして検出される。すなわち、下流側NOxセンサ8においてNHが検出される。
 図4は、本実施例に係るリッチスパイク制御時の排気の空燃比とNOx触媒4よりも下流側のNH濃度との関係を示した図である。NH濃度において実線はNOx触媒4が正常な場合を示し、一点鎖線はNOx触媒4が劣化している場合を示している。還元剤を供給する前はリーン空燃比であり、還元剤を供給した後はリッチ空燃比となる。ここで、噴射弁5から還元剤を噴射している期間を長くするほど、還元剤の供給量が多くなり、空燃比の低下量は大きくなる。このため、還元剤の噴射期間を調節することにより排気の空燃比を調節することができる。
 排気の空燃比がリッチ空燃比となるとNOx触媒4からNHが放出される。ここで、NOx触媒4が劣化すると、NOx触媒4における還元効率が低下するため、リッチ空燃比となるように還元剤を供給したときに、NOx触媒4から脱離するNOx量が減少する。また、Ptの表面積が小さくなるため、図3で説明したNHの生成量も減少する。したがって、このNOx触媒4よりも下流へ流れ出るNHの量は、NOx触媒4の劣化の度合いに応じて少なくなる。すなわち、NOx触媒4から流出するNHを下流側NOxセンサ8で検出すれば、NOx触媒4の劣化を判定することができる。
 ここで、図5は、還元剤供給時の空燃比とNOx触媒4よりも下流側のNH濃度との関係を示した図である。「新品触媒」は、車両に装着されたばかりのNOx触媒4を示している。これは、車両の走行距離が0から数kmであって、Ptの劣化がほとんどない状態である。「正常触媒」は、Ptが劣化しているものの、劣化の度合いが許容範囲内のNOx触媒4を示している。「劣化触媒」は、劣化の度合いが許容範囲を超えたNOx触媒4を示している。
 図5に示されるように、リッチ空燃比では、NOx触媒4の劣化に応じてNHの生成量が減少することが分かる。また、NOxを還元するために行われるリッチスパイク制御(以下、通常のリッチスパイク制御ともいう。)では、理論空燃比近くのリッチ空燃比とされるが、理論空燃比近くでは「正常触媒」と「劣化触媒」とのNH濃度の差が小さいことが分かる。したがって、NOx触媒4の劣化判定を行うときには、通常のリッチスパイク制御時よりも、さらにリッチ側となるように還元剤を供給すれば、劣化判定の精度を高めることができる。たとえば、図5において、NH濃度が最も高くなる空燃比を目標としてもよい。また、図5において、「正常触媒」と「劣化触媒」とのNH濃度の差が最も大きくなる空燃比を目標としてもよい。ここで、NOx触媒4におけるNHの生成量は、NOx触媒4に吸蔵されているNOx量及び空燃比の影響を受ける。すなわち、NHの生成に最適なNOxの吸蔵量及び空燃比が存在する。そして、NHの生成に最適なNOxの吸蔵量及び空燃比のときのNH濃度に基づいてNOx触媒4の劣化を判定すれば、判定精度を高めることができる。
 なお、NOx触媒4の劣化判定を行う前に、通常のリッチスパイク制御を行ってNOx触媒4に吸蔵されているNOxを還元してもよい。そうすると、NOx触媒4の劣化判定時にNOx触媒4から流出するNOx量を低減することができる。
 そして、排気の空燃比がリッチとなるように噴射弁5の開弁時間を制御したときの下流側NOxセンサ8の検出値に基づいてNOx触媒4の劣化を判定することができる。たとえば、還元剤の供給を開始してから所定期間内における下流側NOxセンサ8の検出値の最大値が閾値以下であれば、NOx触媒4が劣化していると判定される。また、還元剤の供給を開始してからの所定期間における下流側NOxセンサ8の検出値の積算値が閾値以下であれば、NOx触媒4が劣化していると判定してもよい。
 なお、NOx触媒4が新品の場合、すなわち車両の走行距離が0から数kmの場合には、Ptの劣化がないため、リッチ空燃比となるように還元剤を供給しても、NOがHまたはHCと活発に反応してNに還元される。このため、下流側NOxセンサ8の検出値が小さくなるため、NOx触媒4が劣化している場合と判別することが困難となる。これに対し、たとえばNOx触媒4が新品の場合には、それ以外のときよりも、NOx触媒4の劣化判定時の還元剤の供給時間を長くする。車両の走行距離が所定値以下の場合には、所定値を超えた場合よりも、NOx触媒4の劣化判定時の還元剤の供給時間を長くするとしてもよい。この所定値は、NOx触媒4が新品とされる走行距離の上限値である。すなわち、NOがHまたはHCと反応しNに還元された後にさらに還元剤を供給する。これにより、NOがHまたはHCと反応してNHが生成される。これにより、NOx触媒4が新品であっても下流側NOxセンサ8によりNHが検出されるため、NOx触媒4の劣化判定を正確に行うことができる。
