WO2012108657A2 - 무선 통신 시스템에서 단말의 측정 보고 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 단말의 측정 보고 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2012108657A2
WO2012108657A2 PCT/KR2012/000872 KR2012000872W WO2012108657A2 WO 2012108657 A2 WO2012108657 A2 WO 2012108657A2 KR 2012000872 W KR2012000872 W KR 2012000872W WO 2012108657 A2 WO2012108657 A2 WO 2012108657A2
Authority
WO
WIPO (PCT)
Prior art keywords
cell
terminal
information
measurement
report
Prior art date
Application number
PCT/KR2012/000872
Other languages
English (en)
French (fr)
Other versions
WO2012108657A3 (ko
Inventor
이영대
정성훈
이승준
천성덕
박성준
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US13/979,825 priority Critical patent/US9357418B2/en
Publication of WO2012108657A2 publication Critical patent/WO2012108657A2/ko
Publication of WO2012108657A3 publication Critical patent/WO2012108657A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0031Multiple signaling transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0094Definition of hand-off measurement parameters

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a measurement reporting method of a terminal in a wireless communication system and an apparatus therefor.
  • a 3GPP LTE (3rd Generation Partnership Project Long Term Evolution (LTE)) communication system will be described.
  • E-UMTS Evolved Universal Mobile Telecommunications System
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • an E-UMTS is located at an end of a user equipment (UE), an eNode B (eNB), and a network (E-UTRAN) and connected to an external network (Access Gateway; AG). It includes.
  • the base station may transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
  • the cell is set to one of bandwidths such as 1.25, 2.5, 5, 10, 15, and 20Mhz to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths.
  • the base station controls data transmission and reception for a plurality of terminals.
  • the base station transmits downlink scheduling information for downlink (DL) data and informs the user equipment of time / frequency domain, encoding, data size, and HARQ (Hybrid Automatic Repeat and reQuest) related information.
  • HARQ Hybrid Automatic Repeat and reQuest
  • the base station transmits uplink scheduling information to uplink UL data for uplink (UL) data and informs the user equipment of time / frequency domain, encoding, data size, HARQ related information, and the like.
  • the core network may be composed of an AG and a network node for user registration of the terminal.
  • the AG manages the mobility of the UE in units of a tracking area (TA) composed of a plurality of cells.
  • Wireless communication technology has been developed to LTE based on WCDMA, but the demands and expectations of users and operators are continuously increasing.
  • new technological evolution is required to be competitive in the future. Reduced cost per bit, increased service availability, the use of flexible frequency bands, simple structure and open interface, and adequate power consumption of the terminal are required.
  • the following is a method for measuring measurement of a terminal in a wireless communication system and an apparatus therefor.
  • a method for processing a signal by a terminal includes: performing a measurement on a first cell in one or more specific subframes; Constructing report information including the measurement result with an indicator indicating that the measurement has been performed in the one or more specific subframes; And transmitting the report information to a second cell, wherein the one or more specific subframes have different interference levels from other subframes.
  • the first cell and the second cell may be the same cell or different cells.
  • the method may further include receiving information about the one or more specific subframes from the first cell.
  • the report information may include information on the one or more specific subframes and may also include an identifier of the first cell in which the measurement is performed.
  • the method may further include receiving a measurement report request message from the second cell, wherein the report information is transmitted to the second cell in response to the measurement report request message.
  • the measurement result may include at least one of a reference signal received power (RSRP), a reference signal received quality (RSRQ), a received signal strength indicator (RSSI), and an interference level.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • the method may further include transmitting a message indicating that the measurement result can be reported.
  • the terminal when performing the measurement, is characterized in that the connection state with the first cell.
  • a terminal device in a wireless communication system a wireless communication module for transmitting and receiving a signal with the network; And a processor for processing the signal, the processor performing measurements on the first cell of the network in one or more specific subframes and indicating that the measurement is performed in the one or more specific subframes. And configuring the report information including the measurement result, and controlling the wireless communication module to transmit the report information to a second cell of the network, wherein the one or more specific subframes have different interference levels from other subframes. It is characterized by.
  • the terminal may more efficiently report the measurement information.
  • FIG. 1 is a diagram schematically illustrating an E-UMTS network structure as an example of a wireless communication system.
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • FIG. 3 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • FIG. 4 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the same.
  • FIG. 5 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • FIG. 6 is a diagram illustrating a general transmission and reception method using a call message.
  • MTC 7 is a diagram for explaining the structure of machine type communication (MTC).
  • FIG. 8 is a diagram illustrating an example in which an eICIC technique is applied in a time domain.
  • FIG. 9 is a diagram illustrating a macro cell to pico cell scenario to which an eICIC technique is applied.
  • FIG. 10 is a diagram illustrating a macro cell to femto cell scenario to which the eICIC technique is applied.
  • FIG. 11 is a signal flow diagram illustrating a measurement report method according to the present invention.
  • FIG. 12 is a signal flow diagram illustrating an RLF reporting method according to the present invention.
  • FIG. 12 is a signal flow diagram illustrating an MDT reporting method according to the present invention.
  • FIG. 14 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • the present specification describes an embodiment of the present invention using an LTE system and an LTE-A system, this as an example may be applied to any communication system corresponding to the above definition.
  • the present specification describes an embodiment of the present invention on the basis of the FDD scheme, but this is an exemplary embodiment of the present invention can be easily modified and applied to the H-FDD scheme or the TDD scheme.
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • the E-UTRAN consists of cells (eNBs), which cells are connected via an X2 interface.
  • the cell is connected to the terminal through the air interface, and is connected to the Evolved Packet Core (EPC) through the S1 interface.
  • EPC Evolved Packet Core
  • the EPC includes a mobility management entity (MME), a serving-gateway (S-GW), and a packet data network-gateway (PDN-GW).
  • MME mobility management entity
  • S-GW serving-gateway
  • PDN-GW packet data network-gateway
  • FIG. 3 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
  • the physical layer is connected to the upper layer of the medium access control layer through a transport channel. Data moves between the medium access control layer and the physical layer through the transport channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel.
  • the physical channel utilizes time and frequency as radio resources. Specifically, the physical channel is modulated in the Orthogonal Frequency Division Multiple Access (OFDMA) scheme in the downlink, and modulated in the Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in the uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a functional block inside the MAC.
  • the PDCP (Packet Data Convergence Protocol) layer of the second layer performs a header compression function to reduce unnecessary control information for efficiently transmitting IP packets such as IPv4 or IPv6 in a narrow bandwidth wireless interface.
  • IPv4 Packet Data Convergence Protocol
  • the Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for control of logical channels, transport channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers (RBs).
  • RB means a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layers of the UE and the network exchange RRC messages with each other.
  • One cell constituting the base station is set to one of the bandwidth, such as 1.25, 2.5, 5, 10, 15, 20Mhz to provide a downlink or uplink transmission service to multiple terminals.
  • Different cells may be configured to provide different bandwidths.
  • the downlink transport channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or a control message.
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • MCH downlink multicast channel
  • the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message. It is located above the transport channel, and the logical channel mapped to the transport channel is a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and an MTCH (multicast). Traffic Channel).
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • Traffic Channel multicast
  • FIG. 4 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the same.
  • the UE When the UE is powered on or enters a new cell, the UE performs an initial cell search operation such as synchronizing with the base station (S301). To this end, the terminal may receive a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as a cell ID. have. Thereafter, the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the terminal may receive a downlink reference signal (DL RS) in an initial cell search step to check the downlink channel state.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE acquires more specific system information by receiving a physical downlink control channel (PDSCH) according to a physical downlink control channel (PDCCH) and information on the PDCCH. It may be (S302).
  • PDSCH physical downlink control channel
  • PDCCH physical downlink control channel
  • the terminal may perform a random access procedure (RACH) for the base station (steps S303 to S306).
  • RACH random access procedure
  • the UE may transmit a specific sequence to the preamble through a physical random access channel (PRACH) (S303 and S305), and receive a response message for the preamble through the PDCCH and the corresponding PDSCH ( S304 and S306).
  • PRACH physical random access channel
  • a contention resolution procedure may be additionally performed.
  • the UE After performing the procedure as described above, the UE performs a PDCCH / PDSCH reception (S307) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure.
  • Control Channel (PUCCH) transmission (S308) may be performed.
  • the terminal receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the terminal, and the format is different according to the purpose of use.
  • the control information transmitted by the terminal to the base station through the uplink or received by the terminal from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ), And the like.
  • the terminal may transmit the above-described control information such as CQI / PMI / RI through the PUSCH and / or PUCCH.
  • FIG. 5 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • a radio frame has a length of 10 ms (327200 ⁇ T s ) and consists of 10 equally sized subframes.
  • Each subframe has a length of 1 ms and consists of two slots.
  • Each slot has a length of 0.5 ms (15360 x T s ).
  • the slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • one resource block includes 12 subcarriers x 7 (6) OFDM symbols.
  • Transmission time interval which is a unit time for transmitting data, may be determined in units of one or more subframes.
  • the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
  • the RRC state refers to whether or not the RRC of the UE is in a logical connection with the RRC of the E-UTRAN. If connected, the RRC connected state (RRC_CONNECTED), if not connected, the RRC idle state (RRC_IDLE). It is called.
  • the E-UTRAN can grasp the presence of the UE in the RRC connection state on a cell basis, the E-UTRAN can effectively control the UE.
  • the E-UTRAN cannot grasp the UE of the RRC idle state in the cell unit, and the CN manages the TA unit, which is a larger area unit than the cell. That is, in order to receive a service such as voice or data from the cell, the UE in the RRC idle state needs to transition to the RRC connected state.
  • the terminal when the user first turns on the power of the terminal, the terminal first searches for an appropriate cell and then stays in an RRC idle state in the cell. Only when it is necessary to establish an RRC connection, the UE remaining in the RRC idle state transitions to the RRC connection state by performing an RRC connection establishment process with the RRC of the E-UTRAN. In this case, when the RRC connection needs to be established, an uplink data transmission is necessary due to a user's call attempt, or when a paging message is received from the E-UTRAN, a response message should be transmitted.
  • FIG. 6 is a diagram illustrating a general transmission and reception method using a call message.
  • the call message includes a paging record composed of a paging cause, a terminal identifier, and the like.
  • the terminal may perform a discontinuous reception period (DRX) for the purpose of reducing power consumption.
  • DRX discontinuous reception period
  • the network configures a plurality of paging occasions (POs) for each time period called a paging DRX cycle, and a specific terminal can receive only a specific paging opportunity time to obtain a paging message.
  • the terminal may not receive a call channel during a time other than the specific call opportunity time and may be in a sleep state to reduce power consumption.
  • One call opportunity time corresponds to one TTI.
  • the base station and the terminal use a paging indicator (PI) as a specific value indicating the transmission of the call message.
  • the base station may define a specific identifier (for example, Paging-Radio Network Temporary Identity (P-RNTI)) for the purpose of the PI to inform the terminal of the call information transmission. For example, the terminal wakes up every DRX cycle and receives one subframe to know whether a call message appears. If the P-RNTI is present in the L1 / L2 control channel (PDCCH) of the received subframe, the UE may know that there is a call message in the PDSCH of the corresponding subframe. In addition, if the call message has its own terminal identifier (eg, IMSI), the terminal receives the service by responding to the base station (eg, receiving RRC connection or system information).
  • P-RNTI Paging-Radio Network Temporary Identity
  • the system information includes essential information that the terminal needs to know in order to access the base station. Therefore, the terminal must receive all system information before accessing the base station, and must always have the latest system information. In addition, since the system information is information that should be known to all terminals in one cell, the base station periodically transmits system information.
  • System information may be classified into a master information block (MIB), a scheduling block (SB), and a system information block (SIB).
  • MIB allows the terminal to know the physical configuration of the cell, for example, bandwidth.
  • SB informs transmission information of SIBs, for example, a transmission period.
  • SIB is a collection of related system information. For example, a specific SIB includes only information of neighboring cells, and another SIB includes only information of an uplink radio channel used by the terminal.
  • the 'measurement' is based on cells located at an inter-frequency, an intra-frequency, and an inter-RAT according to a measurement setting received by the UE from the network. It may be defined as receiving a received reference signal and measuring a quality value of a corresponding cell.
  • quality means the signal quality or the cell quality which is recognized through the reference signal received from the measurement target cell.
  • the UE In connection with the mobility support of the UE in the mobile communication system, the UE continuously and at least discontinuously receives the quality of the serving cell and the neighboring cell that provide the current service. ) Measured every cycle. The terminal reports the cell quality measurement result to the network at an appropriate time, and the network provides the optimum mobility to the terminal through handover.
  • the terminal may perform measurement for a specific purpose set by the network and report the cell quality measurement result to the network in order to provide information that may help the operator to operate the network in addition to the purpose of mobility support. For example, the terminal receives broadcast information of a specific cell determined by the network.
  • the terminal may include a cell identity (also referred to as a global cell identifier) of the specific cell, location identification information (eg, tracking area code) to which the specific cell belongs, and / or other cell information (eg, For example, whether a member of a closed subscriber group (CSG) cell is a member) may be reported to the serving cell.
  • CSG closed subscriber group
  • the terminal may report the location information and the cell quality measurement result for the poor quality cells to the network.
  • the network can optimize the network based on the report of the cell quality measurement results of the terminals helping the network operation.
  • the terminal In a mobile communication system with a frequency reuse factor of 1, mobility is mostly between different cells in the same frequency band. Therefore, in order to ensure the mobility of the terminal well, the terminal should be able to measure the quality and cell information of neighboring cells having the same center frequency as the center frequency of the serving cell. As such, the measurement of the cell having the same center frequency as that of the serving cell is called intra-frequency measurement.
  • the terminal performs the intra-cell measurement and reports the cell quality measurement result to the network at an appropriate time, so that the purpose of the corresponding cell quality measurement result is achieved.
  • the mobile operator may operate the network using a plurality of frequency bands.
  • the terminal may measure quality and cell information of neighboring cells having a center frequency different from that of the serving cell. Should be As such, a measurement for a cell having a center frequency different from that of the serving cell is called inter-frequency measurement.
