WO2012108199A1 - Bearing mechanism, electric motor, compressor, and refrigeration device - Google Patents

Bearing mechanism, electric motor, compressor, and refrigeration device Download PDF

Info

Publication number
WO2012108199A1
WO2012108199A1 PCT/JP2012/000865 JP2012000865W WO2012108199A1 WO 2012108199 A1 WO2012108199 A1 WO 2012108199A1 JP 2012000865 W JP2012000865 W JP 2012000865W WO 2012108199 A1 WO2012108199 A1 WO 2012108199A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive shaft
magnetic bearing
bearing
compressor
electromagnetic force
Prior art date
Application number
PCT/JP2012/000865
Other languages
French (fr)
Japanese (ja)
Inventor
勇二 中澤
裕介 入野
尚也 山下
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2012108199A1 publication Critical patent/WO2012108199A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/42Pumps with cylinders or pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2362/00Apparatus for lighting or heating
    • F16C2362/52Compressors of refrigerators, e.g. air-conditioners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators

Definitions

  • the present invention relates to a bearing mechanism, an electric motor, a compressor, and a refrigeration apparatus including a magnetic bearing and a control unit that controls the electromagnetic force of the magnetic bearing.
  • Patent Document 1 an electric motor having a rotor to which a drive shaft arranged to extend in the horizontal direction is coupled, a radial magnetic bearing that supports the drive shaft in a non-contact state, and a cylindrical shape surrounding the drive shaft are formed.
  • a compressor including a radial auxiliary bearing (cylindrical member) is disclosed.
  • the drive shaft Since the magnetic bearing is energized during operation of the motor, the drive shaft is supported in a non-contact state by the magnetic bearing. Thereby, a drive shaft can be rotated, without making a bearing friction act.
  • the drive shaft is supported at the lower part of the inner periphery of the cylindrical member when the magnetic bearing is de-energized when the motor is stopped, or when the magnetic bearing becomes uncontrollable for some reason and is de-energized. Is done. Thereby, it can suppress that a drive shaft hits a magnetic bearing and this magnetic bearing is damaged.
  • the gap between the magnetic bearing and the drive shaft becomes non-uniform. Specifically, around the drive shaft, the lower gap is narrower than the upper gap. As a result, since the downward suction force is greater than the upward suction force acting on the drive shaft, a downward unbalanced suction force acts on the drive shaft.
  • the electromagnetic force required to move the drive shaft vertically upward is a value (F + mg) obtained by adding the unbalanced attractive force (F) and gravity (mg) acting on the drive shaft. (See FIG. 5A).
  • F unbalanced attractive force
  • Mg gravity
  • a control unit having a magnetic bearing and a power device (IGBT or the like) for controlling the electromagnetic force of the magnetic bearing must be enlarged.
  • IGBT power device
  • high dimensional accuracy is required for the drive shaft, and high dimensional accuracy is required when the drive shaft is assembled to the cylindrical member, which increases the processing cost and assembly cost of the product.
  • the present invention has been made in view of such a point, and an object of the present invention is to move the drive shaft in the direction of the central axis of the magnetic bearing when starting the magnetic bearing while ensuring the clearance between the drive shaft and the cylindrical member. Is to reduce the maximum electromagnetic force required.
  • a first invention is a bearing mechanism, and a magnetic bearing (14) that rotatably supports a drive shaft (13) arranged to extend in a horizontal direction in a non-contact state when energized, and the drive shaft (13 ) And a cylindrical member (19) that supports the drive shaft (13) at a lower inner periphery when the magnetic bearing (14) is not energized, and when the magnetic bearing (14) starts energization,
  • the drive shaft (13) supported by the inner peripheral lower portion of the cylindrical member (19) moves upward along the inner peripheral surface of the cylindrical member (19), and the drive shaft (13
  • the drive shaft (13) when the magnetic bearing (14) is energized, the drive shaft (13) is supported by the magnetic bearing (14) in a non-contact state. Thereby, a drive shaft (13) can be supported, without making a bearing friction act.
  • the magnetic bearing (14) when the magnetic bearing (14) is not energized, the drive shaft (13) is supported by the cylindrical member (19). Therefore, damage to the magnetic bearing (14) due to the drive shaft (13) hitting the magnetic bearing (14) can be suppressed.
  • the drive shaft (13) when the energization of the magnetic bearing (14) is started, the drive shaft (13) is supported on the lower inner periphery of the cylindrical member (19). In such a state, when the control unit (20) controls the electromagnetic force of the magnetic bearing (14), the drive shaft (13) is swung upward along the inner peripheral surface of the cylindrical member (19). After that, the drive shaft (13) performs an axial movement operation in which the drive shaft (13) moves in the direction of the central axis of the magnetic bearing (14).
  • the drive shaft (13) moves in a direction orthogonal to the unbalanced suction force acting on the drive shaft (13) (see FIGS. 5A to 5C).
  • the drive shaft (13) can be swung regardless of the magnitude of the suction force.
  • the drive shaft (13) moves to the opposite side to the unbalanced suction force acting on the drive shaft (13) (see FIG. 5B).
