WO2012115151A1 - 粒子集積体、粒子集積体の製造方法、光増強素子及び光化学反応を利用する装置 - Google Patents

粒子集積体、粒子集積体の製造方法、光増強素子及び光化学反応を利用する装置 Download PDF

Info

Publication number
WO2012115151A1
WO2012115151A1 PCT/JP2012/054279 JP2012054279W WO2012115151A1 WO 2012115151 A1 WO2012115151 A1 WO 2012115151A1 JP 2012054279 W JP2012054279 W JP 2012054279W WO 2012115151 A1 WO2012115151 A1 WO 2012115151A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
metal core
segment
carbon atoms
fluorinated
Prior art date
Application number
PCT/JP2012/054279
Other languages
English (en)
French (fr)
Inventor
居城 邦治
謙一 新倉
直希 伊與
崇 西尾
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Priority to US14/000,749 priority Critical patent/US9447316B2/en
Priority to EP12750017.1A priority patent/EP2679322B1/en
Priority to JP2013501096A priority patent/JP5904499B2/ja
Publication of WO2012115151A1 publication Critical patent/WO2012115151A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/10Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C323/11Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/12Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • B22F1/0655Hollow particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/12Gold compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media

Definitions

  • the present invention relates to a particle assembly, a method for manufacturing the particle assembly, a light enhancement element, and an apparatus using a photochemical reaction.
  • metal nanoparticles having a nanometer level size have properties different from those of the bulk.
  • the metal nanoparticles have properties such as a melting point reduction, a quantum effect, and a specific surface area increase.
  • Non-Patent Document 1 describes that a three-dimensional aggregate of zinc oxide fine particles enhances light scattering and increases photoelectric conversion efficiency in a solar cell.
  • Non-Patent Document 2 describes that the three-dimensional superlattice structure of gold nanoparticle remarkably enhances the Raman scattering spectrum.
  • Patent Document 1 describes that by arranging colloidal particles regularly, infrared rays are efficiently reflected and visible light transmittance is increased.
  • Non-Patent Document 3 describes the use of colloidal fine particles encapsulating a drug as a drug delivery system.
  • Non-Patent Document 4 discloses a method of collecting metal nanoparticles on a substrate with a polymer interposed therebetween.
  • Non-Patent Document 5 discloses a method of collecting metal nanoparticles by using a template (template) made of silica particles.
  • the nanoparticle integration method described in Non-Patent Document 4 is limited to integration on a flat substrate, and a plurality of processing steps are required, so that the operation tends to be complicated. Further, in the nanoparticle integration method described in Non-Patent Document 5, a template is required for integration, and after nanoparticle integration, an operation of removing the template by dissolving with hydrogen fluoride is required. Easy to get complicated.
  • the present invention has been made in view of the above circumstances, and provides a particle assembly, a light enhancement element, and an apparatus utilizing a photochemical reaction, which can be manufactured by a simple operation and have an excellent light enhancement effect.
  • an object of this invention is to provide the manufacturing method of the particle
  • the metal core may be a fluorinated alkylene glycol group that may be branched, a fluorinated alkylene group that may be branched, or a branched structure.
  • a first segment comprising an optionally fluorinated azaalkylene group, a second segment having at least one hydrophilic group and bound to one end of the main chain of the first segment, and the first segment Self-assembled, characterized by being modified with a metal core surface modifier that is directly or indirectly bonded to the other end of the main chain of the segment and has a functional group capable of binding to the metal core It is a hollow particle aggregate in which a plurality of particles are accumulated.
  • the surface modifier of the metal core is represented by the general formula R t — (R h —O) 1 —R f —R a —X.
  • R t represents a hydrogen atom, a hydroxyl group, an alkoxyl group having 1 to 4 carbon atoms or an alkyl group having 1 to 4 carbon atoms
  • R h represents an alkylene group which may have 2 to 6 carbon atoms which may be branched.
  • R f represents the following general formulas (1) and (2)
  • R a represents a straight-chain alkyl having 3 to 18 carbon atoms, a branched alkyl having 3 to 18 carbon atoms, or an aralkyl having 3 to 18 carbon atoms
  • X is a thiol group, a cyano group, a dithiol group
  • Y 1 and Y 2 represent a hydrogen atom or a fluorine atom, and at least one of Y 1 and Y 2 represents a fluorine atom
  • l represents an integer of 1 to 12
  • m represents Represents an integer of 1 to 12
  • n represents an integer of 1 to 6
  • — (R h —O) l — includes a cyclic group. It may be represented by
  • the hollow particle assembly may be a substantially spherical body.
  • the diameter of the substantially spherical body may be 30 to 400 nm.
  • the coverage of the surface modifier of the metal core on the surface of the metal core may be 20% or more.
  • the metal core may contain gold, platinum, silver, copper, iron or semiconductor quantum dots.
  • the method for producing a particle assembly according to the second aspect of the present invention includes a metal core having a ligand on its surface, a fluorinated alkylene glycol group which may be branched, and a fluorinated alkylene group which may be branched. Or a first segment containing a fluorinated azaalkylene group which may be branched, and a second segment having at least one hydrophilic group and bonded to one end of the main chain of the first segment; A step of mixing a surface modifier of the metal core, which is directly or indirectly bonded to the other end of the main chain of the first segment and has a functional group capable of binding to the metal core, in a solvent. It is characterized by that.
  • the surface modifier of the metal core is represented by the general formula R t — (R h —O) 1 —R f —R a —X.
  • R t represents a hydrogen atom, a hydroxyl group, an alkoxyl group having 1 to 4 carbon atoms or an alkyl group having 1 to 4 carbon atoms
  • R h represents an alkylene group which may have 2 to 6 carbon atoms which may be branched.
  • R f represents the following general formulas (1) and (2)
  • R a represents a straight-chain alkyl having 3 to 18 carbon atoms, a branched alkyl having 3 to 18 carbon atoms, or an aralkyl having 3 to 18 carbon atoms
  • X is a thiol group, a cyano group, a dithiol group
  • Y 1 and Y 2 represent a hydrogen atom or a fluorine atom, and at least one of Y 1 and Y 2 represents a fluorine atom
  • l represents an integer of 1 to 12
  • m represents Represents an integer of 1 to 12
  • n represents an integer of 1 to 6
  • — (R h —O) l — includes a cyclic group. It may be represented by
  • the method for producing the particle assembly may further include a step of replacing the solvent with a substitution solvent after the step.
  • the light enhancement element according to the third aspect of the present invention includes the hollow particle assembly.
  • An apparatus using a photochemical reaction according to the fourth aspect of the present invention includes the light enhancement element.
  • this invention it is possible to provide a hollow particle assembly, a light enhancement element, and a device utilizing a photochemical reaction, which can be manufactured by a simple operation and have an excellent light enhancement effect. Moreover, this invention can provide the manufacturing method of the hollow particle assembly which can be implemented by simple operation.
  • the self-organizable particle according to the present invention comprises a metal core having an optionally branched fluorinated alkylene glycol group, an optionally branched fluorinated alkylene group, or an optionally branched fluorinated azaalkylene group.
  • the metal core refers to metal nanoparticles having a nanometer-level diameter.
  • a constituent element of the metal core for example, gold, platinum, silver, copper, iron, semiconductor quantum dots, zinc oxide fine particles, titanium oxide fine particles, or a mixture thereof is used.
  • gold, platinum, silver, or copper as a constituent element of the metal core, the effect of enhancing light absorption by the localized surface plasmon resonance described later is enhanced.
  • the constituent elements of the metal core can be appropriately selected as long as they have the effects of the present invention.
  • the diameter of the metal core is about 1 to 200 nm, for example, 5 nm, 10 nm, 20 nm, 50 nm, 100 nm, 200 nm, and the like. With regard to the diameter of the metal core, for example, at 20 nm to 100 nm, the effect of enhancing light absorption by the localized surface plasmon resonance described later is enhanced.
  • the first segment provided in the surface modifier of the metal core may be a fluorinated alkylene glycol group that may be branched, a fluorinated alkylene group that may be branched, or a fluorinated azaalkylene group that may be branched
  • fluorinated alkylene glycol group examples include two fluorinated tetraethylene glycol (FTEG), fluorinated triethylene glycol, fluorinated diethylene glycol, fluorinated monoethylene glycol, fluorinated propylene glycol, and fluorinated butylene glycol.
  • FTEG fluorinated tetraethylene glycol
  • examples include a group obtained by removing one hydroxyl group from the hydroxyl group and removing one hydrogen atom from the other hydroxyl group.
  • the fluorinated alkylene glycol group may be represented by the following general formula.
  • Y 1 and Y 2 represent a hydrogen atom or a fluorine atom, and at least one of Y 1 and Y 2 is a fluorine atom, m represents an integer of 1 to 12, and n represents an integer of 1 to 6 Represents.
  • fluorinated alkylene glycol group for example, one hydroxyl group of two hydroxyl groups of fluorinated tetraethylene glycol (FTEG), fluorinated triethylene glycol, or fluorinated diethylene glycol is excluded and the other 1 A group obtained by removing one hydrogen atom from one hydroxyl group is preferably used.
  • FTEG fluorinated tetraethylene glycol
  • FTEG fluorinated triethylene glycol
  • fluorinated alkylene group examples include groups in which part or all of the hydrogen atoms of an alkylene group having 2 to 12 carbon atoms are substituted with fluorine atoms.
  • the fluorinated alkylene group may have an ether bond, for example.
  • Examples of the fluorinated alkylene group having an ether bond include 1H, 1H, 4H, 4H-perfluoro-1,4-butanediol, 1H, 1H, 5H, 5H-perfluoro-1,5-pentanediol, 1H, 1H, 6H, 6H-perfluoro-1,6-hexanediol, 1H, 1H, 8H, 8H-perfluoro-1,8-octanediol, 1H, 1H, 9H, 9H-perfluoro-1,9-nonanediol, 1H, 1H , 10H, 10H-perfluoro-1,10-decanediol, 1H, 1H, 12H, 12H-perfluoro-1,12-dodecanediol, etc. except for one hydroxyl group and the other And a group obtained by removing one hydrogen atom from one hydroxyl group.
  • fluorinated azaalkylene group examples include groups in which part or all of the hydrogen atoms of the azaalkylene group having 2 to 12 carbon atoms are substituted with fluorine atoms.
  • fluorine atoms For example, -CH 2 -CF 2 -NH -, - CF 2 -CF 2 -NH -, - CF 2 -CH 2 -NH -, - CH 2 -CF 2 -NH-CF 2 -CH 2 -NH-, —CF 2 —CF 2 —NH—CF 2 —CH 2 —NH—, —CH 2 —CF 2 —NH—CH 2 —CF 2 —NH—, or the like is used.
  • the fluorinated azaalkylene group may be represented by the following general formula.
  • Y 1 and Y 2 represent a hydrogen atom or a fluorine atom, and at least one of Y 1 and Y 2 is a fluorine atom, m represents an integer of 1 to 12, and n represents an integer of 1 to 6 Represents.
  • the fluorinated alkylene glycol group which may be branched the fluorinated alkylene group which may be branched, or the fluorinated azaalkylene group which may be branched, the first segment has the effect of the present invention. Any group that plays can be selected as appropriate.
  • the first segment has a fluorinated alkylene glycol group that may be branched, a fluorinated alkylene group that may be branched, or a fluorinated azaalkylene group that may be branched.
  • a fluorinated alkylene glycol group that may be branched
  • a fluorinated alkylene group that may be branched
  • a fluorinated azaalkylene group that may be branched.
  • the second segment provided in the surface modifier of the metal core has at least one hydrophilic group.
  • a 2nd segment has a hydroxyl group, an ether group, etc. as a hydrophilic group, for example.
  • ether groups include tetraethylene glycol (PEG4), triethylene glycol (PEG3), diethylene glycol (PEG2), ethylene glycol, pentaethylene glycol, hexaethylene glycol, nonaethylene glycol, heptaethylene glycol, decaethylene glycol, and dodecaethylene.
  • Examples include a group obtained by removing one hydrogen atom from one hydroxyl group out of two hydroxyl groups possessed by glycol or the like.
  • the ether group for example, a group containing 12-crown 4-ether, 15-crown 5-ether, 18-crown 6-ether, or the like can be used.
  • the second segment may be represented by the general formula R t — (R h —O) 1 —.
  • R t represents a hydrogen atom, a hydroxyl group, an alkoxyl group having 1 to 4 carbon atoms or an alkyl group having 1 to 4 carbon atoms
  • R h represents an optionally branched alkylene group having 2 to 6 carbon atoms.
  • 1 represents an integer of 1 to 12
  • — (R h —O) 1 — includes a cyclic group.
  • the alkoxyl group includes, for example, a methoxy group, an ethoxy group, and the like.
  • Examples of the second segment include PEG4, PEG3, PEG2, ethylene glycol, pentaethylene glycol, hexaethylene glycol, nonaethylene glycol, heptaethylene glycol, decaethylene glycol, and dodecaethylene glycol.
  • a group obtained by removing one hydrogen atom from one hydroxyl group is preferably used, for example, one hydrogen from one hydroxyl group of two hydroxyl groups possessed by PEG4, PEG3, or PEG2.
  • a group excluding atoms is more preferably used.
  • the hydrophilic group of the second segment can be appropriately selected as long as the group has the effects of the present invention.
  • the second segment has at least one hydrophilic group, and thus has a low affinity for a hydrophobic organic solvent and a high affinity for water.
  • the second segment is bonded to one end of the main chain of the first segment, for example, by a covalent bond.
  • the functional group provided in the surface modifier of the metal core is a functional group that can bind to the metal core. Any functional group capable of binding to the metal core can be used. Examples of the functional group include a thiol group, a cyano group, a dithiol group, an amino group, and an isocyano group. For example, a thiol group is preferably used. be able to. With respect to this functional group, any group that exhibits the effects of the present invention can be selected as appropriate.
  • the functional group provided in the surface modifier of the metal core is directly or indirectly bonded to the other end of the main chain of the first segment with respect to one end to which the second segment is bonded.
  • the case where the functional group is directly bonded to the other end of the main chain of the first segment refers to the case where the functional group is bonded to the other end of the main chain of the first segment by, for example, a covalent bond. .
  • the case where the functional group is indirectly bonded to the other end of the main chain of the first segment is, for example, via the third segment bonded to the other end of the main chain of the first segment.
  • the third segment for example, straight-chain alkyl having 3 to 18 carbon atoms, branched alkyl having 3 to 18 carbon atoms or aralkyl having 3 to 18 carbon atoms is used.
  • a functional group is bonded to the other end of the main chain of the third segment with respect to one end to which the first segment is bonded, for example, by a covalent bond.
  • the metal core surface modifier includes the aforementioned first segment, the aforementioned second segment, and the aforementioned functional group.
  • the surface modifier of the metal core may be represented by the general formula R t — (R h —O) 1 —R f —R a —X, wherein R t is a hydrogen atom, a hydroxyl group, a carbon number of 1 Represents an alkoxy group having 1 to 4 carbon atoms or an alkyl group having 1 to 4 carbon atoms, R h represents an alkylene group having 2 to 6 carbon atoms which may be branched, and R f represents the following general formulas (1) and (2) R a represents a straight-chain alkyl having 3 to 18 carbon atoms, a branched alkyl having 3 to 18 carbon atoms, or an aralkyl having 3 to 18 carbon atoms, X is a thiol group, a cyano group, a dithiol group, Represents an amino group or an isocyano group, Y 1 and Y 2 represent a hydrogen atom or a fluorine atom, and at least
  • R t — (R h —O) 1 — represents the first 2 represents a segment
  • R f represents a first segment
  • R a represents a third segment
  • X represents a functional group
  • the surface modifier for the metal core for example, 14, 14, 16, 16, 17, 17, 19, 19, 20, 20, 22, 22-dodecafluoro-35-mercapto-3, 6, 9, 12, 15 , 18,21,24-octaoxapentatriacontan-1-ol (PEG4-FTEG-C11-SH), 11, 11, 13, 13, 14, 14, 16, 16, 17, 17, 19, 19- Dodecafluoro-32-mercapto-3,6,9,12,15,18,21-heptoxadotriacontan-1-ol (PEG3-FTEG-C11-SH), 8, 8, 10, 10, 11, 11, 13, 13, 14, 14, 16, 16-dodecafluoro-29-mercapto-3,6,9,12,15,18-hexaoxanonacosan-1-ol (PEG2-F) EG-C11-SH)
  • the first segment may be referred to as a fluorinated segment
  • the second segment may be referred to as a fluorinated segment
  • the self-organizable particles according to the present invention are characterized in that the metal core is modified with the surface modifier of the metal core described above.
  • modification refers to a state in which the surface modifier and the metal core are bonded to each other by, for example, coordinate bonding of the functional group provided on the surface modifier of the metal core to the metal core.
  • the coverage of the surface modifier on the surface of the metal core is, for example, 5 nm for the metal core.
  • gold nanoparticles having a diameter it may be 20% or more, for example, about 50 to 60% is preferable.
  • the coverage of the surface modifier on the surface of the metal core can be measured using an ICP emission analyzer (for example, ICPE-9000 (manufactured by Shimadzu Corporation)).
  • ICP emission analyzer for example, ICPE-9000 (manufactured by Shimadzu Corporation)
  • gold as the constituent element of the metal core
  • PEG4-FTEG-C11-SH, PEG3-FTEG-C11-SH or PEG2-FTEG-C11-SH as the surface modifier
  • the obtained hollow particle aggregate By dissolving (described later) in aqua regia and combusting with high frequency inductively coupled plasma, the component ratio of gold atoms and sulfur atoms can be obtained and calculated.
  • a metal core composed of gold nanoparticles removes one of the two hydroxyl groups of FTEG and removes hydrogen from the other hydroxyl group.
  • a first segment comprising a group excluding one atom
  • a second segment comprising a group obtained by removing one hydrogen atom from one hydroxyl group of two hydroxyl groups of PEG4, and a thiol
  • Fluorinated thiol-presenting gold particles coated with a metal core surface modifier PEG4-FTEG-C11-SH comprising a functional group comprising a group and a third domain comprising an alkyl chain having 11 carbon atoms be able to.
  • the fluorinated thiol-presenting gold particles are represented as follows.
  • the particle aggregate according to the present invention is a hollow particle aggregate in which a plurality of the aforementioned self-organizable particles are accumulated. Self-organizable particles are accumulated in three dimensions.
  • the hollow particle assembly according to the present invention includes, for example, about 100 to 200 particles that can be self-assembled.
  • the hollow particle aggregate according to the present invention can improve the dispersibility of the hollow particle aggregate in a solvent by having a space inside. Further, by enclosing a drug or the like in the space inside the hollow particle assembly, the hollow particle assembly can be used for an in-vivo diagnostic agent, a drug delivery system, and the like described later.
  • the hollow particle aggregate according to the present invention is a hollow body
  • TEM image the electron microscope
  • SAXS X-ray small angle scattering
  • the measured value of the X-ray scattering intensity of the hollow particle aggregate is compared with that of the core-shell model to examine whether the SAXS scattering profile matches. Can be confirmed. Any confirmation method that exhibits the effects of the present invention can be selected as appropriate.
  • the hollow particle aggregate according to the present invention can be formed into, for example, a substantially spherical shape, a substantially elliptical spherical shape, a dome shape, a flat plate shape, etc., but is preferably formed in a substantially spherical shape.
  • the shape (substantially spherical body etc.) of the hollow particle aggregate of the present invention can be confirmed by observation with an electron microscope (SEM image or TEM image), for example. Any shape confirmation method that exhibits the effects of the present invention can be selected as appropriate.
