WO2012115473A2 - Membrane electrode assembly, electrochemical sensor using same and production methods therefor - Google Patents

Membrane electrode assembly, electrochemical sensor using same and production methods therefor Download PDF

Info

Publication number
WO2012115473A2
WO2012115473A2 PCT/KR2012/001404 KR2012001404W WO2012115473A2 WO 2012115473 A2 WO2012115473 A2 WO 2012115473A2 KR 2012001404 W KR2012001404 W KR 2012001404W WO 2012115473 A2 WO2012115473 A2 WO 2012115473A2
Authority
WO
WIPO (PCT)
Prior art keywords
metal
polymer electrolyte
carbon nanotubes
electrolyte membrane
membrane
Prior art date
Application number
PCT/KR2012/001404
Other languages
French (fr)
Korean (ko)
Other versions
WO2012115473A3 (en
Inventor
김용신
라쉬드모하매드
Original Assignee
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 에리카산학협력단 filed Critical 한양대학교 에리카산학협력단
Publication of WO2012115473A2 publication Critical patent/WO2012115473A2/en
Publication of WO2012115473A3 publication Critical patent/WO2012115473A3/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors

Definitions

  • the present invention relates to a membrane electrode assembly, an electrochemical gas sensor and a method of manufacturing the same, and more particularly, to a structure in which a catalyst electrode is formed on a polymer electrolyte and a method of manufacturing the same.
  • Electrochemical gas sensors have various uses, such as monitoring the indoor air environment, monitoring hazardous substances, and detecting gas leakage. In particular, it detects the presence of gases such as hydrogen, carbon monoxide or hydrogen sulfide in the air to allow the user to respond appropriately to changes in the atmospheric environment.
  • gases such as hydrogen, carbon monoxide or hydrogen sulfide
  • a technique for forming a catalyst electrode is a decal transfer method. It is a key element that a thin film of a metal film is formed on a decal substrate and then thermocompressed to another substrate.
  • the decal method is a representative method for forming a catalyst electrode on a polymer electrolyte as of the filing date. (J. Appl. Electrochem. 152 (1992) 1; J. Power. Source 145 (2005) 495)
  • FIG. 1 is a cross-sectional view for explaining a method of manufacturing an electrochemical sensor using a decal method according to the prior art.
  • the hydrogen cation present in the H + -nafion membrane 10, which is a polymer electrolyte membrane, is replaced with a cation such as Na + , K + to improve mechanical properties, and thus, M + (metal) -nafion. It is replaced by the film 11.
  • the catalyst layer 30 is formed on the decal substrate 20.
  • the decal substrate 20 uses a Teflon membrane. Two decal substrates 20 on which the catalyst layer 30 is formed are aligned such that both surfaces of the prepared M + -nafion membrane 11 are in contact with each other, and the membranes are attached using a thermocompression bonding apparatus. The thermocompression process is carried out at a high pressure of 50 to 100 Kgf / cm 2 and a high temperature of about 160 °C to 210 °C.
  • the bonded decal substrate 20 is separated, and a membrane electrode assembly in which the catalyst layer 30 remains on both sides of the M + -nafion membrane 11 is formed. Finally, the formed membrane electrode assembly is modified at high temperature using an acid solution such as sulfuric acid to modify the M + -nafion membrane 11 to the H + -nafion membrane 10.
  • the decal moving method described in FIG. 1 has a disadvantage in that the process is performed at a high temperature of 160 ° C. or higher, and the manufacturing process is complicated due to the condition requiring modification to the M + -nafion film.
  • FIG. 2 is a schematic diagram of a process for illustrating an improved conventional decal transfer method.
  • the catalyst layer 40 is formed on the decal substrate 20.
  • a thin desorption layer having carbon black is formed below the catalyst layer 40, and an adhesive layer formed of a Nafion colloidal solution is formed on the top thereof. Therefore, when it is transferred to the polymer electrolyte membrane 10, the catalyst layer 40 is easily separated from the decal substrate 20, and has a feature of being strongly adhered to the polymer electrolyte membrane 10.
  • the catalyst layer is formed using a solution in which spherical Nafion colloidal particles are mixed with Pt / C catalyst material. This facilitates the upper adhesion and the lower detachment process.
  • a first object of the present invention is to provide a membrane electrode assembly having a high conductivity to transfer the catalyst layer through the room temperature process.
  • a second object of the present invention is to provide a method for producing a membrane electrode assembly for achieving the first object.
  • a third object of the present invention is to provide an electrochemical sensor using the membrane electrode assembly provided by the first object.
  • a fourth object of the present invention is to provide a method of manufacturing an electrochemical sensor used to achieve the third object.
  • the present invention for achieving the first object, a polymer electrolyte membrane having a hydrophobic characteristic; And catalyst electrode layers formed on both surfaces of the polymer electrolyte membrane, wherein the catalyst electrode layers have a structure of metal nanoparticles-carbon nanotubes in which metal nanoparticles are attached to carbon nanotubes. .
  • the present invention for achieving the second object, the first step of forming a catalyst electrode layer on the decal substrate; A second step of arranging the two decal substrates formed in the first step to face the polymer electrolyte membrane; And a third step of forming the catalyst electrode layers on both surfaces of the polymer electrolyte membrane by compressing the structure of the second step, wherein the catalyst electrode layers are metal nanoparticles-carbon nanoparticles having metal nanoparticles attached to surfaces of carbon nanotubes. It provides a method for producing a membrane electrode assembly comprising a tube structure.
  • the present invention for achieving the third object, a polymer electrolyte membrane having a hydrophobic characteristic; A catalyst electrode layer formed on one surface of the polymer electrolyte membrane; And an electrode formed on the other surface of the polymer electrolyte membrane facing the catalyst electrode layer, wherein the catalyst electrode layers have a structure of metal nanoparticles-carbon nanotubes in which metal nanoparticles are attached to carbon nanotubes. It provides an electrochemical sensor.
  • the present invention for achieving the fourth object, the first step of forming a metal electrode on the polymer electrolyte film; Introducing a passivation layer on the electrode, and arranging a decal substrate having a catalytic electrode layer formed on one surface of the polymer electrolyte membrane facing the electrode; And a third step of attaching the catalyst electrode layer to one surface of the polymer electrolyte membrane by applying pressure to the structure of the second step, and energizing the electrode on a surface opposite thereto, wherein the catalyst electrode layer is formed of carbon nanotubes. It provides a method for producing an electrochemical sensor comprising a metal nanoparticle-carbon nanotube structure attached to the metal nanoparticles on the surface.
  • the metal nanoparticles are attached to the carbon nanotubes, and this is used as the catalyst electrode layer.
  • it can be easily formed on the decal substrate by filtration and the like, and can be transferred to the polymer electrolyte membrane under relatively low pressure conditions at room temperature.
  • Membrane electrode assembly prepared in the present invention can be used as a high quality electrochemical sensor, and has a high degree of utility in the field of fuel cells.
  • FIG. 1 is a cross-sectional view for explaining a method of manufacturing an electrochemical sensor using a decal method according to the prior art.
  • FIG. 2 is a schematic diagram of a process for illustrating an improved conventional decal transfer method.
  • 3 to 5 are cross-sectional views illustrating a method of forming a catalyst electrode on a polymer electrolyte membrane according to a first embodiment of the present invention.
  • 6 to 8 are cross-sectional views illustrating a method of manufacturing an electrochemical sensor according to a second embodiment of the present invention.
  • FIG 9 is an image showing a catalyst electrode layer formed according to the first production example of the first embodiment of the present invention.
  • FIG 10 is an image showing electrodes formed according to the second manufacturing example of the second embodiment of the present invention.
  • 3 to 5 are cross-sectional views illustrating a method of forming a catalyst electrode on a polymer electrolyte membrane according to a first embodiment of the present invention.
  • a decal substrate 100 is prepared.
  • the decal substrate 100 is preferably Teflon having a porous pores.
  • polyester, paper or fibers may be used.
  • the catalyst electrode layer 110 is formed on the prepared decal substrate 100.
  • the catalyst electrode layer 110 includes metal nanoparticles and carbon nanotubes.
  • the catalyst electrode layer 110 may be formed in a form in which carbon nanotubes are dispersed and metal nanoparticles are dispersed in spaces formed by carbon nanotubes.
  • the metal nanoparticles may be attached to the carbon nanotubes.
  • Metal nanoparticles are attached to the carbon nanotubes to form the catalyst electrode layer 110.
  • metal nanoparticle-carbon nanotube mixtures are formed in solution through activation of carbon nanotubes and reduction of metal precursors.
  • Metal nanoparticles are attached to the surface of the carbon nanotubes through this.
  • the carbon nanotubes are activated. This is to form a hydroxyl group on the surface of the carbon nanotubes using a strong acid.
  • the activated carbon nanotubes are then dispersed in a solvent.
  • the solvent is a polar solvent.
  • ethanol or the like is used as the solvent.
  • a surfactant may be added and sonication may be performed for effective dispersion of the carbon nanotubes.
