WO2012108741A2 - Method for manufacturing a lithiated metal/carbon composite electrode, lithiated metal/carbon composite electrode manufactured by the method, and electrochemical device comprising the electrode - Google Patents

Method for manufacturing a lithiated metal/carbon composite electrode, lithiated metal/carbon composite electrode manufactured by the method, and electrochemical device comprising the electrode Download PDF

Info

Publication number
WO2012108741A2
WO2012108741A2 PCT/KR2012/001075 KR2012001075W WO2012108741A2 WO 2012108741 A2 WO2012108741 A2 WO 2012108741A2 KR 2012001075 W KR2012001075 W KR 2012001075W WO 2012108741 A2 WO2012108741 A2 WO 2012108741A2
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
carbon composite
electrode
metal
composite electrode
Prior art date
Application number
PCT/KR2012/001075
Other languages
French (fr)
Korean (ko)
Other versions
WO2012108741A3 (en
Inventor
선양국
수크로사티브루노
이동주
아순주세프
이성만
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to US14/652,656 priority Critical patent/US9985326B2/en
Priority claimed from KR1020120014186A external-priority patent/KR101397415B1/en
Publication of WO2012108741A2 publication Critical patent/WO2012108741A2/en
Publication of WO2012108741A3 publication Critical patent/WO2012108741A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a lithiated metal carbon composite electrode, to a lithiated metal carbon composite electrode and an electrochemical device comprising the same, and more particularly to a new having a good charge and discharge characteristics and cycle characteristics
  • Ni-MH (Ni-MH) secondary batteries and lithium secondary batteries are increasing.
  • lithium secondary batteries using lithium and nonaqueous electrolytes have been actively developed due to the high possibility of realizing small, lightweight and high energy density batteries.
  • a transition metal oxide such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 is used as a cathode material of a lithium secondary battery, and lithium metal or carbon is used as an anode material.
  • a lithium secondary battery is comprised using the organic solvent which contains lithium ion as electrolyte between two electrodes.
  • Lithium secondary batteries using metal lithium as a negative electrode tend to generate dendrite crystals when charging and discharging are repeated, and thus there is a high risk of short circuit. Therefore, a carbonized or graphitized carbon material is used for the negative electrode.
  • BACKGROUND ART Lithium secondary batteries having a nonaqueous solvent containing lithium ions as an electrolyte have been put to practical use.
  • the graphitized carbon material has a theoretical lithium storage capacity of 372 mAh / g, which is equivalent to 10% of the lithium metal theory capacity, and has a very small capacity. Therefore, the progress has been actively focused on materials having a higher lithium storage capacity than graphite.
  • silicon-based materials have attracted much attention due to their high capacity (4200 mAhg ⁇ 1 ).
  • the silicon has a problem that the volume change (shrinkage or expansion) occurs during the insertion / de-insertion process of lithium ions, the mechanical stability is lowered, and as a result the cycle characteristics are inhibited. Therefore, it is necessary to develop a material having structural stability and excellent stability when used as an active material of an electrochemical device and ensuring cycle characteristics.
  • a metal alloy-based negative electrode active material which has a higher capacity, has excellent life characteristics, and can replace a conventional carbon-based negative electrode or a lithium metal negative electrode.
  • a metal alloy-based negative electrode material such as Sn, Si, Ge, etc.
  • the performance of the electrochemical device using the metal alloy negative electrode active material is greatly affected by the manufacturing method or structure of the composite, it is necessary to develop a new manufacturing method that can improve the performance of the electrochemical device.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a method for producing a lithiated metal carbon composite electrode and a lithiated metal carbon composite electrode produced thereby.
  • Another object of the present invention is to provide an electrochemical device comprising the lithiated metal carbon composite electrode.
  • the present invention to achieve the above object
  • It provides a method for producing a lithiated metal carbon composite electrode consisting of a fourth step of applying a pressure while adding a solution to the current collector is laminated lithium.
  • a metal carbon composite is first prepared in a first step.
  • the metal carbon composite material is not particularly limited, and the metal carbon composite material is selected from the group consisting of Mg, Ca, Al, Si, Ge, Sn, Pb, As, Bi, Ag, Au, Zn, Cd, and Hg. It is a complex of metal and carbon and both are possible.
  • the metal carbon composite material is preferably a silicon carbon composite material or a tin carbon composite material.
  • the production method of the metal carbon composite is not particularly limited and a general production method may be used.
  • a gel of resorcinol and formaldehyde is prepared according to the process described in Italian Application No. RM2008A000381, and after immersing a tin-organic precursor in the gel, It can manufacture by the process of heat processing.
  • a slurry is prepared by mixing the metal carbon composite, the conductive material, and the binder in a solvent, and applied to a current collector.
  • the binder may include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, and ethylene oxide.
  • Polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyethylene, polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon and the like can be used, but is not limited thereto.
  • any conductive material may be used as the conductive material without causing chemical change, and examples thereof include carbon-based materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, and carbon fiber; Metal materials such as metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive polymers such as polyphenylene derivatives; Or a conductive material containing a mixture thereof.
  • the content of the metal carbon composite may be 60% by weight to 90% by weight based on the total weight of solids, the content of the binder is 5% by weight to 20% by weight, and the content of the conductive material is 5% by weight to 20% by weight. Can be%.
  • the current collector may be selected from the group consisting of copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a polymer substrate coated with a conductive metal, and combinations thereof. .
  • the lithium is laminated on the current collector coated with the slurry including the metal carbon composite material.
  • the lithium is in the form of a sheet (sheet), the thickness is preferably 50 or more.
  • the lithium has a sheet (sheet) form is preferable in terms of improving the workability in the manufacturing process, the thickness is 50 or more is advantageous to sufficiently lithiize the metal carbon composite.
  • the solution may be a solution in which lithium salt is dissolved in a non-aqueous organic solvent.
  • a solution in which a lithium salt is dissolved in the non-aqueous organic solvent is added, lithium ions can be well transferred from the lithium metal to the surface and the inside of the metal carbon composite material.
  • the lithium salt may be LiBF 4 , LiClO 4 , LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 3 C, and LiBPh At least one selected from the group consisting of four .
  • the non-aqueous organic solvent includes an organic solvent and an ionic solvent, wherein the non-aqueous organic solvent is ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), 1,2-dimethoxyethane (DME), -butyrolactone (GBL), tetrahydrofuran (THF), 1,3-dioxolane (DOXL), dimethylether (DEE), methyl propionate (MP), sulfolane (S), dimethyl sulfoxide (DMSO), acetonitrile (AN), and tetraethylene glycol dimethyl ether (TEGDME) is one or more selected from the group consisting of ionic
  • the solvent is 1-ethyl-3-methylimidazolium (EMI)-(CF 3 SO 2 ) 2 N, 1-butyl-3-methylimidazolium (BMI)-(CF 3 SO 2
  • the concentration of the lithium salt in the solution in which the lithium salt is dissolved in the non-aqueous organic solvent may be in the range of 0.1 to 2.0M.
  • concentration of the lithium salt is included in this range, the ionic conductivity of the electrolyte is increased, and lithium ions are easily moved to the metal carbon composite, thereby promoting the formation of the lithiated metal carbon composite.
  • the pressure applied to the current collector in which lithium is laminated in the fourth step is 300 to 3500 N / m 2.
  • lithium When pressure is applied to the current collector in which lithium is laminated as described above, lithium is transferred from the stacked lithium to the metal carbon composite, a part of lithium forms an alloy with the metal, and the other part of lithium is the carbon crystal structure. Will be inserted into
  • the pressure to add lithium is 300 N / m2 or less takes a long time to the metal carbon composite lithiation process, if the pressure to apply the lithium is more than 3500 N / m2 it is difficult to remove the stacked lithium for lithiation again .
  • the method of applying pressure to the current collector on which lithium is laminated is not particularly limited. That is, after the lithium is laminated on the current collector, the plate is laminated on the upper part, and a weight indicating a certain weight is placed on the plate so that pressure is uniformly applied to the entire current collector.
  • a weight indicating a certain weight is placed on the plate so that pressure is uniformly applied to the entire current collector.
  • lithium can be applied to a metal carbon composite material by such a physical method and used as an electrode of an electrochemical device.
  • the pressure after the pressure is applied to the current collector in which the lithium is laminated, it further comprises a fifth step of removing the laminated lithium.
  • the present invention also provides a lithiated metal carbon composite electrode produced by the production method of the present invention.
  • the lithiated metal carbon composite electrode is characterized in that a portion of the lithium forms an alloy with the metal, the remaining portion of the lithium is inserted into the carbon crystal structure.
  • the present invention also provides an electrochemical device comprising a lithiated metal carbon composite electrode produced by the production method of the present invention.
  • the lithiated metal carbon composite electrode is used as a negative electrode to replace the existing carbon-based negative electrode.
  • the electrochemical device of the present invention comprises a positive electrode and / or a negative electrode comprising the lithiated metal carbon composite electrode; And separators present therebetween. It also includes an electrolyte that is impregnated with the positive electrode, the negative electrode, and the separator.
  • the electrolyte may be a liquid electrolyte or a polymer gel electrolyte.
  • the electrochemical device is characterized in that the lithium sulfur battery, lithium air battery or lithium ion battery.
  • the electrochemical device is characterized in that the lithium air battery containing a polymer composite electrolyte or a liquid electrolyte.
  • the polymer composite electrolyte is a film formed of a first lithium salt and a polymer; And an ion conductive solvent impregnated in the film, wherein the organic solvent comprises a second lithium salt and an organic solvent, wherein the organic solvent is tetraethylene glycol dimethyl ether, ethylene glycol dimethacrylate, polyethylene glycol, polyethylene glycol dialkyl ether. , Polyalkyl glycol dialkyl ethers or combinations thereof.
  • the liquid electrolyte is characterized in that represented by the general formula R 1 (CR 3 2 CR 4 2 O) n R 2 .
  • R 1 and R 2 are each independently H, alkyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, alkoxy, cyryl, substituted alkyl, substituted cycloalkyl, substituted And aryl, substituted heterocyclyl, substituted heteroaryl, substituted alkoxy, substituted silyl, halogen.
  • R 3 and R 4 are each independently represented by H, halogen, alkyl, cycloalkyl, aryl, substituted alkyl, substituted aryl.
  • the liquid electrolyte is selected from tetraethylene glycol dimethyl ether, ethylene glycol dimethacrylate, polyethylene glycol, polyethylene glycol dialkyl ether, polyalkyl glycol dialkyl ether, or a combination thereof.
  • Lithiumated metal carbon composite electrode according to the present invention since lithium forms an alloy with metal and is inserted into the crystal structure of carbon to form a composite of stable structure, the volume change of the metal during the charging and discharging process is small, thus The cycle characteristics are not deteriorated, the charge and discharge capacity is improved, the irreversible capacity can be controlled during initial charge and discharge, and it has the effect of replacing the lithium metal anode having low safety.
  • Figure 1 shows the results of XRD measurement for the electrode prepared in Examples 1-1 to 1-3 and Comparative Example 1 prepared in accordance with an embodiment of the present invention.
  • Example 5 is a result of measuring the initial charge and discharge characteristics of the lithiated tin carbon composite electrode prepared according to Example 2 of the present invention.
  • Example 6 is a result of measuring the second charge and discharge characteristics of the lithiated tin carbon composite electrode prepared according to Example 2 of the present invention.
  • Example 7 is a result of measuring the charge and discharge characteristics of a lithium air battery using a lithiated tin carbon composite electrode prepared according to Example 2 of the present invention.
  • a silicon graphite composite having a particle size of 5 to 15 ⁇ m was prepared.
  • the prepared silicon graphite composite powder was mixed with NMP in a weight ratio of super P, CMC, SBR and 85: 5: 3.3: 6.7, respectively, to prepare a slurry, and then cast on a copper foil as a current collector.
  • the cast electrode was first dried in an oven at 110 ° C. for 2 hours, and then dried in vacuo for 12 hours in the form of an electrode.
  • the prepared electrode was cut into a size of 2 ⁇ 2 cm 2, and Li metal was laminated on the electrode, and then a solution in which 1.2 M LiPF 6 was dissolved in an EC: DMC-3: 7 mixed solvent was applied, and 46 N / A lithiated silicon carbon composite electrode was prepared by applying a pressure of m 2 for 30 minutes.
  • the size and time of the pressure applied to the stacked Li metals were as in Table 1 below, and the rest was the same as in Example 1 to obtain a lithiated silicon carbon composite electrode.
  • Example 1-1 46 0.5
  • Example 1-2 1588 0.5
  • Example 1-3 3130 0.5
  • Example 1-4 3130
  • Example 1-5 3130
  • Example 1-6 3130 6
  • Example 1-7 3130 12 Comparative Example 1 - - Comparative Example 2 7756 5
  • An electrode was manufactured in the same manner as in Example 1 except that the process of applying pressure after stacking lithium was made as Comparative Example 1.
  • the amount of pressure applied to the stacked Li metals was 7756 N / m. 2 Except that In the same manner as in Example 1, an electrode was manufactured and Comparative Example 2 was obtained.
  • a half cell was prepared including the lithiumated silicon carbon composite electrodes prepared in Examples 1-1 to 1-7.
  • the charging and discharging capacity of the half cell using the lithiated silicon carbon composite electrode of Examples 1-1 to 1-3 and Comparative Example 1 as the negative electrode was started from charging at 100 mA g ⁇ 1 condition between 0.01 and 1.5 V. Charge and discharge were carried out, and the results are shown in FIG. 2. In the case of Comparative Example 2, the amount of pressure applied for lithiation was too large so that lithium metal was not separated into the electrode.
  • the OCV was reduced according to the magnitude of the pressure applied during lithiation, it can be seen that the charge capacity is reduced.
  • the ratio of the discharge capacity to the charge capacity increases as the pressure applied for lithiation increases, thereby adjusting the magnitude of the pressure applied for lithiation.
  • the initial reversible capacity of electricity can be controlled by adjusting the degree of lithiation of the lithiated silicon carbon composite.
  • Examples 1-4 to 1-7 the reverse cell to which the lithiated silicon carbon composite and the silicon carbon composite electrode of Comparative Example 1 is applied in the range of 0.01 ⁇ 1.5 V Example 1-4 to 100 ⁇ g -1
  • the electrode of 1-7 was performed from discharge, the comparative example 1 was implemented from charge, and charge / discharge was shown, and the result is shown in FIG.
  • the discharge capacity of the silicon carbon composite is sufficiently expressed, and the discharge capacity increases as the time for applying pressure for lithiation increases. Can be. Therefore, it can be seen that the fully lithiated silicon carbon composite can be applied to an electrochemical device by replacing the lithium metal anode.
  • a lithiated silicon carbon composite electrode was manufactured in the same manner as the electrode prepared in Example 1-7.
  • a lithiated silicon carbon composite according to the patent filed by the present inventor (Korean Application No. 10-2011-0028246) was used. Specifically, the hard carbon ball and sulfur are mixed at a ratio of 1: 5, the primary heat treatment for 7 hours at 150 °C in an airtight flask in an Ar atmosphere to support sulfur inside the hard carbon ball, and then cooled to room temperature, After the heat treatment at 300 °C for 2 hours while applying a pressure of 1 MPa to prepare a carbon sulfur composite supported therein sulfur.
  • the sulfur-supported carbon sulfur composite prepared as described above was used as the anode, and the lithiated silicon carbon composite electrode prepared in Examples 1-1 to 1-7 was used as the cathode, (TEGDME) 4 LiCF 3 SO 3
  • the electrolyte was produced using a 2032 coin-type cell.
  • the lithiated silicon carbon composite electrode works sufficiently as a negative electrode of a lithium sulfur battery.
  • the prepared tin carbon composite, super P carbon black conductive material, and polyvinylidene fluoride binder were mixed in an N-methylpyrrolidone solvent at a ratio of 80:10 to 10 to prepare a tin-carbon composite slurry.
  • the tin carbon composite slurry was cast on Cu foil, and the resulting product was dried in an oven at 100 ° C. for 2 hours and then vacuum dried for at least 12 hours.
  • the vacuum dried product was cut to an appropriate size, a lithium metal was placed thereon, and an electrolyte solution (a mixed solvent of ethylene carbonate and dimethyl carbonate (3: 7 volume ratio) in which 1.2 M LiPF 6 was dissolved) was evenly sprayed onto the lithium metal.
  • an electrolyte solution a mixed solvent of ethylene carbonate and dimethyl carbonate (3: 7 volume ratio) in which 1.2 M LiPF 6 was dissolved
  • a lithium-ioned tin carbon composite electrode prepared in Example 2 was used as a negative electrode, and a CR2032-sized half-cell was prepared using the same positive electrode and electrolyte as in Preparation Example 1.
  • an electrolyte solution a mixed solvent (3: 7 volume ratio) of ethylene carbonate and dimethyl carbonate in which 1.2 M LiPF 6 was dissolved was used.
  • the half cell prepared in Preparation Example 3 was charged and discharged twice at a current condition of 100 mAg ⁇ 1 at 2.0V to 0.01V.
  • the charge and discharge results of the first charge and discharge are shown in FIG. 4, and the charge and discharge results of the second charge and discharge are shown in FIG. 5.
  • the half cell manufactured in Preparation Example 3 had a charge capacity of 17.4 mAh / g and a discharge capacity of 407.1 mAh / g during one charge / discharge. Since lithium is already present in the active material, almost no charging is performed. It can be seen that the dose was excellent. In addition, the initial open circuit voltage (OCV) is about 0.05 V, which also indicates that lithium ions are already present in the active material.
  • the half cell including the lithiated tin carbon composite electrode prepared in Preparation Example 3 had a charge capacity of 375.0 mAh / g and a discharge capacity of 359.7 mAh / g during two charge / discharge cycles, which was sufficient as a battery. You can see it works.
  • the lithium air battery using the lithiated tin carbon composite electrode prepared in Preparation Example 4 exhibits a charge / discharge capacity of 500 mAh / g, and fully operates as a battery with a discharge potential of about 2.5V. It can be seen.
  • Lithiumated metal carbon composite electrode according to the present invention since lithium forms an alloy with metal and is inserted into the crystal structure of carbon to form a composite of stable structure, the volume change of the metal during the charging and discharging process is small, thus The cycle characteristics are not deteriorated, the charge and discharge capacity is improved, the irreversible capacity can be controlled during initial charge and discharge, and it has the effect of replacing the lithium metal anode having low safety.