  • the hollow particle aggregate according to the present invention is a substantially spherical body
  • its diameter is 30 to 400 nm.
  • the diameter can be appropriately adjusted depending on the application, but generally 30 to 200 nm is preferable.
  • the diameter is preferably 50 to 200 nm, more preferably 80 to 120 nm from the viewpoint of light enhancement.
  • the diameter is preferably 30 to 200 nm, more preferably 50 to 100 nm from the viewpoint of delivery efficiency.
  • the average diameter of the hollow particle aggregate (substantially spherical body) is about 60 nm when there is a distribution of 70 to 80 nm, for example.
  • the diameter of the hollow particle assembly (substantially spherical body) of the present invention can be measured, for example, by observation with an electron microscope (SEM image or TEM image). Any diameter measuring method that exhibits the effects of the present invention can be selected as appropriate.
  • a plurality of self-organizable particles are arranged on the substantially spherical surface by, for example, a one-layer structure or a two-layer structure, preferably a one-layer structure, A spherical space exists inside the sphere.
  • the inner diameter of the spherical space inside the sphere can be, for example, about 50 to 60 nm.
  • the hollow particle aggregate according to the present invention can be developed on a solid substrate by, for example, a drop casting method.
  • the hollow particle aggregate according to the present invention can stably maintain the state in which the hollow particle aggregate is formed even in a dry state such as when it is spread on a solid substrate.
  • the hollow particle aggregate according to the present invention can exist in a state of being stably and uniformly dispersed in the polymer, for example, even in a state of being embedded in the polymer.
  • the polymer for example, epoxy resin, agarose gel, methacrylate resin, isopropylacrylamide, and the like can be used. Any polymer that exhibits the effects of the present invention can be selected as appropriate.
  • the method for embedding the hollow particle aggregate in the polymer include a method in which the hollow particle aggregate and the polymer are mixed and thermally cured or photocured. Any method can be selected as appropriate.
  • the method for producing a particle assembly according to the present invention includes a step of mixing a metal core having a ligand on its surface and the above-described surface modifier of the metal core in a solvent (hereinafter referred to as a mixing step).
  • Examples of the ligand that the metal core has on the surface include organic acids such as citric acid, ascorbic acid, and tannic acid, polyvinylpyrrolidone, polyvinyl alcohol, cetyltrimethylammonium bromide, and the like.
  • organic acids such as citric acid, ascorbic acid, and tannic acid
  • polyvinylpyrrolidone polyvinyl alcohol
  • cetyltrimethylammonium bromide and the like.
  • the material constituting the metal core include gold, platinum, silver, copper, iron, semiconductor quantum dots, zinc oxide fine particles, and titanium oxide fine particles.
  • a commercially available gold citrate colloid solution or the like may be used as a metal core having a ligand on its surface.
  • the metal core having a ligand on the surface and the surface modifier of the metal core are mixed in a solvent, so that the functional group provided in the surface modifier of the metal core is added to the surface of the metal core.
  • they can be bonded by a coordinate bond.
  • self-organization of particles occurs.
  • self-organization means that particles are organized and assembled by a natural order without depending on external guidance or control.
  • the self-assembly of particles proceeds in parallel with the above-described ligand exchange reaction.
  • the particle aggregate according to the present invention is formed by self-organization of particles. By self-organization, for example, a hollow particle aggregate having a uniform diameter can be obtained.
  • the self-assembly in the mixing step involves a balance between the hydrophobic organic solvent affinity of the first segment and the hydrophobic organic solvent non-affinity of the second segment provided in the surface modifier of the metal core. It is conceivable that. Self-organization is considered to occur spontaneously due to the repulsive action of the second segments in the solvent. Furthermore, for example, by using the surface modifier having the above-described third segment, the third segment becomes a spacer between the metal core and the first segment, and the self-assembly proceeds well. is there.
  • a solvent having an ether bond for example, a solvent having an ether bond, a solvent having an SP value of about 8 to 10 (cal / ml), or a mixture thereof is used.
  • the SP value as used in the present specification is a numerical value representing a solubility parameter by Hildebrand et al., And a cohesive energy density (cohesive energy density: evaporation energy per unit area of one molecule) is raised to the power of 1/2. It is a value representing the magnitude of polarity per unit volume.
  • solvent having an ether bond examples include tetrahydrofuran (THF), dimethyl ether, diethyl ether, diisopropyl ether, di-n-butyl ether, methyl tert-butyl ether, anisole, 1,4-dioxane, 1,2-dimethoxyethane.
  • THF tetrahydrofuran
  • dimethyl ether diethyl ether
  • diisopropyl ether di-n-butyl ether
  • methyl tert-butyl ether methyl tert-butyl ether
  • the solvent having an SP value of about 8 to 10 for example, cyclohexane, carbon tetrachloride, xylene, ethyl acetate, toluene, benzene, chloroform, trichloroethylene, methyl ethyl ketone, acetone or the like, or a mixture thereof is used.
  • a solvent having an ether bond can be suitably used, and for example, THF can be more suitably used.
  • the solvent used in the mixing step can be appropriately selected as long as it is a solvent that exhibits the effects of the present invention.
  • stirring may be performed when the metal core having the ligand on the surface and the surface modifier are mixed in a solvent.
  • a ligand exchange reaction and self-organization can be advanced more favorably.
  • you may perform an ultrasonic treatment. By performing the ultrasonic treatment, the solubility of the metal core having the ligand on the surface in the solvent can be improved, and the ligand exchange reaction and the self-assembly can be promoted better.
  • a mixture of different types of surface modifiers may be used as the surface modifier of the metal core.
  • a particle aggregate can be obtained.
  • the particle aggregate obtained in this step may contain self-organizable particles. For example, when the ligand exchange reaction and the self-assembly proceed well in the mixing step, more particle aggregates can be obtained.
  • the mixing step for example, the mixed solution of the metal core having the ligand on the surface and the surface modifier is centrifuged, the supernatant is removed, and the solvent is added to the pellet.
  • it may further include a step (hereinafter referred to as a redispersion step) in which stirring and sonication are performed, followed by centrifugation and removal of the supernatant.
  • a redispersion step By performing the redispersion step, impurities in the mixed solution may be removed and self-organization may proceed well. By doing so, it becomes possible to obtain more particle aggregates.
  • the solvent used in the redispersion step the same solvent as used in the mixing step can be used.
  • the series of operations in the mixing step can be performed simply by simply mixing a metal core having a ligand on the surface and a surface modifier in a solvent.
  • the method for producing a particle aggregate according to the present invention can be carried out by a simple operation.
  • the formation of the particle aggregate is, for example, measured by measuring the absorbance of the reaction solution after the mixing step, compared with the absorbance of the reaction solution before the mixing step or the absorbance of the solution not forming the particle aggregate. This can be confirmed by observing the shift to the wavelength side.
  • the formation of the particle aggregate can also be confirmed by, for example, observing a change in the color of the reaction solution. The color of the reaction solution changes from, for example, red to purple before and after the mixing step.
  • the method for producing a particle aggregate according to the present invention may further include a step of replacing the solvent with a substitution solvent after the mixing step or the redispersion step.
  • a substituted solvent the thing similar to the solvent used at a mixing process or a redispersion process may be used, and the thing different from the solvent used at a mixing process or a redispersion process may be used.
  • the substitution solvent for example, THF, ethyl acetate, dichloromethane, butanol, methanol, acetone, dimethylformamide (DMF) and the like can be used.
  • the particle aggregate according to the present invention can stably maintain the state in which the particle aggregate is formed even in a substitution solvent. Even when the particle aggregate according to the present invention is formed in a solvent in the mixing step or the redispersion step and then replaced with a substitution solvent, the state where the particle aggregate is formed can be stably maintained.
  • ligand exchange reaction and self-assembly in the mixing step is shown below. This is an example in which a gold citrate colloidal solution is used as a metal core having a ligand on its surface, and PEG4-FTEG-C11-SH is used as a surface modifier for the metal core.
  • the light enhancement element according to the present invention includes the aforementioned hollow particle assembly.
  • the light enhancement element refers to an element that enhances light absorption by localized surface plasmon resonance.
  • the light absorption by the localized surface plasmon resonance means that the energy of light or the electric field generated thereby is accumulated in the particles and the particle aggregates by the particles and the particle aggregates absorbing light of a specific wavelength.
  • Light absorption due to localized surface plasmon resonance occurs also in the particles, but may be enhanced by the accumulation of a plurality of particles into an aggregate. This is because when a plurality of particles are accumulated to form an aggregate, a gap (gap) is generated between the particles, and light is accumulated in the gap.
  • Raman spectroscopy can be used as a method for confirming light absorption by localized surface plasmon resonance. In Raman spectroscopy, the measurement of the Raman spectrum becomes easier by utilizing the electric field enhancement by localized surface plasmon resonance.
  • the light enhancement element according to the present invention includes, for example, a photoreaction catalyst. Since this photoreaction catalyst includes the hollow particle assembly according to the present invention, light can be integrated. For example, a chemical reaction can be advanced by the energy.
  • the light enhancement element according to the present invention includes, for example, an in-vivo diagnostic agent.
  • a drug or the like that can be visualized by the light enhancement effect is sealed in the space inside the hollow particle assembly.
  • the hollow particle aggregate in which such a drug is encapsulated is administered to the patient, and light is irradiated from outside the patient's body when the hollow particle aggregate has gathered at the lesion (for example, cancer tissue).
  • the drug encapsulated in the hollow particle assembly can be visualized by the light enhancement effect, and the diagnosis of the lesioned part of the patient can be performed.
  • the light enhancement element according to the present invention includes, for example, a drug delivery system.
  • a drug or the like is first sealed in the space inside the hollow particle assembly.
  • the hollow particle aggregate in which the drug is encapsulated is administered to a patient, and control is performed so that the hollow particle aggregate is collapsed when the hollow particle aggregate is collected at a lesion (for example, cancer tissue).
  • medical agent can be discharge
  • the diameter of the medium used in the drug delivery system is desirably 100 nm or less, particularly from the viewpoint of delivery efficiency when targeting cancer cells.
  • the diameter of the hollow particle aggregate (substantially sphere) can be 50 to 100 nm, a drug delivery system with higher delivery efficiency can be provided.
  • a higher Raman activity scattering enhancement effect can be obtained by encapsulating a drug or the like inside the hollow particle assembly according to the present invention. Therefore, for example, by encapsulating an anticancer agent in a hollow particle assembly (which may further contain a Raman probe), the detection sensitivity of the cancer tissue can be improved, and at the same time, the hollow tissue assembly is hollow in the target cancer tissue. It is possible to release the anticancer agent from inside the particle assembly.
  • diagnosis and treatment of a lesion can be performed simultaneously.
  • An apparatus using a photochemical reaction according to the present invention includes the above-described light enhancement element.
  • Examples of the device include a light sensing device, a light sensing material, and a solar cell.
  • the optical sensing device includes the above-described light enhancement element, light can be integrated. For this reason, in this optical sensing device, sensing can be performed with high sensitivity. In addition, for example, sensing can be performed using a drug or the like enclosed in the space inside the hollow particle assembly as a probe.
  • the light sensing material according to the present invention includes the above-described light enhancement element.
  • the light enhancement element has the property that the color changes as the distance between the particles changes. For this reason, for example, by mixing (embedding) the optical sensing material according to the present invention with a polymer, it is possible to detect the expansion / contraction, strain, etc. of the polymer caused by temperature change, humidity change, etc. by color change. It is. Further, as described above, the light sensing material according to the present invention is also useful in that it can exist in a polymer in a stable and uniformly dispersed state.
  • the solar cell according to the present invention includes the above-described light enhancement element, sunlight can be integrated. For this reason, this solar cell can efficiently convert light energy into electric power.
  • C11-OTs 10-undecene-1-tosylate (C11-OTs)
  • C11-OTs was synthesized as follows. In a 300 mL Erlenmeyer flask, 5.0 g (29.4 mmol) of 10-undecen-1-ol was dissolved in 20 mL of dichloromethane.
  • PEG3-OTs (7.94 g, 26.1 mmol, 39%) and PEG2-OTs (9.71 g, 36%) were synthesized in the same manner as described above using triethylene glycol di and ethylene glycol instead of tetraethylene glycol. .9 mmol, 32%).
  • FTEG-C11 2,2,4,4,5,5,7,7,8,8,10,10-dodecafluoro-3,6,9,12-tetraoxatricos-22-en-1-ol Synthesis of (FTEG-C11)
  • FTEG-C11 was synthesized as follows. In a 300 mL eggplant flask, 7.59 g (18.5 mmol) of fluorinated tetraethylene glycol (FTEG) and 7.59 g (13.9 mmol) of potassium carbonate were dissolved in 5 mL of N, N-dimethylformamide (DMF).
  • FTEG fluorinated tetraethylene glycol
  • DMF N, N-dimethylformamide
  • the fluorinated thiol (PEG4) -presented gold particle aggregate THF solution obtained as described above was spread on a TEM electron microscope grid mesh (elastic carbon support film, STEM100Cu grid, grid pitch 100 ⁇ m) and allowed to air dry. Fluorinated thiol (PEG4) -presented gold particle aggregates were observed with an electron microscope (HD-2000, manufactured by Hitachi, Ltd.) at an acceleration voltage of 200 kV. The results are shown in FIGS. 2A-D.
  • the SEM image of FIG. 2B confirmed that the spherical structure surface was covered with particles, and it was confirmed that a three-dimensional spherical structure was formed.
  • the TEM image in FIG. 2C confirms that the inside of the spherical structure is seen through, and it is confirmed that a hollow spherical structure is formed by combining with the result of the SEM image described above. confirmed.
  • the diameter of this spherical structure was about 100 nm.
  • the presence of a spherical structure having a diameter of about 200 to 400 nm was confirmed by the TEM image in FIG. 2D. From this, it was confirmed in a dry state that the fluorinated thiol (PEG4) -presenting particle assembly formed a three-dimensional spherical structure.
  • the dodecanethiol presentation gold particle does not have a fluorinated segment and a PEG segment.
  • the results are shown in FIG. Fluorinated thiol (PEG4) presenting gold particle aggregate THF solution, fluorinated thiol (PEG3) presenting gold particle aggregate THF solution, and fluorinated thiol (PEG2) presenting compared to the absorbance of the dodecanethiol presenting gold particle THF solution It was confirmed that the absorbance of the gold particle aggregate THF solution was shifted to the longer wavelength side. From this, it was confirmed that a particle aggregate was formed in the solution.
  • the fluorinated thiol (PEG2) -presented gold particle aggregate THF solution obtained as described above was dissolved in aqua regia and burned by high frequency inductively coupled plasma, to determine the component ratio of gold atoms and sulfur atoms. From the component ratio, the coverage was calculated based on the number of gold atoms presented on the surface. As a result, the coverage was 58.1%.
  • SAXS X-ray small angle scattering
  • NANO-Viewer manufactured by Rigaku Corporation
  • NANO-Solver Ver3.4
  • the X-ray scattering intensity (I (q)) depends on the shape and size of the scatterer (reflecting the shape factor (F (q))) and the distance between the scatterers (reflecting the structure factor (S (q))).
  • Q scattering vector
  • X-ray wavelength
  • half of the angle between the scattered beam and the incident beam
  • the shape factor is expressed by the following equation.
  • R Shell inner radius
  • d Shell thickness
  • ⁇ 0 Shell outer density
  • ⁇ 1 Shell density
  • ⁇ 2 Shell inner density
  • FIG. 5 shows a curve comparing the measured value of the X-ray scattering intensity of the particle aggregate and the fitting. The actually measured curve and the fitting curve almost coincided. From this, it was confirmed that the particle aggregate was a hollow body.
  • FTEG-C11-SH having no PEG segment or PEG4-C11-SH having no fluorinated segment and a 5 nm gold citrate colloid solution are mixed, and a ligand exchange reaction is performed in the same manner as described above.
  • a gold particle solution having no segment or a gold particle solution having no fluorinated segment was obtained.
  • Gold particles without PEG segments and gold particles without fluorinated segments are each shown below.
  • FIGS. 6A and 6B Each particle was observed using an electron microscope in the same manner as described above. The results are shown in FIGS. 6A and 6B.
  • FIG. 6A is an electron microscope image of a gold particle having no PEG segment
  • FIG. 6B is an electron microscope image of a gold particle having no fluorinated segment. It was confirmed that neither particle formed a particle aggregate. From this, self-assembly of particles can be realized and a particle aggregate can be obtained by using a surface modifier comprising a fluorinated segment (first segment) and a PEG segment (second segment). It became clear that.
  • the Raman active scattering enhancing action on the substrate of the hollow particle assembly according to the present invention was examined.
  • the fluorinated thiol (PEG4) -presenting gold particle aggregate THF solution obtained in Example 1 was centrifuged at 10,000 rpm and 4 ° C. for 5 minutes. After removing the supernatant with a micropipettor, each displacement solvent of ethyl acetate, dichloromethane, acetone, butanol, methanol, dimethylformamide (DMF) was added to the pellet and exposed to ultrasound for about 10 seconds in the same manner as described above. Substitution with substitution solvent. This was dropped onto a grid mesh for a TEM electron microscope similar to that described above, dried for more than half a day, and observed with an electron microscope as described above. The results are shown in Table 2.
  • the fluorinated thiol (PEG2) -presented gold particle aggregate can stably maintain the state in which the particle aggregate is formed even when embedded in the epoxy resin, and is uniform in the epoxy resin. It became clear that it was distributed. From these facts, it is considered that this resin can be used as an optical sensing material.
  • the hollow particle assembly, the light enhancement element, and the apparatus using the photochemical reaction according to the present invention can be manufactured by a simple operation and have an excellent light enhancement effect. Further, the method for producing a hollow particle assembly according to the present invention can be carried out by a simple operation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Catalysts (AREA)
  • Medicinal Preparation (AREA)

Abstract

 粒子集積体は、金属コアが、分岐していてもよいフッ素化アルキレングリコール基、分岐していてもよいフッ素化アルキレン基又は分岐していてもよいフッ素化アザアルキレン基を含む第1のセグメントと、少なくとも1つの親水性基を有し前記第1のセグメントの主鎖の一端に結合している第2のセグメントと、前記第1のセグメントの主鎖の他端に直接又は間接に結合されかつ前記金属コアと結合可能な官能基と、を備える金属コアの表面修飾剤で修飾されている、ことを特徴とする自己組織化可能な粒子が複数集積されてなる中空粒子集積体である。

Description

粒子集積体、粒子集積体の製造方法、光増強素子及び光化学反応を利用する装置
 本発明は、粒子集積体、粒子集積体の製造方法、光増強素子及び光化学反応を利用する装置に関する。
 ナノメートルレベルのサイズを有する金属ナノ粒子は、バルクと異なる性質を有することが知られている。金属ナノ粒子は、例えば、融点低下、量子効果、比表面積増大などの性質を有する。近年、金属ナノ粒子を集積させることにより、新たな性質が付加されることが見出され、これに関する研究が盛んに行われてきた。例えば、金属ナノ粒子集積体の応用例として、光触媒反応、ラマン増強素子、化学センサー等についての報告が多数なされてきた。
 例えば、非特許文献1には、酸化亜鉛微粒子の3次元的集積体が、光散乱を増強させ、太陽電池における光電変換効率を増加させたことが記載されている。また、非特許文献2には、金ナノ微粒子の3次元超格子構造体が、ラマン散乱スペクトルを著しく増強したことが記載されている。さらに、特許文献1には、コロイド粒子を規則的に配列させることで、赤外線が効率よく反射され、可視光の透過率が増大されたことが記載されている。非特許文献3には、薬剤を封入させたコロイド微粒子を、ドラックデリバリーシステムとして用いたことが記載されている。
 金属ナノ粒子集積体に関する研究が進む一方で、金属ナノ粒子を集積化させる方法がいくつか見出され、報告されてきた。
 例えば、非特許文献4では、金属ナノ粒子を、高分子を介在させた基板上で集積させる方法が開示されている。また、非特許文献5では、金属ナノ粒子を、シリカ粒子からなる鋳型(テンプレート)を用いることで集積させる方法が開示されている。
特開2009-20437号公報
Qifeng Zhang,et al,Adv.Funct.Mater.2008,18,1654-1660 E.S.Shibu,et al,Chem.Mater.2009,21,3773-3781 D.Patra,et al,Chem.Asian J.2010,5,2442-2453 Shouheng Sun,et al,J.Am.Chem.Soc.2002,124(12),2884-2885 Sang-Wook Kim,et al,J.Am.Chem.Soc.2002,124(26),7642-7643
 非特許文献4に記載されたナノ粒子集積方法では、平面基板上での集積化に限られ、また、複数の加工工程が必要となるため操作が煩雑になりやすい。また、非特許文献5に記載されたナノ粒子集積方法では、集積化にテンプレートを要し、かつ、ナノ粒子集積後、テンプレートをフッ化水素で溶解して取り除く操作が必要となるため、操作が煩雑になりやすい。
 本発明は、上記事情に鑑みてなされたものであり、簡便な操作により製造することができ、かつ光増強効果に優れた、粒子集積体、光増強素子及び光化学反応を利用する装置を提供することを目的とする。また、本発明は、簡便な操作により実施することができる粒子集積体の製造方法を提供することを目的とする。
 上記目的を達成するため、本発明の第1の観点に係る粒子集積体は、金属コアが、分岐していてもよいフッ素化アルキレングリコール基、分岐していてもよいフッ素化アルキレン基又は分岐していてもよいフッ素化アザアルキレン基を含む第1のセグメントと、少なくとも1つの親水性基を有し前記第1のセグメントの主鎖の一端に結合している第2のセグメントと、前記第1のセグメントの主鎖の他端に直接又は間接に結合されかつ前記金属コアと結合可能な官能基と、を備える金属コアの表面修飾剤で修飾されている、ことを特徴とする自己組織化可能な粒子が複数集積されてなる中空粒子集積体である。
 前記金属コアの表面修飾剤は、一般式R-(R-O)-R-R-X
 〔式中、Rは水素原子、ヒドロキシル基、炭素数1~4のアルコキシル基又は炭素数1~4のアルキル基を表し、Rは炭素数2~6の分岐していてもよいアルキレン基を表し、Rは下記一般式(1)及び(2)
Figure JPOXMLDOC01-appb-C000003
からなる群より選択され、Rは炭素数3~18の直鎖アルキル、炭素数3~18の分岐アルキル又は炭素数3~18のアラルキルを表し、Xはチオール基、シアノ基、ジチオール基、アミノ基又はイソシアノ基を表し、Y及びYは水素原子又はフッ素原子を表しかつY及びYのうち少なくとも1つはフッ素原子であり、lは1~12の整数を表し、mは1~12の整数を表し、nは1~6の整数を表し、-(R-O)-は環状基を含む〕
 で表されてもよい。
 前記中空粒子集積体は、略球体であってもよい。
 前記略球体の直径は、30~400nmであってもよい。
 前記金属コアの表面における前記金属コアの表面修飾剤の被覆率は、20%以上であってもよい。
 前記金属コアは、金、白金、銀、銅、鉄又は半導体量子ドットを含んでいてもよい。
 本発明の第2の観点に係る粒子集積体の製造方法は、配位子を表面に有する金属コアと、分岐していてもよいフッ素化アルキレングリコール基、分岐していてもよいフッ素化アルキレン基又は分岐していてもよいフッ素化アザアルキレン基を含む第1のセグメントと、少なくとも1つの親水性基を有し前記第1のセグメントの主鎖の一端に結合している第2のセグメントと、前記第1のセグメントの主鎖の他端に直接又は間接に結合されかつ前記金属コアと結合可能な官能基と、を備える金属コアの表面修飾剤と、を溶媒中で混合させる工程を含む、ことを特徴とする。
 前記金属コアの表面修飾剤は、一般式R-(R-O)-R-R-X
 〔式中、Rは水素原子、ヒドロキシル基、炭素数1~4のアルコキシル基又は炭素数1~4のアルキル基を表し、Rは炭素数2~6の分岐していてもよいアルキレン基を表し、Rは下記一般式(1)及び(2)
Figure JPOXMLDOC01-appb-C000004
からなる群より選択され、Rは炭素数3~18の直鎖アルキル、炭素数3~18の分岐アルキル又は炭素数3~18のアラルキルを表し、Xはチオール基、シアノ基、ジチオール基、アミノ基又はイソシアノ基を表し、Y及びYは水素原子又はフッ素原子を表しかつY及びYのうち少なくとも1つはフッ素原子であり、lは1~12の整数を表し、mは1~12の整数を表し、nは1~6の整数を表し、-(R-O)-は環状基を含む〕
 で表されてもよい。
 前記粒子集積体の製造方法は、前記工程の後に、前記溶媒を置換溶媒に置換させる工程をさらに含んでいてもよい。
 本発明の第3の観点に係る光増強素子は、前記中空粒子集積体を含む。
 本発明の第4の観点に係る光化学反応を利用する装置は、前記光増強素子を備える。
 本発明によれば、簡便な操作により製造することができ、かつ光増強効果に優れた、中空粒子集積体、光増強素子及び光化学反応を利用する装置を提供することができる。また、本発明は、簡便な操作により実施することができる中空粒子集積体の製造方法を提供することができる。
本発明の実施例による粒子集積体の溶液中におけるサイズ分布を表したグラフである。 本発明の実施例による複数の粒子集積体の電子顕微鏡像(SEMイメージ)を示す図である。 本発明の実施例による1つの粒子集積体の電子顕微鏡像(SEMイメージ)を示す図である。 本発明の実施例による1つの粒子集積体の電子顕微鏡像(TEMイメージ)を示す図である。 本発明の実施例による複数の粒子集積体の電子顕微鏡像(TEMイメージ)を示す図である。 本発明の実施例による粒子集積体の吸光度を表すグラフ図である。 SAXS分析のフィッティングに用いられるコアーシェルモデルを示す図である。 SAXS分析におけるX線散乱強度を示すグラフ図である。 PEGセグメントを有しない金粒子の電子顕微鏡像を示す図である。 フッ素化セグメントを有しない金粒子の電子顕微鏡像を示す図である。 本発明の実施例による粒子集積体の基板上でのラマンスペクトルを表したグラフである。 本発明の実施例による粒子集積体の溶液中でのラマンスペクトルを表したグラフである。
 以下、本発明の実施形態について、詳細に説明する。
 まず、本発明による自己組織化可能な粒子及び金属コアの表面修飾剤について、詳細に説明する。
 本発明による自己組織化可能な粒子は、金属コアが、分岐していてもよいフッ素化アルキレングリコール基、分岐していてもよいフッ素化アルキレン基又は分岐していてもよいフッ素化アザアルキレン基を含む第1のセグメントと、少なくとも1つの親水性基を有し第1のセグメントの主鎖の一端に結合している第2のセグメントと、第1のセグメントの主鎖の他端に直接又は間接に結合されかつ前記金属コアと結合可能な官能基と、を備える金属コアの表面修飾剤で修飾されていることを特徴とする。
 金属コアとは、ナノメートルレベルの直径を有する金属ナノ粒子をいう。
 金属コアの構成元素としては、例えば、金、白金、銀、銅、鉄、半導体量子ドット、酸化亜鉛微粒子、酸化チタン微粒子等、又はこれらの混合物が用いられる。金属コアの構成元素としては、例えば、金、白金、銀、銅を用いることで、後述の局在表面プラズモン共鳴による光吸収を増強させる効果が高くなる。金属コアの構成元素に関しては、本発明の効果を奏する元素であれば、適宜選択され得る。
 金属コアの直径は、1~200nm程度であり、例えば、5nm、10nm、20nm、50nm、100nm、200nm等である。金属コアの直径については、例えば20nm~100nmにおいて、後述の局在表面プラズモン共鳴による光吸収を増強させる効果が高くなる。
 金属コアの表面修飾剤に備えられた第1のセグメントは、分岐していてもよいフッ素化アルキレングリコール基、分岐していてもよいフッ素化アルキレン基又は分岐していてもよいフッ素化アザアルキレン基を有する。
 フッ素化アルキレングリコール基としては、例えば、フッ素化テトラエチレングリコール(FTEG)、フッ素化トリエチレングリコール、フッ素化ジエチレングリコール、フッ素化モノエチレングリコール、フッ素化プロピレングリコール、フッ素化ブチレングリコール等が有する2個のヒドロキシル基のうちの1個のヒドロキシル基を除きかつ他方の1個のヒドロキシル基から水素原子1個を除いた基等が挙げられる。
 フッ素化アルキレングリコール基は、下記一般式で表されてもよい。この場合、Y及びYは水素原子又はフッ素原子を表しかつY及びYのうち少なくとも1つはフッ素原子であり、mは1~12の整数を表し、nは1~6の整数を表す。
Figure JPOXMLDOC01-appb-C000005
 フッ素化アルキレングリコール基としては、例えば、フッ素化テトラエチレングリコール(FTEG)、フッ素化トリエチレングリコール、又はフッ素化ジエチレングリコールが有する2個のヒドロキシル基のうちの1個のヒドロキシル基を除きかつ他方の1個のヒドロキシル基から水素原子1個を除いた基が好適に用いられ、例えば、フッ素化テトラエチレングリコール(FTEG)が有する2個のヒドロキシル基のうちの1個のヒドロキシル基を除きかつ他方の1個のヒドロキシル基から水素原子1個を除いた基がより好適に用いられる。
 フッ素化アルキレン基として、例えば炭素数2~12のアルキレン基の水素原子の一部又は全部がフッ素原子で置換された基等が挙げられる。フッ素化アルキレン基は、例えばエーテル結合を有していてもよい。エーテル結合を有するフッ素化アルキレン基として、例えば、1H,1H,4H,4H-ペルフルオロ-1,4-ブタンジオール、1H,1H,5H,5H-ペルフルオロ-1,5-ペンタンジオール、1H,1H,6H,6H-ペルフルオロ-1,6-ヘキサンジオール、1H,1H,8H,8H-ペルフルオロ-1,8-オクタンジオール、1H,1H,9H,9H-ペルフルオロ-1,9-ノナンジオール、1H,1H,10H,10H-ペルフルオロ-1,10-デカンジオール、1H,1H,12H,12H-ペルフルオロ-1,12-ドデカンジオール等が有する2個のヒドロキシル基のうちの1個のヒドロキシル基を除きかつ他方の1個のヒドロキシル基から水素原子1個を除いた基等が挙げられる。
 フッ素化アザアルキレン基としては、例えば、炭素数2~12のアザアルキレン基の水素原子の一部または全部がフッ素原子で置換された基等が挙げられる。例えば、-CH-CF-NH-,-CF-CF-NH-,-CF-CH-NH-,-CH-CF-NH-CF-CH-NH-,-CF-CF-NH-CF-CH-NH-,-CH-CF-NH-CH-CF-NH-等が用いられる。
 フッ素化アザアルキレン基は、下記一般式で表されてもよい。この場合、Y及びYは水素原子又はフッ素原子を表しかつY及びYのうち少なくとも1つはフッ素原子であり、mは1~12の整数を表し、nは1~6の整数を表す。
Figure JPOXMLDOC01-appb-C000006
 第1のセグメントが有する、分岐していてもよいフッ素化アルキレングリコール基、分岐していてもよいフッ素化アルキレン基、又は分岐していてもよいフッ素化アザアルキレン基に関しては、本発明の効果を奏する基であれば、適宜選択され得る。
 第1のセグメントは、分岐していてもよいフッ素化アルキレングリコール基、分岐していてもよいフッ素化アルキレン基、又は分岐していてもよいフッ素化アザアルキレン基を有することで、疎水性有機溶媒に親和性が高く、水に親和性が低い性質を有する。
 金属コアの表面修飾剤に備えられた第2のセグメントは、少なくとも1つの親水性基を有する。第2のセグメントは、親水性基として、例えば、ヒドロキシル基、エーテル基等を有する。エーテル基として、例えば、テトラエチレングリコール(PEG4)、トリエチレングリコール(PEG3)、ジエチレングリコール(PEG2)、エチレングリコール、ペンタエチレングリコール、ヘキサエチレングリコール、ノナエチレングリコール、ヘプタエチレングリコール、デカエチレングリコール、ドデカエチレングリコール等が有する2個のヒドロキシル基のうちの1個のヒドロキシル基から1個の水素原子を除いた基等が挙げられる。また、エーテル基として、例えば、12-クラウン4-エーテル、15-クラウン5-エーテル、18-クラウン6-エーテル等を含む基等を用いることができる。
 第2のセグメントは、一般式R-(R-O)-で表されてもよい。この場合、Rは水素原子、ヒドロキシル基、炭素数1~4のアルコキシル基又は炭素数1~4のアルキル基を表し、Rは炭素数2~6の分岐していてもよいアルキレン基を表し、lは1~12の整数を表し、-(R-O)-は環状基を含む。アルコキシル基は、例えば、メトキシ基、エトキシ基等を含む。
 第2のセグメントとしては、例えば、PEG4、PEG3、PEG2、エチレングリコール、ペンタエチレングリコール、ヘキサエチレングリコール、ノナエチレングリコール、ヘプタエチレングリコール、デカエチレングリコール、ドデカエチレングリコール等が有する2個のヒドロキシル基のうちの1個のヒドロキシル基から1個の水素原子を除いた基が好適に用いられ、例えば、PEG4、PEG3又はPEG2が有する2個のヒドロキシル基のうちの1個のヒドロキシル基から1個の水素原子を除いた基がより好適に用いられる。第2のセグメントが有する親水性基に関しては、本発明の効果を奏する基であれば、適宜選択され得る。
 第2のセグメントは、少なくとも1つの親水性基を有することで、疎水性有機溶媒に親和性が低く、水に親和性が高い性質を有する。
 第2のセグメントは、第1のセグメントの主鎖の一端に、例えば共有結合により結合している。
 金属コアの表面修飾剤に備えられた官能基は、金属コアと結合可能な官能基である。金属コアと結合可能な官能基であれば用いることができ、この官能基として、例えば、チオール基、シアノ基、ジチオール基、アミノ基又はイソシアノ基等が挙げられ、例えば、チオール基を好適に用いることができる。この官能基に関しては、本発明の効果を奏する基であれば、適宜選択され得る。
 金属コアの表面修飾剤に備えられた官能基は、第1のセグメントの主鎖の、第2のセグメントが結合された一端に対する他端に直接又は間接に結合される。
 官能基が第1のセグメントの主鎖の他端に直接に結合される場合とは、第1のセグメントの主鎖の他端に、官能基が、例えば共有結合により結合している場合をいう。
 官能基が第1のセグメントの主鎖の他端に間接に結合される場合とは、例えば、第1のセグメントの主鎖の他端に結合された第3のセグメントを介して、第1のセグメントが官能基に結合している場合をいう。この第3のセグメントには、例えば、炭素数3~18の直鎖アルキル、炭素数3~18の分岐アルキル又は炭素数3~18のアラルキル等が用いられる。この場合、第3のセグメントの主鎖の、第1のセグメントが結合された一端に対する他端に、官能基が、例えば共有結合により結合している。
 金属コアの表面修飾剤は、以上のように、前述の第1のセグメントと、前述の第2のセグメントと、前述の官能基とを備える。