  • a metal precursor and a reducing agent are added to a solution in which the activated carbon nanotubes are dispersed.
  • Pt platinum
  • platinum is adsorbed on the surface of the carbon nanotubes.
  • HAuCl 4 As the metal precursor, HAuCl 4 , NaAuCl 4 , HAuBr 4 , AuCl, AuCl 3 , NaAu (CN) 2, or KAu (CN) 2 may be used.
  • Au (gold) is reduced through the metal precursor and gold is adsorbed on the surface of the carbon nanotubes.
  • NaBH 4 HCHO, NaOH, Na 2 CO 3 , H 2 O 2 , CH 3 OH, C 6 H 8 O 7, or Na 3 C 6 H 5 O 7 may be used.
  • metal nanoparticles-carbon nanotubes having metal nanoparticles attached to the surface of the carbon nanotubes are formed.
  • the metal nanoparticles-carbon nanotubes are separated and purified using a centrifugal separator or the like, which are then dispersed in a new solvent.
  • Vacuum deposition methods such as CVD, thermal deposition, sputtering or electron beam deposition may be used to form the catalyst electrode layer 110.
  • the catalyst electrode layer 110 may be a solution deposition method such as spin coating, dip coating, spray or electroplating.
  • the method for forming the catalyst electrode layer 110 may be formed using a variety of methods in addition to the mentioned matters.
  • a solution deposition method is used to form the catalyst electrode layer 110.
  • filtration can be used.
  • This uses a decal substrate 100 of porous material as a filter paper to form a metal nano-particle-carbon nanotube material dispersed in a solvent through filtration on the decal substrate 100.
  • the formation method of the other catalyst electrode layer 110 is as described above.
  • two decal substrates 100A and 100B having the catalyst electrode layers 110A and 110B described in FIG. 3 are formed on both surfaces of the polymer electrolyte membrane 200 so as to face each other.
  • Two catalyst electrode layers 110A and 110B are attached to the polymer electrolyte membrane 200 by using a pressing device for the aligned structure.
  • the polymer electrolyte membrane a Nafion membrane, an asyplex-S membrane (manufactured by Asahi Chemicals, Inc.), a Dow membrane (manufactured by Dow Chemicals, Inc.), a plemion membrane (manufactured by Asahi Glass, Inc.) or a Gore Selex membrane (Gore & Associates) Corp.) may be used.
  • the polymer electrolyte membrane preferably has a hydrophobic characteristic.
  • the compression process is carried out at room temperature, the pressure is 5 to 150 Kgf / cm 2 .
  • the pressure is less than 5 Kgf / cm 2 , due to low pressure, the catalyst electrode layers (110A, 110B) is not perfect adhesion to the polymer electrolyte membrane 200, if the pressure is higher than 150 Kgf / cm 2 , high pressure As a result, deformation of the catalyst electrode layers 110A and 110B or the polymer electrolyte membrane 200 may occur.
  • the decal substrates 100A and 100B are separated from the catalyst electrode layers 110A and 110B to leave the catalyst electrode layers 110A and 110B on both surfaces of the polymer electrolyte membrane 200. Since the polymer electrolyte membrane 200 has hydrophobic properties, it maintains high adhesion with the hydrophobic catalyst electrode layers 110A and 110B made of metal nanoparticles-carbon nanotubes. Through this, a membrane electrode assembly using metal nanoparticles-carbon nanotubes as catalyst electrode layers 110A and 110B can be formed.
  • one side 110A of the catalyst electrode layer is used as a sensing electrode, and the other side of the catalyst electrode layer 110B. Is used as the standard electrode and the counter electrode. Therefore, when the detectable gas is in contact with the catalytic electrode layer 110A on one side, a potential difference between the sensing electrode and the standard electrode is generated, and the outflow or presence of the gas can be confirmed by using the same.
  • a Teflon substrate is used as a decal substrate, and a structure of metal nanoparticles-carbon nanotubes is formed.
  • MWNT multi-walled carbon nanotubes
  • H 2 PtCl 6 was used as a metal precursor
  • NaBH 4 was used as a reducing agent.
  • 0.2 ml of 100 mM H 2 PtCl 6 metal salt and 0.4 ml of 250 mM NaBH 4 reducing agent are added to make the total solution 20 ml.
  • platinum nanoparticles are synthesized, and the platinum nanoparticles are attached to the surface of the multiwall carbon nanotubes to form platinum nanoparticles-multiwall carbon nanotubes.
  • the synthesized platinum nanoparticle-multi-walled carbon nanotubes are separated and purified using a centrifuge, which are then dispersed in a fresh solvent.
  • a catalyst electrode layer made of platinum nanoparticles-multi-walled carbon nanotubes is formed on the tekal substrate made of porous Teflon material having pores having a diameter of 1 to 20 ⁇ m using a filtration method.
  • the decal substrate uses PM28Y PTFE sheet manufactured and sold by Porex.
  • the polymer electrolyte membrane uses Nafion 115, which is commercially available from Dupont. The subsequent compression process was performed at room temperature.
  • the decal substrate is separated and a membrane electrode assembly is prepared in which a catalyst electrode layer is formed on both sides of H + -nafion.
  • 6 to 8 are cross-sectional views illustrating a method of manufacturing an electrochemical sensor according to a second embodiment of the present invention.
  • a metal electrode is formed on one surface of the polymer electrolyte membrane 200. If necessary, the metal electrode may be provided as two separate types of the first electrode 210 and the second electrode 220.
  • the metal electrode may include platinum or gold.
  • a platinum precursor solution is prepared on one side of the polymer electrolyte membrane 200 and a reducing agent is prepared on the other side thereof.
  • Platinum precursors that may be used include H 2 PtCl 6 , H 2 PtCl 4 , K 2 PtCl 6, K 2 PtCl 4, and the like.
  • reducing agents include NaBH 4 , HCHO, NaOH, Na 2 CO 3 , H 2 O 2 , CH 3 OH, C 6 H 8 O 7, or Na 3 C 6 H 5 O 7 .
  • gold can be used as a metal electrode, and the precursor used therein is HAuCl 4 , NaAuCl 4 , HAuBr 4 , AuCl, AuCl 3 , NaAu (CN) 2 or KAu (CN) 2 .
  • first electrode 210 and the second electrode 220 are formed by forming a pattern of the metal electrode.
  • a shadow mask is used on the surface of the polymer electrolyte membrane 200 in contact with the reducing agent.
  • two electrodes 210 and 220 are formed on the polymer electrolyte membrane 200.
  • the metal electrode formation method described above uses a principle that a metal film is formed by reduction of a metal on the surface of the Nafion film by passing through the polymer electrolyte film 200 in which the reducing agent is a Nafion film.
  • the polymer electrolyte membrane 200 is immersed in the metal precursor solution, and the metal precursor is infiltrated into the polymer electrolyte membrane 200 made of Nafion using cation substitution. This is then added to a reducing agent to reduce the cationic metal precursor.
  • the electrodes 210 and 220 may be formed on the surface of the polymer electrolyte membrane 200.
  • the Nafion membrane is introduced into the cationic platinum precursor solution for a certain time so that the platinum precursor is impregnated into the Nafion material by cation substitution.
  • the Nafion is then washed with water and placed in a vessel containing a reducing agent. Through this, the reducing agent penetrates Nafion to reduce the cationic platinum precursor. Therefore, a platinum electrode is formed on the surface of Nafion.
  • Nafion 115 a polymer electrolyte membrane
  • a platinum precursor of 10 mM PtCl 2 (NH 3 ) 4 was immersed in a platinum precursor of 10 mM PtCl 2 (NH 3 ) 4 for 3 hours to induce penetration of the platinum precursor.
  • Nafion 115 into which the platinum precursor penetrated was treated with an 80 mM NaBH 4 reducing agent for 2 hours to reduce the platinum precursor to form a platinum electrode on the Nafion surface.
  • the reactions proceed at room temperature.
  • fabrication is performed with the shadow mask contacted on Nafion 115 during the process to make the standard electrode and the counter electrode separate.
  • a decal substrate 100 coated with the catalyst electrode layer 110 prepared according to the first embodiment is prepared, and the polymer electrolyte membrane having the electrodes 210 and 220 formed in FIG. 7 is formed.
  • the catalyst electrode layer 110 formed on the decal substrate 100 is aligned to face the surface of the polymer electrolyte membrane 200, and the protective layer 230 is disposed on the electrodes 210 and 220 disposed in opposite directions. Place it.
  • the protective film 230 may be used for protecting the electrodes in a subsequent compression process, and may be used for detachment.
  • the protective film 230 is separated from the aligned structure disclosed in FIG. 7, and the decal substrate 100 is separated.
  • two electrodes 210 and 220 may be formed on one surface of the polymer electrolyte membrane 200, and an electrochemical sensor on which the catalyst electrode layer 110 may be formed.
  • the catalyst electrode layer 110 is connected to the sensing electrode, and the first electrode 210 is connected to the standard electrode.
  • the second electrode 220 may be used as a counter electrode.
  • FIG 9 is an image showing a catalyst electrode layer formed according to the first production example of the first embodiment of the present invention.
  • the carbon nanotubes have entangled shapes, and the platinum nanoparticles are attached to the surface of the carbon nanotubes.
  • FIG 10 is an image showing electrodes formed according to the second manufacturing example of the second embodiment of the present invention.
  • two platinum electrodes patterned in a semicircle on Nafion 115 may be identified.
  • the platinum electrode was confirmed to have a polycrystalline FCC (face centered cubic) structure.
  • the metal nanoparticles are attached to the carbon nanotubes, thereby forming a catalyst electrode layer on the decal substrate.
  • the formed catalyst electrode layer is easily transferred to the polymer electrolyte membrane at room temperature.