Abstract

The present invention relates to a method for manufacturing a lithiated metal/carbon composite electrode, to a lithiated metal/carbon composite electrode manufactured by the method, and to an electrochemical device comprising the electrode. More particularly, the present invention relates to a method for manufacturing a lithiated metal/carbon composite electrode having a novel structure with superior charge/discharge characteristics and cyclability, to a lithiated metal/carbon composite electrode manufactured by the method, and to an electrochemical device comprising the electrode. The lithiated metal/carbon composite electrode according to the present invention is structured such that lithium and metal form an alloy which is simultaneously inserted into a carbon crystal structure so as to form a composite having a stable structure. Therefore, less variations in the volume of the metal occurs during charging/discharging processes, and thus a degradation in cyclability may be prevented, charging/discharging capacity may be improved, irreversible capacity may be controlled during initial charging/discharging, and a negative electrode using lithium metal, which may be unsafe, may be replaced with the electrode of the present invention.

Description

리튬화된 금속 탄소 복합체 전극의 제조 방법, 이에 의하여 제조된 리튬화된 금속 탄소 복합체 전극 및 이를 포함하는 전기화학소자Method for producing a lithiated metal carbon composite electrode, a lithiated metal carbon composite electrode produced thereby and an electrochemical device comprising the same
본 발명은 리튬화된 금속 탄소 복합체 전극의 제조 방법, 이에 의하여 제조된 리튬화된 금속 탄소 복합체 전극 및 이를 포함하는 전기화학소자에 관한 것으로, 보다 상세하게는 우수한 충방전 특성 및 사이클 특성을 가지는 새로운 구조의 리튬화된 금속 탄소 복합체 전극을 제조하는 방법, 이에 의하여 제조된 리튬화된 금속 탄소 복합체 전극 및 이를 포함하는 전기화학소자에 관한 것이다. The present invention relates to a method for producing a lithiated metal carbon composite electrode, to a lithiated metal carbon composite electrode and an electrochemical device comprising the same, and more particularly to a new having a good charge and discharge characteristics and cycle characteristics A method of manufacturing a lithiated metal carbon composite electrode having a structure, and a lithiated metal carbon composite electrode produced thereby, and an electrochemical device comprising the same.
최근 전자, 통신, 컴퓨터 산업 등의 급속한 발전에 힘입어, 캠코더, 휴대폰, 노트북 PC 등 휴대용 전자제품의 사용이 일반화됨으로써, 가볍고 오래 사용할 수 있으며 신뢰성이 높은 전지에 대한 요구가 높아지고 있다.Recently, thanks to the rapid development of the electronics, telecommunications, and computer industries, the use of portable electronic products such as camcorders, mobile phones, notebook PCs, and the like, has increased the demand for light, long-lasting and reliable batteries.
특히 이 중에서도 Ni-수소(Ni-MH) 이차전지나 리튬 이차 전지 등의 이차전지에 대한 수요가 높아지고 있다. 특히, 리튬과 비수용매 전해액을 사용하는 리튬 이차전지는 소형, 경량 및 고에너지 밀도의 전지를 실현할 수 있는 가능성이 높아 활발하게 개발되고 있다. In particular, the demand for secondary batteries such as Ni-MH (Ni-MH) secondary batteries and lithium secondary batteries is increasing. In particular, lithium secondary batteries using lithium and nonaqueous electrolytes have been actively developed due to the high possibility of realizing small, lightweight and high energy density batteries.
일반적으로 리튬 이차전지의 양극(cathode) 재료로는 LiCoO2, LiNiO2, LiMn2O4 등의 전이금속산화물이 사용되며, 음극(anode) 재료로는 리튬(Lithium) 금속 또는 탄소(Carbon) 등이 사용되고, 두 전극 사이에 전해질로서 리튬 이온이 함유되어 있는 유기용매를 사용하여 리튬 이차전지가 구성된다. In general, a transition metal oxide such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 is used as a cathode material of a lithium secondary battery, and lithium metal or carbon is used as an anode material. This is used, and a lithium secondary battery is comprised using the organic solvent which contains lithium ion as electrolyte between two electrodes.
금속 리튬을 음극으로 이용한 리튬 이차전지는 충방전을 반복하는 경우에 수지상(dendrite)의 결정이 발생하기 쉽고, 이로 인한 단락 쇼트의 위험성이 크므로, 음극에 탄화 또는 흑연화된 탄소 재료를 이용하고 리튬 이온을 함유하는 비수용매를 전해질로 하는 리튬 이차전지가 실용화되고 있다. Lithium secondary batteries using metal lithium as a negative electrode tend to generate dendrite crystals when charging and discharging are repeated, and thus there is a high risk of short circuit. Therefore, a carbonized or graphitized carbon material is used for the negative electrode. BACKGROUND ART Lithium secondary batteries having a nonaqueous solvent containing lithium ions as an electrolyte have been put to practical use.
그러나, 흑연화된 탄소 재료는 이론적인 리튬 흡장 능력이 372mAh/g으로, 리튬금속이론용량의 10%에 해당하여 매우 작은 용량이라는 한계를 지닌다. 따라서, 흑연보다 높은 리튬 저장 능력을 가진 재료에 초점을 맞춰 활발히 진행되어 왔다.However, the graphitized carbon material has a theoretical lithium storage capacity of 372 mAh / g, which is equivalent to 10% of the lithium metal theory capacity, and has a very small capacity. Therefore, the progress has been actively focused on materials having a higher lithium storage capacity than graphite.
그 중, 실리콘계 재료는 높은 용량(4200mAhg-1)으로 인해 많은 주목을 받아 왔다. 그러나, 상기 실리콘은 리튬 이온의 삽입/탈삽입 과정에서 부피 변화(수축 또는 팽창)가 발생되어 기계적 안정성이 떨어지고, 그 결과 사이클 특성이 저해되는 문제점이 있다. 따라서, 구조적인 안정성을 가짐으로 전기화학소자의 활물질로 사용시 안정성이 우수하고, 사이클 특성을 확보할 수 있는 재료의 개발이 필요하다. Among them, silicon-based materials have attracted much attention due to their high capacity (4200 mAhg −1 ). However, the silicon has a problem that the volume change (shrinkage or expansion) occurs during the insertion / de-insertion process of lithium ions, the mechanical stability is lowered, and as a result the cycle characteristics are inhibited. Therefore, it is necessary to develop a material having structural stability and excellent stability when used as an active material of an electrochemical device and ensuring cycle characteristics.
최근 이러한 문제들을 해결하기 위하여 좀더 고용량을 가지고 우수한 수명특성을 가지며 종래 탄소계 음극이나 리튬 금속 음극을 대체할 수 있는 금속 합금계 음극 활물질의 개발에 관심이 집중되고 있다. Sn, Si, Ge 등과 금속합금계 음극 물질의 경우에는 기존의 카본계에 비해 2배 이상의 높은 용량을 가지고 있는 것으로 알려져 있다. 그러나, 이러한 금속 합금계 음극 활물질을 사용한 전기화학소자의 성능은 상기 복합체의 제조방법이나 구조에 따라 많은 영향을 받기 때문에 전기 화학 소자의 성능을 개선할 수 있는 새로운 제조 방법의 개발이 필요하였다.Recently, in order to solve these problems, attention has been focused on the development of a metal alloy-based negative electrode active material which has a higher capacity, has excellent life characteristics, and can replace a conventional carbon-based negative electrode or a lithium metal negative electrode. In the case of a metal alloy-based negative electrode material such as Sn, Si, Ge, etc., it is known to have a capacity twice as high as that of a conventional carbon-based material. However, since the performance of the electrochemical device using the metal alloy negative electrode active material is greatly affected by the manufacturing method or structure of the composite, it is necessary to develop a new manufacturing method that can improve the performance of the electrochemical device.
본 발명은 상기한 과제를 해결하기 위한 것으로서, 본 발명은 리튬화된 금속 탄소 복합체 전극의 제조 방법 및 이에 의하여 제조된 리튬화된 금속 탄소 복합체 전극을 제공하는 것을 목적으로 한다.The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for producing a lithiated metal carbon composite electrode and a lithiated metal carbon composite electrode produced thereby.
본 발명의 다른 목적은 상기 리튬화된 금속 탄소 복합체 전극을 포함하는 전기화학소자를 제공하는 데 있다.Another object of the present invention is to provide an electrochemical device comprising the lithiated metal carbon composite electrode.
본 발명은 상기와 같은 목적을 달성하기 위하여 The present invention to achieve the above object
금속 탄소 복합체를 준비하는 제 1 단계;A first step of preparing a metal carbon composite;
상기 금속 탄소 복합체, 도전재 및 바인더를 용매에 혼합하여 슬러리를 제조하고, 집전체에 도포하는 제 2 단계;A second step of preparing a slurry by mixing the metal carbon composite, the conductive material, and the binder in a solvent, and applying the same to a current collector;
상기 금속 탄소 복합체를 포함하는 슬러리가 도포된 집전체에 리튬을 적층시키는 제 3 단계; 및 Stacking lithium on a current collector to which the slurry including the metal carbon composite is applied; And
상기 리튬이 적층된 집전체에 용액을 첨가하면서 압력을 가하는 제 4 단계로 구성되는 리튬화된 금속 탄소 복합체 전극의 제조 방법을 제공한다. It provides a method for producing a lithiated metal carbon composite electrode consisting of a fourth step of applying a pressure while adding a solution to the current collector is laminated lithium.
이하 리튬화된 금속 탄소 복합체 전극의 제조 방법에 대하여 보다 자세하게 기술하도록 한다. Hereinafter, a method of manufacturing the lithiated metal carbon composite electrode will be described in more detail.