 金属コアの表面修飾剤は、一般式R-(R-O)-R-R-Xで表されてもよく、式中、Rは水素原子、ヒドロキシル基、炭素数1~4のアルコキシル基又は炭素数1~4のアルキル基を表し、Rは炭素数2~6の分岐していてもよいアルキレン基を表し、Rは下記一般式(1)及び(2)
Figure JPOXMLDOC01-appb-C000007
からなる群より選択され、Rは炭素数3~18の直鎖アルキル、炭素数3~18の分岐アルキル又は炭素数3~18のアラルキルを表し、Xはチオール基、シアノ基、ジチオール基、アミノ基又はイソシアノ基を表し、Y及びYは水素原子又はフッ素原子を表しかつY及びYのうち少なくとも1つはフッ素原子であり、lは1~12の整数を表し、mは1~12の整数を表し、nは1~6の整数を表し、-(R-O)-は環状基を含む。
 金属コアの表面修飾剤が、一般式R-(R-O)-R-R-Xで表される場合、式中、R-(R-O)-は第2のセグメントを表し、Rは第1のセグメントを表し、Rは第3のセグメントを表し、Xは官能基を表す。
 金属コアの表面修飾剤として、例えば、14,14,16,16,17,17,19,19,20,20,22,22-ドデカフルオロ-35-メルカプト-3,6,9,12,15,18,21,24-オクタオキサペンタトリアコンタン-1-オール(PEG4-FTEG-C11-SH),11,11,13,13,14,14,16,16,17,17,19,19-ドデカフルオロ-32-メルカプト-3,6,9,12,15,18,21-ヘプタオキサドトリアコンタン-1-オール(PEG3-FTEG-C11-SH),8,8,10,10,11,11,13,13,14,14,16,16-ドデカフルオロ-29-メルカプト-3,6,9,12,15,18-ヘキサオキサノナコサン-1-オール(PEG2-FTEG-C11-SH)を好適に用いることができる。本明細書において、第1のセグメントをフッ素化セグメント、第2のセグメントをPEGセグメントと称する場合がある。各化合物の構造は下記化学式の通りである。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 本発明による自己組織化可能な粒子は、金属コアが、前述の金属コアの表面修飾剤で修飾されていることを特徴とする。ここでいう修飾とは、金属コアの表面修飾剤に備えられた官能基が、金属コアに、例えば配位結合することにより、表面修飾剤と金属コアとが結合されている状態をいう。この場合、金属コア表面における表面修飾剤の被覆率(表面修飾剤が結合している金属原子の数/金属コア表面に露出している金属原子の数×100)は、例えば金属コアが5nmの直径を有する金ナノ粒子の場合では、20%以上であればよく、例えば50~60%程度が好ましい。
 金属コア表面における表面修飾剤の被覆率は、ICP発光分析装置(例えば、ICPE-9000(島津製作所製))を用いて測定することができる。例えば、金属コアの構成元素として金、及び表面修飾剤としてPEG4-FTEG-C11-SH、PEG3-FTEG-C11-SH又はPEG2-FTEG-C11-SHを用いた場合、得られた中空粒子集積体(後述)を王水に溶解させ、高周波誘導結合プラズマにより燃焼させることで、金原子及び硫黄原子の成分比を求め、算出することができる。
 本発明による自己組織化可能な粒子の一例として、金ナノ粒子からなる金属コアが、FTEGが有する2個のヒドロキシル基のうちの1個のヒドロキシル基を除きかつ他方の1個のヒドロキシル基から水素原子1個を除いた基からなる第1のセグメントと、PEG4が有する2個のヒドロキシル基のうちの1個のヒドロキシル基から1個の水素原子を除いた基からなる第2のセグメントと、チオール基からなる官能基と、炭素数11のアルキル鎖からなる第3のドメインと、を備える、金属コアの表面修飾剤PEG4-FTEG-C11-SHで被覆された、フッ素化チオール提示金粒子を挙げることができる。フッ素化チオール提示金粒子は、下記の通り表される。
Figure JPOXMLDOC01-appb-C000011
 次に、本発明による粒子集積体について、詳細に説明する。
 本発明による粒子集積体は、前述の自己組織化可能な粒子が複数集積されてなる中空粒子集積体である。自己組織化可能な粒子は、3次元的に集積される。本発明による中空粒子集積体は、前述の自己組織化可能な粒子が、例えば、100~200個程度集積されてなる。
 本発明による中空粒子集積体は、内部に空間を有することで、溶媒中における中空粒子集積体の分散性を向上させることができる。また、中空粒子集積体内部の空間に薬剤等を封入することにより、中空粒子集積体を、後述の体内診断薬、ドラッグデリバリーシステム等に用いることができる。
 本発明による中空粒子集積体が中空体であることについては、例えば、電子顕微鏡(TEMイメージ)で中空粒子集積体の内部が透けて見えることを観察することにより、確認され得る。また、X線小角散乱(SAXS)分析において、中空粒子集積体のX線散乱強度の実測値とコアーシェルモデルのそれとを比較して、SAXS散乱プロファイルが一致するか否かを検討することによっても、確認され得る。本発明の効果を奏する確認方法であれば、適宜選択され得る。
 本発明による中空粒子集積体は、例えば、略球体状、略楕円球体状、ドーム状、平板状等に形成され得るが、好ましくは略球体状に形成される。
 本発明の中空粒子集積体の形状(略球体等)は、例えば、電子顕微鏡での観察(SEMイメージ又はTEMイメージ)により確認され得る。本発明の効果を奏する形状確認方法であれば、適宜選択され得る。
 本発明による中空粒子集積体が略球体である場合、その直径は、30~400nmである。用途により直径を適宜調整できるが、一般には30~200nmが好ましい。例えば、後述の光増強素子及び光センシング材料に使用する場合、光増強の観点から、その直径は、好ましくは50~200nm、より好ましくは80~120nmである。また、後述のドラッグデリバリーシステムに使用する場合、送達効率の観点から、その直径は、好ましくは30~200nm、より好ましくは50~100nmである。なお、中空粒子集積体(略球体)の平均直径は、例えば、70~80nmに分布がある場合、約60nmである。
 本発明の中空粒子集積体(略球体)の直径は、例えば、電子顕微鏡での観察(SEMイメージ又はTEMイメージ)により測定され得る。本発明の効果を奏する直径測定方法であれば、適宜選択され得る。
 本発明による中空粒子集積体(略球体)においては、複数の自己組織化可能な粒子が、略球体表面に、例えば、1層構造又は2層構造、好ましくは1層構造により配列しており、球体内部に球状の空間が存在する。この場合の球体内部の球状の空間の内径は、例えば、50~60nm程度となり得る。
 本発明による中空粒子集積体は、例えば、ドロップキャスト法によって固体基板上に展開することができる。本発明による中空粒子集積体は、例えば、固体基板上に展開された場合のような乾燥状態においても、中空粒子集積体が形成された状態を安定的に維持することができる。
 本発明による中空粒子集積体は、例えば、ポリマー中に包埋された状態でも、ポリマー中にて安定的かつ均一に分散された状態で存在することができる。該ポリマーとしては、例えば、エポキシ樹脂、アガロースゲル、メタクリレート樹脂、イソプロピルアクリルアミド等が用いられ得る。本発明の効果を奏するポリマーであれば、適宜選択され得る。なお、中空粒子集積体をポリマー中に包埋させる方法については、中空粒子集積体とポリマーとを混合し、熱硬化又は光硬化させる方法等が例示されるが、本発明の効果を奏する包埋方法であれば、適宜選択され得る。
 次に、本発明による粒子集積体の製造方法について詳細に説明する。
 本発明による粒子集積体の製造方法は、配位子を表面に有する金属コアと、前述の金属コアの表面修飾剤と、を溶媒中で混合させる工程(以下、混合工程という)を含む。
 金属コアが表面に有する配位子としては、例えばクエン酸、アスコルビン酸、タンニン酸等の有機酸、ポリビニルピロリドン、ポリビニルアルコール、セチルトリメチルアンモニウムブロミド等が挙げられる。例えば、配位子としてクエン酸、アスコルビン酸、タンニン酸を表面に有する金属コアを用いることで、後述の配位子交換反応及び自己組織化をより良好に進行させることができる。
 金属コアの構成材料としては、例えば、金、白金、銀、銅、鉄、半導体量子ドット、酸化亜鉛微粒子、酸化チタン微粒子等が挙げられる。
 配位子を表面に有する金属コアとして、例えば、市販の金クエン酸コロイド溶液等を用いてもよい。
 混合工程においては、配位子を表面に有する金属コアと、金属コアの表面修飾剤と、を溶媒中で混合させることで、金属コアの表面修飾剤に備えられる官能基を金属コアの表面に、例えば配位結合により結合させることができる。配位子を表面に有する金属コアと表面修飾剤とを溶媒中で混合することにより、例えば、金属コアの表面に存する配位子が、表面修飾剤に備えられる官能基に置き換わる反応(以下、配位子交換反応という)が起こる。このようにして、本発明による自己組織化可能な粒子を得ることができる。
 混合工程においては、粒子の自己組織化が起こっている。本明細書でいう自己組織化とは、外部からの誘導や支配によらずに、自然な秩序により粒子が組織化及び集合化することをいう。粒子の自己組織化は、前述の配位子交換反応と並行して進行する。本発明による粒子集積体は、粒子の自己組織化により形成される。自己組織化により、例えば、直径が均一な中空粒子集積体を得ることができる。
 混合工程における自己組織化には、金属コアの表面修飾剤に備えられる第1のセグメントの疎水性有機溶媒親和性と第2のセグメントの疎水性有機溶媒非親和性とのバランスが関与していると考えられる。また、自己組織化は、溶媒中における第2のセグメント同士の反発し合う作用により、自発的に起こると考えられる。さらに、例えば、前述の第3のセグメントを備える表面修飾剤を用いることで、第3のセグメントが、金属コアと第1のセグメントとの間のスペーサーとなり、自己組織化が良好に進行する場合がある。
 混合工程において、溶媒としては、例えば、エーテル結合を有する溶媒、SP値8~10(cal/ml)程度を有する溶媒等、又はこれらの混合物が用いられる。本明細書でいうSP値とは、Hildebrandらによる溶解性パラメーター(Solubility Parameter)を表す数値であり、凝集エネルギー密度(Cohesive Energy Density:1分子の単位面積当たりの蒸発エネルギー)を1/2乗したもので、単位体積当たりの極性の大きさを表す値である。
 エーテル結合を有する溶媒として、例えば、テトラヒドロフラン(THF)、ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジ-n-ブチルエーテル、メチル-tert-ブチル-エーテル、アニソール、1,4-ジオキサン、1,2-ジメトキシエタン、ビス(2-メトキシエチル)エーテル、テトラヒドロピラン等、又はこれらの混合物が挙げられる。
 SP値8~10(cal/ml)程度を有する溶媒として、例えば、シクロヘキサン、四塩化炭素、キシレン、酢酸エチル、トルエン、ベンゼン、クロロホルム、トリクロロエチレン、メチルエチルケトン、アセトン等、又はこれらの混合物が用いられる。
 混合工程で用いる溶媒としては、例えば、エーテル結合を有する溶媒を好適に用いることができ、例えば、THFをより好適に用いることができる。
 混合工程で用いられる溶媒に関しては、本発明の効果を奏する溶媒であれば、適宜選択され得る。
 混合工程における、金属コアと表面修飾剤との配合比は、例えば、金属コア:表面修飾剤=1:100,000~1:500,000(モルベース)が好ましい。この配合比の範囲においては、配位子交換反応及び自己組織化をより良好に進行させることができる。
 混合工程において、配位子を表面に有する金属コアと表面修飾剤とを溶媒中で混合させる際には、攪拌を行ってもよい。こうすることで、配位子交換反応及び自己組織化をより良好に進行させることができる。また、配位子を表面に有する金属コアと表面修飾剤とを溶媒中で混合させる際には、超音波処理を行ってもよい。超音波処理を行うことで、配位子を表面に有する金属コアの溶媒中における溶解性を向上させることができ、配位子交換反応及び自己組織化をより良好に進行させることができる。
 混合工程においては、金属コアの表面修飾剤として、例えば、異なる種類の表面修飾剤からなる混合物を用いてもよい。
 混合工程においては、粒子集積体を得ることができる。この工程において得られる粒子集積体には、自己組織化可能な粒子が含まれていてもよい。例えば、混合工程において配位子交換反応及び自己組織化が良好に進行した場合には、より多くの粒子集積体を得ることができる。
 本発明による粒子集積体の製造方法は、混合工程の後に、例えば、配位子を表面に有する金属コアと表面修飾剤との混合液を遠心分離し、上清を除去し、ペレットに溶媒を加え、撹拌、超音波処理を行い、再び遠心分離、上清除去するといった工程(以下、再分散工程という)をさらに含むことができる。再分散工程を行うことで、混合液中の夾雑物が取り除かれ、自己組織化を良好に進行させることができる場合がある。こうすることで、より多くの粒子集積体を得ることが可能となる。再分散工程で用いられる溶媒としては、混合工程で用いられる溶媒と同様のものを用いることができる。
 混合工程における一連の操作は、配位子を表面に有する金属コアと、表面修飾剤と、を溶媒中で単に混合させるだけで簡便に行うことができる。このように、本発明による粒子集積体の製造方法は、簡便な操作により実施することが可能である。
 なお、粒子集積体が形成されたことは、例えば、混合工程後の反応溶液の吸光度を測定し、混合工程前の反応溶液の吸光度又は粒子集積体を形成していない溶液の吸光度に比べて長波長側にシフトしていることを観察することで確認され得る。また、粒子集積体が形成されたことは、例えば、反応溶液の色の変化を観察することでも確認され得る。反応溶液の色は、混合工程前後で、例えば、赤色から紫色に変化する。
 本発明による粒子集積体の製造方法は、混合工程又は再分散工程の後に、溶媒を置換溶媒に置換させる工程をさらに含むことができる。置換溶媒については、混合工程又は再分散工程で用いる溶媒と同様のものを使用してもよく、混合工程又は再分散工程で用いる溶媒と異なるものを使用してもよい。置換溶媒としては、例えば、THF、酢酸エチル、ジクロロメタン、ブタノール、メタノール、アセトン、ジメチルホルムアミド(DMF)等を用いることができる。本発明による粒子集積体は、置換溶媒中においても、粒子集積体が形成された状態を安定的に維持することができる。本発明による粒子集積体は、混合工程又は再分散工程において溶媒中で形成された後に、置換溶媒に置換されても、粒子集積体が形成された状態を安定的に維持することができる。
 混合工程における配位子交換反応及び自己組織化の一例を下記に示す。配位子を表面に有する金属コアとして金クエン酸コロイド溶液、金属コアの表面修飾剤としてPEG4-FTEG-C11-SHを用いた一例である。
Figure JPOXMLDOC01-appb-C000012
 次に、本発明による光増強素子について詳細に説明する。
 本発明による光増強素子は、前述の中空粒子集積体を含む。
 本明細書でいう光増強素子とは、局在表面プラズモン共鳴による光吸収を増強させる素子をいう。局在表面プラズモン共鳴による光吸収とは、粒子及び粒子集積体が特定の波長の光を吸収することで、粒子及び粒子集積体に光のエネルギー又はそれにより生じる電場が集積することをいう。局在表面プラズモン共鳴による光吸収は、粒子においても生じるが、粒子が複数集積して集積体となることで、増強される場合がある。粒子が複数集積して集積体となることで、粒子間に隙間(ギャップ)が生じ、このギャップに光が集積するからである。局在表面プラズモン共鳴による光吸収を確認する方法として、例えば、ラマン分光法を用いることができる。ラマン分光法においては、局在表面プラズモン共鳴による電場増強を利用することで、ラマンスペクトルの測定がより容易となる。
 本発明による光増強素子には、例えば、光反応触媒が含まれる。この光反応触媒は、本発明による中空粒子集積体を含むため、光を集積させることができる。そのエネルギーにより、例えば、化学反応を進行させることができる。
 本発明による光増強素子には、例えば、体内診断薬が含まれる。この場合、例えば、まず、中空粒子集積体内部の空間に、光増強効果により可視化が可能となる薬剤等を封入する。次に、このような薬剤が封入された中空粒子集積体を患者に投与し、病変部(例えば、癌組織)に中空粒子集積体が集まった時点で、患者の体外から光を照射する。中空粒子集積体に封入された薬剤は、光増強効果により可視化が可能となり、患者の病変部について診断を行うことができる。
 本発明による光増強素子には、例えば、ドラッグデリバリーシステムが含まれる。この場合、例えば、まず、中空粒子集積体内部の空間に、薬剤等を封入する。次に、薬剤が封入された中空粒子集積体を患者に投与し、病変部(例えば、癌組織)に中空粒子集積体が集まった時点で中空粒子集積体を崩壊させるよう制御する。こうすることで、病変部において中空粒子集積体内部から薬剤を放出させることができ、病変部を治療することができる。