Abstract

Catalytic electrode layers with metal nanoparticles attached to the surfaces of carbon nanotubes are used in a membrane electrode assembly and an electrochemical sensor. Metal nanoparticles are readily transferred onto a polyelectrolyte membrane at room temperature, and the transfer is highly reliable. For attachment of metal nanoparticles onto the surfaces of carbon nanotubes, the carbon nanotubes are activated, and a metallic precursor and a reducing agent are introduced onto the activated surfaces. Through this process, the metal is reduced and the metal nanoparticles are formed on the surfaces of the carbon nanotubes.

Description

막전극접합체, 이를 이용하는 전기화학식 센서 및 이들의 제조방법Membrane electrode assembly, electrochemical sensor using the same and manufacturing method thereof
본 발명은 막전극접합체, 전기화학식 가스센서 및 이들의 제조방법에 관한 것으로, 더욱 상세하게는 고분자 전해질 상에 촉매전극이 형성된 구조물 및 이의 제조방법에 관한 것이다.The present invention relates to a membrane electrode assembly, an electrochemical gas sensor and a method of manufacturing the same, and more particularly, to a structure in which a catalyst electrode is formed on a polymer electrolyte and a method of manufacturing the same.
전기화학식 가스센서는 실내의 대기환경의 모티터링, 유해물질의 모니터링 및 가스누설 감지 등의 다양한 용도를 가진다. 특히, 공기 중의 수소, 일산화탄소 또는 황화수소 등과 같은 기체의 존재여부를 감지하여 사용자가 대기환경의 변화에 적절히 대응토록 한다.Electrochemical gas sensors have various uses, such as monitoring the indoor air environment, monitoring hazardous substances, and detecting gas leakage. In particular, it detects the presence of gases such as hydrogen, carbon monoxide or hydrogen sulfide in the air to allow the user to respond appropriately to changes in the atmospheric environment.
이러한 전기화학식 가스센서는 고분자 전해질 상에 촉매전극을 형성하는 것이 핵심적인 제조공정이 된다.In the electrochemical gas sensor, forming a catalytic electrode on the polymer electrolyte becomes a key manufacturing process.
알려진바에 따르면, 촉매전극을 형성하는 기술로는 데칼이동(Decal transfer) 방법이 있다. 이는 금속막의 박막을 데칼 기판에 형성한 후, 이를 다른 기판에 열압착하는 것을 핵심적인 요소로 한다. 상기 데칼 방법은 출원일 현재 고분자 전해질 상에 촉매전극을 형성하는 대표적인 방법이다.(J. Appl. Electrochem. 152(1992) 1 ; J. Power. Source 145(2005) 495) As is known, a technique for forming a catalyst electrode is a decal transfer method. It is a key element that a thin film of a metal film is formed on a decal substrate and then thermocompressed to another substrate. The decal method is a representative method for forming a catalyst electrode on a polymer electrolyte as of the filing date. (J. Appl. Electrochem. 152 (1992) 1; J. Power. Source 145 (2005) 495)
도 1은 종래 기술에 따른 데칼 방법을 이용한 전기화학식 센서의 제조방법을 설명하기 위한 단면도이다.1 is a cross-sectional view for explaining a method of manufacturing an electrochemical sensor using a decal method according to the prior art.
도 1을 참조하면, 기계적 특성의 향성을 위해 고분자전해질막인 H+-나피온막(10)에 존재하는 수소 양이온을 Na+, K+ 등의 양이온으로 치환하여 M+(metal)-나피온막(11)으로 치환한다.Referring to FIG. 1, the hydrogen cation present in the H + -nafion membrane 10, which is a polymer electrolyte membrane, is replaced with a cation such as Na + , K + to improve mechanical properties, and thus, M + (metal) -nafion. It is replaced by the film 11.
계속해서 데칼기판(20) 상에 촉매층(30)을 형성한다. 상기 데칼기판(20)은 테프론막을 사용한다. 준비된 M+-나피온막(11)의 양면에 촉매층(30)이 접하도록 촉매층(30)이 형성된 2개의 데칼기판들(20)을 정렬시키고, 열압착 장비를 이용하여 막들을 부착시킨다. 상기 열압착 공정은 50 내지 100 Kgf/cm2의 고압과 160℃ 내지 210℃ 정도의 고온에서 수행된다. Subsequently, the catalyst layer 30 is formed on the decal substrate 20. The decal substrate 20 uses a Teflon membrane. Two decal substrates 20 on which the catalyst layer 30 is formed are aligned such that both surfaces of the prepared M + -nafion membrane 11 are in contact with each other, and the membranes are attached using a thermocompression bonding apparatus. The thermocompression process is carried out at a high pressure of 50 to 100 Kgf / cm 2 and a high temperature of about 160 ℃ to 210 ℃.
계속해서 접합된 데칼기판(20)은 분리되고, M+-나피온막(11)의 양면에 촉매층(30)이 잔류하는 막전극접합체가 형성된다. 마지막으로 형성된 막전극접합체를 고온에서 황산과 같은 산용액을 이용하여 M+-나피온막(11)을 H+-나피온막(10)으로 개질시킨다.Subsequently, the bonded decal substrate 20 is separated, and a membrane electrode assembly in which the catalyst layer 30 remains on both sides of the M + -nafion membrane 11 is formed. Finally, the formed membrane electrode assembly is modified at high temperature using an acid solution such as sulfuric acid to modify the M + -nafion membrane 11 to the H + -nafion membrane 10.
상기 도 1에서 설명된 데칼이동 방법은 160℃ 이상의 고온에서 공정이 수행되며, M+-나피온막으로의 개질이 요구되는 조건으로 인해 제조공정이 복잡하다는 단점이 있다.The decal moving method described in FIG. 1 has a disadvantage in that the process is performed at a high temperature of 160 ° C. or higher, and the manufacturing process is complicated due to the condition requiring modification to the M + -nafion film.
따라서, 이를 개선하기 위한 새로운 데칼이동 방법이 제시되었다.(미국공개특허 US2002/0136940; 미국공개특허 US2006/0266642; J. Power Source 187 (2009) 386; Electrochem. Comm. 12 (2010) 410; J. Electrochem. Soc. 155 (2008) B455)Thus, a new decal transfer method has been proposed to improve this. (US Published Patent US2002 / 0136940; US Published Patent US2006 / 0266642; J. Power Source 187 (2009) 386; Electrochem. Comm. 12 (2010) 410; J Electrochem.Soc. 155 (2008) B455)
도 2는 개선된 종래의 데칼이동 방법을 설명하기 위한 공정의 개략도이다.2 is a schematic diagram of a process for illustrating an improved conventional decal transfer method.
도 2를 참조하면, 데칼기판(20) 상에 촉매층(40)이 형성된다. 촉매층(40)의 하부에는 카본블랙을 가지는 얇은 탈착층이 형성되고, 상부에는 나피온 콜로이드 용액으로 형성된 접착층이 형성된다. 따라서, 이를 고분자전해질막(10)으로 전사할 경우, 촉매층(40)은 데칼기판(20)으로부터 용이하게 분리되고, 고분자전해질막(10)에 강하게 접착되는 특징을 가진다.Referring to FIG. 2, the catalyst layer 40 is formed on the decal substrate 20. A thin desorption layer having carbon black is formed below the catalyst layer 40, and an adhesive layer formed of a Nafion colloidal solution is formed on the top thereof. Therefore, when it is transferred to the polymer electrolyte membrane 10, the catalyst layer 40 is easily separated from the decal substrate 20, and has a feature of being strongly adhered to the polymer electrolyte membrane 10.
다른 선행기술(Electrochem. Comm. 12 (2010) 410)에서는 촉매층을 Pt/C 촉매물질에 구형의 나피온 콜로이드 입자를 혼합한 용액을 이용하여 형성한다. 이를 통해 상부 접착과 하부의 탈착 공정이 용이하도록 한다.In another prior art (Electrochem. Comm. 12 (2010) 410), the catalyst layer is formed using a solution in which spherical Nafion colloidal particles are mixed with Pt / C catalyst material. This facilitates the upper adhesion and the lower detachment process.
상술한 도 2의 데칼이동 기술은 기존에 촉매역할을 수행하는 원 촉매물질 이외에 기능성을 가지는 추가적인 재료가 반드시 도입된다. 따라서, 촉매를 향한 기체의 투과 특성은 저하되며, 촉매물질과 전해질 계면에서의 접합저항이 상승되는 단점을 가진다. In the decal transfer technique of FIG. 2 described above, additional materials having functionalities are necessarily introduced in addition to the original catalytic material which performs the catalytic role. Therefore, the permeation characteristics of the gas toward the catalyst are lowered, and the bonding resistance at the interface between the catalyst material and the electrolyte is increased.
상술한 문제점을 해결하기 위해 본 발명의 제1 목적은 상온공정을 통해 촉매층이 전사되는 높은 전도성을 가지는 막전극접합체를 제공하는데 있다.In order to solve the above problems, a first object of the present invention is to provide a membrane electrode assembly having a high conductivity to transfer the catalyst layer through the room temperature process.
또한, 본 발명의 제2 목적은 상기 제1 목적을 달성하기 위한 막전극접합체의 제조방법을 제공하는데 있다.In addition, a second object of the present invention is to provide a method for producing a membrane electrode assembly for achieving the first object.
본 발명의 제3 목적은 상기 제1 목적에 의해 제공되는 막전극접합체를 이용하는 전기화학식 센서를 제공하는데 있다.A third object of the present invention is to provide an electrochemical sensor using the membrane electrode assembly provided by the first object.
또한, 본 발명의 제4 목적은 상기 제3 목적의 달성을 위해 사용되는 전기화학식 센서의 제조방법을 제공하는데 있다.In addition, a fourth object of the present invention is to provide a method of manufacturing an electrochemical sensor used to achieve the third object.
상기 제1 목적을 달성하기 위한 본 발명은, 소수성의 특성을 가진 고분자전해질막; 및 상기 고분자전해질막의 양 면에 형성된 촉매전극층들을 포함하고, 상기 촉매전극층들은 탄소나노튜브에 금속나노입자가 부착된 금속나노입자-탄소나노튜브의 구조를 가지는 것을 특징으로 하는 막전극접합체를 제공한다.The present invention for achieving the first object, a polymer electrolyte membrane having a hydrophobic characteristic; And catalyst electrode layers formed on both surfaces of the polymer electrolyte membrane, wherein the catalyst electrode layers have a structure of metal nanoparticles-carbon nanotubes in which metal nanoparticles are attached to carbon nanotubes. .