  • the electromagnetic force required to move the drive shaft (13) is the sum of the unbalanced attractive force and the component in the same direction as the unbalanced attractive force of the gravity acting on the drive shaft (13). Value.
  • both the electromagnetic force required for the turning operation and the electromagnetic force required for the axis movement operation are smaller than the maximum electromagnetic force F + mg conventionally required.
  • control unit (20) is configured such that the drive shaft (13) is centered on the magnetic bearing (14) while the axis of the drive shaft (13) is in the turning motion.
  • the electromagnetic force of the magnetic bearing (14) is controlled so as to move to a position above the shaft.
  • control unit (20) is configured so that the drive shaft (13) moves to the inner peripheral upper end of the cylindrical member (19) in the turning operation. It is characterized by controlling the electromagnetic force of the magnetic bearing (14).
  • the magnitude of the gravity acting on the drive shaft (13) can be used as it is for the force when the drive shaft (13) moves.
  • the electromagnetic force required for the shaft movement operation can be effectively reduced.
  • a fourth invention is an electric motor, and a rotor to which any one of the bearing mechanisms (8) of the first to third inventions and a drive shaft (13) supported by the magnetic bearing (14) are coupled. (12) and a stator (11) for rotating the rotor (12).
  • any one of the first to third inventions of the bearing mechanism (8) is used for the electric motor.
  • the fifth invention is characterized in that, in the fourth invention, the stator (11) or the rotor (12) includes a permanent magnet (12a).
  • the stator (11) and the rotor (12) are caused by the attractive force of the permanent magnet (12a). A relatively large unbalanced suction force is generated. Then, in the conventional case, the maximum electromagnetic force (F + mg) required for the magnetic bearing (14) becomes very large. On the other hand, in the fifth invention, the maximum electromagnetic force required for the magnetic bearing (14) is reduced by using the bearing mechanism (8) of the first to third inventions.
  • the sixth invention is a compressor and is characterized by including the electric motor (10) of the fourth or fifth invention.
  • the electric motor (10) of the fourth or fifth invention is used for the compressor.
  • the seventh invention is characterized in that, in the sixth invention, it is constituted by a turbo compressor (1).
  • the compressor is composed of a turbo compressor (1).
  • the eighth invention is a refrigeration apparatus, comprising a refrigerant circuit (41, 51) provided with the compressor (1) of the sixth or seventh invention, wherein the refrigerant circuit (41, 51) performs a refrigeration cycle. It is characterized by doing.
  • the compressor (1) of the sixth or seventh invention is used in a refrigeration apparatus that performs a refrigeration cycle in a refrigerant circuit (41, 51).
  • the drive shaft (13) is once raised along the circumferential direction of the cylindrical member (19) and then the direction of the central axis of the magnetic bearing (14) Has been moved to.
  • This can reduce the maximum electromagnetic force required to move the drive shaft (13) in the direction of the central axis of the magnetic bearing (14), so that the electromagnetic force of the magnetic bearing (14) and the magnetic bearing (14) can be reduced.
  • An increase in the size of the control unit (20) having a power device or the like for controlling can be suppressed.
  • the drive shaft (13) can be moved in the direction of the central axis of the magnetic bearing (14) using gravity acting on the drive shaft (13), the magnetic bearing (14) The maximum electromagnetic force can be further reduced.
  • the drive shaft (13) can be moved in the direction of the central axis of the magnetic bearing (14) by effectively using the gravity acting on the drive shaft (13), the magnetic bearing The maximum electromagnetic force of (14) can be further reduced.
  • the bearing mechanism (8) of the first to third aspects of the invention can be used for the electric motor (10).
  • the bearing mechanism (8) By providing, the enlargement of a magnetic bearing (14) and a control part (20) can be suppressed effectively.
  • the electric motor (10) of the fourth or fifth invention can be used for the compressor.
  • the electric motor (10) of the fourth or fifth aspect of the invention can be used for a compressor constituted by a turbo compressor.
  • the sixth or seventh compressor (1) can be used for a refrigeration apparatus.
  • FIG. 1 is a schematic diagram illustrating a structure of a turbo compressor according to the first embodiment.
  • FIG. 2 is a plan view showing the structure of the magnetic bearing, as viewed from the direction A in FIG. 3 is a cross-sectional view taken along line III-III in FIG.
  • FIG. 4 is a flowchart showing the control operation of the control unit.
  • FIG. 5 is a diagram illustrating a state in which the drive shaft moves upward along the inner peripheral surface of the touchdown bearing.
  • FIG. 5A illustrates a state in which the drive shaft is located at the lower inner periphery of the touchdown bearing (
  • FIG. 5 (B) and FIG. 5 (C) are diagrams showing a driving shaft in the middle of movement, and FIG.
  • FIG. 5 (D) is a touch-down bearing in which the driving shaft is a touch-down bearing. It is a figure which shows the state located in an upper end part.
  • FIG. 6 is a refrigerant circuit diagram of the air conditioner according to the second embodiment.
  • FIG. 7 is a refrigerant circuit diagram of the chiller according to the third embodiment.