 一般的に、ドラッグデリバリーシステムに用いられる媒体の直径は、特に癌細胞を標的とした場合の送達効率の観点から、100nm以下であることが望ましい。本発明によれば、中空粒子集積体(略球体)の直径を50~100nmとすることができるため、より送達効率の高いドラッグデリバリーシステムを提供し得る。
 本発明による中空粒子集積体内部に薬剤等を内包させることで、より高いラマン活性散乱増強効果が得られる。したがって、例えば、中空粒子集積体に抗癌剤を内包させる(さらにラマンプローブを内包させてもよい)ことで、癌組織の検出感度を向上させることができ、また同時に、標的部位である癌組織において中空粒子集積体内部から抗癌剤を放出させることが可能である。このように、本発明による中空粒子集積体によれば、病変部の診断及び治療を同時に行い得る。
 本発明による光増強素子に含まれるものは、本発明の効果を奏する範囲において適宜選択される。
 次に、本発明による光化学反応を利用する装置について詳細に説明する。
 本発明による、光化学反応を利用する装置は、前述の光増強素子を備える。この装置には、例えば、光センシング装置、光センシング材料、太陽電池等が含まれる。
 本発明による光センシング装置は、前述の光増強素子を備えるため、光を集積することができる。このため、この光センシング装置においては、感度良くセンシングを行うことができる。また、例えば、中空粒子集積体内部の空間に封入された薬剤等をプローブとして、センシングを行うことも可能である。
 本発明による光センシング材料は、前述の光増強素子を備える。光増強素子は、粒子間の距離が変わることによって、色が変化する性質を有する。このため、例えば、ポリマーに、本発明による光センシング材料を混合(包埋)させることにより、温度変化、湿度変化等により引き起こされるポリマーの伸縮、ひずみ等を、色の変化により検出することが可能である。また、本発明による光センシング材料は、前述の通り、ポリマー中でも安定的かつ均一に分散された状態で存在し得る点においても有用である。
 本発明による太陽電池は、前述の光増強素子を備えるため、太陽光を集積させることができる。このため、この太陽電池は、効率よく光エネルギーを電力に変換することができる。
 本発明による光化学反応を利用する装置に含まれるものは、本発明の効果を奏する範囲において適宜選択される。
 以下、実施例を挙げて本発明を具体的に説明するが、実施例は、本発明を限定するものではない。
(金属コアの表面修飾剤であるPEG4-FTEG-C11-SH,PEG3-FTEG-C11-SH,PEG2-FTEG-C11-SHの合成)
(A)10-ウンデセン-1-トシラート(C11-OTs)の合成
 C11-OTsは以下の通り合成された。
Figure JPOXMLDOC01-appb-C000013
 300mL三角フラスコ内で、10-ウンデセン-1-オール5.0g(29.4mmol)をジクロロメタン20mLに溶解させた。これを0℃に冷却後、撹拌しながら、トリエチルアミン8.14mL(58.8mmol)、p-トルエンスルホニルクロリド(p-TsCl)6.73g(35.3mmol)、及びトリメチルアンモニウムクロリド(MeN・HCl)0.56g(58.8mmol)をジクロロメタン10mLに溶解させた溶液を滴下した。混合液を室温で2時間撹拌した後、クロロホルム10mLを加えて希釈した。飽和食塩水約10mLで2回洗浄した後、有機層を硫酸ナトリウムで乾燥させ、減圧濃縮した。その後、シリカゲルカラムクロマトグラフィー(展開;ヘキサン→ヘキサン:クロロホルム=1:1)による精製を行い、透明な液体状のC11-OTs(7.49g,23.23mmol,79%)を得た。得られた化合物のH-NMRスペクトルデータ(600MHz,CDCl3)は、δ/ppm=1.21-1.37(br,12H,alkyl chain),1.59-1.65(br,2H,alkyl chain),2.03(q,2H,J=7.44Hz,=CH-CH-CH),2.45(s,3H,CH methyl),4.01(t,2H,J=13.08,-CH-O-),4.92-5.01(br,2H,olefin),5.76-5.84(br,1H,olefin),7.34(d,2H,J=8.22Hz,phenyl),7.79(d,2H,J=8.22Hz,phenyl)であった。
(B)2-(2-(2-(2-ヒドロキシエトキシ)エトキシ)エトキシ)エチル4-メチルベンゼンスルホネート(PEG4-OTs),2-(2-(2-ヒドロキシエトキシ)エトキシ)エチル 4-メチルベンゼンスルホネート(PEG3-OTs),2-(2-ヒドロキシエトキシ)エチル 4-メチルベンゼンスルホネート(PEG2-OTs)の合成
 PEG4-OTs、PEG3-OTs、PEG2-OTsは以下の通り合成された。
Figure JPOXMLDOC01-appb-C000014
 300mLフラスコ内で、テトラエチレングリコール10g(51.5mmol)をジクロロメタン20mLに溶解させた。これを0℃に冷却後、撹拌しながら、トリエチルアミン(EtN)7.12mL(51.5mmol)、p-トルエンスルホニルクロリド(p-TsCl)9.82g(51.5mmol)、及びトリメチルアンモニウムクロリド(MeN・HCl)0.98g(10.3mmol)をジクロロメタン30mLに溶解させた溶液を滴下した。混合液を室温で2時間撹拌した後、クロロホルム10mLを加えて希釈した。飽和食塩水約10mLで2回洗浄した後、有機層を硫酸ナトリウムで乾燥させ、減圧濃縮した。その後、シリカゲルカラムクロマトグラフィー(展開;クロロホルム)による精製を行い、黄色の液体状のPEG4-OTs(10.05g,23.0mmol,45%)を得た。得られた化合物のH-NMRスペクトルデータ(400MHz,CDCl3)は、δ/ppm=2.44(s,3H,methyl),3.56-3.70(br,14H,-CH-O-),4.15(t,2H,J=9.48Hz,-CH-O-S),7.34(d,2H,J=8.21Hz,phenyl),7.79(d,2H,J=8.21Hz,phenyl)であった。
 テトラエチレングリコールの代わりにトリエチレングリコールジ及びエチレングリコールを用いて上述と同様に合成することにより、PEG3-OTs(7.94g,26.1mmol,39%)及びPEG2-OTs(9.71g,36.9mmol,32%)を得た。得られたPEG3-OTsのH-NMRスペクトルデータ(400MHz,CDCl3)は、δ/ppm=2.44(s,3H,methyl),3.53-3.58(br,6H,-CH-O-),3.68(t,4H,J=9.2Hz,-CH-O-),4.16(t,2H,J=8.68Hz,-CH-O-S),7.35(d,2H,J=7.32Hz,phenyl),7.79(d,2H,J=7.32Hz,phenyl)であり、MALDI-TOF MS分析の結果(m/z)は、[M+H]calcd for C13H21O6S,305.36;found,305.2,[M+Na]calcd for C13H20O6SNa,327.35;found,327.20,[M+K]calcd for C13H20O6K,343.46;found,343.1であった。得られたPEG2-OTsのH-NMRスペクトルデータ(400MHz,CDCl3)は、δ/ppm=2.45(s,3H,methyl),3.54-3.71(br,6H,-CH-O-),4.20(t,2H,J=8.60Hz,-CH-O-S),7.35(d,2H,J=7.66Hz,phenyl),7.80(d,2H,J=7.66Hz,phenyl)であり、MALDI-TOF MS分析の結果(m/z)は、[M+H]calcd for C11H17O5S,261.31;found,261.5,[M+Na]calcd for C11H16O5SNa,283.3;found, 283.6であった。
(C)2,2,4,4,5,5,7,7,8,8,10,10-ドデカフルオロ-3,6,9,12-テトラオキサトリコス-22-エン-1-オール(FTEG-C11)の合成
 FTEG-C11は、以下の通り合成された。
Figure JPOXMLDOC01-appb-C000015
 300mLナスフラスコ内で、フッ素化テトラエチレングリコール(FTEG)7.59g(18.5mmol)と炭酸カリウム7.59g(13.9mmol)とをN,N-ジメチルホルムアミド(DMF)5mLに溶解させた。これに、上述の通り得られたC11-OTs3.0g(9.25mmol)をDMF3mLに溶解させた溶液を撹拌しつつ滴下し、さらに80℃、窒素雰囲気下で14時間撹拌した。溶媒をロータリーエバポレーターで留去後、酢酸エチル30mLを加えて残渣を希釈し、15重量%の塩化アンモニウム水溶液20mLで洗浄した。有機層を硫酸ナトリウムで乾燥させ、減圧濃縮した。その後、シリカゲルカラムクロマトグラフィー(展開;クロロホルム:ヘキサン=1:2)による精製を行い、透明な液体状のFTEG-C11(3.39g,6.02mmol,64%)を得た。得られた化合物のH-NMRスペクトルデータ(400MHz,CDCl3)は、δ/ppm=1.21-1.41(br,12H,alkyl chain),1.55-1.62(br,2H,),2.03(q,2H,J=7.64Hz,=CH-CH-CH),3.60(t,2H,J=6.64Hz,CH-CH-O-),3.81(t,2H,J=9.68Hz,-CF-CH-O-),3.93(q,2H,J=9.60,HO-CH-CF),4.92-5.01(br,2H,olefin),5.78-5.85(br,1H,olefin)であった。
(D)14,14,16,16,17,17,19,19,20,20,22,22-ドデカフルオロ-3,6,9,12,15,18,21,24-オクタオキサトリコス-34-エン-1-オール(PEG4-FTEG-C11),11,11,13,13,14,14,16,16,17,17,19,19-ドデカフルオロ-3,6,9,12,15,18,21-ヘプタオキサドトリアコント-31-エン-1-オール(PEG3-FTEG-C11),8,8,10,10,11,11,13,13,14,14,16,16-ドデカフルオロ-3,6,9,12,15,18-ヘキサオキサノナコス-28-エン-1-オール(PEG2-FTEG-C11)の合成
 PEG4-FTEG-C11、PEG3-FTEG-C11、PEG2-FTEG-C11は以下の通り合成された。
Figure JPOXMLDOC01-appb-C000016
 100mLナスフラスコに、上述の通り得られたFTEG-C11を2.12g(3.77mmol)を入れ、フラスコ内を窒素置換した。これに、ジオキサン(脱水グレード)15mLを加え、よく撹拌しながらさらに60%水素化ナトリウム(NaH)226mg(5.66mmol)を加え、20分間撹拌した。白色の発泡が収まった後、これに、上述の通り得られたPEG4-OTs3.3g(9.05mmol)をジオキサン4mLに溶解させた溶液を滴下し、さらに50℃で一晩撹拌した。メタノールを少量加え、溶媒をロータリーエバポレーターで留去した。残渣をクロロホルム30mLに溶解し、飽和食塩水約10mLで3回洗浄した後、有機層を硫酸ナトリウムで乾燥させ、減圧濃縮した。その後シリカゲルカラムクロマトグラフィー(展開;クロロホルム:ヘキサン=4:1→クロロホルム:酢酸エチル=2:1)による精製を行い、透明な液体状のPEG4-FTEG-C11(1.22g,1.65mmol,44%)を得た。得られた化合物のH-NMRスペクトルデータ(400MHz,CDCl3)は、δ/ppm=1.22-1.30(br,10H,alkyl chain),1.53-1.63(br,5H,),2.05(q,2H,J=7.76Hz,CH=CH-CH-),3.58-3.94(br,24H),4.92-5.01(br,2H,olefin),5.76-5.84(br,1H,olefin)であった。また、MALDI-TOF MS分析の結果(m/z)は、[M+Na]calcd for C27H42F12O9Na,761.50;found,761.3129,[M+K]calcd for C27H42F12O9K,777.70;found,777.2949であった。
 PEG4-OTsの代わりに、上述の通り得られたPEG3-OTs及びPEG2-OTsを用いて上述と同様に合成することにより、PEG3-FTEG-C11(1.19g,1.71mmol,45%)及びPEG2-FTEG-C11(490mg,0.75mmol,28%)を得た。得られたPEG3-FTEG-C11のH-NMRスペクトルデータ(600MHz,CDCl3)は、δ/ppm=1.25-1.41(br,13H,alkyl chain),1.58-1.60(br,2H,alkyl chain),2.04(q,2H,J=7.56Hz,=CH-CH-CH),3.59-3.94(br,18H,-CH-O-),4.91-5.00(br,2H,olefin),5.78-5.83(br,1H,olefin)であり、MALDI-TOF MS分析の結果(m/z)は、[M+H]calcd for C25H39F12O8,695.55;found,695.4,[M+Na] calcd for C25H38F12O8Na,717.54;found,717.4,[M+K]calcd for C25H38F12O8K,733.65;found, 733.4であった。得られたPEG2-FTEG-C11のH-NMRスペクトルデータ(400MHz,CDCl3)は、δ/ppm=1.24-1.41(br,13H,alkyl chain),1.55-1.60(br,2H,alkyl chain),2.04(q,2H,J=7.68Hz,=CH-CH-CH),3.58-3.83(br,12H,-CH-O-),3.91(t,2H,J=9.724,-CF-CH-O-),4.91-5.00(br,2H,olefin),5.78-5.83(br,1H,olefin)であった。
(E)14,14,16,16,17,17,19,19,20,20,22,22-ドデカフルオロ-3,6,9,12,15,18,21,24-オクタオキサトリコス-1-オール-35-イル エタンエチオナート(PEG4-FTEG-C11-SOMe),11,11,13,13,14,14,16,16,17,17,19,19-ドデカフルオロ-3,6,9,12,15,18,21-ヘプタオキサドトリアコント-1-オール-32-イル エタンエチオナート(PEG3-FTEG-C11-SOMe),8,8,10,10,11,11,13,13,14,14,16,16-ドデカフルオロ-3,6,9,12,15,18-ヘキサオキサノナコス-1-オール-29-イル エタンエチオナート(PEG2-FTEG-C11-SOMe)の合成
 PEG4-FTEG-C11-SOMe、PEG3-FTEG-C11-SOMe、PEG2-FTEG-C11-SOMeは以下の通り合成された。
 100mLナスフラスコ内で、上述の通り得られた、PEG4-FTEG-C11 1.22g(1.65mmol)をTHF(脱水グレード,安定剤無添加)15mLに溶解した。これに、チオ酢酸(AcSH)587μl(8.26mmol)を撹拌しながら加え、さらに2,2’-アゾビスイソブチロニトリル(AIBN)271mg(1.65mmol)を加えた。この溶液を100℃で45分間撹拌しつつ還流した。その後、メタノール10mLを加えて希釈し、溶媒をロータリーエバポレーターで留去後、減圧濃縮した。残渣を、シリカゲルカラムクロマトグラフィー(展開;クロロホルムのみ→クロロホルム:酢酸エチル=2:1)により精製し、透明な液体状のPEG4-FTEG-C11-SOMe(1.10g,1.35mmol,82%)を得た。得られた化合物のH-NMRスペクトルデータ(400MHz,CDCl3)は、δ/ppm=1.24-1.32(br,15H,alkyl chain),1.50-1.69(br,3H),2.04(s,1H),2.32(s,3H,CHCO-),2.86(t,2H,J=7.2Hz,-CH-SAc),3.58-3.83(br,21H),3.92(t,2H,J=8.0Hz,-CF-CH-O-)であった。また、得られた化合物のMALDI-TOF MS分析の結果(m/z)は、[M+Na]calcd for C29H46F12O10SNa,837.71;found,837.0123であった。
 PEG4-FTEG-C11の代わりに、上述の通り得られたPEG3-FTEG-C11及びPEG2-FTEG-C11を用いて上述と同様に合成することにより、PEG3-FTEG-C11-SOMe 0.99g(1.28mmol,77%)及びPEG2-FTEG-C11-SOMe 520mg(0.71mmol,97%)を得た。
(F)PEG4-FTEG-C11-SH,PEG3-FTEG-C11-SH,PEG2-FTEG-C11-SHの合成