  • the UE should be able to report cell quality measurement results to the network at an appropriate time by performing inter-cell measurements.
  • the measurement of the cell of the heterogeneous network may be performed by the base station configuration.
  • This measurement for heterogeneous networks is referred to as inter-RAT (Radio Access Technology) measurement.
  • the RAT may include a UMTS Terrestrial Radio Access Network (UTRAN) and a GSM EDGE Radio Access Network (GERAN) conforming to the 3GPP standard, and may also include a CDMA 2000 system conforming to the 3GPP2 standard.
  • UTRAN UMTS Terrestrial Radio Access Network
  • GERAN GSM EDGE Radio Access Network
  • MDT Minimization of Drive Test
  • MDT allows operators to measure the quality of a cell using a car. Instead of the conventional method of performing the drive test, the MDT may allow the terminals present in the cell to make measurements and report the results. Through this, it is possible to generate a cell coverage map and minimize the time and cost for network optimization.
  • Logged MDT is a method in which a UE performs a measurement for MDT, stores the data in an MDT log, and delivers the data to a network at a specific point in time.
  • Immediate MDT is a method of measuring data for MDT and transmitting the data directly to the network. The difference between the two methods is whether the UE reports the result of the measurement to the base station or stores it and reports it later. In particular, in the case of the UE in the RRC idle state, there is no RRC connection. Can't report, so we use Logged MDT.
  • FIG. 7 shows a signal flow diagram for performing the Logged MDT technique.
  • a UE may first receive a message including a Logged MDT setting from a cell in step 701.
  • Logged MDT configuration received by the terminal may include a triggering (triggering) setting, the MDT configuration validity duration (duration), the area (area) for performing the MDT, etc. that triggers the logging of the event.
  • step 702 upon receipt of the Logged MDT setting, the UE starts a timer for a period in which the Logged MDT setting is valid. Only while the duration timer is in operation, the UE stores the measurement result for the Logged MDT in a predetermined period in the MDT log in the RRC idle state.
  • the preset period is a period for storing the measurement result according to the Logged MDT setting in the MDT log, hereinafter referred to as a logging period, and can be generally expressed as a multiple of the DRX cycle.
  • the terminal deletes the MDT configuration.
  • the UE further has an opportunity to report the stored MDT cell quality measurement result to the cell by maintaining the stored MDT cell quality measurement result for a predetermined time (for example, 48 hours).
  • the value measured for the MDT is generally the quality of the cell on which the UE stays (camp on), which is measured by RSRP (Reference Signal Received Power) and RSRQ (Reference Signal Received Quality).
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • the operator synthesizes the MDT measurement values received from the various terminals and prepares a coverage map that shows the distribution of service availability and quality of service over the entire area in which the operator provides the service. It can be utilized. For example, if a coverage problem of a specific area is reported from the terminal, the operator may expand the coverage of the corresponding area cell by increasing the transmission power of the base station providing the service of the corresponding area.
  • the cell quality measurement result for MDT may be used interchangeably as a log, a terminal log value, a measurement value, a cell quality measurement result, and the like, but for simplicity of the specification, hereinafter, it is referred to as an MDT measurement result.
  • the terminal When the terminal performs the logged MDT and the MDT measurement result is stored in the terminal, when the terminal establishes the RRC connection (that is, during the RRC connection establishment procedure), the MDT measurement result is stored in the network. Notified via (RRC connection setup complete).
  • the network that receives the MDT measurement result from the terminal sends a command to the terminal to transmit the stored MDT cell quality measurement result, and correspondingly, the terminal transmits the stored MDT measurement result to the network.
  • an RRC connection re-establishment complete message informs the network that the MDT measurement result is stored even when the UE re-establishes an RRC connection. Can be.
  • the UE may inform that the MDT measurement result is stored in the target cell through a handover completion message.
  • ABS (almost blank subframe) is considered to be representative, and is configured to transmit only CRS (Cell-specific RS) in the subframe designated as ABS.
  • CRS Cell-specific RS
  • FIG. 8 is a diagram illustrating an example in which an eICIC technique is applied in a time domain.
  • subframe indexes 1, 3, and 6 indicate a subframe in which an interfering cell does not transmit data, and may indicate the ABS.
  • the eICIC technique for the time domain for the UE in the RRC idle state is applicable to a macro cell to femto cell and a macro cell to pico cell.
  • macro cell-to-femto cells there are macro cell-to-femto cells, macro cell-to-pico cells, and the like as cell configurations that are considered in the LTE-A system.
  • X2 interface which is an interface between cells.
  • cell to pico cell it is assumed that information exchange is possible through X2 interface.
  • FIG. 9 is a diagram illustrating a macro cell to pico cell scenario to which an eICIC technique is applied.
  • the terminal selects a cell / The macro cell is selected during the reselection process.
  • the terminal selects / reselects a cell by limiting the pico cell measurement subframe pattern of the terminal to a specific subframe with little interference of the macro cell. Allows you to select and connect pico cells, not macro cells, during the selection process.
  • the macro cell and the pico cell are respectively an interference cell and a victim cell.
  • FIG. 10 is a diagram illustrating a macro cell to femto cell scenario to which the eICIC technique is applied.
  • a macro cell and a femto cell using the same frequency resource are adjacent to each other, and the UE of an RRC idle state located in the coverage of the femto cell while not being a member of the femto cell is selected / reselected. Due to the strong interference of the femto cell in the process, it may not find a cell, that is, suitable cells for establishing the RRC connection.
  • a time domain eICIC scheme is introduced so that the UE located within the coverage of the femto cell can be connected to an adjacent macro cell without interference of the femto cell, and thus the macro cell measurement subframe pattern of the UE is minimized. It can be limited to a specific subframe. Accordingly, the terminal selects and accesses a macro cell in a cell selection / reselection process. In this case, the macro cell and the femto cell become the interference cell and the interference cell, respectively.
  • the terminal When the terminal in the RRC connection state with the serving cell detects a radio link failure (RRF) or a handover failure (Handover Failure), the terminal stores information on the occurrence of a radio link failure, that is, RLF information. As such, when the RLF information is stored, the UE reports availability of the RLF information to the base station through an RRC Connection Reestablishment Request message during the RRC connection reestablishment process. . In addition, the terminal may report availability of RLF information to the base station through an RRC connection reconfiguration message.
  • RRF radio link failure
  • Handover Failure the terminal stores information on the occurrence of a radio link failure
  • the terminal transitions to the RRC idle state, after which, the RRC layer of the terminal performs the RRC connection configuration (RRC Connection Configuration) process in accordance with the instructions of the NAS layer to the RRC connection state You can transition again.
  • the RRC connection setup process the UE may report the availability of RLF information to the base station through an RRC connection configuration complete message.
  • the base station transmits a UE information request message to request the RLF information from the terminal.
  • the UE reports the RLF information through a UE information response message.
  • the RLF information includes the channel measurement value of the last serving cell and the channel measurement value of the neighbor cell, the cell information where the RLF occurred, the location information where the RLF occurred, whether the radio link failure is due to the RLF or the handover failure, and the RRC connection retry. ID of the cell and the like.
  • the terminal when the terminal detects the RLF or the handover failure, the terminal may report the RLF information to the base station. In this case, regardless of whether the terminal communicates with the base station through an ABS (Almost Blank Subframe), the terminal reports the RLF information to the base station, including the channel measurement value of the last serving cell and the channel measurement value of the neighbor cell. can do. At this time, since the network cannot know what type of subframe the channel measurement value included in the received RLF information is, the channel measurement value cannot be used for a proper use.
  • the terminal measures a radio signal during a specific subframe, configures report information indicating which subframe the measurement is performed through, and proposes to transmit the report information to the base station.
  • the report information may include a measurement result value of the radio signal.
  • the report information is a message for reporting the measurement result.
  • the specific subframe is configured such that the interference level is different from other subframes.
  • the specific subframe may be ABS.
  • the terminal may configure the report information by detecting a radio link failure, and transmit the report information when requested by a base station.
  • subframes provided by a specific cell may be divided into general subframes and specific subframes, and the general subframe and the specific subframe may be classified according to the interference level.
  • the particular subframe may be ABS configured to have less interference from adjacent cells.
  • the UE measures a radio signal from one cell of the radio network through specific subframes (eg, ABS).
  • specific subframes eg, ABS
  • channel quality of the cell for example, reference signal received power (RSRP), reference signal received quality (RSRQ), received signal strength indicator (RSSI), and interference level are derived as measurement results.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • RSSI received signal strength indicator
  • interference level are derived as measurement results.
  • Radio link failures include security failures in the case of RLF or handover failures, which may occur due to increased interference, coverage holes, etc., and when HARQ retransmission is performed up to the maximum number of retransmissions. ) May occur.
  • the reporting information includes 1) the measurement result of step 1101 (for example, RSRP / RSRQ / RSSI / interference level measurement value), 2) whether the measurement result of step 1101 is a measurement result received from specific subframes, and 3) step 1) the measured cell identifier of 1101, 4) information about the received subframe of step 1101, that is, subframe pattern, and 5) information such as the type or cause of the detected radio link failure.
  • the measurement result of step 1101 for example, RSRP / RSRQ / RSSI / interference level measurement value
  • the terminal transmits the configured report information to the network in step 1104.
  • the report information may be transmitted through an RRC layer, and may be included in a measurement report message or a UE information response message.
  • FIG. 12 is a signal flow diagram illustrating an RLF reporting method according to the present invention.
  • the terminal in order to receive a signal from a serving cell or certain neighboring cells in a state of minimizing inter-cell interference, the terminal receives an ABS pattern from the serving cell in step 1201.
  • the UE measures the quality of the serving cell for RLM (Radio Link Management (RLM)) based on the ABS pattern in step 1202. That is, the UE performs the measurement in the ABS, in this case, the UE performs the RLF of the serving cell in step 1203.
  • RLM Radio Link Management
  • the RLF information is stored, and the stored RLF information includes the measurement result of the last serving cell, the cell identifier of the last serving cell, whether the measurement result is applied with ABS, and the ABS pattern set in the last serving cell. Include.
  • the UE may perform the RRC connection reestablishment process, but if the RRC connection reestablishment process fails as shown in step 1204, the UE transitions to the RRC idle state.
  • the UE RRC layer may select a new cell and may initiate an RRC connection establishment process as step 1205 at the request of the NAS layer.
  • the terminal may include an indicator indicating that the RLF information is available in the RRC connection establishment complete message, as shown in step 1206.
  • the new cell transmits a UE information request message including the RLF report request indicator to the UE as shown in step 1207.
  • the UE constructs a UE information response message and transmits the UE information response message to the new cell as shown in step 1208.
  • the UE information response message may include a measurement result of the last serving cell, a cell ID of the last serving cell, a measurement result of applying ABS, and an ABS pattern set in the last serving cell.
  • the measurement report method according to the present invention can be applied to the above-described MDT technique.
  • FIG. 13 is a signal flow diagram illustrating an MDT reporting method according to the present invention.
  • the terminal in order to receive a signal in a state in which interference between cells is minimized, the terminal receives an ABS pattern from a serving cell in step 1301.
  • the terminal in the RRC idle state measures the quality of the corresponding cell, that is, the first cell, through the ABS using the ABS pattern in step 1302, and stores the measurement result of the corresponding cell in step 1303.
  • the RRC layer of the UE in the RRC idle state may select a new cell, that is, a second cell, and may perform an RRC connection establishment process with the second cell in step 1304 at the request of the NAS layer.
  • the terminal may include an indicator indicating that the logged MDT information is available as shown in step 1305 in the RRC connection establishment complete message.
  • the second cell sends a UE information request message including a Logged MDT Information Report Request (logMeasReportReq) indicator to the UE in step 1306.
  • logMeasReportReq Logged MDT Information Report Request
  • the UE Upon receiving the UE information request message including the Logged MDT Information Report Request Indicator, the UE configures the UE information response message in step 1307 and transmits the UE information response message to the second cell.
  • the UE information response message includes a measurement result in the first cell, a cell identifier of the first cell, whether the measurement result is applied to ABS, and an ABS pattern configured for the first cell.
  • the present invention can also be applied to a method for mitigating in-device coexistence (IDC) interference.
  • GNSS global navigation satellite system
  • BT Bluetooth
  • coexistence of different wireless communication systems in one terminal is referred to as in-device coexistence (IDC). Examples include terminals equipped with LTE and BT modules to receive VoIP services and multimedia services using BT earphones, terminals equipped with LTE and WiFi modules for traffic distribution, and GNSS and LTE modules to additionally acquire location information. For example, one terminal.
  • the power of a signal transmitted from one transmitter may be greater than that of a signal received from another receiver.
  • interference may occur between other communication modules, which is called IDC interference. If the IDC interference is severe, a ping-pong phenomenon may occur continuously trying to handover, although there is no problem in connection with the base station.
  • the terminal may provide interference information for each subframe to the base station according to the present invention. have. That is, instead of performing measurement based on a specific subframe, the entire subframe is measured, but subframes whose interference exceeds a threshold value are determined and provided as bitmap information to the base station. This is a difference in that the UE configures a subframe pattern and transmits it to the base station rather than receiving the ABS pattern from the base station.
  • FIG. 14 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • the communication device 1400 includes a processor 1410, a memory 1420, an RF module 1430, a display module 1440, and a user interface module 1450.
  • the communication device 1400 is shown for convenience of description and some modules may be omitted. In addition, the communication device 1400 may further include necessary modules. In addition, some modules in the communication device 1400 may be classified into more granular modules.
  • the processor 1410 is configured to perform an operation according to the embodiment of the present invention illustrated with reference to the drawings. In detail, the detailed operation of the processor 1410 may refer to the contents described with reference to FIGS. 1 to 13.
  • the memory 1420 is connected to the processor 1410 and stores an operating system, an application, program code, data, and the like.
  • the RF module 1430 is connected to the processor 1410 and performs a function of converting a baseband signal into a radio signal or converting a radio signal into a baseband signal. To this end, the RF module 1430 performs analog conversion, amplification, filtering and frequency up-conversion, or a reverse process thereof.
  • the display module 1440 is connected to the processor 1410 and displays various information.
  • the display module 1440 may use well-known elements such as, but not limited to, a liquid crystal display (LCD), a light emitting diode (LED), and an organic light emitting diode (OLED).
  • the user interface module 1450 is connected to the processor 1410 and may be configured with a combination of well-known user interfaces such as a keypad and a touch screen.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 출원에서는 무선 통신 시스템에서 단말이 신호를 처리하는 방법이 개시된다. 구체적으로, 하나 이상의 특정 서브프레임에서 제 1 셀에 대한 측정을 수행하는 단계, 상기 측정이 상기 하나 이상의 특정 서브프레임에서 수행되었음을 지시하는 지시자와 함께 상기 측정 결과를 포함하는 보고 정보를 구성하는 단계, 및 상기 보고 정보를 제 2 셀로 전송하는 단계를 포함하고, 상기 하나 이상의 특정 서브프레임은 다른 서브프레임과 간섭 레벨이 다르게 구성된 것을 특징으로 한다.