  • Embodiment 1 of the present invention is a turbo compressor (1) having a bearing mechanism (8) according to the present invention.
  • the turbo compressor (1) is connected to a refrigerant circuit (not shown) that performs a refrigeration cycle operation by circulating the refrigerant, and compresses the refrigerant.
  • the turbo compressor (1) includes a casing (2), an electric motor (10) accommodated in the casing (2), and an impeller (30).
  • the casing (2) is formed in a horizontally long cylindrical shape with both ends closed.
  • the space in the casing (2) is partitioned by a wall portion (3) arranged at a predetermined distance from the right end portion of the casing (2) in FIG.
  • the space on the right side of the wall (3) forms an impeller chamber (4) that houses the impeller (30), and the space on the left of the wall (3) houses the electric motor (10).
  • a motor space (5) is formed.
  • a compression space (4a) communicating with the impeller chamber (4) is provided on the outer peripheral side of the impeller chamber (4).
  • the casing (2) includes a suction pipe (6) for guiding the refrigerant from the refrigerant circuit into the impeller chamber (4), and a high-pressure refrigerant compressed in the impeller chamber (4) for returning to the refrigerant circuit.
  • the discharge pipe (7) is connected.
  • the impeller (30) is formed by a plurality of blades so that the outer shape becomes a substantially conical shape.
  • the impeller (30) is housed in the impeller chamber (4) in a state of being fixed to one end of the drive shaft (13).
  • the electric motor (10) has a substantially cylindrical stator (11) fixed to the inner peripheral wall of the casing (2), and a cylindrical shape inserted through the stator (11) through a predetermined gap (air gap). And a drive shaft (13) that is inserted into and fixed to the rotor (12) so that the axis is coaxial with the axis of the rotor (12).
  • a plurality of permanent magnets (12a) are embedded in the rotor (12).
  • the rotor (12) rotates in the stator (11) by rotating so that the permanent magnet (12a) is attracted to the rotating magnetic field generated in the stator (11).
  • the drive shaft (13) is arranged to extend in the horizontal direction.
  • the electric motor (10) has a bearing mechanism (8).
  • the bearing mechanism (8) has two magnetic bearings (14, 14) formed in a substantially cylindrical shape, two touchdown bearings (19, 19) as cylindrical members, and the electromagnetic force of the magnetic bearing (14).
  • an electric motor (10) may be provided with the touchdown bearing which supports a drive shaft (13) in a thrust direction.
  • the magnetic bearing (14) and the touchdown bearing (19) are for supporting the drive shaft (13) in the radial direction. Both the magnetic bearing (14) and the touchdown bearing (19) are fixed in the casing (2).
  • the magnetic bearing (14) is configured to support the drive shaft in a non-contact state when energized.
  • the touchdown bearing (19) is not energized when the magnetic bearing (14) is de-energized (specifically, when the motor (10) is stopped or for some reason the magnetic bearing (14) becomes uncontrollable). Etc.), the drive shaft (13) is supported.
  • the magnetic bearings (14, 14) are arranged on one end side and the other end side of the drive shaft (13) so as to support both end sides of the drive shaft (13).
  • the touchdown bearings (19, 19) are arranged outside the magnetic bearings (14, 14) so as to support both ends of the drive shaft (13).
  • the magnetic bearing (14) is constituted by a so-called homopolar radial bearing as shown in FIGS.
  • the magnetic bearing (14) has a cylindrical portion (15a) formed in a substantially cylindrical shape and a plurality of protruding portions (15b) protruding radially inward from the inner peripheral surface of the cylindrical portion (15a).
  • the core part (15) integrally formed and the coil wire (16) wound around each of the protrusion part (15b) are provided.
  • a power source (not shown) is connected to the coil wire (16).
  • eight protrusions (15b) are provided. Four of the eight projecting portions (15b) are spaced equidistantly from one axial end portion (left end portion in FIG.
  • the magnetic bearing (14) includes a permanent magnet (17). As shown in FIG. 3, the permanent magnet (17) is provided between two projecting portions (15b, 15b) adjacent in the axial direction of the magnetic bearing (14).
  • the magnetic bearing may be a so-called heteropolar radial bearing that does not have a permanent magnet.
  • the touchdown bearing (19) is a ball bearing.
  • the inner diameter of the touchdown bearing (19) is formed to be smaller than the inner diameter of the magnetic bearing (14).
  • a gap sensor (not shown) is attached to the inside of the casing (2), and the position of the drive shaft (13) in the touchdown bearing (19) is detected.
  • the touch-down bearing (19) is configured with a ball bearing as described above, but is not limited thereto, and may be configured with, for example, a simple cylindrical member.
  • the touchdown bearing (19) supports the drive shaft (13) when the magnetic bearing (14) is not energized. Since the touchdown bearing (19) supports the drive shaft (13) at the lower part of the inner periphery, the clearance between the drive shaft (13) and the touchdown bearing (19) is on the upper side as shown in FIG. The lower side is narrower. At this time, the gap between the drive shaft (13) and the magnetic bearing (14) is also narrower on the lower side than on the upper side. Then, the lower attractive force of the magnetic bearing (14) becomes larger than the upper attractive force. That is, at this time, a downward unbalanced suction force acts on the drive shaft (13). Similarly, an unbalanced attractive force acts on the gap between the stator (11) and the rotor (12) of the electric motor (10).
