WO2012113130A1 - 三角柱体导流罩式风力发电机 - Google Patents

三角柱体导流罩式风力发电机 Download PDF

Info

Publication number
WO2012113130A1
WO2012113130A1 PCT/CN2011/071119 CN2011071119W WO2012113130A1 WO 2012113130 A1 WO2012113130 A1 WO 2012113130A1 CN 2011071119 W CN2011071119 W CN 2011071119W WO 2012113130 A1 WO2012113130 A1 WO 2012113130A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind power
triangular cylinder
power generation
shrouded
rotating
Prior art date
Application number
PCT/CN2011/071119
Other languages
English (en)
French (fr)
Inventor
林辉峯
黄秀美
Original Assignee
Lin Hui-Feng
Huang Hsiu-Mei
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lin Hui-Feng, Huang Hsiu-Mei filed Critical Lin Hui-Feng
Priority to PCT/CN2011/071119 priority Critical patent/WO2012113130A1/zh
Publication of WO2012113130A1 publication Critical patent/WO2012113130A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • F03D3/0436Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor
    • F03D3/0445Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor the shield being fixed with respect to the wind motor
    • F03D3/0454Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor the shield being fixed with respect to the wind motor and only with concentrating action, i.e. only increasing the airflow speed into the rotor, e.g. divergent outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/221Rotors for wind turbines with horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/10Geometry two-dimensional
    • F05B2250/11Geometry two-dimensional triangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/20Geometry three-dimensional
    • F05B2250/23Geometry three-dimensional prismatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/403Transmission of power through the shape of the drive components
    • F05B2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the invention relates to a triangular cylinder shrouded wind power generator, in particular to a wind power generator which utilizes a triangular cylinder shroud to improve wind power generation efficiency.
  • Petroleum energy is gradually depleted with the exploitation and use of human beings. Therefore, human beings have actively sought to find and develop various alternative energy sources, among which green and non-polluting energy sources are most favored, such as: wind, solar, tidal and geothermal. The energy available in the power generation system.
  • the utility model comprises a fixing frame, and the fixed frame is pivotally provided with a large paddle blade, and the paddle blade is connected with the rotating shaft of the generator, and the wind blade blows the blade blade to rotate.
  • the rotating shaft of the generator is driven to generate electric power.
  • the wind power generation system adopts a large paddle blade and is bulky, so that sufficient space is required for the setting, so the installation location is limited in an open area, and the manufacturing cost is large due to the large volume. High and difficult to repair, affecting the popularity of its use.
  • the paddle blades cannot be rotated, and the power generation cannot be provided. Therefore, the power generation efficiency is not good, so the existing wind power generation system
  • the limited use and poor performance are problems that the industry is eager to solve.
  • the technical problem to be solved by the present invention is to provide a triangular cylinder shrouded wind power generator, which improves the problem of large space occupied by the existing wind power generation system, poor power generation performance, and difficulty in maintenance and high cost.
  • the technical solution of the present invention is to provide a triangular cylinder shrouded wind power generator, wherein the triangular cylinder shrouded wind power includes a box body and at least one wind power generation module, and the box body includes an upper wind box board.
  • the wind power generation module is disposed in the cabinet, and the wind power generation module comprises
  • the rotating shaft of the two rotating air panels is connected to a transmission component and connected to the generator set, and an intermediate partitioning plate is disposed between the two rotating air panels in the box body, the middle
  • the partition plate is provided with at least one set of tuyere adjustment unit on a side adjacent to the air inlet, the tuyere adjustment unit includes two movable extension plates that are reversibly movable, and the intermediate partition plate has a triangular column at the outer periphery of the tuyere adjustment unit Body shroud.
  • the triangular cylinder shroud disposed in front of the air inlet provides an effective angle of air intake, which can guide the wind airflow through the air inlet and concentrate the wind to efficiently push the two rotating air panels to rotate, so that the rotating air panels are not simultaneously subjected to Another counteracting force of the same direction airflow.
  • the adjustment of the active stretch plate can adjust the air intake to the best.
  • the movable stretch plate can move and narrow the air inlet, so as not to cause the blade to be damaged, and the generator set can be operated stably.
  • the dynamic addition of a set of double-rotating wind plates provides a large driving force and pushes the generator set, and combines the rotating power of the two rotating wind plates to push the connected generating units, and the triangular-column shrouded wind power generator can be Use wind power modules to increase power generation.
  • the triangular cylinder shroud type wind power generator of the invention has good practicability, can save space for installation, reduces installation restrictions, and can reduce cost, and has the advantages of easy maintenance, high durability, and improved airflow utilization.
  • the advantage of efficiency is the reason for efficiency.
  • FIG. 1 is a perspective assembled view of a first embodiment of a triangular cylinder shrouded wind power generator according to the present invention.
  • FIG. 2 is a partial perspective assembled view of FIG. 1.
  • FIG. 2 is a partial perspective assembled view of FIG. 1.
  • FIG 3 is a side plan view showing the transmission assembly of the second embodiment of the triangular cylinder shrouded wind power generator of the present invention.
  • FIG. 4 is a side plan view showing a first embodiment of a triangular cylinder shrouded wind power generator of the present invention.
  • Figure 5 is a front plan partial plan view showing a first embodiment of a triangular cylinder shroud type wind power generator of the present invention.
  • Figure 6 is a front plan partial plan view showing a third embodiment of the triangular cylinder shrouded wind power generator of the present invention.
  • Fig. 7 is a perspective view showing the third embodiment of the triangular cylinder shroud type wind power generator of the present invention.
  • FIG. 8 is a perspective assembled view of a fifth embodiment of a triangular cylinder shrouded wind power generator according to the present invention.
