WO2012109894A1 - 光纤通信***的总光信噪比代价的确定方法及装置 - Google Patents

光纤通信***的总光信噪比代价的确定方法及装置 Download PDF

Info

Publication number
WO2012109894A1
WO2012109894A1 PCT/CN2011/079291 CN2011079291W WO2012109894A1 WO 2012109894 A1 WO2012109894 A1 WO 2012109894A1 CN 2011079291 W CN2011079291 W CN 2011079291W WO 2012109894 A1 WO2012109894 A1 WO 2012109894A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
optical signal
noise ratio
communication system
dispersion
Prior art date
Application number
PCT/CN2011/079291
Other languages
English (en)
French (fr)
Inventor
吴通
叶亚斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201180002226.XA priority Critical patent/CN102439875B/zh
Priority to PCT/CN2011/079291 priority patent/WO2012109894A1/zh
Publication of WO2012109894A1 publication Critical patent/WO2012109894A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07953Monitoring or measuring OSNR, BER or Q

Definitions

  • Embodiments of the present invention relate to optical communication technologies, and in particular, to a method and apparatus for determining a total optical signal-to-noise ratio of an optical fiber communication system. Background technique
  • each spanned transmission fiber is dispersively managed by a Dispersion Compensation Fiber (DCF), which is called a dispersion-managed fiber-optic communication system.
  • DCF Dispersion Compensation Fiber
  • the dispersion coefficient of the dispersion compensating fiber is opposite to the sign of the dispersion coefficient of the transmission fiber.
  • each span of the fiber optic transmission link includes a transmission fiber and a dispersion compensating fiber.
  • Embodiments of the present invention provide a method and apparatus for determining a total optical signal to noise ratio cost of a fiber optic communication system for accurately estimating the total optical signal to noise ratio cost of a high speed transmission optical fiber communication system.
  • Embodiments of the present invention provide a method for determining a total optical signal-to-noise ratio cost of a fiber-optic communication system, where the optical fiber communication system is composed of at least one optical fiber span, including:
  • the total optical signal to noise ratio penalty of the fiber optic communication system is obtained based on the base optical signal to noise ratio penalty and the additional optical signal to noise ratio penalty.
  • the embodiment of the present invention further provides a device for determining a total optical signal-to-noise ratio (SNR) of a fiber-optic communication system, where the optical fiber communication system is composed of at least one optical fiber span, including:
  • a basic optical signal-to-noise ratio cost calculation module configured to acquire a basic optical signal-to-noise ratio cost of the optical fiber communication system according to the optical fiber power obtained by measuring the optical signal through each optical fiber span;
  • a first calculating module configured to acquire, according to an actual dispersion of the respective fiber spans and a pre-stored full compensation dispersion, a dispersion deviation of the respective fiber spans;
  • a second calculating module configured to acquire an additional optical signal to noise ratio cost of the optical fiber communication system according to a dispersion deviation of the respective fiber spans
  • a third calculating module configured to obtain a total optical signal to noise ratio cost of the optical fiber communication system according to the base optical signal to noise ratio cost and the additional optical signal to noise ratio.
  • the method and apparatus for determining the optical signal-to-noise ratio of the optical fiber communication system can quickly and accurately evaluate the optical signal-to-noise ratio cost of the high-speed transmission optical fiber communication system.
  • FIG. 1A is a flowchart of a method according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of a device according to Embodiment 2 of the present invention. detailed description
  • Embodiment 1 of the present invention provides a method for determining a total optical signal-to-noise ratio cost of an optical fiber communication system.
  • the optical fiber communication system to which the present embodiment is applied includes at least one optical fiber span.
  • Each fiber span includes a transmission fiber and a dispersion compensation fiber, wherein the transmission fiber and the dispersion compensation fiber are connected in series.
  • the method of the present embodiment can be performed by the total optical signal-to-noise ratio (SNR) determining device of the optical fiber communication system. As shown in FIG.
  • SNR total optical signal-to-noise ratio
  • the method for determining the total optical signal-to-noise ratio of the optical fiber communication system of the first embodiment includes: Step 101 Obtaining the basic optical signal-to-noise ratio cost of the optical fiber communication system according to the optical fiber power when the optical signal obtained by the measurement passes through each fiber span.
  • is a nonlinear phase shift
  • i is a natural number greater than 0
  • the fiber-input optical power of the fiber-optic spanning fiber is the effective length of the transmitting fiber of the i-th fiber span
  • 4 is the effective area of the transmitting fiber of the i-th fiber span, which is the i-th fiber span
  • the nonlinear coefficient of the dispersion-compensating fiber, ⁇ ' is the optical fiber's fiber-optic power through the dispersion of the i-th fiber span
  • A is the effective length of the dispersion-compensating fiber of the i-th fiber span
  • A is the effective length of the dispersion-compensating fiber of the i-th fiber span