본 발명에 있어서, 먼저 제 1 단계로 금속 탄소 복합체를 준비한다. 상기 금속 탄소 복합체는 특별히 한정되지는 않으며, 상기 금속 탄소 복합체는 Mg, Ca, Al, Si, Ge, Sn, Pb, As, Bi, Ag, Au, Zn, Cd, 및 Hg 로 이루어진 그룹에서 선택되는 금속과 탄소의 복합체이며 모두 가능하다. 본 발명에 있어서, 상기 금속 탄소 복합체로서는 실리콘 탄소 복합체 또는 주석 탄소 복합체인 것이 바람직하다. In the present invention, a metal carbon composite is first prepared in a first step. The metal carbon composite material is not particularly limited, and the metal carbon composite material is selected from the group consisting of Mg, Ca, Al, Si, Ge, Sn, Pb, As, Bi, Ag, Au, Zn, Cd, and Hg. It is a complex of metal and carbon and both are possible. In the present invention, the metal carbon composite material is preferably a silicon carbon composite material or a tin carbon composite material.
본 발명에 있어서, 상기 금속 탄소 복합체의 제조 방법은 특별히 한정되지 않으며 일반적인 제조 방법이 사용될 수 있다. 예를 들어, 주석 탄소 복합체의 경우 이태리 출원번호 제 RM2008A000381호에 기술된 공정에 따라 레조르시놀과 포름알데하이드의 겔을 제조하고, 이 겔에 주석유기 전구체(tin-organic precursor)를 침지한 후, 열처리하는 공정으로 제조할 수 있다. In the present invention, the production method of the metal carbon composite is not particularly limited and a general production method may be used. For example, in the case of tin carbon composites, a gel of resorcinol and formaldehyde is prepared according to the process described in Italian Application No. RM2008A000381, and after immersing a tin-organic precursor in the gel, It can manufacture by the process of heat processing.
제 2 단계에서는 상기 금속 탄소 복합체, 도전재 및 바인더를 용매에 혼합하여 슬러리를 제조하고, 집전체에 도포한다. In the second step, a slurry is prepared by mixing the metal carbon composite, the conductive material, and the binder in a solvent, and applied to a current collector.
상기 바인더로는 폴리비닐리덴 플루오라이드, 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 디아세틸셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.The binder may include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, and ethylene oxide. , Polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyethylene, polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon and the like can be used, but is not limited thereto.
또한, 상기 도전재로는 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 사용할 수 있다.In addition, any conductive material may be used as the conductive material without causing chemical change, and examples thereof include carbon-based materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, and carbon fiber; Metal materials such as metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive polymers such as polyphenylene derivatives; Or a conductive material containing a mixture thereof.
상기 슬러리 제조시 금속 탄소 복합체의 함량은 고형분 전체 중량에 대하여 60 중량 % 내지 90 중량% 일 수 있고, 상기 바인더의 함량은 5 중량% 내지 20 중량%, 상기 도전재의 함량은 5 중량 % 내지 20 중량% 일 수 있다. When the slurry is prepared, the content of the metal carbon composite may be 60% by weight to 90% by weight based on the total weight of solids, the content of the binder is 5% by weight to 20% by weight, and the content of the conductive material is 5% by weight to 20% by weight. Can be%.
상기 전류 집전체로는 구리 박, 니켈 박, 스테인레스강 박, 티타늄 박, 니켈 발포체(foam), 구리 발포체, 전도성 금속이 코팅된 폴리머 기재, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.The current collector may be selected from the group consisting of copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a polymer substrate coated with a conductive metal, and combinations thereof. .
제 3 단계에서는 상기 금속 탄소 복합체를 포함하는 슬러리가 도포된 집전체에 리튬을 적층시킨다. 본 발명에 있어서, 상기 리튬은 쉬트(sheet) 형태이고, 두께는 50 이상인 것이 바람직하다. 본 발명에 있어서, 상기 리튬이 쉬트(sheet) 형태를 가지는 것이 제조 과정에서 작업성을 높이는 측면에서 바람직하고, 그 두께는 50 이상인 것이 금속 탄소 복합체를 충분히 리튬화 시키기 위해 유리하다. In the third step, lithium is laminated on the current collector coated with the slurry including the metal carbon composite material. In the present invention, the lithium is in the form of a sheet (sheet), the thickness is preferably 50 or more. In the present invention, the lithium has a sheet (sheet) form is preferable in terms of improving the workability in the manufacturing process, the thickness is 50 or more is advantageous to sufficiently lithiize the metal carbon composite.
제 4 단계에서는 상기 리튬이 적층된 집전체에 용액을 첨가하면서 압력을 가한다. 상기 용액은 비수성 유기 용매에 리튬염이 용해된 용액을 사용할 수 있다. 이와 같이 비수성 유기 용매에 리튬염이 용해된 용액을 첨가하면, 리튬 금속으로부터 리튬 이온이 금속 탄소 복합체 표면 및 내부로 잘 전달될 수 있다. In the fourth step, pressure is applied while adding a solution to the current collector on which lithium is laminated. The solution may be a solution in which lithium salt is dissolved in a non-aqueous organic solvent. As such, when a solution in which a lithium salt is dissolved in the non-aqueous organic solvent is added, lithium ions can be well transferred from the lithium metal to the surface and the inside of the metal carbon composite material.
상기 리튬염은 LiBF4, LiClO4, LiPF6, LiAsF6, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, Li(CF3SO2)3C, 및 LiBPh4 로 이루어진 그룹으로부터 선택되는 하나 이상이다. The lithium salt may be LiBF 4 , LiClO 4 , LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 3 C, and LiBPh At least one selected from the group consisting of four .
상기 비수성 유기 용매는 유기 용매 및 이온성 용매를 포함하며, 상기 비수성 유기 용매는 에틸렌 카보네이트 (EC), 프로필렌 카보네이트 (PC), 디메틸 카보네이트 (DMC), 디에틸 카보네이트 (DEC), 에틸메틸 카보네이트 (EMC), 1,2-디메톡시에탄 (DME), -부티로락톤 (GBL), 테트라하이드로푸란 (THF), 1,3-디옥솔란 (DOXL), 디메틸에테르 (DEE), 메틸 프로피오네이트(MP), 설포란(sulfolane, S), 디메틸설폭사이드 (DMSO), 아세토니트릴 (AN), 및 테트라에틸렌글라이콜 디메틸에테르 (TEGDME)로 이루어진 그룹으로부터 선택되는 1종 이상이고, 상기 이온성 용매는 1-에틸-3-메틸이미다졸륨(EMI)-(CF3SO2)2N, 1-부틸-3-메틸이미다졸륨(BMI)-(CF3SO2)2N, 1-헥실-3-메틸이미다졸륨 (HMI)-(CF3SO2)2N, 1-에틸-3-메틸이미다졸륨(EMI)-PF6, 1-부틸-3-메틸이미다졸륨 (BMI)-PF6, 1-헥실-3-메틸이미다졸륨(HMI)-PF6, 1-에틸-3-메틸이미다졸륨(EMI)-BF4, 1-부틸-3-메틸이미다졸륨(BMI)-BF4, 1-헥실-3-메틸이미다졸륨(HMI)-BF4, 1-에틸-3-메틸이미다졸륨(EMI)-CF3SO3, 1-부틸-3-메틸이미다졸륨(BMI)-CF3SO3, 및 1-헥실-3-메틸이미다졸륨(HMI)-CF3SO3 로 이루어진 그룹으로부터 선택되는 하나 이상인 것을 특징으로 한다. The non-aqueous organic solvent includes an organic solvent and an ionic solvent, wherein the non-aqueous organic solvent is ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), 1,2-dimethoxyethane (DME), -butyrolactone (GBL), tetrahydrofuran (THF), 1,3-dioxolane (DOXL), dimethylether (DEE), methyl propionate (MP), sulfolane (S), dimethyl sulfoxide (DMSO), acetonitrile (AN), and tetraethylene glycol dimethyl ether (TEGDME) is one or more selected from the group consisting of ionic The solvent is 1-ethyl-3-methylimidazolium (EMI)-(CF 3 SO 2 ) 2 N, 1-butyl-3-methylimidazolium (BMI)-(CF 3 SO 2 ) 2 N, 1- Hexyl-3-methylimidazolium (HMI)-(CF 3 SO 2 ) 2 N, 1-ethyl-3-methylimidazolium (EMI) -PF 6 , 1-butyl-3-methylimidazolium (BMI ) -PF 6 , 1-hexyl-3-methylimidazolium (HMI) -PF 6 , 1-ethyl-3-methylimidazolium (EMI) -BF 4 , 1-butyl-3-methylimidazolium (BMI) -BF 4 , 1-hexyl-3-methylimidazolium (HMI ) -BF 4 , 1-ethyl-3-methylimidazolium (EMI) -CF 3 SO 3 , 1-butyl-3-methylimidazolium (BMI) -CF 3 SO 3 , and 1-hexyl-3- Methylimidazolium (HMI) -CF 3 SO 3 It is characterized in that at least one selected from the group consisting of.
상기 비수성 유기 용매에 리튬염이 용해된 용액에서 상기 리튬염의 농도는 0.1 내지 2.0M 범위일 수 있다. 리튬염의 농도가 이 범위에 포함되면, 전해액의 이온 전도도가 증가하여, 리튬 이온이 금속 탄소 복합체로의 이동이 용이하여, 리튬화된 금속 탄소 복합체의 형성이 촉진된다. The concentration of the lithium salt in the solution in which the lithium salt is dissolved in the non-aqueous organic solvent may be in the range of 0.1 to 2.0M. When the concentration of the lithium salt is included in this range, the ionic conductivity of the electrolyte is increased, and lithium ions are easily moved to the metal carbon composite, thereby promoting the formation of the lithiated metal carbon composite.
본 발명에 있어서, 상기 제 4 단계에서 리튬이 적층된 집전체에 가하는 압력이 300 ~ 3500 N/㎡인 것이 바람직하다. In the present invention, it is preferable that the pressure applied to the current collector in which lithium is laminated in the fourth step is 300 to 3500 N / m 2.
상기와 같이 리튬이 적층된 집전체에 압력을 가하게 되면, 적층된 리튬으로부터 금속 탄소 복합체로 리튬이 이동하게 되어, 리튬의 일부는 상기 금속과 합금을 형성하고, 리튬의 나머지 일부는 상기 탄소 결정 구조에 삽입되게 된다.When pressure is applied to the current collector in which lithium is laminated as described above, lithium is transferred from the stacked lithium to the metal carbon composite, a part of lithium forms an alloy with the metal, and the other part of lithium is the carbon crystal structure. Will be inserted into
리튬을 가하는 압력이 300 N/㎡ 이하일 경우 금속 탄소 복합체 리튬화 과정에 시간이 오래 걸리게 되고, 리튬을 가하는 압력이 3500 N/㎡ 초과일 경우 리튬화하기 위해 적층된 리튬을 다시 제거하기가 어려워진다. If the pressure to add lithium is 300 N / ㎡ or less takes a long time to the metal carbon composite lithiation process, if the pressure to apply the lithium is more than 3500 N / ㎡ it is difficult to remove the stacked lithium for lithiation again .
