WO2012109811A1 - 用于高温材料的非接触式加热的方法和装置 - Google Patents

用于高温材料的非接触式加热的方法和装置 Download PDF

Info

Publication number
WO2012109811A1
WO2012109811A1 PCT/CN2011/072255 CN2011072255W WO2012109811A1 WO 2012109811 A1 WO2012109811 A1 WO 2012109811A1 CN 2011072255 W CN2011072255 W CN 2011072255W WO 2012109811 A1 WO2012109811 A1 WO 2012109811A1
Authority
WO
WIPO (PCT)
Prior art keywords
quartz tube
high temperature
magnetic field
heated
temperature
Prior art date
Application number
PCT/CN2011/072255
Other languages
English (en)
French (fr)
Inventor
武湛君
王智
王奕首
史国栋
严佳
柳敏静
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Publication of WO2012109811A1 publication Critical patent/WO2012109811A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications

Definitions

  • the invention belongs to the technical field of high temperature materials, and relates to a method and a device for studying high temperature oxidation resistance of high temperature materials, in particular to a non-contact heating method and device for electrically conductive high temperature materials. Background technique
  • the equipment for evaluating and studying the high-temperature oxidation resistance of high-temperature structural materials is mainly high-temperature oxidation furnace or oxyacetylene flame.
  • the high-temperature oxidation furnace usually has a temperature of about 1400 °C, and the pressure of the oxidizing atmosphere cannot be adjusted.
  • the oxyacetylene flame can produce 1200. ⁇ 2800 ° C high temperature, but the temperature is difficult to adjust, the error is 100 ⁇ 300 ° C, which makes the evaluation and study of the material high temperature oxidation performance results have a large deviation.
  • the object of the present invention is to provide a non-contact heating method and apparatus for high temperature materials having good electrical conductivity, to achieve rapid heating and accurate temperature control, and to improve the reliability of high temperature oxidation and thermal shock performance evaluation of materials. .
  • a method for non-contact heating of a high temperature material by applying a rapidly alternating magnetic field to a conductive high temperature material to warm the material comprising the steps of:
  • the input power of the oscillating magnetic field generator is such that the material to be heated reaches a set temperature; and the gas and air pressure in the quartz tube are regulated by an intake and pressure control system connected to a seal at both ends of the quartz tube.
  • the invention utilizes the characteristics of the electrically conductive material to rapidly generate a super eddy current inside the material by applying a rapid alternating magnetic field to the material, and the material rapidly heats up under the action of the eddy current; and, in consideration of some materials, the thermal fatigue performance experiment needs to isolate the air, Some high-temperature oxidation performance experiments need to adjust the oxidizing atmosphere, while some atmospheric environment experiments that simulate aircraft require oxygen, nitrogen, and water vapor. The gas pressure is also affected by the height and flight speed. Therefore, when the high-temperature material is heated, the quartz tube is sealed. The piece is closed and connected to the intake and pressure control system for air pressure and gas regulation.
  • the high-frequency oscillating magnetic field generator can adopt a three-phase AC power supply of 380V and 50 ⁇ 60Hz, and the parameter is an input power of 30 to 80 kW and an oscillation frequency of 15 to 35 kHz ; more preferably, the input power is 40 to 70 kW, and the oscillation is performed. Frequency 25 ⁇ 30kHz.
  • the invention also discloses an apparatus for realizing the above-mentioned non-contact heating method for high-temperature materials: the device comprises a quartz tube and a seal member at both ends thereof, a high-frequency oscillating magnetic field generator, a coil made of a copper tube, and a non-contact type High temperature thermometer, computer data acquisition and control system, quartz tube inlet and pressure control system, copper tube cooling water circulation system;
  • the quartz tube has a length of 300 to 500 mm and an outer diameter of 40 to 50 mm, and a sealing member at one end is provided with a high-transparent quartz plate, and a sealing member at the other end is provided with a bracket for placing the material to be heated;
  • the coil made of the copper tube is surrounded by a quartz tube, the number of turns is 3 ⁇ 10 circles, the inner diameter of the coil is 60 ⁇ 70mm, the inner diameter of the copper tube is 3 ⁇ 8mm, and the outer diameter is 5 ⁇ 15mm;
  • Both ends of the coil are connected to an output end of the high frequency oscillating magnetic field generator and a circulating cooling water device;
  • the high-frequency oscillating magnetic field generator has an input power of 30 to 80 kW and an oscillation frequency of 15 to 35 kHz; and the non-contact high-temperature thermometer and the high-frequency oscillating magnetic field generator are respectively connected to the computer data acquisition and control system.
  • the intake and pressure control system of the quartz tube comprises: an intake line and an exhaust line connected to the seals at both ends of the quartz tube, a gas flow control valve and a flow meter on the intake line, the exhaust Gas pressure control valve and pressure gauge on the pipeline.
  • another configuration of the inlet and pressure control system of the quartz tube includes: an intake line and an exhaust pipe connected to the seals at both ends of the quartz tube. a gas flow control chamber on the intake line, and a gas pressure control chamber on the exhaust line; a flow meter is installed at the inlet and the outlet of the gas flow control room; a pressure gauge is installed at the inlet and the outlet of the pressure control room;
  • the gas flow control chamber and the gas pressure control chamber have the same structure, and are closed chambers with an inlet and an outlet, and are internally provided with 2 to 5 layers of porous plates perpendicular to the axial direction of the gas line, respectively 2 ⁇ 4 inlet and outlet pipes with different pipe diameters and control valves;
  • the structure of the sealing member at both ends of the quartz tube comprises: an annular rubber pad sleeved on the outside of the quartz tube port, a metal ring tightly clamped on the outside of the rubber pad, and a sealing plug fastened on the metal ring;
  • the sealing plug at one end is a solid structure provided with a venting hole, and the bracket is disposed at an end inside the quartz tube;
  • the sealing plug at the other end is a hollow structure in which a hollow portion is sealed and mounted with a high-transparent quartz plate, and a matching metal ring is provided with an air inlet hole.
  • the parameters such as the size of the quartz tube and the number of turns of the copper tube are adjusted.
  • the radiant heat of the high temperature material is proportional to the volume of the material.
  • the larger the volume of the material and the higher the set temperature the larger the inner diameter of the quartz tube should be, so as to effectively reduce the radiant heat of the material in the high temperature state on the quartz tube;
  • increase the set temperature you can increase the number of turns of the coil.
  • the maximum operating temperature of the quartz tube is 1500 ° C. If the material volume is small, the material can be heated to 2000 ° C for more than 30 minutes without the quartz tube exceeding the working temperature. This is enough to study any high temperature structural material. Performance.
  • the invention can be used for evaluating the high temperature oxidation resistance of high temperature materials, can realize rapid and accurate heating, and can automatically adjust the heating rate, heating time and temperature, and the maximum heating rate is 500 ° C / min, and the maximum temperature can be Up to 2000 ° C, compared with the existing heating method, with simple operation, plus Fast heat speed, low cost, safety, accurate temperature control, adjustable atmosphere around the test piece, etc.
  • Figure 1 is a schematic view of the apparatus of the present invention. In the picture,
  • Quartz tube 2. Ring rubber pad, 3. Metal ring, 4. Sealing plug with venting hole, 5. Hollow sealing plug, 6. Fastening screw, 7. High light transmission quartz plate, 8. Heating material, 9. Bracket, 10. Coil made of copper tube, cooling circulating water inside, 11. High frequency oscillating magnetic field generator, 12. Computer data acquisition and control system, 13. Non-contact high temperature thermometer, 14.
  • the gas flow control room is provided with inlet pipe and outlet pipe with different pipe diameters and flow control valves at both ends. 15. Gas pressure control room, with different pipe diameters at both ends, each with pressure control Valve inlet and outlet tubes, 16. Gas flow meter, 17. Gas pressure gauge, 18. Flow control valve, 19. Pressure control wide, 20. Multiwell plate. detailed description
  • Example 1 The material to be heated is zirconium boride-silicon carbide-graphite ceramic matrix composite
  • the quartz tube is 500mm long and the outer diameter of the tube is 40mm.
  • the size of the material to be heated is 20> ⁇ 20x3mm.
  • the surface of the sample is polished to a finish of ⁇ with diamond abrasive paste.
  • the expected technical indicators are as follows: The pressure of the gas in the quartz tube is 50 ⁇ 10Pa, the gas flow rate is 100 ⁇ 10ml/s, the surface temperature of the sample is 1500 ⁇ 30°C, and the temperature is kept for 5 minutes.
  • the high-frequency oscillating magnetic field generator is three-phase 380V, 50Hz, the input power is 30kW, the oscillation frequency is 15kHz, the number of coils made of copper tube is 3 turns, the inner diameter of the coil is 60mm, and the inner diameter of the copper tube is 3mm. The diameter is 5mm.
  • the heating device is as shown in Fig. 1. First, the sealing plug 4 at the lower end of the quartz tube 1 is opened, and the sample 8 to be tested is placed on the sample holder 9. The high-transparent quartz plate 7 is inspected and cleaned, and then the fastening screw 6 is used.
  • the sealing plug 4 and the hollow sealing plug 5 are respectively tightly fixed on the metal ring 3 at both ends of the quartz tube, and the high transparent quartz plate 7 is sealed and installed in the hollow portion of the hollow sealing plug 5; the intake pipe and the exhaust pipe are respectively respectively and the upper end
  • the metal ring 3 and the lower end sealing plug 4 are connected, the optical path of the high temperature thermometer 13 is adjusted to the center of the sample 8, the computer data acquisition and control system 12, the high frequency oscillating magnetic field generator 11 is turned on, the gas flow control room 14 and the gas are turned on.
  • the pressure control chamber 15 turns on the cooling circulating water device in the coil 10 made of a copper tube.
  • the preset heating rate is 100 ° C / min, and after heating to 1400 ° C, the heating rate is gradually reduced until reaching the maximum temperature of 1500 ° C and holding for 5 minutes.
  • Example 2 The material to be heated is zirconium boride-silicon carbide-graphite ceramic matrix composite
  • the quartz tube is 500mm long, the outer diameter of the tube is 50mm, and the size of the material to be heated is 25x25x4mm.
  • the surface treatment of the material is the same as in the first embodiment.
  • the technical indicators expected in this embodiment are as follows:
  • the pressure of the gas in the quartz tube is 1000 ⁇ 50 Pa, the gas flow rate is 200 ⁇ 15 ml / s, the surface temperature of the sample is 1600 ⁇ 40 ° C, and the temperature is kept for 5 minutes.
  • the operation procedure of the device is the same as that in the first embodiment.
  • the parameters are: the power supply of the high-frequency oscillating magnetic field generator is three-phase 380V, 50Hz, the input power is 40kW, the oscillation frequency is 20kHz, the number of turns of the copper tube is 4, and the inner diameter of the coil is 62mm, the copper tube itself has an inner diameter of 4mm and an outer diameter of 8mm.
  • the preset heating rate is 100 °C / min. After the temperature rises to 1450 °C, the heating rate is gradually reduced until the maximum temperature of 1600 ° C is reached and the temperature is kept for 5 minutes.
  • Example 3 The material to be heated is zirconium boride-silicon carbide-graphite ceramic matrix composite
  • the quartz tube is 400 mm long, the outer diameter of the tube is 50 mm, and the size of the material to be heated (sample) is 20 x 20 x 8 mm.
  • the surface treatment of the material is the same as in the first embodiment.
  • the technical indicators expected in this embodiment are as follows:
  • the pressure of the gas in the quartz tube is 5000 ⁇ 100 Pa
  • the gas flow rate is 500 ⁇ 25 ml / s
  • the surface temperature of the sample is 1700 ⁇ 50 ° C
  • the temperature is kept for 5 minutes.
  • the operation of the device is the same as in Embodiment 1.
  • the power supply of the high-frequency oscillating magnetic field generator is three-phase 380V, 50Hz, the input power is 50kW, and the oscillation frequency is 25kHz .
  • the number of turns of the copper tube is 5 turns, the inner diameter of the coil is 65mm, and the inner diameter of the copper tube is 5mm. The diameter is 9mm.
  • the preset heating rate is 100 ° C / min, and after heating to 1500 ° C, the heating rate is gradually reduced until reaching the maximum temperature of 1700 ° C and holding for 5 minutes.
  • Example 4 The material to be heated is zirconium boride-silicon carbide-graphite ceramic matrix composite
  • the quartz tube is 300 mm long, the outer diameter of the tube is 50 mm, and the size of the material to be heated (sample) is 15 x 15 x 4 mm.
  • the surface treatment of the material is the same as in the first embodiment.
  • the technical indicators expected in this embodiment are as follows: The gas pressure in the quartz tube is 100000 ⁇ 1000Pa, the gas flow rate is 400 ⁇ 20ml/s, and the surface temperature of the sample is 1750 ⁇ 60°C, and the temperature is kept for 5 minutes.
  • the operation of the device is the same as in Embodiment 1.
  • the power supply of the high-frequency oscillating magnetic field generator is three-phase 380V, 50Hz, the input power is 60kW, and the oscillation frequency is 30kHz .
  • the number of turns of the copper tube is 7 turns, the inner diameter of the coil is 66mm, and the inner diameter of the copper tube is 6mm. The diameter is 10mm.
  • the preset heating rate is 100 °C / min. After heating to 1600 °C, the heating rate is gradually reduced until the maximum temperature of 175 CTC is reached and kept for 5 minutes.
  • Example 5 The material to be heated is zirconium boride-silicon carbide-graphite ceramic matrix composite
  • the quartz tube has a length of 500 mm, a tube outer diameter of 45 mm, and a heated material (sample) size of 25 x 25 x 2 mm.
  • the surface treatment of the material is the same as in the first embodiment.
  • the technical indicators expected in this embodiment are as follows:
  • the gas pressure in the quartz tube is 150,000 ⁇ 2000 Pa, the gas flow rate is 300 ⁇ 15 mL / s, the surface temperature of the sample is 1550 ⁇ 30 ° C, and the temperature is kept for 5 minutes.
  • the operation of the device is the same as in Embodiment 1.
  • the power supply of the high-frequency oscillating magnetic field generator is three-phase 380V, 50Hz, the input power is 70kW, and the oscillation frequency is 35kHz.
  • the number of coils made of copper tube is 9 turns, the inner diameter of the coil is 68mm, and the inner diameter of the copper tube is 7mm. It is 13mm.
  • the preset heating rate is 100 ° C / min, and after heating to 1500 ° C, the heating rate is gradually reduced until reaching the maximum temperature of 1550 ° C and holding for 5 minutes.
  • Select the inlet pipe diameter of the gas flow control chamber 14: the outlet pipe diameter 0.11:1, adjust the flow control valve 18, control the gas flow rate to 300 ⁇ 14 ml / s; select the gas pressure control room
  • the inlet pipe diameter of 15: the outlet pipe diameter 0.5:1, the pressure control valve 19 is adjusted, and the control pressure is 150,000 ⁇ 1250 Pa.
  • Example 6 The material to be heated is zirconium boride-silicon carbide-graphite ceramic matrix composite
  • the quartz tube is 500 mm long, the outer diameter of the tube is 50 mm, and the size of the material to be heated (sample) is 30 x 30 x 2 mm.
  • the surface treatment of the material is the same as in the first embodiment.
  • the technical indicators expected in this embodiment are as follows: The gas pressure in the quartz tube is 170000 ⁇ 2000Pa, the gas flow rate is 250 ⁇ 15mL/s, and the surface temperature of the sample is 1650 ⁇ 40°C, and the temperature is kept for 5 minutes.
  • the operation of the device is the same as in Embodiment 1.
  • the power supply of the high-frequency oscillating magnetic field generator is three-phase 380V, 50Hz, the input power is 80kW, and the oscillation frequency is 35kHz.
  • the number of turns of the coil made of copper tube is 10 turns, the inner diameter of the coil is 70mm, and the inner diameter of the copper tube is 8mm. The diameter is 15mm.
  • the preset heating rate is 100 °C / min. After the temperature rises to 1560 °C, the heating rate is gradually reduced until the maximum temperature of 165 CTC is reached and kept for 5 minutes.

Description

说 明 书
用于高温材料的非接触式加热的方法和装置 技术领域
本发明属于高温材料技术领域, 涉及一种研究高温材料的高温抗氧化性能 所需的方法和装置, 特别是对可导电的高温材料的非接触式的加热方法和装置。 背景技术
随着航空、 原子能、 冶炼等新技术的快速发展, 一些应用背景下的高温材 料结构的使用条件越来越苛刻, 如用于高超声速飞行的结构部件, 要求材料具 有良好的高温性能以适应苛刻的作业环境, 如抗热冲击、 高温强度、 耐腐蚀性、 抗氧化性等, 如何提高材料的高温抗氧化性是目前人们关注的主要问题。
目前, 考核和研究高温结构材料高温抗氧化性能的设备, 主要是高温氧化 炉或氧乙炔焰, 高温氧化炉通常温度在 1400°C左右, 其氧化气氛的压力不能调 节, 氧乙炔焰能产生 1200~2800°C的高温, 但温度很难调节, 误差在 100〜300°C, 这使得考核和研究材料高温抗氧化性能的结果存在较大的偏差。 发明内容
本发明的目的, 旨在提供一种针对具有良好导电性能的高温材料的非接触 式加热方法和装置, 实现快速加热并准确控制温度, 以提高对材料的高温氧化 和热冲击性能评价的可靠性。
本发明的目的是通过以下技术方案实现的.
一种用于高温材料的非接触式加热的方法, 通过对可导电的高温材料施加 快速交变磁场使材料升温, 包括以下步骤:
( 1 )将被加热材料置于用密封件密封的石英管内的支架上, 所述支架与石 英管的密封件相连接;
(2 )石英管外环绕铜管制成的线圈, 所述铜管内通有循环冷却水, 用高频 振荡磁场发生器通过线圈对被加热材料施加快速交变磁场, 使材料升温;
(3 )采用非接触式高温温度计透过装在石英管密封件上的高透光石英板测 量被加热材料的温度;
(4)采用计算机数据采集和控制***, 根据被加热材料的温度信号调节高 频振荡磁场发生器的输入功率, 使被加热材料达到设定温度; 同时通过与石英 管两端的密封件相连接的进气和压力控制***调节石英管内的气体和气压。
本发明利用可导电材料的特性, 通过对材料施加快速交变磁场, 使材料内 部快速产生超强涡流, 材料在涡流的作用下迅速升温; 并且, 考虑到有些材料 热疲劳性能实验需要隔绝空气, 有些高温氧化性能实验需要调节氧化气氛, 而 有些模仿飞行器的大气环境实验需要含氧气、 氮气、 水蒸气, 气压也受高度、 飞行速度的影响而变化, 因此高温材料加热实验时, 石英管采用密封件封闭, 且与进气和压力控制***相连接, 以实现对气压和气体的调节。
进一步的, 所述高频振荡磁场发生器可以采用 380V、 50~60Hz三相交流电 源, 参数为输入功率 30〜80kW、 振荡频率 15〜35kHz; 更好的, 所述输入功率 40~70kW、 振荡频率 25~30kHz。
本发明同时公开了实现上述用于高温材料的非接触式加热方法的装置: 所述装置包括石英管及其两端的密封件、 高频振荡磁场发生器、 铜管制成 的线圈、 非接触式高温温度计、 计算机数据采集和控制***、 石英管的进气和 压力控制***、 铜管冷却水循环***;
所述石英管长为 300~500mm、 外径为 40~50mm, 其一端的密封件上装有高 透光石英板, 另一端的密封件上装设用于放置被加热材料的支架;
所述铜管制成的线圈环绕在石英管外, 匝数为 3~10圈, 线圈内径为 60~70mm, 铜管内径为 3~8mm、 外径为 5~15mm;
所述线圈的两端与高频振荡磁场发生器的输出端以及循环冷却水装置相连 接;
所述高频振荡磁场发生器的输入功率为 30~80kW, 振荡频率为 15~35kHz; 所述非接触式高温温度计、 高频振荡磁场发生器分别与所述计算机数据采 集和控制***相连接。
所述石英管的进气和压力控制***包括: 与石英管两端密封件相连接的进 气管路和排气管路、 所述进气管路上的气体流量控制阀和流量表、 所述排气管 路上的气体压力控制阀和压力表。
为准确调节石英管的流入气体量和石英管内的气压, 所述石英管的进气和 压力控制***的另一种配置包括: 与石英管两端密封件相连接的进气管路和排 气管路、 所述进气管路上的气体流量控制室、 所述排气管路上的一个气体压力 控制室; 所述气体流量控制室的入口和出口均安装一个流量计; 所述压力控制室的 入口和出口均安装一个压力表;
所述气体流量控制室和气体压力控制室的构造相同, 均为带有入口和出口 的密闭腔体, 内部装有 2~5层与气体管路轴向垂直的多孔板, 两端分别装有 2~4 个管径不同的、 各自带有控制阀的入口管和出口管;
为准确调节进入石英管内的气体流量, 气体流量控制室的入口管可以比出 口管细, 流量控制室的入口管径:出口管径 = 0.1 :1-0.5: 1;
当石英管内所需的气压大于一个大气压时, 所述气体压力控制室的入口管 径:出口管径 = 0.1: 1~1 : 1; 当石英管内所需的气压小于或等于一个大气压时, 所 述气体压力控制室的入口管径:出口管径 = 1 : 1〜10:1。
所述石英管的两端密封件的结构包括: 套于石英管端口外侧的环形橡胶垫、 紧卡于所述橡胶垫外的金属环、 及紧固于金属环上的密封塞;
其中一端的密封塞为设有排气孔的实心结构, 其位于石英管内的端部上装 设所述支架;
另一端的密封塞为中空结构, 其中空部分密封安装有高透光石英板, 与之 相配的金属环上开有进气孔。
加热材料时, 取下石英管密封件, 将被加热材料放在支架上, 再装上密封 件, 调整非接触式高温温度计的光路对准被加热材料中间位置, 设置实验需要 达到的最高温度、 加热速率和保温时间等参数, 接通计算机数据采集和控制系 统、 高频振荡磁场发生器、 进气和压力控制***, 温度信号被电脑自动记录, 反馈给高频振荡磁场发生器, 控制输入功率。
根据被加热材料的设定温度、 体积, 调整石英管尺寸、 铜管线圈匝数等参 数。 高温材料的辐射热量与材料的体积成正比, 材料体积越大、 设定温度越高, 石英管的内径应越大, 以便有效降低处于高温状态的材料对石英管的辐射热量; 随着材料体积和设定温度的增大, 可适当增加线圈的匝数。 石英管最大工作温 度是 1500°C, 如果材料体积较小, 可以在石英管不超过工作温度的情况下, 把 材料加热到 2000°C,持续 30分钟以上,这足够研究任何一种高温结构材料的性 能。
本发明可用于评价高温材料的高温抗氧化性能的研究, 能实现快速而准确 的加热, 升温速度、 加热时间、 温度等都可以实现自动调节, 最大加热速率是 500°C/min, 最高温度可达到 2000°C, 与现有加热方法相比, 具有操作简单、 加 热速度快、 成本低、 安全、 温度控制准确、 试件周围气氛可调等优点。 附图说明
图 1为本发明装置示意图。 图中,
1.石英管, 2.环形橡胶垫, 3.金属环, 4.带有排气孔的密封塞, 5.中空密 封塞, 6.紧固螺杆, 7.高透光石英板, 8.被加热材料, 9.支架, 10.铜管制成 的线圈, 内有冷却循环水, 11.高频振荡磁场发生器, 12.计算机数据采集和控 制***, 13.非接触式高温温度计, 14.气体流量控制室, 其两端装有管径不同 的、各自带有流量控制阀的入口管和出口管, 15.气体压力控制室, 其两端装有 管径不同的、 各自带有压力控制阀的入口管和出口管, 16.气体流量表, 17.气 体压力表, 18.流量控制阀, 19.压力控制阔, 20.多孔板。 具体实施方式
下面通过实施例对本发明做进一步说明:
实施例 1 : 被加热材料为硼化锆-碳化硅-石墨陶瓷基复合材料
石英管长 500mm,管外径为 40mm,被加热材料(试样)尺寸为 20><20x3mm, 采用金刚石研磨膏将试样表面打磨到光洁度达到 Ιμηι以内。
预计达到的技术指标如下: 石英管内气体的压力为 50±10Pa, 气体流量为 100士 10ml/s, 试样表面温度 1500±30°C, 保温 5分钟。
高频振荡磁场发生器电源为三相 380V、 50Hz, 输入功率为 30kW, 振荡频 率为 15kHz, 铜管制成的线圈匝数为 3圈、线圈内径为 60mm, 铜管本身内径为 3mm, 夕卜径为 5mm。
加热装置如图 1所示, 首先打开石英管 1下端的密封塞 4, 将待测试样 8放 在试样支架 9上; 检査并清洁高透光石英板 7,然后用紧固螺杆 6将密封塞 4和 中空密封塞 5分别紧密固定在石英管两端的金属环 3上, 高透光石英板 7密封 安装在中空密封塞 5的中空部分; 进气管路和排气管路分别与上端金属环 3和 下端密封塞 4相连接, 调整高温温度计 13的光路对准试样 8的中心, 打开计算 机数据采集和控制*** 12、 高频振荡磁场发生器 11, 开通气体流量控制室 14 和气体压力控制室 15, 接通铜管制成的线圈 10内的冷却循环水装置。
预设升温速度为 100°C/min, 升温到 1400°C后, 升温速率逐渐降低, 直至达 到最高温度 1500°C并保温 5分钟。 选择气体流量控制室 14的入口管径:出口管 径 = 0.5: 1, 调节流量控制阀 18, 控制气体流量为 100±10ml/s; 选择气体压力控 制室 15的入口管径:出口管径 = 10: 1, 调节压力控制阀 19, 控制压力为 50±5Pa。
实验结果表明: 试样表面温度为 1500±12°C, 气体流量为 100±8ml/s, 石英管 内的气体压力为 50±6Pa, 从这些结果看, 设备具有较好的精度。 特别是温度的 准确性明显高于温差通常为 ±300 °C的氧乙炔焰。 实施例 2: 被加热材料为硼化锆-碳化硅-石墨陶瓷基复合材料
石英管长 500mm, 管外径为 50mm, 被加热材料尺寸为: 25x25x4mm, 材料 表面处理同实施例 1。
本实施例预计达到的技术指标如下: 石英管内气体的压力为 1000±50Pa, 气 体流量为 200±15ml/s, 试样表面温度 1600±40°C, 保温 5分钟。
设备操作过程同实施例 1,参数为:高频振荡磁场发生器的电源为三相 380V、 50Hz, 输入功率为 40kW, 振荡频率为 20kHz, 铜管制成的线圈匝数为 4, 线圈内 径为 62mm, 铜管本身内径为 4mm, 外径为 8mm。
预设升温速度为 100°C/min, 升温到 1450°C后, 升温速率逐渐降低, 直至达 到最高温度 1600°C并保温 5分钟。 选择气体流量控制室 14的入口管径:出口管径 =0.4: 1, 调节流量控制阔 18, 控制气体流量为 200±13ml/s; 选择气体压力控制室 15的入口管径:出口管径 =6: 1, 调节压力控制阔 19, 控制压力为 1000±42Pa。
实验结果表明: 试样表面温度为 1600±20°C, 气体流量为 200±12mL/s, 石英 管内的气体压力为 1000±35Pa。 实施例 3: 被加热材料为硼化锆-碳化硅-石墨陶瓷基复合材料
石英管长 400mm,管外径为 50mm,被加热材料(试样)尺寸为 20x20x8mm, 材料表面处理同实施例 1。
本实施例预计达到的技术指标如下: 石英管内气体的压力为 5000±100Pa, 气体流量为 500±25ml/s, 试样表面温度 1700±50°C, 保温 5分钟。
设备操作过程同实施例 1。 高频振荡磁场发生器的电源为三相 380V、 50Hz, 输入功率为 50kW, 振荡频率为 25kHz; 铜管制成的线圈匝数为 5圈、 线圈内径为 65mm, 铜管内径为 5mm, 夕卜径为 9mm。
预设升温速度为 100°C/min, 升温到 1500°C后, 升温速率逐渐降低, 直至达 到最高温度 1700°C并保温 5分钟。选择气体流量控制室 14的入口管径:出口管径 = 0.3: 1, 调节流量控制阀 18, 控制气体流量为 500±20ml/s; 选择气体压力控制室 15 的入口管径:出口管径 =2:1, 调节压力控制阀 19, 控制压力为 5000±81Pa。
实验结果表明: 试样表面温度为 1700±25°C, 气体流量为 500±20mL/s, 石英 管内的气体压力为 5000±81Pa。 实施例 4: 被加热材料为硼化锆-碳化硅-石墨陶瓷基复合材料
石英管长 300mm,管外径为 50mm,被加热材料(试样)尺寸为 15xl5x4mm, 材料表面处理同实施例 1。
本实施例预计达到的技术指标如下: 石英管内气压为 100000±1000Pa, 气体 流量为 400±20ml/s, 试样表面温度 1750±60°C, 保温 5分钟。
设备操作过程同实施例 1。 高频振荡磁场发生器的电源为三相 380V、 50Hz, 输入功率为 60kW, 振荡频率为 30kHz; 铜管制成的线圈匝数为 7圈、 线圈内径为 66mm, 铜管内径为 6mm, 夕卜径为 10mm。
预设升温速度为 100°C/min, 升温到 1600°C后, 升温速率逐渐降低, 直至达 到最高温度 175CTC并保温 5分钟。选择气体流量控制室 14的入口管径:出口管径 = 0.2: 1, 调节流量控制阔 18, 控制气体流量为 400±17ml/s; 选择气体压力控制室 15 的入口管径:出口管径 = 1:1, 调节压力控制阔 19,控制压力为 100000±650Pa。
实验结果表明: 试样表面温度为 1750±25°C, 气体流量为 400±17mL/s, 石英 管内的气体压力为 100000±65 OPa。 实施例 5: 被加热材料为硼化锆-碳化硅-石墨陶瓷基复合材料
石英管长 500mm,管外径为 45mm,被加热材料(试样)尺寸为 25x25x2mm, 材料表面处理同实施例 1。
本实施例预计达到的技术指标如下: 石英管内气压为 150000±2000Pa, 气体 流量为 300±15mL/s, 试样表面温度为 1550±30°C, 保温 5分钟。
设备操作过程同实施例 1。 高频振荡磁场发生器的电源为三相 380V、 50Hz, 输入功率为 70kW, 振荡频率为 35kHz; 铜管制成的线圈匝数 9圈、 线圈内径为 68mm, 铜管内径为 7mm, 夕卜径为 13mm。
预设升温速度为 100°C/min, 升温到 1500°C后, 升温速率逐渐降低, 直至达 到最高温度 1550°C并保温 5分钟。 选择气体流量控制室 14的入口管径:出口管径 =0.1:1, 调节流量控制阀 18, 控制气体流量为 300±14ml/s; 选择气体压力控制室 15的入口管径:出口管径 =0.5:1, 调节压力控制阀 19, 控制压力为 150000±1250Pa。
实验结果表明: 试样表面温度为 1550±25°C, 气体流量为 300±14mL/s, 石英 管内的气体压力为 150000±1250Pa。 实施例 6: 被加热材料为硼化锆-碳化硅-石墨陶瓷基复合材料
石英管长 500mm,管外径为 50mm,被加热材料(试样)尺寸为 30x30x2mm, 材料表面处理同实施例 1。
本实施例预计达到的技术指标如下: 石英管内气压为 170000±2000Pa, 气体 流量为 250±15mL/s, 试样表面温度 1650±40°C, 保温 5分钟。
设备操作过程同实施例 1。 高频振荡磁场发生器的电源为三相 380V、 50Hz, 输入功率为 80kW, 振荡频率为 35kHz; 铜管制成的线圈匝数为 10圈、 线圈内径 为 70mm, 铜管内径为 8mm, 夕卜径为 15mm。
预设升温速度为 100°C/min, 升温到 1560°C后, 升温速率逐渐降低, 直至达 到最高温度 165CTC并保温 5分钟。选择气体流量控制室 14的入口管径:出口管径 = 0.5: 1, 调节流量控制阔 18, 控制气体流量为 250±13ml/s; 选择气体压力控制室 15 的入口管径:出口管径 =0.1 : 1, 调节压力控制阀 19, 控制压力为 170000±1270Pa。
实验结果表明: 试样表面温度为 1650±26°C, 气体流量为 250±13mL/s, 石英 管内的气体压力为 170000±1270Pa。 以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不局 限于此, 本发明中被加热材料也并不限于实施例所用材料; 任何熟悉本技术领 域的技术人员在本发明披露的技术范围内, 根据本发明的技术方案及其发明构 思加以等同替换或改变, 都应涵盖在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种用于高温材料的非接触式加热的方法, 通过对可导电的高温材料 施加快速交变磁场使材料升温, 包括以下歩骤:
( 1 )将被加热材料置于用密封件密封的石英管内的支架上, 所述支架与 石英管的密封件相连接;
(2)石英管外环绕铜管制成的线圈, 所述铜管内通有循环冷却水, 用高 频振荡磁场发生器通过线圈对被加热材料施加快速交变磁场, 使材料升温;
( 3 )采用非接触式高温温度计透过装在石英管密封件上的高透光石英板 测量被加热材料的温度;
(4)采用计算机数据采集和控制***, 根据被加热材料的温度信号调节 高频振荡磁场发生器的输入功率, 使被加热材料达到设定温度; 同时通过与 石英管两端的密封件相连接的进气和压力控制***调节石英管内的气体和气 压。
2、如权利要求 1所述的用于高温材料的非接触式加热的方法,其特征在于: 所述高频振荡磁场发生器的输入功率为 30~80kW, 振荡频率为 15~35kHz。
3、 如权利要求 2所述的用于高温材料的非接触式加热的方法, 其特征在 于:
所述高频振荡磁场发生器的输入功率为 40~70kW, 振荡频率为
Figure imgf000010_0001
4、 一种如权利要求 1所述的用于高温材料的非接触式加热方法的装置, 其特征在于:
它包括石英管及其两端的密封件、 高频振荡磁场发生器、 铜管制成的线 圈、 非接触式高温温度计、 计算机数据采集和控制***、 石英管的进气和压 力控制***、 铜管冷却水循环***;
所述石英管长为 300~500mm、 外径为 40~50mm, 其一端的密封件上装有 高透光石英板, 另一端的密封件上装设用于放置被加热材料的支架;
所述铜管制成的线圈环绕在石英管外, 匝数为 3~10圈, 线圈内径为 60~70mm, 铜管内径为 3~8mm、 外径为 5~15mm;
所述线圈的两端与高频振荡磁场发生器的输出端以及循环冷却水装置相 连接;
所述高频振荡磁场发生器的输入功率为 30~80kW,振荡频率为 15~35kHz; 所述非接触式高温温度计、 高频振荡磁场发生器分别与所述计算机数据 采集和控制***相连接。
5、 如权利要求 4所述的用于高温材料的非接触式加热的装置, 其特征在 于:
所述石英管的进气和压力控制***包括: 与石英管两端密封件相连接的 进气管路和排气管路、 所述进气管路上的气体流量控制阀和流量表、 所述排 气管路上的气体压力控制阀和压力表。
6、 如权利要求 4所述的用于高温材料的非接触式加热的装置, 其特征在 于:
所述石英管的进气和压力控制***包括: 与石英管两端密封件相连接的 进气管路和排气管路、 所述进气管路上的气体流量控制室、 所述排气管路上 的一个气体压力控制室;
所述气体流量控制室的入口和出口均安装一个流量计; 所述压力控制室 的入口和出口均安装一个压力表;
所述气体流量控制室和气体压力控制室的构造相同, 均为带有入口和出 口的密闭腔体, 内部装有 2~5层与气体管路轴向垂直的多孔板, 两端分别装有 2~4个管径不同的、 各自带有控制阀的入口管和出口管;
所述气体流量控制室的入口管径:出口管径 = 0.1: 1~0.5: 1;
当石英管内所需的气压大于一个大气压时, 所述气体压力控制室的入口 管径:出口管径= 0.1:1-1:1; 当石英管内所需的气压小于或等于一个大气压时, 所述气体压力控制室的入口管径:出口管径 = 1:1~10:1。
7、 如权利要求 4〜6任一所述的用于高温材料的非接触式加热的装置, 其 特征在于:
所述石英管的两端密封件的结构包括: 套于石英管端口外侧的环形橡胶 垫、 紧卡于所述橡胶垫外的金属环、 及紧固于金属环上的密封塞;
其中一端的密封塞为设有排气孔的实心结构, 其位于石英管内的端部上 装设所述支架;
另一端的密封塞为中空结构, 其中空部分密封安装有高透光石英板, 与 之相配的金属环上开有进气孔。
PCT/CN2011/072255 2011-02-16 2011-03-29 用于高温材料的非接触式加热的方法和装置 WO2012109811A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110040235.X 2011-02-16
CN201110040235XA CN102176796B (zh) 2011-02-16 2011-02-16 一种用于高温材料的非接触式加热的方法和装置

Publications (1)

Publication Number Publication Date
WO2012109811A1 true WO2012109811A1 (zh) 2012-08-23

Family

ID=44519878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072255 WO2012109811A1 (zh) 2011-02-16 2011-03-29 用于高温材料的非接触式加热的方法和装置

Country Status (2)

Country Link
CN (1) CN102176796B (zh)
WO (1) WO2012109811A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103204636B (zh) * 2012-01-12 2016-01-06 上海北玻玻璃技术工业有限公司 一种透明导电氧化物镀膜玻璃镀膜线加热冷却***
CN104626460A (zh) * 2015-02-09 2015-05-20 东莞市瀛通电线有限公司 一种基于plc控制的双色螺旋注条机及其注条方法
CN105181476B (zh) * 2015-08-05 2017-11-17 哈尔滨工业大学 一种防热材料高温疲劳性能测试的方法及装置
JP2018078077A (ja) * 2016-11-11 2018-05-17 中央発條株式会社 加熱接合用の加熱装置
CN109507135B (zh) * 2019-01-17 2021-06-18 中国科学院合肥物质科学研究院 一种基于腔衰荡光谱技术的有机硝酸盐多通道加热装置
CN110018199A (zh) * 2019-03-18 2019-07-16 浙江大学 一种可在冻融循环中测试材料电磁参数的装置和冻融循环中测量材料电磁参数的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6195382B1 (en) * 1999-03-23 2001-02-27 Clean Technologies International Corporation High temperature molten metal reactor and waste treatment method
CN2481109Y (zh) * 2001-05-17 2002-03-06 华东师范大学 高频感应加热线圈
US7161124B2 (en) * 2005-04-19 2007-01-09 Ut-Battelle, Llc Thermal and high magnetic field treatment of materials and associated apparatus
CN101494163A (zh) * 2008-01-22 2009-07-29 东京毅力科创株式会社 处理装置和处理方法
CN101726034A (zh) * 2009-12-15 2010-06-09 青岛福润德自动化技术有限公司 电磁温控供热***

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7424045B2 (en) * 2004-09-01 2008-09-09 Wilcox Dale R Method and apparatus for heating a workpiece in an inert atmosphere or in vacuum
US7663077B1 (en) * 2006-10-27 2010-02-16 Jefferson Science Associates, Llc Apparatus for the laser ablative synthesis of carbon nanotubes
CN201245614Y (zh) * 2008-08-27 2009-05-27 上海中油石油仪器制造有限公司 一种高频热解装置
CN201674686U (zh) * 2010-05-07 2010-12-15 郑州科创电子有限公司 细线材感应加热设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6195382B1 (en) * 1999-03-23 2001-02-27 Clean Technologies International Corporation High temperature molten metal reactor and waste treatment method
CN2481109Y (zh) * 2001-05-17 2002-03-06 华东师范大学 高频感应加热线圈
US7161124B2 (en) * 2005-04-19 2007-01-09 Ut-Battelle, Llc Thermal and high magnetic field treatment of materials and associated apparatus
CN101494163A (zh) * 2008-01-22 2009-07-29 东京毅力科创株式会社 处理装置和处理方法
CN101726034A (zh) * 2009-12-15 2010-06-09 青岛福润德自动化技术有限公司 电磁温控供热***

Also Published As

Publication number Publication date
CN102176796A (zh) 2011-09-07
CN102176796B (zh) 2012-11-21

Similar Documents

Publication Publication Date Title
WO2012109811A1 (zh) 用于高温材料的非接触式加热的方法和装置
CN108195706B (zh) 一种陶瓷基复合材料结构件的热疲劳试验***
CN107228488B (zh) 一种智能加热控制的电热水器
CN108088869B (zh) 一种热防护***隔热性能试验装置
CN108645739A (zh) 一种真空冷热冲击循环试验机
CN103925759B (zh) 用于热物性测量的宽温区控温恒温装置
CN108204994A (zh) 一种超高温可控气氛的材料抗热震性能考核测试装置
WO2014107827A1 (zh) 一种模拟热障涂层服役环境并实时检测其失效的试验装置
WO2013143282A1 (zh) 现场工况厚壁p92管道局部热处理方法
CN103115941A (zh) 一种新型闭式导热系数测试装置
CN108204938B (zh) 一种阻氚涂层中氢扩散渗透性能测定装置
CN107024946B (zh) 基于粒子加速器材料辐照的高精度温控装置及其温控方法
CN103543418B (zh) 一种用于激光探测核磁共振的加热与温控装置
CN201269841Y (zh) 强磁场液态金属扩散装置
JP2004211187A5 (zh)
CN105973929A (zh) 一种运用红外相机检测部件内部接触热阻的无损检测方法
CN103983660A (zh) 一种室内岩样导热系数测试装置
CN107894365A (zh) 一种测试导体材料超高温拉伸性能的夹具及夹持方法
WO2020038440A1 (zh) 一种可控速率的超导磁体部件的冷热循环试验装置
CN108896606B (zh) 一种非稳态柱面热源法温变有效导热系数测定装置及方法
CN110794000A (zh) 一种辐射-对流耦合加热可控气氛热解实验***及测试方法
CN212871941U (zh) 载气气流加热解释冷阱
CN101482525A (zh) 用于取向织构测量的高温加热装置
CN108956361B (zh) 基于光热快速升温的磁悬浮热天平测量方法
CN110672658A (zh) 一种适用于大温差、变压力条件的块体多孔材料隔热性能测试实验***及测试方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858550

Country of ref document: EP

Kind code of ref document: A1