  • the control unit (20) has a power device such as an IGBT (not shown) and is configured to control the electromagnetic force of the magnetic bearing (14). Specifically, the control unit (20) controls the current flowing through the coil wire (16) so that the drive shaft (13) supported by the touchdown bearing (19) performs a turning operation and a shaft movement operation, which will be described later.
  • the electromagnetic force in the magnetic bearing (14) is controlled by adjusting.
  • the turning operation is an operation in which the drive shaft (13) moves upward along the inner peripheral surface of the cylindrical member (19).
  • the shaft moving operation is an operation in which the drive shaft (13) after the turning operation moves in the direction of the central axis of the magnetic bearing (14).
  • the impeller (30) rotates in the impeller chamber (4).
  • the refrigerant is sucked from the suction pipe (6), and the sucked refrigerant is sent to the compression space (4a) by the impeller (30) and compressed to a high pressure.
  • the refrigerant thus compressed is discharged from the discharge pipe (7) and returned to the refrigerant circuit.
  • step S2 the drive shaft (13) has an inner peripheral upper end portion (referred to as a target position (P)) in the touchdown bearing (19). It is determined whether or not Specifically, when the drive shaft (13) detected by the gap sensor has reached the target position (P) (Yes), the process proceeds to step S5. On the other hand, when the drive shaft (13) detected by the gap sensor has not reached the target position (P) (No), the process proceeds to step S3.
  • the magnetic bearing (14) is not energized, the drive shaft (13) is normally located at the lower end of the touchdown bearing (19) (see FIG. 5A). In many cases, it is determined that the height of 13) is lower than the target position (P). Step S2 can be omitted. In this case, the process proceeds directly from step S1 to step S3.
  • step S3 the control unit (20) performs an electromagnetic force of the magnetic bearing (14) so that the drive shaft (13) performs a turning operation in which the drive shaft (13) moves upward along the inner peripheral surface of the touchdown bearing (19).
  • a control part (20) controls the electric current which flows through the coil wire (16) of a magnetic bearing (14) so that a drive shaft (13) may perform the said turning operation
  • an electromagnetic force is generated in the magnetic bearing (14) so that the drive shaft (13) rotates.
  • the drive shaft (13) performs a turning operation and moves upward along the inner peripheral surface of the touchdown bearing (19).
  • step S4 it is determined whether or not the drive shaft (13) has reached the target position (P). If it is determined that the position of the drive shaft (13) has reached the target position (P) (Yes), the process proceeds to step S5. On the other hand, when it is determined that the position of the drive shaft (13) has not reached the target position (P) (in the case of No), the process returns to step S3 again and the turning operation of the drive shaft (13) continues. Done. That is, the drive shaft (13) continues to turn until it reaches the target position (P) through the state of FIG. 5 (B) and the state of FIG. 5 (C). When the drive shaft (13) reaches the target position (P) (see FIG. 5D), the process proceeds to step S5.
  • step S4 it is also possible to skip step S4 and proceed directly from step S3 to step S5. Specifically, the current value of the coil wire (16) necessary for the drive shaft (13) to reach the target position (P) is calculated in advance. By passing this current value through the coil wire (16), the drive shaft (13) can be turned to the target position (P).
  • the turning of the drive shaft (13) is performed in a direction orthogonal to the unbalanced suction force F acting on the drive shaft (13), as shown in FIGS. 5 (A) to 5 (C). That is, the unbalanced suction force F does not affect the turning of the drive shaft (13). Therefore, the electromagnetic force required for turning the drive shaft (13) is smaller than the maximum electromagnetic force F + mg that has been conventionally required.
  • step S5 the control unit (20) controls the electromagnetic force of the magnetic bearing (14) so that the drive shaft (13) moves in the direction of the central axis of the magnetic bearing (14). Specifically, the control unit (20) controls the current flowing through the coil wire (16) of the magnetic bearing (14) so that the drive shaft (13) performs the shaft moving operation. As a result, an electromagnetic force is generated in the magnetic bearing (14) so that the drive shaft (13) moves in the axial direction. As a result, the drive shaft (13) performs an axis movement operation.
  • the electromagnetic force required when the drive shaft (13) performs the shaft moving operation includes the upward unbalanced attractive force F acting on the drive shaft (13) and the drive shaft. This is the difference (F ⁇ mg) from the downward gravity mg acting on (13).
  • the drive shaft (13) When the drive shaft (13) performs the shaft moving operation as described above, the drive shaft (13) is held in a non-contact state by the magnetic bearing (14).
  • the drive shaft (13) is moved along the circumferential direction of the touch-down bearing (19). After being moved to the inner peripheral upper end of 19), it is moved in the direction of the central axis of the magnetic bearing (14).