상기 제2 목적을 달성하기 위한 본 발명은, 데칼기판 상에 촉매전극층을 형성하는 제1 단계; 상기 제1 단계에서 형성된 2개의 데칼기판들을 고분자전해질막을 중심으로 대향하도록 배치시키는 제2 단계; 및 상기 2단계의 구조물을 압착하여 상기 고분자전해질막의 양면에 상기 촉매전극층들을 형성하는 제3 단계를 포함하고, 상기 촉매전극층들은 탄소나노튜브의 표면에 금속나노입자가 부착된 금속나노입자-탄소나노튜브 구조를 포함하는 것을 특징으로 하는 막전극접합체의 제조방법을 제공한다.The present invention for achieving the second object, the first step of forming a catalyst electrode layer on the decal substrate; A second step of arranging the two decal substrates formed in the first step to face the polymer electrolyte membrane; And a third step of forming the catalyst electrode layers on both surfaces of the polymer electrolyte membrane by compressing the structure of the second step, wherein the catalyst electrode layers are metal nanoparticles-carbon nanoparticles having metal nanoparticles attached to surfaces of carbon nanotubes. It provides a method for producing a membrane electrode assembly comprising a tube structure.
상기 제3 목적을 달성하기 위한 본 발명은, 소수성의 특성을 가진 고분자전해질막; 상기 고분자전해질막의 일 면에 형성된 촉매전극층; 및 상기 고분자전해질막을 중심으로 상기 촉매전극층에 대향하는 타 면에 형성된 전극을 포함하고, 상기 촉매전극층들은 탄소나노튜브에 금속나노입자가 부착된 금속나노입자-탄소나노튜브의 구조를 가지는 것을 특징으로 하는 전기화학식 센서를 제공한다.The present invention for achieving the third object, a polymer electrolyte membrane having a hydrophobic characteristic; A catalyst electrode layer formed on one surface of the polymer electrolyte membrane; And an electrode formed on the other surface of the polymer electrolyte membrane facing the catalyst electrode layer, wherein the catalyst electrode layers have a structure of metal nanoparticles-carbon nanotubes in which metal nanoparticles are attached to carbon nanotubes. It provides an electrochemical sensor.
또한, 상기 제4 목적을 달성하기 위한 본 발명은, 고분자전해질막 상에 금속재질의 전극을 형성하는 제1 단계; 상기 전극의 상부에 보호막을 도입하고, 상기 전극과 대향하는 상기 고분자전해질막의 일 면에 촉매전극층이 형성된 데칼기판을 정렬하는 제2 단계; 및 상기 제2 단계의 구조물에 압력을 가하여 상기 고분자전해질막의 일 면에는 상기 촉매전극층을 부착하고, 이에 대향하는 면에는 상기 전극을 전류시키는 제3 단계를 포함하고, 상기 촉매전극층은 탄소나노튜브의 표면에 금속나노입자가 부착된 금속나노입자-탄소나노튜브 구조를 포함하는 것을 특징으로 하는 전기화학식 센서의 제조방법을 제공한다.In addition, the present invention for achieving the fourth object, the first step of forming a metal electrode on the polymer electrolyte film; Introducing a passivation layer on the electrode, and arranging a decal substrate having a catalytic electrode layer formed on one surface of the polymer electrolyte membrane facing the electrode; And a third step of attaching the catalyst electrode layer to one surface of the polymer electrolyte membrane by applying pressure to the structure of the second step, and energizing the electrode on a surface opposite thereto, wherein the catalyst electrode layer is formed of carbon nanotubes. It provides a method for producing an electrochemical sensor comprising a metal nanoparticle-carbon nanotube structure attached to the metal nanoparticles on the surface.
상술한 본 발명에 따르면, 탄소나노튜브에 금속나노입자들이 부착되고, 이를 촉매전극층으로 이용한다. 또한, 여과법 등을 이용하여 데칼기판에 용이하게 형성하고, 고분자전해질막에 실온에서 비교적 낮은 압력조건으로 전사할 수 있다.According to the present invention described above, the metal nanoparticles are attached to the carbon nanotubes, and this is used as the catalyst electrode layer. In addition, it can be easily formed on the decal substrate by filtration and the like, and can be transferred to the polymer electrolyte membrane under relatively low pressure conditions at room temperature.
본 발명에서 제조되는 막전극접합체는 양질의 전기화학식 센서로 활용될 수 있으며, 연료전지 분야등에서도 높은 활용도를 가진다. Membrane electrode assembly prepared in the present invention can be used as a high quality electrochemical sensor, and has a high degree of utility in the field of fuel cells.
도 1은 종래 기술에 따른 데칼 방법을 이용한 전기화학식 센서의 제조방법을 설명하기 위한 단면도이다.1 is a cross-sectional view for explaining a method of manufacturing an electrochemical sensor using a decal method according to the prior art.
도 2는 개선된 종래의 데칼이동 방법을 설명하기 위한 공정의 개략도이다.2 is a schematic diagram of a process for illustrating an improved conventional decal transfer method.
도 3 내지 도 5는 본 발명의 제1 실시예에 따른 고분자전해질막 상에 촉매전극을 형성하는 방법을 설명하기 위한 단면도들이다.3 to 5 are cross-sectional views illustrating a method of forming a catalyst electrode on a polymer electrolyte membrane according to a first embodiment of the present invention.
도 6 내지 도 8은 본 발명의 제2 실시예에 따른 전기화학식 센서의 제조방법을 설명하기 위한 단면도들이다.6 to 8 are cross-sectional views illustrating a method of manufacturing an electrochemical sensor according to a second embodiment of the present invention.
도 9는 본 발명의 제1 실시예의 제1 제조예에 따라 형성된 촉매전극층을 나타내는 이미지이다. 9 is an image showing a catalyst electrode layer formed according to the first production example of the first embodiment of the present invention.
도 10은 본 발명의 제2 실시예의 제2 제조예에 따라 형성된 전극들을 도시한 이미지이다. 10 is an image showing electrodes formed according to the second manufacturing example of the second embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.As the inventive concept allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to the specific disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the drawings, similar reference numerals are used for similar elements.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. Hereinafter, with reference to the accompanying drawings, it will be described in detail a preferred embodiment of the present invention.
제1 실시예First embodiment
도 3 내지 도 5는 본 발명의 제1 실시예에 따른 고분자전해질막 상에 촉매전극을 형성하는 방법을 설명하기 위한 단면도들이다.3 to 5 are cross-sectional views illustrating a method of forming a catalyst electrode on a polymer electrolyte membrane according to a first embodiment of the present invention.
도 3을 참조하면, 데칼기판(100)이 준비된다. 상기 데칼기판(100)은 다공성 기공을 가지는 테프론이 바람직하다. 이외에 PDMS, 폴리에스테르, 종이류 또는 섬유류 등이 사용가능할 것이다. Referring to FIG. 3, a decal substrate 100 is prepared. The decal substrate 100 is preferably Teflon having a porous pores. In addition to PDMS, polyester, paper or fibers may be used.
계속해서 준비된 데칼기판(100) 상에 촉매전극층(110)이 형성된다. 상기 촉매전극층(110)은 금속나노입자 및 탄소나노튜브를 포함한다. 상기 촉매전극층(110)의 구성은 탄소나노튜브들이 분산된 형태에 금속나노입자가 탄소나노튜브들이 형성하는 이격공간에 분산된 형태로 존재할 수 있다. 특히, 금속나노입자는 탄소나노튜브에 부착될 수도 있다.Subsequently, the catalyst electrode layer 110 is formed on the prepared decal substrate 100. The catalyst electrode layer 110 includes metal nanoparticles and carbon nanotubes. The catalyst electrode layer 110 may be formed in a form in which carbon nanotubes are dispersed and metal nanoparticles are dispersed in spaces formed by carbon nanotubes. In particular, the metal nanoparticles may be attached to the carbon nanotubes.
촉매전극층(110)의 형성을 위해 탄소나노튜브에 금속나노입자를 부착시킨다. 이를 위해 탄소나노튜브의 활성화 및 금속전구체의 환원을 통해 용액상에서 금속나노입자-탄소나노튜브 혼합체를 형성한다. 이를 통해 탄소나노튜브의 표면 상에 금속나노입자가 부착된다.Metal nanoparticles are attached to the carbon nanotubes to form the catalyst electrode layer 110. To this end, metal nanoparticle-carbon nanotube mixtures are formed in solution through activation of carbon nanotubes and reduction of metal precursors. Metal nanoparticles are attached to the surface of the carbon nanotubes through this.
먼저, 금속 나노입자의 용이하게 부착되도록 하기 위해 탄소나노튜브를 활성화시킨다. 이는 강산을 이용하여 탄소나노튜브의 표면에 하이드록시 그룹을 형성하는 것이다. First, in order to easily attach the metal nanoparticles, the carbon nanotubes are activated. This is to form a hydroxyl group on the surface of the carbon nanotubes using a strong acid.
계속해서 활성화된 탄소나노튜브를 용매에 분산시킨다. 상기 용매는 극성 용매임이 바람직하다. 예컨대, 에탄올 등이 용매로 사용된다. 또한, 탄소나노튜브의 효과적인 분산을 위해 계면활성제가 첨가되고, 초음파 처리가 수행될 수 있다.The activated carbon nanotubes are then dispersed in a solvent. It is preferred that the solvent is a polar solvent. For example, ethanol or the like is used as the solvent. In addition, a surfactant may be added and sonication may be performed for effective dispersion of the carbon nanotubes.
활성화된 탄소나노튜브가 분산된 용액에 금속 전구체 및 환원제를 투입한다. A metal precursor and a reducing agent are added to a solution in which the activated carbon nanotubes are dispersed.
상기 금속전구체로는 H2PtCl6, H2PtCl4, K2PtCl6, K2Pt(CN)6, K2PtCl4, PtCl4(NH3)2 또는 PtCl2(NH3)2 등이 사용된다. 상기 금속전구체를 통해 Pt(백금)이 환원되어 탄소나노튜브의 표면에 백금이 흡착된다. As the metal precursor, H 2 PtCl 6 , H 2 PtCl 4 , K 2 PtCl 6 , K 2 Pt (CN) 6 , K 2 PtCl 4 , PtCl 4 (NH 3 ) 2, or PtCl 2 (NH 3 ) 2, etc. Used. Pt (platinum) is reduced through the metal precursor and platinum is adsorbed on the surface of the carbon nanotubes.