Description

무선 통신 시스템에서 단말의 측정 보고 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는, 무선 통신 시스템에서 단말의 측정 보고 방법 및 이를 위한 장치에 관한 것이다.
본 발명이 적용될 수 있는 무선 통신 시스템의 일례로서 3GPP LTE (3rd Generation Partnership Project Long Term Evolution; 이하 "LTE"라 함) 통신 시스템에 대해 개략적으로 설명한다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다. E-UMTS(Evolved Universal Mobile Telecommunications System) 시스템은 기존 UMTS(Universal Mobile Telecommunications System)에서 진화한 시스템으로서, 현재 3GPP에서 기초적인 표준화 작업을 진행하고 있다. 일반적으로 E-UMTS는 LTE(Long Term Evolution) 시스템이라고 할 수도 있다. UMTS 및 E-UMTS의 기술 규격(technical specification)의 상세한 내용은 각각 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network"의 Release 7과 Release 8을 참조할 수 있다.
도 1을 참조하면, E-UMTS는 단말(User Equipment; UE)과 기지국(eNode B; eNB), 네트워크(E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이(Access Gateway; AG)를 포함한다. 기지국은 브로드캐스트 서비스, 멀티캐스트 서비스 및/또는 유니캐스트 서비스를 위해 다중 데이터 스트림을 동시에 전송할 수 있다.
한 기지국에는 하나 이상의 셀이 존재한다. 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정돼 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 기지국은 다수의 단말에 대한 데이터 송수신을 제어한다. 하향 링크(Downlink; DL) 데이터에 대해 기지국은 하향 링크 스케줄링 정보를 전송하여 해당 단말에게 데이터가 전송될 시간/주파수 영역, 부호화, 데이터 크기, HARQ(Hybrid Automatic Repeat and reQuest) 관련 정보 등을 알려준다. 또한, 상향 링크(Uplink; UL) 데이터에 대해 기지국은 상향 링크 스케줄링 정보를 해당 단말에게 전송하여 해당 단말이 사용할 수 있는 시간/주파수 영역, 부호화, 데이터 크기, HARQ 관련 정보 등을 알려준다. 기지국간에는 사용자 트래픽 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 핵심망(Core Network; CN)은 AG와 단말의 사용자 등록 등을 위한 네트워크 노드 등으로 구성될 수 있다. AG는 복수의 셀들로 구성되는 TA(Tracking Area) 단위로 단말의 이동성을 관리한다.
무선 통신 기술은 WCDMA를 기반으로 LTE까지 개발되어 왔지만, 사용자와 사업자의 요구와 기대는 지속적으로 증가하고 있다. 또한, 다른 무선 접속 기술이 계속 개발되고 있으므로 향후 경쟁력을 가지기 위해서는 새로운 기술 진화가 요구된다. 비트당 비용 감소, 서비스 가용성 증대, 융통성 있는 주파수 밴드의 사용, 단순구조와 개방형 인터페이스, 단말의 적절한 파워 소모 등이 요구된다.
상술한 바와 같은 논의를 바탕으로 이하에서는 무선 통신 시스템에서 단말의 측정 보고 방법 및 이를 위한 장치를 제안하고자 한다.
본 발명의 일 양상인 무선 통신 시스템에서 단말이 신호를 처리하는 방법은, 하나 이상의 특정 서브프레임에서 제 1 셀에 대한 측정을 수행하는 단계; 상기 측정이 상기 하나 이상의 특정 서브프레임에서 수행되었음을 지시하는 지시자와 함께 상기 측정 결과를 포함하는 보고 정보를 구성하는 단계; 및 상기 보고 정보를 제 2 셀로 전송하는 단계를 포함하고, 상기 하나 이상의 특정 서브프레임은 다른 서브프레임과 간섭 레벨이 다르게 구성된 것을 특징으로 한다. 여기서, 상기 제 1 셀과 상기 제 2 셀은 동일한 셀일 수도 있고 서로 다른 셀일 수도 있다.
바람직하게는, 상기 제 1 셀로부터 상기 하나 이상의 특정 서브프레임에 관한 정보를 수신하는 단계를 더 포함하는 것을 특징으로 한다.
한편, 상기 보고 정보는, 상기 하나 이상의 특정 서브프레임에 대한 정보를 포함할 수 있고, 또한 상기 측정을 수행한 제 1 셀의 식별자를 포함할 수도 있다.
나아가, 상기 제 2 셀로부터 측정 보고 요청 메시지를 수신하는 단계를 더 포함할 수 있고, 이 경우 상기 보고 정보는, 상기 측정 보고 요청 메시지에 대한 응답으로 상기 제 2 셀로 전송되는 것을 특징으로 한다.
또한, 상기 측정 결과는 RSRP(Reference Signal Received Power), RSRQ(Reference Signal Received Quality), RSSI(Received Signal Strength Indicator), 간섭 레벨 중 적어도 하나를 포함할 수 있다.
나아가, 상기 제 2 셀과 연결 시, 상기 측정 결과의 보고가 가능함을 지시하는 메시지를 송신하는 단계를 더 포함할 수도 있다.
바람직하게는, 상기 측정 수행 시, 상기 단말은 상기 제 1 셀과 연결 상태인 것을 특징으로 한다.
한편, 본 발명의 다른 양상인 무선 통신 시스템에서의 단말 장치는, 네트워크와 신호를 송수신하는 무선 통신 모듈; 및 상기 신호를 처리하기 위한 프로세서를 포함하고, 상기 프로세서는, 하나 이상의 특정 서브프레임에서 상기 네트워크의 제 1 셀에 대한 측정을 수행하고, 상기 측정이 상기 하나 이상의 특정 서브프레임에서 수행되었음을 지시하는 지시자와 함께 상기 측정 결과를 포함하는 보고 정보를 구성하며, 상기 보고 정보를 상기 네트워크의 제 2 셀로 전송하도록 상기 무선 통신 모듈을 제어하고, 상기 하나 이상의 특정 서브프레임은 다른 서브프레임과 간섭 레벨이 다르게 구성된 것을 특징으로 한다.
본 발명의 실시예에 따르면 단말이 측정 정보의 보고를 보다 효율적으로 수행할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다.
도 2는 E-UTRAN(Evolved Universal Terrestrial Radio Access Network)의 네트워크 구조를 개념적으로 도시하는 도면이다.
도 3은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다.
도 4는 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
도 5는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.
도 6은 호출 메시지를 이용한 일반적인 송수신 방법을 설명하기 위한 도면이다.
도 7은 MTC(Machine type communication)의 구조를 설명하기 위한 도면이다.
도 8은 시간 영역에서의 eICIC 기법이 적용되는 예를 도시하는 도면이다.
도 9는 eICIC 기법이 적용되는 마크로 셀 대 피코 셀 시나리오를 도시하는 도면이다.
도 10은 eICIC 기법이 적용되는 마크로 셀 대 펨토 셀 시나리오를 도시하는 도면이다.
도 11는 본 발명에 따른 측정 보고 방식을 도시하는 신호 흐름도이다.
도 12는 본 발명에 따른 RLF 보고 방식을 도시하는 신호 흐름도이다.
도 12는 본 발명에 따른 MDT 보고 방식을 도시하는 신호 흐름도이다.
도 14는 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템 및 LTE-A 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다. 또한, 본 명세서는 FDD 방식을 기준으로 본 발명의 실시예에 대해 설명하지만, 이는 예시로서 본 발명의 실시예는 H-FDD 방식 또는 TDD 방식에도 용이하게 변형되어 적용될 수 있다.
도 2는 E-UTRAN(Evolved Universal Terrestrial Radio Access Network)의 네트워크 구조를 개념적으로 도시하는 도면이다. 특히 E-UTRAN시스템은 기존 UTRAN시스템에서 진화한 시스템이다. E-UTRAN은 셀(eNB)들로 구성되며, 셀들은 X2 인터페이스를 통해 연결된다. 셀은 무선 인터페이스를 통해 단말과 연결되며, S1 인터페이스를 통해 EPC(Evolved Packet Core)에 연결된다.
EPC에는 MME(Mobility Management Entity), S-GW(Serving-Gateway) 및 PDN-GW(Packet Data Network-Gateway)로 구성된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, PDN-GW는 PDN(Packet Data Network)을 종단점으로 갖는 게이트웨이이다.
도 3은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 전송 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송채널(Transport Channel)을 통해 연결되어 있다. 상기 전송채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향 링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향 링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 전송하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer; RB)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다.
기지국(eNB)을 구성하는 하나의 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널은 시스템 정보를 전송하는 BCH(Broadcast Channel), 페이징 메시지를 전송하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 전송하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 전송될 수도 있다.
한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널로는 초기 제어 메시지를 전송하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 전송하는 상향 SCH(Shared Channel)가 있다. 전송채널의 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 4는 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S301). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향 링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향 링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향 링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향 링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S302).
한편, 기지국에 최초로 접속하거나 신호 전송을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S303 내지 단계 S306). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 전송하고(S303 및 S305), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S304 및 S306). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향 링크 신호 전송 절차로서 PDCCH/PDSCH 수신(S307) 및 물리 상향 링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향 링크 제어 채널(Physical Uplink Control Channel; PUCCH) 전송(S308)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향 링크를 통해 기지국에 전송하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향 링크/상향 링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix Index), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 전송할 수 있다.
도 5는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.
도 5를 참조하면, 무선 프레임(radio frame)은 10ms(327200×Ts)의 길이를 가지며 10개의 균등한 크기의 서브프레임(subframe)으로 구성되어 있다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯(slot)으로 구성되어 있다. 각각의 슬롯은 0.5ms(15360×Ts)의 길이를 가진다. 여기에서, Ts는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 복수의 자원블록(Resource Block; RB)을 포함한다. LTE 시스템에서 하나의 자원블록은 12개의 부반송파×7(6)개의 OFDM 심볼을 포함한다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 하나 이상의 서브프레임 단위로 정해질 수 있다. 상술한 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
이하 단말의 RRC 상태와 RRC 연결 방법에 대해 설명한다. RRC 상태란 단말의 RRC가 E-UTRAN의 RRC와 논리적 연결(logical connection)이 되어 있는지 여부를 말하며, 연결되어 있는 경우는 RRC 연결 상태(RRC_CONNECTED), 연결되어 있지 않은 경우는 RRC 휴지 상태(RRC_IDLE)라고 부른다.
E-UTRAN은 RRC 연결 상태의 단말의 존재를 셀 단위에서 파악할 수 있기 때문에 단말을 효과적으로 제어할 수 있다. 반면에 E-UTRAN은 RRC 휴지 상태의 단말을 셀 단위에서 파악할 수 없으며, 셀 보다 더 큰 지역 단위인 TA 단위로 CN이 관리한다. 즉, RRC 휴지 상태의 단말이 셀로부터 음성이나 데이터와 같은 서비스를 받기 위해서는 RRC 연결 상태로 상태 천이하여야 한다.