  • the maximum electromagnetic force of the magnetic bearing (14) can be reduced to F-mg, whereas the maximum electromagnetic force of the magnetic bearing conventionally required F + mg.
  • the magnetic bearing (14) and the control unit (20) for controlling the electromagnetic force of the magnetic bearing (14) can be reduced in size. And since the maximum electromagnetic force can be reduced as mentioned above, the electric current sent through a coil wire (16) can be suppressed.
  • the stress concerning a coil wire (16) can be reduced. Further, according to the first embodiment, since it is not necessary to reduce the clearance between the drive shaft (13) and the touchdown bearing (19) in order to reduce the maximum electromagnetic force of the magnetic bearing, the processing of the drive shaft (13) is performed. Cost and assembly cost when assembling the drive shaft (13) to the cylindrical member (19) can be reduced.
  • Embodiment 2 of the invention is an air conditioner (40) including the compressor (1) according to Embodiment 1.
  • the air conditioner (40) includes a refrigerant circuit (41) filled with a refrigerant, and constitutes a refrigeration apparatus that performs a refrigeration cycle by circulating the refrigerant.
  • the refrigerant circuit (41) includes the compressor (1), an outdoor heat exchanger (42), an indoor heat exchanger (43), an expansion valve (44), and a four-way switching valve (45). It is connected.
  • a refrigerant is circulated to perform a vapor compression refrigeration cycle.
  • the outdoor heat exchanger (42) is arranged in the outdoor space.
  • the refrigerant flowing inside the outdoor air exchanges heat.
  • the indoor heat exchanger (43) is disposed in the indoor space.
  • heat is exchanged between the refrigerant flowing in the indoor heat exchanger and the room air.
  • the expansion valve (44) is connected between the outdoor heat exchanger (42) and the indoor heat exchanger (43).
  • the expansion valve (44) is composed of, for example, an electronic expansion valve.
  • the four-way switching valve (45) has four ports from first to fourth.
  • the first port is connected to the indoor heat exchanger (43)
  • the second port is connected to the discharge pipe (7) of the compressor (1)
  • the third port is the compressor (1).
  • the fourth port is connected to the outdoor heat exchanger (42).
  • the four-way selector valve (45) communicates the first port with the third port and simultaneously communicates the second port with the fourth port (solid line in FIG. 6),
  • the second port can be switched to the second state (the state indicated by the broken line in FIG. 6) in which the third port and the fourth port are simultaneously communicated with each other.
  • the operation of the air conditioner (40) according to the second embodiment will be described.
  • the refrigerant circulation direction is switched according to the setting of the four-way switching valve (45).
  • the four-way selector valve (45) is in the state indicated by the solid line in FIG. 6 in the cooling operation.
  • a refrigeration cycle is performed in which the outdoor heat exchanger (42) serves as a radiator and the indoor heat exchanger (43) serves as an evaporator.
  • the four-way selector valve (45) is in a state indicated by a broken line in FIG.
  • the refrigerant compressed by the compressor (1) is discharged from the discharge pipe (7). Thereafter, the refrigerant flows through the outdoor heat exchanger (42). In the outdoor heat exchanger (42), the high-pressure refrigerant radiates heat to the outdoor air. The high-pressure refrigerant after radiating heat in the outdoor heat exchanger (42) is decompressed when passing through the expansion valve (44), and becomes a low-pressure refrigerant. Thereafter, the refrigerant flows through the indoor heat exchanger (43). In the indoor heat exchanger (43), the refrigerant absorbs heat from the indoor air and evaporates. As a result, the room is cooled. The refrigerant evaporated in the indoor heat exchanger (43) flows through the suction pipe (6), is sucked into the compressor (1), and is compressed again.
  • Embodiment 3 of the Invention Embodiment 3 of the invention is a chiller (50) including the compressor (1) according to Embodiment 1.
  • a so-called water-cooled chiller will be described as an example.
  • the chiller (50) includes a refrigerant circuit (51) filled with a refrigerant, and constitutes a refrigeration apparatus that performs a refrigeration cycle by circulating the refrigerant.
  • the compressor (1), the radiator (52), the evaporator (53), and the expansion valve (54) are connected to the refrigerant circuit (51).
  • a refrigerant is circulated to perform a vapor compression refrigeration cycle.
  • the radiator (52) includes a first heat transfer pipe (52a) connected to the refrigerant circuit (51) and a second heat transfer pipe (52b) connected to the cooling water circuit (60) (described in detail later). ing. That is, the refrigerant circuit (51) is connected to the cooling water circuit (60) through the radiator (52). In the radiator (52), the refrigerant flowing through the first heat transfer tube (52a) and the cooling water flowing through the second heat transfer tube (52b) exchange heat.
  • the evaporator (53) includes a first heat transfer pipe (53a) connected to the refrigerant circuit (51) and a second heat transfer pipe (53b) connected to the chilled water circuit (70) (described in detail later). Yes. That is, the refrigerant circuit (51) is connected to the cold water circuit (70) through the evaporator (53). In the evaporator (53), the refrigerant flowing through the first heat transfer tube (53a) and the cold water flowing through the second heat transfer tube (53b) exchange heat.
  • the radiator (52), the cooling water pump (61), and the cooling tower (62) are connected to the cooling water circuit (60).
  • the cooling water pump (61) conveys and circulates the cooling water in the cooling water circuit (60).
  • the cooling tower (62) the cooling water circulating in the cooling water circuit (60) is cooled.
  • the evaporator (53), the cold water pump (71), and the air heat exchanger (72) are connected to the cold water circuit (70).
  • the cold water circulating in the cold water circuit (70) is cooled.
  • the water in the chilled water circuit (70) thus cooled exchanges heat with the air around the air heat exchanger (72) via the air heat exchanger (72).
  • the compressor (1) When the compressor (1) is driven, the refrigerant compressed by the compressor (1) is discharged from the discharge pipe (7). Thereafter, the refrigerant flows through the radiator (52).
  • the radiator (52) In the radiator (52), the refrigerant flowing through the first heat transfer tube (52a) dissipates heat to the cooling water flowing through the second heat transfer tube (52b) and condenses.
  • the cooling water heated by the second heat transfer tube (52b) of the radiator (52) is cooled by the cooling tower (62).
  • the refrigerant condensed in the radiator (52) is reduced in pressure when passing through the expansion valve (54) and then flows through the evaporator (53).
  • the refrigerant flowing through the first heat transfer tube (53a) absorbs heat from the cold water flowing through the second heat transfer tube (53b) and evaporates.
  • the refrigerant evaporated in the evaporator (53) is returned to the compressor (1) and compressed.
  • the water cooled by the second heat transfer tube (53b) of the evaporator (53) is conveyed to the air heat exchanger (72) by the cold water pump (71).
  • This water absorbs heat from the air around the air heat exchanger (72) via the air heat exchanger (72).
  • the water that has passed through the air heat exchanger (72) is returned to the evaporator (53) of the cold water circuit (70), and is cooled again by the evaporator (53).
  • the embodiment may be configured as follows.
  • the drive shaft (13) in the turning operation, is moved to the upper end of the inner periphery of the magnetic bearing (14).
  • the present invention is not limited to this, and the drive shaft (13) is located above the central axis of the magnetic bearing (14).
  • the position, more specifically, the magnetic bearing (14) may be moved to a position above the virtual horizontal plane including the central axis.
  • the electromagnetic force required for performing the axis movement operation after this is F + mgcos ⁇ (90 ° ⁇ ⁇ 270 °) as shown in FIG. In this way, by moving the drive shaft (13) above the central axis of the magnetic bearing (14) in the turning operation, the gravity acting on the drive shaft (13) during the shaft movement operation can be used. As a result, the maximum electromagnetic force of the magnetic bearing (14) can be reduced.
  • the drive shaft (13) may be moved to a position below the central axis of the magnetic bearing (14). In other words, the drive shaft (13) may be moved slightly upward from the state where the drive shaft (13) is located at the lower end of the inner periphery of the magnetic bearing (14) (the state shown in FIG. 5A). .
  • the electromagnetic force required for the subsequent axial movement operation is F + mgcos ⁇ (0 ° ⁇ ⁇ 90 °, 270 ° ⁇ ⁇ ⁇ 360 °) as shown in FIG. 5B.
  • the maximum electromagnetic force of the magnetic bearing (14) can be made smaller than the maximum electromagnetic force F + mg of the magnetic bearing that was conventionally required.
  • the compressor (1) according to the first embodiment is applied to the air conditioner (40), and in the third embodiment, the compressor (1) according to the first embodiment is applied to the chiller (50).
  • the present invention is not limited to this and can be applied to other refrigeration apparatuses.
  • the compressor (1) according to the first embodiment can be applied to a water heater, a refrigerator, a freezer, and the like.
  • the present invention is particularly useful for a turbo compressor including an electric motor arranged so that a drive shaft extends in the horizontal direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

This bearing mechanism is equipped with: magnetic bearings (14) which, when energized, support a drive shaft (13) in a rotatable and non-contact manner, said drive shaft being arranged extending horizontally; cylindrical members (19), which are formed as cylinders surrounding the drive shaft (13) and which support the drive shaft (13) at their inner circumferential lower part when the magnetic bearings (14) are not energized; and a control unit (20) that controls the magnetic force of the magnetic bearings (14) so as to perform a rotation operation whereby the drive shaft (13) supported at the inner circumferential lower part of the cylindrical members (19) moves upward along the inner circumferential surface of the cylindrical members (19) when energization of the magnetic bearings (14) begins, and a shaft movement operation subsequent to the rotation operation, whereby the drive shaft (13) moves in the direction of the central axes of the magnetic bearings (14).

Description

軸受機構、電動機、圧縮機及び冷凍装置Bearing mechanism, electric motor, compressor and refrigeration system
  本発明は、磁気軸受と該磁気軸受の電磁力を制御する制御部とを備える軸受機構、電動機、圧縮機及び冷凍装置に関する。 The present invention relates to a bearing mechanism, an electric motor, a compressor, and a refrigeration apparatus including a magnetic bearing and a control unit that controls the electromagnetic force of the magnetic bearing.
  従来より、駆動軸の軸受として、磁気軸受を用いることが知られている。例えば特許文献1には、水平方向に延びるように配置される駆動軸が連結されるロータを有する電動機と、駆動軸を非接触状態で支持するラジアル磁気軸受と、駆動軸を囲む円筒状に形成されるラジアル補助軸受(円筒部材)とを備える圧縮機が開示されている。 Conventionally, it is known to use a magnetic bearing as a drive shaft bearing. For example, in Patent Document 1, an electric motor having a rotor to which a drive shaft arranged to extend in the horizontal direction is coupled, a radial magnetic bearing that supports the drive shaft in a non-contact state, and a cylindrical shape surrounding the drive shaft are formed. A compressor including a radial auxiliary bearing (cylindrical member) is disclosed.
  電動機の動作時には、磁気軸受が通電されているため、該磁気軸受によって駆動軸が非接触状態で支持される。これにより、軸受摩擦を作用させることなく、駆動軸を回転させることができる。一方、電動機の停止時に磁気軸受の通電が停止される場合や、磁気軸受が何らかの理由により制御不能になって非通電となり電動機が停止した場合には、駆動軸は円筒部材の内周下部に支持される。これにより、磁気軸受に駆動軸が当たって該磁気軸受が破損してしまうことを抑制できる。 Since the magnetic bearing is energized during operation of the motor, the drive shaft is supported in a non-contact state by the magnetic bearing. Thereby, a drive shaft can be rotated, without making a bearing friction act. On the other hand, the drive shaft is supported at the lower part of the inner periphery of the cylindrical member when the magnetic bearing is de-energized when the motor is stopped, or when the magnetic bearing becomes uncontrollable for some reason and is de-energized. Is done. Thereby, it can suppress that a drive shaft hits a magnetic bearing and this magnetic bearing is damaged.
特開2006-105346号公報JP 2006-105346 A
  上述のように磁気軸受が非通電となり駆動軸が円筒部材の内周下部に支持される場合、磁気軸受と駆動軸との隙間が不均一になる。具体的には、駆動軸の周囲では、下側の隙間の方が、上側の隙間よりも狭くなる。その結果、駆動軸に作用する上向きの吸引力よりも、下向きの吸引力の方が大きくなるため、駆動軸に下向きの不平衡吸引力が作用することになる。 As described above, when the magnetic bearing is de-energized and the drive shaft is supported by the lower part of the inner periphery of the cylindrical member, the gap between the magnetic bearing and the drive shaft becomes non-uniform. Specifically, around the drive shaft, the lower gap is narrower than the upper gap. As a result, since the downward suction force is greater than the upward suction force acting on the drive shaft, a downward unbalanced suction force acts on the drive shaft.
  一方、前記磁気軸受を起動させる場合には、まず、駆動軸の軸心を、磁気軸受の中心軸方向へ移動させる必要がある。駆動軸を鉛直方向上方へ移動させる際に必要な電磁力は、前記不平衡吸引力(Fとする)と、駆動軸に作用する重力(mgとする)とを加算した値(F+mg)となる(図5(A)参照)。一般的に、磁気軸受は、駆動軸を浮上させる際に最も大きな電磁力が必要となることが多く、このような場合には、磁気軸受は、駆動軸を浮上させるのに必要な最大電磁力を出力可能なように設計される。このように最大電磁力を確保するためには、磁気軸受や、該磁気軸受の電磁力を制御するためのパワーデバイス(IGBT等)を有する制御部を大型化しなければならない。これに対して、前記最大電磁力を小さくするために、駆動軸と円筒部材とのクリアランスを小さくすることも考えられる。しかしそうすると、駆動軸に高い寸法精度が要求されたり、円筒部材に駆動軸を組み付ける際に高い寸法精度が要求されたりするため、製品の加工コストや組立コストが上昇してしまう。 On the other hand, when starting the magnetic bearing, first, it is necessary to move the axis of the drive shaft in the direction of the central axis of the magnetic bearing. The electromagnetic force required to move the drive shaft vertically upward is a value (F + mg) obtained by adding the unbalanced attractive force (F) and gravity (mg) acting on the drive shaft. (See FIG. 5A). In general, a magnetic bearing often requires the largest electromagnetic force when the drive shaft is levitated. In such a case, the magnetic bearing requires the maximum electromagnetic force necessary for levitating the drive shaft. It is designed to be able to output. In order to secure the maximum electromagnetic force in this way, a control unit having a magnetic bearing and a power device (IGBT or the like) for controlling the electromagnetic force of the magnetic bearing must be enlarged. On the other hand, in order to reduce the maximum electromagnetic force, it is conceivable to reduce the clearance between the drive shaft and the cylindrical member. However, if so, high dimensional accuracy is required for the drive shaft, and high dimensional accuracy is required when the drive shaft is assembled to the cylindrical member, which increases the processing cost and assembly cost of the product.