 図6は、NOx触媒4の劣化判定のフローを示したフローチャートである。本ルーチンは、所定の期間毎に実行される。
 ステップS101では、NOx触媒4の劣化判定を行う前提条件が成立しているか否か判定される。たとえば下流側NOxセンサ8が正常であり、且つNOx触媒4の温度がNOxの還元に適した温度となっているときに前提条件が成立していると判定される。下流側NOxセンサ8が正常であるか否かは、周知の技術により行うことができる。また、NOxの還元に適した温度とは、たとえば、NOx触媒4が活性化しているときの温度である。NOx触媒4の温度は、温度センサ9により検出される。
 ステップS101で肯定判定がなされた場合にはステップS102へ進み、否定判定がなされた場合には本ルーチンを終了させる。
 ステップS102では、リッチスパイク実行条件が成立しているか否か判定される。リッチスパイク実行条件とは、NOx触媒4の劣化判定を行うためのリッチスパイク制御を行う条件である。たとえば、NOx触媒4に所定量以上のNOxが吸蔵されているときにリッチスパイク実行条件が成立していると判定される。NOx触媒4に吸蔵されているNOx量は、上流側NOxセンサ7により検出されるNOx濃度に基づいて算出される。ここでいう所定量とは、還元剤を供給したときに、劣化判定が可能なほどNHが生成される値として予め実験等により求めておく。すなわち、NOx触媒4にNOxが吸蔵されていなければ、NOx触媒4がたとえ正常であったとしても、NHが生成されない。そうすると劣化判定が困難となるため、所定量以上のNOxがNOx触媒4に吸蔵されていることを条件としている。
 ステップS102で肯定判定がなされた場合にはステップS103へ進み、否定判定がなされた場合には本ルーチンを終了させる。
 ステップS103では、NOx触媒4の劣化判定用のリッチスパイク制御が行われる。すなわち、理論空燃比よりもリッチの範囲内でリッチスパイク制御が行われる。たとえば、図5に示した劣化触媒において、NH濃度が最大となる付近の空燃比となるように還元剤量を調節してもよい。
 なお、車両の走行距離が所定値以下の場合には、所定値を超えたときよりも、リッチスパイク制御を行う時間を長くしても良い。すなわち、NOx触媒4が新品といえるときには、NHが生成されるまでリッチスパイク制御を行ってもよい。
 ステップS104では、下流側NOxセンサ8の検出値の最大値が閾値以下であるか否か判定される。この閾値は、NOx触媒4が劣化しているか否かの境となる検出値であり、予め設定しておく。また、この最大値は、リッチスパイク制御が開始されてから10秒以内における最大値とする。なお、本ステップでは、下流側NOxセンサ8の検出値の積算値が閾値以下であるか否か判定してもよい。この積算値は、リッチスパイク制御により下流側NOxセンサ8でNHが検出されている間の積算値としてもよく、リッチスパイク制御が行われている間の積算値としてもよく、所定の時間の積算値としてもよい。積算値は、たとえば所定の周期で読み込まれる下流側NOxセンサ8の検出値を順次加算していくことにより得る。
 ステップS104で肯定判定がなされた場合にはステップS105へ進み、NOx触媒4は劣化していると判定される。一方、ステップS104で否定判定がなされた場合にはステップS106へ進み、NOx触媒4は正常であると判定される。なお、本実施例においてはステップS103からステップS106を処理するECU10が、本発明における判定装置に相当する。
 このようにして、リッチ空燃比となるように還元剤を供給しているときの下流側NOxセンサ8の検出値に基づいてNOx触媒4の劣化判定を行うことができる。このときには、下流側NOxセンサ8の検出値の最大値が分かればすぐに劣化判定が可能であるため、検出値が安定するまで待ったり、NOxが吸蔵されるまで待ったりする必要はない。すなわち、劣化判定を速やかに行うことができる。
 なお、本実施例では、理論空燃比よりもリッチの範囲内でリッチスパイク制御を行っているときの下流側NOxセンサ8の検出値の最大値が小さいほど、NOx触媒4の劣化の度合いが高いと判定してもよい。同様に、下流側NOxセンサ8の検出値の積算値が小さいほど、NOx触媒4の劣化の度合いが高いと判定してもよい。
1     内燃機関
2     排気通路
4     吸蔵還元型NOx触媒
5     噴射弁
7     上流側NOxセンサ
8     下流側NOxセンサ
9     温度センサ
10   ECU
11   アクセルペダル
12   アクセル開度センサ
13   クランクポジションセンサ