또한, 상기 금속전구체로는 HAuCl4, NaAuCl4, HAuBr4, AuCl, AuCl3, NaAu(CN)2 또는 KAu(CN)2 등이 사용된다. 상기 금속전구체를 통해 Au(금)이 환원되어 탄소나노튜브의 표면에 금이 흡착된다.In addition, as the metal precursor, HAuCl 4 , NaAuCl 4 , HAuBr 4 , AuCl, AuCl 3 , NaAu (CN) 2, or KAu (CN) 2 may be used. Au (gold) is reduced through the metal precursor and gold is adsorbed on the surface of the carbon nanotubes.
한편 환원제로는 NaBH4, HCHO, NaOH, Na2CO3, H2O2, CH3OH, C6H8O7 또는 Na3C6H5O7 등이 사용된다.Meanwhile, as a reducing agent, NaBH 4 , HCHO, NaOH, Na 2 CO 3 , H 2 O 2 , CH 3 OH, C 6 H 8 O 7, or Na 3 C 6 H 5 O 7 may be used.
상술한 금속전구체 및 환원제의 투입을 통해 금속나노입자가 탄소나노튜브의 표면에 부착된 금속나노입자-탄소나노튜브가 형성된다.Through the introduction of the metal precursor and the reducing agent described above, metal nanoparticles-carbon nanotubes having metal nanoparticles attached to the surface of the carbon nanotubes are formed.
계속해서 금속나노입자-탄소나노튜브를 원심분리기 등을 이용하여 분리 정제하고, 이를 다시 새로운 용매에 분산한다. Subsequently, the metal nanoparticles-carbon nanotubes are separated and purified using a centrifugal separator or the like, which are then dispersed in a new solvent.
촉매전극층(110)의 형성을 위해 진공증착 방법들인 CVD, 열 증착, 스퍼터링 또는 전자빔 증착 등의 기술이 사용될 수 있다. 이외에도 촉매전극층(110)은 용액 증착법들인 스핀 코팅, 딥 코팅(dip coating), 스프레이법 또는 전기도금법 등이 사용될 수 있다. 또한, 촉매전극층(110)을 형성하기 위한 방법은 언급된 사항 이외에 다양한 방법을 동원하여 형성될 수 있다.Vacuum deposition methods such as CVD, thermal deposition, sputtering or electron beam deposition may be used to form the catalyst electrode layer 110. In addition, the catalyst electrode layer 110 may be a solution deposition method such as spin coating, dip coating, spray or electroplating. In addition, the method for forming the catalyst electrode layer 110 may be formed using a variety of methods in addition to the mentioned matters.
본 실시예에서는 촉매전극층(110)으로 형성하기 위해 용액 증착법을 사용한다.In this embodiment, a solution deposition method is used to form the catalyst electrode layer 110.
예컨대, 여과법이 사용될 수 있다. 이는 다공성 재질의 데칼기판(100)을 여과지로 이용하는 것으로 여과를 통해 용매에 분산된 금속나노입자-탄소나노튜브 소재를 데칼기판(100) 상에 형성한다. 이외의 촉매전극층(110)의 형성방법은 전술한 바와 같다.For example, filtration can be used. This uses a decal substrate 100 of porous material as a filter paper to form a metal nano-particle-carbon nanotube material dispersed in a solvent through filtration on the decal substrate 100. The formation method of the other catalyst electrode layer 110 is as described above.
도 4를 참조하면, 고분자전해질막(200) 양면에 상기 도 3에서 설명된 촉매전극층(110A, 110B)이 형성된 2장의 데칼기판들(100A, 100B)을 마주 보도록 정렬시킨다. 정렬된 구조체에 대해 압착장비를 이용하여 2개의 촉매전극층(110A, 110B)을 고분자전해질막(200)에 부착시킨다. 상기 고분자전해질막으로는 나피온막, 아시플렉스-에스막(아사히 케미칼스사 제조), 다우막(다우 케미칼스사 제조), 플레미온막(아사히 글래스사 제조) 또는 고어셀렉스막(고어 & 어쏘시에이트사 제조) 등이 사용될 수 있다. 특히, 상기 고분자전해질막은 소수성 특징을 가짐이 바람직하다.Referring to FIG. 4, two decal substrates 100A and 100B having the catalyst electrode layers 110A and 110B described in FIG. 3 are formed on both surfaces of the polymer electrolyte membrane 200 so as to face each other. Two catalyst electrode layers 110A and 110B are attached to the polymer electrolyte membrane 200 by using a pressing device for the aligned structure. As the polymer electrolyte membrane, a Nafion membrane, an asyplex-S membrane (manufactured by Asahi Chemicals, Inc.), a Dow membrane (manufactured by Dow Chemicals, Inc.), a plemion membrane (manufactured by Asahi Glass, Inc.) or a Gore Selex membrane (Gore & Associates) Corp.) may be used. In particular, the polymer electrolyte membrane preferably has a hydrophobic characteristic.
압착 공정은 상온에서 수행되며, 압력은 5 내지 150 Kgf/cm2이다. 압력이 5 Kgf/cm2 미만인 경우, 낮은 압력으로 인해 촉매전극층(110A, 110B)이 고분자전해질막(200)과의 부착이 완벽하지 않으며, 압력이 150 Kgf/cm2를 상회하는 경우, 높은 압력으로 인해 촉매전극층(110A, 110B) 또는 고분자전해질막(200)의 변형이 발생될 수 있다.The compression process is carried out at room temperature, the pressure is 5 to 150 Kgf / cm 2 . When the pressure is less than 5 Kgf / cm 2 , due to low pressure, the catalyst electrode layers (110A, 110B) is not perfect adhesion to the polymer electrolyte membrane 200, if the pressure is higher than 150 Kgf / cm 2 , high pressure As a result, deformation of the catalyst electrode layers 110A and 110B or the polymer electrolyte membrane 200 may occur.
도 5를 참조하면, 데칼기판들(100A, 100B)을 촉매전극층(110A, 110B)으로부터 분리하여 고분자전해질막(200) 양면에 촉매전극층들(110A, 110B)을 잔류시킨다. 상기 고분자전해질막(200)은 소수성의 특성을 가지므로 금속나노입자-탄소나노튜브로 구성된 소수성의 촉매전극층(110A, 110B)과 높은 접착력을 유지한다. 이를 통해 금속나노입자-탄소나노튜브를 촉매전극층(110A, 110B)으로 이용하는 막전극접합체를 형성할 수 있다.Referring to FIG. 5, the decal substrates 100A and 100B are separated from the catalyst electrode layers 110A and 110B to leave the catalyst electrode layers 110A and 110B on both surfaces of the polymer electrolyte membrane 200. Since the polymer electrolyte membrane 200 has hydrophobic properties, it maintains high adhesion with the hydrophobic catalyst electrode layers 110A and 110B made of metal nanoparticles-carbon nanotubes. Through this, a membrane electrode assembly using metal nanoparticles-carbon nanotubes as catalyst electrode layers 110A and 110B can be formed.
도 5에서 개시된 촉매전극층(110A, 110B)이 양면에 형성된 고분자전해질막(200)을 전기화학식 센서로 이용할 경우, 촉매전극층의 일측(110A)은 감지전극으로 이용되고, 타측의 촉매전극층(110B)은 표준전극 및 대향전극으로 이용된다. 따라서, 감지가능한 가스가 일측의 촉매전극층(110A)과 접촉하는 경우, 감지전극과 표준전극의 전위차가 발생되고, 이를 이용하여 가스의 유출이나 존재를 확인할 수 있다. When the polymer electrolyte membrane 200 formed on both surfaces of the catalyst electrode layers 110A and 110B disclosed in FIG. 5 is used as an electrochemical sensor, one side 110A of the catalyst electrode layer is used as a sensing electrode, and the other side of the catalyst electrode layer 110B. Is used as the standard electrode and the counter electrode. Therefore, when the detectable gas is in contact with the catalytic electrode layer 110A on one side, a potential difference between the sensing electrode and the standard electrode is generated, and the outflow or presence of the gas can be confirmed by using the same.
제1 제조예 : 나피온 115 상에 촉매전극층의 형성Preparation Example 1 Formation of Catalytic Electrode Layer on Nafion 115
테프론 기판을 데칼기판으로 이용하고, 금속나노입자-탄소나노튜브의 구조를 형성한다.A Teflon substrate is used as a decal substrate, and a structure of metal nanoparticles-carbon nanotubes is formed.
이를 위해 에탄올 용매에 0.32mg 의 다중벽 탄소나노튜브(MWNT)를 투입하고, H2PtCl6를 금속전구체로 이용하고, NaBH4를 환원제로 이용한다. 100mM H2PtCl6 금속염 0.2ml와 250mM NaBH4 환원제 0.4ml를 투입하여 전체용액의 부피가 20ml가 되도록한다. 이를 통해 백금 나노입자가 합성되며, 백금 나노입자는 다중벽 탄소나노튜브의 표면에 부착되어 백금 나노입자-다중벽 탄소나노튜브가 형성된다.To this end, 0.32 mg of multi-walled carbon nanotubes (MWNT) were added to an ethanol solvent, H 2 PtCl 6 was used as a metal precursor, and NaBH 4 was used as a reducing agent. 0.2 ml of 100 mM H 2 PtCl 6 metal salt and 0.4 ml of 250 mM NaBH 4 reducing agent are added to make the total solution 20 ml. Through this process, platinum nanoparticles are synthesized, and the platinum nanoparticles are attached to the surface of the multiwall carbon nanotubes to form platinum nanoparticles-multiwall carbon nanotubes.
계속해서 합성된 백금 나노입자-다중벽 탄소나노튜브를 원심분리기를 이용하여 분리 정제하고, 이를 다시 새로운 용매에 분산한다. Subsequently, the synthesized platinum nanoparticle-multi-walled carbon nanotubes are separated and purified using a centrifuge, which are then dispersed in a fresh solvent.
이어서, 1 내지 20um의 직경의 기공을 가지는 다공성 테프론 재질의 테칼기판 상에 여과방법을 이용하여 백금 나노입자-다중벽 탄소나노튜브로 구성된 촉매 전극층을 형성한다. 상기 데칼기판은 Porex 사에서 제작 판매하는 PM28Y PTFE 시트를 사용한다.Subsequently, a catalyst electrode layer made of platinum nanoparticles-multi-walled carbon nanotubes is formed on the tekal substrate made of porous Teflon material having pores having a diameter of 1 to 20 μm using a filtration method. The decal substrate uses PM28Y PTFE sheet manufactured and sold by Porex.
계속해서, 고분자전해질막 양면에 촉매전극층이 형성된 2장의 데칼기판을 서로 마주보도록 정렬시킨다. 상기 고분자전해질막은 Dupont 사에서 시판하는 Nafion 115를 사용한다. 이어지는 압착공정은 상온에서 수행하였다. Subsequently, two decal substrates on which the catalyst electrode layers are formed on both surfaces of the polymer electrolyte membrane are aligned to face each other. The polymer electrolyte membrane uses Nafion 115, which is commercially available from Dupont. The subsequent compression process was performed at room temperature.
압착공정 이후에 데칼기판을 분리시키고 H+-나피온 양면에 촉매전극층이 형성된 막전극접합체를 제조한다. After the pressing process, the decal substrate is separated and a membrane electrode assembly is prepared in which a catalyst electrode layer is formed on both sides of H + -nafion.
제2 실시예Second embodiment
도 6 내지 도 8은 본 발명의 제2 실시예에 따른 전기화학식 센서의 제조방법을 설명하기 위한 단면도들이다.6 to 8 are cross-sectional views illustrating a method of manufacturing an electrochemical sensor according to a second embodiment of the present invention.