  • A is compensated for the dispersion of the i-th fiber span.
  • the parameters in formula (1.1), 4, L n , A can be directly obtained by fiber optic product specifications.
  • dispersion-compensating fiber 3.0e-20(m 2 /w)
  • ⁇ • 20e-12(m 2 )
  • ⁇ and ',. can be obtained from the product label.
  • the ⁇ of all fiber spans should be the same, which can be obtained by measuring the wavelength of the optical signal.
  • the above directly obtainable parameters can be pre-stored as constant parameters, and the measured parameters are ⁇ ',.
  • the basic optical signal-to-noise ratio (SNR) cost is obtained according to a preset nonlinear phase shift-base optical signal-to-noise ratio cost
  • the nonlinear phase shift-basic optical signal-to-noise ratio cost graph can be as shown in FIG.
  • the abscissa in Figure 1B represents the nonlinear phase shift ⁇ in rad
  • the ordinate represents the base optical signal-to-noise ratio, T, in dB.
  • the preset nonlinear phase shift-basic optical signal-to-noise ratio cost relationship graph is a relationship graph known in the prior art, and is related to the relationship between multiple nonlinear phase shifts and the fundamental optical signal-to-noise ratio cost. The relationship diagram.
  • the apparatus for determining the optical signal-to-noise ratio of the optical fiber communication system can find the corresponding basic optical signal-to-noise ratio cost in the relationship between the nonlinear phase shift and the fundamental optical signal-to-noise ratio cost according to the obtained nonlinear phase shift.
  • Step 102 Acquire dispersion dispersion of each fiber span according to actual dispersion and complete compensation dispersion of each fiber span.
  • the total dispersion of each fiber span of a fiber-optic communication system using fully compensated dispersion is zero, and the end dispersion of the entire fiber-optic communication system is also zero.
  • the entire fiber-optic communication system is pre-layed with a 20km dispersion-compensating fiber, and the fiber span in the middle of the fiber-optic communication system is fully compensated for dispersion to ensure that the total dispersion of each fiber span is zero, then the end of the entire fiber-optic communication system The dispersion is zero.
  • the total dispersion of each fiber span of the fiber-optic communication system is not zero, and the end dispersion of the entire fiber-optic communication system is not zero, but the total dispersion of each fiber span and the entire fiber-optic communication
  • the end dispersion of the system is within a certain allowable range, and it can be assumed that the fiber communication system adopts full compensation dispersion.
  • the fully compensated dispersion can be pre-stored in the total optical signal to noise ratio cost determining means of the fiber optic communication system.
  • the dispersion deviation is the difference between the actual dispersion of the fiber communication system to be calculated and the pre-stored full compensation dispersion.
  • step 102 may include:
  • the dispersion coefficient of the fiber L K is the length of the transmission fiber, 0 is the dispersion coefficient of the dispersion compensation fiber, and L' k is the length of the dispersion compensation fiber.
  • the dispersion coefficient and length of the k-th fiber span can be obtained from the specifications of the product.
  • Step 103 Obtain an additional optical signal-to-noise ratio cost B of the fiber-optic communication system according to the dispersion deviation of each fiber span.
  • step 103 includes obtaining a reference parameter W d according to formula (1.2):
  • N t is the dispersion deviation of the kth fiber span.
  • Equation (1.3) is a first calculation method of the prior art to obtain the corresponding relationship between the plurality of reference parameters W d and the extra cost of the optical signal to noise ratio, and then the correspondence relationship proposed by the plurality of points using the prior art
  • the corresponding reference parameter W d and the additional optical signal to noise ratio cost B are plotted accordingly, as shown in Fig. 1C, the abscissa is the reference parameter W d , the unit is dBm.ps/nm, and the ordinate is the additional optical signal noise.
  • the cost is expressed in dB.
  • the circle in Figure 1C represents the correspondence between the calculated multiple reference parameters W d and the additional optical signal to noise ratio cost B.
  • the parabola in Figure 1C is fitted from the points represented by the multiple circles.
  • Formula (1.3) represents the mathematical relationship W d and the extra cost of the optical signal to noise ratio of B, the unit cost of the additional optical signal to noise ratio obtained by the equation (1.3) is dB.
  • Step 104 Obtain a total optical signal to noise ratio cost of the optical fiber communication system according to a base optical signal to noise ratio cost and an additional optical signal to noise ratio penalty.
  • the total optical signal-to-noise ratio of the optical fiber communication system is the sum of the fundamental optical signal-to-noise ratio cost and the additional optical signal-to-noise ratio cost.
  • the additional optical signal-to-noise ratio cost of the optical fiber communication system is obtained according to the dispersion deviation, and then the additional The total optical signal-to-noise ratio penalty of the fiber-optic communication system can be obtained by adding the optical signal-to-noise ratio cost to the fundamental optical signal-to-noise ratio cost.
  • the method for measuring the total cost of the optical signal to noise ratio of the optical fiber communication system is very complicated.