 PEG4-FTEG-C11-SH,PEG3-FTEG-C11-SH,PEG2-FTEG-C11-SHは以下の通り合成された。
Figure JPOXMLDOC01-appb-C000018
 100mLナスフラスコ内で、上述の通り得られたPEG4-FTEG-C11-SOMe1.10g(1.35mmol)をメタノール(脱水グレード)20mLに撹拌しながら溶解させた。これに、28%ナトリウムメトキシド(NaOMe)をメタノールに溶解させた溶液26μL(0.135mmol)を加え、50℃で2時間撹拌した。その後、メタノールで洗浄したDowex(50WX 8-200,ダウケミカル社製)を約1g加え、溶媒をロータリーエバポレーターで留去後、減圧濃縮した。クロロホルムで溶解した残渣を、PLCプレート(PLCガラスプレート シリカゲル60F254,0.5mm,Merck&Co.,Inc.,USA)に展開して精製を行い(展開溶媒;酢酸エチル+メタノール)、白色の結晶状のPEG4-FTEG-C11-SH460mg(0.59mmol,44%)を得た。得られた化合物のH-NMRスペクトルデータ(400MHz,CDCl3)は、δ/ppm=1.27-1.35(br,16H,alkyl chain),1.57-1.60(br,4H,alkyl chain),3.58-3.83(br,22H),3.93(t,2H,J=10Hz)であった。また、得られた化合物のMALDI-TOF MS分析(m/z)の結果は、[M+]calcd for C27H44F12O9S,772.68;found,772.45,[M+Na]calcd for C27H44F12NaO9S,795.67;found, 794.51であった。
 PEG4-FTEG-C11-SOMeの代わりに、PEG3-FTEG-C11-SOMe及びPEG2-FTEG-C11-SOMeを用いて上記と同様に合成することにより、PEG3-FTEG-C11-SH 360mg(0.494mmol,39%),又はPEG2-FTEG-C11-SH 140mg(0.204mmol,29%)を得た。
 以上のようにして、金属コアの表面修飾剤であるPEG4-FTEG-C11-SH,PEG3-FTEG-C11-SH,PEG2-FTEG-C11-SHを得た。各化合物の構造式は下記の通りである。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
(配位子交換反応及び自己組織化)
 1.5mLマイクロチューブに、5nm金クエン酸コロイド溶液(Gold Colloid 5nm,British BioCell International社製)1mL(17pmol/mL)を入れ、10,000rpm、4℃で90分間遠心分離を行った。上清をマイクロピペッターを用いて取り除き、約100倍に濃縮された金クエン酸コロイド溶液を調製した。別の1.5mLマイクロチューブに、上述の通り得られたPEG4-FTEG-C11-SH(メタノール中に溶解)2μmolを入れ、メタノールを風乾させた。それに、THF490μLを加えて、PEG4-FTEG-C11-SHを溶解させた。PEG4-FTEG-C11-SHが入っている1.5mLマイクロチューブを水槽中で超音波(使用機器:超音波洗浄機 1510J-MT、ヤマト科学株式会社製)に暴露させつつ、上述の通り調製された金クエン酸コロイド溶液10μLを滴下した。さらに20分間、上述と同様に超音波に暴露させた後、2日間常温で撹拌した。このとき、反応溶液内の金濃度は濃縮前の金クエン酸コロイド溶液の濃度とほぼ同じ値(=17pmol/mL)であり、PEG4-FTEG-C11-SHの分子数は溶液内金微粒子の全結合サイト数に対して約75倍であった。なお、この際、溶液の色は、赤色から紫色に変化した。その後、10,000rpm、4℃で5分間遠心分離を行った。マイクロピペッターで上清を除いた後、ペレットにTHF500μLを加えた。再び遠心分離を行い、上清を除いた。ペレットにTHF200μLを加え、上述と同様に超音波に暴露させた。このようにして、フッ素化チオール(PEG4)提示金粒子集積体THF溶液を得た。
 同様に、PEG4-FTEG-C11-SHの代わりに上述の通り得られたPEG3-FTEG-C11-SH及びPEG2-FTEG-C11-SHを用いて上述と同様に合成することにより、フッ素化チオール(PEG3)提示金粒子集積体THF溶液及びフッ素化チオール(PEG2)提示金粒子集積体THF溶液を得た。
(溶液中のフッ素化チオール提示金粒子集積体のサイズ分布)
 上述の通り得られたフッ素化チオール(PEG4)提示金粒子集積体THF溶液、フッ素化チオール(PEG3)提示金粒子集積体THF溶液、及びフッ素化チオール(PEG2)提示金粒子集積体THF溶液を用いて、各粒子集積体の溶液中における動的光散乱(Dynamic Light Scattering:DLS)を測定した。Delsa Nano HC(ベックマンコールター社製)を用いて、THF中、摂氏20度で測定を行った。結果を図1に示す。DLSピーク値は、各集積体において50~70nm程度であることが確認された。
(フッ素化チオール提示金粒子集積体の観察)
 上述の通り得られたフッ素化チオール(PEG4)提示金粒子集積体THF溶液をTEM電子顕微鏡用グリッドメッシュ(エラスチックカーボン支持膜、STEM100Cuグリッド、グリッドピッチ100μm)に展開し、風乾させた。電子顕微鏡(HD-2000、日立製作所社製)により加速電圧200kVでフッ素化チオール(PEG4)提示金粒子集積体を観察した。結果を図2A-Dに示す。図2BのSEMイメージにより、球形構造体表面が粒子で覆われていることが確認され、3次元的な球形構造体が形成されていることが確認された。また、図2CのTEMイメージにより、球形構造体の内部が透けて見えていることが確認され、前述のSEMイメージの結果と併せることで、中空体状の球形構造体が形成されていることが確認された。また、この球形構造体の直径は、約100nmであった。さらに、図2DのTEMイメージにより、直径200~400nm程度の球形構造体の存在も確認された。このことから、フッ素化チオール(PEG4)提示粒子集積体が、3次元的な球形構造体を形成していることが、乾燥状態において確認された。
(フッ素化チオール提示金粒子集積体THF溶液の吸光度測定)
 溶液中において粒子集積体が形成されているか確認するために、上述の通り得られたフッ素化チオール(PEG4)提示金粒子集積体THF溶液、フッ素化チオール(PEG3)提示金粒子集積体THF溶液、フッ素化チオール(PEG2)提示金粒子集積体THF溶液の吸光度、及びコントロールとして作成したドデカンチオール提示金粒子THF溶液の吸光度を、各溶液でほぼ同一の金ナノ粒子濃度において、紫外可視分光光度計(UV-1650PC、島津製作所社製)を用いて測定した。なお、ドデカンチオール提示金粒子は、フッ素化セグメント及びPEGセグメントを有しない。結果を図3及び表1に示す。ドデカンチオール提示金粒子THF溶液の吸光度に比して、フッ素化チオール(PEG4)提示金粒子集積体THF溶液、フッ素化チオール(PEG3)提示金粒子集積体THF溶液、及びフッ素化チオール(PEG2)提示金粒子集積体THF溶液の吸光度は、長波長側にシフトしていることが確認された。このことから、溶液中において粒子集積体が形成されていることが確認された。
Figure JPOXMLDOC01-appb-T000022
(フッ素化チオール提示金粒子集積体の被覆率測定)
 上述の通り得られたフッ素化チオール(PEG2)提示金粒子集積体THF溶液を用いて、金属コアである金粒子表面におけるPEG2-FTEG-C11-SHの被覆率を、測定した。測定には、ICP発光分析装置(ICPE-9000、島津製作所製)を用いた。
 上述の通り得られたフッ素化チオール(PEG2)提示金粒子集積体THF溶液を王水に溶解させ、高周波誘導結合プラズマにより燃焼させることで、金原子及び硫黄原子の成分比を求めた。該成分比から、表面に提示されている金原子の原子数に基づき、被覆率を算出した。その結果、被覆率は58.1%であった。
(X線小角散乱(SAXS)分析)
 前述で得られた粒子集積体が中空体であることをさらに確認するために、上述の通り得られたフッ素化チオール(PEG2)提示金粒子集積体THF溶液を用いて、X線小角散乱(SAXS:Small-angle X-ray scattering)分析を行った。具体的には、該粒子集積体のX線散乱強度の実測値と、コアーシェルモデルのX線散乱強度(フィッティング)とを比較して、SAXS散乱プロファイルが一致するか否かを検討した。該粒子集積体のX線散乱強度の測定には、X-ray diffractometer NANO-Viewer(リガク社製)を用いた(測定条件;カメラ長:600mm、露光時間:3時間、検出:イメージングプレート、X線波長:0.1542nm)。また、分析には、解析ソフトであるNANO-Solver(Ver3.4)(リガク社製)を用いた。
 以下、SAXS分析について説明する。X線散乱強度(I(q))は、散乱体の形状及びサイズ(形状因子(F(q))を反映する)並びに散乱体間距離(構造因子(S(q))を反映する)に依存し、下記式で表される。
Figure JPOXMLDOC01-appb-M000023
(q:散乱ベクトル、λ:X線波長、θ:散乱ビームと入射ビームとの間の角度の半分)
 この場合、形状因子のみが考慮される。散乱体モデルがコアーシェルモデルの場合、形状因子は下記式で表される。
Figure JPOXMLDOC01-appb-M000024
(R:シェルの内側半径、d:シェルの厚さ、ρ:シェル外側の密度、ρ:シェルの密度、ρ:シェル内側の密度(図4))
 各パラメータは、以下の通り固定された;ρ=0.89g/cm(THF)、ρ=19.32g/cm(Au)、ρ=0.89g/cm(THF)、d=10nm。
 該粒子集積体のX線散乱強度の実測値とフィッティングとを比較した曲線を図5に示す。実測値の曲線とフィッティングの曲線とは、ほぼ一致していた。このことから、該粒子集積体は中空体であることが確認された。
〔比較例〕
 PEGセグメントを有しないFTEG-C11-SH、又はフッ素化セグメントを有しないPEG4-C11-SHと5nm金クエン酸コロイド溶液とを各々混合して、上述と同様に配位子交換反応を行い、PEGセグメントを有しない金粒子溶液又はフッ素化セグメントを有しない金粒子溶液を得た。PEGセグメントを有しない金粒子及びフッ素化セグメントを有しない金粒子は、各々下記に示される。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 電子顕微鏡を用いて前述と同様に各々の粒子を観察した。結果を図6A及び6Bに示す。図6Aは、PEGセグメントを有しない金粒子の電子顕微鏡像、図6Bはフッ素化セグメントを有しない金粒子の電子顕微鏡像である。両粒子とも、粒子集積体を形成していないことが確認された。このことから、フッ素化セグメント(第1のセグメント)とPEGセグメント(第2のセグメント)とを備える表面修飾剤を用いることで、粒子の自己組織化が実現し、粒子集積体を得ることが可能であることが明らかとなった。
 本発明による中空粒子集積体の、基板上におけるラマン活性散乱増強作用について検討した。
 実施例1で得られたフッ素化チオール(PEG2)提示金粒子集積体THF溶液80μLにクリスタルバイオレット(CV)10μLを加え、THFに溶解させた。溶解1時間後、この溶解液をシリコン基板(ケイ素/ウェ-ハφ100×0.5mm,Low,111,N-type、ニラコ社製)上に滴下し、溶媒を乾燥させたものを用いて、励起波長532nm、対物レンズ50倍、レーザー出力10%、積算時間5秒にてラマンシフトを測定した(測定装置:顕微ラマンマイクロスコープシステムinVia Reflex、レニショー社製)。コントロールとして、実施例1で用いた5nm金クエン酸コロイド溶液及びCVを上述と同様のシリコン基板上に滴下したものを用いて、ラマンシフトを測定した。その結果、図7に示されるように、5nm金クエン酸コロイド溶液ではCV由来のピークが検出されなかったが、フッ素化チオール(PEG2)提示金粒子集積体THF溶液では、CV由来のピークが検出された。このことから、フッ素化チオール(PEG2)提示金粒子集積体は、ラマン散乱活性を増強させることが確認された。つまり、フッ素化チオール(PEG2)提示金粒子集積体は、基板上に展開された場合において、局在表面プラズモン共鳴による光吸収を増強させることが明らかとなった。
 本発明による中空粒子集積体の、溶液中におけるラマン活性散乱増強作用について検討した。
 以下のサンプル(a)~(d)を各々調製した。
(a):THFにCVのみを添加した(CV濃度:1×10-5μM)。
(b):実施例1で得られたドデカンチオール提示金粒子THF溶液にCVを添加した(CV濃度:1×10-5μM)。
(c):実施例1で得られたフッ素化チオール(PEG2)提示金粒子集積体THF溶液にCVを添加した(CV濃度:1×10-5μM)。
(d):フッ素化チオール(PEG2)提示金粒子集積体の中空部分にCVを内包させた、CV内包型粒子集積体を調製した。具体的には、実施例1(配位子交換反応及び自己組織化)で用いるTHFを、上述の(a)に換える以外は実施例1と同様にして、CV内包型粒子集積体を得た。
 上記のサンプル(a)~(d)を用いて、THF溶液中のCV(1×10-5μM)のラマンシフトを、励起波長532nm、対物レンズ20倍、レーザー出力5%、積算時間10秒にて測定した(測定装置:顕微ラマンマイクロスコープシステムinVia Reflex、レニショー社製)。結果を図8に示す。図8において、丸印は、CV由来のラマンシグナルを表す。(c)及び(d)においては、(a)及び(b)に比して、ラマン散乱活性が増強された。また、(d)では(c)に比して、さらにラマン散乱活性が増強された。
 以上より、フッ素化チオール(PEG2)提示金粒子集積体は、溶液中に存在する場合において、局在表面プラズモン共鳴による光吸収を増強させることが明らかとなった。また、フッ素化チオール(PEG2)提示金粒子集積体の中空部分にCVを内包させることで、より高い光吸収増強効果が得られることが示された。
 フッ素化チオール(PEG4)提示金粒子集積体を各溶媒に置換した場合の球形構造体形成について比較した。
 実施例1で得られたフッ素化チオール(PEG4)提示金粒子集積体THF溶液について、10,000rpm、4℃で5分間遠心分離を行った。マイクロピペッターで上清を除いた後、ペレットに酢酸エチル、ジクロロメタン、アセトン、ブタノール、メタノール、ジメチルホルムアミド(DMF)の各置換溶媒を加え、上述と同様に約10秒間超音波に暴露させることで各置換溶媒に置換した。これを上述と同様のTEM電子顕微鏡用グリッドメッシュに滴下し、半日以上乾燥させ、上述と同様に電子顕微鏡にて観察した。結果を表2に示す。アセトン及びDMFでは、球形構造体のものと球形構造体が崩れたものとが混在しており、視野内において球形構造体のものが全体の50%程度みられた。酢酸エチル、ジクロロメタン、ブタノール、メタノールでは、球形構造体が良好に維持されていた。このことから、本発明による中空粒子集積体は、置換溶媒中においても、粒子集積体が形成された状態を安定的に維持できることが明らかとなった。
Figure JPOXMLDOC01-appb-T000027
 エポキシ樹脂に包埋されたフッ素化チオール(PEG2)提示金粒子集積体の安定性を評価した。
 実施例1で得られたフッ素化チオール(PEG2)提示金粒子集積体THF溶液50μLとエポキシ樹脂(Epok812、応研商事社)450μLとを混合し、60℃で12時間硬化させることにより、エポキシ樹脂にフッ素化チオール(PEG2)提示金粒子集積体を包埋させた。硬化反応前のエポキシ樹脂の色は紫色であったが、硬化反応後1カ月間室温にて置かれたエポキシ樹脂の色は、依然として紫色であった。
 以上より、フッ素化チオール(PEG2)提示金粒子集積体は、エポキシ樹脂に包埋された状態においても、粒子集積体が形成された状態を安定的に維持できること、及びエポキシ樹脂中にて均一に分布していることが明らかとなった。これらのことから、この樹脂を、光センシング材料として利用できることが考えられる。
 以上説明したように、本発明による中空粒子集積体、光増強素子及び光化学反応を利用する装置は、簡便な操作により製造することができ、かつ光増強効果に優れる。また、本発明による中空粒子集積体の製造方法は、簡便な操作により実施することができる。
 なお、本発明は、本発明の広義の精神及び範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
 本発明は、2011年2月22日に出願された日本国特許出願2011-036468号に基づく。本明細書中に日本国特許出願2011-036468号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。