특히 사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 휴지 상태에 머무른다. RRC 휴지 상태에 머물러 있던 단말은 RRC 연결을 맺을 필요가 있는 경우에야 비로소 E-UTRAN의 RRC과 RRC 연결 설정 (RRC connection establishment) 과정을 수행하여 RRC 연결 상태로 천이한다. 여기서 RRC 연결을 맺을 필요가 있는 경우란 사용자의 통화 시도 등의 이유로 상향 데이터 전송이 필요하다거나, E-UTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지를 전송해야 하는 경우 등을 들 수 있다.
도 6은 호출 메시지를 이용한 일반적인 송수신 방법을 설명하기 위한 도면이다.
도 6을 참조하여 설명하면, 호출 메시지는 호출 이유(Paging Cause)와 단말 식별자(UE Identity) 등으로 구성된 호출 기록(Paging record)을 포함한다. 상기 호출 메시지를 수신할 때, 단말은 전력소비 감소를 목적으로 불연속 수신 주기(Discontinuous Reception; DRX)를 수행할 수 있다.
구체적으로, 망은 호출 주기(Paging DRX Cycle)라 불리는 시간 주기마다 여러 개의 호출 기회 시간(Paging Occasion; PO)을 구성하고, 특정 단말은 특정 호출 기회 시간만을 수신하여 호출 메시지를 획득할 수 있도록 한다. 상기 단말은 상기 특정 호출 기회 시간 이외의 시간에는 호출 채널을 수신하지 않으며 전력 소비를 줄이기 위해 수면 상태에 있을 수 있다. 하나의 호출 기회 시간은 하나의 TTI에 해당된다.
기지국과 단말은 호출 메시지의 전송을 알리는 특정 값으로 호출 지시자(Paging Indicator; PI)를 사용한다. 기지국은 PI의 용도로 특정 식별자(예, Paging - Radio Network Temporary Identity; P-RNTI)를 정의하여 단말에게 호출 정보 전송을 알릴 수 있다. 일 예로, 단말은 DRX 주기마다 깨어나서 호출 메시지의 출현 여부를 알기 위해 하나의 서브 프레임을 수신한다. 단말은 수신한 서브 프레임의 L1/L2 제어채널(PDCCH)에 P-RNTI가 있다면, 해당 서브 프레임의 PDSCH에 호출 메시지가 있다는 것을 알 수 있다. 또한, 호출 메시지에 자신의 단말식별자(예, IMSI)가 있다면 단말은 기지국에 응답(예를 들어, RRC 연결 또는 시스템 정보 수신)하여 서비스를 받게 된다.
다음은, 시스템 정보(System Information)에 관한 설명이다. 시스템 정보는 단말이 기지국에 접속하기 위해서 알아야 하는 필수 정보를 포함한다. 따라서 단말은 기지국에 접속하기 전에 시스템 정보를 모두 수신하고 있어야 하고, 또한 항상 최신의 시스템 정보를 가지고 있어야 한다. 그리고 시스템 정보는 한 셀 내의 모든 단말이 알고 있어야 하는 정보이므로, 기지국은 주기적으로 시스템 정보를 전송한다.
시스템 정보는 MIB(Master Information Block), SB(Scheduling Block) 및 SIB(System Information Block)로 구분될 수 있다. MIB는 단말이 해당 셀의 물리적 구성, 예를 들어 Bandwidth같은 것을 알 수 있도록 한다. SB는 SIB들의 전송정보, 예를 들어, 전송 주기 등을 알려준다. SIB는 서로 관련 있는 시스템 정보의 집합체이다. 예를 들어, 특정 SIB는 주변의 셀의 정보만을 포함하고, 다른 SIB는 단말이 사용하는 상향 무선 채널의 정보만을 포함한다.
이하, 측정(measurement) 및 측정 보고에 대해 설명한다.
이하의 설명에 있어서 ‘측정’은 단말이 네트워크로부터 수신한 측정 설정에 따라 인터-주파수(inter-frequency), 인트라-주파수(intra-frequency) 및 인터-RAT(inter-RAT)에 위치하는 셀들로부터 수신된 참조 신호(reference signal)을 수신하여, 해당 셀의 품질값을 측정하는 것으로서 규정될 수 있다. 또한, 이하의 설명에 있어서 ‘품질’은 측정 대상 셀로부터 수신된 참조 신호를 통해 파악되는 신호 품질 또는 셀 품질을 나타내는 것을 의미한다.
이동 통신 시스템에서 단말의 이동성(mobility) 지원과 관련해서, 단말은 현재 서비스를 제공하는 서빙 셀(serving cell)에 대한 품질 및 이웃셀에 대한 품질을 지속적으로, 적어도 매 불연속 수신(Discontinuous Reception; DRX) 주기마다 측정한다. 단말은 셀 품질 측정 결과를 적절한 시간에 네트워크에게 보고하고, 네트워크는 핸드오버 등을 통해 단말에게 최적의 이동성을 제공한다.
단말은 이동성 지원의 목적 이외에 사업자가 네트워크를 운영하는데 도움이 될 수 있는 정보를 제공하기 위해, 네트워크가 설정하는 특정한 목적의 측정을 수행하고, 그 셀 품질 측정 결과를 네트워크에게 보고할 수 있다. 예를 들어, 단말이 네트워크가 정한 특정 셀의 브로드캐스트 정보를 수신한다. 단말은 상기 특정 셀의 셀 식별자(Cell Identity)(이를 광역(Global) 셀 식별자라고도 함), 상기 특정 셀이 속한 위치 식별 정보(예를 들어, Tracking Area Code) 및/또는 기타 셀 정보(예를 들어, CSG(Closed Subscriber Group) 셀의 멤버 여부)를 서빙 셀에게 보고할 수 있다.
이동 중의 단말은 특정 지역의 품질이 매우 나쁘다는 것을 측정을 통해 확인한 경우, 품질이 나쁜 셀들에 대한 위치 정보 및 셀 품질 측정 결과를 네트워크에 보고할 수 있다. 네트워크는 네크워크의 운영을 돕는 단말들의 셀 품질 측정 결과의 보고를 바탕으로 네트워크의 최적화를 꾀할 수 있다.
주파수 재사용 인자(Frequency reuse factor)가 1인 이동 통신 시스템에서는, 이동성이 대부분 동일한 주파수 밴드에 있는 서로 다른 셀 간에 이루어진다. 따라서, 단말의 이동성을 잘 보장하기 위해서는, 단말은 서빙 셀의 중심 주파수와 동일한 중심 주파수를 갖는 주변 셀들의 품질 및 셀 정보를 잘 측정할 수 있어야 한다. 이와 같이 서빙 셀의 중심 주파수와 동일한 중심 주파수를 갖는 셀에 대한 측정을 셀내 측정(intra-frequency measurement)라고 부른다. 단말은 셀내 측정을 수행하여 셀 품질 측정 결과를 네트워크에게 적절한 시간에 보고하여, 해당되는 셀 품질 측정 결과의 목적이 달성되도록 한다.
이동 통신 사업자는 복수의 주파수 밴드를 사용하여 네트워크를 운용할 수도 있다. 복수의 주파수 밴드를 통해 통신 시스템의 서비스가 제공되는 경우, 단말에게 최적의 이동성을 보장하기 위해서는, 단말은 서빙 셀의 중심 주파수와 다른 중심 주파수를 갖는 주변 셀들의 품질 및 셀 정보를 잘 측정할 수 있어야 한다. 이와 같이, 서빙 셀의 중심 주파수와 다른 중심 주파수를 갖는 셀에 대한 측정을 셀간 측정(inter-frequency measurement)라고 부른다. 단말은 셀간 측정을 수행하여 셀 품질 측정 결과를 네트워크에게 적절한 시간에 보고할 수 있어야 한다.
단말이 이종(heterogeneous) 네트워크에 대한 측정을 지원할 경우, 기지국 설정에 의해 이종 네크워크의 셀에 대한 측정을 할 수도 있다. 이러한, 이종 네트워크에 대한 측정을 inter-RAT(Radio Access Technology) 측정이라고 한다. 예를 들어, RAT는 3GPP 표준 규격을 따르는 UTRAN(UMTS Terrestrial Radio Access Network) 및 GERAN(GSM EDGE Radio Access Network)을 포함할 수 있으며, 3GPP2 표준 규격을 따르는 CDMA 2000 시스템 역시 포함할 수 있다.
이하에서는 Minimization of Drive Test (MDT) 기법에 대해서 설명한다.
MDT는 셀 커버리지의 최적화를 위해 사업자가 자동차를 이용해서 셀의 품질을 측정하는 것이다. 드라이브 테스트를 수행하는 종래의 방법 대신에, MDT 는 셀 내에 존재하는 단말들에게 측정을 수행하고 그 결과를 보고하도록 할 수 있다. 이를 통하여, 셀 커버리지 맵을 생성하고, 네트워크 최적화에 들어가는 시간과 비용을 최소화할 수 있다.
MDT에는 Logged MDT와 Immediate MDT의 두 가지 종류가 있다. Logged MDT는 단말이 MDT를 위한 측정을 진행한 후 그 데이터를 MDT 로그(log)에 저장했다가 특정 시점에 네트워크에게 전달하는 방법이다. Immediate MDT는 MDT 를 위한 측정을 한 후 그 데이터를 네트워크에게 바로 전송하는 방법이다. 두 방법의 차이점은 단말이 측정한 결과를 기지국에게 바로 보고하는가 아니면 저장했다가 나중에 보고하는가에 있으며, 특히 RRC 휴지(Idle) 상태의 단말의 경우에는 RRC 연결(connection)이 없기 때문에 바로 품질 측정 결과를 보고할 수 없으므로 Logged MDT를 사용하게 된다.
도 7은 Logged MDT 기법을 수행하기 위한 신호 흐름도를 도시한다.
도 7을 참조하면, 우선 단말은 Logged MDT를 수행하기 위하여, 단계 701과 같이 셀로부터 Logged MDT 설정을 포함하는 메시지를 수신할 수 있다.
단말이 수신하는 Logged MDT 설정에는 사건의 저장(logging)의 발단이 되는 트리거링(triggering) 설정, MDT 설정 유효 기간(duration), MDT를 수행하는 영역(area) 설정 등이 포함될 수 있다.
다음으로, 단계 702에서 단말은 Logged MDT 설정을 수신하는 즉시, 상기 Logged MDT 설정이 유효한 기간에 대한 타이머(timer)를 개시한다. 상기 유효기간 타이머(duration timer)가 동작하는 동안에만 단말은 RRC 휴지 상태에서 Logged MDT를 위한 측정 결과를 MDT 로그에 기 설정된 주기로 저장한다. 여기서 기 설정된 주기란 Logged MDT 설정에 따른 측정 결과를 MDT 로그에 저장하는 주기로서 이하, 로깅 주기로 지칭하며, 일반적으로 DRX 주기의 배수로 표현할 수 있다.
한편, 상기 유효기간 타이머가 만료되면, 단말은 MDT 설정을 삭제한다. 그러나 단말은 저장된 MDT 셀 품질 측정 결과는 일정 시간(예를 들어, 48시간) 동안 유지하여 이 시간 동안 저장된 MDT 측정값을 셀에 보고할 수 있는 기회를 추가로 가진다.
MDT를 위해 측정하는 값은 일반적으로 단말이 머무르는 (camp on) 셀의 품질이며, 이는 RSRP (Reference Signal Received Power)와 RSRQ (Reference Signal Received Quality)로 측정된다. 단말에 Logged MDT가 설정되면, RRC 휴지 상태에서 셀의 품질을 측정하여 저장하고 있다가 이후 네트워크에 MDT 측정값을 보고한다.
사업자는 여러 단말로부터 수신한 MDT 측정값을 종합하여 사업자가 서비스를 제공하는 전반의 영역에 걸쳐 서비스 가능 여부 및 서비스의 품질도의 분포를 나타내는 커버리지 지도(coverage map)를 작성하여 네트워크 운용 및 최적화에 활용할 수 있다. 예를 들어 단말로부터 특정 지역의 커버리지 문제를 보고받으면, 사업자는 해당 영역의 서비스를 제공하는 기지국의 송신 전력을 증가하여 해당 지역 셀의 커버리지를 확장할 수 있다.
MDT를 위한 셀 품질 측정 결과는 로그, 단말 로그값, 측정값, 셀 품질 측정 결과 등으로 혼용되어 지칭될 수 있으나 명세서의 간명화를 위해 이하에서는 MDT 측정 결과로 지칭한다.
마지막으로, 단계 703의 MDT 측정 결과를 보고하는 과정에 관하여 설명한다.
단말에서 Logged MDT를 수행하고, 단말에 저장한 MDT 측정 결과가 있는 경우, 단말이 RRC 연결을 수립하는 경우(즉 RRC connection establishment 절차 때) MDT 측정 결과가 저장되어 있음을 네트워크에 RRC 연결 셋업 완료 메시지(RRC connection setup complete)를 통해 알린다.
단말로부터 MDT 측정 결과가 저장되어 있음을 수신한 네트워크는, 단말에게 저장된MDT 셀 품질 측정 결과를 송신하라는 명령을 보내고, 이에 대응하여 단말은 저장된MDT 측정 결과를 네트워크로 전송한다.
RRC 연결을 맺는 경우 이외에 단말이 RRC 연결을 재수립(RRC connection re-establishment)하는 경우에도 MDT 측정 결과가 저장되어 있음을 RRC 연결 재수립 완료 메시지(RRC connection re-establishment complete)를 통해 네트워크에 알릴 수 있다. 또한, 단말이 서빙(Serving) 셀에서 타겟(Target) 셀로 핸드오버(handover)하는 경우, 타겟 셀에 MDT 측정 결과가 저장되어 있음을 핸드오버 완료 메시지를 통해 알릴 수 있다.
LTE-A시스템에서는 이종 네트워크(Heterogeneous network; HetNet)에서 제 1 기지국(eNB1)과 제 2 기지국(eNB2)간의 간섭(interference)를 줄이기 위한 eICIC(enhanced Inter Cell Interference Coordination)에 대한 연구가 진행 중이다. 그 중 대표적으로 고려되는 것이 ABS(almost blank subframe)이며, ABS로 지정된 서브프레임에서는 CRS(Cell-specific RS)만 전송할 수 있도록 설정된다.
도 8은 시간 영역에서의 eICIC 기법이 적용되는 예를 도시하는 도면이다.
도 8을 참조하면, 피간섭 셀은 서브프레임 인덱스 1, 3 및 6에서 측정을 수행하는 것을 알 수 있다. 여기서 서브프레임 인덱스 1, 3 및 6은 간섭 셀이 데이터를 송신하지 않는 서브프레임을 지시하며, 상기 ABS를 지시할 수 있다. 물론, ABS로 지정된 서브프레임에서는 CRS만 전송할 수 있도록 설정하는 것이 바람직하다.
한편, RRC 휴지 상태의 단말을 위한 시간 영역에 대한 eICIC 기법은 마크로 셀 대 펨토 셀, 마크로 셀 대 피코 셀인 경우에 적용 가능하다. 구체적으로, LTE-A 시스템에서 고려되고 있는 셀 구성으로서 마크로 셀 대 펨토 셀, 마크로 셀 대 피코 셀 등이 존재하며, 마크로 셀 대 펨토 셀에서는 셀 간 인터페이스인 X2 인터페이스를 통한 정보 교환이 없고, 마크로 셀 대 피코 셀에서는 X2 인터페이스를 통한 정보 교환이 가능하다고 가정하고 있다.
우선, 마크로 셀 대 피코 셀 시나리오에 관하여 살펴본다.
도 9는 eICIC 기법이 적용되는 마크로 셀 대 피코 셀 시나리오를 도시하는 도면이다.
도 9를 참조하면, 동일한 주파수 자원을 사용하는 마크로 셀과 피코 셀이 인접하고, RRC 휴지 상태의 단말이 피코 셀의 커버리지에 위치하였으나 마크로 셀로부터 더 강한 신호를 받는 경우, 상기 단말은 셀 선택/재선택 과정에서 마크로 셀을 선택하게 된다.
이러한 경우, 피코 셀의 커버리지 확장을 목적으로 시간 영역의 eICIC 기법을 도입하여, 상기 단말의 피코 셀 측정 서브프레임 패턴을 마크로 셀의 간섭이 적은 특정 서브프레임으로 제한함으로써, 상기 단말이 셀 선택/재선택 과정에서 마크로 셀이 아닌 피코 셀을 선택, 접속할 수 있도록 한다. 이 경우 마크로 셀과 피코 셀이 각각 간섭(aggressor) 셀과 피간섭(victim) 셀이 된다.
다음으로, 마크로 셀 대 펨토 셀 시나리오에 관하여 살펴본다.
도 10은 eICIC 기법이 적용되는 마크로 셀 대 펨토 셀 시나리오를 도시하는 도면이다.
도 10을 참조하면, 동일한 주파수 자원을 사용하는 마크로 셀과 펨토 셀이 인접하고, 상기 펨토 셀의 맴버(member)가 아니면서 상기 펨토 셀의 커버리지 안에 위치한 RRC 휴지 상태의 단말은 셀 선택/재선택 과정에서 상기 펨토 셀의 강한 간섭으로 인하여 RRC 연결을 맺기 위한 셀, 즉 suitable 셀을 찾지 못할 수 있다.
이와 같은 경우, 펨토 셀의 커버리지 내에 위치한 상기 단말이 펨토 셀의 간섭 없이 인접한 마크로 셀에 접속할 수 있도록 시간 영역의 eICIC 기법을 도입하여, 상기 단말의 마크로 셀 측정 서브프레임 패턴을 펨토 셀의 간섭이 적은 특정 서브프레임으로 제한할 수 있다. 따라서, 상기 단말이 셀 선택/재선택 과정에서 마크로 셀을 선택하고 접속할 수 있도록 한다. 이 경우 마크로 셀과 펨토 셀이 각각 피간섭 셀과 간섭 셀이 된다.
서빙 셀과 RRC연결 상태인 단말이 RLF(Radio Link Failure)나 핸드오버 실패(Handover Failure)를 검출한 경우, 단말은 무선 링크 장애 발생에 관한 정보, 즉 RLF정보를 저장한다. 이와 같이, RLF 정보를 저장하였을 경우, 단말은 RRC연결 재수립(RRC Connection Reestablishment) 과정 중에 RRC연결 재수립 요청 (RRC Connection Reestablishment Request) 메시지를 통해 기지국에게 RLF 정보의 가용 여부(availability)를 보고한다. 또한, 단말은 RRC연결 재설정 (RRC Connection Reconfiguration) 메시지를 통해서도 기지국에게 RLF 정보의 가용 여부(availability)를 보고할 수 있다.
그리고, RRC연결 재설정 과정이 실패할 경우, 단말은 RRC휴지 상태로 천이하게 되며, 이후, 단말의 RRC 계층은 NAS 계층의 지시에 따라 RRC연결 설정 (RRC Connection Configuration) 과정을 수행하여 RRC연결 상태로 다시 천이할 수 있다. 이 경우, RRC연결 설정 과정에서, 단말은 RRC연결 설정 완료 (RRC Connection Configuration Complete) 메시지를 통해 기지국에게 RLF 정보의 가용 여부(availability)를 보고할 수 있다.
이와 같이, 단말이 RLF 정보의 가용 여부를 보고하면, 기지국은 UE 정보 요청 (UE information request) 메시지를 전송하여 단말에게 RLF정보를 요청한다. 단말은 UE 정보 요청 메시지를 수신한 경우, UE 정보 응답 (UE information response) 메시지를 통해 RLF 정보를 보고하게 된다. RLF 정보는 마지막 서빙 셀의 채널 측정 값과 이웃 셀의 채널 측정 값, RLF가 발생한 셀 정보, RLF가 발생한 위치 정보, 무선 링크 장애가 RLF 또는 핸드오버 실패에 기인한 것인지 여부, RRC연결 재설정을 시도하는 셀의 ID 등을 포함할 수 있다.
종래 기술에서, 단말이 RLF 또는 핸드오버 실패를 검출할 경우, 단말은 RLF정보를 기지국에게 보고할 수 있다. 이 경우, 단말이 ABS(Almost Blank Subframe)을 통해 기지국과 통신을 수행하는지 여부와 무관하게, 단말은 마지막 서빙 셀의 채널 측정 값과 이웃 셀의 채널 측정 값 등을 포함하여 RLF정보를 기지국에게 보고할 수 있다. 이때, 네트워크는 수신한 RLF정보에 포함된 채널 측정 값이 어떤 타입의 서브프레임에서 측정된 결과인지를 알 수 없으므로, 올바른 용도로 채널 측정 값을 이용할 수 없는 문제가 발생한다.
따라서, 본 발명에서 단말은 특정 서브프레임 동안 무선신호를 측정하고, 측정이 어떤 서브프레임을 통해서 진행되었는지 알려주는 보고 정보를 구성하고, 해당 보고 정보를 기지국에게 전송하는 것을 제안한다.
여기서, 상기 보고정보는 상기 무선신호의 측정 결과값을 포함할 수 있으며, 바람직하게는, 상기 보고 정보는 측정 결과를 보고하는 메시지이다. 또한, 상기 특정 서브프레임은 간섭 레벨이 다른 서브프레임과 다르도록 구성되며, 예를 들어, 상기 특정 서브프레임은 ABS일 수 있다.
또한, 상기 단말은 무선 링크 장애를 감지하여 상기 보고 정보를 구성할 수 있고, 기지국의 요청이 있을 경우에 상기 보고 정보를 전송할 수 있다.
도 11는 본 발명에 따른 측정 보고 방식을 도시하는 신호 흐름도이다. 특히, 도 11에서 특정 셀에서 제공하는 서브프레임들을 일반 서브프레임과 특정 서브프레임들로 구분할 수 있으며, 일반 서브프레임과 특정 서브프레임은 간섭 레벨에 따라 구분될 수 있다. 바람직하게는, 특정 서브프레임은 인접 셀로부터의 간섭이 적도록 구성된 ABS 일 수 있다.
단계 1101에서 단말은 특정 서브프레임들 예를 들어 ABS)을 통해 무선망의 하나의 셀로부터 무선신호를 측정한다. 이러한 측정을 통해 해당 셀의 채널 품질, 예를 들어RSRP(Reference Signal Received Power), RSRQ(Reference Signal Received Quality), RSSI(Received Signal Strength Indicator), 간섭 레벨 등을 측정 결과로 도출한다.
만약, 단계 1102와 같이 무선 링크 장애가 감지될 경우, 단말은 단계 1103에서 보고 정보를 구성한다. 감지되는 무선 링크 장애들로, 간섭(Interference) 증가, 커버리지 홀(coverage hole) 등으로 발생할 수 있는 RLF 또는 핸드오버 실패의 경우와, HARQ 재전송이 최대 재전송 횟수만큼 수행된 경우, 보안 실패(security failure)가 발생한 경우 등을 포함할 수 있다.
또한, 보고 정보에는 1) 단계1101의 측정 결과 (가령, RSRP/RSRQ/RSSI/간섭 레벨 측정값), 2) 단계1101의 측정 결과가 특정 서브프레임들로부터 수신한 측정 결과인지 여부, 3) 단계1101의 측정한 셀의 식별자, 4) 단계1101의 수신한 서브프레임에 관한 정보, 즉 서브프레임 패턴, 5) 감지된 무선 링크 장애의 종류 또는 원인 등의 정보가 포함될 수 있다.
마지막으로, 단말은 단계 1104에서 상기 구성한 보고 정보를 네트워크로 전송한다. 이때, 상기 보고 정보는 RRC 계층을 통하여 전송될 수 있으며, 측정 보고 메시지 또는 UE 정보 응답 메시지 등에 포함될 수 있다.
도 12는 본 발명에 따른 RLF 보고 방식을 도시하는 신호 흐름도이다.
도 12를 참조하면, 셀 간 간섭(Inter-cell interference)을 최소화한 상태에서 서빙 셀 또는 특정 인접 셀들로부터 신호를 수신하기 위해, 단말은 단계 1201에서 서빙 셀로부터 ABS 패턴을 수신한다.
또한, 단말은 단계 1202에서 ABS 패턴에 기반하여 RLM(Radio Link Management(RLM)를 위해 서빙 셀의 품질을 측정한다. 즉 ABS에서 측정을 수행한다. 이 경우, 단말은 단계 1203에서 서빙 셀의 RLF를 감지하고, RLF정보를 구성하여 저장한다. 이때 저장하는 RLF정보는 마지막 서빙 셀에서의 측정 결과와 마지막 서빙 셀의 셀식별자, ABS를 적용한 측정 결과인지 여부, 마지막 서빙 셀에서 설정한 ABS 패턴을 포함한다.
한편, RLF 감지후, 단말은 RRC연결 재수립 과정을 수행할 수 있지만, 단계 1204와 같이 RRC연결 재수립 과정이 실패할 경우, 단말은 RRC 휴지 상태로 천이한다.
RRC 휴지 상태에서 단말 RRC계층은 새로운 셀을 선택할 수 있으며, NAS 계층의 요청에 따라 단계 1205와 같이 RRC연결 수립 과정을 개시할 수 있다. 이때, 단말은RRC연결 수립 완료 메시지에 RLF정보가 가용함을 알리는 지시자를 단계 1206과 같이 포함할 수 있다.
계속하여, RLF정보가 가용한 경우, 상기 새로운 셀은 단계 1207과 같이 RLF보고 요청 지시자를 포함한 UE정보 요청 메시지를 단말에게 전송한다.
수신한 메시지에 RLF보고 요청 지시자가 포함되어 있을 경우, 단계 1208과 같이 단말은 UE정보 응답 메시지를 구성하여 상기 새로운 셀로 전송한다. 이때 UE정보 응답 메시지는 마지막 서빙 셀에서의 측정 결과와 마지막 서빙 셀의 셀ID, ABS를 적용한 측정 결과인지 여부, 마지막 서빙 셀에서 설정한 ABS 패턴을 포함할 수 있다.
한편, 본 발명에 따른 측정 보고 방법은 상술한 MDT 기법에도 적용할 수 있다.
도 13는 본 발명에 따른 MDT 보고 방식을 도시하는 신호 흐름도이다.
도 13을 참조하면, 셀 간 간섭을 최소화한 상태에서 신호를 수신하기 위해, 단말은 단계 1301에서 서빙 셀로부터 ABS 패턴을 수신한다.
계속하여, RRC휴지 상태인 단말은 단계 1302에서 ABS 패턴을 사용하여 ABS를 통해서 해당 셀 즉, 제 1 셀의 품질을 측정하고, 단계 1303에서 해당 셀의 측정 결과를 저장(Logging)한다.
한편, RRC휴지 상태인 단말의 RRC 계층은 새로운 셀, 즉 제 2 셀을 선택할 수 있으며, NAS 계층의 요청에 따라 단계 1304와 같이 제 2 셀과의 RRC연결 수립 과정을 수행할 수 있다. 이때, 단말은RRC연결 수립 완료 메시지에 단계 1305와 같이 logged MDT정보가 가용함을 알리는 지시자를 포함시킬 수 있다.
Logged MDT정보가 가용할 경우, 제 2 셀은 단계 1306에서 Logged MDT 정보 보고 요청 (logMeasReportReq) 지시자를 포함한 UE정보 요청 메시지를 단말에게 전송한다.
Logged MDT 정보 보고 요청 지시자가 포함된 UE정보 요청 메시지를 수신한 단말은, 단계 1307에서 UE정보 응답 메시지를 구성하여 제 2 셀로 전송한다. 이때 UE정보 응답 메시지는 제 1 셀에서의 측정 결과와 제 1 셀의 셀 식별자, ABS를 적용한 측정 결과인지 여부, 제 1 셀을 위해 설정한 ABS 패턴을 포함한다.
한편, 본 발명은 IDC(In-Device Coexistence) 간섭을 완화하는 방법에도 적용 응용 가능하다. 사용자가 다양한 네트워크에 언제 어디서든 접속을 하기 위해서는, 하나의 단말에 LTE, WiFi, Bluetooth (BT) 등의 무선 통신 시스템을 위한 송수신기를 비롯해서 GNSS (Global Navigation Satellite System) 수신기를 장착할 필요가 있다. 이와 같이 서로 다른 무선 통신 시스템이 하나의 단말에 공존하는 것을 IDC (In-Device Coexistence)라고 지칭한다. 예로는 BT 이어폰을 이용하여 VoIP 서비스, 멀티미디어 서비스를 받기 위해 LTE와 BT 모듈을 장착한 단말, 트래픽 분산을 위해 LTE와 WiFi 모듈을 장착한 단말, 위치 정보를 추가적으로 획득하기 위해 GNSS와 LTE 모듈을 장착한 단말 등을 예로 들 수 있다.
상술한 단말의 경우 하나의 단말 내에서 여러 송수신기가 근접해 있음으로 인해, 하나의 송신기에서 송신되는 신호의 전력이 다른 수신기에서 수신되는 신호의 전력보다 큰 경우가 발생할 수 있다. 이와 같은 경우, 다른 통신 모듈 간에 간섭이 발생할 수 있으며, 이를 IDC 간섭이라 지칭한다. IDC 간섭이 심해지는 경우, 기지국과의 연결에 문제가 없음에도 불구하고, 계속적으로 핸드오버를 시도하는 핑퐁(ping-pong) 현상이 발생할 수 있다.
단말 내부에서 공존 모듈간 IDC 간섭을 완화하기 위한 협력뿐만 아니라 단말과 기지국 사이에도 IDC 간섭을 완화하기 위한 협력이 존재하는 경우라면, 단말은 본 발명에 따라 서브프레임 별로 간섭 정보를 기지국으로 제공할 수 있다. 즉, 특정 서브프레임 기반의 측정을 수행하는 것이 아니라, 전체 서브프레임을 측정하되, 간섭이 임계값을 초과하는 서브프레임들을 결정하여, 이를 비트맵 정보로 기지국으로 제공하는 것이다. 이는 ABS 패턴을 기지국으로부터 수신하는 것이 아닌 단말이 스스로 서브프레임 패턴을 구성하여 기지국으로 전송한다는 면에서 차이가 있다.
도 14은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 14을 참조하면, 통신 장치(1400)는 프로세서(1410), 메모리(1420), RF 모듈(1430), 디스플레이 모듈(1440) 및 사용자 인터페이스 모듈(1450)을 포함한다.
통신 장치(1400)는 설명의 편의를 위해 도시된 것으로서 일부 모듈은 생략될 수 있다. 또한, 통신 장치(1400)는 필요한 모듈을 더 포함할 수 있다. 또한, 통신 장치(1400)에서 일부 모듈은 보다 세분화된 모듈로 구분될 수 있다. 프로세서(1410)는 도면을 참조하여 예시한 본 발명의 실시예에 따른 동작을 수행하도록 구성된다. 구체적으로, 프로세서(1410)의 자세한 동작은 도 1 내지 도 13에 기재된 내용을 참조할 수 있다.
메모리(1420)는 프로세서(1410)에 연결되며 오퍼레이팅 시스템, 어플리케이션, 프로그램 코드, 데이터 등을 저장한다. RF 모듈(1430)은 프로세서(1410)에 연결되며 기저대역 신호를 무선 신호를 변환하거나 무선신호를 기저대역 신호로 변환하는 기능을 수행한다. 이를 위해, RF 모듈(1430)은 아날로그 변환, 증폭, 필터링 및 주파수 상향 변환 또는 이들의 역과정을 수행한다. 디스플레이 모듈(1440)은 프로세서(1410)에 연결되며 다양한 정보를 디스플레이한다. 디스플레이 모듈(1440)은 이로 제한되는 것은 아니지만 LCD(Liquid Crystal Display), LED(Light Emitting Diode), OLED(Organic Light Emitting Diode)와 같은 잘 알려진 요소를 사용할 수 있다. 사용자 인터페이스 모듈(1450)은 프로세서(1410)와 연결되며 키패드, 터치 스크린 등과 같은 잘 알려진 사용자 인터페이스의 조합으로 구성될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 무선 통신 시스템에서 단말의 측정 보고 방법 및 이를 위한 장치는 3GPP LTE 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (10)

  1. 무선 통신 시스템에서 단말이 신호를 처리하는 방법에 있어서,
    하나 이상의 특정 서브프레임에서 제 1 셀에 대한 측정을 수행하는 단계;
    상기 측정이 상기 하나 이상의 특정 서브프레임에서 수행되었음을 지시하는 지시자와 함께 상기 측정 결과를 포함하는 보고 정보를 구성하는 단계; 및
    상기 보고 정보를 제 2 셀로 전송하는 단계를 포함하고,
    상기 하나 이상의 특정 서브프레임은 다른 서브프레임과 간섭 레벨이 다르게 구성된 것을 특징으로 하는,
    신호 처리 방법.
  2. 제 1 항에 있어서,
    상기 제 1 셀로부터 상기 하나 이상의 특정 서브프레임에 관한 정보를 수신하는 단계를 더 포함하는 것을 특징으로 하는,
    신호 처리 방법.
  3. 제 1 항에 있어서,
    상기 보고 정보는,
    상기 하나 이상의 특정 서브프레임에 대한 정보를 포함하는 것을 특징으로 하는,
    신호 처리 방법.
  4. 제 1 항에 있어서,
    상기 보고 정보는,
    상기 측정을 수행한 제 1 셀의 식별자를 포함하는 것을 특징으로 하는,
    신호 처리 방법.
  5. 제 1 항에 있어서,
    상기 제 1 셀과 상기 제 2 셀은 동일한 셀인 것을 특징으로 하는,
    신호 처리 방법.
  6. 제 1 항에 있어서,
    상기 제 2 셀로부터 측정 보고 요청 메시지를 수신하는 단계를 더 포함하고,
    상기 보고 정보는,
    상기 측정 보고 요청 메시지에 대한 응답으로 상기 제 2 셀로 전송되는 것을 특징으로 하는,
    신호 처리 방법.
  7. 제 1 항에 있어서,
    상기 측정 결과는,
    RSRP(Reference Signal Received Power), RSRQ(Reference Signal Received Quality), RSSI(Received Signal Strength Indicator), 간섭 레벨 중 적어도 하나를 포함하는 것을 특징으로 하는,
    신호 처리 방법.
  8. 제 1 항에 있어서,
    상기 제 2 셀과 연결 시, 상기 측정 결과의 보고가 가능함을 지시하는 메시지를 송신하는 단계를 더 포함하는 것을 특징으로 하는,
    신호 처리 방법.
  9. 제 1 항에 있어서,
    상기 측정 수행 시, 상기 단말은 상기 제 1 셀과 연결 상태인 것을 특징으로 하는,
    신호 처리 방법.
  10. 무선 통신 시스템에서 단말 장치로서,
    네트워크와 신호를 송수신하는 무선 통신 모듈; 및
    상기 신호를 처리하기 위한 프로세서를 포함하고,
    상기 프로세서는,
    하나 이상의 특정 서브프레임에서 상기 네트워크의 제 1 셀에 대한 측정을 수행하고, 상기 측정이 상기 하나 이상의 특정 서브프레임에서 수행되었음을 지시하는 지시자와 함께 상기 측정 결과를 포함하는 보고 정보를 구성하며, 상기 보고 정보를 상기 네트워크의 제 2 셀로 전송하도록 상기 무선 통신 모듈을 제어하고,
    상기 하나 이상의 특정 서브프레임은 다른 서브프레임과 간섭 레벨이 다르게 구성된 것을 특징으로 하는,
    단말 장치.
PCT/KR2012/000872 2011-02-11 2012-02-07 무선 통신 시스템에서 단말의 측정 보고 방법 및 이를 위한 장치 WO2012108657A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/979,825 US9357418B2 (en) 2011-02-11 2012-02-07 Measurement reporting method of terminal in wireless communication system and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161442125P 2011-02-11 2011-02-11
US61/442,125 2011-02-11

Publications (2)

Publication Number Publication Date
WO2012108657A2 true WO2012108657A2 (ko) 2012-08-16
WO2012108657A3 WO2012108657A3 (ko) 2012-12-13

Family

ID=46639039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000872 WO2012108657A2 (ko) 2011-02-11 2012-02-07 무선 통신 시스템에서 단말의 측정 보고 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (1) US9357418B2 (ko)
WO (1) WO2012108657A2 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015026090A1 (ko) * 2013-08-22 2015-02-26 엘지전자 주식회사 측정 수행 방법
WO2015163712A1 (ko) * 2014-04-23 2015-10-29 엘지전자 주식회사 특정 pdn의 장애에 대처하는 방법
WO2016195450A1 (ko) * 2015-06-05 2016-12-08 엘지전자 주식회사 고속 상향 링크를 지원하는 무선 통신 시스템에서 단말이 데이터를 전송하는 방법 및 이를 위한 장치
EP2993935A4 (en) * 2013-04-30 2016-12-28 Samsung Electronics Co Ltd METHOD AND APPARATUS FOR TRANSMITTING / RECEIVING MDT MEASUREMENT INFORMATION IN A MOBILE COMMUNICATION SYSTEM
US9609682B2 (en) 2012-05-11 2017-03-28 Kyocera Corporation Communication control method, user terminal, processor, storage medium, and base station