본 발명에 있어서, 리튬이 적층된 집전체에 압력을 인가하는 방법은 특별히 제한되지는 않는다. 즉, 집전체에 리튬을 적층한 후, 그 상부에 플레이트를 적층하고, 상기 플레이트의 위에 일정 무게를 나타내는 추를 올려두어 집전체 전체에 균일하게 압력이 인가되도록 할 수 있다. 본 발명에 있어서, 이와 같은 물리적 방법에 의해서도 금속 탄소 복합체에 리튬을 인가하여 전기 화학 소자의 전극으로 사용할 수 있다는 점에 특징이 있다. In the present invention, the method of applying pressure to the current collector on which lithium is laminated is not particularly limited. That is, after the lithium is laminated on the current collector, the plate is laminated on the upper part, and a weight indicating a certain weight is placed on the plate so that pressure is uniformly applied to the entire current collector. In the present invention, there is a feature in that lithium can be applied to a metal carbon composite material by such a physical method and used as an electrode of an electrochemical device.
본 발명에 있어서, 상기 리튬이 적층된 집전체에 압력을 가한 이후 상기 적층된 리튬을 제거하는 제 5 단계를 더 포함하는 것을 특징으로 한다. In the present invention, after the pressure is applied to the current collector in which the lithium is laminated, it further comprises a fifth step of removing the laminated lithium.
본 발명은 또한, 본 발명의 제조 방법에 의하여 제조된 리튬화된 금속 탄소 복합체 전극을 제공한다. The present invention also provides a lithiated metal carbon composite electrode produced by the production method of the present invention.
본 발명에 있어서, 상기 리튬화된 금속 탄소 복합체 전극은 상기 리튬의 일부가 상기 금속과 합금을 형성하고, 상기 리튬의 나머지 일부가 탄소 결정 구조에 삽입되는 것을 특징으로 한다. In the present invention, the lithiated metal carbon composite electrode is characterized in that a portion of the lithium forms an alloy with the metal, the remaining portion of the lithium is inserted into the carbon crystal structure.
본 발명은 또한, 본 발명의 제조 방법에 의하여 제조된 리튬화된 금속 탄소 복합체 전극을 포함하는 전기 화학 소자를 제공한다. 본 발명에 있어서, 상기 리튬화된 금속 탄소 복합체 전극은 기존 탄소계 음극을 대체할 음극으로 사용되는 것을 특징으로 한다. The present invention also provides an electrochemical device comprising a lithiated metal carbon composite electrode produced by the production method of the present invention. In the present invention, the lithiated metal carbon composite electrode is used as a negative electrode to replace the existing carbon-based negative electrode.
본 발명의 전기화학소자는 상기 리튬화된 금속 탄소 복합체 전극을 포함하는 양극 및/또는 음극; 및 이들 사이에 존재하는 세퍼레이터를 포함한다. 또한, 양극, 음극, 세퍼레이터에 함침되어 존재하는 전해질을 포함한다. 상기 전해질은 액상의 전해질일 수도 있고 폴리머 겔 전해질일 수도 있다. The electrochemical device of the present invention comprises a positive electrode and / or a negative electrode comprising the lithiated metal carbon composite electrode; And separators present therebetween. It also includes an electrolyte that is impregnated with the positive electrode, the negative electrode, and the separator. The electrolyte may be a liquid electrolyte or a polymer gel electrolyte.
본 발명에 있어서, 상기 전기 화학 소자는 리튬 황 전지, 리튬 공기 전지 또는 리튬 이온 전지인 것을 특징으로 한다. In the present invention, the electrochemical device is characterized in that the lithium sulfur battery, lithium air battery or lithium ion battery.
본 발명에 있어서, 상기 전기 화학 소자는 고분자 복합 전해질 또는 액상 전해질을 포함하는 리튬 공기 전지인 것을 특징으로 한다. In the present invention, the electrochemical device is characterized in that the lithium air battery containing a polymer composite electrolyte or a liquid electrolyte.
본 발명에 있어서, 상기 고분자 복합 전해질은 제1 리튬염과 고분자로 형성된 필름; 및 상기 필름에 함침되어 있으며, 제2 리튬염과 유기 용매를 포함하는 이온 전도성 용매를 포함하고, 상기 유기 용매는 테트라에틸렌 글리콜 디메틸에테르, 에틸렌 글리콜 디메타크릴레이트, 폴리에틸렌 글리콜, 폴리에틸렌 글리콜 디알킬 에테르, 폴리알킬 글리콜 디알킬 에테르 또는 이들의 조합으로부터 선택되는 것을 특징으로 한다. In the present invention, the polymer composite electrolyte is a film formed of a first lithium salt and a polymer; And an ion conductive solvent impregnated in the film, wherein the organic solvent comprises a second lithium salt and an organic solvent, wherein the organic solvent is tetraethylene glycol dimethyl ether, ethylene glycol dimethacrylate, polyethylene glycol, polyethylene glycol dialkyl ether. , Polyalkyl glycol dialkyl ethers or combinations thereof.
본 발명에 있어서, 상기 액상 전해질은 일반식 R1(CR3 2CR4 2O)nR2 으로 나타내어 지는 것을 특징으로 한다. 상기 일반식에서 n은 2 내지 10 이고, R1 및 R2 는 각각 독립적으로 H, 알킬, 사이클로알킬, 아릴, 헤테로시클릴, 헤테로아릴, 알콕시, 시릴, 치환된 알킬, 치환된 사이클로 알킬, 치환된 아릴, 치환된 헤테로시클릴, 치환된 헤테로아릴, 치환된 알콕시, 치환된 시릴, 할로겐에서 선택되는 것을 특징으로 한다. 또한, 본 발명에 있어서, 상기 R3 및 R4 는 각각 독립적으로 H, 할로겐, 알킬, 사이클로알킬, 아릴, 치환된 알킬, 치환된 아릴로 나타내어 지는 것을 특징으로 한다. In the present invention, the liquid electrolyte is characterized in that represented by the general formula R 1 (CR 3 2 CR 4 2 O) n R 2 . Wherein n is 2 to 10 and R 1 and R 2 are each independently H, alkyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, alkoxy, cyryl, substituted alkyl, substituted cycloalkyl, substituted And aryl, substituted heterocyclyl, substituted heteroaryl, substituted alkoxy, substituted silyl, halogen. In addition, in the present invention, R 3 and R 4 are each independently represented by H, halogen, alkyl, cycloalkyl, aryl, substituted alkyl, substituted aryl.
본 발명에 있어서, 상기 액상 전해질은 테트라에틸렌글리콜디메틸에테르, 에틸렌 글리콜디메타크릴레이트, 폴리에틸렌 글리콜, 폴리에틸렌 글리콜디알킬 에테르, 폴리알킬글리콜디알킬 에테르 또는 이들의 조합으로부터 선택되는 것을 특징으로 한다. In the present invention, the liquid electrolyte is selected from tetraethylene glycol dimethyl ether, ethylene glycol dimethacrylate, polyethylene glycol, polyethylene glycol dialkyl ether, polyalkyl glycol dialkyl ether, or a combination thereof.
본 발명에 따른 리튬화된 금속 탄소 복합체 전극은 리튬이 금속과 합금을 형성하면서 동시에 탄소의 결정 구조 속에 삽입되어 안정된 구조의 복합체를 형성하기 때문에, 충방전 과정에서 금속의 부피 변화가 적어, 이에 따른 사이클 특성이 저하되지 않고 충방전 용량이 향상되며, 초기 충방전시 비가역 용량을 제어할 수 있고, 안전성이 떨어지는 리튬 금속 음극을 대체하는 효과를 가진다.Lithiumated metal carbon composite electrode according to the present invention, since lithium forms an alloy with metal and is inserted into the crystal structure of carbon to form a composite of stable structure, the volume change of the metal during the charging and discharging process is small, thus The cycle characteristics are not deteriorated, the charge and discharge capacity is improved, the irreversible capacity can be controlled during initial charge and discharge, and it has the effect of replacing the lithium metal anode having low safety.
도 1은 본 발명의 실시예에 따라 제조된 실시예 1-1 내지 1-3 및 비교예 1에서 제조된 전극에 대하여 XRD 를 측정한 결과를 나타낸다. Figure 1 shows the results of XRD measurement for the electrode prepared in Examples 1-1 to 1-3 and Comparative Example 1 prepared in accordance with an embodiment of the present invention.
도 2는 본 발명의 실시예 1-1 내지 1-3 및 비교예1에 따라 제조된 리튬화된 실리콘 탄소 복합체 전극의 충방전 특성을 측정한 결과이다. 2 is a result of measuring the charge and discharge characteristics of the lithiated silicon carbon composite electrode prepared according to Examples 1-1 to 1-3 and Comparative Example 1 of the present invention.
도 3은 본 발명의 실시예에1-4 내지 1-7 및 비교예 1에 따라 제조된 리튬화된 실리콘 탄소 복합체 전극의 충방전 특성을 측정한 결과이다.3 is a result of measuring the charge and discharge characteristics of the lithiated silicon carbon composite electrode prepared according to Examples 1-4 to 1-7 and Comparative Example 1 of the present invention.
도 4는 본 발명의 실시예 1-7에 따라 제조된 리튬화된 실리콘 탄소 복합체 전극을 이용한 리튬 황 전지의 충방전 특성을 측정한 결과이다.4 is a result of measuring the charge and discharge characteristics of the lithium sulfur battery using the lithium silicon silicon composite electrode prepared according to Examples 1-7 of the present invention.
도 5는 본 발명의 실시예 2에 따라 제조된 리튬화된 주석 탄소 복합체 전극의 최초 충방전 특성을 측정한 결과이다.5 is a result of measuring the initial charge and discharge characteristics of the lithiated tin carbon composite electrode prepared according to Example 2 of the present invention.
도 6는 본 발명의 실시예 2에 따라 제조된 리튬화된 주석 탄소 복합체 전극의 2번째 충방전 특성을 측정한 결과이다.6 is a result of measuring the second charge and discharge characteristics of the lithiated tin carbon composite electrode prepared according to Example 2 of the present invention.
도 7은 본 발명의 실시예2에 따라 제조된 리튬화된 주석 탄소 복합체 전극을 이용한 리튬 공기 전지의 충방전 특성을 측정한 결과이다.7 is a result of measuring the charge and discharge characteristics of a lithium air battery using a lithiated tin carbon composite electrode prepared according to Example 2 of the present invention.
이하, 본 발명의 실시예를 상세히 설명하지만, 이들 실시예로 본 발명이 한정되는 것은 아니다.Hereinafter, although the Example of this invention is described in detail, this invention is not limited to these Examples.