  • the total cost of obtaining the optical signal to noise ratio of the optical fiber communication system is as follows: First, it is necessary to obtain back-to-back The optical signal-to-noise ratio A of a fiber-optic communication system at a specific bit error rate requires that the bit error rate reaches a certain value by continuously adding noise, and then the signal power and noise power are measured in this state, and the optical signal-to-noise ratio A is calculated. Then, in the optical fiber communication system, the optical signal-to-noise ratio H is measured in the same manner as described above, and the total optical-to-noise ratio of the optical fiber communication system is at this time H-A.
  • the acquisition of the total cost of the optical signal-to-noise ratio needs to repeat the above process, which is very time consuming.
  • the cost of the fiber-optic communication system can be quickly calculated. Due to the method for determining the optical signal-to-noise ratio cost of the optical fiber communication system of the present embodiment, the optical signal-to-noise ratio cost of each optical fiber communication system can be accurately known, and the optical signal-to-noise ratio cost of the optical communication system is not required to be measured every time. And calculation, this enables the staff to accurately know the signal quality of the fiber-optic communication system, which facilitates the debugging of the fiber-optic communication system, and greatly saves manpower and material resources.
  • the second embodiment provides a device for determining the total optical signal-to-noise ratio (SNR) cost of the optical fiber communication system.
  • the optical fiber communication system to which the embodiment is applied is composed of at least one optical fiber span, as shown in FIG.
  • the apparatus 200 for determining the signal to noise ratio includes: a base optical signal to noise ratio cost calculation module 201, a first calculation module 202, a second calculation module 203, and a third calculation module 204.
  • the basic optical signal-to-noise ratio cost calculation module 201 is configured to obtain a basic optical signal-to-noise ratio (SNR) cost of the optical fiber communication system according to the optical fiber power when the optical signal obtained by the measurement passes through each optical fiber span.
  • SNR basic optical signal-to-noise ratio
  • the first calculation module 202 uses Acquiring the dispersion deviation of each fiber span according to the actual dispersion and the complete compensation dispersion of each fiber span; the second calculation module 203 is connected to the first calculation module 202 for acquiring the fiber communication system according to the dispersion deviation of each fiber span Additional optical signal to noise ratio cost; third computing module 204 is coupled to the base optical signal to noise ratio cost calculation module 201 and the second computing module 203, respectively, for obtaining fiber optic communication based on the underlying optical signal to noise ratio penalty and additional optical signal to noise ratio penalty The total optical signal to noise ratio of the system.
  • the base optical signal to noise ratio cost calculation module 201 includes a nonlinear phase shift calculation module 205 and a base optical signal to noise ratio cost acquisition module 206.
  • the fiber-input optical power when the signal passes through the transmission fiber of the i-th fiber span is the effective length of the transmission fiber of the i-th fiber span, and 4 is the effective area of the transmission fiber of the i-th fiber span, which is the i-th
  • the nonlinear coefficient of the dispersion-compensating fiber of the fiber span, ⁇ ' is the fiber-optic power of the optical signal passing through the dispersion of the i-th fiber span, and
  • the base optical SNR cost acquisition module 206 is coupled to the nonlinear phase shift calculation module 205 and the third calculation module 204, respectively, for nonlinear phase shift according to the obtained fiber communication system and pre-stored nonlinear phase shift-basic light.
  • the second calculation module 203 includes a reference parameter acquisition module 207 and an additional optical signal to noise ratio penalty acquisition block 208.
  • N k is the dispersion deviation of the kth fiber span.
  • optical signal-acquisition module 208 acquires again the optical fiber communication system according to the reference parameter W d OSNR additional expense B.
  • the additional optical signal to noise ratio cost acquisition module 208 is coupled to the reference parameter acquisition module 207 for obtaining an additional optical signal to noise ratio penalty B according to equation (1.3):
  • the apparatus 200 for determining the optical signal-to-noise ratio cost of the optical fiber communication system of the second embodiment can obtain the additional optical signal-to-noise ratio cost of the optical fiber communication system by measuring the dispersion deviation of the optical fiber communication system, and further obtain the total optical fiber communication system.
  • the optical signal-to-noise ratio is costed to ensure that the staff can properly design the fiber-optic communication system without having to perform multiple measurements and calculations each time to obtain the total optical signal-to-noise ratio of the fiber-optic communication system.
  • the apparatus of this embodiment may be specifically adapted to perform the methods provided by the embodiments of the present invention, and has a corresponding functional module structure.
  • the method includes the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Description