  • Fig. 9 is a perspective, assembled view of a sixth embodiment of a triangular cylinder shrouded wind power generator of the present invention.
  • Figure 10 is a partial cross-sectional view of the track of Figure 9.
  • Figure 11 is a side plan view showing a seventh embodiment of a triangular cylinder shroud type wind power generator of the present invention.
  • Figure 12 is a perspective view showing the seventh embodiment of the triangular cylinder shroud type wind power generator of the present invention.
  • Figure 13 is a perspective view showing the eighth embodiment of the triangular cylinder shroud type wind power generator of the present invention.
  • a preferred embodiment of a triangular cylinder shrouded wind power generator includes a casing 10 and at least one wind power generation module 20 .
  • the box body 10 includes an upper bellows board 11, a lower bellows board 12, a left bellows board 13 and a right bellows board 14, which are disposed opposite to the lower bellows board 12, the left bellows board 13 and the right
  • the upper bellows plate 11 and the lower bellows plate 12 are respectively connected to the two sides of the bellows plate 14 to enclose an accommodating space 15 and form an air inlet 16 and an air outlet 17.
  • the wind power generation module 20 is disposed in the casing 10, and the wind power generation module 20 includes two rotating air panels 21, a transmission assembly 22, a generator set 23, an intermediate partition plate 24, and at least one tuyere adjustment unit. 25 and a triangular cylinder shroud 26.
  • the two rotating air panels 21 each have a rotating shaft 211, and are disposed in the housing 10 and seated in the accommodating space 15, and the rotating shaft 211 is provided with a plurality of blades 212.
  • the rotating shaft 211 of the two rotating air panels 21 A transmission assembly 22 is connected and connected to the generator set 23.
  • the intermediate partitioning plate 24 is assembled in the casing 10 by a partition 27, and the partition 27 is disposed in the casing 10 and provides a set of connections.
  • the slot allows the intermediate partitioning plate 24 to be inserted, and the intermediate partitioning plate 24 is located between the two rotating air panels 21, and the partitioning frame 27 is provided with at least one set of tuyere adjusting unit 25 on a side adjacent to the air inlet 16 .
  • the tuyere adjustment unit 25 includes two movable extension plates 251 that are reversibly movable, and the intermediate partition plate 24 has a triangular column guide 26 at the periphery of the tuyere adjustment unit 25, which can guide the airflow through the air inlet 16 And drive the rotating air panel 21 (as shown in Figure 4).
  • the hydraulic expansion cylinder 252 is disposed on the spacer. 27, the cylinder core 253 of the hydraulic cylinder 252 is connected to the symmetric movable stretching plate 251, so that it can be moved in the opposite direction at the same time.
  • the wind power generation module 20 includes the two air outlet adjusting unit 25.
  • the transmission assembly 22 includes a large gear 221a and a small gear 222a.
  • the large gear 221a is sleeved on a rotating shaft 211 of one of the rotating air plates 21, and the small gear 222a is sleeved on the other.
  • the pinion gear 222a is meshed with the large gear 221a, and the generator set 23 is provided on the rotating shaft 211 of the connecting pinion 222a.
  • the transmission assembly 22 includes a belt type wheel and a gear.
  • the rotating shaft 211 of a rotating air plate 21 is coupled to a belt type wheel.
  • the belt type wheel includes a large wheel 223a and a small wheel.
  • the rotating wheel 224a is provided with a belt 225a, and the large rotating wheel 223a is disposed on the rotating shaft 211 of the connected rotating wind plate 21.
  • the small rotating wheel 224a is disposed on the casing 10, and the rotating shaft 211 of the other rotating wind plate 21 is disposed.
  • the wind power generation module 20 is a vertical or horizontal wind power generation module 20 , and the movable extension plate 251 can move laterally to the left or right or vertically.
  • the casing 10 can further A guide rail (not shown) that fits the movable stretch plate 251 is provided.
  • the box body 10 is provided with a horn-shaped air collecting hood at the air inlet 16 , and the air collecting hood has two damper plates 18 symmetrically arranged and matched with the rotating wind plate 21 , wherein the rotating wind plate
  • the air collecting plate 18 cooperates with the rotating air plate 21, and is respectively disposed on the left bellows plate 13 and the right bellows plate 14 of the casing 10, and as shown in FIG. 8, when the rotating wind plate 21 is horizontally set,
  • the wind plate 18 cooperates with the rotating air plate 21, and is respectively disposed on the upper wind box plate 11 and the lower air box plate 12 of the casing 10, and can guide the airflow into the air inlet 16.
  • the triangular cylinder shrouded wind power generator is provided with a plurality of wind guiding direction wings 19 on the upper wind box plate 11 of the casing 10, and the casing 10 is provided with bearings, and is rotatably assembled On the fixed post 31 of the base 30 (as shown in Fig. 8), if the wind current is blown onto the wind deflecting direction wing 19, the casing 10 can be rotated to allow the air inlet 16 to face the wind direction of the wind current.
  • the triangular cylinder shrouded wind power generator is provided with a plurality of wind power generation modules 20 on the casing 10 , and the wind power generation modules 20 are horizontally and laterally and longitudinally grouped and extended.
  • the transmission assembly 22 of the casing 10 and the generator set 23 are covered by a casing 231.
  • the casing 10 is provided with a wind direction anemometer 40 having a sensing member, and the sensing member is connected to a control unit, and the casing 10 is provided with a partition.
  • the partitioning plate 29 partitions the accommodating space 15 in the casing 10 into a plurality of assembly chambers, and the assembly chambers respectively provide a wind power generation module 20, and the casing 10 is disposed at a base.
  • the base platform 50 is provided with a track 51 (shown in FIG. 10), and the track 51 is provided with a circular platform 52.
  • the circular platform 52 is provided with a roller 53 for engaging the track 51, and a circular platform. 52 is provided with a track drive motor 54 electrically connected to the control unit, which can drive the circular platform 52 to rotate on the track 51 and align with the optimal windward side.
  • the circle The shaped platform 52 is provided with a plurality of supporting steel beams 56 connected to a ring table 57.
  • the ring base 57 is provided with a reinforcing member 58 for connecting the box body 10, and the ring table 57 is provided with three spaced-apart support columns 55, and the reinforcing member is located below the intermediate support column 55, wherein the support member