<실시예 1> : 리튬화된 실리콘 탄소 복합체 전극의 제조Example 1 Fabrication of Lithiated Silicon Carbon Composite Electrode
입자 크기 5 ~ 15㎛ 인 실리콘 흑연 복합체를 준비하였다. 상기 준비된 실리콘 흑연 복합체 분말을 super P, CMC, SBR 과 각각 85:5:3.3:6.7의 중량비로 NMP에 혼합하여 슬러리를 제조한 후, 집전체로 구리 호일에 캐스팅시켰다. 캐스팅 된 전극은 110 ℃ 의 오븐에서 2시간 동안 1차로 건조시킨 후, 진공에서 12시간 2차로 건조시켜 전극 형태로 제조하였다. A silicon graphite composite having a particle size of 5 to 15 μm was prepared. The prepared silicon graphite composite powder was mixed with NMP in a weight ratio of super P, CMC, SBR and 85: 5: 3.3: 6.7, respectively, to prepare a slurry, and then cast on a copper foil as a current collector. The cast electrode was first dried in an oven at 110 ° C. for 2 hours, and then dried in vacuo for 12 hours in the form of an electrode.
제조된 전극은 2 ×2 ㎠ 의 크기로 자르고 Li 금속을 전극 위에 적층한 후, EC :DMC - 3:7 혼합 용매에 1.2 M LiPF6 가 용해된 용액을 도포하고, 적층된 Li 금속에 46 N/m2 의 압력을 30분간 가하여 리튬화된 실리콘 탄소 복합체 전극을 제조하였다. The prepared electrode was cut into a size of 2 × 2 cm 2, and Li metal was laminated on the electrode, and then a solution in which 1.2 M LiPF 6 was dissolved in an EC: DMC-3: 7 mixed solvent was applied, and 46 N / A lithiated silicon carbon composite electrode was prepared by applying a pressure of m 2 for 30 minutes.
<실시예 1-2 내지 실시예 1-7> <Example 1-2 to Example 1-7>
적층된 Li 금속에 가하는 압력의 크기와 시간을 아래 표 1에서와 같이 하고 나머지는 상기 실시예 1 과 동일하게 하여 리튬화된 실리콘 탄소 복합체 전극을 얻었다. The size and time of the pressure applied to the stacked Li metals were as in Table 1 below, and the rest was the same as in Example 1 to obtain a lithiated silicon carbon composite electrode.
표 1
구분 압력(N/㎡) 시간(hr)
실시예1-1 46 0.5
실시예1-2 1588 0.5
실시예1-3 3130 0.5
실시예1-4 3130 1
실시예1-5 3130 3
실시예1-6 3130 6
실시예1-7 3130 12
비교예1 - -
비교예2 7756 5
Table 1
division Pressure (N / ㎡) Hours (hr)
Example 1-1 46 0.5
Example 1-2 1588 0.5
Example 1-3 3130 0.5
Example 1-4 3130 One
Example 1-5 3130 3
Example 1-6 3130 6
Example 1-7 3130 12
Comparative Example 1 - -
Comparative Example 2 7756 5
<비교예> Comparative Example
리튬을 적층시킨 후 압력을 인가하는 과정을 실시하지 않은 것을 제외하고는 상기 실시예 1과 동일하게 하여 전극을 제조하여 비교예 1로 하였다. An electrode was manufactured in the same manner as in Example 1 except that the process of applying pressure after stacking lithium was made as Comparative Example 1.
적층된 Li 금속에 가하는 압력의 크기를 7756 N/m2 으로 하는 것을 제외하고는 상기 실시예 1과 동일하게 하여 전극을 제조하고 비교예 2로 하였다. The amount of pressure applied to the stacked Li metals was 7756 N / m.2Except that In the same manner as in Example 1, an electrode was manufactured and Comparative Example 2 was obtained.
<실험예 1> XRD 측정Experimental Example 1 XRD Measurement
상기 실시예 1-1 내지 1-3 및 비교예 1에서 제조된 전극에 대하여 XRD 를 측정하였으며, 그 결과를 도 1에 나타내었다. XRD was measured for the electrodes prepared in Examples 1-1 to 1-3 and Comparative Example 1, and the results are shown in FIG. 1.
도 1에서 보는 바와 같이 압력을 인가하는 시간을 30분으로 동일하게 한 경우 인가되는 압력의 크기가 증가할수록 실리콘과 합금화된 리튬이 나타내는 피크의 세기가 증가하는 것을 확인할 수 있다. As shown in FIG. 1, when the time of applying the pressure is the same as 30 minutes, the intensity of the peak represented by the silicon alloyed with lithium increases as the magnitude of the applied pressure increases.
<제조예 1>리튬화된 실리콘 탄소 복합체 전극을 포함하는 반전지 제조Preparation Example 1 Preparation of a Half-Cell Comprising a Lithiated Silicon Carbon Composite Electrode
상기 실시예 1-1 내지 1-7에서 제조된 리튬화된 실리콘 탄소 복합체 전극을 포함하는 반전지를 제조하였다. A half cell was prepared including the lithiumated silicon carbon composite electrodes prepared in Examples 1-1 to 1-7.
상기 실시예 1-1 내지 1-7에서 제조된 리튬화된 실리콘 탄소 복합체 전극을 이용하여, 리튬 메탈 호일을 음극으로 하고, 1.2M LiPF6 EC:EMC=3:7(v/v) 전해액을 이용하여 2032 coin-type cell로 제작하였다. The lithium metal foil was used as the negative electrode, and the 1.2 M LiPF 6 EC: EMC = 3: 7 (v / v) electrolyte solution was prepared using the lithiumated silicon carbon composite electrodes prepared in Examples 1-1 to 1-7. It was produced as a 2032 coin-type cell.
<실험예 2 : 리튬화를 위하여 인가하는 압력 크기에 따른 반전지의 충방전 용량 측정>Experimental Example 2 Measurement of Charge and Discharge Capacity of Half-cell According to Pressure Size for Lithiation
상기 실시예 1-1 내지 1-3, 비교예 1 의 리튬화된 실리콘 탄소 복합체 전극을 음극으로 적용한 반전지의 충방전 용량을 0.01 ~ 1.5 V의 사이에서 100 ㎃ g-1조건에서 충전부터 시작하여 충방전을 진행하고, 그 결과를 도 2에 나타내었다. 비교예 2의 경우 리튬화를 위하여 인가하는 압력의 크기가 너무 커서 리튬 금속이 전극으로 분리되지 않았다. The charging and discharging capacity of the half cell using the lithiated silicon carbon composite electrode of Examples 1-1 to 1-3 and Comparative Example 1 as the negative electrode was started from charging at 100 ㎃ g −1 condition between 0.01 and 1.5 V. Charge and discharge were carried out, and the results are shown in FIG. 2. In the case of Comparative Example 2, the amount of pressure applied for lithiation was too large so that lithium metal was not separated into the electrode.
도 2에 나타낸 것과 같이, 리튬화 시 인가하는 압력의 크기에 따라 OCV가 감소하였으며, 충전 용량이 감소하는 것을 알 수 있다. 이에 의하여 전극 내에 리튬 이온이 이미 존재함을 알 수 있으며, 또한 충전 용량 대비 방전 용량의 비가 리튬화를 위하여 인가하는 압력이 증가함에 따라 증가하는 바, 리튬화를 위하여 인가하는 압력의 크기를 조절하여 리튬화된 실리콘 탄소 복합체의 리튬화 정도를 조절하여 전기의 초기 가역 용량을 제어할 수 있다. As shown in Figure 2, the OCV was reduced according to the magnitude of the pressure applied during lithiation, it can be seen that the charge capacity is reduced. As a result, it can be seen that lithium ions are already present in the electrode, and the ratio of the discharge capacity to the charge capacity increases as the pressure applied for lithiation increases, thereby adjusting the magnitude of the pressure applied for lithiation. The initial reversible capacity of electricity can be controlled by adjusting the degree of lithiation of the lithiated silicon carbon composite.
<실험예 3 : 리튬화를 위하여 압력을 인가하는 시간에 따른 반전지의 충방전 용량 측정>Experimental Example 3 Measurement of Charge and Discharge Capacity of Half-Cell with Time to Apply Pressure for Lithiation
상기 실시예 1-4 내지 1-7, 비교예 1 의 리튬화된 실리콘 탄소 복합체 및 실리콘 탄소 복합체 전극을 적용한 반전지를 0.01 ~ 1.5 V의 사이에서 100 ㎃ g-1조건에서 실시예 1-4 내지 1-7의 전극은 방전부터 실시하고, 비교예 1은 충전부터 실시하여 충방전을 진행하고, 그 결과를 도 3에 나타내었다.Examples 1-4 to 1-7, the reverse cell to which the lithiated silicon carbon composite and the silicon carbon composite electrode of Comparative Example 1 is applied in the range of 0.01 ~ 1.5 V Example 1-4 to 100 ~ g -1 The electrode of 1-7 was performed from discharge, the comparative example 1 was implemented from charge, and charge / discharge was shown, and the result is shown in FIG.
도 3에 나타낸 것과 같이, 일정 시간동안 리튬화가 진행이 된 이후에는 실리콘 탄소 복합체가 가지는 방전 용량을 충분히 발현하고 있으며, 리튬화를 위하여 압력을 인가하는 시간이 증가함에 따라 방전 용량이 증가함을 알 수 있다. 따라서 완전히 리튬화된 실리콘 탄소 복합체는 리튬 금속 음극을 대체하여 전기화학 소자에 적용할 수 있다는 것을 알 수 있다.As shown in FIG. 3, after the lithiation proceeds for a predetermined time, the discharge capacity of the silicon carbon composite is sufficiently expressed, and the discharge capacity increases as the time for applying pressure for lithiation increases. Can be. Therefore, it can be seen that the fully lithiated silicon carbon composite can be applied to an electrochemical device by replacing the lithium metal anode.
<제조예2> 리튬화된 실리콘 탄소 복합체 전극을 포함하는 리튬 황 전지 제조Preparation Example 2 Fabrication of a Lithium Sulfur Battery Containing a Lithiated Silicon Carbon Composite Electrode
상기 실시예 1-7에서 제조된 전극과 동일한 방법으로 리튬화된 실리콘 탄소 복합체 전극을 제작하였다.A lithiated silicon carbon composite electrode was manufactured in the same manner as the electrode prepared in Example 1-7.
양극으로는 본 발명자가 출원한 특허(대한민국 출원번호 10-2011-0028246)에 의한 리튬화된 실리콘 탄소 복합체를 사용하였다. 구체적으로는 하드 카본 볼과 황을 1 : 5 질량비로 혼합하고, Ar 분위기에서 밀폐된 플라스크에서 150℃ 에서 7시간 동안 1차 열처리 하여 하드 카본 볼의 내부로 황이 담지시킨후, 상온까지 냉각시키고, 이후 1 MPa의 압력을 가하면서 300 ℃ 에서 2시간 동안 열처리하여 내부에 황이 담지된 탄소 황 복합체를 제조하였다.As the positive electrode, a lithiated silicon carbon composite according to the patent filed by the present inventor (Korean Application No. 10-2011-0028246) was used. Specifically, the hard carbon ball and sulfur are mixed at a ratio of 1: 5, the primary heat treatment for 7 hours at 150 ℃ in an airtight flask in an Ar atmosphere to support sulfur inside the hard carbon ball, and then cooled to room temperature, After the heat treatment at 300 ℃ for 2 hours while applying a pressure of 1 MPa to prepare a carbon sulfur composite supported therein sulfur.