Claims (11)

  1.  金属コアが、分岐していてもよいフッ素化アルキレングリコール基、分岐していてもよいフッ素化アルキレン基又は分岐していてもよいフッ素化アザアルキレン基を含む第1のセグメントと、少なくとも1つの親水性基を有し前記第1のセグメントの主鎖の一端に結合している第2のセグメントと、前記第1のセグメントの主鎖の他端に直接又は間接に結合されかつ前記金属コアと結合可能な官能基と、を備える金属コアの表面修飾剤で修飾されている、
     ことを特徴とする自己組織化可能な粒子が複数集積されてなる中空粒子集積体。
  2.  前記金属コアの表面修飾剤が、
     一般式R-(R-O)-R-R-X
     〔式中、Rは水素原子、ヒドロキシル基、炭素数1~4のアルコキシル基又は炭素数1~4のアルキル基を表し、Rは炭素数2~6の分岐していてもよいアルキレン基を表し、Rは下記一般式(1)及び(2)
    Figure JPOXMLDOC01-appb-C000001
    からなる群より選択され、Rは炭素数3~18の直鎖アルキル、炭素数3~18の分岐アルキル又は炭素数3~18のアラルキルを表し、Xはチオール基、シアノ基、ジチオール基、アミノ基又はイソシアノ基を表し、Y及びYは水素原子又はフッ素原子を表しかつY及びYのうち少なくとも1つはフッ素原子であり、lは1~12の整数を表し、mは1~12の整数を表し、nは1~6の整数を表し、-(R-O)-は環状基を含む〕
     で表される、
     ことを特徴とする請求項1に記載の中空粒子集積体。
  3.  略球体である、
     ことを特徴とする請求項1又は2に記載の中空粒子集積体。
  4.  前記略球体の直径は、30~400nmである、
     ことを特徴とする請求項3に記載の中空粒子集積体。
  5.  前記金属コアの表面における前記金属コアの表面修飾剤の被覆率は、20%以上である、
     ことを特徴とする請求項1乃至4のいずれか1項に記載の中空粒子集積体。
  6.  前記金属コアは、金、白金、銀、銅、鉄又は半導体量子ドットを含む、
     ことを特徴とする請求項1乃至5のいずれか1項に記載の中空粒子集積体。
  7.  配位子を表面に有する金属コアと、分岐していてもよいフッ素化アルキレングリコール基、分岐していてもよいフッ素化アルキレン基又は分岐していてもよいフッ素化アザアルキレン基を含む第1のセグメントと、少なくとも1つの親水性基を有し前記第1のセグメントの主鎖の一端に結合している第2のセグメントと、前記第1のセグメントの主鎖の他端に直接又は間接に結合されかつ前記金属コアと結合可能な官能基と、を備える金属コアの表面修飾剤と、を溶媒中で混合させる工程を含む、
     ことを特徴とする粒子集積体の製造方法。
  8.  前記金属コアの表面修飾剤が、
     一般式R-(R-O)-R-R-X
     〔式中、Rは水素原子、ヒドロキシル基、炭素数1~4のアルコキシル基又は炭素数1~4のアルキル基を表し、Rは炭素数2~6の分岐していてもよいアルキレン基を表し、Rは下記一般式(1)及び(2)
    Figure JPOXMLDOC01-appb-C000002
    からなる群より選択され、Rは炭素数3~18の直鎖アルキル、炭素数3~18の分岐アルキル又は炭素数3~18のアラルキルを表し、Xはチオール基、シアノ基、ジチオール基、アミノ基又はイソシアノ基を表し、Y及びYは水素原子又はフッ素原子を表しかつY及びYのうち少なくとも1つはフッ素原子であり、lは1~12の整数を表し、mは1~12の整数を表し、nは1~6の整数を表し、-(R-O)-は環状基を含む〕
     で表される、
     ことを特徴とする請求項7に記載の粒子集積体の製造方法。
  9.  前記工程の後に、前記溶媒を置換溶媒に置換させる工程をさらに含む、請求項7又は8に記載の粒子集積体の製造方法。
  10.  請求項1乃至6のいずれか1項に記載の中空粒子集積体を含む光増強素子。
  11.  請求項10に記載の光増強素子を備える、光化学反応を利用する装置。
PCT/JP2012/054279 2011-02-22 2012-02-22 粒子集積体、粒子集積体の製造方法、光増強素子及び光化学反応を利用する装置 WO2012115151A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/000,749 US9447316B2 (en) 2011-02-22 2012-02-22 Particle aggregate, manufacturing method for particle aggregate, fluorescence enhancing element, and device using photochemical reactions
EP12750017.1A EP2679322B1 (en) 2011-02-22 2012-02-22 Particle aggregate, manufacturing method for particle aggregate, fluorescence enhancing element, and device using photochemical reactions
JP2013501096A JP5904499B2 (ja) 2011-02-22 2012-02-22 粒子集積体、粒子集積体の製造方法、光増強素子及び光化学反応を利用する装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011036468 2011-02-22
JP2011-036468 2011-02-22

Publications (1)

Publication Number Publication Date
WO2012115151A1 true WO2012115151A1 (ja) 2012-08-30

Family

ID=46720927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054279 WO2012115151A1 (ja) 2011-02-22 2012-02-22 粒子集積体、粒子集積体の製造方法、光増強素子及び光化学反応を利用する装置

Country Status (4)

Country Link
US (1) US9447316B2 (ja)
EP (1) EP2679322B1 (ja)
JP (1) JP5904499B2 (ja)
WO (1) WO2012115151A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10475967B2 (en) * 2017-04-27 2019-11-12 Osram Opto Semiconductors Gmbh Wavelength converters with improved thermal conductivity and lighting devices including the same
CN110024143B (zh) * 2017-11-08 2021-12-31 纳米及先进材料研发院有限公司 无阻隔稳定量子点膜

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09913A (ja) * 1995-06-14 1997-01-07 Res Dev Corp Of Japan コロイド粒子クラスターとその形成方法
JP2008285753A (ja) * 2007-04-25 2008-11-27 Samsung Electronics Co Ltd ナノ結晶−金属酸化物複合体及びその製造方法
JP2009020437A (ja) 2007-07-13 2009-01-29 Toyota Central R&D Labs Inc 赤外線反射材、赤外線反射積層体および赤外線反射構造体ならびにその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888290A (en) * 1996-05-24 1999-03-30 Minnesota Mining And Manufacturing Company Composition and process for imparting durable repellency to substrates
US8901263B2 (en) 2008-12-11 2014-12-02 3M Innovative Properties Company Amide-linked perfluoropolyether thiol compounds and processes for their preparation and use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09913A (ja) * 1995-06-14 1997-01-07 Res Dev Corp Of Japan コロイド粒子クラスターとその形成方法
JP2008285753A (ja) * 2007-04-25 2008-11-27 Samsung Electronics Co Ltd ナノ結晶−金属酸化物複合体及びその製造方法
JP2009020437A (ja) 2007-07-13 2009-01-29 Toyota Central R&D Labs Inc 赤外線反射材、赤外線反射積層体および赤外線反射構造体ならびにその製造方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
D. PATRA ET AL., CHEM. ASIAN J., vol. 5, 2010, pages 2442 - 2453
E. S. SHIBU, CHEM. MATER., vol. 21, 2009, pages 3773 - 3781
QIFENG ZHANG ET AL., ADV. FUNCT. MATER., vol. 18, 2008, pages 1654 - 1660
SANG-WOOK KIM ET AL., J. AM. CHEM. SOC., vol. 124, no. 26, 2002, pages 7642 - 7643
See also references of EP2679322A4
SHOUHENG SUN ET AL., J. AM. CHEM. SOC., vol. 124, no. 12, 2002, pages 2884 - 2885

Also Published As

Publication number Publication date
JP5904499B2 (ja) 2016-04-13
EP2679322B1 (en) 2019-02-06
JPWO2012115151A1 (ja) 2014-07-07
EP2679322A4 (en) 2016-04-13
US9447316B2 (en) 2016-09-20
US20140077132A1 (en) 2014-03-20
EP2679322A1 (en) 2014-01-01

Similar Documents

Publication Publication Date Title
Yang et al. Degradability and clearance of inorganic nanoparticles for biomedical applications
Nair et al. Rapid, acid-free synthesis of high-quality graphene quantum dots for aggregation induced sensing of metal ions and bioimaging
Gu et al. Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging
Deng et al. Controlled synthesis and upconverted avalanche luminescence of cerium (III) and neodymium (III) orthovanadate nanocrystals with high uniformity of size and shape
Wang et al. Novel nanomaterials for biomedical, environmental and energy applications
Kwon et al. Triplet–triplet annihilation upconversion in CdS-decorated SiO2 nanocapsules for sub-bandgap photocatalysis
Tang et al. Synthesis and structural determination of multidentate 2, 3-dithiol-stabilized Au clusters
Hu et al. Facile epoxidation strategy for producing amphiphilic up-converting rare-earth nanophosphors as biological labels
Muhammed et al. Growth of in situ functionalized luminescent silver nanoclusters by direct reduction and size focusing
Zhou et al. Multihydroxy dendritic upconversion nanoparticles with enhanced water dispersibility and surface functionality for bioimaging
KR101879572B1 (ko) 표면 개질된 산화탄탈륨 나노입자, 이의 제조 방법, 이를 이용한 x-선 컴퓨터 단층촬영용 조영제 및 고유전 박막
Wang et al. 2D nanostructures beyond graphene: preparation, biocompatibility and biodegradation behaviors
JP6820154B2 (ja) 発光ナノ粒子、それを用いた細胞の検出方法、動物の治療方法、医療装置、細胞の可視化方法、及び細胞の損傷軽減方法
CN101721716B (zh) 负载纳米金颗粒的树状大分子ct靶向造影剂及其制备方法
Tu et al. Silicon quantum dot nanoparticles with antifouling coatings for immunostaining on live cancer cells
CN104342155B (zh) 一种同时具有荧光及磁性和手性信号的金字塔组装结构的制备方法
CN103756020A (zh) 一种具有光敏性的纳米复合超分子水凝胶的制备方法
CN102000350B (zh) 一种叶酸受体靶向型纳米金颗粒及其制备方法
JP5904499B2 (ja) 粒子集積体、粒子集積体の製造方法、光増強素子及び光化学反応を利用する装置
Rissi et al. Surface modification of ZnO quantum dots by organosilanes and oleic acid with enhanced luminescence for potential biological application
Zhang et al. Ultrastable hydrophilic gold nanoclusters protected by sulfonic thiolate ligands
JP2007320902A (ja) クロロフィル・ナノ粒子及びの製造方法
Assali et al. Synthesis and non-covalent functionalization of carbon nanotubes rings: new nanomaterials with lectin affinity
Leonard et al. One-pot sonochemical synthesis of dendron-stabilized gold nanoparticles as promising nano-hybrid with potential impact in biological application
TW201437218A (zh) 具有保護基之巰基烷化雜氮矽三環衍生物及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12750017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013501096

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012750017

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14000749

Country of ref document: US