도 6을 참조하면, 먼저, 고분자전해질막(200)의 일 면에 금속전극을 형성한다. 필요에 따라 상기 금속전극은 2개의 분리된 형태인 제1 전극(210) 및 제2 전극(220)으로 제공될 수 있다.Referring to FIG. 6, first, a metal electrode is formed on one surface of the polymer electrolyte membrane 200. If necessary, the metal electrode may be provided as two separate types of the first electrode 210 and the second electrode 220.
예컨대, 상기 금속전극은 백금 또는 금을 포함할 수 있다. For example, the metal electrode may include platinum or gold.
백금을 금속전극으로 사용하는 경우, 고분자전해질막(200)의 일측면에는 백금 전구체 용액을 준비하고, 이와 대향하는 타측에는 환원제를 준비한다.When platinum is used as the metal electrode, a platinum precursor solution is prepared on one side of the polymer electrolyte membrane 200 and a reducing agent is prepared on the other side thereof.
사용될 수 있는 백금 전구체로는 H2PtCl6, H2PtCl4, K2PtCl6 또는 K2PtCl4 등이 있다. 또한, 환원제로는 NaBH4, HCHO, NaOH, Na2CO3, H2O2, CH3OH, C6H8O7 또는 Na3C6H5O7 등이 있다.Platinum precursors that may be used include H 2 PtCl 6 , H 2 PtCl 4 , K 2 PtCl 6, K 2 PtCl 4, and the like. In addition, reducing agents include NaBH 4 , HCHO, NaOH, Na 2 CO 3 , H 2 O 2 , CH 3 OH, C 6 H 8 O 7, or Na 3 C 6 H 5 O 7 .
또한, 금을 금속전극으로 사용할 수 있으며, 이에 사용되는 금전구체로는 HAuCl4, NaAuCl4, HAuBr4, AuCl, AuCl3, NaAu(CN)2 또는 KAu(CN)2를 사용한다.In addition, gold can be used as a metal electrode, and the precursor used therein is HAuCl 4 , NaAuCl 4 , HAuBr 4 , AuCl, AuCl 3 , NaAu (CN) 2 or KAu (CN) 2 .
예컨대, pH=13인 조건으로 맞추어준 2.5mM H2PtCl6 용액과 60mM NaBH4를 이용하여 12시간동안 고분자전해질막(200)인 나피온 막 위에 백금 전극을 형성한다.For example, a platinum electrode is formed on the Nafion membrane, which is the polymer electrolyte membrane 200, for 12 hours using 2.5 mM H 2 PtCl 6 solution and 60 mM NaBH 4 adjusted to pH = 13.
금속전극의 패턴을 형성하여, 제1 전극(210) 및 제2 전극(220)을 형성하고자 하는 경우, 환원제와 접촉하는 고분자전해질막(200) 표면에 쉐도우마스크를 이용한다. 이를 통해 고분자전해질막(200) 상에는 2개의 전극들(210, 220)이 형성된다.In order to form the first electrode 210 and the second electrode 220 by forming a pattern of the metal electrode, a shadow mask is used on the surface of the polymer electrolyte membrane 200 in contact with the reducing agent. As a result, two electrodes 210 and 220 are formed on the polymer electrolyte membrane 200.
상술한 금속전극의 형성방법은 환원제가 나피온막인 고분자전해질막(200)을 통과하여 나피온막의 표면에서 금속의 환원에 의한 금속막이 형성되는 원리를 이용하는 것이다.The metal electrode formation method described above uses a principle that a metal film is formed by reduction of a metal on the surface of the Nafion film by passing through the polymer electrolyte film 200 in which the reducing agent is a Nafion film.
이외에도 고분자전해질막(200)을 금속전구체 용액에 침지시켜서, 금속전구체를 양이온 치환을 이용해 나피온 소재인 고분자전해질막(200)으로 침투시킨다. 이후에 이를 환원제에 투입하여 양이온 금속 전구체를 환원시킨다. 이를 통해 고분자전해질막(200)의 표면에 전극들(210, 220)을 형성할 수 있다.In addition, the polymer electrolyte membrane 200 is immersed in the metal precursor solution, and the metal precursor is infiltrated into the polymer electrolyte membrane 200 made of Nafion using cation substitution. This is then added to a reducing agent to reduce the cationic metal precursor. Through this, the electrodes 210 and 220 may be formed on the surface of the polymer electrolyte membrane 200.
제2 제조예 : 금속 전극의 형성Second Preparation Example: Formation of Metal Electrode
나피온막을 양이온 백금 전구체 용액에 일정한 시간동안 투입하여 백금 전구체가 양이온 치환에 의하여 나피온 소재 내부로 침투(Impregnation)되도록 한다. 이후에, 나피온을 물로 세정하고 환원제가 담겨져 있는 용기에 투입한다. 이를 통해 환원제가 나피온에 침투하여 양이온 백금 전구체를 환원(Reduction)시킨다. 따라서, 백금 재질의 전극은 나피온 표면에 형성된다.The Nafion membrane is introduced into the cationic platinum precursor solution for a certain time so that the platinum precursor is impregnated into the Nafion material by cation substitution. The Nafion is then washed with water and placed in a vessel containing a reducing agent. Through this, the reducing agent penetrates Nafion to reduce the cationic platinum precursor. Therefore, a platinum electrode is formed on the surface of Nafion.
본 제조예에서는 10 mM PtCl2(NH3)4 의 백금 전구체에 고분자전해질막인 Nafion 115를 3시간 침지시켜서 백금 전구체의 침투를 유도한다.In this preparation example, Nafion 115, a polymer electrolyte membrane, was immersed in a platinum precursor of 10 mM PtCl 2 (NH 3 ) 4 for 3 hours to induce penetration of the platinum precursor.
계속해서, 백금 전구체가 침투된 Nafion 115를 80 mM NaBH4 환원제로 2시간 처리하여 백금 전구체를 환원시켜 나피온 표면에 백금 전극을 형성시켰다. 상기 반응들은 실온에서 진행된다. Subsequently, Nafion 115 into which the platinum precursor penetrated was treated with an 80 mM NaBH 4 reducing agent for 2 hours to reduce the platinum precursor to form a platinum electrode on the Nafion surface. The reactions proceed at room temperature.
또한, 표준전극 및 대향전극을 따로 만들어주기 위하여 상기 공정 동안에 Nafion 115 상에 쉐도우 마스크를 접촉시킨 상태에서 제조를 수행한다.In addition, fabrication is performed with the shadow mask contacted on Nafion 115 during the process to make the standard electrode and the counter electrode separate.
도 7을 참조하면, 상기 제1 실시예에 따라 제조된 촉매전극층(110)이 코팅된 데칼기판(100)을 준비하고, 상기 도 7에서 형성된 전극들(210, 220)이 형성된 고분자전해질막(200)을 준비한다.Referring to FIG. 7, a decal substrate 100 coated with the catalyst electrode layer 110 prepared according to the first embodiment is prepared, and the polymer electrolyte membrane having the electrodes 210 and 220 formed in FIG. 7 is formed. Prepare 200).
또한, 데칼기판(100) 상에 형성된 촉매전극층(110)이 고분자전해질막(200) 표면을 향하도록 정렬하고, 이와 대향하는 방향에 배치된 전극들(210, 220) 상부에는 보호막(230)을 배치시킨다. 상기 보호막(230)은 이후의 압착공정에서 전극들을 보호하기 위한 것으로 탈착용으로 사용될 수 있다면, 어느 것이나 사용가능할 것이다.In addition, the catalyst electrode layer 110 formed on the decal substrate 100 is aligned to face the surface of the polymer electrolyte membrane 200, and the protective layer 230 is disposed on the electrodes 210 and 220 disposed in opposite directions. Place it. The protective film 230 may be used for protecting the electrodes in a subsequent compression process, and may be used for detachment.
도 8을 참조하면, 도 7에 개시된 정렬된 구조물에서 보호막(230)을 이탈시키고, 데칼기판(100)을 이탈시킨다. 이를 통해 고분자 전해질막(200)의 일 면에는 2개의 전극들(210, 220)이 형성되고, 타 면에는 촉매전극층(110)이 형성된 전기화학식 센서를 형성할 수 있다.Referring to FIG. 8, the protective film 230 is separated from the aligned structure disclosed in FIG. 7, and the decal substrate 100 is separated. Through this, two electrodes 210 and 220 may be formed on one surface of the polymer electrolyte membrane 200, and an electrochemical sensor on which the catalyst electrode layer 110 may be formed.
상기 도 8에 도시된 전기화학식 센서에서 촉매전극층(110)은 감지전극에 연결되고, 제1 전극(210)은 표준전극에 연결된다. 또한, 제2 전극(220)은 대향전극으로 사용할 수 있다.In the electrochemical sensor illustrated in FIG. 8, the catalyst electrode layer 110 is connected to the sensing electrode, and the first electrode 210 is connected to the standard electrode. In addition, the second electrode 220 may be used as a counter electrode.
도 9는 본 발명의 제1 실시예의 제1 제조예에 따라 형성된 촉매전극층을 나타내는 이미지이다. 9 is an image showing a catalyst electrode layer formed according to the first production example of the first embodiment of the present invention.
도 9를 참조하면, 탄소나노튜브들은 서로 엉켜있는 형상을 가지며, 백금 나노입자들이 탄소나노튜브의 표면에 부착되어 있는 것을 확인할 수 있다.Referring to FIG. 9, the carbon nanotubes have entangled shapes, and the platinum nanoparticles are attached to the surface of the carbon nanotubes.
도 10은 본 발명의 제2 실시예의 제2 제조예에 따라 형성된 전극들을 도시한 이미지이다. 10 is an image showing electrodes formed according to the second manufacturing example of the second embodiment of the present invention.
도 10을 참조하면, Nafion 115 상에 반원으로 패턴된 2개의 백금 전극을 확인할 수 있다. 또한, 상기 백금 전극은 다결정성 FCC(face centered cubic) 구조를 가짐을 확인할 수 있었다. Referring to FIG. 10, two platinum electrodes patterned in a semicircle on Nafion 115 may be identified. In addition, the platinum electrode was confirmed to have a polycrystalline FCC (face centered cubic) structure.
상술한 본 발명에 따르면, 탄소나노튜브에 금속 나노입자들을 부착하고, 이를 통해 데칼기판 상에 촉매전극층을 형성한다. 형성된 촉매전극층은 상온에서 고분자전해질막에 용이하게 전사된다. According to the present invention described above, the metal nanoparticles are attached to the carbon nanotubes, thereby forming a catalyst electrode layer on the decal substrate. The formed catalyst electrode layer is easily transferred to the polymer electrolyte membrane at room temperature.
이는 종래의 데칼방법에서의 고온, 고압 조건을 극복하는 것으로 특히, 고온상태에서 촉매의 특성이 저하되는 현상을 방지한다. This overcomes the high temperature and high pressure conditions in the conventional decal method, and in particular, prevents the phenomenon of deterioration of the characteristics of the catalyst at a high temperature.