이와 같이 제조된 내부에 황이 담지된 탄소 황 복합체를 양극으로 하고, 상기 실시예 1-1 내지 1-7에서 제조된 리튬화된 실리콘 탄소 복합체 전극을 음극으로 하고, (TEGDME)4LiCF3SO3 전해액을 이용하여 2032 coin-type cell로 제작하였다. The sulfur-supported carbon sulfur composite prepared as described above was used as the anode, and the lithiated silicon carbon composite electrode prepared in Examples 1-1 to 1-7 was used as the cathode, (TEGDME) 4 LiCF 3 SO 3 The electrolyte was produced using a 2032 coin-type cell.
<실험예 3 :리튬화 된 실리콘 탄소 복합체 전극을 이용한 리튬 황 전지의 충방전 용량 측정>Experimental Example 3 Measurement of Charge and Discharge Capacity of Lithium Sulfur Battery Using Lithiated Silicon Carbon Composite Electrode
상기 실시예 1-7의 리튬화된 실리콘 탄소 복합체 전극을 음극으로 하고,황이 담지된 탄소 황 복합체를 양극으로 한 완전지를 1.25 ~ 2.8 V의 사이에서 500 ㎃ g-1조건에서 충방전을 진행하고, 그 결과를 도 4에 나타내었다.Charged and discharged under the conditions of 500 kg −1 between 1.25 and 2.8 V of a fully-charged lithium-silicon carbon composite electrode of Example 1-7 as a cathode and a sulfur-supported carbon sulfur composite as an anode. The results are shown in FIG. 4.
도 4에 나타낸 것과 같이, 리튬화된 실리콘 탄소 복합체 전극은 리튬 황 전지의 음극으로 충분히 작동함을 알 수 있다.As shown in FIG. 4, it can be seen that the lithiated silicon carbon composite electrode works sufficiently as a negative electrode of a lithium sulfur battery.
<실시예 2> : 리튬화된 주석 탄소 복합체 전극의 제조Example 2 Preparation of Lithiated Tin Carbon Composite Electrode
< 주석 탄소 복합체 제조> < Tin Carbon Composite Manufacturing>
레조르시놀(resorcinol, Aldrich) 28mmol과 포름알데하이드(37 중량% 농도의수용액, Aldrich) 120mmol를 혼합하고, 이 혼합체에 소디움 카보네이트 촉매를 레조르시놀과 45:100의 몰비로 첨가하였다. 얻어진 혼합액을 75℃에서 1시간 동안 혼합하여, 겔 형태의 혼합체를 얻었다. 얻어진 겔 형태의 혼합체를 상온에서 24시간 정도 에이징하였다. 에이징하여 얻어진 혼합체를 물과 에탄올로 세척하여 소디움 카보네이트를 제거하였다. 얻어진 생성물을 트리부틸페닐틴(Aldrich) 용액 (용매: 물, 농도: 37 중량%)에 하루동안 담구어 둔다. 그 뒤, Ar 분위기에서 700℃로 2시간 동안 열처리하여 주석 탄소 복합체를 제조하였다.28 mmol of resorcinol (Aldrich) and 120 mmol of formaldehyde (aqueous solution of 37 wt%, Aldrich) were mixed, and sodium carbonate catalyst was added to the mixture in a molar ratio of resorcinol at 45: 100. The obtained liquid mixture was mixed at 75 degreeC for 1 hour, and the gel mixture was obtained. The obtained gelled mixture was aged at room temperature for about 24 hours. The mixture obtained by aging was washed with water and ethanol to remove sodium carbonate. The obtained product is immersed in tributylphenyltin (Aldrich) solution (solvent: water, concentration: 37% by weight) for one day. Then, heat treatment at 700 ℃ for 2 hours in an Ar atmosphere to prepare a tin carbon composite.
< 리튬화된 주석 탄소 복합체 전극 제조> < Manufacture of Lithiated Tin Carbon Composite Electrode>
제조된 주석 탄소 복합체, 슈퍼 P 카본 블랙 도전재 및 폴리비닐리덴 플루오라이드 바인더를 80 : 10 : 10 중량비로 N-메틸피롤리돈 용매 중에서 혼합하여 주석-탄소 복합체 슬러리를 제조하였다.The prepared tin carbon composite, super P carbon black conductive material, and polyvinylidene fluoride binder were mixed in an N-methylpyrrolidone solvent at a ratio of 80:10 to 10 to prepare a tin-carbon composite slurry.
상기 주석 탄소 복합체 슬러리를 Cu 포일에 캐스팅하고, 얻어진 생성물을 100℃ 오븐에서 2시간 동안 건조한 후, 12시간 이상 진공 건조하였다.The tin carbon composite slurry was cast on Cu foil, and the resulting product was dried in an oven at 100 ° C. for 2 hours and then vacuum dried for at least 12 hours.
진공 건조된 생성물을 적당한 크기로 자르고, 이 위에 리튬 금속을 올려놓고, 전해액(1.2M LiPF6가 용해된 에틸렌 카보네이트 및 디메틸 카보네이트의 혼합 용매(3:7 부피비))을 상기 리튬 금속에 골고루 뿌렸다. The vacuum dried product was cut to an appropriate size, a lithium metal was placed thereon, and an electrolyte solution (a mixed solvent of ethylene carbonate and dimethyl carbonate (3: 7 volume ratio) in which 1.2 M LiPF 6 was dissolved) was evenly sprayed onto the lithium metal.
이어서, 얻어진 생성물에 0.5kg/㎠의 압력을 가하고, 30분간 유지시킨 뒤 리튬 금속을 조심스럽게 제거하여 리튬화된 주석 탄소 복합체 전극을 제조하였다. Subsequently, a pressure of 0.5 kg / cm 2 was applied to the obtained product and maintained for 30 minutes, followed by careful removal of lithium metal to prepare a lithiated tin carbon composite electrode.
<제조예3> 리튬화된 주석 탄소 복합체 전극을 포함하는 반전지 제조Preparation Example 3 Preparation of a Half Cell Comprising a Lithiated Tin Carbon Composite Electrode
상기 실시예 2에서 제조된 리튬화된 주석 탄소 복합체 전극을 음극으로 하고, 상기 제조예 1에서와 동일한 양극 및 전해액을 사용하여 CR2032 크기의 반전지를 제조하였다. 전해액으로는 1.2M LiPF6가 용해된 에틸렌 카보네이트 및 디메틸카보네이트의 혼합 용매(3:7 부피비)를 사용하였다. A lithium-ioned tin carbon composite electrode prepared in Example 2 was used as a negative electrode, and a CR2032-sized half-cell was prepared using the same positive electrode and electrolyte as in Preparation Example 1. As an electrolyte solution, a mixed solvent (3: 7 volume ratio) of ethylene carbonate and dimethyl carbonate in which 1.2 M LiPF 6 was dissolved was used.
<제조예4> 리튬화된 주석 탄소 복합체 전극을 포함하는 리튬 공기 전지 제조Preparation Example 4 Fabrication of a Lithium Air Battery Containing a Lithiated Tin Carbon Composite Electrode
상기 실시예 2의 리튬화된주석 탄소 복합체 전극을 음극으로 하고, Super P가 코팅된 gas diffusion layer(GDL)을 공기극으로 하여, (TEGDME)4LiCF3SO3 전해액을 이용하여 2032 coin-type cell로 제작하였다.2032 coin-type cell using a (TEGDME) 4 LiCF 3 SO 3 electrolyte solution using the lithiated tin carbon composite electrode of Example 2 as a cathode and a super P coated gas diffusion layer (GDL) as an air electrode. Made with.
<실험예 4> 리튬화된 주석 탄소 복합체 전극을 포함하는 반전지의 충방전 용량 측정Experimental Example 4 Measurement of Charge and Discharge Capacity of Half-cell including Lithiated Tin Carbon Composite Electrode
제조예 3에서 제조된 반전지를 2.0V 내지 0.01V에서, 100mAg-1의 전류 조건으로 2회 충방전을 실시하였다. 1회째 충방전을 실시한 충방전 결과를 도 4에 나타내었고, 2회째 충방전을 실시한 충방전 결과를 도 5에 나타내었다. The half cell prepared in Preparation Example 3 was charged and discharged twice at a current condition of 100 mAg −1 at 2.0V to 0.01V. The charge and discharge results of the first charge and discharge are shown in FIG. 4, and the charge and discharge results of the second charge and discharge are shown in FIG. 5.
도 5에 나타낸 것과 같이 상기 제조예 3에서 제조된 반전지는 1회 충방전시 충전 용량 17.4 mAh/g, 방전 용량 407.1 mAh/g 으로, 활물질에 이미 리튬이 존재하므로 충전은 거의 이루어지지 않으나, 방전 용량은 우수하게 나타났음을 알 수 있다. 또한, 초기 개회로 전압(OCV) 은 약 0.05V 로서, 이 결과 또한 활물질 내부에 리튬 이온이 이미 존재함을 나타낸다. As shown in FIG. 5, the half cell manufactured in Preparation Example 3 had a charge capacity of 17.4 mAh / g and a discharge capacity of 407.1 mAh / g during one charge / discharge. Since lithium is already present in the active material, almost no charging is performed. It can be seen that the dose was excellent. In addition, the initial open circuit voltage (OCV) is about 0.05 V, which also indicates that lithium ions are already present in the active material.
또한, 도 6에 나타낸 것과 같이, 제조예 3에서 제조된 리튬화된 주석 탄소 복합체 전극을 포함하는 반전지는 2회 충방전시 충전 용량 375.0 mAh/g, 방전 용량 359.7 mAh/g 으로, 전지로서 충분히 작동함을 알 수 있다. In addition, as shown in FIG. 6, the half cell including the lithiated tin carbon composite electrode prepared in Preparation Example 3 had a charge capacity of 375.0 mAh / g and a discharge capacity of 359.7 mAh / g during two charge / discharge cycles, which was sufficient as a battery. You can see it works.
<실험예 5> 리튬화된 주석 탄소 복합체 전극을 포함하는 리튬 공기 전지의 충방전 용량 측정Experimental Example 5 Measurement of Charge and Discharge Capacity of a Lithium-Air Battery Including Lithiated Tin Carbon Composite Electrode
제조예 4에서 제조된 리튬화된 주석 탄소 복합체 전극을 이용한 리튬 공기전지의 충방전을 실시하여 도 7에 나타내었다.Charge and discharge of the lithium air battery using the lithiated tin carbon composite electrode prepared in Preparation Example 4 is shown in FIG.
도 7에 나타낸 것과 같이, 제조예 4에서 제조된 리튬화된 주석 탄소 복합체 전극을 이용한 리튬 공기 전지는 500 mAh/g의 충방전 용량을 나타내며, 약 2.5V 부근 방전 전위를 가지고 전지로서 충분히 작동함을 알 수 있다.As shown in FIG. 7, the lithium air battery using the lithiated tin carbon composite electrode prepared in Preparation Example 4 exhibits a charge / discharge capacity of 500 mAh / g, and fully operates as a battery with a discharge potential of about 2.5V. It can be seen.
본 발명에 따른 리튬화된 금속 탄소 복합체 전극은 리튬이 금속과 합금을 형성하면서 동시에 탄소의 결정 구조 속에 삽입되어 안정된 구조의 복합체를 형성하기 때문에, 충방전 과정에서 금속의 부피 변화가 적어, 이에 따른 사이클 특성이 저하되지 않고 충방전 용량이 향상되며, 초기 충방전시 비가역 용량을 제어할 수 있고, 안전성이 떨어지는 리튬 금속 음극을 대체하는 효과를 가진다.Lithiumated metal carbon composite electrode according to the present invention, since lithium forms an alloy with metal and is inserted into the crystal structure of carbon to form a composite of stable structure, the volume change of the metal during the charging and discharging process is small, thus The cycle characteristics are not deteriorated, the charge and discharge capacity is improved, the irreversible capacity can be controlled during initial charge and discharge, and it has the effect of replacing the lithium metal anode having low safety.

Claims (17)

  1. 금속 탄소 복합체를 준비하는 제 1 단계;A first step of preparing a metal carbon composite;
    상기 금속 탄소 복합체, 도전재 및 바인더를 용매에 혼합하여 슬러리를 제조하고, 집전체에 도포하는 제 2 단계;A second step of preparing a slurry by mixing the metal carbon composite, the conductive material, and the binder in a solvent, and applying the same to a current collector;
    상기 금속 탄소 복합체를 포함하는 슬러리가 도포된 집전체에 리튬을 적층시키는 제 3 단계; 및 Stacking lithium on a current collector to which the slurry including the metal carbon composite is applied; And
    상기 리튬이 적층된 집전체에 용액을 첨가하면서 압력을 가하는 제 4 단계로 구성되는 리튬화된 금속 탄소 복합체 전극의 제조 방법.And a fourth step of applying pressure while adding a solution to the current collector on which lithium is laminated.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 금속 탄소 복합체는 Mg, Ca, Al, Si, Ge, Sn, Pb, As, Bi, Ag, Au, Zn, Cd, 및 Hg 로 이루어진 그룹에서 선택되는 금속과 탄소의 복합체인 것을 특징으로 하는 리튬화된 금속 탄소 복합체 전극의 제조 방법.The metal carbon composite is lithium, characterized in that the composite of carbon and metal selected from the group consisting of Mg, Ca, Al, Si, Ge, Sn, Pb, As, Bi, Ag, Au, Zn, Cd, and Hg Method for producing a oxidized metal carbon composite electrode.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 금속 탄소 복합체는 실리콘 탄소 복합체 또는 주석 탄소 복합체인 것을 특징으로 하는 리튬화된 금속 탄소 복합체 전극의 제조 방법.Wherein said metal carbon composite is a silicon carbon composite or a tin carbon composite.
  4. 제 1 항에 있어서, The method of claim 1,
    상기 리튬은 쉬트(sheet) 형태이고, 두께는 50㎛ 이상인 것을 특징으로 하는 리튬화된 금속 탄소 복합체 전극의 제조 방법.The lithium is a sheet (sheet), the thickness is 50㎛ or more manufacturing method of the lithium metal carbon composite electrode characterized in that the electrode.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 제 4 단계에서 리튬에 가하는 압력이 300 ~ 3500 N/㎡ 인 것을 특징으로 하는 리튬화된 금속 탄소 복합체 전극의 제조 방법.Method for producing a lithiated metal carbon composite electrode, characterized in that the pressure applied to the lithium in the fourth step is 300 ~ 3500 N / ㎡.
  6. 제 1 항에 있어서, The method of claim 1,
    상기 제 4 단계의 용액은 리튬염과 전해질로 구성되는 것을 특징으로 하는 리튬화된 금속 탄소 복합체 전극의 제조 방법.The solution of the fourth step is a method for producing a lithiated metal carbon composite electrode, characterized in that consisting of a lithium salt and an electrolyte.
  7. 제 6 항에 있어서, The method of claim 6,
    상기 리튬염은 LiBF4, LiClO4, LiPF6, LiAsF6, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, Li(CF3SO2)3C, 및 LiBPh4 로 이루어진 그룹으로부터 선택되는 하나 이상이고, The lithium salt may be LiBF 4 , LiClO 4 , LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 3 C, and LiBPh At least one selected from the group consisting of 4 ,
    상기 용액은 유기 용매 및 이온성 용매로 구성되고, The solution consists of an organic solvent and an ionic solvent,
    상기 유기 용매는 에틸렌 카보네이트 (EC), 프로필렌 카보네이트 (PC), 디메틸 카보네이트 (DMC), 디에틸 카보네이트 (DEC), 에틸메틸 카보네이트 (EMC), 1,2-디메톡시에탄 (DME), -부티로락톤 (GBL), 테트라하이드로푸란 (THF), 1,3-디옥솔란 (DOXL), 디메틸에테르 (DEE), 메틸 프로피오네이트(MP), 설포란(sulfolane, S), 디메틸설폭사이드 (DMSO), 아세토니트릴 (AN), 및 테트라에틸렌글라이콜 디메틸에테르 (TEGDME)로 이루어진 그룹으로부터 선택되는 1종 이상이고, The organic solvent is ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), 1,2-dimethoxyethane (DME), -butyro Lactone (GBL), tetrahydrofuran (THF), 1,3-dioxolane (DOXL), dimethyl ether (DEE), methyl propionate (MP), sulfolane (S), dimethyl sulfoxide (DMSO) , Acetonitrile (AN), and tetraethylene glycol dimethyl ether (TEGDME) is one or more selected from the group consisting of
    상기 이온성 용매는 1-에틸-3-메틸이미다졸륨(EMI)-(CF3SO2)2N, 1-부틸-3-메틸이미다졸륨(BMI)-(CF3SO2)2N, 1-헥실-3-메틸이미다졸륨 (HMI)-(CF3SO2)2N, 1-에틸-3-메틸이미다졸륨(EMI)-PF6, 1-부틸-3-메틸이미다졸륨 (BMI)-PF6, 1-헥실-3-메틸이미다졸륨(HMI)-PF6, 1-에틸-3-메틸이미다졸륨(EMI)-BF4, 1-부틸-3-메틸이미다졸륨(BMI)-BF4, 1-헥실-3-메틸이미다졸륨(HMI)-BF4, 1-에틸-3-메틸이미다졸륨(EMI)-CF3SO3, 1-부틸-3-메틸이미다졸륨(BMI)-CF3SO3, 및 1-헥실-3-메틸이미다졸륨(HMI)-CF3SO3 로 이루어진 그룹으로부터 선택되는 하나 이상인 것을 특징으로 하는 리튬화된 금속 탄소 복합체 전극의 제조 방법.The ionic solvent is 1-ethyl-3-methylimidazolium (EMI)-(CF 3 SO 2 ) 2 N, 1-butyl-3-methylimidazolium (BMI)-(CF 3 SO 2 ) 2 N , 1-hexyl-3-methylimidazolium (HMI)-(CF 3 SO 2 ) 2 N, 1-ethyl-3-methylimidazolium (EMI) -PF 6 , 1-butyl-3-methylimida Zolium (BMI) -PF 6 , 1-hexyl-3-methylimidazolium (HMI) -PF 6 , 1-ethyl-3-methylimidazolium (EMI) -BF 4 , 1-butyl-3-methyl Midazolium (BMI) -BF 4 , 1-hexyl-3-methylimidazolium (HMI) -BF 4 , 1-ethyl-3-methylimidazolium (EMI) -CF 3 SO 3 , 1-butyl-3 Lithiated metal carbon, characterized in that it is at least one selected from the group consisting of -methylimidazolium (BMI) -CF 3 SO 3 , and 1-hexyl-3-methylimidazolium (HMI) -CF 3 SO 3 Method for producing a composite electrode.
  8. 제 1 항에 있어서, The method of claim 1,
    상기 리튬이 적층된 집전체에 압력을 가한 이후 상기 적층된 리튬을 제거하는 제 5 단계를 더 포함하는 것을 특징으로 하는 리튬화된 금속 탄소 복합체 전극의 제조 방법.And a fifth step of removing the laminated lithium after applying pressure to the current collector on which the lithium is laminated.
  9. 제 1 항 내지 제 8 항 중 어느 하나의 제조 방법에 의하여 제조된 리튬화된 금속 탄소 복합체 전극A lithiated metal carbon composite electrode produced by the method of any one of claims 1 to 8.
  10. 제 9 항에 있어서, The method of claim 9,
    상기 리튬화된 금속 탄소 복합체 전극은 상기 리튬의 일부가 상기 금속과 합금을 형성하고, 상기 리튬의 나머지 일부가 탄소 결정 구조에 삽입되는 것을 특징으로 하는 리튬화된 금속 탄소 복합체 전극.The lithiated metal carbon composite electrode is characterized in that a part of the lithium forms an alloy with the metal, and the remaining part of the lithium is inserted into the carbon crystal structure.
  11. 제 10 항의 리튬화된 금속 탄소 복합체 전극을 포함하는 전기 화학 소자.An electrochemical device comprising the lithiated metal carbon composite electrode of claim 10.
  12. 제 11 항에 있어서, The method of claim 11,
    상기 전기 화학 소자는 리튬 황 전지, 리튬 공기 전지 또는 리튬 이온 전지인 것을 특징으로 하는 전기 화학 소자The electrochemical device is an electrochemical device, characterized in that the lithium sulfur battery, lithium air battery or lithium ion battery
  13. 제 11 항에 있어서, The method of claim 11,
    상기 전기 화학 소자는 고분자 복합 전해질 또는 액상 전해질을 포함하는 리튬 공기 전지인 것을 특징으로 하는 전기 화학 소자The electrochemical device is an electrochemical device, characterized in that the lithium air battery containing a polymer composite electrolyte or a liquid electrolyte
  14. 제 13 항에 있어서, The method of claim 13,
    상기 고분자 복합 전해질은 제1 리튬염과 고분자로 형성된 필름; 및 상기 필름에 함침되어 있으며, 제2 리튬염과 유기 용매를 포함하는 이온 전도성 용매를 포함하고,The polymer composite electrolyte includes a film formed of a first lithium salt and a polymer; And an ion conductive solvent impregnated in the film and including a second lithium salt and an organic solvent,
    상기 유기 용매는 테트라에틸렌글리콜디메틸에테르, 에틸렌 글리콜디메타크릴레이트, 폴리에틸렌 글리콜, 폴리에틸렌 글리콜디알킬 에테르, 폴리알킬글리콜디알킬 에테르 또는 이들의 조합으로부터 선택되는 것을 특징으로 하는 전기 화학 소자The organic solvent is selected from tetraethylene glycol dimethyl ether, ethylene glycol dimethacrylate, polyethylene glycol, polyethylene glycol dialkyl ether, polyalkyl glycol dialkyl ether, or a combination thereof.
  15. 제 13 항에 있어서, The method of claim 13,
    상기 액상 전해질은 일반식 R1(CR3 2CR4 2O)nR2 으로 나타내어 지는 리튬 공기 전지인 것을 특징으로 하는 전기 화학 소자The liquid electrolyte is an electrochemical device, characterized in that the lithium air battery represented by the general formula R 1 (CR 3 2 CR 4 2 O) n R 2
    (상기 일반식에서n은 2 내지 10 이고 (N in the general formula is 2 to 10 and
    R1 및 R2 는 각각 독립적으로 H, 알킬, 사이클로알킬, 아릴, 헤테로시클릴, 헤테로아릴, 알콕시, 시릴, 치환된 알킬, 치환된 사이클로알킬, 치환된 아릴, 치환된헤테로시클릴, 치환된헤테로아릴, 치환된 알콕시, 치환된 시릴, 할로겐에서 선택된다)R 1 and R 2 are each independently H, alkyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, alkoxy, cyryl, substituted alkyl, substituted cycloalkyl, substituted aryl, substituted heterocyclyl, substituted Heteroaryl, substituted alkoxy, substituted silyl, halogen)
  16. 제 13 항에 있어서,The method of claim 13,
    상기 R3 및 R4 는 각각 독립적으로 H, 할로겐, 알킬, 사이클로알킬, 아릴, 치환된 알킬, 치환된 아릴로나타내어 지는 것을 특징으로 하는 리튬 공기 전지R 3 and R 4 are each independently represented by H, halogen, alkyl, cycloalkyl, aryl, substituted alkyl, and substituted aryl.
  17. 제 13 항에 있어서, The method of claim 13,
    상기 액상 전해질은 테트라에틸렌글리콜디메틸에테르, 에틸렌 글리콜디메타크릴레이트, 폴리에틸렌 글리콜, 폴리에틸렌 글리콜디알킬 에테르, 폴리알킬글리콜디알킬 에테르 또는 이들의 조합으로부터 선택되는 것을 특징으로 하는 전기 화학 소자.The liquid electrolyte is selected from tetraethylene glycol dimethyl ether, ethylene glycol dimethacrylate, polyethylene glycol, polyethylene glycol dialkyl ether, polyalkyl glycol dialkyl ether, or a combination thereof.
PCT/KR2012/001075 2011-02-11 2012-02-13 Method for manufacturing a lithiated metal/carbon composite electrode, lithiated metal/carbon composite electrode manufactured by the method, and electrochemical device comprising the electrode WO2012108741A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/652,656 US9985326B2 (en) 2011-02-11 2012-02-13 Method for manufacturing a lithiated metal-carbon composite electrode, lithiated metal-carbon composite electrode manufactured thereby, and electrochemical device including the electrode

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2011-0012436 2011-02-11
KR20110012436 2011-02-11
KR10-2011-0028246 2011-03-29
KR20110028246 2011-03-29
KR10-2012-0014186 2012-02-13
KR1020120014186A KR101397415B1 (en) 2011-02-11 2012-02-13 Lithiated metal carbon composite, method for preparing the same, and electrochemical device comprising the same

Publications (2)

Publication Number Publication Date
WO2012108741A2 true WO2012108741A2 (en) 2012-08-16
WO2012108741A3 WO2012108741A3 (en) 2012-12-20

Family

ID=46639096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/001075 WO2012108741A2 (en) 2011-02-11 2012-02-13 Method for manufacturing a lithiated metal/carbon composite electrode, lithiated metal/carbon composite electrode manufactured by the method, and electrochemical device comprising the electrode

Country Status (1)

Country Link
WO (1) WO2012108741A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111417595A (en) * 2017-12-07 2020-07-14 韩国海洋大学产学合作基金会 Lithium-carbon composite having cavity formed therein and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990086308A (en) * 1998-05-27 1999-12-15 박호군 All-lithiation method of carbon electrode and manufacturing method of lithium secondary battery using same
JP2008508671A (en) * 2004-07-30 2008-03-21 コミツサリア タ レネルジー アトミーク Method for producing lithiated electrode, lithiated electrode obtained by this method, and use thereof
WO2009009206A2 (en) * 2007-04-23 2009-01-15 Applied Sciences, Inc. Method of depositing silicon on carbon materials and forming an anode for use in lithium ion batteries
KR20100012761A (en) * 2008-07-29 2010-02-08 삼성에스디아이 주식회사 Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990086308A (en) * 1998-05-27 1999-12-15 박호군 All-lithiation method of carbon electrode and manufacturing method of lithium secondary battery using same
JP2008508671A (en) * 2004-07-30 2008-03-21 コミツサリア タ レネルジー アトミーク Method for producing lithiated electrode, lithiated electrode obtained by this method, and use thereof
WO2009009206A2 (en) * 2007-04-23 2009-01-15 Applied Sciences, Inc. Method of depositing silicon on carbon materials and forming an anode for use in lithium ion batteries
KR20100012761A (en) * 2008-07-29 2010-02-08 삼성에스디아이 주식회사 Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATTA, MOM KANCHAN ET AL.: 'In situ electrochemical synthesis of lithiated silicon-carbon based composites anode materials for lithium ion batteries' JOURNAL OF POWER SOURCES vol. 194, 21 June 2009, pages 1043 - 1052 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111417595A (en) * 2017-12-07 2020-07-14 韩国海洋大学产学合作基金会 Lithium-carbon composite having cavity formed therein and method for producing same

Also Published As

Publication number Publication date
WO2012108741A3 (en) 2012-12-20

Similar Documents

Publication Publication Date Title
KR101397415B1 (en) Lithiated metal carbon composite, method for preparing the same, and electrochemical device comprising the same
WO2020055183A1 (en) Anode for lithium secondary battery and method for manufacturing lithium secondary battery
WO2018012694A1 (en) Lithium secondary battery having lithium metal formed on cathode and manufacturing method therefor
WO2010016727A2 (en) Method of preparing gel polymer electrolyte secondary battery and gel polymer electrolyte secondary battery
WO2010137889A2 (en) Positive electrode active material, and positive electrode and lithium secondary battery comprising same
WO2015065102A1 (en) Lithium secondary battery
WO2018080071A1 (en) Electrode for lithium secondary battery and lithium secondary battery comprising same
WO2019112167A1 (en) Negative electrode for lithium metal battery and lithium metal battery comprising same
WO2010117219A2 (en) Lithium-sulfur battery
WO2018101800A1 (en) Negative electrode for lithium metal secondary battery and method for manufacturing same negative electrode
WO2015005694A1 (en) Electrode improving battery lifespan and lithium secondary battery having same
WO2020085823A1 (en) Method for manufacturing anode for lithium secondary battery
WO2021006704A1 (en) Electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2020076091A1 (en) Method for manufacturing negative electrode for lithium secondary battery
WO2018217071A1 (en) Fabrication method of cathode for secondary battery, cathode for secondary battery fabricated thereby, and lithium secondary battery comprising same cathode
WO2019098541A1 (en) Cathode active material for secondary battery, fabrication method therefor, and lithium secondary battery comprising same
WO2019013511A2 (en) Positive electrode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2020153790A1 (en) Method for manufacturing anode for secondary battery
WO2019177403A1 (en) Anode active material for lithium secondary battery and anode for lithium secondary battery comprising same
WO2020153690A1 (en) Lithium composite negative electrode active material, negative electrode comprising same and methods for manufacturing same
WO2019059619A2 (en) Method for designing electrode for lithium secondary battery and method for manufacturing electrode for lithium secondary battery including same
WO2020105981A1 (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same
WO2019198938A1 (en) Anode for lithium secondary battery, fabrication method therefor, and lithium secondary battery comprising same
WO2019147082A1 (en) Anode for lithium secondary battery and lithium ion secondary battery including anode
WO2020080800A1 (en) Method for preparing cathode additive for lithium secondary battery, and cathode additive for lithium secondary battery, prepared thereby

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12744256

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12744256

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14652656

Country of ref document: US