WO2012114769A1 - チャネル推定装置およびチャネル推定方法 - Google Patents

チャネル推定装置およびチャネル推定方法 Download PDF

Info

Publication number
WO2012114769A1
WO2012114769A1 PCT/JP2012/001288 JP2012001288W WO2012114769A1 WO 2012114769 A1 WO2012114769 A1 WO 2012114769A1 JP 2012001288 W JP2012001288 W JP 2012001288W WO 2012114769 A1 WO2012114769 A1 WO 2012114769A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel response
data
channel
unit
window function
Prior art date
Application number
PCT/JP2012/001288
Other languages
English (en)
French (fr)
Inventor
孝宜 田中
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011039348A external-priority patent/JP5968593B2/ja
Priority claimed from JP2011039346A external-priority patent/JP2012178634A/ja
Priority claimed from JP2011039347A external-priority patent/JP2012178635A/ja
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2012114769A1 publication Critical patent/WO2012114769A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/26524Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation
    • H04L27/26526Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation with inverse FFT [IFFT] or inverse DFT [IDFT] demodulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] receiver or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0212Channel estimation of impulse response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response

Definitions

  • the present application includes Japanese Patent Application No. 2011-39346 (filed on Feb. 25, 2011), Japanese Patent Application No. 2011-39347 (filed on Feb. 25, 2011), and Japanese Patent Application No. 2011-39348.
  • the benefit of the priority of (filed on Feb. 25, 2011) is claimed and all of these are incorporated herein by reference.
  • the present invention relates to a channel estimation device and a channel estimation method for a receiver of a multicarrier transmission system.
  • a reference signal is inserted into a transmission signal at a certain interval on the transmitter side, and a channel estimation device on the receiver side performs complex division on the received signal by a replica of the reference signal to change the state of the propagation path.
  • Channel estimation is performed.
  • the channel estimation apparatus converts the channel response value into time domain data by IDFT (Inverse Discrete Fourier Transform) processing. After the conversion and noise suppression, the frequency domain data is restored by DFT (Discrete Fourier Transform) processing.
  • IDFT Inverse Discrete Fourier Transform
  • FIG. 1 is a diagram showing a configuration of a general channel estimation apparatus.
  • a reference signal replica generation unit 21 generates a replica of a reference signal inserted into a transmission signal on the transmitter side.
  • the complex division unit 22 calculates a channel response estimated value by performing complex division on the received signal by a replica of the reference signal.
  • FIG. 2 shows channel response estimation values after complex division.
  • the IDFT unit 23 converts the frequency domain channel response estimation value calculated by the complex division unit 22 into a time domain channel response estimation value by IDFT processing.
  • FIG. 3 shows the channel response estimation value after the IDFT processing.
  • the window function multiplier 24 multiplies the channel response estimation value of the desired wave signal by a window function (which may be a rectangular window or another window).
  • the DFT unit 25 converts the channel response estimated value multiplied by the window function into a frequency domain channel response estimated value by DFT processing.
  • FIG. 4 shows channel response estimation values after DFT processing. As described above, by multiplying the channel response estimation value of the desired wave signal by the window function, it is possible to reduce the influence of noise having a period higher than the sample period of multicarrier transmission.
  • An OFDM receiver that further includes a window function selection unit that selects a window function based on the estimated propagation path state, and in which the extraction unit extracts a demodulated symbol by multiplying the reception signal by the window function is known. (See Patent Document 1).
  • the estimation accuracy of the channel response decreases due to the influence.
  • the IFFT / FFT processing is performed. Since the number of points and the number of subcarriers used for data transmission / reception are not equal, the information on the return of the impulse response (right end in the figure) disappears completely by multiplying the window function. Estimation accuracy decreases.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a channel estimation apparatus and a channel estimation method capable of improving the accuracy of channel response estimation.
  • a first aspect of the present invention is a channel estimation apparatus that calculates a channel response estimated value by complex-dividing a received signal into which a reference signal is inserted by a replica of the reference signal to estimate a state of a propagation path.
  • An IDFT unit for converting the channel response estimation value calculated by the complex division into a time domain channel response estimation value by IDFT processing, and multiplying the channel response estimation value of the desired wave signal after the IDFT processing by a window function
  • a window function multiplication unit that performs multiplication, a DFT unit that converts the channel response estimated value multiplied by the window function into a frequency domain channel response estimated value by DFT processing, and a channel response estimated value calculated by the complex division
  • Sample correction unit for calculating data, and frequency band to which channel response estimation data output from the DFT unit is assigned The data of high-frequency part and the low part of the both ends, and a sample replacement unit for replacing at the replacement data to which the sample corrector is calculated.
  • the sample correction unit has a number of replacement points from the high-frequency part and the low-frequency part at both ends of the frequency band to which the data of the channel response estimation value calculated by the complex division is assigned. It is preferable to extract data and use the extracted data as the replacement data.
  • the sample correction unit has a number of replacement points from the high-frequency part and the low-frequency part at both ends of the frequency band to which the data of the channel response estimation value calculated by the complex division is assigned. It is preferable that data is extracted and an average value of the extracted data is used as the replacement data.
  • the sample correction unit has a number of replacement points from the high-frequency part and the low-frequency part at both ends of the frequency band to which the data of the channel response estimation value calculated by the complex division is assigned. It is preferable that data is extracted, an average value of the extracted data is calculated, and data obtained by multiplying the calculated average value by a forgetting factor is used as the replacement data.
  • a second aspect of the present invention is a channel estimation method for estimating a channel state by calculating a channel response estimated value by complex-dividing a received signal into which a reference signal is inserted by a replica of the reference signal.
  • the channel response estimated value calculated by the complex division is converted into a time domain channel response estimated value by IDFT processing, and the channel response estimated value of the desired wave signal after the IDFT processing is multiplied by a window function.
  • a channel estimation apparatus that calculates a channel response estimated value by performing complex division on a received signal into which a reference signal is inserted by a replica of the reference signal to estimate a channel state.
  • An IDFT unit that converts the channel response estimated value calculated by the complex division into a time domain channel response estimated value by IDFT processing, and a maximum of channel response estimated values after the IDFT processing within a predetermined range.
  • a peak search unit that searches for impulse components of a level, a window slide unit that derives a window function of several samples before and after the sample point of the impulse component of the maximum level specified by the peak search unit, and a window slide unit that derives the window function
  • a window function multiplier for multiplying the estimated channel function by the channel response estimation value after the IDFT processing, and a channel multiplied by the window function The answer estimates, and a DFT section for converting the channel response estimate in the frequency domain by DFT process.
  • the preceding and following samples be variable from the bandwidth of the multicarrier transmission system, the CP length, and the distance between the transmitter and the receiver.
  • a channel estimation method for estimating a channel state by calculating a channel response estimated value by complex-dividing a received signal into which a reference signal is inserted by a replica of the reference signal.