  • the steel beam 56 spans over the circular platform 52 to enhance structural stability.
  • the triangular cylinder shrouded wind power generator of the present invention comprises a two-level wind power generation module 20, and a pair of rotating air panels 21 of the two wind power generation modules 20 are connected by a transmission component 22 to generate electricity.
  • the rotating air panel 21 of one wind power generation module 20 and the rotating air panel 21 of the other wind power generation module 20 on the opposite side are the same rotating shaft 211, and the transmission assembly 22 includes a belt type rotating wheel and a gear set.
  • the belt type runner includes a large rotating wheel 223b and a small rotating wheel 224b, and a belt 225b is disposed on the periphery, and the large rotating wheel 223b is disposed on the upper rotating shaft 211, and the small rotating wheel is disposed on the spindle of the generator set 23.
  • the gear set includes a large gear 221c and a small gear 222c.
  • the large gear 221c is disposed on the lower rotating shaft 211.
  • the small gear 222c is disposed on the spindle of the generator set 23 and meshes with the large gear 221c.
  • a triangular cylinder auxiliary baffle 28 is further disposed outside the transmission component 22 to guide the wind to the rotating air plates 21 on both sides.
  • the serial connection manner may also be It is applied to the vertical wind power generation module 20.
  • the airflow is blown to the air inlet 16 of the casing 10, guided by the triangular cylinder shroud 26, and can be respectively guided to the symmetrically disposed rotating air panels 21, and
  • the offset force of the rotating air plate 21 in the same direction is reduced, and according to the size of the air flow, the movable stretch plate 251 can be adjusted. If the air flow is too large, the movable stretch plate 251 can be moved outward to block a part of the air inlet 16 area, and then The optimal air intake amount is adjusted, thereby increasing the efficiency of the wind airflow to push the rotating air panel 21, and avoiding the vane 212 of the rotating air panel 21 from being damaged.
  • the rotating air panel 21 is pushed and rotated in opposite directions to drive the transmission assembly 22 and promote power generation.
  • the unit 23 achieves the purpose of wind power generation.
  • the wind flow is blown to the wind guiding direction wing 19 on the casing 10 , and the direction of the casing 10 is adjusted to rotate the casing 10 on the fixed column 31 to make the casing 10
  • the air inlet 16 faces the air flow.
  • the wind current blows the wind direction aerator 40 on the casing 10.
  • the sensing device of the wind direction aerometer 40 measures the direction of the wind flow and transmits the message to the control unit, and the control unit further drives the circle.
  • the track driving motor 54 on the platform 52 drives the circular platform 52 to rotate on the base platform 50, so that the air inlet 16 of the casing 10 above the circular platform 52 faces the wind flow, and the triangular cylinder of the wind power generation module 20
  • the deflector 26 can guide the airflow, and the windshield 18 disposed above and below can further guide the windflow, increase the windflow to push the power of the rotary panel 21, and improve the efficiency of wind power generation.
  • the triangular cylinder shrouded wind power generator includes two wind power generation modules 20 sharing a transmission component 22, and the two wind power generation modules 20 are horizontally connected in series, and the common transmission component 22 is used.
  • the generator set 23 is located between the two wind power generation modules 20, the triangular cylinder shrouded wind power generator further provides a vertical triangular cylinder auxiliary shroud 28 between the two wind power generation modules 20, the triangular cylinder
  • the auxiliary shroud 28 is disposed outside the shared transmission assembly 22 and the genset 23, wherein the wind flow is blown toward the air inlet 16 of the casing 10.
  • the two horizontal wind power generation module 20 utilizes a triangular cylinder shroud 26
  • the wind airflow is introduced into the air inlet 16 from above and below, and the triangular cylinder auxiliary air deflector 28 introduces the wind air flow into the air inlet 16 from the left and right sides, and increases the power of the rotating air panel 21 through the air flow of the air inlet 16 to rotate the wind panel.
  • the 21 drives the transmission assembly 22 and pushes the generator set 23 to improve the efficiency of wind power generation.
  • the triangular cylinder shrouded wind power generator includes two wind power generation modules 20 sharing a transmission component 22, and the two wind power generation modules 20 are vertically connected in series, and the common transmission component 22 and power generation are used.
  • the unit 23 is located between the two wind power generation modules 20, and the triangular cylinder shrouded wind turbine further provides a horizontal triangular cylinder auxiliary shroud 28 between the two wind power generation modules 20, the triangular cylinder auxiliary guide
  • the shroud 28 housing is external to the shared drive assembly 22 and generator set 23.
  • the triangular cylinder shroud 26 of the triangular cylinder shroud type wind power generator of the present invention can guide the wind airflow through the air inlet 16 and concentrate the wind, and can effectively push the two rotating air panels 21 to rotate.
  • the purpose of the effective angle of entering the wind is blocked by the triangular cylinder shroud 26, so that the rotating air panel 21 is not fully subjected to the wind, so that the rotating air panel 21 is not simultaneously offset by the wind flow in the other direction.
  • the design of the air collecting plate 18 and the movable stretching plate 251 of the size of the adjustable air inlet 16 can be adjusted to the optimal air intake in addition to the concentrated wind force, thereby improving the performance of the rotating air plate 21, and The blade 212 can be protected, the service life is increased, and the genset 23 is stabilized.
  • the connected genset 23 can be pushed in combination with the rotational power of the two rotating air panels 21 to increase the power generation efficiency, and the triangular cylinder shroud type wind power generator can add the wind power generation module 20 according to the use requirement.
  • Improve power generation, good practicality, and save space for installation, reduce installation restrictions, and reduce costs, and component damage can also be directly removed for repair and replacement, without affecting the normal operation of other wind power generation modules 20,
  • the advantages of easy maintenance and high durability are beneficial to the commercial operation needs of the industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Description

三角柱体导流罩式风力发电机 技术领域
本发明是一种三角柱体导流罩式风力发电机,特别是指一种利用三角柱体导流罩提高风力发电效率的风力发电机。
背景技术
石油能源随着人类的开采、使用而逐渐耗尽,因此人类已经积极着手寻找并开发各种替代性能源,其中又以绿色无污染的能源最受青睐,如:风力、太阳能、潮汐与地热等可用在发电***的能源。
以目前常见的风力发电***而言,其包括有一固定架,该固定架上枢设有大型的桨形叶片,桨形叶片与发电机的转轴相连接,藉由风力吹动桨形叶片转动而带动发电机的转轴,进而产生电力,其中,风力发电***采用大型的桨形叶片且体积庞大,因此需要足够的空间才可以设置,所以设置地点受限在空旷地区,因体积庞大,导致制造成本高且维修不易,影响其使用的普及性,另外,风力大小不均匀或风力微量时,会无法转动桨形叶片,不能提供发电的效用,所以发电效率并不佳,所以现有的风力发电***在使用上限制多且效能不佳,是为业界急欲解决的问题。
发明内容
本发明要解决的技术问题是:提供一种三角柱体导流罩式风力发电机,改善现有风力发电***设置的占地空间大、发电效能不佳、维修不易与成本高的问题。
本发明的技术解决方案是:提供一种三角柱体导流罩式风力发电机,其中,该三角柱体导流罩式风力包含有一箱体及至少一风力发电模块,该箱体包括有一上风箱板、一下风箱板、一左风箱板及一右风箱板,圈围出一容置空间并形成一入风口及一出风口,所述风力发电模块是设在该箱体,所述风力发电模块包含有枢设在箱体的二旋转风板,该二旋转风板的转轴连接一传动组件并连接发电机组,并在箱体内设一中间分隔板在该二旋转风板之间,该中间分隔板在邻近入风口的一侧设有至少一组风口调整单元,所述风口调整单元包括有二可反向移动的活动伸展板,以及该中间分隔板在风口调整单元外设有一三角柱体导流罩。
本发明的优点是:
1.在入风口处前方设置的三角柱体导流罩,提供有效角度进风,可引导风气流通过入风口且集中风力而有效率地推动该二旋转风板转动,不使旋转风板同时受另一同向气流的抵消作用力。
2.活动伸展板的调整可让入风量调整至最佳,当风量超大时,活动伸展板可将移动并缩小入风口,不致造成叶片毁损,让发电机组运转发电稳定。
3.一组双旋转风板的动力相加,提供较大推动力并推动发电机组,结合该二旋转风板的转动动力推动连接的发电机组,该三角柱体导流罩式风力发电机可依照使用需求增设风力发电模块以提高发电量。
据上所述,本发明三角柱体导流罩式风力发电机实用性佳,以及可节省设置的占地空间,降低设置限制,并可降低成本,具有维修容易、耐用度高、提高气流的利用效率的优点。
附图说明
图1为本发明三角柱体导流罩式风力发电机的第一具体实施例的立体组合示意图。
图2为图1的局部立体组合示意图。
图3为本发明三角柱体导流罩式风力发电机的第二具体实施例的传动组件侧视平面示意图。
图4为本发明三角柱体导流罩式风力发电机的第一具体实施例的侧视平面示意图。
图5为本发明三角柱体导流罩式风力发电机的第一具体实施例的前视局部平面示意图。
图6为本发明三角柱体导流罩式风力发电机的第三具体实施例的前视局部平面示意图。
图7为本发明三角柱体导流罩式风力发电机的第四具体实施例的立体组合示意图。
图8为本发明三角柱体导流罩式风力发电机的第五具体实施例的立体组合示意图。
图9为本发明三角柱体导流罩式风力发电机的第六具体实施例的立体组合示意图。
图10为图9的轨道局部剖面示意图。
图11为本发明三角柱体导流罩式风力发电机的第七具体实施例的侧视平面示意图。
图12为本发明三角柱体导流罩式风力发电机的第七具体实施例的立体外观示意图。
图13为本发明三角柱体导流罩式风力发电机的第八具体实施例的立体外观示意图。
附图标号说明:
10 箱体 11 上风箱板
12 下风箱板 13 左风箱板
14 右风箱板 15 容置空间
16 入风口 17 出风口
18 集风板 19 风导流方向翼
20 风力发电模块 21 旋转风板
211 转轴 212 叶片
22 传动组件 221a、221b、221c 大齿轮
222a、222b、222c 小齿轮
223a、223b 大转轮
224a、224b 小转轮 225a、225b 皮带
23 发电机组 231 壳体
24 中间分隔板 25 风口调整单元
251 活动伸展板 252 油压缸
253 缸心 26 三角柱体导流罩
27 隔架 28 三角柱体辅助导流罩
29 隔间板
30 底座 31 固定柱
40 风向风速器
50 基地平台 51 轨道
52 圆形平台 53 滚轮
54 轨道驱动马达 55 支撑柱
56 支撑钢梁 57 环台
58 补强件
具体实施方式
以下配合图式及本发明的较佳实施例,进一步阐述本发明为达成预定发明目的所采取的技术手段。
请参阅图1,为本发明三角柱体导流罩式风力发电机的一较佳实施例,其包含有一箱体10及至少一风力发电模块20。
该箱体10包含有一上风箱板11、一下风箱板12、一左风箱板13及一右风箱板14,该上风箱板11与该下风箱板12间隔相对设置,该左风箱板13与右风箱板14两侧分别连接该上风箱板11与下风箱板12,圈围出一容置空间15并形成一入风口16及一出风口17。
所述风力发电模块20是设在该箱体10,所述风力发电模块20皆包含二旋转风板21、一传动组件22、一发电机组23、一中间分隔板24、至少一风口调整单元25及一三角柱体导流罩26。
该二旋转风板21皆具有一转轴211,藉此枢设在箱体10并位在该容置空间15中,以及转轴211上设有多个叶片212,该二旋转风板21的转轴211是连接一传动组件22并连接发电机组23,该中间分隔板24是藉由一隔架27组设在箱体10内,该隔架27设在该箱体10内,并提供一组接槽让中间分隔板24插组,且该中间分隔板24位在该二旋转风板21之间,该隔架27在邻近入风口16的一侧设有至少一组风口调整单元25,所述风口调整单元25包括有二可反向移动的活动伸展板251,以及该中间分隔板24在风口调整单元25外设有一三角柱体导流罩26,可导引风气流通过入风口16并带动旋转风板21(如图4所示)。
其中,该二活动伸展板251藉由油压缸252或气压缸达到同时反向移动的结果,在本发明的较佳实施例中,是采用油压缸252,油压缸252设在隔架27上,油压缸252的缸心253连接对称的活动伸展板251,因此可以同时反向移动,在本发明较佳实施例中,所述风力发电模块20包含有二风口调整单元25。
请参阅图2所示,所述传动组件22包括有一大齿轮221a及一小齿轮222a,该大齿轮221a套设在其中一旋转风板21的转轴211上,该小齿轮222a套设在另一旋转风板21的转轴211上,该小齿轮222a与大齿轮221a啮合,以及发电机组23设在连接小齿轮222a的转轴211。
请参阅图3所示,所述传动组件22包含皮带式转轮与齿轮,其中一旋转风板21的转轴211连接一皮带式转轮,该皮带式转轮包含有一大转轮223a及一小转轮224a,且***套设一皮带225a,大转轮223a设在连接的旋转风板21的转轴211上,小转轮224a设在箱体10上,另一旋转风板21的转轴211设有一小齿轮222b与发电机组23,小齿轮222b与一大齿轮221b啮合,且大齿轮221b与皮带式转轮的小转轮224a同轴心。
如图5、图6所示,所述风力发电模块20为垂直式或水平式设置的风力发电模块20,活动伸展板251可以左右侧向移动,或是垂直上下移动,该箱体10可进一步设置配合活动伸展板251的导引轨道(图中未示)。
请参阅图7所示,该箱体10在入风口16处设置喇叭状的集风罩,所述集风罩具有二对称设置且配合旋转风板21的集风板18,其中,旋转风板21垂直设置时,集风板18配合旋转风板21,分别设在该箱体10的左风箱板13与右风箱板14上,另如图8所示,旋转风板21水平设置时,集风板18配合旋转风板21,分别设置在该箱体10的上风箱板11与下风箱板12上,可导引风气流流入入风口16。
另外,该三角柱体导流罩式风力发电机在该箱体10的上风箱板11上设有复数风导流方向翼19,以及该箱体10上设有轴承,且可旋转地组设在一底座30的固定柱31上(如图8所示),若风气流吹打至风导流方向翼19上,该箱体10可旋转让入风口16朝向风气流的风向。
请参阅图9所示,该三角柱体导流罩式风力发电机在箱体10上设有多组风力发电模块20,该些风力发电模块20呈水平且侧向、纵向串组,并在伸出该箱体10的传动组件22与发电机组23外罩一壳体231,该箱体10上设有具有感知件的风向风速器40,感知件连接一控制单元,该箱体10内设有隔间板29,藉由隔间板29将该箱体10内的容置空间15区隔成复数装配室,该些装配室分别提供风力发电模块20组设,该箱体10是设在一基地平台50上,该基地平台50上设有一轨道51(如图10所示),以及轨道51上设有一圆形平台52,该圆形平台52设有配合轨道51的滚轮53,以及圆形平台52上设有一电性连接控制单元的轨道驱动马达54,该轨道驱动马达54可带动圆形平台52在轨道51上转动并对准最佳迎风面,在本发明较佳实施例中,该圆形平台52上设有复数支撑钢梁56,该些支撑钢梁56连接一环台57,该环台57上设有连接该箱体10的补强件58,以及该环台57上设有三支间隔设置的支撑柱55,补强件位在中间的支撑柱55的下方,其中,支撑钢梁56跨设在圆形平台52上,可补强结构稳定性。
如图11所示,本发明三角柱体导流罩式风力发电机包含有二水平式的风力发电模块20,该二风力发电模块20的一对旋转风板21是以一传动组件22连接一发电机组23,其中一风力发电模块20的旋转风板21与对侧的另一风力发电模块20的旋转风板21是同一转轴211,该传动组件22包括有一皮带式转轮及一齿轮组,该皮带式转轮包括有一大转轮223b及一小转轮224b,且***套设一皮带225b,该大转轮223b设在较上方的转轴211,该小转轮设在发电机组23的心轴上,该齿轮组包括有一大齿轮221c及一小齿轮222c,该大齿轮221c设在较下方的转轴211上,该小齿轮222c设在发电机组23的心轴上,并与该大齿轮221c啮合,如图11、12所示,在传动组件22外进一步增设一三角柱体辅助导流罩28,将风导引至两侧旋转风板21处,如图13所示,上述串接方式亦可运用在垂直式的风力发电模块20上。
请参阅图4、图5所示,风气流吹向该箱体10的入风口16,受到三角柱体导流罩26的导引,可分别导引至对称设置的旋转风板21处,并可降低旋转风板21同向气流的抵消作用力,另依据风气流的大小,可以调整活动伸展板251,若风气流超大,可让活动伸展板251往外移动,遮挡一部分的入风口16面积,进而调节最佳入风量,藉此提高风气流推动旋转风板21的效能,又可避免旋转风板21的叶片212毁损,旋转风板21被推动后彼此反向旋转,带动传动组件22并推动发电机组23,达到风力发电的目的。
另参阅图8所示,风气流吹打至该箱体10上的风导流方向翼19,调整该箱体10的方向,使该箱体10在固定柱31上转动,使该箱体10的入风口16朝向风气流。
另参阅图9所示,风气流吹打该箱体10上的风向风速器40,风向风速器40的感知件测得风气流的方向并将讯息传递至控制单元,该控制单元进一步驱动该圆形平台52上的轨道驱动马达54,带动该圆形平台52在该基地平台50上转动,使该圆形平台52上方的箱体10的入风口16迎向风气流,风力发电模块20的三角柱体导流罩26可导引风气流,以及上下设置的集风板18也可进一步导引风气流,增加风气流推动旋转风板21的力量,提高风力发电的效率。
如图11、图12所示,该三角柱体导流罩式风力发电机包括有共用一传动组件22的二风力发电模块20,该二风力发电模块20采左右水平式串联,共用的传动组件22与发电机组23位在该二风力发电模块20之间,该三角柱体导流罩式风力发电机进一步在该二风力发电模块20之间设置垂直式的三角柱体辅助导流罩28,该三角柱体辅助导流罩28外罩在共用的传动组件22与发电机组23外,其中,风气流吹向该箱体10的入风口16处,该二水平式的风力发电模块20利用三角柱体导流罩26,将风气流上下导入入风口16,另外该三角柱体辅助导流罩28则将风气流左右侧向导入入风口16,增加通过入风口16的风气流推动旋转风板21的力量,旋转风板21带动传动组件22并推动发电机组23,提高风力发电的效率。
另如图13所示,该三角柱体导流罩式风力发电机包括有共用一传动组件22的二风力发电模块20,该二风力发电模块20采上下垂直式串联,共用的传动组件22与发电机组23位在该二风力发电模块20之间,该三角柱体导流罩式风力发电机进一步在该二风力发电模块20之间设置水平式的三角柱体辅助导流罩28,该三角柱体辅助导流罩28外罩在共用的传动组件22与发电机组23外。
综上所述,本发明三角柱体导流罩式风力发电机的三角柱体导流罩26,可引导风气流通过入风口16且集中风力,可有效率地推动该二旋转风板21转动,达到有效角度进风的目的,又因受到三角柱体导流罩26的遮挡,使旋转风板21不会全面受风,让旋转风板21不会同时受到另一方向风气流的抵消作用力。
另外,集风板18的设计与可调整入风口16大小的活动伸展板251设计,除了可集中加强风力之外,还可调整至最佳入风量,进而提高推动旋转风板21的效能,又可保护叶片212,提高使用寿命,并让发电机组23运转稳定。
此外,可结合该二旋转风板21的转动动力推动连接的发电机组23,推动力加乘而提高发电效能,以及该三角柱体导流罩式风力发电机可依照使用需求增设风力发电模块20以提高发电量,实用性佳,以及可节省设置的占地空间,降低设置限制,并可降低成本,且构件损坏也可直接拆下维修更换,不会影响其他风力发电模块20的正常运作,具有维修容易、耐用度高的优点,故利于产业的商业运转需求。
以上所述仅是本发明的较佳实施例而已,并非对本发明做任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案的范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

1. 一种三角柱体导流罩式风力发电机,其特征在于,所述三角柱体导流罩式风力包含有一箱体及至少一风力发电模块:
一箱体,其包括有一上风箱板、一下风箱板、一左风箱板及一右风箱板,圈围出一容置空间并形成一入风口及一出风口;
至少一风力发电模块,其是设在该箱体,所述风力发电模块包含有枢设在箱体的二旋转风板,该二旋转风板的转轴连接一传动组件并连接发电机组,并在箱体内设一中间分隔板在该二旋转风板之间,该中间分隔板在邻近入风口的一侧设有至少一组风口调整单元,所述风口调整单元包括有二可反向移动的活动伸展板,以及该中间分隔板在风口调整单元外设有一三角柱体导流罩。
2.根据权利要求1所述的三角柱体导流罩式风力发电机,其特征在于,所述传动组件包括有一大齿轮及一小齿轮,该大齿轮套设在其中一旋转风板的转轴上,该小齿轮套设在另一旋转风板的转轴上,该小齿轮与大齿轮啮合,以及发电机组设在连接小齿轮的转轴。
3.根据权利要求1所述的三角柱体导流罩式风力发电机,其特征在于,所述传动组件包含皮带式转轮与齿轮,其中一旋转风板的转轴连接一皮带式转轮,该皮带式转轮包含有一大转轮及一小转轮,且***套设一皮带,大转轮设在连接的旋转风板的转轴上,小转轮设在箱体上,另一旋转风板的转轴设有一小齿轮与发电机组,小齿轮与一大齿轮啮合,且大齿轮与皮带式转轮的小转轮同轴心。
4.根据权利要求1至3中任一所述的三角柱体导流罩式风力发电机,其特征在于,所述风力发电模块为垂直式或水平式设置的风力发电模块。
5.根据权利要求1至3中任一所述的三角柱体导流罩式风力发电机,其特征在于,所述三角柱体导流罩式风力发电机包括有共用一传动组件的二风力发电模块,该二风力发电模块采左右水平式串联,共用的传动组件与发电机组位在该二风力发电模块之间。
6.根据权利要求5所述的三角柱体导流罩式风力发电机,其特征在于,所述三角柱体导流罩式风力发电机进一步在该二风力发电模块之间设置垂直式的三角柱体辅助导流罩,该三角柱体辅助导流罩外罩在共用的传动组件与发电机组外。
7.根据权利要求1至3中任一所述的三角柱体导流罩式风力发电机,其特征在于,所述三角柱体导流罩式风力发电机包括有共用一传动组件的二风力发电模块,该二风力发电模块采上下垂直式串联,共用的传动组件与发电机组位在该二风力发电模块之间。
8.根据权利要求7所述的三角柱体导流罩式风力发电机,其特征在于,所述三角柱体导流罩式风力发电机进一步在该二风力发电模块之间设置水平式的三角柱体辅助导流罩,该三角柱体辅助导流罩外罩在共用的传动组件与发电机组外。
9.根据权利要求4所述的三角柱体导流罩式风力发电机,其特征在于,所述三角柱体导流罩式风力发电机在箱体上设有多组风力发电模块,并在伸出该箱体的传动组件与发电机组外罩一壳体,该三角柱体导流罩式风力发电机在该箱体上设有具有感知件的风向风速器,感知件电性连接一控制单元,该箱体内设有隔间板,将该箱体内的容置空间区隔成复数装配室,该些装配室分别提供风力发电模块组设,该箱体设在一基地平台上,该基地平台上设有一轨道,以及轨道上设有一圆形平台,该圆形平台上设有一电性连接控制单元的轨道驱动马达,该轨道驱动马达可带动圆形平台转动,该圆形平台上设有复数支撑钢梁,该些支撑钢梁连接一环台,该环台上设有至少二支间隔设置且连接箱体的支撑柱。
10.根据权利要求9所述的三角柱体导流罩式风力发电机,其特征在于,所述三角柱体导流罩式风力发电机可在圆形平台与支撑柱之间增设补强件,补强件位在支撑柱的下方,且连接该箱体。
PCT/CN2011/071119 2011-02-21 2011-02-21 三角柱体导流罩式风力发电机 WO2012113130A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/071119 WO2012113130A1 (zh) 2011-02-21 2011-02-21 三角柱体导流罩式风力发电机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/071119 WO2012113130A1 (zh) 2011-02-21 2011-02-21 三角柱体导流罩式风力发电机

Publications (1)

Publication Number Publication Date
WO2012113130A1 true WO2012113130A1 (zh) 2012-08-30

Family

ID=46720076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071119 WO2012113130A1 (zh) 2011-02-21 2011-02-21 三角柱体导流罩式风力发电机

Country Status (1)

Country Link
WO (1) WO2012113130A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018029401A1 (fr) * 2016-08-09 2018-02-15 Malere Jean Michel Eolienne a axe horizontal et a production d'energie renforcee
CN108691727A (zh) * 2018-07-03 2018-10-23 无锡风电设计研究院有限公司 一种风力机导流罩
RU2688623C2 (ru) * 2017-10-23 2019-05-21 Виктор Иванович Волкович Водоветровой двигатель
US11773823B2 (en) 2021-11-10 2023-10-03 Airiva Renewables, Inc. Turbine wall apparatus/system and method for generating electrical power

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1055039A (zh) * 1990-03-19 1991-10-02 朱敬邦 水力风力双桶式叶片转子发电装置
EP0894977A1 (en) * 1997-07-31 1999-02-03 Carlo Zini Wind turbine with wind funneling means
CN2351585Y (zh) * 1998-09-09 1999-12-01 罗玉弟 一种风能及潮汐能发电机组
WO2003058060A1 (en) * 2001-12-31 2003-07-17 Harbison Charles C Shielded vertical axis twin wind turbine
CN1987092A (zh) * 2006-12-18 2007-06-27 廖振雷 垂直轴风力发电装置
JP2011012584A (ja) * 2009-07-01 2011-01-20 Michihiro Oe 風力発電装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1055039A (zh) * 1990-03-19 1991-10-02 朱敬邦 水力风力双桶式叶片转子发电装置
EP0894977A1 (en) * 1997-07-31 1999-02-03 Carlo Zini Wind turbine with wind funneling means
CN2351585Y (zh) * 1998-09-09 1999-12-01 罗玉弟 一种风能及潮汐能发电机组
WO2003058060A1 (en) * 2001-12-31 2003-07-17 Harbison Charles C Shielded vertical axis twin wind turbine
CN1987092A (zh) * 2006-12-18 2007-06-27 廖振雷 垂直轴风力发电装置
JP2011012584A (ja) * 2009-07-01 2011-01-20 Michihiro Oe 風力発電装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018029401A1 (fr) * 2016-08-09 2018-02-15 Malere Jean Michel Eolienne a axe horizontal et a production d'energie renforcee
FR3055032A1 (fr) * 2016-08-09 2018-02-16 Jean Michel Malere Eolienne a axe horizontal et a production d'energie renforcee
RU2688623C2 (ru) * 2017-10-23 2019-05-21 Виктор Иванович Волкович Водоветровой двигатель
CN108691727A (zh) * 2018-07-03 2018-10-23 无锡风电设计研究院有限公司 一种风力机导流罩
CN108691727B (zh) * 2018-07-03 2024-02-06 无锡风电设计研究院有限公司 一种风力机导流罩
US11773823B2 (en) 2021-11-10 2023-10-03 Airiva Renewables, Inc. Turbine wall apparatus/system and method for generating electrical power

Similar Documents

Publication Publication Date Title
WO2012113130A1 (zh) 三角柱体导流罩式风力发电机
CN200999405Y (zh) 一种光电幕墙
CN102751526A (zh) 氢燃料电池及其***及动态变湿度控制方法
WO2019056676A1 (zh) 一种双进风双出风的离心风机
CN106130455A (zh) 一种染料敏化太阳能装置
CN212011851U (zh) 一种环保节能的高低压成套设备
CN109204805B (zh) 一种外接电机的双旋翼无人机
CN103855908A (zh) 一种电机驱动的高减速比的一体化机构
WO2013100305A1 (ko) 토네이도형 풍력발전장치
CN102644551A (zh) 三角柱体导流罩式风力发电机
WO2011097798A1 (zh) 垂直轴风力发电机的风叶***
CN210469207U (zh) 一种便于安装固定的石墨烯太阳能板组件
CN205841099U (zh) 小型便携风力发电机
CN210867597U (zh) 一种具有散热功能的太阳能电池板
CN110739626B (zh) 一种电力工程用散热性电力柜
CN206131722U (zh) 一种带有发电装置的工业炉
CN219061893U (zh) 一种用于风能回收装置的风车
CN219477914U (zh) 一种便于翻转光伏组件的光伏组件安装结构
CN113224676B (zh) 一种通风除尘式集装箱变电站
CN204408243U (zh) 一种太阳能风力综合发电装置
CN219351616U (zh) 一种可调节式光伏电池板
CN219220530U (zh) 一种水冷降温式涡轮箱
CN219960474U (zh) 一种光伏板用浇筑式防腐底座
CN113241613B (zh) 一种具有新风换热功能的医疗机构用电气柜
CN219513889U (zh) 一种水利发电组冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859542

Country of ref document: EP

Kind code of ref document: A1