光纤通信***的总光信噪比代价的确定方法及装置 技术领域
本发明实施例涉及光通信技术, 尤其涉及一种光纤通信***的总光信噪 比代价的确定方法及装置。 背景技术
目前, 在高速传输光纤通信***中, 光信号功率的提升使得非线性损伤 成为影响光纤通信***性能的主要因素。 为了抑制高速传输光纤通信***中 的非线性损伤, 每个跨段的传输光纤通过配置色散补偿光纤 (DCF , Disepersion Compansation Fiber )进行色散管理, 称之为色散管理光纤通信系 统。 其中, 色散补偿光纤的色散系数与传输光纤的色散系数符号相反。 这样, 光纤传输链路的每个跨段均包括传输光纤和色散补偿光纤。 在色散管理光纤 通信***中, 非线性损伤和色散之间相互作用, 使得光信号在传输过程中的 变化非常复杂, 为了有效保证光纤通信***设计质量和降低光纤通信***设 计成本, 就需要对高速传输光纤通信***的光信噪比代价进行准确的评估。 发明内容
本发明实施例提供一种光纤通信***的总光信噪比代价的确定的方法和 装置, 用以实现对高速传输光纤通信***的总光信噪比代价的准确评估。
本发明实施例提供了一种光纤通信***的总光信噪比代价的确定的方 法, 所述光纤通信***由至少一个光纤跨段组成, 包括:
根据测量得到的光信号通过各个光纤跨段时的入纤光功率获取所述光纤 通信***的基础光信噪比代价;
根据所述各个光纤跨段的实际色散和完全补偿色散获取所述各个光纤跨 段的色散偏差; 根据所述各个光纤跨段的色散偏差获取所述光纤通信***的额外光信噪 比代价;
根据所述基础光信噪比代价和所述额外光信噪比代价获取所述光纤通信 ***的总光信噪比代价。
本发明实施例还提供一种光纤通信***的总光信噪比代价的确定的装 置, 所述光纤通信***由至少一个光纤跨段组成, 包括:
基础光信噪比代价计算模块, 用于根据通过测量得到的光信号通过各个 光纤跨段时的入纤光功率获取所述光纤通信***的基础光信噪比代价;
第一计算模块 , 用于根据所述各个光纤跨段的实际色散和预先存储的完 全补偿色散获取所述各个光纤跨段的色散偏差;
第二计算模块, 用于根据所述各个光纤跨段的色散偏差获取所述光纤通 信***的额外光信噪比代价;
第三计算模块, 用于根据所述基础光信噪比代价和所述额外光信噪比代 价获取所述光纤通信***的总光信噪比代价。
由上述技术方案可知, 本发明实施例的光纤通信***光信噪比代价的确 定方法及装置, 能够实现对高速传输光纤通信***的光信噪比代价的快速、 准确地评估。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1A为本发明实施例一的方法的流程图;
图 1B 为本发明实施例一的非线性相移-基础光信噪比代价的关系曲线 图; 图 1C为本发明实施例一的参考参数与额外光信噪比代价的关系曲线图; 图 2为本发明实施例二的装置的结构示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例一提供了一种光纤通信***的总光信噪比代价的确定的方 法, 本实施例所适用的光纤通信***包括至少一个光纤跨段。 各个光纤跨段 均包括传输光纤和色散补偿光纤, 其中, 传输光纤和色散补偿光纤串联。 本 实施例的方法可以由光纤通信***的总光信噪比代价确定装置来执行, 如图 1A所示, 本实施例一的光纤通信***的总光信噪比代价的确定方法包括: 步骤 101 , 根据通过测量得到的光信号通过各个光纤跨段时的入纤光功 率, 获取光纤通信***的基础光信噪比代价。
具体地, 步骤 101包括根据公式( 1.1 )获取光纤通信***的非线性相移 φ: φ= > — ( -^^+- ~ '■ ~ '- ) ( 1.1 ) i 4 A
其中, φ为非线性相移, i为大于 0的自然数, 为第 i个光纤跨段的光 信号的波长, 为第 i个光纤跨段的传输光纤的非线性系数, 为光信号通过 第 i个光纤跨段的传输光纤时的入纤光功率, 为第 i个光纤跨段的传输光纤 的有效长度, 4为第 i个光纤跨段的传输光纤的有效面积, 为第 i个光纤跨 段的色散补偿光纤的非线性系数, Ρ',.为光信号通过第 i个光纤跨段的色散补 偿光纤的入纤光功率, A为第 i个光纤跨段的色散补偿光纤的有效长度, A 为 第 i个光纤跨段的色散补偿光纤的有效面积。具体地,公式( 1.1 )中的参数 , 4 , L n , A , 可由光纤产品规格直接获取。例如,对于传输光纤 G.652, n, =2.6e-20(m2/w), =80e-12(m2) , 对于色散补偿光纤, =3.0e-20(m2/w), ^•=20e-12(m2), 而 ,.和 ',.可从产品标签上获取。 另夕卜, ^在实际操作中, 所 有的光纤跨段的 λ都应该是相同的, 可以通过测量光信号的波长得到。 上述 可直接获取的参数可以作为恒定参数预先存储, 而测定的参数为 和 Ρ',.。
根据预设的非线性相移-基础光信噪比代价的关系曲线图获取基础光信 噪比代价, 该非线性相移-基础光信噪比代价的关系曲线图可如 1B所示。 图 1B 中的横坐标代表非线性相移 φ, 单位为 rad, 纵坐标代表基础光信噪比代 价 T,单位为 dB。该预设的非线性相移-基础光信噪比代价的关系曲线图为现 有技术中已知的关系曲线图, 是通过多个非线性相移与基础光信噪比代价的 关系点拟合的关系曲线图。 光纤通信***光信噪比代价的确定装置可以根据 获取的非线性相移, 在非线性相移与基础光信噪比代价的关系曲线图中查找 相应的基础光信噪比代价。
步骤 102, 根据各个光纤跨段的实际色散和完全补偿色散获取各个光纤 跨段的色散偏差。 采用完全补偿色散的光纤通信***的每个光纤跨段的总色 散为零, 整个光纤通信***的末端色散也为零。 例如, 整个光纤通信***预 先铺设长度为 20km 色散补偿光纤, 光纤通信***中间的光纤跨段采用完全 补偿色散, 以保证每个光纤跨段的总色散均为零, 则整个光纤通信***的末 端的色散就为零。 但是, 在实际操作中, 完全补偿色散可以存在一定的误差。 即, 在采用色散补偿之后, 光纤通信***的每个光纤跨段的总色散并不为零, 整个光纤通信***的末端色散也不为零, 但每个光纤跨段的总色散和整个光 纤通信***的末端色散在一定的允许范围内, 就可以认定此光纤通信***采 用了完全补偿色散。 可将该完全补偿色散预先存储在光纤通信***的总光信 噪比代价确定装置中。 色散偏差为所需计算的光纤通信***的实际所具有的 色散与预先存储的完全补偿色散相比所产生的差值。
具体地, 步骤 102可包括: 采用下述公式计算各个光纤跨段的色散, 即第 k个光纤跨段的实际色散 为 Mk=DkxLk+ D'kxL'k,其中 k为大于 0的自然数, Dk为传输光纤的色散系数, LK为传输光纤的长度, 0 为色散补偿光纤的色散系数, L'k为色散补偿光纤 的长度。 实际应用中, 对第 k个光纤跨段的色散系数和长度, 可以由产品的 规格得到。 色散偏差^为根据实际计算得到的色散 Mk减去预先存储的的完 全补偿色散。 例如, 完全补偿色散为 Fk, 则 Nk=Mk-Fk
步骤 103 , 根据各个光纤跨段的色散偏差^获取光纤通信***的额外光 信噪比代价 B。
具体地, 步骤 103包括根据公式( 1.2 )获取参考参数 Wd:
Figure imgf000007_0001
其中, k为大于 0的自然数, Nt为第 k个光纤跨段的色散偏差。
然后, 再根据 Wd获取额外光信噪比代价 B。
具体地, 根据 Wd获取额外光信噪比代价 B可根据下述公式( 1.3 )来获 取:
如果\\^<161.21604(©111 8/11111, 贝' J
B为 10 I Wd-161.21604 | 画6-0.13
如果\¥(1≥161.21604(©111 8/11111, 贝' J ( 1.3 )
B为 10-5χ I Wd-161.21604 I 誦4-0.13
Figure imgf000007_0002
关于公式( 1 .3 ), 首先是采用现有技术中的计算方法得到多个参考参数 Wd与额外光信噪比代价的对应关系,再通过这多个对应关系点利用现有的技 术拟合出相应地参考参数 Wd与额外光信噪比代价 B的关系曲线图, 如图 1C 所示, 横坐标为参考参数 Wd, 单位为 dBm.ps/nm, 纵坐标为额外光信噪比代 价, 单位为 dB, 图 1C中圆圈表示计算得到的多个参考参数 Wd与额外光信 噪比代价 B的对应关系, 图 1C中的抛物线为从这多个圆圈表示的点拟合出 来的抛物线。 从图 1C所示的曲线能够得到公式( 1.3 ), 而该公式( 1.3 )适用 于所有的光纤通信***。 公式( 1.3 )表示 Wd与额外光信噪比代价 B的数学 关系, 通过公式(1.3 )得到的额外光信噪比代价的单位是 dB。
步骤 104 , 根据基础光信噪比代价和额外光信噪比代价获取光纤通信系 统的总光信噪比代价。
其中, 光纤通信***的总光信噪比代价为基础光信噪比代价和额外光信 噪比代价之和。
根据本实施例一的光纤通信***的总光信噪比代价的确定方法, 通过将 计算光纤通信***的色散偏差, 根据该色散偏差获取光纤通信***的额外光 信噪比代价, 再将该额外光信噪比代价与基础光信噪比代价相加, 就能够得 到光纤通信***的总光信噪比代价。 由于对光纤通信***的光信噪比总代价 测量的方法非常复杂, 例如, 现有技术中, 对于任意光纤通信***, 获取光 纤通信***的光信噪比总代价方法为: 首先, 需要获取背靠背光纤通信*** 某一特定误码率下的光信噪比 A, 这需要通过持续加噪声使误码率达到特定 值, 然后在此状态下测量信号功率和噪声功率, 计算光信噪比 A。 然后, 在 光纤通信***中, 以上述同样方法测得光信噪比 H, 此时光纤通信***的光 信噪比总代价为 H-A。 由于现网中的网络状况千差万别, 对于每一种网络配 置, 其光信噪比总代价的获取都需要重复以上过程, 非常耗时。 采用本发明 中所述方法, 只需获取每跨段入纤功率和色散偏差, 便可快速计算光纤通信 ***的代价。 由于本实施例的光纤通信***光信噪比代价的确定方法, 既可 以精确地得知每个光纤通信***光信噪比代价, 又不用每次都对光纤通信系 统光信噪比代价进行测量和计算, 这样就使得工作人员能够准确得知光纤通 信***的信号质量, 方便了对光纤通信***的调试, 大大节省了人力物力。
本实施例二提供一种光纤通信***的总光信噪比代价的确定的装置, 本 实施例所适用的光纤通信***由至少一个光纤跨段组成, 如图 2所示, 该光纤 通信***光信噪比代价的确定的装置 200包括: 基础光信噪比代价计算模块 201、 第一计算模块 202、 第二计算模块 203和第三计算模块 204。 其中, 基础光信噪比代价计算模块 201用于根据通过测量得到的光信号 通过各个光纤跨段时的入纤光功率,获取光纤通信***的基础光信噪比代价; 第一计算模块 202用于根据各个光纤跨段的实际色散和完全补偿色散获取各 个光纤跨段的色散偏差; 第二计算模块 203与第一计算模块 202连接, 用于 根据各个光纤跨段的色散偏差获取光纤通信***的额外光信噪比代价; 第三 计算模块 204分别与基础光信噪比代价计算模块 201和第二计算模块 203连 接, 用于根据基础光信噪比代价和额外光信噪比代价获取光纤通信***的总 光信噪比代价。
可选地,基础光信噪比代价计算模块 201包括非线性相位移计算模块 205 和基础光信噪比代价获取模块 206。
其中, 非线性相位移计算模块 205用于根据公式( 1.1 )获取光纤通信系 统的非线性相移 φ: φ=> — ( +- ~― ) ( 1.1 ) 其中, 各个光纤跨段均包括传输光纤和色散补偿光纤, φ为非线性相移, i为大于 0的自然数, 为第 i个光纤跨段的光信号的波长, 为第 i个光纤 跨段的传输光纤的非线性系数, ^为光信号通过第 i个光纤跨段的传输光纤时 的入纤光功率, 为第 i个光纤跨段的传输光纤的有效长度, 4为第 i个光纤 跨段的传输光纤的有效面积, 为第 i个光纤跨段的色散补偿光纤的非线性 系数, Ρ',为光信号通过第 i个光纤跨段的色散补偿光纤的入纤光功率, A为 第 i个光纤跨段的色散补偿光纤的有效长度, 为第 i个光纤跨段的色散补偿 光纤的有效面积。
基础光信噪比代价获取模块 206分别与非线性相位移计算模块 205和第 三计算模块 204连接, 用于根据得到的光纤通信***的非线性相位移和预先 存储的非线性相移-基础光信噪比代价的关系曲线图, 获取基础光信噪比代 价。 可选地, 第二计算模块 203包括参考参数获取模块 207和额外光信噪比 代价获城块 208。
其中, 参考参数获取模块 207与第一计算模块 202连接, 用于根据公式 ( 1.2 )获取参考参数 Wd: Wd= Pt ( 1 -2 )
'•=1
其中, k为自然数, Nk为第 k个光纤跨段的色散偏差。
然后,额外光信噪比代价获取模块 208再根据参考参数 Wd获取该光纤通 信***的额外光信噪比代价 B。
具体地,额外光信噪比代价获取模块 208与参考参数获取模块 207连接, 用于根据公式( 1.3 )获取额外光信噪比代价 B:
如果\\^<161.21604(©111 8/11111, 则 、
B为 10 I Wd-161.21604 | 画6-0.13 | ( 1.3 ) 如果\¥(1≥161.21604(©111 8/11111, 贝' J
B为 10-5x I Wd-161.21604 I 26254-0.13。
通过本实施例二的光纤通信***光信噪比代价的确定的装置 200, 能够 通过测量光纤通信***的色散偏差而得到光纤通信***的额外光信噪比代 价, 进一步地得到光纤通信***总的光信噪比代价, 以保证工作人员能够对 光纤通信***进行合理的设计, 而不用每次为获取光纤通信***总的光信噪 比代价进行多次测量及计算。 本实施例的装置具体可以适用于执行本发明各 实施例所提供的方法, 具备相应的功能模块结构。
需要说明的是: 对于前述的各方法实施例, 为了简单描述, 故将其都表 述为一系列的动作组合, 但是本领域技术人员应该知悉, 本发明并不受所描 述的动作顺序的限制, 因为依据本发明, 某些步骤可以采用其他顺序或者同 时进行。 其次, 本领域技术人员也应该知悉, 说明书中所描述的实施例均属 于优选实施例, 所涉及的动作和模块并不一定是本发明所必须的。 在上述实施例中, 对各个实施例的描述都各有侧重, 某个实施例中没有 详述的部分, 可以参见其他实施例的相关描述。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM, RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要求
1、 一种光纤通信***的总光信噪比代价的确定的方法, 所述光纤通信系 统由至少一个光纤跨段组成, 其特征在于, 所述方法包括:
根据测量得到的光信号通过各个光纤跨段时的入纤光功率获取所述光纤 通信***的基础光信噪比代价;
根据所述各个光纤跨段的实际色散和完全补偿色散获取所述各个光纤跨 段的色散偏差;
根据所述各个光纤跨段的色散偏差获取所述光纤通信***的额外光信噪 比代价;
根据所述基础光信噪比代价和所述额外光信噪比代价获取所述光纤通信 ***的总光信噪比代价。
2、 根据权利要求 1所述的光纤通信***的总光信噪比代价的确定方法, 其特征在于, 所述光纤通信***的总光信噪比代价为所述基础光信噪比代价 和所述额外光信噪比代价之和。
3、根据权利要求 1或 2所述的光纤通信***的总光信噪比代价的确定方 法, 其特征在于, 所述根据光信号通过各个光纤跨段时的入纤光功率获取所 述光纤通信***的基础光信噪比代价包括:
根据下述公式获取所述光纤通信***的非线性相移 φ: φ=> — ( ' ' ' +— '■ ~~ '- ), 其中, 所述各个光纤跨段均包括传输光纤和色散补偿光纤, φ 为非线性 相移, i为大于 0的自然数, 为第 i个光纤跨段的光信号的波长, 为第 i 个光纤跨段的传输光纤的非线性系数, 为所述光信号通过所述第 i个光纤跨 段的传输光纤时的入纤光功率, 为所述第 i个光纤跨段的传输光纤的有效长 度, 4为所述第 i个光纤跨段的传输光纤的有效面积, 为第 i个光纤跨段的 色散补偿光纤的非线性系数, 为所述光信号通过所述第 i个光纤跨段的色 散补偿光纤的入纤光功率, A为所述第 i个光纤跨段的色散补偿光纤的有效 长度, A为所述第 i个光纤跨段的色散补偿光纤的有效面积;
根据预设的非线性相移-基础光信噪比代价的关系曲线图获取所述基础 光信噪比代价。
4、 根据权利要求 3所述的光纤通信***的总光信噪比代价的确定方法, 其特征在于, 所述根据所述各个光纤跨段的色散偏差获取所述光纤通信*** 的额外光信噪比代价包括:
根据下述公式获取参考参数 Wd:
Figure imgf000013_0001
其中, k为自然数, Nk为所述第 k个光纤跨段的色散偏差;
根据所述 wd获取所述额外光信噪比代价。
5、 根据权利要求 4所述的光纤通信***的总光信噪比代价的确定方法, 其特征在于, 所述根据所述 Wd获取所述额外光信噪比代价包括:
根据下述公式获取所述额外光信噪比代价:
如果\¥(1<161.21604(©111 8/11111, 贝' J
所述额外光信噪比代价为 10-5 χ I Wd-161.21604 | L87206-0.13;
如果\¥(1≥161.21604(©111 8/11111, 贝' J
所述额外光信噪比代价为 10-5 χ I Wd-161.21604 | 2·。6254-0.13。
6、一种光纤通信***的总光信噪比代价的确定装置, 所述光纤通信*** 由至少一个光纤跨段组成, 其特征在于, 所述装置包括:
基础光信噪比代价计算模块, 用于根据通过测量得到的光信号通过各个 光纤跨段时的入纤光功率获取所述光纤通信***的基础光信噪比代价;
第一计算模块 , 用于根据所述各个光纤跨段的实际色散和预先存储的完 全补偿色散获取所述各个光纤跨段的色散偏差;
第二计算模块, 用于根据所述各个光纤跨段的色散偏差获取所述光纤通 信***的额外光信噪比代价;
第三计算模块, 用于根据所述基础光信噪比代价和所述额外光信噪比代 价获取所述光纤通信***的总光信噪比代价。
7、 根据权利要求 6所述的光纤通信***的总光信噪比代价的确定装置, 其特征在于, 所述基础光信噪比代价计算模块包括:
非线性相位移计算模块, 用于根据下述公式获取所述光纤通信***的非 线性相移 φ: φ=> — ( +— ■ ~~ - ), 其中, 各个光纤跨段均包括传输光纤和色散补偿光纤, φ为非线性相移, i为大于 0的自然数, 为第 i个光纤跨段的光信号的波长, 为第 i个光纤 跨段的传输光纤的非线性系数, 为所述光信号通过所述第 i个光纤跨段的传 输光纤时的入纤光功率, A.为所述第 i个光纤跨段的传输光纤的有效长度, 4 为所述第 i个光纤跨段的传输光纤的有效面积, 为第 i个光纤跨段的色散补 偿光纤的非线性系数, ρ',.为所述光信号通过所述第 i个光纤跨段的色散补偿 光纤的入纤光功率, A为所述第 i个光纤跨段的色散补偿光纤的有效长度, Α 为所述第 i个光纤跨段的色散补偿光纤的有效面积;
基础光信噪比代价获取模块, 用于根据所述非线性相位移并根据预先存 储的非线性相移-基础光信噪比代价的关系曲线图获取所述基础光信噪比代 价。
8、 根据权利要求 7 所述的光纤通信***的总光信噪比代价的确定的装 置, 其特征在于, 所述第二计算模块包括:
参考参数获取模块, 用于根据下述公式获取参考参数 Wd:
'•=1
其中, k为自然数, ^为所述第 k个光纤跨段的色散偏差; 额外光信噪比代价获取模块, 与所述参考参数获取模块连接, 用于根据 下述公式获取所述额外光信噪比代价:
如果1^(1<161.21604<18111 8/11111, 则
所述额外光信噪比代价为 10-5 χ I Wd-161.21604 I L87206-0.13
如果 Wd≥161.21604dBm-ps/nm, 贝' J
所述额外光信噪比代价为 10-5 χ I Wd-161.21604 I 2 Q6254-0.13。
PCT/CN2011/079291 2011-09-02 2011-09-02 光纤通信***的总光信噪比代价的确定方法及装置 WO2012109894A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180002226.XA CN102439875B (zh) 2011-09-02 2011-09-02 光纤通信***的总光信噪比代价的确定方法及装置
PCT/CN2011/079291 WO2012109894A1 (zh) 2011-09-02 2011-09-02 光纤通信***的总光信噪比代价的确定方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/079291 WO2012109894A1 (zh) 2011-09-02 2011-09-02 光纤通信***的总光信噪比代价的确定方法及装置