Claims (6)

  1.  内燃機関の排気通路に設けられてNOxを吸蔵し、吸蔵していたNOxを還元剤の供給により還元する吸蔵還元型NOx触媒の劣化を判定する触媒劣化判定システムにおいて、
     前記吸蔵還元型NOx触媒へ還元剤を供給することで該吸蔵還元型NOx触媒を通過する排気の空燃比を変化させる供給装置と、
     前記吸蔵還元型NOx触媒よりも下流の排気中のNHを検出するNH検出装置と、
     前記供給装置から還元剤を供給するときに排気の空燃比がリッチ空燃比となるように還元剤量を調節する制御装置と、
     前記吸蔵還元型NOx触媒にNOxが吸蔵されているときであって、前記制御装置により排気の空燃比がリッチ空燃比となるように還元剤量を調節しつつ前記供給装置から還元剤の供給を開始した直後の所定時間内において、前記NH検出装置の検出値が閾値以下となるときに前記吸蔵還元型NOx触媒が劣化していると判定する判定装置と、
     を備える触媒劣化判定システム。
  2.  前記所定時間は10秒である請求項1に記載の触媒劣化判定システム。
  3.  前記判定装置は、前記NH検出装置の検出値の最大値が閾値以下のときに前記吸蔵還元型NOx触媒が劣化していると判定する請求項1または2に記載の触媒劣化判定システム。
  4.  前記判定装置は、前記NH検出装置の検出値の積算値が閾値以下のときに前記吸蔵還元型NOx触媒が劣化していると判定する請求項1または2に記載の触媒劣化判定システム。
  5.  前記制御装置は、排気の空燃比がリッチ空燃比であって、NHの生成量が最大となる空燃比となるように還元剤量を調節する請求項1から4の何れか1項に記載の触媒劣化判定システム。
  6.  前記NH検出装置は、排気中のNOx及びNHを検出するNOxセンサである請求項1から5の何れか1項に記載の触媒劣化判定システム。
PCT/JP2011/054918 2011-03-03 2011-03-03 触媒劣化判定システム WO2012117552A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/982,611 US20130330234A1 (en) 2011-03-03 2011-03-03 Catalyst deterioration judging system
EP11859811.9A EP2682576A4 (en) 2011-03-03 2011-03-03 SYSTEM FOR DETERMINING CATALYST WEAR
PCT/JP2011/054918 WO2012117552A1 (ja) 2011-03-03 2011-03-03 触媒劣化判定システム
JP2013502116A JP5601418B2 (ja) 2011-03-03 2011-03-03 触媒劣化判定システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/054918 WO2012117552A1 (ja) 2011-03-03 2011-03-03 触媒劣化判定システム

Publications (1)

Publication Number Publication Date
WO2012117552A1 true WO2012117552A1 (ja) 2012-09-07

Family

ID=46757511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054918 WO2012117552A1 (ja) 2011-03-03 2011-03-03 触媒劣化判定システム

Country Status (4)