Claims (19)

  1. 소수성의 특성을 가진 고분자전해질막; 및Polymer electrolyte membrane having hydrophobic properties; And
    상기 고분자전해질막의 양 면에 형성된 촉매전극층들을 포함하고,It includes catalyst electrode layers formed on both sides of the polymer electrolyte membrane,
    상기 촉매전극층들은 탄소나노튜브 및 금속나노입자를 가지는 것을 특징으로 하는 막전극접합체.The catalytic electrode layers are membrane electrode assembly, characterized in that having a carbon nanotube and metal nanoparticles.
  2. 제1항에 있어서, 상기 촉매전극층들은 상기 금속나노입자가 상기 탄소나노튜브에 부착된 금속나노입자-탄소나노튜브의 구조를 가지는 것을 특징으로 하는 막전극접합체.The membrane electrode assembly of claim 1, wherein the catalyst electrode layers have a structure of metal nanoparticles-carbon nanotubes in which the metal nanoparticles are attached to the carbon nanotubes.
  3. 제1항에 있어서, 상기 금속나노입자는 금 또는 백금을 포함하는 것을 특징으로 하는 막전극접합체.The membrane electrode assembly of claim 1, wherein the metal nanoparticles comprise gold or platinum.
  4. 제3항에 있어서, 상기 금속나노입자는 금속전구체의 환원에 의해 형성되는 것을 특징으로 하는 막전극접합체.4. The membrane electrode assembly of claim 3, wherein the metal nanoparticles are formed by reduction of a metal precursor.
  5. 제4항에 있어서, 상기 금속전구체는 H2PtCl6, H2PtCl4, K2PtCl6, K2PtCl4, HAuCl4, NaAuCl4, HAuBr4, AuCl, AuCl3, NaAu(CN)2 또는 KAu(CN)2인 것을 특징으로 하는 막전극접합체.The metal precursor of claim 4, wherein the metal precursor is H 2 PtCl 6 , H 2 PtCl 4 , K 2 PtCl 6 , K 2 PtCl 4 , HAuCl 4 , NaAuCl 4 , HAuBr 4 , AuCl, AuCl 3 , NaAu (CN) 2 or Membrane electrode assembly, characterized in that KAu (CN) 2 .
  6. 제4항에 있어서, 상기 금속전구체의 환원에 사용되는 환원제로는 NaBH4, HCHO, NaOH, Na2CO3, H2O2, CH3OH, C6H8O7 또는 Na3C6H5O7인 것을 특징으로 하는 막전극접합체.The method of claim 4, wherein the reducing agent used for the reduction of the metal precursor is NaBH 4 , HCHO, NaOH, Na 2 CO 3 , H 2 O 2 , CH 3 OH, C 6 H 8 O 7 or Na 3 C 6 H Membrane electrode assembly, characterized in that 5 O 7 .
  7. 데칼기판 상에 촉매전극층을 형성하는 제1 단계;Forming a catalyst electrode layer on the decal substrate;
    상기 제1 단계에서 형성된 2개의 데칼기판들을 고분자전해질막을 중심으로 대향하도록 배치시키는 제2 단계; 및A second step of arranging the two decal substrates formed in the first step to face the polymer electrolyte membrane; And
    상기 2단계의 구조물을 압착하여 상기 고분자전해질막의 양면에 상기 촉매전극층들을 형성하는 제3 단계를 포함하고,A third step of forming the catalyst electrode layers on both surfaces of the polymer electrolyte membrane by compressing the structure of the second step;
    상기 촉매전극층들은 탄소나노튜브의 표면에 금속나노입자가 부착된 금속나노입자-탄소나노튜브 구조를 포함하는 것을 특징으로 하는 막전극접합체의 제조방법.The catalyst electrode layer is a method of manufacturing a membrane electrode assembly comprising a metal nanoparticle-carbon nanotube structure attached to the metal nanoparticles on the surface of the carbon nanotubes.
  8. 제7항에 있어서, 상기 제1 단계는,The method of claim 7, wherein the first step,
    상기 금속나노입자-탄소나노튜브 구조를 형성하는 단계; 및Forming the metal nanoparticle-carbon nanotube structure; And
    상기 데칼기판을 여과지로 이용하여 상기 데칼기판 상에 금속나노입자-탄소나노튜브를 잔류시켜 상기 촉매전극층을 형성하는 단계를 포함하는 것을 특징으로 하는 막전극접합체의 제조방법.And using the decal substrate as a filter paper to form the catalyst electrode layer by remaining metal nanoparticle-carbon nanotubes on the decal substrate.
  9. 제8항에 있어서, 상기 금속나노입자-탄소나노튜브 구조를 형성하는 단계는,The method of claim 8, wherein the forming of the metal nanoparticle-carbon nanotube structure includes:
    상기 탄소나노튜브에 강산을 도입하여 상기 탄소나노튜브의 표면에 하이드록시 그룹을 생성시켜서 활성화시키는 단계; 및Introducing a strong acid into the carbon nanotubes to generate and activate a hydroxy group on the surface of the carbon nanotubes; And
    상기 활성화된 탄소나노튜브를 금속전구체와 환원제가 포함된 용액에 도입하여 상기 금속전구체를 환원시키고, 상기 탄소나노튜브 표면에 상기 금속나노입자를 부착시키는 단계를 포함하는 것을 특징으로 하는 막전극접합체의 제조방법.Introducing the activated carbon nanotubes into a solution containing a metal precursor and a reducing agent to reduce the metal precursor, and attaching the metal nanoparticles to the surface of the carbon nanotubes. Manufacturing method.
  10. 제9항에 있어서, 상기 금속전구체는 H2PtCl6, H2PtCl4, K2PtCl6, K2PtCl4, HAuCl4, NaAuCl4, HAuBr4, AuCl, AuCl3, NaAu(CN)2 또는 KAu(CN)2인 것을 특징으로 하는 막전극접합체의 제조방법.The metal precursor of claim 9, wherein the metal precursor is H 2 PtCl 6 , H 2 PtCl 4 , K 2 PtCl 6 , K 2 PtCl 4 , HAuCl 4 , NaAuCl 4 , HAuBr 4 , AuCl, AuCl 3 , NaAu (CN) 2 or KAu (CN) 2 Method for producing a membrane electrode assembly characterized in that.
  11. 제9항에 있어서, 상기 환원제는 NaBH4, HCHO, NaOH, Na2CO3, H2O2, CH3OH, C6H8O7 또는 Na3C6H5O7인 것을 특징으로 하는 막전극접합체의 제조방법.The method of claim 9, wherein the reducing agent is NaBH 4 , HCHO, NaOH, Na 2 CO 3 , H 2 O 2 , CH 3 OH, C 6 H 8 O 7 or Na 3 C 6 H 5 O 7 characterized in that Method for producing a membrane electrode assembly.
  12. 소수성의 특성을 가진 고분자전해질막;Polymer electrolyte membrane having hydrophobic properties;
    상기 고분자전해질막의 일 면에 형성된 촉매전극층; 및A catalyst electrode layer formed on one surface of the polymer electrolyte membrane; And
    상기 고분자전해질막을 중심으로 상기 촉매전극층에 대향하는 타 면에 형성된 전극을 포함하고,An electrode formed on the other surface of the polymer electrolyte membrane opposite the catalyst electrode layer;
    상기 촉매전극층들은 탄소나노튜브에 금속나노입자가 부착된 금속나노입자-탄소나노튜브의 구조를 가지는 것을 특징으로 하는 전기화학식 센서.The catalytic electrode layers are electrochemical sensors, characterized in that the metal nanoparticles attached to the carbon nanotubes-a structure of metal nanoparticles-carbon nanotubes.
  13. 제12항에 있어서, 상기 금속나노입자는 금 또는 백금을 포함하는 것을 특징으로 하는 전기화학식 센서.The electrochemical sensor of claim 12, wherein the metal nanoparticles comprise gold or platinum.
  14. 제13항에 있어서, 상기 금속나노입자는 금속전구체의 환원에 의해 형성되는 것을 특징으로 하는 전기화학식 센서.The electrochemical sensor of claim 13, wherein the metal nanoparticles are formed by reduction of a metal precursor.
  15. 고분자전해질막 상에 금속재질의 전극을 형성하는 제1 단계;Forming a metal electrode on the polymer electrolyte membrane;
    상기 전극의 상부에 보호막을 도입하고, 상기 전극과 대향하는 상기 고분자전해질막의 일 면에 촉매전극층이 형성된 데칼기판을 정렬하는 제2 단계; 및Introducing a passivation layer on the electrode, and arranging a decal substrate having a catalytic electrode layer formed on one surface of the polymer electrolyte membrane facing the electrode; And
    상기 제2 단계의 구조물에 압력을 가하여 상기 고분자전해질막의 일 면에는 상기 촉매전극층을 부착하고, 이에 대향하는 면에는 상기 전극을 전류시키는 제3 단계를 포함하고,And applying a pressure to the structure of the second step, attaching the catalyst electrode layer to one surface of the polymer electrolyte membrane, and causing the electrode to be current on the opposite surface thereof.
    상기 촉매전극층은 탄소나노튜브의 표면에 금속나노입자가 부착된 금속나노입자-탄소나노튜브 구조를 포함하는 것을 특징으로 하는 전기화학식 센서의 제조방법.The catalyst electrode layer is a method of manufacturing an electrochemical sensor, characterized in that it comprises a metal nanoparticle-carbon nanotube structure attached to the metal nanoparticles on the surface of the carbon nanotubes.
  16. 제15항에 있어서, 상기 촉매전극층이 형성된 데칼기판은, The decal substrate according to claim 15, wherein the decal substrate on which the catalyst electrode layer is formed,
    상기 금속나노입자-탄소나노튜브 구조를 형성하는 단계; 및Forming the metal nanoparticle-carbon nanotube structure; And
    상기 데칼기판을 여과지로 이용하여 상기 데칼기판 상에 금속나노입자-탄소나노튜브를 잔류시켜 상기 촉매전극층을 형성하는 단계에 의해 형성되는 것을 특징으로 하는 전기화학식 센서의 제조방법.And using the decal substrate as a filter paper to form the catalytic electrode layer by remaining metal nanoparticle-carbon nanotubes on the decal substrate.
  17. 제16항에 있어서, 상기 금속나노입자-탄소나노튜브 구조를 형성하는 단계는,The method of claim 16, wherein the forming of the metal nanoparticle-carbon nanotube structure,
    상기 탄소나노튜브에 강산을 도입하여 상기 탄소나노튜브의 표면에 하이드록시 그룹을 생성시켜서 활성화시키는 단계; 및Introducing a strong acid into the carbon nanotubes to generate and activate a hydroxy group on the surface of the carbon nanotubes; And
    상기 활성화된 탄소나노튜브를 금속전구체와 환원제가 포함된 용액에 도입하여 상기 금속전구체를 환원시키고, 상기 탄소나노튜브 표면에 상기 금속나노입자를 부착시키는 단계를 포함하는 것을 특징으로 하는 전기화학식 센서의 제조방법.Introducing the activated carbon nanotubes into a solution containing a metal precursor and a reducing agent to reduce the metal precursor, and attaching the metal nanoparticles to the surface of the carbon nanotubes. Manufacturing method.
  18. 제15항에 있어서, 상기 제1 단계는,The method of claim 15, wherein the first step,
    상기 고분자전해질막의 일 측면에 금속전구체 용액을 준비하고, 이와 대향하는 타 측면에는 환원제를 준비하는 단계; 및Preparing a metal precursor solution on one side of the polymer electrolyte membrane and preparing a reducing agent on the other side thereof; And
    상기 환원체를 상기 고분자전해질막으로 통과시켜 상기 고분자전해질막 표면에서의 금속의 환원에 의해 상기 금속재질의 전극을 형성하는 단계를 포함하는 것을 특징으로 하는 전기화학식 센서의 제조방법.And passing the reducing body through the polymer electrolyte membrane to form an electrode of the metal material by reduction of metal on the surface of the polymer electrolyte membrane.
  19. 제15항에 있어서, 상기 제1 단계는,The method of claim 15, wherein the first step,
    상기 고분자전해질막을 금속전구체 용액에 침지시켜, 양이온 치환을 통해 금속전구체를 상기 고분자전해질막으로 침투시키는 단계; 및Dipping the polymer electrolyte membrane in a metal precursor solution to infiltrate the metal precursor into the polymer electrolyte membrane through cation substitution; And
    상기 금속전구체가 침투된 고분자전해질막에 환원제를 도입하여, 상기 고분자전해질막 표면에 상기 금속재질의 전극을 형성하는 단계를 포함하는 전기화학식 센서의 제조방법.Introducing a reducing agent into the polymer electrolyte membrane penetrated the metal precursor, to form the electrode of the metal material on the surface of the polymer electrolyte membrane.
PCT/KR2012/001404 2011-02-25 2012-02-23 Membrane electrode assembly, electrochemical sensor using same and production methods therefor WO2012115473A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110016963A KR101255903B1 (en) 2011-02-25 2011-02-25 Membrane Electrode Assembly, Electrochemical Sensor of using the same and Method of fabricating thereofs
KR10-2011-0016963 2011-02-25