  • a channel response estimated value calculated by the complex division is converted into a time domain channel response estimated value by IDFT processing, and the channel response estimated value after the IDFT processing has a maximum level within a predetermined range.
  • a step of searching for impulse components a step of deriving a window function of several samples before and after the sample point of the impulse component of the maximum level specified by the search, and the derived window function as a channel after the IDFT processing
  • a channel estimation apparatus that calculates a channel response estimation value by performing complex division on a received signal into which a reference signal is inserted by a replica of the reference signal to estimate a channel state.
  • An IDFT unit that converts the channel response estimated value calculated by the complex division into a time domain channel response estimated value by IDFT processing, and a maximum of channel response estimated values after the IDFT processing within a predetermined range.
  • a peak search unit that searches for impulse components of a level, a window slide unit that derives a window function of several samples before and after the sample point of the impulse component of the maximum level specified by the peak search unit, and a window slide unit that derives the window function
  • a window function multiplier for multiplying the estimated channel function by the channel response estimation value after the IDFT processing, and a channel multiplied by the window function
  • the DFT unit that converts the estimated answer value into the frequency domain channel response estimated value by DFT processing, the sample correction unit that calculates replacement data from the channel response estimated value calculated by the complex division, and the DFT unit A sample replacement unit that replaces the data of the high-frequency part and the low-frequency part at both ends of the frequency band to which the data of the channel response estimation value is assigned with the replacement data calculated by the sample correction unit.
  • the preceding and following samples be variable from the bandwidth of the multicarrier transmission system, the CP length, and the distance between the transmitter and the receiver.
  • amendment part is the number of replacement points from the high frequency part and the low frequency part of the both ends of the frequency band to which the data of the channel response estimated value calculated by the said complex division are allocated. It is preferable to extract data and use the extracted data as the replacement data.
  • amendment part is the number of replacement points from the high frequency part and the low frequency part of the both ends of the frequency band to which the data of the channel response estimated value calculated by the said complex division are allocated. It is preferable that data is extracted and an average value of the extracted data is used as the replacement data.
  • amendment part is the number of replacement points from the high frequency part and the low frequency part of the both ends of the frequency band to which the data of the channel response estimated value calculated by the said complex division are allocated. It is preferable that data is extracted, an average value of the extracted data is calculated, and data obtained by multiplying the calculated average value by a forgetting factor is used as the replacement data.
  • a sixth aspect of the present invention is a channel estimation method for estimating a channel state by calculating a channel response estimated value by complex-dividing a received signal into which a reference signal is inserted by a replica of the reference signal.
  • a channel response estimated value calculated by the complex division is converted into a time domain channel response estimated value by IDFT processing, and the channel response estimated value after the IDFT processing has a maximum level within a predetermined range.
  • a step of searching for impulse components, a step of deriving a window function of several samples before and after the sample point of the impulse component of the maximum level specified by the search, and the derived window function as a channel after the IDFT processing A step of multiplying the response estimation value, and a channel response estimation value multiplied by the window function by means of DFT processing.
  • a channel response estimation value a step of calculating replacement data from the channel response estimation value calculated by the complex division, and a channel response estimation value data after DFT processing at both ends of the frequency band to which the data is assigned. Replacing the data of the high frequency part and the low frequency part with the replacement data.
  • the inventions according to the first and second aspects can eliminate the distortion generated in the high-frequency part and the low-frequency part at both ends of the frequency band to which the data of the channel response estimation value is assigned. Can be improved.
  • the window function can be derived so that unnecessary noise components are not mixed within the window function target time, the estimation accuracy of the channel response can be improved.
  • the inventions according to the fifth and sixth aspects can eliminate the distortion occurring in the high-frequency part and the low-frequency part at both ends of the frequency band to which the data of the channel response estimation value is assigned. Can be improved.
  • the window function can be derived so that unnecessary noise components are not mixed within the window function target time, the estimation accuracy of the channel response can be improved.
  • FIG. 9 is a diagram showing a configuration of a base station receiver in a multicarrier transmission system (for example, OFDM) in which the channel estimation apparatus of the present invention is used, and shows an example of two antennas.
  • the base station receiver shown in FIG. 9 receives signals at radio receiving sections 11-1 and 11-2, and analog / digital converts received signals at A / D converting sections 12-1 and 12-2.
  • CP removing sections 13-1 and 13-2 remove CP (Cyclic Prefix) from the digitally converted received signal.
  • the FFT units 14-1 and 14-2 perform fast Fourier transform (FFT) on the received signal after CP removal.
  • FFT fast Fourier transform
  • the received signals output from the FFT units 14-1 and 14-2 are divided into two, one being input to the channel estimation units 15-1 and 15-2 and the other being input to the channel equalization unit 16.
  • Channel estimation units (channel estimation devices) 15-1 and 15-2 estimate channel responses from received signals output from FFT units 14-1 and 14-2 using reference signal replicas.
  • Channel equalization unit 16 performs channel equalization on the received signals output from FFT units 14-1 and 14-2 using the channel responses estimated by channel estimation units 15-1 and 15-2.
  • the subcarrier demapping unit 17 demaps the signal after channel equalization.
  • the demodulator 18 demodulates the demapped signal and calculates received data.
  • FIG. 10 is a block diagram of the channel estimation apparatus according to the first embodiment of the present invention.
  • the channel estimation apparatus according to the first embodiment performs high-frequency correction at both ends of the band in order to eliminate distortion in the high-frequency part and the low-frequency part at both ends of the frequency band to which the data of the channel response estimation values shown in FIG. It replaces the values of the band part and the low band part with the channel response estimation value calculated by complex division.
  • the channel estimation apparatus includes a reference signal replica generation unit 1, a complex division unit 2, an IDFT unit 3, a window function multiplication unit 4, a DFT unit 5, a sample correction unit 6, and a sample And a replacement unit 7.
  • the reference signal replica generation unit 1 generates a replica of the reference signal inserted into the transmission signal on the transmitter side.
  • the complex division unit 2 calculates a channel response estimated value by performing complex division on the received signal by a replica of the reference signal.
  • the IDFT unit 3 converts the frequency domain channel response estimation value calculated by the complex division unit 2 into a time domain channel response estimation value by IDFT processing.
  • the window function multiplication unit 4 multiplies the channel response estimation value of the desired wave signal after the IDFT processing by a window function (which may be a rectangular window or another window).
  • the DFT unit 5 converts the channel response estimated value multiplied by the window function into a frequency domain channel response estimated value by DFT processing.
  • the sample correction unit 6 calculates replacement data from the channel response estimation value calculated by the complex division unit 2.
  • the sample replacement unit 7 replaces the data of the high frequency part and the low frequency part at both ends of the frequency band to which the data of the channel response estimation value output from the DFT unit 5 is assigned with the replacement data calculated by the sample correction unit 6. .
  • FIG. 11 is a diagram illustrating the channel response estimation value output from the complex division unit.
  • the sample correction unit 6 extracts channel response estimation values corresponding to the number of replacement points from the high-frequency part and the low-frequency part at both ends of the data allocation band from the channel response estimation values output from the complex division part 2 and To do.
  • the sample replacement unit 7 replaces the data having distortion in the high frequency part and the low frequency part at both ends of the data allocation band shown in FIG. 6 with the replacement data.
  • FIG. 12 is a diagram illustrating channel response estimation values output from the sample replacement unit.
  • the sample replacement unit 7 can output channel response estimation values having no distortion in the high frequency part and the low frequency part at both ends of the data allocation band.
  • the sample correction unit 6 calculates replacement data from the channel response estimation value calculated by the complex division unit 2 by the following method.
  • the number of points is variable from the system bandwidth and the allocation data bandwidth.
  • the first method is a method of extracting data for the number of replacement points from the high frequency part and low frequency part at both ends of the data allocation band, and using the data as replacement data as it is.
  • the second method is a method of extracting data for the number of replacement points from the high frequency part and the low frequency part at both ends of the data allocation band, obtaining an average value for each, and using the data as replacement data.
  • data obtained by multiplying the average value obtained by the second method by a forgetting factor is used as replacement data.
  • the number of points is 3, the output of the sample replacement unit 7 is y '(0), y' (1), y '(2), and the output of the complex division unit 2 is y (0), y (1), y (2) If the forgetting factor is 0 ⁇ ⁇ 1, when the replacement data is calculated by the first method, the output of the sample replacement unit 7 is When the replacement data is calculated by the second method, the output of the sample replacement unit 7 is When the replacement data is calculated by the third method, the output of the sample replacement unit 7 is It becomes.
  • the channel estimation apparatus eliminates the distortion that occurs in the high-frequency part and the low-frequency part at both ends of the frequency band to which the channel response estimation value data is assigned. Therefore, the estimation accuracy of the channel response can be improved.
  • FIG. 13 is a configuration diagram of a channel estimation apparatus according to the second embodiment of the present invention.
  • the channel estimation apparatus according to the second embodiment reduces the estimation accuracy of the channel response due to the influence when there is noise within the window function target time, as shown in FIG.
  • the impulse component (desired wave delay wave) having the strongest level is specified, and several samples before and after that are multiplied by a window function.
  • the channel estimation apparatus includes a reference signal replica generation unit 1, a complex division unit 2, an IDFT unit 3, a window function multiplication unit 4, a DFT unit 5, a peak search unit 8, a window And a slide portion 9.
  • the reference signal replica generation unit 1 generates a replica of the reference signal inserted into the transmission signal on the transmitter side.
  • the complex division unit 2 calculates a channel response estimated value by performing complex division on the received signal by a replica of the reference signal.
  • the IDFT unit 3 converts the frequency domain channel response estimation value calculated by the complex division unit 2 into a time domain channel response estimation value by IDFT processing.
  • the peak search unit 8 searches for the impulse component (desired delay wave) having the maximum level within a predetermined range from the channel response estimated value output from the IDFT unit 3.
  • the window slide unit 9 derives a window function (a rectangular window or other window) of several samples from the sample point of the impulse component of the maximum level specified by the peak search unit 8. The number of samples before and after at this time is variable from the bandwidth of the multicarrier transmission system, the CP length, the distance between the transmitter and the receiver, and the like.
  • the window function multiplication unit 4 multiplies the window function derived from the window slide unit 9 by the channel response estimation value output from the IDFT unit 3.
  • the DFT unit 5 converts the channel response estimated value multiplied by the window function into a frequency domain channel response estimated value by DFT processing.
  • FIG. 14 shows a case where there is noise within the window function target time, the peak search unit 8 searches for a maximum level impulse component within a predetermined range, and the window slide unit 9 specifies the maximum level specified by the peak search unit 8.
  • the window function of several samples before and after is derived from the sample point of the impulse component (the window function target time is slid slightly to the right as shown in FIG. 14), and the calculated window function is subjected to the IDFT processing by the window function multiplication unit 4 It is a figure which shows the case where it applies to the channel response estimated value.
  • the peak search unit 8 searches for the maximum level impulse component within a predetermined range, and the window slide unit 9 causes the peak search unit 8 to
  • a window function of several samples is derived from the sample point of the identified impulse component of the maximum level (the window function target time is set at the left end in the figure and the right end in the figure as shown in FIG. 15), and the calculated window function is It is a figure which shows the case where it applies to the channel response estimated value after an IDFT process by the function multiplication part 4.
  • the channel estimation apparatus can derive the window function so that unnecessary noise components do not coexist within the window function target time, so that the estimation accuracy of the channel response Can be improved.
  • FIG. 16 is a configuration diagram of a channel estimation apparatus according to the third embodiment of the present invention.
  • the channel estimation apparatus according to the third embodiment is a combination of the channel estimation apparatus according to the first embodiment and the channel estimation apparatus according to the second embodiment.
  • the channel estimation apparatus according to the third embodiment includes a reference signal replica generation unit 1, a complex division unit 2, an IDFT unit 3, a window function multiplication unit 4, a DFT unit 5, a sample correction unit 6, and a sample A replacement unit 7, a peak search unit 8, and a window slide unit 9 are provided.
  • the reference signal replica generation unit 1 generates a replica of the reference signal inserted into the transmission signal on the transmitter side.
  • the complex division unit 2 calculates a channel response estimated value by performing complex division on the received signal by a replica of the reference signal.
  • the IDFT unit 3 converts the channel response estimated value in the frequency domain calculated by the complex division unit 2 into time domain data by IDFT processing.
  • the peak search unit 8 searches for the impulse component (desired delay wave) having the maximum level within a predetermined range from the channel response estimated value output from the IDFT unit 3.
  • the window slide unit 9 derives a window function (a rectangular window or other window) of several samples from the sample point of the impulse component of the maximum level specified by the peak search unit 8.
  • the window function multiplication unit 4 multiplies the window function derived from the window slide unit 9 by the channel response estimation value output from the IDFT unit 3.
  • the DFT unit 5 converts the channel response estimated value multiplied by the window function into a frequency domain channel response estimated value by DFT processing.
  • the sample correction unit 6 calculates replacement data from the channel response estimation value calculated by the complex division unit 2.
  • the sample replacement unit 7 replaces the data of the high frequency part and the low frequency part at both ends of the frequency band to which the data of the channel response estimation value output from the DFT unit 5 is assigned with the replacement data calculated by the sample correction unit 6. .
  • the channel estimation apparatus can eliminate distortion occurring in the high-frequency part and the low-frequency part at both ends of the frequency band to which channel response estimation value data is assigned, Response estimation accuracy can be improved. Also, the channel estimation apparatus according to the third embodiment of the present invention can derive a window function so that unnecessary noise components do not coexist within the window function target time, thereby improving channel response estimation accuracy. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

 参照信号レプリカ生成部1は、参照信号のレプリカを生成する。複素除算部2は、受信信号を参照信号のレプリカで複素除算してチャネル応答推定値を算出する。IDFT部3は、時間領域のチャネル応答推定値に変換する。窓関数乗算部4は、IDFT処理後の所望波信号のチャネル応答推定値に窓関数を乗算する。DFT部5は、周波数領域のチャネル応答推定値に変換する。サンプル補正部6は、複素除算部2で算出されたチャネル応答推定値から置き換えデータを算出する。サンプル置換部7は、DFT部5から出力されたチャネル応答推定値のデータが割り当てられている周波数帯域両端の高域部分と低域部分のデータを、サンプル補正部6が算出した置き換えデータで置き換える。

Description

チャネル推定装置およびチャネル推定方法 関連出願へのクロスリファレンス
 本願は、日本国特許出願第2011-39346号(2011年2月25日出願)、日本国特許出願第2011-39347号(2011年2月25日出願)および日本国特許出願第2011-39348号(2011年2月25日出願)の優先権の利益を主張し、これらの全内容を参照により本願明細書に取り込むものとする。
 本発明は、マルチキャリア伝送システムの受信機のチャネル推定装置およびチャネル推定方法に関する。
 マルチキャリア伝送システムでは、送信機側で送信信号に一定間隔で参照信号を挿入し、受信機側のチャネル推定装置において、受信信号を参照信号のレプリカで複素除算することにより、伝搬路の状態を推定するチャネル推定が行われている。また、推定したチャネルの応答値がマルチキャリア伝送のサンプル周期よりも高周期の雑音の影響を受けるため、チャネル推定装置では、チャネル応答値をIDFT(逆離散フーリエ変換)処理により時間領域のデータに変換し、雑音を抑圧した後、DFT(離散フーリエ変換)処理により周波数領域のデータに戻すことが行われている。
 図1は、一般的なチャネル推定装置の構成を示す図である。図1において、参照信号レプリカ生成部21は、送信機側で送信信号に挿入された参照信号のレプリカを生成する。複素除算部22は、受信信号を参照信号のレプリカで複素除算することによりチャネル応答推定値を算出する。図2に、複素除算後のチャネル応答推定値を示す。IDFT部23は、複素除算部22で算出した周波数領域のチャネル応答推定値をIDFT処理により時間領域のチャネル応答推定値に変換する。図3に、IDFT処理後のチャネル応答推定値を示す。窓関数乗算部24は、図3に示すように所望波信号のチャネル応答推定値に窓関数(矩形窓でもその他の窓でもよい)を乗算する。DFT部25は、窓関数が乗算されたチャネル応答推定値を、DFT処理により周波数領域のチャネル応答推定値に変換する。図4に、DFT処理後のチャネル応答推定値を示す。このように、所望波信号のチャネル応答推定値に窓関数を乗算することにより、マルチキャリア伝送のサンプル周期よりも高周期の雑音の影響を低減することが可能となる。
 なお、推定した伝搬路状態に基づいて窓関数を選定する窓関数選定部をさらに備え、抽出部が、窓関数を受信信号に乗算することにより復調シンボルを抽出するOFDM受信機が知られている(特許文献1参照)。
特開2007-067878号公報
 しかしながら、実際のシステムでは、送受信に使用するIFFT/FFT処理のポイント数と、データ送受信に使用するサブキャリア数とが等しくないことから、図5に示すように、チャネル応答推定値に窓関数を乗算する際、実際には少なからず、所望波信号成分(有効な遅延波成分)をも除去することになる。そのため、上述したIDFT/DFT処理を用いるチャネル推定では、図6に示すように、DFT処理後において、チャネル応答推定値のデータが割り当てられている周波数帯域両端の高域部分と低域部分に歪みが生じるため、チャネル応答の推定精度が低下する。
 また、上述したIDFT/DFT処理を用いるチャネル推定では、図7に示すように、窓関数対象時間内に雑音がある場合は、その影響により、チャネル応答の推定精度が低下する。特に、図8のように、遅延波を含む受信信号で遅延が0の所望波の信号レベルが高いとき(遅延の影響で所望波が窓関数対象時間からはみ出したとき)、IFFT/FFT処理のポイント数と、データ送受信に使用するサブキャリア数が等しくないことから発生する、インパルス応答の折り返し(図中右端)の情報は、窓関数を乗算することで完全に消えてしまうため、チャネル応答の推定精度が低下する。
 本発明は、このような問題点に鑑みてなされたものであり、本発明の目的は、チャネル応答の推定精度を向上させることのできるチャネル推定装置およびチャネル推定方法を提供することにある。
 本発明の第1の態様は、参照信号が挿入された受信信号を、前記参照信号のレプリカで複素除算することによりチャネル応答推定値を算出して伝搬路の状態を推定するチャネル推定装置であって、前記複素除算により算出されたチャネル応答推定値を、IDFT処理により時間領域のチャネル応答推定値に変換するIDFT部と、前記IDFT処理後の所望波信号のチャネル応答推定値に窓関数を乗算する窓関数乗算部と、前記窓関数が乗算されたチャネル応答推定値を、DFT処理により周波数領域のチャネル応答推定値に変換するDFT部と、前記複素除算により算出されたチャネル応答推定値から置き換えデータを算出するサンプル補正部と、前記DFT部から出力されたチャネル応答推定値のデータが割り当てられている周波数帯域両端の高域部分と低域部分のデータを、前記サンプル補正部が算出した前記置き換えデータで置き換えるサンプル置換部とを備える。
 本発明の第1の態様において、前記サンプル補正部は、前記複素除算により算出されたチャネル応答推定値のデータが割り当てられている周波数帯域両端の高域部分と低域部分から置き換えポイント数分のデータを抽出し、抽出したデータを前記置き換えデータとすることが好ましい。
 本発明の第1の態様において、前記サンプル補正部は、前記複素除算により算出されたチャネル応答推定値のデータが割り当てられている周波数帯域両端の高域部分と低域部分から置き換えポイント数分のデータを抽出し、抽出したデータの平均値を前記置き換えデータとすることが好ましい。
 本発明の第1の態様において、前記サンプル補正部は、前記複素除算により算出されたチャネル応答推定値のデータが割り当てられている周波数帯域両端の高域部分と低域部分から置き換えポイント数分のデータを抽出し、抽出したデータの平均値を算出し、算出した平均値に忘却係数を乗算したデータを前記置き換えデータとすることが好ましい。
 本発明の第2の態様は、参照信号が挿入された受信信号を、前記参照信号のレプリカで複素除算することによりチャネル応答推定値を算出して伝搬路の状態を推定するチャネル推定方法であって、前記複素除算により算出されたチャネル応答推定値を、IDFT処理により時間領域のチャネル応答推定値に変換するステップと、前記IDFT処理後の所望波信号のチャネル応答推定値に窓関数を乗算するステップと、前記窓関数が乗算されたチャネル応答推定値を、DFT処理により周波数領域のチャネル応答推定値に変換するステップと、前記複素除算により算出されたチャネル応答推定値から置き換えデータを算出するステップと、DFT処理後のチャネル応答推定値のデータが割り当てられている周波数帯域両端の高域部分と低域部分のデータを、前記置き換えデータで置き換えるステップとを含む。
 本発明の第3の態様は、参照信号が挿入された受信信号を、前記参照信号のレプリカで複素除算することによりチャネル応答推定値を算出して伝搬路の状態を推定するチャネル推定装置であって、前記複素除算により算出されたチャネル応答推定値を、IDFT処理により時間領域のチャネル応答推定値に変換するIDFT部と、前記IDFT処理後のチャネル応答推定値のうち、所定の範囲内で最大レベルのインパルス成分のサーチを行うピークサーチ部と、前記ピークサーチ部で特定した最大レベルのインパルス成分のサンプル点から、前後数サンプルの窓関数を導出する窓スライド部と、前記窓スライド部で導出した窓関数を、前記IDFT処理後のチャネル応答推定値に乗算する窓関数乗算部と、前記窓関数が乗算されたチャネル応答推定値を、DFT処理により周波数領域のチャネル応答推定値に変換するDFT部とを備える。
 本発明の第3の態様において、前記前後数サンプルは、マルチキャリア伝送システムの帯域幅、CP長、送信機と受信機の距離から可変とすることが好ましい。
 本発明の第4の態様は、参照信号が挿入された受信信号を、前記参照信号のレプリカで複素除算することによりチャネル応答推定値を算出して伝搬路の状態を推定するチャネル推定方法であって、前記複素除算により算出されたチャネル応答推定値を、IDFT処理により時間領域のチャネル応答推定値に変換するステップと、前記IDFT処理後のチャネル応答推定値のうち、所定の範囲内で最大レベルのインパルス成分のサーチを行うステップと、前記サーチで特定した最大レベルのインパルス成分のサンプル点から、前後数サンプルの窓関数を導出するステップと、導出した前記窓関数を、前記IDFT処理後のチャネル応答推定値に乗算するステップと、前記窓関数が乗算されたチャネル応答推定値を、DFT処理により周波数領域のチャネル応答推定値に変換するステップとを含む。
 本発明の第5の態様は、参照信号が挿入された受信信号を、前記参照信号のレプリカで複素除算することによりチャネル応答推定値を算出して伝搬路の状態を推定するチャネル推定装置であって、前記複素除算により算出されたチャネル応答推定値を、IDFT処理により時間領域のチャネル応答推定値に変換するIDFT部と、前記IDFT処理後のチャネル応答推定値のうち、所定の範囲内で最大レベルのインパルス成分のサーチを行うピークサーチ部と、前記ピークサーチ部で特定した最大レベルのインパルス成分のサンプル点から、前後数サンプルの窓関数を導出する窓スライド部と、前記窓スライド部で導出した窓関数を、前記IDFT処理後のチャネル応答推定値に乗算する窓関数乗算部と、前記窓関数が乗算されたチャネル応答推定値を、DFT処理により周波数領域のチャネル応答推定値に変換するDFT部と、前記複素除算により算出されたチャネル応答推定値から置き換えデータを算出するサンプル補正部と、前記DFT部から出力されたチャネル応答推定値のデータが割り当てられている周波数帯域両端の高域部分と低域部分のデータを、前記サンプル補正部が算出した前記置き換えデータで置き換えるサンプル置換部とを備える。
 本発明の第5の態様において、前記前後数サンプルは、マルチキャリア伝送システムの帯域幅、CP長、送信機と受信機の距離から可変とすることが好ましい。
 本発明の第5の態様において、前記サンプル補正部は、前記複素除算により算出されたチャネル応答推定値のデータが割り当てられている周波数帯域両端の高域部分と低域部分から置き換えポイント数分のデータを抽出し、抽出したデータを前記置き換えデータとすることが好ましい。
 本発明の第5の態様において、前記サンプル補正部は、前記複素除算により算出されたチャネル応答推定値のデータが割り当てられている周波数帯域両端の高域部分と低域部分から置き換えポイント数分のデータを抽出し、抽出したデータの平均値を前記置き換えデータとすることが好ましい。
 本発明の第5の態様において、前記サンプル補正部は、前記複素除算により算出されたチャネル応答推定値のデータが割り当てられている周波数帯域両端の高域部分と低域部分から置き換えポイント数分のデータを抽出し、抽出したデータの平均値を算出し、算出した平均値に忘却係数を乗算したデータを前記置き換えデータとすることが好ましい。
 本発明の第6の態様は、参照信号が挿入された受信信号を、前記参照信号のレプリカで複素除算することによりチャネル応答推定値を算出して伝搬路の状態を推定するチャネル推定方法であって、前記複素除算により算出されたチャネル応答推定値を、IDFT処理により時間領域のチャネル応答推定値に変換するステップと、前記IDFT処理後のチャネル応答推定値のうち、所定の範囲内で最大レベルのインパルス成分のサーチを行うステップと、前記サーチで特定した最大レベルのインパルス成分のサンプル点から、前後数サンプルの窓関数を導出するステップと、導出した前記窓関数を、前記IDFT処理後のチャネル応答推定値に乗算するステップと、前記窓関数が乗算されたチャネル応答推定値を、DFT処理により周波数領域のチャネル応答推定値に変換するステップと、前記複素除算により算出されたチャネル応答推定値から置き換えデータを算出するステップと、DFT処理後のチャネル応答推定値のデータが割り当てられている周波数帯域両端の高域部分と低域部分のデータを、前記置き換えデータで置き換えるステップとを含む。
 第1および第2の態様による発明は、チャネル応答推定値のデータが割り当てられている周波数帯域両端の高域部分と低域部分に発生する歪みを解消することができるので、チャネル応答の推定精度を向上させることができる。
 第3および第4の態様による発明は、窓関数対象時間内に不要な雑音成分が混在しないように窓関数を導出することができるので、チャネル応答の推定精度を向上させることができる。
 第5および第6の態様による発明は、チャネル応答推定値のデータが割り当てられている周波数帯域両端の高域部分と低域部分に発生する歪みを解消することができるので、チャネル応答の推定精度を向上させることができる。
 また、第5および第6の態様による発明は、窓関数対象時間内に不要な雑音成分が混在しないように窓関数を導出することができるので、チャネル応答の推定精度を向上させることができる。
一般的なチャネル推定装置の構成を示す図である。 複素除算後のチャネル応答推定値を示す図である。 IDFT処理後のチャネル応答推定値を示す図である。 DFT処理後のチャネル応答推定値を示す図である。 チャネル応答推定値に窓関数を乗算する際、所望波信号成分をも除去することになることを説明する図である。 チャネル応答推定値のデータが割り当てられている周波数帯域両端の高域部分と低域部分に歪みが生じることを説明する図である。 窓関数対象時間内に雑音があるときのIDFT処理後のチャネル応答推定値を示す図である。 インパルス応答の折り返しの情報が、窓関数を乗算することで完全に消えてしまうことを説明する図である。 本発明のチャネル推定装置が用いられるマルチキャリア伝送システムにおける基地局受信機の構成を示す図である。 本発明の第1の実施形態に係るチャネル推定装置の構成図である。 複素除算部から出力されたチャネル応答推定値を示す図である。 サンプル置換部から出力されるチャネル応答推定値を示す図である。 本発明の第2の実施形態に係るチャネル推定装置の構成図である。 ピークサーチと窓関数の導出を説明する図である。 ピークサーチと窓関数の導出を説明する図である。 本発明の第3の実施形態に係るチャネル推定装置の構成図である。
 本発明の実施の形態について、図面を参照して説明する。図9は、本発明のチャネル推定装置が用いられるマルチキャリア伝送システム(例えばOFDM)における基地局受信機の構成を示す図であり、2本アンテナの例を示している。図9に示す基地局受信機は、無線受信部11-1、11-2にて信号を受信し、A/D変換部12-1、12-2にて受信信号をアナログ/デジタル変換する。CP除去部13-1、13-2は、デジタル変換された受信信号からCP(サイクリックプレフィックス:Cyclic Prefix)を除去する。FFT部14-1、14-2は、CP除去後の受信信号を高速フーリエ変換(FFT)する。FFT部14-1、14-2の出力する受信信号は2分配され、一方がチャネル推定部15-1、15-2へ、他方がチャネル等化部16へ入力される。チャネル推定部(チャネル推定装置)15-1、15-2は、参照信号のレプリカを用いて、FFT部14-1、14-2の出力する受信信号からチャネル応答を推定する。チャネル等化部16は、チャネル推定部15-1、15-2で推定されたチャネル応答を用いて、FFT部14-1、14-2から出力される受信信号に対してチャネル等化を行う。サブキャリアデマッピング部17は、チャネル等化後の信号をデマッピングする。復調部18は、デマッピング後の信号を復調して受信データを算出する。
 図10は、本発明の第1の実施形態に係るチャネル推定装置の構成図である。第1の実施形態に係るチャネル推定装置は、図6に示すチャネル応答推定値のデータが割り当てられている周波数帯域両端の高域部分と低域部分における歪みを解消するために、帯域両端の高域部分と低域部分の値を複素除算で算出されたチャネル応答推定値で置き換えるものである。
 第1の実施形態に係るチャネル推定装置は、参照信号レプリカ生成部1と、複素除算部2と、IDFT部3と、窓関数乗算部4と、DFT部5と、サンプル補正部6と、サンプル置換部7とを備えている。参照信号レプリカ生成部1は、送信機側で送信信号に挿入された参照信号のレプリカを生成する。複素除算部2は、受信信号を参照信号のレプリカで複素除算することによりチャネル応答推定値を算出する。IDFT部3は、複素除算部2で算出した周波数領域のチャネル応答推定値を、IDFT処理により時間領域のチャネル応答推定値に変換する。窓関数乗算部4は、IDFT処理後の所望波信号のチャネル応答推定値に窓関数(矩形窓でもその他の窓でもよい)を乗算する。DFT部5は、窓関数が乗算されたチャネル応答推定値を、DFT処理により周波数領域のチャネル応答推定値に変換する。サンプル補正部6は、複素除算部2で算出されたチャネル応答推定値から置き換えデータを算出する。サンプル置換部7は、DFT部5から出力されたチャネル応答推定値のデータが割り当てられている周波数帯域両端の高域部分と低域部分のデータを、サンプル補正部6が算出した置き換えデータで置き換える。
 図11は、複素除算部から出力されたチャネル応答推定値を示す図である。サンプル補正部6は、複素除算部2から出力されたチャネル応答推定値のうち、データ割当帯域両端の高域部分と低域部分から置き換えポイント数分のチャネル応答推定値を抽出して置き換えデータとする。サンプル置換部7は、図6に示すデータ割当帯域両端の高域部分と低域部分の歪みのあるデータを、この置き換えデータで置き換える。図12は、サンプル置換部から出力されるチャネル応答推定値を示す図である。サンプル置換部7は、データ割当帯域両端の高域部分と低域部分において歪みのないチャネル応答推定値を出力することができる。
 サンプル補正部6は、複素除算部2で算出されたチャネル応答推定値から、以下の方法で置き換えデータを算出する。なお、ポイント数は、システムの帯域と割当データの帯域から可変とする。第1の方法は、データ割当帯域両端の高域部分と低域部分から置き換えポイント数分のデータを抽出し、そのデータをそのまま置き換えデータとする方法である。第2の方法は、データ割当帯域両端の高域部分と低域部分から置き換えポイント数分のデータを抽出し、それぞれ平均値を求めて、そのデータを置き換えデータとする方法である。第3の方法は、第2の方法で求めた平均値に忘却係数を乗算して求めたデータを置き換えデータとする方法である。
 例えば、ポイント数を3、サンプル置換部7の出力をy’(0),y’(1),y’(2)、複素除算部2の出力をy(0),y(1),y(2)、忘却係数を0<α≦1とすると、第1の方法で置き換えデータを算出した場合、サンプル置換部7の出力は、
Figure JPOXMLDOC01-appb-M000001
となり、第2の方法で置き換えデータを算出した場合、サンプル置換部7の出力は、
Figure JPOXMLDOC01-appb-M000002
となり、第3の方法で置き換えデータを算出した場合、サンプル置換部7の出力は
Figure JPOXMLDOC01-appb-M000003
となる。
 上述したように、本発明の第1の実施形態に係るチャネル推定装置は、チャネル応答推定値のデータが割り当てられている周波数帯域両端の高域部分と低域部分に発生する歪みを解消することができるので、チャネル応答の推定精度を向上させることができる。
 図13は、本発明の第2の実施形態に係るチャネル推定装置の構成図である。第2の実施形態に係るチャネル推定装置は、図7に示すように、窓関数対象時間内に雑音がある場合に、その影響により、チャネル応答の推定精度が低下し、図8に示すように、インパルス応答の折り返し(図中右端)の情報が、窓関数を乗算することで消失してしまうことにより、チャネル応答の推定精度が低下するという問題に対応するために、受信信号のうち、一番レベルの強いインパルス成分(所望波遅延波)を特定し、その前後の数サンプルを窓関数にて乗算するものである。
 第2の実施形態に係るチャネル推定装置は、参照信号レプリカ生成部1と、複素除算部2と、IDFT部3と、窓関数乗算部4と、DFT部5と、ピークサーチ部8と、窓スライド部9とを備えている。参照信号レプリカ生成部1は、送信機側で送信信号に挿入された参照信号のレプリカを生成する。複素除算部2は、受信信号を参照信号のレプリカで複素除算することによりチャネル応答推定値を算出する。IDFT部3は、複素除算部2で算出された周波数領域のチャネル応答推定値をIDFT処理により時間領域のチャネル応答推定値に変換する。ピークサーチ部8は、IDFT部3の出力であるチャネル応答推定値のうち、所定の範囲内で最大レベルのインパルス成分(所望遅延波)をサーチする。ここで、所定の範囲は、可変であるが、一般的には、CP長であるとする。窓スライド部9は、ピークサーチ部8で特定した最大レベルのインパルス成分のサンプル点から、前後数サンプルの窓関数(矩形窓でもその他の窓でも良い)を導出する。このときの前後サンプル数は、マルチキャリア伝送システムの帯域幅や、CP長、送信機と受信機の距離等から可変とする。窓関数乗算部4は、窓スライド部9で導出した窓関数をIDFT部3から出力されたチャネル応答推定値に乗算する。DFT部5は、窓関数が乗算されたチャネル応答推定値を、DFT処理により周波数領域のチャネル応答推定値に変換する。
 図14は、窓関数対象時間内に雑音がある場合に、ピークサーチ部8により所定の範囲内で最大レベルのインパルス成分をサーチし、窓スライド部9により、ピークサーチ部8で特定した最大レベルのインパルス成分のサンプル点から、前後数サンプルの窓関数を導出(窓関数対象時間を図14のようにやや右側にスライド)し、算出した窓関数を、窓関数乗算部4により、IDFT処理後のチャネル応答推定値に適用する場合を示す図である。図15は、インパルス応答の折り返し(図中右端)の情報がある場合に、ピークサーチ部8により所定の範囲内で最大レベルのインパルス成分をサーチし、窓スライド部9により、ピークサーチ部8で特定した最大レベルのインパルス成分のサンプル点から、前後数サンプルの窓関数を導出(窓関数対象時間を図15のように図中左端、図中右端に設定)し、算出した窓関数を、窓関数乗算部4により、IDFT処理後のチャネル応答推定値に適用する場合を示す図である。
 上述したように、本発明の第2の実施形態に係るチャネル推定装置は、窓関数対象時間内に不要な雑音成分が混在しないように窓関数を導出することができるので、チャネル応答の推定精度を向上させることができる。
 図16は、本発明の第3の実施形態に係るチャネル推定装置の構成図である。第3の実施形態に係るチャネル推定装置は、第1の実施形態のチャネル推定装置と第2の実施形態のチャネル推定装置とを組み合わせたものである。第3の実施形態に係るチャネル推定装置は、参照信号レプリカ生成部1と、複素除算部2と、IDFT部3と、窓関数乗算部4と、DFT部5と、サンプル補正部6と、サンプル置換部7と、ピークサーチ部8と、窓スライド部9とを備えている。
 参照信号レプリカ生成部1は、送信機側で送信信号に挿入された参照信号のレプリカを生成する。複素除算部2は、受信信号を参照信号のレプリカで複素除算することによりチャネル応答推定値を算出する。IDFT部3は、複素除算部2で算出した周波数領域のチャネル応答推定値をIDFT処理により時間領域のデータに変換する。ピークサーチ部8は、IDFT部3の出力であるチャネル応答推定値のうち、所定の範囲内で最大レベルのインパルス成分(所望遅延波)をサーチする。窓スライド部9は、ピークサーチ部8で特定した最大レベルのインパルス成分のサンプル点から、前後数サンプルの窓関数(矩形窓でもその他の窓でも良い)を導出する。窓関数乗算部4は、窓スライド部9で導出した窓関数をIDFT部3から出力されたチャネル応答推定値に乗算する。DFT部5は、窓関数が乗算されたチャネル応答推定値を、DFT処理により周波数領域のチャネル応答推定値に変換する。サンプル補正部6は、複素除算部2で算出されたチャネル応答推定値から置き換えデータを算出する。サンプル置換部7は、DFT部5から出力されるチャネル応答推定値のデータが割り当てられている周波数帯域両端の高域部分と低域部分のデータを、サンプル補正部6が算出した置き換えデータで置き換える。
 本発明の第3の実施形態に係るチャネル推定装置は、チャネル応答推定値のデータが割り当てられている周波数帯域両端の高域部分と低域部分に発生する歪みを解消することができるので、チャネル応答の推定精度を向上させることができる。
 また、本発明の第3の実施形態に係るチャネル推定装置は、窓関数対象時間内に不要な雑音成分が混在しないように窓関数を導出することができるので、チャネル応答の推定精度を向上させることができる。
 1、21 参照信号レプリカ生成部
 2、22 複素除算部
 3、23 IDFT部
 4、24 窓関数乗算部
 5、25 DFT部
 6 サンプル補正部
 7 サンプル置換部
 8 ピークサーチ部
 9 窓スライド部
 11-1、11-2 無線受信部
 12-1、12-2 A/D変換部
 13-1、13-2 CP除去部
 14-1、14-2 FFT部
 15-1、15-2 チャネル推定部
 16 チャネル等化部
 17 サブキャリアデマッピング部
 18 復調部

Claims (14)

  1.  参照信号が挿入された受信信号を、前記参照信号のレプリカで複素除算することによりチャネル応答推定値を算出して伝搬路の状態を推定するチャネル推定装置であって、
     前記複素除算により算出されたチャネル応答推定値を、IDFT処理により時間領域のチャネル応答推定値に変換するIDFT部と、
     前記IDFT処理後の所望波信号のチャネル応答推定値に窓関数を乗算する窓関数乗算部と、
     前記窓関数が乗算されたチャネル応答推定値を、DFT処理により周波数領域のチャネル応答推定値に変換するDFT部と、
     前記複素除算により算出されたチャネル応答推定値から置き換えデータを算出するサンプル補正部と、
     前記DFT部から出力されたチャネル応答推定値のデータが割り当てられている周波数帯域両端の高域部分と低域部分のデータを、前記サンプル補正部が算出した前記置き換えデータで置き換えるサンプル置換部と、
    を備えることを特徴とするチャネル推定装置。
  2.  前記サンプル補正部は、前記複素除算により算出されたチャネル応答推定値のデータが割り当てられている周波数帯域両端の高域部分と低域部分から置き換えポイント数分のデータを抽出し、抽出したデータを前記置き換えデータとすることを特徴とする請求項1に記載のチャネル推定装置。
  3.  前記サンプル補正部は、前記複素除算により算出されたチャネル応答推定値のデータが割り当てられている周波数帯域両端の高域部分と低域部分から置き換えポイント数分のデータを抽出し、抽出したデータの平均値を前記置き換えデータとすることを特徴とする請求項1に記載のチャネル推定装置。
  4.  前記サンプル補正部は、前記複素除算により算出されたチャネル応答推定値のデータが割り当てられている周波数帯域両端の高域部分と低域部分から置き換えポイント数分のデータを抽出し、抽出したデータの平均値を算出し、算出した平均値に忘却係数を乗算したデータを前記置き換えデータとすることを特徴とする請求項1に記載のチャネル推定装置。
  5.  参照信号が挿入された受信信号を、前記参照信号のレプリカで複素除算することによりチャネル応答推定値を算出して伝搬路の状態を推定するチャネル推定方法であって、
     前記複素除算により算出されたチャネル応答推定値を、IDFT処理により時間領域のチャネル応答推定値に変換するステップと、
     前記IDFT処理後の所望波信号のチャネル応答推定値に窓関数を乗算するステップと、
     前記窓関数が乗算されたチャネル応答推定値を、DFT処理により周波数領域のチャネル応答推定値に変換するステップと、
     前記複素除算により算出されたチャネル応答推定値から置き換えデータを算出するステップと、
     DFT処理後のチャネル応答推定値のデータが割り当てられている周波数帯域両端の高域部分と低域部分のデータを、前記置き換えデータで置き換えるステップと、
    を含むことを特徴とするチャネル推定方法。
  6.  参照信号が挿入された受信信号を、前記参照信号のレプリカで複素除算することによりチャネル応答推定値を算出して伝搬路の状態を推定するチャネル推定装置であって、
     前記複素除算により算出されたチャネル応答推定値を、IDFT処理により時間領域のチャネル応答推定値に変換するIDFT部と、
     前記IDFT処理後のチャネル応答推定値のうち、所定の範囲内で最大レベルのインパルス成分のサーチを行うピークサーチ部と、
     前記ピークサーチ部で特定した最大レベルのインパルス成分のサンプル点から、前後数サンプルの窓関数を導出する窓スライド部と、
     前記窓スライド部で導出した窓関数を、前記IDFT処理後のチャネル応答推定値に乗算する窓関数乗算部と、
     前記窓関数が乗算されたチャネル応答推定値を、DFT処理により周波数領域のチャネル応答推定値に変換するDFT部と、
    を備えることを特徴とするチャネル推定装置。
  7.  前記前後数サンプルは、マルチキャリア伝送システムの帯域幅、CP長、送信機と受信機の距離から可変とすることを特徴とする請求項6に記載のチャネル推定装置。
  8.  参照信号が挿入された受信信号を、前記参照信号のレプリカで複素除算することによりチャネル応答推定値を算出して伝搬路の状態を推定するチャネル推定方法であって、
     前記複素除算により算出されたチャネル応答推定値を、IDFT処理により時間領域のチャネル応答推定値に変換するステップと、
     前記IDFT処理後のチャネル応答推定値のうち、所定の範囲内で最大レベルのインパルス成分のサーチを行うステップと、
     前記サーチで特定した最大レベルのインパルス成分のサンプル点から、前後数サンプルの窓関数を導出するステップと、
     導出した前記窓関数を、前記IDFT処理後のチャネル応答推定値に乗算するステップと、
     前記窓関数が乗算されたチャネル応答推定値を、DFT処理により周波数領域のチャネル応答推定値に変換するステップと、
    を含むことを特徴とするチャネル推定方法。
  9.  参照信号が挿入された受信信号を、前記参照信号のレプリカで複素除算することによりチャネル応答推定値を算出して伝搬路の状態を推定するチャネル推定装置であって、
     前記複素除算により算出されたチャネル応答推定値を、IDFT処理により時間領域のチャネル応答推定値に変換するIDFT部と、
     前記IDFT処理後のチャネル応答推定値のうち、所定の範囲内で最大レベルのインパルス成分のサーチを行うピークサーチ部と、
     前記ピークサーチ部で特定した最大レベルのインパルス成分のサンプル点から、前後数サンプルの窓関数を導出する窓スライド部と、
     前記窓スライド部で導出した窓関数を、前記IDFT処理後のチャネル応答推定値に乗算する窓関数乗算部と、
     前記窓関数が乗算されたチャネル応答推定値を、DFT処理により周波数領域のチャネル応答推定値に変換するDFT部と、
     前記複素除算により算出されたチャネル応答推定値から置き換えデータを算出するサンプル補正部と、
     前記DFT部から出力されたチャネル応答推定値のデータが割り当てられている周波数帯域両端の高域部分と低域部分のデータを、前記サンプル補正部が算出した前記置き換えデータで置き換えるサンプル置換部と、
    を備えることを特徴とするチャネル推定装置。
  10.  前記前後数サンプルは、マルチキャリア伝送システムの帯域幅、CP長、送信機と受信機の距離から可変とすることを特徴とする請求項9に記載のチャネル推定装置。
  11.  前記サンプル補正部は、前記複素除算により算出されたチャネル応答推定値のデータが割り当てられている周波数帯域両端の高域部分と低域部分から置き換えポイント数分のデータを抽出し、抽出したデータを前記置き換えデータとすることを特徴とする請求項9に記載のチャネル推定装置。
  12.  前記サンプル補正部は、前記複素除算により算出されたチャネル応答推定値のデータが割り当てられている周波数帯域両端の高域部分と低域部分から置き換えポイント数分のデータを抽出し、抽出したデータの平均値を前記置き換えデータとすることを特徴とする請求項9に記載のチャネル推定装置。
  13.  前記サンプル補正部は、前記複素除算により算出されたチャネル応答推定値のデータが割り当てられている周波数帯域両端の高域部分と低域部分から置き換えポイント数分のデータを抽出し、抽出したデータの平均値を算出し、算出した平均値に忘却係数を乗算したデータを前記置き換えデータとすることを特徴とする請求項9に記載のチャネル推定装置。
  14.  参照信号が挿入された受信信号を、前記参照信号のレプリカで複素除算することによりチャネル応答推定値を算出して伝搬路の状態を推定するチャネル推定方法であって、
     前記複素除算により算出されたチャネル応答推定値を、IDFT処理により時間領域のチャネル応答推定値に変換するステップと、
     前記IDFT処理後のチャネル応答推定値のうち、所定の範囲内で最大レベルのインパルス成分のサーチを行うステップと、
     前記サーチで特定した最大レベルのインパルス成分のサンプル点から、前後数サンプルの窓関数を導出するステップと、
     導出した前記窓関数を、前記IDFT処理後のチャネル応答推定値に乗算するステップと、
     前記窓関数が乗算されたチャネル応答推定値を、DFT処理により周波数領域のチャネル応答推定値に変換するステップと、
     前記複素除算により算出されたチャネル応答推定値から置き換えデータを算出するステップと、
     DFT処理後のチャネル応答推定値のデータが割り当てられている周波数帯域両端の高域部分と低域部分のデータを、前記置き換えデータで置き換えるステップと、
    を含むことを特徴とするチャネル推定方法。
PCT/JP2012/001288 2011-02-25 2012-02-24 チャネル推定装置およびチャネル推定方法 WO2012114769A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-039346 2011-02-25
JP2011039348A JP5968593B2 (ja) 2011-02-25 2011-02-25 チャネル推定装置およびチャネル推定方法
JP2011-039347 2011-02-25
JP2011039346A JP2012178634A (ja) 2011-02-25 2011-02-25 チャネル推定装置およびチャネル推定方法
JP2011-039348 2011-02-25
JP2011039347A JP2012178635A (ja) 2011-02-25 2011-02-25 チャネル推定装置およびチャネル推定方法

Publications (1)

Publication Number Publication Date
WO2012114769A1 true WO2012114769A1 (ja) 2012-08-30

Family

ID=46720559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001288 WO2012114769A1 (ja) 2011-02-25 2012-02-24 チャネル推定装置およびチャネル推定方法

Country Status (1)

Country Link
WO (1) WO2012114769A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112995084A (zh) * 2021-02-07 2021-06-18 比科奇微电子(杭州)有限公司 信号的处理方法及处理装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174429A (ja) * 2001-12-05 2003-06-20 Nippon Hoso Kyokai <Nhk> デジタル信号の受信解析装置
JP2005130485A (ja) * 2003-10-01 2005-05-19 Matsushita Electric Ind Co Ltd Ofdm信号受信装置及びofdm信号受信方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174429A (ja) * 2001-12-05 2003-06-20 Nippon Hoso Kyokai <Nhk> デジタル信号の受信解析装置
JP2005130485A (ja) * 2003-10-01 2005-05-19 Matsushita Electric Ind Co Ltd Ofdm信号受信装置及びofdm信号受信方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112995084A (zh) * 2021-02-07 2021-06-18 比科奇微电子(杭州)有限公司 信号的处理方法及处理装置
CN112995084B (zh) * 2021-02-07 2023-02-24 比科奇微电子(杭州)有限公司 信号的处理方法及处理装置

Similar Documents

Publication Publication Date Title
KR100719111B1 (ko) Ofdm 시스템에 적용되는 위상잡음 보상장치 및 그 방법
KR100770924B1 (ko) 무선 통신 시스템에서 주파수 오차 보상 장치 및 방법
KR100807886B1 (ko) 직교 주파수 분할 다중화 시스템의 수신 장치
KR100802844B1 (ko) 직교주파수분할다중접속 시스템의 레인징 채널 처리 장치및 방법
EP2264921B1 (en) Receiving apparatus, receiving method, integrated circuit, digital television receiver, and program
CN101909024B (zh) 最大多普勒频偏的估计方法和装置
JP4612511B2 (ja) 受信装置及び受信方法
WO2007100982A2 (en) Synchronization for ofdm signals
CN101378380A (zh) 估计载波间干扰的方法和载波间干扰消除均衡器
CN102098258B (zh) 一种去除窄带干扰的方法和自适应滤波器
JP2009503944A (ja) Ofdm方式用シンボル同期
CN104836770B (zh) 一种基于相关平均与加窗的定时估计方法
US20100074346A1 (en) Channel estimation in ofdm receivers
KR20090084382A (ko) 광대역 무선접속 통신 시스템에서 주파수 동기를 위한 상관장치 및 방법
WO2009109942A2 (en) Integer carrier frequency offset estimation scheme for orthogonal frequency division multiplexing
WO2017181352A1 (en) Timing offset estimation in an ofdm-based system by sinr measurement
WO2012114769A1 (ja) チャネル推定装置およびチャネル推定方法
KR100664018B1 (ko) 직교주파수 분할다중화 수신기의 동기 검출장치
KR100695005B1 (ko) 직교주파수분할다중 기반 수신기의 채널 추정 장치 및 그방법
JP5349206B2 (ja) キャリア間干渉除去装置及びキャリア間干渉除去方法
KR101128287B1 (ko) 다중경로 페이딩 채널에서 타이밍 오차 추정이 가능한 ofdm 수신기, 이를 포함하는 ofdm 시스템 및 이들의 타이밍 오차 추정방법
JP5968593B2 (ja) チャネル推定装置およびチャネル推定方法
JP2007104574A (ja) マルチキャリア無線受信機及び受信方法
KR102005616B1 (ko) Ofdm 기반의 dab 시스템 및 그것을 이용한 모드 및 프레임 동기 방법
JP2012178634A (ja) チャネル推定装置およびチャネル推定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12749030

Country of ref document: EP

Kind code of ref document: A1