Country Link
US (1) US20130330234A1 (ja)
EP (1) EP2682576A4 (ja)
JP (1) JP5601418B2 (ja)
WO (1) WO2012117552A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014521077A (ja) * 2011-07-08 2014-08-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 呼気分析装置の変換器の機能性の監視
WO2016104802A1 (ja) * 2014-12-26 2016-06-30 いすゞ自動車株式会社 排気浄化システム及び排気浄化システムの制御方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017219857A1 (de) * 2017-11-08 2019-09-26 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Diagnose einer Abgasbehandlungsvorrichtung
JP7071246B2 (ja) 2018-09-07 2022-05-18 日本碍子株式会社 触媒劣化診断方法および触媒劣化診断システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229849A (ja) 1998-02-10 1999-08-24 Mitsubishi Motors Corp 希薄燃焼内燃機関
JP2002180865A (ja) 2000-12-08 2002-06-26 Toyota Motor Corp 内燃機関の排気浄化装置
JP2007162468A (ja) 2005-12-09 2007-06-28 Toyota Motor Corp 吸蔵還元型NOx触媒の劣化判定システムおよび劣化判定方法
JP2008057404A (ja) * 2006-08-30 2008-03-13 Toyota Motor Corp 触媒劣化診断装置
JP2008215315A (ja) * 2007-03-07 2008-09-18 Toyota Motor Corp NOx触媒の劣化診断装置
JP2010174814A (ja) * 2009-01-30 2010-08-12 Mitsubishi Heavy Ind Ltd 排ガス浄化装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3649130B2 (ja) * 2001-01-22 2005-05-18 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP3775229B2 (ja) * 2001-03-08 2006-05-17 トヨタ自動車株式会社 内燃機関の排気浄化装置
US7526950B2 (en) * 2007-01-31 2009-05-05 Ford Global Technologies, Llc Emission control diagnostic system and method
DE102008005640A1 (de) * 2008-01-23 2009-07-30 Daimler Ag Verfahren zur Ermittlung der Stickstoffdioxidkonzentration in Abgasen
JP5258319B2 (ja) * 2008-02-15 2013-08-07 ボッシュ株式会社 酸化触媒の故障診断装置及び酸化触媒の故障診断方法、並びに内燃機関の排気浄化装置
US8201394B2 (en) * 2008-04-30 2012-06-19 Cummins Ip, Inc. Apparatus, system, and method for NOx signal correction in feedback controls of an SCR system
US8281572B2 (en) * 2008-04-30 2012-10-09 Cummins Ip, Inc. Apparatus, system, and method for reducing NOx emissions from an engine system
US8256208B2 (en) * 2008-04-30 2012-09-04 Cummins Ip, Inc. Apparatus, system, and method for reducing NOx emissions on an SCR catalyst
US8225595B2 (en) * 2008-12-05 2012-07-24 Cummins Ip, Inc. Apparatus, system, and method for estimating an NOx conversion efficiency of a selective catalytic reduction catalyst
US9255510B2 (en) * 2009-03-09 2016-02-09 GM Global Technology Operations LLC Ammonia (NH3) storage control system and method based on a nitrogen oxide(NOx) sensor
US8205440B2 (en) * 2009-09-14 2012-06-26 GM Global Technology Operations LLC Intrusive SCR efficency testing systems and methods for vehicles with low temperature exhaust gas
US9038373B2 (en) * 2010-05-03 2015-05-26 Cummins Inc. Ammonia sensor control of an SCR aftertreatment system
JP5760423B2 (ja) * 2010-12-16 2015-08-12 いすゞ自動車株式会社 NOx浄化率低下原因診断装置
US9084966B2 (en) * 2012-11-29 2015-07-21 GM Global Technology Operations LLC Diesel oxidation catalyst aging level determination using NOX sensor NO2 interference

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229849A (ja) 1998-02-10 1999-08-24 Mitsubishi Motors Corp 希薄燃焼内燃機関
JP2002180865A (ja) 2000-12-08 2002-06-26 Toyota Motor Corp 内燃機関の排気浄化装置
JP2007162468A (ja) 2005-12-09 2007-06-28 Toyota Motor Corp 吸蔵還元型NOx触媒の劣化判定システムおよび劣化判定方法
JP2008057404A (ja) * 2006-08-30 2008-03-13 Toyota Motor Corp 触媒劣化診断装置
JP2008215315A (ja) * 2007-03-07 2008-09-18 Toyota Motor Corp NOx触媒の劣化診断装置
JP2010174814A (ja) * 2009-01-30 2010-08-12 Mitsubishi Heavy Ind Ltd 排ガス浄化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2682576A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014521077A (ja) * 2011-07-08 2014-08-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 呼気分析装置の変換器の機能性の監視
WO2016104802A1 (ja) * 2014-12-26 2016-06-30 いすゞ自動車株式会社 排気浄化システム及び排気浄化システムの制御方法
JP2016125375A (ja) * 2014-12-26 2016-07-11 いすゞ自動車株式会社 排気浄化システム

Also Published As

Publication number Publication date
JPWO2012117552A1 (ja) 2014-07-07
EP2682576A1 (en) 2014-01-08
JP5601418B2 (ja) 2014-10-08
US20130330234A1 (en) 2013-12-12
EP2682576A4 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
JP5949954B2 (ja) 内燃機関の排気浄化装置
JP5907269B2 (ja) 内燃機関の排気浄化装置
JP5601418B2 (ja) 触媒劣化判定システム
JP2016079852A (ja) 内燃機関の排気浄化装置の異常判定システム
US9459242B2 (en) Catalyst deterioration judging system
JP4905327B2 (ja) 内燃機関の排気浄化システム
JP2016079856A (ja) 内燃機関の排気浄化装置の異常判定システム
JP5880592B2 (ja) 排気浄化装置の異常検出装置
JP5673797B2 (ja) 触媒劣化判定システム
JP5601285B2 (ja) 触媒劣化判定システム
JP5724839B2 (ja) 触媒劣化判定システム
JP2012233419A (ja) 触媒劣化判定システム
JP5821717B2 (ja) 触媒異常判定システム
JP2013019401A (ja) 触媒劣化判定システム
JP5708787B2 (ja) 触媒劣化判定システム
JP5626030B2 (ja) 触媒劣化判定システム
JP2013011202A (ja) 触媒劣化判定システム
JP2009264334A (ja) 内燃機関の制御装置
JP2011236869A (ja) NOxセンサの故障検出装置
JP2007198251A (ja) 触媒劣化検出装置
JP2007278246A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859811

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013502116

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13982611

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011859811

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011859811

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE