WO2012111337A1 - 光音響撮像装置およびそれに用いられるプローブユニット - Google Patents

光音響撮像装置およびそれに用いられるプローブユニット Download PDF

Info

Publication number
WO2012111337A1
WO2012111337A1 PCT/JP2012/001027 JP2012001027W WO2012111337A1 WO 2012111337 A1 WO2012111337 A1 WO 2012111337A1 JP 2012001027 W JP2012001027 W JP 2012001027W WO 2012111337 A1 WO2012111337 A1 WO 2012111337A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
branching
branched
bundle fiber
face
Prior art date
Application number
PCT/JP2012/001027
Other languages
English (en)
French (fr)
Inventor
覚 入澤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012111337A1 publication Critical patent/WO2012111337A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2418Probes using optoacoustic interaction with the material, e.g. laser radiation, photoacoustics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/0672Imaging by acoustic tomography

Definitions

  • the present invention relates to a photoacoustic imaging apparatus that generates a photoacoustic image by detecting a photoacoustic wave generated in a subject by irradiating the subject with light, and a probe unit used therefor.
  • an ultrasonic image is generated by detecting ultrasonic waves reflected in the subject by irradiating the subject with ultrasonic waves.
  • Ultrasonic imaging for obtaining a morphological tomographic image is known.
  • development of an apparatus that displays not only a morphological tomographic image but also a functional tomographic image has been advanced in recent years.
  • One of such devices is a device using a photoacoustic analysis method.
  • This photoacoustic analysis method irradiates a subject with light having a predetermined wavelength (for example, visible light, near infrared light, or mid infrared light), and a specific substance in the subject absorbs the energy of this light.
  • a photoacoustic wave which is the resulting elastic wave, is detected and the concentration of the specific substance is quantitatively measured.
  • the specific substance in the subject is, for example, glucose or hemoglobin contained in blood.
  • Such a technique for detecting a photoacoustic wave and generating a photoacoustic image based on the detection signal is called photoacoustic imaging (PAI) or photoacoustic tomography (PAT).
  • the pulsed laser beam can be branched and guided by a plurality of optical fibers.
  • a probe unit in which an optical system and an ultrasonic detection probe are combined together is used. Accordingly, the cord portion of the probe unit is required to be flexible from the viewpoint of user handling performance.
  • Patent Document 1 discloses a method of guiding pulsed laser light to the tip of a probe unit using a bundle fiber obtained by bundling a plurality of elongated silica optical fibers having a structure having a core and a clad (core / clad structure). Has been. However, a specific method for making the pulse laser beam incident on each of the optical fibers in the bundle fiber is not disclosed.
  • Patent Document 2 discloses a method in which n-1 beam splitters are used to split one laser beam into n branches, and diffraction.
  • a method of splitting one laser beam into a plurality of beams using an optical element DOE: Diffractive / Optical / Elements
  • the present invention has been made in view of the above problems, and in photoacoustic imaging performed by guiding laser light using a plurality of optical fibers, each of the plurality of branched lights and each of the plurality of optical fibers are provided. It is an object of the present invention to provide a photoacoustic imaging apparatus that can facilitate alignment and a probe unit used therefor.
  • a photoacoustic imaging device includes: A light irradiating unit that irradiates measurement light into the subject, an electroacoustic conversion unit that detects a photoacoustic wave generated in the subject by irradiation of the measuring light and converts the photoacoustic wave into an electrical signal, and an electrical signal
  • a photoacoustic imaging device comprising an image generation unit that generates a photoacoustic image based on A first branching diffractive optical element that splits a first laser beam incident from the upstream side of the optical system as a first plurality of branched light beams according to a predetermined first branching pattern; and a first branching diffractive optical element incident from the upstream side of the optical system A second laser beam having a wavelength and an optical path different from that of the first laser beam, a second laser beam having a predetermined second branch pattern and having the same standard pattern as the first branch pattern.
  • a light branching unit having a second branching diffractive optical element that branches as a plurality of second branching lights according to the branching pattern of
  • a bundle fiber including a plurality of optical fibers having a core / cladding structure, wherein one end face of the plurality of optical fibers on one end face of the bundle fiber corresponds to the first branch pattern and the second branch pattern.
  • Bundled fiber array A first branched light guide for guiding the first plurality of branched lights so that each of the first plurality of branched lights is incident on each of the cores of the plurality of optical fibers from the one end face of the bundle fiber; , A second branched light guide part for guiding the second plurality of branched lights so that each of the second plurality of branched lights is incident on each of the cores from the one end face of the bundle fiber;
  • the bundle fiber is disposed so as to guide the first plurality of branched lights and / or the second plurality of branched lights incident on the core to a light irradiation unit connected at the other end face of the bundle fiber.
  • the light irradiation unit irradiates the first plurality of branched lights and / or the second plurality of branched lights as measurement lights.
  • the “branch pattern” means a pattern of bright spots on a virtual plane perpendicular to the traveling direction of the laser beam before branching about the laser beam (branching light) branched by the branching diffractive optical element To do.
  • the scale of the pattern varies depending on the position of the virtual plane. Therefore, in general, a pattern obtained by removing the scale information from a pattern including such scale information (including an array pattern described later) and standardizing the pattern (for example, the length between the two most distant points is 1) is used. This is called the “standard pattern” of the pattern.
  • One end face of the plurality of optical fibers is “arranged corresponding to the branch pattern” means that the standard pattern of the end face array pattern substantially matches the standard pattern of the branch pattern. It means that the end faces are arranged in the same plane.
  • the “array pattern” of the end faces means an array pattern of representative points (for example, the centers of the end faces) related to one end face of a plurality of optical fibers.
  • the two patterns “substantially match” means that even if these patterns are different, each of the plurality of branched lights can enter each of the cores of the plurality of optical fibers. This means that it is handled as a match.
  • the photoacoustic imaging apparatus further includes a position adjusting unit that adjusts a positional relationship between the one end face of the band-z fiber and the light branching unit.
  • the first branch light guide is arranged such that the focal point corresponds to the incident position of the first laser beam in the first branch diffractive optical element. It is preferable to have a condenser lens system. In this case, it is preferable that the first condenser lens system is capable of adjusting the scale of the branch pattern of the first plurality of branched lights.
  • the second branched light guide is arranged so that the focal point corresponds to the incident position of the second laser light in the second branched diffractive optical element. It is preferable to have a condenser lens system. In this case, it is preferable that the second condenser lens system is capable of adjusting the scale of the branch pattern of the second plurality of branched lights.
  • the optical branching unit has a homogenizer on at least one of the upstream side of the optical system of the first branched diffractive optical element and the upstream side of the optical system of the second branched diffractive optical element. It is preferable to have.
  • the optical branching unit is holographically arranged on at least one of the downstream side of the optical system of the first branched diffractive optical element and the downstream side of the optical system of the second branched diffractive optical element. It is preferable to have a diffusion plate.
  • the optical branching section has a variable beam on at least one of the upstream side of the optical system of the first branching diffractive optical element and the upstream side of the optical system of the second branching diffractive optical element. It is preferable to have an expander.
  • the light branching part branches the first laser light and the second laser light into 16 or more, respectively.
  • the bundle fiber preferably includes at least 16 optical fibers.
  • the first branch pattern and the second branch pattern have a hexagonal structure
  • the one end face of the plurality of optical fibers is preferably arranged in a close-packed structure.
  • the one end face of the bundle fiber has a reflection mask on the end face so that the core on the end face is exposed.
  • the first branch diffractive optical element also serves as the second branch diffractive optical element.
  • the light irradiation part is the other end face of the plurality of optical fibers,
  • the other end face is preferably arranged in a line at intervals.
  • the light irradiation part is a light guide plate having a tapered shape
  • the other end surface of the bundle fiber is preferably connected to the end surface on the short side of the light guide plate in a detachable state.
  • the probe unit according to the present invention is: A light irradiator for irradiating measurement light into the subject; An electroacoustic conversion unit that detects a photoacoustic wave generated in the subject by irradiation of measurement light and converts the photoacoustic wave into an electrical signal; A first branching diffractive optical element that splits a first laser beam incident from the upstream side of the optical system as a first plurality of branched light beams according to a predetermined first branching pattern; and a first branching diffractive optical element incident from the upstream side of the optical system A second laser beam having a wavelength and an optical path different from that of the first laser beam, a second laser beam having a predetermined second branch pattern and having the same standard pattern as the first branch pattern.
  • a light branching unit having a second branching diffractive optical element that branches as a plurality of second branching lights according to the branching pattern of
  • a bundle fiber including a plurality of optical fibers having a core / cladding structure, wherein one end face of the plurality of optical fibers on one end face of the bundle fiber corresponds to the first branch pattern and the second branch pattern.
  • Bundled fiber array A first branched light guide for guiding the first plurality of branched lights so that each of the first plurality of branched lights is incident on each of a plurality of optical fiber cores from the one end face of the bundle fiber; , A second branched light guide for guiding the second plurality of branched lights so that each of the second plurality of branched lights is incident on each of the cores from the one end face of the bundle fiber;
  • the bundle fiber is arranged so as to guide the first plurality of branched lights and / or the second plurality of branched lights incident on the core to a light irradiation unit connected at the other end face of the bundle fiber.
  • the light irradiating section irradiates the first plurality of branched lights and / or the second plurality of branched lights as measurement lights.
  • the probe unit further includes a position adjusting unit that adjusts the positional relationship between the one end face of the bundle fiber and the light branching unit.
  • the first branch light guide is arranged such that the focal point corresponds to the incident position of the first laser beam in the first branch diffractive optical element. It is preferable to have a lens system. In this case, it is preferable that the first condenser lens system is capable of adjusting the scale of the branch pattern of the first plurality of branched lights.
  • the photoacoustic imaging device and the probe unit according to the present invention are, in particular, a first unit that branches the first laser beam incident from the upstream side of the optical system as a first plurality of branch lights according to a predetermined first branch pattern.
  • a second diffractive optical element and a second laser beam incident from the upstream side of the optical system and having a wavelength and an optical path different from those of the first laser beam have a predetermined second branch pattern.
  • an optical branching section having a second branching diffractive optical element for branching as a plurality of second branching lights according to a second branching pattern having the same standard pattern as the first branching pattern, and a core / cladding structure
  • a bundle fiber including a plurality of optical fibers, wherein one end face of the plurality of optical fibers on one end face of the bundle fiber is a first branch pattern and a second splitting pattern.
  • the bundle of fibers arranged in correspondence with the pattern and the first plurality of branched lights are respectively incident on the cores of the plurality of optical fibers from the one end face of the bundle fiber.
  • the first plurality of branched light beams are guided so that the first branched light guiding unit and the second plurality of branched light beams are incident on each of the cores from the one end face of the bundle fiber.
  • a second branched light guide, and the bundle fiber is connected to the first plurality of branched lights and / or the second plurality of branched lights incident on the core at the other end face of the bundle fiber. It is arrange
  • FIG. 1 is a schematic diagram illustrating the overall configuration of the photoacoustic imaging apparatus 10 according to the present embodiment.
  • FIG. 2 is a block diagram illustrating a configuration of the image generation unit 2 of FIG.
  • FIG. 3 is a schematic cross-sectional view showing the configuration of an embodiment of the light branching section 12, the first branch light guiding section 13x, the second branch light guiding section 13y, and the bundle fiber 14 of the present invention.
  • the photoacoustic imaging apparatus 10 generates a measurement light L including a specific wavelength component and irradiates the subject 7 with the measurement light L, and the measurement light L is irradiated to the subject 7.
  • An image generation unit 2 that detects photoacoustic waves U generated in the subject 7 to generate photoacoustic image data of an arbitrary cross section, an electroacoustic conversion unit 3 that converts an acoustic signal and an electrical signal,
  • a display unit 6 for displaying the photoacoustic image data, an operation unit 5 for an operator to input patient information and imaging conditions of the apparatus, and a system control unit 4 for comprehensively controlling these units. .
  • the probe unit 70 of the present embodiment includes the electroacoustic conversion unit 3, the light branching unit 12, the first branched light guide unit 13x, the second branched light guide unit 13y, the bundle fiber 14, and the light irradiation unit 15. ing.
  • the optical transmission unit 1 includes a light source unit 11 including a plurality of light sources having different wavelengths, and two laser beams Lx and Ly output from the light source unit 11, respectively, as a first plurality of branched lights Lxd and a second plurality of light beams.
  • Branching light 12 as the first branching light Lyd
  • the first branching light guide 13x and the second branching that guide the first plurality of branching light Lxd and the second plurality of branching light Lyd to the bundle fiber.
  • the light guide unit 13y, the bundle fiber 14 that guides the first plurality of branched lights Lxd and the second plurality of branched lights Lyd to the light irradiation unit 15, and the measurement light L are irradiated to the body surface of the subject 7.
  • the light source unit 11 includes, for example, one or more light sources that generate light having a predetermined wavelength.
  • a light emitting element such as a semiconductor laser (LD), a solid-state laser, or a gas laser that generates a specific wavelength component or monochromatic light including the component can be used.
  • LD semiconductor laser
  • a solid-state laser or a gas laser that generates a specific wavelength component or monochromatic light including the component
  • the wavelengths and optical paths of the two laser beams Lx and Ly are different from each other. That the wavelengths of the laser beams Lx and Ly are different from each other means that the center wavelengths of the wavelength distributions of the laser beams Lx and Ly are different. Further, that the optical paths of the laser beams Lx and Ly are different from each other means that the respective laser beams are branched at spatially different positions.
  • the two laser beams Lx and Ly may be output simultaneously in time or may be output separately.
  • One of the two laser beams Lx and Ly can be used as the aiming beam.
  • the light source unit 11 preferably outputs pulsed light having a pulse width of 1 to 100 nsec as laser light.
  • the wavelength of the laser light is appropriately determined according to the light absorption characteristics of the substance in the subject to be measured.
  • hemoglobin in a living body has different optical absorption characteristics depending on its state (oxygenated hemoglobin, reduced hemoglobin, methemoglobin, carbon dioxide hemoglobin, etc.), it generally absorbs light of 600 nm to 1000 nm.
  • the thickness when the measurement target is hemoglobin in a living body (that is, when imaging a blood vessel), it is generally preferable to set the thickness to about 600 to 1000 nm.
  • the wavelength of the laser light is preferably 700 to 1000 nm.
  • the output of the laser beam is 10 ⁇ J / cm 2 to several tens of mJ / cm 2 from the viewpoints of propagation loss of laser beam and photoacoustic wave, efficiency of photoacoustic conversion, detection sensitivity of the current detector, and the like. Is preferred.
  • the repetition of the pulsed light output is preferably 10 Hz or more from the viewpoint of image construction speed.
  • the laser light may be a pulse train in which a plurality of the above-mentioned pulse lights are arranged.
  • an Nd: YAG laser (emission wavelength: about 1000 nm) which is a kind of solid-state laser, or a He—Ne gas laser (emission light) which is a kind of gas laser.
  • a laser beam having a pulse width of about 10 nsec is formed using a wavelength of 633 nm.
  • a material such as InGaAlP (emission wavelength: 550 to 650 nm), GaAlAs (emission wavelength: 650 to 900 nm), InGaAs or InGaAsP (emission wavelength: 900 to 2300 nm) is used. Can be used.
  • a light-emitting element using InGaN that emits light with a wavelength of 550 nm or less is becoming available.
  • an OPO (Optical Parametrical Oscillators) laser using a nonlinear optical crystal capable of changing the wavelength can be used.
  • the light branching unit 12 branches the laser light Lx output from the light source unit 11 using the first branching diffractive optical element 40x (branching DOE), and is output from the light source unit 11 using the second branching DOE 40y.
  • the laser beam Ly is branched.
  • the branched DOE means an optical element that generates a plurality of branched lights having different traveling directions by utilizing a light diffraction phenomenon.
  • the number of branches is not particularly limited, but it is preferable to branch to 16 or more from the viewpoint of effectively dispersing the energy of the laser beam.
  • the optical branching unit 12 includes a branch DOE 40x and a branch DOE 40y.
  • Each of the surfaces of the branch DOEs 40x and 40y is subjected to predetermined processing, and a predetermined branch pattern is defined by the content of the processing.
  • the standard pattern of the predetermined first branch pattern defined by the branch DOE 40x and the standard pattern of the predetermined second branch pattern defined by the branch DOE 40y are designed to substantially match. Accordingly, it is possible to guide the plurality of branched lights Lxd and the plurality of branched lights Lyd using the same bundle fiber. Since the branch pattern changes depending on the wavelength of the branched laser beam, the branch DOE is appropriately selected in consideration of the wavelength of the branched laser beam.
  • the branch pattern is not particularly limited, but is preferably a square structure or a hexagonal structure, and more preferably a hexagonal structure, from the viewpoint of reducing aberrations in the condenser lens system.
  • the first branched light guide 13x guides each of the plurality of branched lights Lxd generated by the branched DOE 40x to each of the cores of the plurality of optical fibers 13 included in the bundle fiber 14.
  • the first branched light guide 13x is configured by a condensing lens system 44x and a dichroic mirror 45x.
  • the first branched light guide 13x is not limited to the above configuration.
  • the condensing lens system 44x makes it easy for a plurality of branched lights Lxd generated by the branched DOE 40x to enter the bundle fiber 14 and facilitates alignment of each of the plurality of branched lights Lxd with the bundle fiber 14.
  • the plurality of branched lights Lxd are collimated.
  • the condenser lens system 44x is arranged so that its focal point corresponds to the incident position of the laser light Lx on the branch DOE 40x.
  • the focus of the condensing lens system corresponds to the incident position” of the laser light in the branch DOE means that the focus of the condensing lens system is a predetermined part of the branch DOE and the laser light is incident as the branched light. It means that the light is included in a portion through which it can pass before it is emitted.
  • the focusing lens system is generally focused on the beam center of the exit surface.
  • a lens position adjusting unit that drives the condensing lens system 44x in the optical axis direction is provided to enable fine adjustment of the condensing lens system 44x. It is preferable to have.
  • the condensing lens system 44x may be composed of one condensing lens, or may be a combined lens composed of two or more condensing lenses.
  • the dichroic mirror 45x makes the optical path of the first plurality of branched lights Lxd and the optical path of the second plurality of branched lights Lyd coaxial.
  • the plurality of branched lights Lxd collimated by the condensing lens system 44x are transmitted through the dichroic mirror 45x as they are.
  • Each of the plurality of branched lights Lxd that has passed through the dichroic mirror 45x is incident on each of the cores of the plurality of optical fibers 13 from the incident end face 14e of the bundle fiber 14.
  • the second branched light guide 13y guides each of the plurality of branched lights Lyd generated by the branched DOE 40y to each of the cores of the plurality of optical fibers 13 included in the bundle fiber 14.
  • the second branched light guide unit 13y includes a condenser lens system 44y, a mirror 45y, and a dichroic mirror 45x.
  • the second branched light guide 13y is not limited to the above configuration.
  • the condensing lens system 44y makes it easy for a plurality of branched lights Lyd generated by the branched DOE 40y to enter the bundle fiber 14, and to facilitate alignment of each of the plurality of branched lights Lyd with the bundle fiber 14.
  • the plurality of branched lights Lyd are collimated.
  • the condensing lens system 44y is disposed so that its focal point corresponds to the incident position of the laser light Ly on the branch DOE 40y.
  • a lens position adjustment unit that drives the condenser lens system 44y in the optical axis direction is provided in order to enable fine adjustment of the condenser lens system 44y. It is preferable to have.
  • the condensing lens system 44x may be composed of one condensing lens, or may be a combined lens composed of two or more condensing lenses.
  • the condensing lens system 44x arrange
  • the plurality of branched lights Lyd collimated by the condenser lens system 44y are reflected by the mirror 45y and the dichroic mirror 45x, and propagate along the optical path coaxial with the optical path of the first plurality of branched lights Lxd.
  • Each of the plurality of branched lights Lyd reflected by the dichroic mirror 45x is incident on each of the cores of the plurality of optical fibers 13 from the incident end face 14e of the bundle fiber 14.
  • the bundle fiber 14 guides the laser beams Lx and Ly branched by the light branching unit 12 to the light irradiation unit 15, respectively.
  • the bundle fiber 14 includes a plurality of optical fibers 13 having a core 13a and a clad 13b.
  • the optical fiber 13 is not particularly limited, but is preferably a quartz fiber.
  • the plurality of optical fibers 13 has a predetermined first branch pattern defined by the branch DOE 40x and a predetermined second branch pattern defined by the branch DOE 40y from the viewpoint of efficiently guiding the plurality of branched lights Lxd and Lyd. It arranges corresponding to. That is, the standard pattern of the arrangement pattern of the end faces 13e of the plurality of optical fibers 13 on the incident end face 14e of the bundle fiber 14 substantially matches the standard patterns of the first branch pattern and the second branch pattern.
  • the arrangement pattern of the end faces 13e of the plurality of optical fibers 13 on the incident end face 14e of the bundle fiber 14 is a square structure from the viewpoint of ease of arrangement in the bundle fiber 14 and reduction of aberrations in the condenser lens system 44.
  • a hexagonal structure is preferable, and a hexagonal structure is more preferable.
  • the end faces 13e of the plurality of optical fibers 13x are particularly preferably arranged in a close-packed structure. This is for the following reason.
  • 4A and 4B are conceptual diagrams illustrating an example of the arrangement of the end faces 13e of the plurality of optical fibers 13 on the incident end face 14e of the bundle fiber 14.
  • FIG. 4A shows a case where the arrangement of the end faces 13e of the 64 optical fibers 13 has a square structure
  • FIG. 4B shows a case where the arrangement of the end faces 13e of the 61 optical fibers 13 has a close-packed structure.
  • the divergence angle of the plurality of branched lights is set to increase accordingly, so that the aberration of the condenser lens system increases.
  • the accuracy of alignment between each of the plurality of branched lights and each of the plurality of optical fibers 13 decreases. Therefore, the arrangement of the end faces 13e of the plurality of optical fibers 13 on the incident end face 14e of the bundle fiber 14 is particularly preferably a close-packed structure.
  • the branch DOE 40 is designed according to the line arrangement of the plurality of optical fibers 13.
  • the branch patterns of the branched lights Lxd and Lyd and the arrangement pattern of the end face 13e of the optical fiber 13 are substantially equal. It is necessary to match. That is, it is necessary to substantially match not only the standard patterns of the branch pattern and the array pattern but also these patterns including the scale. Therefore, it is preferable that the optical system is set so that adjustment for substantially matching these patterns can be performed by using, for example, the following configuration of the condensing lens system.
  • FIG. 5 is a schematic cross-sectional view showing an example of the configuration of an optical system that can adjust the scales of the branch patterns of a plurality of branch lights.
  • a pattern interval y (interval between adjacent bright spots on a virtual plane passing through the focus and perpendicular to the optical axis) on the focal plane of the plurality of branched lights Ld generated from the branched DOE 90 is between the branched DOE 90 and the bundle fiber 94.
  • Focal length of the condenser lens 91 is f 2
  • the focal length of the condenser lens 92 is f 1
  • the distance of the condenser lens 91 and the condenser lens 92 is d
  • the distance d means the distance from the first main surface H 2 of the condensing lens 91 to the second main surface H 1 ′′ of the condensing lens 92
  • the reference surface P is the surface of the branch DOE 90 on the lens side. That is, it means the exit surface of a plurality of branched lights.
  • the combined focal length f of the coupling system lens means a distance from the reference plane P to the first main surface H of the coupling system lens.
  • the combined focal length f and the distance s ′′ also change. That is, the distance d is adjusted by moving the lens position adjusting unit 91a and / or 92a in the optical axis direction.
  • the combined focal length f of the coupled lens can be adjusted, and as a result, the pattern interval y on the focal plane of the plurality of branched lights Ld, that is, the scale of the branched pattern can be adjusted.
  • the scale of the branching pattern can be adjusted by adjusting the synthetic focal length, which differs depending on the elements constituting the coupling lens. It is easy for a person skilled in the art to determine by a known method. It is preferred that the branched light exit position of Toki DOE90 (reference plane P), placing the rear composite focal in accordance with the end face of the bundle fiber 94.
  • the one end face 14e of the bundle fiber 14 preferably has a reflective mask M on the end face 14e so that the core 13a on the end face 14e is exposed as shown in FIG.
  • the bundle fiber 14 is usually manufactured by fixing a gap between the plurality of optical fibers 13 with an adhesive.
  • the adhesive has lower durability against laser light than optical fiber materials such as quartz. Therefore, the reflection mask M as described above can prevent the laser light from being irradiated to the area except for the area of the core 13a where the plurality of branched lights are incident.
  • Such a reflective mask M is formed by, for example, depositing a dielectric multilayer film on a thin glass plate that has been drilled in accordance with the arrangement pattern of the cores 13a, and then the glass 13 so that the cores 13a and the holes are matched with each other. It is possible to form the plate by sticking it to the one end face 14e of the bundle fiber 14.
  • the light irradiation unit 15 includes a plurality of emission end faces 13e of the plurality of optical fibers 13.
  • the plurality of emission end faces 13e of the plurality of optical fibers 13 constituting the light irradiation unit 15 are arranged along the periphery of the electroacoustic conversion unit 3, for example.
  • the some conversion element 54 which comprises the electroacoustic conversion part 3 is a transparent material, you may arrange
  • the several output end surface 13e of the some optical fiber 13 forms a plane, a convex surface, or a concave surface with the several conversion element 54 which comprises the electroacoustic conversion part 3.
  • FIG. it is a plane.
  • the electroacoustic conversion unit 3 is composed of, for example, a plurality of minute conversion elements 54 arranged in a one-dimensional or two-dimensional manner.
  • the conversion element 54 is a piezoelectric element made of a polymer film such as piezoelectric ceramics or polyvinylidene fluoride (PVDF).
  • the electroacoustic conversion unit 3 receives the photoacoustic wave U generated in the subject by the light irradiation from the light irradiation unit 15.
  • the conversion element 54 has a function of converting the photoacoustic wave U into an electric signal at the time of reception.
  • the electroacoustic conversion unit 3 is configured to be small and light, and is connected to a receiving unit 22 described later by a multi-channel cable.
  • the electroacoustic conversion unit 3 is selected according to the diagnostic region from among sector scanning, linear scanning, convex scanning, and the like.
  • the electroacoustic conversion unit 3 may include an acoustic matching layer in order to efficiently transmit the photoacoustic wave U.
  • the acoustic impedance of the piezoelectric element material and the living body are greatly different. Therefore, when the piezoelectric element material and the living body are in direct contact with each other, reflection at the interface becomes large and the photoacoustic wave cannot be efficiently transmitted. For this reason, a photoacoustic wave can be efficiently transmitted by inserting the acoustic matching layer comprised with the substance which has an intermediate acoustic impedance between piezoelectric element material and a biological body. Examples of the material constituting the acoustic matching layer include epoxy resin and quartz glass.
  • the image generation unit 2 of the photoacoustic imaging apparatus 10 selectively drives the plurality of conversion elements 54 constituting the electroacoustic conversion unit 3 and gives a predetermined delay time to the electric signal from the electroacoustic conversion unit 3 to adjust the electric signal.
  • a receiving unit 22 that generates a received signal by performing phase addition, a scanning control unit 24 that controls the selection drive of the conversion element 54 and the delay time of the receiving unit 22, and various types of received signals obtained from the receiving unit 22
  • a signal processing unit 25 for performing the above processing.
  • the receiving unit 22 includes an electronic switch 53, a preamplifier 55, a reception delay circuit 56, and an adder 57.
  • the electronic switch 53 selects a predetermined number of adjacent conversion elements 54 when receiving photoacoustic waves in photoacoustic scanning. For example, when the electroacoustic conversion unit 3 includes 192 conversion elements CH1 to CH192 of an array type, such an array conversion element is converted into an area 0 (area of conversion elements from CH1 to CH64 by an electronic switch 53). ), Area 1 (region of the conversion element from CH65 to CH128) and area 2 (region of the conversion element from CH129 to CH192) are handled by being divided.
  • the preamplifier 55 amplifies a minute electric signal received by the conversion element 54 selected as described above, and ensures sufficient S / N.
  • the reception delay circuit 56 forms a converged reception beam by matching the phase of the photoacoustic wave U from a predetermined direction with the electrical signal of the photoacoustic wave U obtained from the conversion element 54 selected by the electronic switch 53. Give a delay time to do.
  • the adder 57 adds together the electric signals of a plurality of channels delayed by the reception delay circuit 56, and combines them into one reception signal. By this addition, phasing addition of acoustic signals from a predetermined depth is performed, and a reception convergence point is set.
  • the scanning control unit 24 includes a beam focusing control circuit 67 and a conversion element selection control circuit 68.
  • the conversion element selection control circuit 68 supplies position information of a predetermined number of conversion elements 54 at the time of reception selected by the electronic switch 53 to the electronic switch 53.
  • the beam focusing control circuit 67 supplies delay time information for forming reception convergence points formed by a predetermined number of conversion elements 54 to the reception delay circuit 56.
  • the signal processing unit 25 includes a filter 66, a signal processor 59, an A / D converter 60, and an image data memory 62.
  • the electrical signal output from the adder 57 of the receiving unit 22 removes unnecessary noise in the filter 66 of the signal processing unit 25, and thereafter, the signal processor 59 performs logarithmic conversion of the amplitude of the received signal to make the weak signal relative. Stress.
  • the received signal from the subject 7 has an amplitude with a wide dynamic range of 80 dB or more, and a weak signal is emphasized in order to display it on a normal monitor having a dynamic range of about 23 dB. Amplitude compression is required.
  • the filter 66 has a band pass characteristic, and has a mode for extracting a fundamental wave in a received signal and a mode for extracting a harmonic component.
  • the signal processor 59 performs envelope detection on the logarithmically converted received signal.
  • the A / D converter 60 A / D converts the output signal of the signal processor 59 to form photoacoustic image data for one line.
  • the photoacoustic image data for one line is stored in the image data memory 62.
  • the image data memory 62 is a storage circuit that stores the photoacoustic image data generated as described above. Under the control of the system control unit 4, cross-sectional data is read from the image data memory 62, and photoacoustic image data of the cross-section is generated by spatially interpolating at the time of reading.
  • the display unit 6 includes a display image memory 63, a photoacoustic image data converter 64, and a monitor 65.
  • the display image memory 63 is a buffer memory that temporarily stores photoacoustic image data to be displayed on the monitor 65, and the photoacoustic image data for one line from the image data memory 62 is stored in the display image memory 63. It is synthesized into one frame.
  • the photoacoustic image data converter 64 performs D / A conversion and television format conversion on the composite image data read from the display image memory 63, and the output is displayed on the monitor 65.
  • the operation unit 5 includes a keyboard, a trackball, a mouse, and the like on the operation panel, and is used by an apparatus operator to input necessary information such as patient information, apparatus imaging conditions, and a display section.
  • the system control unit 4 includes a CPU (not shown) and a storage circuit (not shown), and controls each unit such as the optical transmission unit 1, the image generation unit 2, and the display unit 6 according to a command signal from the operation unit 5 and the entire system. Supervised. In particular, the input command signal of the operator sent via the operation unit 5 is stored in the internal CPU.
  • the photoacoustic imaging device 10 and the probe unit 70 of the present invention are particularly configured so that the first plurality of laser beams Lx incident from the upstream side of the optical system are in accordance with a predetermined first branch pattern.
  • the first branched DOE 40x to be branched as the branched light Lxd and the second laser light Ly incident from the upstream side of the optical system and having a wavelength and an optical path different from those of the first laser light Lx.
  • a first branched light guide portion 13x that guides the first plurality of branched lights Lxd so as to be incident on each of the cores 13a of the optical fiber 13 from the one end face 14e of the bundle fiber 14, and a second plurality of branched light guide portions 13x.
  • a second branched light guide 13y that guides the second plurality of branched lights Lyd so that each of the branched lights Lyd is incident on each of the cores 13a from the one end face 14e of the bundle fiber 14.
  • the bundle fiber 14 bands the first plurality of branched lights Lxd and / or the second plurality of branched lights Lyd incident on the core 13a.
  • the branch patterns of the branch DOEs 40x and 40y and the arrangement pattern of the end faces 13e of the plurality of optical fibers 13 on the incident end face 14e of the bundle fiber 14 are made to correspond to each other. It became possible to perform alignment with each of them at once. This eliminates the need to separately align each of the plurality of branched lights and each of the plurality of optical fibers, and facilitates the alignment of each of the plurality of branched lights and each of the plurality of optical fibers.
  • the wavelength can be reduced by branching the two laser beams as in the present invention and guiding the first plurality of branched beams and the second plurality of branched beams to one bundle fiber.
  • Two different laser beams can be switched for imaging, and two laser beams having different wavelengths can be simultaneously irradiated for imaging.
  • the processing pattern on the surface of the branch DOE is optimized for each normal wavelength, when two laser beams having different wavelengths are incident on the same position of the same branch DOE, Energy propagation efficiency decreases. Therefore, two laser beams having different wavelengths are branched at spatially different positions optimized for the respective wavelengths, thereby improving the energy propagation efficiency of the laser beams.
  • the photoacoustic imaging device and the probe unit can be manufactured at low cost. Further, two laser beams having different wavelengths can be irradiated in the same range. Furthermore, since it is not necessary to change the arrangement of the optical system (for example, the condensing lens system) in order to switch the wavelength, the photoacoustic imaging device and the probe unit can be stably driven, speeded up, and the failure rate can be reduced. . In addition, when one of the two laser beams Lx and Ly is used as the aiming beam, the operability of the photoacoustic imaging apparatus can be further improved.
  • the photoacoustic imaging device 10 and the probe unit 70 of the present invention are not limited to the embodiment described above.
  • only one optical system that is, the condensing lens system 44x, the first branched light guiding portion 13x, and the bundle fiber 14
  • the following design items are naturally applicable to the other optical system (that is, the condensing lens system 44y, the second branched light guiding unit 13y, and the bundle fiber 14).
  • illustration of optical elements corresponding to the dichroic mirror 45x in FIG. 3 is omitted for convenience.
  • the photoacoustic imaging device 10 and the probe unit 70 of the present invention have been described for the case where two laser beams having different wavelengths are branched.
  • the present invention is not limited to this, and three or more lasers having different wavelengths are used.
  • the case where light is branched can also be applied by combining the dichroic mirror, the diffractive optical element, the condensing lens, and the total reflection mirror to increase the optical path by the number of wavelengths.
  • the photoacoustic imaging apparatus 10 and the probe unit 70 of the present invention include a position adjusting unit 14 a that adjusts the positional relationship between the one end surface 14 e of the bundle fiber 14 and the light branching unit 12.
  • a position adjusting unit that controls the branch DOE 40x may be provided.
  • the position adjusting unit 14a can be configured to measure the measurement light L emitted from the probe unit 70 and automatically adjust the positional relationship so that the measured light quantity becomes the maximum value. Thereby, the alignment of each of the plurality of branched lights Lxd and each of the plurality of optical fibers 13 becomes easier.
  • the photoacoustic imaging device 10 and the probe unit 70 of the present invention are configured such that the optical branching unit 12 has a homogenizer optical element 41 on the upstream side of the optical system of the branch DOE 40x. Can do.
  • the homogenizer optical element 41 arranged in this way makes the intensity profiles of the beams of the plurality of branched lights Lxd uniform. Therefore, it is possible to prevent the branched light Lxd having a high energy density from locally entering the optical fiber 13 and damaging the optical fiber 13. That is, the plurality of branched lights Lxd can be guided so as not to exceed the damage threshold energy of the optical fiber 13 throughout the plurality of branched lights Lxd.
  • the photoacoustic imaging device 10 and the probe unit 70 of the present invention are configured such that the light branching section 12 has a holographic diffusion plate 42 on the downstream side of the optical system of the branch DOE 40x.
  • FIG. 9 shows a configuration in which the holographic diffuser plate 42 is provided between the condenser lens system 44x and the incident end face 14e of the bundle fiber 14, but the holographic diffuser plate 42 and the branch DOE 40x are collected.
  • a configuration may be provided between the optical lens system 44x and the optical lens system 44x.
  • the holographic diffusion plate 42 is provided between the condensing lens system 44x and the incident end face 14e of the bundle fiber 14 from the viewpoint of easy adjustment when changing the distance to control the condensing spot diameter. Is preferred.
  • the holographic diffuser plate 42 arranged in this manner changes the direction in which the condensed spot diameter of the plurality of branched lights Lxd is increased, and the plurality of branched lights when entering the core 13a on the incident end face 14e of the bundle fiber 14.
  • the beam diameter of Lxd is optimized. Therefore, a plurality of branched lights Lxd can be guided so as not to exceed the damage threshold energy density of the optical fiber 13.
  • the photoacoustic imaging apparatus 10 and the probe unit 70 of the present invention are configured such that the optical branching unit 12 has a variable beam expander 43 on the upstream side of the optical system of the branching DOE 40x. be able to. Since the variable beam expander 43 arranged in this way can change the beam diameter as appropriate for each wavelength of the laser light Lx used in photoacoustic imaging, the converging diameter of the plurality of branched lights Lxd (bundle fiber 14 The diameter of the incident end face 14e when entering the core 13a can be controlled. It is also possible to measure the measurement light L emitted from the probe unit 70 and automatically control the beam diameter for each wavelength of the laser light Lx so that the measured light quantity becomes the maximum value.
  • the photoacoustic imaging device 10 and the probe unit 70 of the present invention separate the mixed light Lo of two laser beams having different wavelengths by a dichroic mirror 11a, and one of them by a mirror 11b. You may comprise so that it may reflect and each may become laser beam Lx and Ly.
  • the first branch DOE also serves as the second branch DOE (that is, two at different positions of one branch DOE 40).
  • the laser beam may be incident).
  • the light irradiation unit 15 is the other end face 13e of the plurality of optical fibers 13, and the other end face 13e is spaced. It can be configured to be arranged in a line with the With this configuration, it is not necessary to provide an optical system with a complicated structure at the probe unit tip 71, and a uniform line-shaped light source can be obtained. In addition, a more uniform line light source can be obtained by adjusting the distance in consideration of the intensity of the branched lights Lxd and Lyd emitted from each of the plurality of optical fibers 13. For example, it is preferable to adjust the distance by widening when the intensity of the branched light is strong, and narrowing the light when the intensity is weak.
  • the photoacoustic imaging device 10 and the probe unit 70 of the present invention are a light guide plate 72 in which the light irradiation unit 15 has a tapered shape, and the other end face 14 e of the bundle fiber 14.
  • it can be configured to be connected to the end face on the short side of the light guide plate 72 in a detachable state.
  • the other end surface 14 e of the bundle fiber 14 and the end surface on the short side of the light guide plate 72 are connected to each other in the connector portion 73.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】複数の光ファイバを用いてレーザ光を導光して実施する光音響イメージングにおいて、複数の分岐光と複数の光ファイバとの位置合わせを容易にすることを可能とする。 【解決手段】光音響撮像装置(10)において、レーザ光(LxおよびLy)を所定のパターンに従って複数の分岐光(Lxdおよびlyd)としてそれぞれ分岐せしめる光分岐部(12)と、一方の端面(13e)が分岐パターンに対応して配列した複数の光ファイバ(13)を包含するバンドルファイバ(14)と、複数の分岐光(LxdおよびLyd)のそれぞれを複数の光ファイバ(13)のコア(13a)のそれぞれにバンドルファイバ(14)の上記一方の端面(14e)から入射せしめるように複数の分岐光(LxdおよびLyd)を導光する分岐光導光部(13xおよび13y)とを備える。

Description

光音響撮像装置およびそれに用いられるプローブユニット
 本発明は、光が被検体に照射されることにより被検体内で発生した光音響波を検出して光音響画像を生成する光音響撮像装置およびそれに用いられるプローブユニットに関するものである。
 従来、被検体の内部の断層画像を取得する方法としては、超音波が被検体内に照射されることにより被検体内で反射した超音波を検出して超音波画像を生成し、被検体内の形態的な断層画像を得る超音波イメージングが知られている。一方、被検体の検査においては形態的な断層画像だけでなく機能的な断層画像を表示する装置の開発も近年進められている。そして、このような装置の一つに光音響分析法を利用した装置がある。この光音響分析法は、所定の波長を有する光(例えば、可視光、近赤外光又は中間赤外光)を被検体に照射し、被検体内の特定物質がこの光のエネルギーを吸収した結果生じる弾性波である光音響波を検出して、その特定物質の濃度を定量的に計測するものである。被検体内の特定物質とは、例えば血液中に含まれるグルコースやヘモグロビンなどである。このように光音響波を検出しその検出信号に基づいて光音響画像を生成する技術は、光音響イメージング(PAI:Photoacoustic Imaging)或いは光音響トモグラフィー(PAT:Photoacoustic Tomography)と呼ばれる。
 従来、上記のような光音響効果を利用した光音響イメージングにおいて、次のような課題がある。被検体に照射された光の強度は、被検体内を伝播する過程で吸収や散乱によって著しく減衰する。また、照射された光に基づいて被検体内で発生した光音響波の強度も、被検体内を伝播する過程で吸収や散乱によって減衰する。したがって、光音響イメージングでは、被検体の深部の情報を得ることが難しい。この課題を解決するため、例えば被検体内に照射される光のエネルギー量を増やすことにより、発生する光音響波を大きくすることが考えられる。
 しかし、光音響イメージングにおいて必要とされる高エネルギー(1mJ以上)のパルスレーザ光を単一の光ファイバによって導光することは困難である。その光ファイバの端面が破壊されてしまう可能性が高いためである。そのため、パルスレーザ光を複数の光ファイバで分岐せしめて導光することができれば好ましい。
 また、光音響イメージングを利用した光音響撮像装置では、光学系と超音波検出用のプローブとが一体的に組み合わされたプローブユニットが使用される。したがって、使用者のハンドリング性能の観点から、プローブユニットのコード部分は可撓性が求められる。
 そこで、例えば特許文献1に、コアおよびクラッドを有する構造(コア/クラッド構造)の細長い石英光ファイバを多数本束ねたバンドルファイバを用いて、パルスレーザ光をプローブユニット先端まで導光する方法が開示されている。ただし、パルスレーザ光をバンドルファイバ中の光ファイバそれぞれへ入射せしめる具体的な方法は開示されていない。
 一方、複数の光ファイバに入射せしめるための複数の分岐光を生成する方法として、例えば特許文献2に、n-1個のビームスプリッタを用いて1本のレーザ光をn分岐せしめる方法、および回折光学素子(DOE:Diffractive Optical Elements)を用いて1本のレーザ光を複数本に分岐せしめる方法が開示されている。
特開2010-12295号公報 特開2005-308967号公報
 しかしながら、特許文献2における前者の方法では、多数本(例えば16本以上)のレーザ光を得るためには、多数個(例えば15個以上)のビームスプリッタが必要であり、光学系の配置が複雑となる、装置が大型化してしまうといった問題があり、さらに、複数の分岐光のそれぞれと複数の光ファイバのそれぞれとを別個に位置合わせしなければならないといった問題がある。一方、特許文献2における後者の方法では、回折光学素子を用いて一括してレーザ光を分岐せしめることが可能であるものの、複数の分岐光のそれぞれと複数の光ファイバのそれぞれとを別個に位置合わせしなければならない点に変わりはない。複数の分岐光のそれぞれと複数の光ファイバのそれぞれとを別個に位置合わせする作業は、非常に煩雑である。
 本発明は上記問題に鑑みてなされたものであり、複数の光ファイバを用いてレーザ光を導光して実施する光音響イメージングにおいて、複数の分岐光のそれぞれと複数の光ファイバのそれぞれとの位置合わせを容易にすることを可能とする光音響撮像装置およびそれに用いられるプローブユニットを提供することを目的とするものである。
 上記課題を解決するために、本発明に係る光音響撮像装置は、
 被検体内に測定光を照射する光照射部と、測定光の照射により被検体内で発生した光音響波を検出してこの光音響波を電気信号に変換する電気音響変換部と、電気信号に基づいて光音響画像を生成する画像生成部とを備える光音響撮像装置において、
 光学系の上流側から入射した第1のレーザ光を所定の第1の分岐パターンに従って第1の複数の分岐光として分岐せしめる第1の分岐回折光学素子と、光学系の上流側から入射した第2のレーザ光であって第1のレーザ光とは波長および光路が異なる第2のレーザ光を、所定の第2の分岐パターンであって第1の分岐パターンと同一の標準パターンを有する第2の分岐パターンに従って第2の複数の分岐光として分岐せしめる第2の分岐回折光学素子とを有する光分岐部と、
 コア/クラッド構造を有する複数の光ファイバを包含するバンドルファイバであって、このバンドルファイバの一方の端面における複数の光ファイバの一方の端面が第1の分岐パターンおよび第2の分岐パターンに対応して配列したバンドルファイバと、
 第1の複数の分岐光のそれぞれを複数の光ファイバのコアのそれぞれにバンドルファイバの上記一方の端面から入射せしめるように第1の複数の分岐光を導光する第1の分岐光導光部と、
 第2の複数の分岐光のそれぞれを上記コアのそれぞれにバンドルファイバの上記一方の端面から入射せしめるように第2の複数の分岐光を導光する第2の分岐光導光部とを備え、
 バンドルファイバが、上記コアに入射した第1の複数の分岐光および/または第2の複数の分岐光をバンドルファイバの他方の端面において接続された光照射部に導光するように配置されたものであり、
 光照射部が第1の複数の分岐光および/または第2の複数の分岐光を測定光として照射するものであることを特徴とするものである。
 本明細書において、「分岐パターン」とは、分岐回折光学素子によって分岐したレーザ光(分岐光)についての、分岐前のレーザ光の進行方向に垂直なある仮想平面上の輝点のパターンを意味する。なお、このような分岐パターンは、分岐したレーザ光が拡がり角を有するため、上記仮想平面をどの位置に取るかによってパターンのスケールが異なってくる。そこで、一般にこのようなスケールの情報を含むパターン(後述の配列パターンを含む)からそのスケールの情報を取り除いて規格化(例えば最も離れた2点間の長さを1とする)したパターンをそのパターンの「標準パターン」という。
 複数の光ファイバの一方の端面が「分岐パターンに対応して配列した」とは、当該端面の配列パターンの標準パターンと上記分岐パターンの標準パターンとが実質的に一致するように、複数の当該端面が同一平面内で配列することを意味する。端面の「配列パターン」とは、複数の光ファイバの一方の端面に関するそれぞれの代表点(例えば端面の中心)の配列のパターンを意味する。2つのパターンが「実質的に一致する」とは、これらのパターンが異なっていたとしても、複数の分岐光のそれぞれが複数の光ファイバのコアのそれぞれに入射することができる範囲であれば、一致しているとして取り扱うことを意味する。
 そして、本発明に係る光音響撮像装置において、バンドzルファイバの上記一方の端面と光分岐部との位置関係を調整する位置調整部を備えたことが好ましい。
 そして、本発明に係る光音響撮像装置において、第1の分岐光導光部は、焦点が第1の分岐回折光学素子における第1のレーザ光の入射位置に対応するように配置された第1の集光レンズ系を有するものであることが好ましい。この場合において、第1の集光レンズ系は第1の複数の分岐光の分岐パターンのスケールを調整可能なものであることが好ましい。
 そして、本発明に係る光音響撮像装置において、第2の分岐光導光部は、焦点が第2の分岐回折光学素子における第2のレーザ光の入射位置に対応するように配置された第2の集光レンズ系を有するものであることが好ましい。この場合において、第2の集光レンズ系は第2の複数の分岐光の分岐パターンのスケールを調整可能なものであることが好ましい。
 そして、本発明に係る光音響撮像装置において、光分岐部は、第1の分岐回折光学素子の光学系の上流側および第2の分岐回折光学素子の光学系の上流側の少なくとも一方にホモジナイザを有することが好ましい。
 そして、本発明に係る光音響撮像装置において、光分岐部は、第1の分岐回折光学素子の光学系の下流側および第2の分岐回折光学素子の光学系の下流側の少なくとも一方にホログラフィック拡散板を有することが好ましい。
 そして、本発明に係る光音響撮像装置において、光分岐部は、第1の分岐回折光学素子の光学系の上流側および第2の分岐回折光学素子の光学系の上流側の少なくとも一方に可変ビームエキスパンダを有することが好ましい。
 そして、本発明に係る光音響撮像装置において、光分岐部は第1のレーザ光および第2のレーザ光をそれぞれ16本以上に分岐せしめるものであり、
 バンドルファイバは少なくとも16本の光ファイバを包含することが好ましい。
 そして、本発明に係る光音響撮像装置において、第1の分岐パターンおよび第2の分岐パターンは六方形構造を有し、
 複数の光ファイバの上記一方の端面が最密充填構造で配列したものであることが好ましい。
 そして、本発明に係る光音響撮像装置において、バンドルファイバの上記一方の端面は、この端面におけるコアが露出するようにこの端面上に反射マスクを有することが好ましい。
 そして、本発明に係る光音響撮像装置において、第1の分岐回折光学素子は第2の分岐回折光学素子を兼ねることが好ましい。
 そして、本発明に係る光音響撮像装置において、光照射部は複数の光ファイバの上記他方の端面であり、
 この他方の端面は間隔を置いてライン状に配列されたものであることが好ましい。
 そして、本発明に係る光音響撮像装置において、光照射部は先太りの形状を有する導光板であり、
 バンドルファイバの上記他方の端面は、着脱可能な状態で導光板の短辺側の端面に接続されたものであることが好ましい。
 さらに、本発明に係るプローブユニットは、
 被検体内に測定光を照射する光照射部と、
 測定光の照射により被検体内で発生した光音響波を検出して光音響波を電気信号に変換する電気音響変換部と、
 光学系の上流側から入射した第1のレーザ光を所定の第1の分岐パターンに従って第1の複数の分岐光として分岐せしめる第1の分岐回折光学素子と、光学系の上流側から入射した第2のレーザ光であって第1のレーザ光とは波長および光路が異なる第2のレーザ光を、所定の第2の分岐パターンであって第1の分岐パターンと同一の標準パターンを有する第2の分岐パターンに従って第2の複数の分岐光として分岐せしめる第2の分岐回折光学素子とを有する光分岐部と、
 コア/クラッド構造を有する複数の光ファイバを包含するバンドルファイバであって、このバンドルファイバの一方の端面における複数の光ファイバの一方の端面が第1の分岐パターンおよび第2の分岐パターンに対応して配列したバンドルファイバと、
 第1の複数の分岐光のそれぞれを複数の光ファイバのコアのそれぞれにバンドルファイバの上記一方の端面から入射せしめるように第1の複数の分岐光を導光する第1の分岐光導光部と、
 第2の複数の分岐光のそれぞれを上記コアのそれぞれにバンドルファイバの上記一方の端面から入射せしめるように第2の複数の分岐光を導光する第2の分岐光導光部とを備え、
 バンドルファイバが、上記コアに入射した第1の複数の分岐光および/または第2の複数の分岐光をバンドルファイバの他方の端面において接続された光照射部に導光するように配置されたものであり、
 光照射部が第1の複数の分岐光および/または第2の複数の分岐光を測定光として照射するものであることを特徴とするものである。
 そして、本発明に係るプローブユニットにおいて、バンドルファイバの上記一方の端面と光分岐部との位置関係を調整する位置調整部を備えたことが好ましい。
 そして、本発明に係るプローブユニットにおいて、第1の分岐光導光部は、焦点が第1の分岐回折光学素子における第1のレーザ光の入射位置に対応するように配置された第1の集光レンズ系を有するものであることが好ましい。この場合において、第1の集光レンズ系は第1の複数の分岐光の分岐パターンのスケールを調整可能なものであることが好ましい。
 本発明に係る光音響撮像装置およびプローブユニットは、特に、光学系の上流側から入射した第1のレーザ光を所定の第1の分岐パターンに従って第1の複数の分岐光として分岐せしめる第1の分岐回折光学素子と、光学系の上流側から入射した第2のレーザ光であって第1のレーザ光とは波長および光路が異なる第2のレーザ光を、所定の第2の分岐パターンであって第1の分岐パターンと同一の標準パターンを有する第2の分岐パターンに従って第2の複数の分岐光として分岐せしめる第2の分岐回折光学素子とを有する光分岐部と、コア/クラッド構造を有する複数の光ファイバを包含するバンドルファイバであって、このバンドルファイバの一方の端面における複数の光ファイバの一方の端面が第1の分岐パターンおよび第2の分岐パターンに対応して配列したバンドルファイバと、第1の複数の分岐光のそれぞれを複数の光ファイバのコアのそれぞれにバンドルファイバの上記一方の端面から入射せしめるように第1の複数の分岐光を導光する第1の分岐光導光部と、第2の複数の分岐光のそれぞれを上記コアのそれぞれにバンドルファイバの上記一方の端面から入射せしめるように第2の複数の分岐光を導光する第2の分岐光導光部とを備え、バンドルファイバが、上記コアに入射した第1の複数の分岐光および/または第2の複数の分岐光をバンドルファイバの他方の端面において接続された光照射部に導光するように配置されたものであることを特徴とする。したがって、複数の光ファイバの一方の端面が分岐パターンに対応して配列したバンドルファイバを用いることにより、複数の分岐光のそれぞれと複数の光ファイバのそれぞれとの位置合わせを一括して行うことができる。この結果、複数の光ファイバを用いてレーザ光を導光して実施する光音響イメージングにおいて、複数の分岐光のそれぞれと複数の光ファイバのそれぞれとの位置合わせが容易となる。
本発明の光音響撮像装置の一実施形態の構成を示す概略図である。 図1における画像生成部の構成を示すブロック図である。 本発明の光分岐部、第1の分岐光導光部、第2の分岐光導光部およびバンドルファイバの一実施形態の構成を示す概略断面図である。 バンドルファイバの入射端面における複数の光ファイバの端面の配列の例を示す概略図である。 バンドルファイバの入射端面における複数の光ファイバの端面の配列の例を示す概略図である。 複数の分岐光の分岐パターンのスケールを調整可能とする光学系の構成の例を示す概略断面図である。 バンドルファイバの入射端面に設けられた反射マスクを示す概略図である。 図3において光分岐部が、さらに光分岐部とバンドルファイバとの位置関係を調整する位置調整部を備えたときの構成を示す概略断面図である。 図3において光分岐部が、さらにホモジナイザ光学素子を備えたときの構成を示す概略断面図である。 図3において光分岐部が、さらにホログラフィック拡散板を備えたときの構成を示す概略断面図である。 図3において光分岐部が、さらに可変ビームエキスパンダを備えたときの構成を示す概略断面図である。 光分岐部に2本のレーザ光を入射するための構成例を示す概略断面図である。 1つの分岐回折光学素子を用いて2本のレーザ光を分岐せしめる場合の構成例を示す概略断面図である。 本発明のプローブユニットの先端部の構成を示す概略図である。 本発明のプローブユニットの先端部の他の構成を示す概略図である。
 以下、本発明の実施形態について図面を用いて説明するが、本発明はこれに限られるものではない。なお、視認しやすくするため、図面中の各構成要素の縮尺等は実際のものとは適宜異ならせてある。
「光音響撮像装置およびプローブユニットの実施形態」
 本発明の光音響撮像装置10の実施形態について説明する。図1は、本実施形態における光音響撮像装置10全体の構成を示す概略図である。図2は、図1の画像生成部2の構成を示すブロック図である。図3は、本発明の光分岐部12、第1の分岐光導光部13x、第2の分岐光導光部13yおよびバンドルファイバ14の一実施形態の構成を示す概略断面図である。
 本実施形態による光音響撮像装置10は、特定波長成分を含む測定光Lを発生させこの測定光Lを被検体7に照射する光送信部1と、この測定光Lが被検体7に照射されることにより被検体7内で発生する光音響波Uを検出して任意断面の光音響画像データを生成する画像生成部2と、音響信号と電気信号の変換を行う電気音響変換部3と、この光音響画像データ表示する表示部6と、操作者が患者情報や装置の撮影条件を入力するための操作部5と、これら各ユニットを統括的に制御するシステム制御部4とを備えている。
 そして、本実施形態のプローブユニット70は、電気音響変換部3、光分岐部12、第1の分岐光導光部13x、第2の分岐光導光部13y、バンドルファイバ14および光照射部15を備えている。
 光送信部1は、波長の異なる複数の光源を備える光源部11と、光源部11から出力された2本のレーザ光LxおよびLyのそれぞれを第1の複数の分岐光Lxdおよび第2の複数の分岐光Lydとして分岐する光分岐部12と、第1の複数の分岐光Lxdおよび第2の複数の分岐光Lydをバンドルファイバまで導光する第1の分岐光導光部13xおよび第2の分岐光導光部13yと、第1の複数の分岐光Lxdおよび第2の複数の分岐光Lydを光照射部15まで導光するバンドルファイバ14と、測定光Lを被検体7の体表面へ照射する光照射部15とを備えている。
 光源部11は、例えば所定の波長の光を発生する1以上の光源を有する。光源として、特定の波長成分又はその成分を含む単色光を発生する半導体レーザ(LD)、固体レーザ、ガスレーザ等の発光素子を用いることができる。なお、2本のレーザ光LxおよびLyの波長および光路は、互いに異なるものである。レーザ光LxおよびLyの波長が互いに異なるとは、それぞれが有する波長分布の中心波長が異なることを意味する。また、レーザ光LxおよびLyの光路が互いに異なるとは、空間的に異なる位置において、それぞれのレーザ光が分岐されることを意味する。2本のレーザ光LxおよびLyは、時間的に同時に出力されてもよいし、別々に出力されてもよい。2本のレーザ光LxおよびLyのうち一方をエイミング光として用いることもできる。光源部11は、レーザ光として1~100nsecのパルス幅を有するパルス光を出力するものであることが好ましい。レーザ光の波長は、計測の対象となる被検体内の物質の光吸収特性によって適宜決定される。生体内のヘモグロビンは、その状態(酸化ヘモグロビン、還元ヘモグロビン、メトヘモグロビン、炭酸ガスヘモグロビン、等)により光学的な吸収特性が異なるが、一般的には600nmから1000nmの光を吸収する。したがって、例えば計測対象が生体内のヘモグロビンである場合(つまり、血管を撮像する場合)には、一般的には600~1000nm程度とすることが好ましい。さらに、被検体7の深部まで届くという観点から、上記レーザ光の波長は700~1000nmであることが好ましい。そして、上記レーザ光の出力は、レーザ光と光音響波の伝搬ロス、光音響変換の効率および現状の検出器の検出感度等の観点から、10μJ/cm~数10mJ/cmであることが好ましい。さらに、パルス光出力の繰り返しは、画像構築速度の観点から、10Hz以上であることが好ましい。また、レーザ光は上記パルス光が複数並んだパルス列とすることもできる。
 より具体的には例えば、被検体7のヘモグロビン濃度を測定する場合には、固体レーザの一種であるNd:YAGレーザ(発光波長:約1000nm)や、ガスレーザの一種であるHe-Neガスレーザ(発光波長:633nm)を用い、10nsec程度のパルス幅を有したレーザ光を形成する。また、LD等の小型発光素子を用いる場合には、InGaAlP(発光波長:550~650nm)、GaAlAs(発光波長:650~900nm)、InGaAsもしくはInGaAsP(発光波長:900~2300nm)などの材料を用いた素子を使用することができる。また最近では、波長が550nm以下で発光するInGaNを用いた発光素子も使用可能になりつつある。更には、波長可変可能な非線形光学結晶を用いたOPO(Optical Parametrical Oscillators)レーザを用いることもできる。
 光分岐部12は、第1の分岐回折光学素子40x(分岐DOE)を用いて光源部11から出力されたレーザ光Lxを分岐せしめ、第2の分岐DOE40yを用いて光源部11から出力されたレーザ光Lyを分岐せしめるものである。本明細書において分岐DOEとは、光の回折現象を利用して互いに異なる進行方向を有する複数の分岐光を生じせしめる光学素子を意味する。分岐本数は特に限定されないが、効果的にレーザ光のエネルギーを分散させる観点から、16本以上に分岐せしめることが好ましい。本実施形態において、光分岐部12は、分岐DOE40xおよび分岐DOE40yから構成される。分岐DOE40xおよび40yのそれぞれの表面には所定の加工が施されており、この加工の内容により所定の分岐パターンが規定される。分岐DOE40xにより規定される所定の第1の分岐パターンの標準パターンと分岐DOE40yにより規定される所定の第2の分岐パターンの標準パターンとは、実質的に一致するように設計される。これにより、同じバンドルファイバを用いて複数の分岐光Lxdおよび複数の分岐光Lydを導光することができる。分岐するレーザ光の波長に依存して分岐パターンが変化するため、分岐DOEは分岐するレーザ光の波長を考慮して適宜選択される。分岐パターンは特に限定されるものではないが、集光レンズ系での収差の低減の観点から、正方形構造または六方形構造であることが好ましく、六方形構造であることがより好ましい。
 第1の分岐光導光部13xは、分岐DOE40xにより生成された複数の分岐光Lxdのそれぞれを、バンドルファイバ14に包含される複数の光ファイバ13のコアのそれぞれに導光するものである。第1の分岐光導光部13xは、本実施形態において、集光レンズ系44xおよびダイクロイックミラー45xにより構成される。しかしながら、第1の分岐光導光部13xは上記構成に限られるものではない。集光レンズ系44xは、分岐DOE40xにより生成された複数の分岐光Lxdがバンドルファイバ14に入射しやすくするため、および複数の分岐光Lxdのそれぞれとバンドルファイバ14との位置合わせを容易にするため、複数の分岐光Lxdを平行化する。集光レンズ系44xは、その焦点が分岐DOE40x上におけるレーザ光Lxの入射位置に対応するように配置されている。集光レンズ系の焦点が分岐DOEにおけるレーザ光の「入射位置に対応する」とは、集光レンズ系の焦点が、分岐DOEの所定の部分であってレーザ光が入射してから分岐光として出射するまでに当該光が通過しうる部分に含まれることを意味する。そして、特に出射面のビーム中心に集光レンズ系の焦点を合わせることが一般的である。また、光音響撮像装置10は、集光レンズ系44xを有する場合、集光レンズ系44xの微調整を可能にするため、集光レンズ系44xをその光軸方向に駆動させるレンズ位置調整部を有することが好ましい。集光レンズ系44xは、1つの集光レンズから構成されるものであってもよいし、2以上の集光レンズから構成される結合系レンズとすることもできる。なお、集光レンズ系44xは、集光レンズ系44xの前側焦点を分岐DOE40の分岐光出射位置に、後側焦点面をバンドルファイバ14の端面14eに合わせて配置することが好ましい。
 ダイクロイックミラー45xは、第1の複数の分岐光Lxdの光路および第2の複数の分岐光Lydの光路を同軸にする。集光レンズ系44xにより平行化された複数の分岐光Lxdは、ダイクロイックミラー45xをそのまま透過する。そして、ダイクロイックミラー45xを透過した複数の分岐光Lxdのそれぞれは、バンドルファイバ14の入射端面14eから複数の光ファイバ13のコアのそれぞれに入射する。
 第2の分岐光導光部13yは、分岐DOE40yにより生成された複数の分岐光Lydのそれぞれを、バンドルファイバ14に包含される複数の光ファイバ13のコアのそれぞれに導光するものである。第2の分岐光導光部13yは、本実施形態において、集光レンズ系44y、ミラー45yおよびダイクロイックミラー45xにより構成される。しかしながら、第2の分岐光導光部13yは上記構成に限られるものではない。集光レンズ系44yは、分岐DOE40yにより生成された複数の分岐光Lydがバンドルファイバ14に入射しやすくするため、および複数の分岐光Lydのそれぞれとバンドルファイバ14との位置合わせを容易にするため、複数の分岐光Lydを平行化する。集光レンズ系44yは、その焦点が分岐DOE40y上におけるレーザ光Lyの入射位置に対応するように配置されている。また、光音響撮像装置10は、集光レンズ系44yを有する場合、集光レンズ系44yの微調整を可能にするため、集光レンズ系44yをその光軸方向に駆動させるレンズ位置調整部を有することが好ましい。集光レンズ系44xは、1つの集光レンズから構成されるものであってもよいし、2以上の集光レンズから構成される結合系レンズとすることもできる。なお、集光レンズ系44xは、集光レンズ系44xの前側焦点を分岐DOE40の分岐光出射位置に、後側焦点面をバンドルファイバ14の端面14eに合わせて配置することが好ましい。
 集光レンズ系44yにより平行化された複数の分岐光Lydは、ミラー45yおよびダイクロイックミラー45xで反射して、第1の複数の分岐光Lxdの光路と同軸の光路を伝搬する。そして、ダイクロイックミラー45xで反射した複数の分岐光Lydのそれぞれは、バンドルファイバ14の入射端面14eから複数の光ファイバ13のコアのそれぞれに入射する。
 バンドルファイバ14は、光分岐部12によって分岐したレーザ光LxおよびLyを光照射部15にそれぞれ導光するものである。バンドルファイバ14は、コア13aおよびクラッド13bを有する複数の光ファイバ13を包含している。光ファイバ13は、特に限定されないが石英ファイバであることが好ましい。複数の光ファイバ13は、複数の分岐光LxdおよびLydを効率よく導光する観点から、分岐DOE40xにより規定される所定の第1の分岐パターンおよび分岐DOE40yにより規定される所定の第2の分岐パターンに対応して配列している。つまり、バンドルファイバ14の入射端面14eにおける複数の光ファイバ13の端面13eの配列パターンの標準パターンと、第1の分岐パターンおよび第2の分岐パターンの標準パターンとは実質的に一致している。
 バンドルファイバ14の入射端面14eにおける複数の光ファイバ13の端面13eの配列パターンは、バンドルファイバ14中での配列のしやすさ、および集光レンズ系44での収差の低減の観点から、正方形構造または六方形構造であることが好ましく、六方形構造であることがより好ましい。そして、複数の光ファイバ13xの当該端面13eは最密充填構造で配列することが特に好ましい。これは以下に示す理由による。図4Aおよび図4Bは、バンドルファイバ14の入射端面14eにおける複数の光ファイバ13の端面13eの配列の例を示す概念図である。図4Aは64本の光ファイバ13の端面13eの配列が正方形構造を有する場合、および図4Bは61本の光ファイバ13の端面13eの配列が最密充填構造を有する場合を示す。このように、同程度の本数の光ファイバ13が正方形構造で配列した場合と最密充填構造で配列した場合とを考える。このとき、配列パターンの中心から最も離れた光ファイバの端面までの距離(図4A中のW1および図4B中のW2)を互いに比較すると、最密充填構造の上記距離W2の方が、正方形構造の上記距離W1よりも短くなることが分かる。上記距離が長くなると、これに伴い複数の分岐光の拡がり角も大きくなるよう設定されるため、集光レンズ系の収差が増大する。この結果、複数の分岐光のそれぞれと複数の光ファイバ13のそれぞれとの位置合わせの精度が低下する。したがって、バンドルファイバ14の入射端面14eにおける複数の光ファイバ13の端面13eの配列は、最密充填構造であることが特に好ましい。
 また、上記観点とは別に、バンドルファイバ14中の複数の光ファイバ13の配列精度を高めることが特に重要な場合には、V溝基板を用いてラインごとに分割して配列してもよい。精度良くV溝加工されたガラスや金属面を基準にして各ラインを配置することで、複数の光ファイバ13の配列精度をより高めることができる。このような場合、複数の光ファイバ13のライン配列に合わせて分岐DOE40が設計される。
 複数の分岐光LxdおよびLydのそれぞれを複数の光ファイバ13のコア13aのそれぞれに実際に入射せしめるときは、分岐光LxdおよびLydの分岐パターンと光ファイバ13の端面13eの配列パターンとを実質的に一致させることが必要である。つまり、分岐パターンおよび配列パターンのそれぞれの標準パターンのみではなく、スケールも含めたこれらのパターンを実質的に一致させることが必要である。そこで、集光レンズ系を例えば下記のような構成を利用することにより、これらのパターンを実質的に一致させるための調整を行えるように光学系が設定されることが好ましい。
 図5は、複数の分岐光の分岐パターンのスケールを調整可能とする光学系の構成の例を示す概略断面図である。分岐DOE90から生じる複数の分岐光Ldの焦点面上でのパターン間隔y(焦点を通り光軸に垂直な仮想平面上での隣接する輝点同士の間隔)は、分岐DOE90およびバンドルファイバ94の間にある集光レンズ系の焦点距離に比例する性質がある。例えば図5に示されるように、分岐DOE90およびバンドルファイバ94の間にある集光レンズ系が、集光レンズ91と集光レンズ92とから構成される結合系レンズである場合を考える。集光レンズ91の焦点距離がfであり、集光レンズ92の焦点距離がfであり、集光レンズ91および集光レンズ92の距離がdであるとすると、当該結合系レンズの合成焦点距離fは、f=f・f/(f+f-d)で与えられる。さらに、基準面Pから集光レンズ91の第2主面H”までの距離s”は、s”=f(f-d)/(f+f-d)で与えられる。なお、詳細には、距離dは集光レンズ91の第1主面Hから集光レンズ92の第2主面H”までの距離を意味し、基準面Pは分岐DOE90のレンズ側の表面、つまり複数の分岐光の出射面を意味する。また、当該結合系レンズの合成焦点距離fは基準面Pから当該結合系レンズの第1主面Hまでの距離を意味する。
 上記式より、距離dが変化すると、合成焦点距離fおよび距離s”も変化することがわかる。つまり、距離dをレンズ位置調整部91aおよび/または92aによって光軸方向に移動させて調整することにより、その結合系レンズの合成焦点距離fを調整することができる。この結果、複数の分岐光Ldの焦点面上でのパターン間隔y、つまり分岐パターンのスケールを調整することが可能となる。その他の結合系レンズについても、合成焦点距離を調整することにより分岐パターンのスケールを調整することができる。合成焦点距離は、結合系レンズを構成する要素によって異なるものであるが、合成焦点距離を求めることは既知の方法により当業者にとって容易である。なお、結合系レンズについても、結合系レンズの前側合成焦点を分岐DOE90の分岐光出射位置(基準面P)に、後側合成焦点をバンドルファイバ94の端面に合わせて配置することが好ましい。
 バンドルファイバ14において、バンドルファイバ14の上記一方の端面14eは、図6に示されるように、この端面14eにおけるコア13aが露出するようにこの端面14e上に反射マスクMを有することが好ましい。バンドルファイバ14は通常、複数の光ファイバ13の互いの間隙を接着剤で固定することにより製造される。しかしながら、接着剤は石英等の光ファイバの素材に比べレーザ光に対する耐久性が低い。そこで、上記のような反射マスクMによって、複数の分岐光がそれぞれ入射するコア13aの領域を除いた領域にレーザ光が照射されることを防止することができる。このような反射マスクMは、例えばコア13aの配列パターンに合わせて穴あけ加工された薄いガラス板上に誘電体多層膜を蒸着し、その後コア13aと上記穴とが対応して合わさるように当該ガラス板をバンドルファイバ14の上記一方の端面14eに張り付けることにより形成することが可能である。
 光照射部15は、本実施形態では複数の光ファイバ13の複数の出射端面13eから構成される。光照射部15を構成する複数の光ファイバ13の複数の出射端面13eは、例えば電気音響変換部3の周囲に沿って配列される。また、電気音響変換部3を構成する複数の変換素子54が透明材料である場合には、光照射部15は変換素子54の上方から変換素子全体を照射できるように配置してもよい。なお、複数の光ファイバ13の複数の出射端面13eは、電気音響変換部3を構成する複数の変換素子54とともに、平面、凸面あるいは凹面を形成する。ここでは平面とする。
 電気音響変換部3は、例えば1次元状或いは2次元状に配列された微小な複数の変換素子54から構成される。変換素子54は、例えば、圧電セラミクス、またはポリフッ化ビニリデン(PVDF)のような高分子フィルムから構成される圧電素子である。電気音響変換部3は、光照射部15からの光の照射により被検体内に発生する光音響波Uを受信する。この変換素子54は、受信時において光音響波Uを電気信号に変換する機能を有している。電気音響変換部3は、小型、軽量に構成されており、多チャンネルケーブルによって後述する受信部22に接続される。この電気音響変換部3は、セクタ走査対応、リニア走査対応、コンベックス走査対応等の中から診断部位に応じて選択される。電気音響変換部3は、光音響波Uを効率よく伝達するために音響整合層を備えてもよい。一般に圧電素子材料と生体では音響インピーダンスが大きく異なるため、圧電素子材料と生体が直接接した場合は、界面での反射が大きくなり光音響波を効率よく伝達することができない。このため、圧電素子材料と生体の間に中間的な音響インピーダンスを有する物質で構成した音響整合層を挿入することにより、光音響波を効率よく伝達することができる。音響整合層を構成する材料の例としては、エポキシ樹脂や石英ガラスなどが挙げられる。
 光音響撮像装置10の画像生成部2は、電気音響変換部3を構成する複数の変換素子54を選択駆動するとともに、また電気音響変換部3からの電気信号に所定の遅延時間を与え、整相加算を行うことにより受信信号を生成する受信部22と、変換素子54の選択駆動や受信部22の遅延時間を制御する走査制御部24と、受信部22から得られる受信信号に対して各種の処理を行う信号処理部25とを備えている。
 受信部22は、図2に示すように、電子スイッチ53と、プリアンプ55と、受信遅延回路56と、加算器57とを備えている。
 電子スイッチ53は、光音響走査における光音響波の受信に際して、連続して隣接する所定数の変換素子54を選択する。例えば、電気音響変換部3がアレイ型の192個の変換素子CH1~CH192から構成される場合、このようなアレイ型変換素子は、電子スイッチ53によってエリア0(CH1~CH64までの変換素子の領域)、エリア1(CH65~CH128までの変換素子の領域)およびエリア2(CH129~CH192までの変換素子の領域)の3つの領域に分割されて取り扱われる。このようにN個の変換素子から構成されるアレイ型変換素子をn(n<N)個の隣接する振動子のまとまり(エリア)として取り扱い、このエリアごとにイメージング作業を実施した場合には、すべてのチャンネルの変換素子にプリアンプやA/D変換ボードを接続する必要がなくなり、プローブユニット70の構造を簡素化できコストの増大を防ぐことができる。また、それぞれのエリアを個別に光照射することができるように、複数の光ファイバを配置した場合には、1回あたりの光出力が大きくならずに済むので、大出力の高価な光源を用いる必要がないといった利点もある。そして、変換素子54によって得られるそれぞれの電気信号はプリアンプ55に供給される。
 プリアンプ55は、上記のように選択された変換素子54によって受信された微小な電気信号を増幅し、充分なS/Nを確保する。
 受信遅延回路56は、電子スイッチ53によって選択された変換素子54から得られる光音響波Uの電気信号に対して、所定の方向からの光音響波Uの位相を一致させて収束受信ビームを形成するための遅延時間を与える。
 加算器57は、受信遅延回路56により遅延された複数チャンネルの電気信号を加算することによって1つの受信信号にまとめる。この加算によって所定の深さからの音響信号は整相加算され、受信収束点が設定される。
 走査制御部24は、ビーム集束制御回路67と変換素子選択制御回路68とを備える。変換素子選択制御回路68は、電子スイッチ53によって選択される受信時の所定数の変換素子54の位置情報を電子スイッチ53に供給する。一方、ビーム集束制御回路67は、所定数個の変換素子54が形成する受信収束点を形成するための遅延時間情報を受信遅延回路56に供給する。
 信号処理部25は、フィルタ66と、信号処理器59と、A/D変換器60と、画像データメモリ62とを備えている。受信部22の加算器57から出力された電気信号は、信号処理部25のフィルタ66において不要なノイズを除去した後、信号処理器59にて受信信号の振幅を対数変換し、弱い信号を相対的に強調する。一般に、被検体7からの受信信号は、80dB以上の広いダイナミックレンジをもった振幅を有しており、これを23dB程度のダイナミックレンジをもつ通常のモニタに表示するためには弱い信号を強調する振幅圧縮が必要となる。なお、フィルタ66は、帯域通過特性を有し、受信信号における基本波を抽出するモードと高調波成分を抽出するモードを有している。また、信号処理器59は、対数変換された受信信号に対して包絡線検波を行う。そして、A/D変換器60は、この信号処理器59の出力信号をA/D変換し、1ライン分の光音響画像データを形成する。この1ライン分の光音響画像データは、画像データメモリ62に保存される。
 画像データメモリ62は、前述のように生成された光音響画像データを保存する記憶回路である。システム制御部4の制御のもとで、画像データメモリ62から断面のデータが読み出され、その読出しに際して空間的に補間されることにより、当該断面の光音響画像データが生成される。
 表示部6は、表示用画像メモリ63と、光音響画像データ変換器64と、モニタ65を備えている。表示用画像メモリ63は、モニタ65に表示する光音響画像データを一時的に保存するバッファメモリであり、画像データメモリ62からの1ライン分の光音響画像データは、この表示用画像メモリ63において1フレームに合成される。光音響画像データ変換器64は、表示用画像メモリ63から読み出された合成画像データに対してD/A変換とテレビフォーマット変換を行い、その出力はモニタ65において表示される。
 操作部5は、操作パネル上にキーボード、トラックボール、マウス等を備え、装置操作者が患者情報、装置の撮影条件、表示断面など必要な情報を入力するために用いられる。
 システム制御部4は、図示しないCPUと図示しない記憶回路を備え、操作部5からのコマンド信号に従って光送信部1、画像生成部2、表示部6などの各ユニットの制御やシステム全体の制御を統括して行う。特に、内部のCPUには、操作部5を介して送られる操作者の入力コマンド信号が保存される。
 次に、本発明の作用について説明する。
 本発明の光音響撮像装置10およびプローブユニット70は、図3に示されるように特に、光学系の上流側から入射した第1のレーザ光Lxを所定の第1の分岐パターンに従って第1の複数の分岐光Lxdとして分岐せしめる第1の分岐DOE40xと、光学系の上流側から入射した第2のレーザ光Lyであって第1のレーザ光Lxとは波長および光路が異なる第2のレーザ光Lyを、所定の第2の分岐パターンであって第1の分岐パターンと同一の標準パターンを有する第2の分岐パターンに従って第2の複数の分岐光Lydとして分岐せしめる第2の分岐DOE40yとを有する光分岐部12と、コア13a/クラッド13b構造を有する複数の光ファイバ13を包含するバンドルファイバ14であって、このバンドルファイバ14の一方の端面14eにおける複数の光ファイバ13の一方の端面14eが第1の分岐パターンおよび第2の分岐パターンに対応して配列したバンドルファイバ14と、第1の複数の分岐光Lxdのそれぞれを複数の光ファイバ13のコア13aのそれぞれにバンドルファイバ14の上記一方の端面14eから入射せしめるように第1の複数の分岐光Lxdを導光する第1の分岐光導光部13xと、第2の複数の分岐光Lydのそれぞれを上記コア13aのそれぞれにバンドルファイバ14の上記一方の端面14eから入射せしめるように第2の複数の分岐光Lydを導光する第2の分岐光導光部13yとを備え、バンドルファイバ14が、上記コア13aに入射した第1の複数の分岐光Lxdおよび/または第2の複数の分岐光Lydをバンドルファイバ14の他方の端面14eにおいて接続された光照射部15に導光するように配置されたものであることを特徴とする。つまり本発明は、分岐DOE40xおよび40yの分岐パターンとバンドルファイバ14の入射端面14eにおける複数の光ファイバ13の端面13eの配列パターンとを対応させることにより、複数の分岐光のそれぞれと複数の光ファイバのそれぞれとの位置合わせを一括して行うことを可能にした。これにより、複数の分岐光のそれぞれと複数の光ファイバのそれぞれとを別個に位置合わせする必要がなくなり、複数の分岐光のそれぞれと複数の光ファイバのそれぞれとの位置合わせが容易となる。
 その結果として、高エネルギーのパルスレーザ光が伝送可能となり、高画質の光音響画像を撮像することが可能となる。さらに、プローブユニットのコード部分の可撓性と耐久性とを容易に両立できる。
 さらに、本発明のように2本のレーザ光をそれぞれ分岐せしめ、第1の複数の分岐光および第2の複数の分岐光を1本のバンドルファイバに導光する構成とすることにより、波長が互いに異なる2本のレーザ光を切り替えて撮像したり、および波長が互いに異なる2本のレーザ光を同時に照射して撮像したりすることができる。具体的には、分岐DOEの表面上の加工パターンは、通常波長毎に最適化されるため、波長が互いに異なる2本のレーザ光が同一の分岐DOEの同一の位置に入射すると、レーザ光のエネルギー伝搬効率が低下する。したがって、波長が互いに異なる2本のレーザ光が、それぞれの波長に対して最適化された空間的に異なる位置で分岐することにより、レーザ光のエネルギー伝搬効率が向上する。また、本発明では、バンドルファイバは1本でよいため、光音響撮像装置およびプローブユニットを低コストで製造することができる。また、波長が互いに異なる2本のレーザ光を同一の範囲に照射することができる。さらに、波長を切り替えるために光学系(例えば集光レンズ系)の配置を変更する必要がないため、光音響撮像装置およびプローブユニットを安定駆動させ、高速化し、および故障率を低減することができる。また、2本のレーザ光LxおよびLyのうち一方をエイミング光として用いた場合には、光音響撮像装置の操作性をより向上させることができる。
「光音響撮像装置およびプローブユニットの設計変更」
 本発明の光音響撮像装置10およびプローブユニット70は、上記で説明した実施形態に限定されるものではない。なお、以下では特に必要がない場合、一方の光学系(つまり、集光レンズ系44x、第1の分岐光導光部13xおよびバンドルファイバ14)についてのみ説明する。しかし、以下の設計事項は、当然他方の光学系(つまり、集光レンズ系44y、第2の分岐光導光部13yおよびバンドルファイバ14)についても適用できる事項である。なお、図7から図10では、図3におけるダイクロイックミラー45xに相当する光学要素の図示は便宜上省略する。
 上記では、本発明の光音響撮像装置10およびプローブユニット70は、波長が互いに異なる2本のレーザ光を分岐する場合について説明してきたが、これに限らず、波長が互いに異なる3本以上のレーザ光を分岐する場合についても、ダイクロイックミラー、回折光学素子、集光レンズおよび全反射ミラーを組み合わせて光路を波長の数だけ増やすことで適用可能である。
 例えば本発明の光音響撮像装置10およびプローブユニット70は図7に示されるように、バンドルファイバ14の上記一方の端面14eと光分岐部12との位置関係を調整する位置調整部14aを備えるように構成することができる。或いは、分岐DOE40xを制御する位置調整部が備えられてもよい。この位置調整部14aは、プローブユニット70から出射した測定光Lを測定し、測定した光量が最大値となる位置関係に自動で調整するように構成することができる。これにより、複数の分岐光Lxdのそれぞれと複数の光ファイバ13のそれぞれとの位置合わせがより容易になる。
 また、例えば本発明の光音響撮像装置10およびプローブユニット70は図8に示されるように、光分岐部12が、分岐DOE40xの光学系の上流側にホモジナイザ光学素子41を有するように構成することができる。このように配置されたホモジナイザ光学素子41により、複数の分岐光Lxdのビームの強度プロファイルが均一化される。したがって、局所的に高エネルギー密度の分岐光Lxdが光ファイバ13へ入射して当該光ファイバ13が損傷することを防止することができる。つまり、複数の分岐光Lxdの全体にわたって光ファイバ13の損傷閾値エネルギーを超えないように複数の分岐光Lxdを導光することができる。
 また、例えば本発明の光音響撮像装置10およびプローブユニット70は図9に示されるように、光分岐部12が、分岐DOE40xの光学系の下流側にホログラフィック拡散板42を有するように構成することができる。図9においては、ホログラフィック拡散板42を集光レンズ系44xとバンドルファイバ14の入射端面14eとの間に設けた場合の構成が示されているが、ホログラフィック拡散板42は分岐DOE40xと集光レンズ系44xとの間に設けた構成としてもよい。ただし、距離を変えて集光スポット径を制御する際の調整の容易さの観点から、ホログラフィック拡散板42は、集光レンズ系44xとバンドルファイバ14の入射端面14eとの間に設けられることが好ましい。このように配置されたホログラフィック拡散板42により、複数の分岐光Lxdの集光スポット径が大きくなる方向に変化し、バンドルファイバ14の入射端面14eにおけるコア13aに入射する際の複数の分岐光Lxdのビーム径が最適化される。したがって、光ファイバ13の損傷閾値エネルギー密度を超えないように複数の分岐光Lxdを導光することができる。
 また、例えば本発明の光音響撮像装置10およびプローブユニット70は図10に示されるように、光分岐部12が、分岐DOE40xの光学系の上流側に可変ビームエキスパンダ43を有するように構成することができる。このように配置された可変ビームエキスパンダ43により、光音響イメージングにおいて使用されるレーザ光Lxの波長毎にそのビーム径を適宜変えることができるため、複数の分岐光Lxdの集束径(バンドルファイバ14の入射端面14eにおけるコア13aに入射する際の径)を制御することができる。また、プローブユニット70から出射した測定光Lを測定し、測定した光量が最大値となるように、レーザ光Lxの波長毎にそのビーム径を自動制御することも可能となる。
 また、例えば本発明の光音響撮像装置10およびプローブユニット70は図11に示されるように、波長が互いに異なる2本のレーザ光の混合光Loをダイクロイックミラー11aで分離し、一方をミラー11bで反射させて、それぞれをレーザ光LxおよびLyとするように構成してもよい。
 また、例えば本発明の光音響撮像装置10およびプローブユニット70は図12に示されるように、第1の分岐DOEが第2の分岐DOEを兼ねる(つまり、1つの分岐DOE40の異なる位置に2本のレーザ光が入射する)ように構成してもよい。このように構成することにより光学系の部品点数を減らすことができる。
 また、例えば本発明の光音響撮像装置10およびプローブユニット70は図13に示されるように、光照射部15が複数の光ファイバ13の上記他方の端面13eであり、この他方の端面13eが間隔を置いてライン状に配列されたものであるように構成することができる。このように構成することで、プローブユニット先端部71に複雑な構造の光学系を設ける必要がなく、均一なライン状光源を得ることができる。また、複数の光ファイバ13のそれぞれから出射する分岐光LxdおよびLydの強度を勘案して上記間隔を調整することにより、より均一なライン状光源を得ることができる。例えば、分岐光の強度が強い場合には上記間隔を広く、弱い場合には狭くする等して調整することが好ましい。
 また、例えば本発明の光音響撮像装置10およびプローブユニット70は図14に示されるように、光照射部15が先太りの形状を有する導光板72であり、バンドルファイバ14の上記他方の端面14eが、着脱可能な状態で導光板72の短辺側の端面に接続されたものであるように構成することができる。例えば図14では、コネクタ部73においてバンドルファイバ14の上記他方の端面14eと導光板72の短辺側の端面とが互いに接続されている。このように構成することで、バンドルファイバ14が破損した場合、バンドルファイバのみを交換することが可能となり、メンテナンス性能が向上する。

Claims (19)

  1.  被検体内に測定光を照射する光照射部と、前記測定光の照射により前記被検体内で発生した光音響波を検出して該光音響波を電気信号に変換する電気音響変換部と、前記電気信号に基づいて光音響画像を生成する画像生成部とを備える光音響撮像装置において、
     光学系の上流側から入射した第1のレーザ光を所定の第1の分岐パターンに従って第1の複数の分岐光として分岐せしめる第1の分岐回折光学素子と、光学系の上流側から入射した第2のレーザ光であって前記第1のレーザ光とは波長および光路が異なる前記第2のレーザ光を、所定の第2の分岐パターンであって前記第1の分岐パターンと同一の標準パターンを有する前記第2の分岐パターンに従って第2の複数の分岐光として分岐せしめる第2の分岐回折光学素子とを有する光分岐部と、
     コア/クラッド構造を有する複数の光ファイバを包含するバンドルファイバであって、該バンドルファイバの一方の端面における前記複数の光ファイバの一方の端面が前記第1の分岐パターンおよび前記第2の分岐パターンに対応して配列した前記バンドルファイバと、
     前記第1の複数の分岐光のそれぞれを前記複数の光ファイバのコアのそれぞれに前記バンドルファイバの前記一方の端面から入射せしめるように前記第1の複数の分岐光を導光する第1の分岐光導光部と、
     前記第2の複数の分岐光のそれぞれを前記コアのそれぞれに前記バンドルファイバの前記一方の端面から入射せしめるように前記第2の複数の分岐光を導光する第2の分岐光導光部とを備え、
     前記バンドルファイバが、前記コアに入射した前記第1の複数の分岐光および/または前記第2の複数の分岐光を前記バンドルファイバの他方の端面において接続された前記光照射部に導光するように配置されたものであり、
     前記光照射部が前記第1の複数の分岐光および/または前記第2の複数の分岐光を前記測定光として照射するものであることを特徴とする光音響撮像装置。
  2.  前記バンドルファイバの前記一方の端面と前記光分岐部との位置関係を調整する位置調整部を備えたことを特徴とする請求項1に記載の光音響撮像装置。
  3.  前記第1の分岐光導光部が、焦点が前記第1の分岐回折光学素子における前記第1のレーザ光の入射位置に対応するように配置された第1の集光レンズ系を有するものであることを特徴とする請求項1に記載の光音響撮像装置。
  4.  前記第1の集光レンズ系が前記第1の複数の分岐光の分岐パターンのスケールを調整可能なものであることを特徴とする請求項3に記載の光音響撮像装置。
  5.  前記第2の分岐光導光部が、焦点が前記第2の分岐回折光学素子における前記第2のレーザ光の入射位置に対応するように配置された第2の集光レンズ系を有するものであることを特徴とする請求項1に記載の光音響撮像装置。
  6.  前記第2の集光レンズ系が前記第2の複数の分岐光の分岐パターンのスケールを調整可能なものであることを特徴とする請求項5に記載の光音響撮像装置。
  7.  前記光分岐部が、前記第1の分岐回折光学素子の光学系の上流側および前記第2の分岐回折光学素子の光学系の上流側の少なくとも一方にホモジナイザを有することを特徴とする請求項1に記載の光音響撮像装置。
  8.  前記光分岐部が、前記第1の分岐回折光学素子の光学系の下流側および前記第2の分岐回折光学素子の光学系の下流側の少なくとも一方にホログラフィック拡散板を有することを特徴とする請求項1に記載の光音響撮像装置。
  9.  前記光分岐部が、前記第1の分岐回折光学素子の光学系の上流側および前記第2の分岐回折光学素子の光学系の上流側の少なくとも一方に可変ビームエキスパンダを有することを特徴とする請求項1に記載の光音響撮像装置。
  10.  前記光分岐部が前記第1のレーザ光および前記第2のレーザ光をそれぞれ16本以上に分岐せしめるものであり、
     前記バンドルファイバが少なくとも16本の光ファイバを包含することを特徴とする請求項1に記載の光音響撮像装置。
  11.  前記第1の分岐パターンおよび前記第2の分岐パターンが六方形構造を有し、
     前記複数の光ファイバの前記一方の端面が最密充填構造で配列したものであることを特徴とする請求項1に記載の光音響撮像装置。
  12.  前記バンドルファイバの前記一方の端面が、該端面における前記コアが露出するように該端面上に反射マスクを有することを特徴とする請求項1に記載の光音響撮像装置。
  13.  前記第1の分岐回折光学素子が前記第2の分岐回折光学素子を兼ねることを特徴とする請求項1に記載の光音響撮像装置。
  14.  前記光照射部が前記複数の光ファイバの他方の端面であり、
     該他方の端面が間隔を置いてライン状に配列されたものであることを特徴とする請求項1に記載の光音響撮像装置。
  15.  前記光照射部が先太りの形状を有する導光板であり、
     前記バンドルファイバの前記他方の端面が、着脱可能な状態で前記導光板の短辺側の端面に接続されたものであることを特徴とする請求項1に記載の光音響撮像装置。
  16.  被検体内に測定光を照射し、該測定光の照射により前記被検体内で発生した光音響波を検出して該光音響波を電気信号に変換し、該電気信号に基づいて光音響画像を生成する光音響撮像装置に用いられるプローブユニットにおいて、
     被検体内に測定光を照射する光照射部と、
     前記測定光の照射により前記被検体内で発生した光音響波を検出して該光音響波を電気信号に変換する電気音響変換部と、
     光学系の上流側から入射した第1のレーザ光を所定の第1の分岐パターンに従って第1の複数の分岐光として分岐せしめる第1の分岐回折光学素子と、光学系の上流側から入射した第2のレーザ光であって前記第1のレーザ光とは波長および光路が異なる前記第2のレーザ光を、所定の第2の分岐パターンであって前記第1の分岐パターンと同一の標準パターンを有する前記第2の分岐パターンに従って第2の複数の分岐光として分岐せしめる第2の分岐回折光学素子とを有する光分岐部と、
     コア/クラッド構造を有する複数の光ファイバを包含するバンドルファイバであって、該バンドルファイバの一方の端面における前記複数の光ファイバの一方の端面が前記第1の分岐パターンおよび前記第2の分岐パターンに対応して配列した前記バンドルファイバと、
     前記第1の複数の分岐光のそれぞれを前記複数の光ファイバのコアのそれぞれに前記バンドルファイバの前記一方の端面から入射せしめるように前記第1の複数の分岐光を導光する第1の分岐光導光部と、
     前記第2の複数の分岐光のそれぞれを前記コアのそれぞれに前記バンドルファイバの前記一方の端面から入射せしめるように前記第2の複数の分岐光を導光する第2の分岐光導光部とを備え、
     前記バンドルファイバが、前記コアに入射した前記第1の複数の分岐光および/または前記第2の複数の分岐光を前記バンドルファイバの他方の端面において接続された前記光照射部に導光するように配置されたものであり、
     前記光照射部が前記第1の複数の分岐光および/または前記第2の複数の分岐光を前記測定光として照射するものであることを特徴とするプローブユニット。
  17.  前記バンドルファイバの前記一方の端面と前記光分岐部との位置関係を調整する位置調整部を備えたことを特徴とする請求項16に記載のプローブユニット。
  18.  前記第1の分岐光導光部が、焦点が前記第1の分岐回折光学素子における前記第1のレーザ光の入射位置に対応するように配置された第1の集光レンズ系を有するものであることを特徴とする請求項16に記載のプローブユニット。
  19.  前記第1の集光レンズ系が前記第1の複数の分岐光の分岐パターンのスケールを調整可能なものであることを特徴とする請求項18に記載のプローブユニット。
PCT/JP2012/001027 2011-02-16 2012-02-16 光音響撮像装置およびそれに用いられるプローブユニット WO2012111337A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011030743A JP5559081B2 (ja) 2011-02-16 2011-02-16 光音響撮像装置およびそれに用いられるプローブユニット
JP2011-030743 2011-02-16

Publications (1)

Publication Number Publication Date
WO2012111337A1 true WO2012111337A1 (ja) 2012-08-23

Family

ID=46672281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001027 WO2012111337A1 (ja) 2011-02-16 2012-02-16 光音響撮像装置およびそれに用いられるプローブユニット

Country Status (2)

Country Link
JP (1) JP5559081B2 (ja)
WO (1) WO2012111337A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156808A1 (ja) * 2013-03-26 2014-10-02 富士フイルム株式会社 プローブ
CN108414038A (zh) * 2018-04-26 2018-08-17 辽宁省计量科学研究院 一种基于光谱吸收的光纤气体流速和流量测量***及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6180843B2 (ja) * 2013-08-02 2017-08-16 富士フイルム株式会社 プローブ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5708747A (en) * 1996-04-18 1998-01-13 Hughes Aircraft Company Fiber-based system and method for delivery of pulsed high power optical radiation
JP2005021380A (ja) * 2003-07-02 2005-01-27 Toshiba Corp 生体情報映像装置
JP2006084932A (ja) * 2004-09-17 2006-03-30 Nippon Steel Corp 高出力レーザ光の光ファイバ伝送装置
JP2007047757A (ja) * 2005-07-13 2007-02-22 Sony Corp 透過型スクリーンの製造方法、その製造装置および透過型スクリーン
JP2011003509A (ja) * 2009-06-22 2011-01-06 Kel Corp 光伝達装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5708747A (en) * 1996-04-18 1998-01-13 Hughes Aircraft Company Fiber-based system and method for delivery of pulsed high power optical radiation
JP2005021380A (ja) * 2003-07-02 2005-01-27 Toshiba Corp 生体情報映像装置
JP2006084932A (ja) * 2004-09-17 2006-03-30 Nippon Steel Corp 高出力レーザ光の光ファイバ伝送装置
JP2007047757A (ja) * 2005-07-13 2007-02-22 Sony Corp 透過型スクリーンの製造方法、その製造装置および透過型スクリーン
JP2011003509A (ja) * 2009-06-22 2011-01-06 Kel Corp 光伝達装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156808A1 (ja) * 2013-03-26 2014-10-02 富士フイルム株式会社 プローブ
JP2014207975A (ja) * 2013-03-26 2014-11-06 富士フイルム株式会社 プローブ
CN108414038A (zh) * 2018-04-26 2018-08-17 辽宁省计量科学研究院 一种基于光谱吸收的光纤气体流速和流量测量***及方法
CN108414038B (zh) * 2018-04-26 2023-08-08 辽宁省计量科学研究院 一种基于光谱吸收的光纤气体流速和流量测量***及方法

Also Published As

Publication number Publication date
JP2012168093A (ja) 2012-09-06
JP5559081B2 (ja) 2014-07-23

Similar Documents

Publication Publication Date Title
JP5647941B2 (ja) 光音響撮像装置およびそれに用いられるプローブユニット並びに内視鏡
JP5647942B2 (ja) 光音響撮像装置およびそれに用いられるプローブユニット並びに内視鏡
WO2012077356A1 (ja) 光音響検査用探触子および光音響検査装置
US9649034B2 (en) Photoacoustic imaging apparatus and method for operating a photoacoustic imaging apparatus
US20140121505A1 (en) Photoacoustic imaging system and apparatus, and probe unit used therewith
JP5702313B2 (ja) 光音響分析用プローブユニットおよび光音響分析装置
JP5559080B2 (ja) 光音響撮像装置、それに用いられるプローブユニットおよび光音響撮像装置の作動方法
JP2010125260A (ja) 生体検査装置
US20160324423A1 (en) Photoacoustic measurement apparatus and signal processing device and signal processing method for use therein
WO2012114709A1 (ja) 光音響撮像装置、それに用いられるプローブユニットおよび光音響撮像装置の作動方法
KR101566587B1 (ko) 베셀 빔 생성용 광 섬유 및 이를 사용하는 광학 이미징 장치
JP5559081B2 (ja) 光音響撮像装置およびそれに用いられるプローブユニット
EP2027814A1 (en) Biological observation apparatus and method for obtaining information indicative of internal state of an object using sound wave and light
JP5502777B2 (ja) 光音響撮像装置およびそれに用いられるプローブユニット
JP5564449B2 (ja) 光音響撮像装置、それに用いられるプローブユニットおよび光音響撮像装置の作動方法
EP3100684A1 (en) Probe for photoacoustic measurement and photoacoustic measurement device including same
JP2012090862A (ja) 光音響検査用探触子および光音響検査装置
JP2010115414A (ja) 生体情報測定装置および生体情報測定方法
JP6188843B2 (ja) 生体検査装置
JP2014138883A (ja) 生体検査装置
JP2017192841A (ja) 生体検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12747750

Country of ref document: EP

Kind code of ref document: A1