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101796271B1 (ko) * 2011-04-27 2017-11-10 주식회사 팬택 무선 링크 실패 보고 장치 및 방법
US20130083667A1 (en) * 2011-10-03 2013-04-04 Telefonaktiebolaget Lm Ericsson (Publ) Accessibility Measurements
US9629050B2 (en) * 2012-02-03 2017-04-18 Telefonaktiebolaget Lm Ericsson (Publ) Method, apparatus and computer program for cell identification
JP6332633B2 (ja) 2012-03-15 2018-05-30 日本電気株式会社 無線通信システム、無線局、ネットワーク運用管理装置およびネットワーク修復方法
US9516523B2 (en) * 2012-03-15 2016-12-06 Nec Corporation Radio communication system, radio station, network operation management apparatus, and network healing method
US9100969B2 (en) * 2012-03-19 2015-08-04 Blackberry Limited Physical layer feedback for in-device coexistence interference mitigation
CN103782637B (zh) * 2012-09-04 2018-09-28 华为技术有限公司 信道测量的处理方法、基站、和用户设备
US9374715B2 (en) * 2012-09-26 2016-06-21 Telefonaktiebolaget Lm Ericsson (Publ) Intercell interference coordination for machine to machine communications
EP2928242B1 (en) * 2013-01-04 2019-12-04 Huawei Technologies Co., Ltd. Positioning method, apparatus and system
US9521670B2 (en) * 2013-03-05 2016-12-13 Marvell World Trade Ltd. Signal decoding in the presence of almost-blank subframes (ABS)
US10420170B2 (en) * 2013-10-08 2019-09-17 Parallel Wireless, Inc. Parameter optimization and event prediction based on cell heuristics
US10015677B2 (en) * 2014-01-02 2018-07-03 Intel Corporation Coverage estimation of wireless cellular networks by user equipment (UE) idle mode measurements
EP2934039B1 (en) * 2014-04-15 2019-03-20 Telefonaktiebolaget LM Ericsson (publ) Technique for event reporting
EP3216261B1 (en) 2014-11-07 2021-06-23 Parallel Wireless, Inc. Self-calibrating and self-adjusting network
US10743276B2 (en) 2014-11-07 2020-08-11 Parallel Wireless, Inc. Signal quality database
US9955453B2 (en) * 2015-08-25 2018-04-24 Intel Corporation Evolved Node-B, user equipment, and methods for paging using a bitmap of paging indicators
CN111212378B (zh) * 2016-11-20 2021-03-09 上海朗帛通信技术有限公司 一种ue、基站和服务中心中的方法和设备
WO2021207899A1 (zh) * 2020-04-13 2021-10-21 北京小米移动软件有限公司 信息发送方法、用户设备、基站设备及计算机存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070110366A (ko) * 2005-08-24 2007-11-16 후아웨이 테크놀러지 컴퍼니 리미티드 측정 방법, 측정 성능 요구 결정 및 서비스 셀과 단말을선택하는 방법
KR20100006562A (ko) * 2007-05-02 2010-01-19 노키아 코포레이션 이웃 셀 할당을 시그널링하기 위한 방법, 장치, 및 컴퓨터 판독가능 매체
KR20100042662A (ko) * 2007-08-03 2010-04-26 인터디지탈 패튼 홀딩스, 인크 불연속 수신, 셀 재선택 및 rach를 위한 시스템 레벨 정보

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8600424B2 (en) * 2009-06-19 2013-12-03 Qualcomm Incorporated Method and apparatus for managing downlink transmission power in a heterogeneous network
US20110217985A1 (en) * 2009-09-28 2011-09-08 Qualcomm Incorporated Predictive short-term channel quality reporting utilizing reference signals
US8737998B2 (en) * 2010-02-17 2014-05-27 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for processing of neighbor cell information
US20110228700A1 (en) * 2010-03-16 2011-09-22 Telefonaktiebolaget Lm Ericsson (Publ) Subframe Allocation for In-Band Relay Nodes
US9125072B2 (en) * 2010-04-13 2015-09-01 Qualcomm Incorporated Heterogeneous network (HetNet) user equipment (UE) radio resource management (RRM) measurements
US9307431B2 (en) * 2010-04-13 2016-04-05 Qualcomm Incorporated Reporting of channel properties in heterogeneous networks
US8515427B2 (en) * 2010-06-28 2013-08-20 Qualcomm Incorporated Resource utilization measurements for heterogeneous networks
US8737924B2 (en) * 2010-08-12 2014-05-27 Mediatek Inc. Method to trigger in-device coexistence interference mitigation in mobile cellular systems
US9014025B2 (en) * 2010-10-04 2015-04-21 Futurewei Technologies, Inc. System and method for coordinating different types of base stations in a heterogeneous communications system
US20120113961A1 (en) * 2010-11-08 2012-05-10 Motorola Mobility, Inc. Interference Measurements in Enhanced Inter-Cell Interference Coordination Capable Wireless Terminals
US8665692B2 (en) * 2010-12-16 2014-03-04 Nokia Corporation Method and apparatus providing interference measurement in a coordinated multi-point transmission environment
US10123345B2 (en) * 2010-12-22 2018-11-06 Google Technology Holdings LLC Interference mitigation in a device supporting multiple radio technologies communicating in overlapping time periods
EP2661938B1 (en) * 2011-01-07 2021-12-15 Beijing Xiaomi Mobile Software Co., Ltd. Channel quality indicator reporting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070110366A (ko) * 2005-08-24 2007-11-16 후아웨이 테크놀러지 컴퍼니 리미티드 측정 방법, 측정 성능 요구 결정 및 서비스 셀과 단말을선택하는 방법
KR20100006562A (ko) * 2007-05-02 2010-01-19 노키아 코포레이션 이웃 셀 할당을 시그널링하기 위한 방법, 장치, 및 컴퓨터 판독가능 매체
KR20100042662A (ko) * 2007-08-03 2010-04-26 인터디지탈 패튼 홀딩스, 인크 불연속 수신, 셀 재선택 및 rach를 위한 시스템 레벨 정보

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9609682B2 (en) 2012-05-11 2017-03-28 Kyocera Corporation Communication control method, user terminal, processor, storage medium, and base station
US9743456B2 (en) 2012-05-11 2017-08-22 Kyocera Corporation Communication control method, user terminal, processor, storage medium, and base station
EP2993935A4 (en) * 2013-04-30 2016-12-28 Samsung Electronics Co Ltd METHOD AND APPARATUS FOR TRANSMITTING / RECEIVING MDT MEASUREMENT INFORMATION IN A MOBILE COMMUNICATION SYSTEM
US9629017B2 (en) 2013-04-30 2017-04-18 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving MDT measurement information in mobile communication system
EP3331268A1 (en) * 2013-04-30 2018-06-06 Samsung Electronics Co., Ltd. Method and apparatus for dealing with mdt measurements when eicic is configured
WO2015026090A1 (ko) * 2013-08-22 2015-02-26 엘지전자 주식회사 측정 수행 방법
US9893829B2 (en) 2013-08-22 2018-02-13 Lg Electronics Inc. Method of performing measurement
WO2015163712A1 (ko) * 2014-04-23 2015-10-29 엘지전자 주식회사 특정 pdn의 장애에 대처하는 방법
US10602350B2 (en) 2014-04-23 2020-03-24 Lg Electronics Inc. Method for responding to failure of specific PDN
WO2016195450A1 (ko) * 2015-06-05 2016-12-08 엘지전자 주식회사 고속 상향 링크를 지원하는 무선 통신 시스템에서 단말이 데이터를 전송하는 방법 및 이를 위한 장치
US10368277B2 (en) 2015-06-05 2019-07-30 Lg Electronics Inc. Method for transmitting data by terminal in wireless communication system supporting high-speed uplink, and apparatus for same

Also Published As

Publication number Publication date
US9357418B2 (en) 2016-05-31
US20130294281A1 (en) 2013-11-07
WO2012108657A3 (ko) 2012-12-13

Similar Documents

Publication Publication Date Title
WO2012108657A2 (ko) 무선 통신 시스템에서 단말의 측정 보고 방법 및 이를 위한 장치
WO2012023733A2 (ko) 무선 통신 시스템에서 단말이 기지국으로 mdt를 위한 측정 결과를 보고하는 방법 및 이를 위한 장치
WO2013065995A1 (en) Method of transmitting and receiving signal to and from network at ue in wireless communication system and apparatus for the same
WO2016036113A1 (en) Method and apparatus for performing interworking between 3gpp and wlan for dual connectivity in wireless communication system
WO2012023734A2 (ko) 무선 통신 시스템에서 idc 간섭을 회피하는 방법 및 이를 위한 장치
WO2012138079A2 (ko) 신호 전송 여부 결정 방법
WO2010151089A2 (en) Method of logging measurement result at handover failure in wireless communication system
WO2011118997A2 (en) Method of transceiving signal in wireless communication system and apparatus thereof
WO2013141656A1 (ko) 무선 통신 시스템에서 단말의 plmn 정보 저장 방법 및 이를 위한 장치
WO2013005972A2 (ko) 무선 통신 시스템에서 단말이 타이밍 어드밴스 그룹을 제어하는 방법 및 이를 위한 장치
WO2013112014A1 (ko) 무선통신시스템에서 휴면 모드 제어 방법 및 장치
WO2012138171A2 (ko) 무선 통신 시스템에서 단말이 네트워크와 연결을 설정하는 방법 및 이를 위한 장치
WO2012093913A2 (ko) 무선 통신 시스템에서 연결 실패를 회복하는 방법 및 이를 위한 장치
WO2012053755A2 (ko) 무선 통신 시스템에서 idc 간섭 제거를 위한 측정 방법 및 이를 위한 장치
WO2016068644A1 (en) Method and apparatus for performing access initiation and response for cell on unlicensed carrier in wireless communication system
WO2012060668A2 (ko) 무선 통신 시스템에서 단말의 plmn 정보 수신 방법 및 이를 위한 장치
WO2011149281A2 (ko) 무선 통신 시스템에서 로그된 측정 보고 방법 및 장치
WO2018236172A1 (en) METHOD FOR PERFORMING MEASUREMENT AND DEVICE SUPPORTING IT
WO2013051858A2 (ko) 무선 통신 시스템에서 이종망 간 셀 재선택하는 방법 및 장치
WO2012111984A2 (ko) 무선 통신 시스템에서 단말의 측정 정보 보고 방법 및 이를 위한 장치
WO2012002766A2 (ko) 무선 통신 시스템에서 모바일 펨토 셀로의 신호 송수신 방법 및 이를 위한 장치
WO2013042887A1 (en) Method and apparatus for reporting measurement information to network at user equipment in a wireless communication system
WO2016204556A1 (en) Method for changing coverage enhanced mode with multiple threshold values for cell reselection in wireless communication system and an apparatus therefor
WO2012093902A2 (ko) 셀간 간섭을 해소하기 위한 방법 및 장치
WO2013154387A1 (en) Method and apparatus for transmitting configuration in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12745077

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13979825

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12745077

Country of ref document: EP

Kind code of ref document: A2