Publications (1)

Publication Number Publication Date
WO2012109894A1 true WO2012109894A1 (zh) 2012-08-23

Family

ID=45986257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079291 WO2012109894A1 (zh) 2011-09-02 2011-09-02 光纤通信***的总光信噪比代价的确定方法及装置

Country Status (2)

Country Link
CN (1) CN102439875B (zh)
WO (1) WO2012109894A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105281828A (zh) * 2014-07-15 2016-01-27 中兴通讯股份有限公司 一种相干传输***中的传输性能评估方法和装置
CN105007122A (zh) * 2015-07-17 2015-10-28 博为科技有限公司 一种基于帕尔贴制冷与制热效应的光收发装置
CN114362825A (zh) * 2022-01-04 2022-04-15 武汉电信器件有限公司 一种基于交换机互连的dwdm***色散调节的方法与***

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1505287A (zh) * 2002-12-04 2004-06-16 华为技术有限公司 色散位移光纤l波段传输***的确定方法及***
CN1548937A (zh) * 2003-05-19 2004-11-24 武汉光迅科技有限责任公司 光波长、功率监控器中测量信号光信噪比的方法
US20070196111A1 (en) * 2006-02-23 2007-08-23 Shang Song Q Optic fiber network communication system with duobinary transceiver

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4818142B2 (ja) * 2007-02-06 2011-11-16 富士通株式会社 光受信装置およびその制御方法、並びに、光伝送システム
CN102088314B (zh) * 2011-01-24 2014-03-12 北京邮电大学 光信噪比监测装置及监测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1505287A (zh) * 2002-12-04 2004-06-16 华为技术有限公司 色散位移光纤l波段传输***的确定方法及***
CN1548937A (zh) * 2003-05-19 2004-11-24 武汉光迅科技有限责任公司 光波长、功率监控器中测量信号光信噪比的方法
US20070196111A1 (en) * 2006-02-23 2007-08-23 Shang Song Q Optic fiber network communication system with duobinary transceiver

Also Published As

Publication number Publication date
CN102439875A (zh) 2012-05-02
CN102439875B (zh) 2014-08-06

Similar Documents

Publication Publication Date Title
US20170019172A1 (en) Using fractional Fourier transform nonlinear effects in optical fiber link monitoring methods
Lin et al. Adaptive digital back-propagation for optical communication systems
US8081877B2 (en) Method of determining an optical distance for chromatic dispersion compensation
US20120051742A1 (en) Apparatus for self-phase modulation noise calculation, apparatus for self-phase modulation noise elimination and optical coherent receiver
JP2018133725A (ja) 伝送路監視装置及び伝送路の監視方法
WO2012109894A1 (zh) 光纤通信***的总光信噪比代价的确定方法及装置
US11228367B2 (en) Communication device and communication method
CN113472451A (zh) 机固互联的量子时间同步方法
JP5495120B2 (ja) 光受信装置、光受信方法及び光受信装置の制御プログラム
US10659153B2 (en) Method for measuring dispersion coefficient of optical fiber and network device
US11146332B1 (en) Transmission line monitoring device and transmission line monitoring method
Sinkin et al. Effective signal to noise ratio performance metric for dispersion-uncompensated links
Zhou et al. Simultaneous baud rate/modulation format identification and multi-parameter optical performance monitoring using multi-task learning with enhanced picture of Radon transform
CN103916190A (zh) 一种光传输过程中对光非线性相位补偿的优化方法
AU2014277665B2 (en) Improving stability of an optical source in an optical network test instrument
CN106972885B (zh) 一种基于bbu和rru的双通道光传输网信道优化***
CN114070407B (zh) 一种可同时实现光纤链路损伤补偿与异常损耗监测的方法
WO2016061998A1 (zh) 一种监测偏振模色散的方法及装置
CN102882595A (zh) 大范围、抗干扰和全盲自动化光信号色散损伤监测方法
KR102010178B1 (ko) 아날로그 광전송 시스템의 광송신기의 전달 특성에 의하여 유도된 비선형 왜곡 보상 수신기 및 디지털 신호 처리 방법
US11742978B2 (en) Optical network device and method for monitoring transmission line
Wang et al. Recent advances in digital twin for optical communications
Secondini et al. A comparative analysis of different perturbation models for the nonlinear fiber channel
CN115242308B (zh) 一种基于数字副载波复用的信号相位重构方法及***
CN110971302B (zh) 一种低速延时采样估计光纤色散的装置与方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002226.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858740

Country of ref document: EP

Kind code of ref document: A1