Publications (2)

Publication Number Publication Date
WO2012115473A2 true WO2012115473A2 (en) 2012-08-30
WO2012115473A3 WO2012115473A3 (en) 2012-11-29

Family

ID=46721357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/001404 WO2012115473A2 (en) 2011-02-25 2012-02-23 Membrane electrode assembly, electrochemical sensor using same and production methods therefor

Country Status (2)

Country Link
KR (1) KR101255903B1 (en)
WO (1) WO2012115473A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149247A (en) * 2013-03-04 2013-06-12 上海交通大学 Loose thin-wall gas sensitive element and manufacturing method thereof
CN110749637A (en) * 2019-09-23 2020-02-04 北京华科仪科技股份有限公司 CO electrochemical gas sensor based on semi-solid electrolyte and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060022870A (en) * 2004-09-08 2006-03-13 삼성에스디아이 주식회사 Membrane/electrode assembly for fuel cell, method of producing same and fuel cell comprising same
KR20080050951A (en) * 2006-12-04 2008-06-10 한국전자통신연구원 Electrochemical gas sensor chip and method for preparing the same
KR20090098217A (en) * 2008-03-13 2009-09-17 한국과학기술연구원 Method for manufacturing mea using low temperature transfer methods, mea manufactured using the method and fuel cell using the mea
KR20100116419A (en) * 2009-04-22 2010-11-01 한국화학연구원 Method for preparing a cathode catalyst for a fuel cell having an improved activity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060022870A (en) * 2004-09-08 2006-03-13 삼성에스디아이 주식회사 Membrane/electrode assembly for fuel cell, method of producing same and fuel cell comprising same
KR20080050951A (en) * 2006-12-04 2008-06-10 한국전자통신연구원 Electrochemical gas sensor chip and method for preparing the same
KR20090098217A (en) * 2008-03-13 2009-09-17 한국과학기술연구원 Method for manufacturing mea using low temperature transfer methods, mea manufactured using the method and fuel cell using the mea
KR20100116419A (en) * 2009-04-22 2010-11-01 한국화학연구원 Method for preparing a cathode catalyst for a fuel cell having an improved activity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149247A (en) * 2013-03-04 2013-06-12 上海交通大学 Loose thin-wall gas sensitive element and manufacturing method thereof
CN110749637A (en) * 2019-09-23 2020-02-04 北京华科仪科技股份有限公司 CO electrochemical gas sensor based on semi-solid electrolyte and preparation method thereof

Also Published As

Publication number Publication date
WO2012115473A3 (en) 2012-11-29
KR101255903B1 (en) 2013-04-17
KR20120097637A (en) 2012-09-05

Similar Documents

Publication Publication Date Title
CN112310413B (en) Gas diffusion layer, preparation method and application thereof
WO2011025259A2 (en) Polymer electrolyte membrane for a fuel cell, and method for preparing same
WO2015133848A1 (en) Graphene oxide nanocomposite membrane for gas separation, reduced graphene oxide nanocomposite membrane, and method for manufacturing same
TW515129B (en) Method for manufacturing gas diffusion electrode and method for manufacturing electrochemical device
US8512908B2 (en) Fabrication of catalyst coated diffusion media layers containing nanostructured thin catalytic layers
US20130059143A1 (en) Graphene based conductive material and preparation method thereof
WO2014171599A1 (en) Composite separating membrane including coating layer of graphene oxide/bile acid or salt thereof and method of manufacturing same
WO2013165101A1 (en) Hybrid electrode using silver nanowires and graphene, and preparation method thereof
WO2013019047A2 (en) Polymer electrolyte membrane for fuel cell and method for manufacturing the same
WO2012173352A9 (en) Polymer electrolyte membrane for fuel cell, and membrane electrode conjugate and fuel cell comprising same
KR20020074422A (en) Electrode base material for fuel cell
WO2012115473A2 (en) Membrane electrode assembly, electrochemical sensor using same and production methods therefor
CN109524676A (en) A kind of fuel cell catalyst layer electrode of three-dimensional and preparation method thereof
US8445164B2 (en) Electrode containing nanostructured thin catalytic layers and method of making
WO2020222435A1 (en) Textile material-based porous water splitting catalyst and preparation method therefor
CN110376254A (en) The system and method for electrochemical gas sensor for printing
WO2015060477A1 (en) Electrode catalyst, method for preparing same, and membrane electrode assembly and fuel cell comprising same
US8507152B2 (en) Fabrication of electrodes with multiple nanostructured thin catalytic layers
WO2018194432A9 (en) Membrane including porous substrate layer and cnt/chitosan nanohybrid coating layer, and electrostatic dust collection system including same
CN108461762B (en) Catalyst layer for fuel cell electrode and method for producing same
Shi et al. High-performance proton exchange membrane fuel cells enabled by highly hydrophobic hierarchical microporous carbon layers grafted with silane
CN115896863B (en) Composite diaphragm for ultrathin alkaline water electrolysis, preparation method thereof and alkaline water electrolysis device
WO2018101591A1 (en) Method for preparing membrane-electrode assembly, membrane-electrode assembly prepared therefrom, and fuel cell comprising same
CN112981615A (en) Nano carbon fiber and preparation method and application thereof
KR20130084382A (en) Method for fabricating a plurality of membrane electrod assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12750137

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12750137

Country of ref document: EP

Kind code of ref document: A2