  本発明は、かかる点に鑑みてなされたものであり、その目的は、駆動軸と円筒部材とのクリアランスを確保しつつ、磁気軸受の起動時に、駆動軸を磁気軸受の中心軸方向へ移動させる際に必要な最大電磁力を低減することである。 The present invention has been made in view of such a point, and an object of the present invention is to move the drive shaft in the direction of the central axis of the magnetic bearing when starting the magnetic bearing while ensuring the clearance between the drive shaft and the cylindrical member. Is to reduce the maximum electromagnetic force required.
  第1の発明は、軸受機構であり、水平方向に延びるように配置される駆動軸(13)を、通電時に非接触状態で回転自在に支持する磁気軸受(14)と、前記駆動軸(13)を囲む円筒状に形成され、前記磁気軸受(14)の非通電時に前記駆動軸(13)を内周下部で支持する円筒部材(19)と、前記磁気軸受(14)の通電開始時に前記円筒部材(19)の内周下部に支持される駆動軸(13)が、前記円筒部材(19)の内周面に沿って上方へ移動する旋回動作と、該旋回動作後の駆動軸(13)が前記磁気軸受(14)の中心軸方向へ移動する軸移動動作と、を行うように、前記磁気軸受(14)の電磁力を制御する制御部(20)と、を備えることを特徴としている。 A first invention is a bearing mechanism, and a magnetic bearing (14) that rotatably supports a drive shaft (13) arranged to extend in a horizontal direction in a non-contact state when energized, and the drive shaft (13 ) And a cylindrical member (19) that supports the drive shaft (13) at a lower inner periphery when the magnetic bearing (14) is not energized, and when the magnetic bearing (14) starts energization, The drive shaft (13) supported by the inner peripheral lower portion of the cylindrical member (19) moves upward along the inner peripheral surface of the cylindrical member (19), and the drive shaft (13 And a controller (20) for controlling the electromagnetic force of the magnetic bearing (14) so as to perform an axial movement operation in which the magnetic bearing (14) moves in the direction of the central axis of the magnetic bearing (14). Yes.
  第1の発明では、磁気軸受(14)の通電時には、駆動軸(13)は磁気軸受(14)によって非接触状態で支持される。これにより、軸受摩擦を作用させることなく駆動軸(13)を支持することができる。一方、磁気軸受(14)の非通電時には、駆動軸(13)は円筒部材(19)によって支持される。従って、磁気軸受(14)に駆動軸(13)が当たることによる磁気軸受(14)の破損を抑制できる。 In the first invention, when the magnetic bearing (14) is energized, the drive shaft (13) is supported by the magnetic bearing (14) in a non-contact state. Thereby, a drive shaft (13) can be supported, without making a bearing friction act. On the other hand, when the magnetic bearing (14) is not energized, the drive shaft (13) is supported by the cylindrical member (19). Therefore, damage to the magnetic bearing (14) due to the drive shaft (13) hitting the magnetic bearing (14) can be suppressed.
  第1の発明では、磁気軸受(14)の通電開始時には、駆動軸(13)が円筒部材(19)の内周下部に支持されている状態となっている。このような状態において、制御部(20)が磁気軸受(14)の電磁力を制御することにより、駆動軸(13)は、円筒部材(19)の内周面に沿って上方へ移動する旋回動作を行い、その後、駆動軸(13)は、駆動軸(13)が磁気軸受(14)の中心軸方向へ移動する軸移動動作を行う。 In the first invention, when the energization of the magnetic bearing (14) is started, the drive shaft (13) is supported on the lower inner periphery of the cylindrical member (19). In such a state, when the control unit (20) controls the electromagnetic force of the magnetic bearing (14), the drive shaft (13) is swung upward along the inner peripheral surface of the cylindrical member (19). After that, the drive shaft (13) performs an axial movement operation in which the drive shaft (13) moves in the direction of the central axis of the magnetic bearing (14).
  前記旋回動作では、駆動軸(13)は、該駆動軸(13)に作用する不平衡吸引力と直交する向きに移動する(図5(A)~図(C)参照)ため、該不平衡吸引力の大きさに関係なく、駆動軸(13)を旋回動作させることができる。 In the turning operation, the drive shaft (13) moves in a direction orthogonal to the unbalanced suction force acting on the drive shaft (13) (see FIGS. 5A to 5C). The drive shaft (13) can be swung regardless of the magnitude of the suction force.
  一方、前記軸移動動作では、駆動軸(13)は、該駆動軸(13)に作用する不平衡吸引力と反対側へ移動する(図5(B)参照)。このように駆動軸(13)を移動させるのに必要な電磁力は、前記不平衡吸引力と、駆動軸(13)に作用する重力のうち不平衡吸引力と同じ方向の成分とを加算した値となる。 On the other hand, in the shaft movement operation, the drive shaft (13) moves to the opposite side to the unbalanced suction force acting on the drive shaft (13) (see FIG. 5B). Thus, the electromagnetic force required to move the drive shaft (13) is the sum of the unbalanced attractive force and the component in the same direction as the unbalanced attractive force of the gravity acting on the drive shaft (13). Value.
  上述のように、第1の発明では、旋回動作の際に必要な電磁力、及び軸移動動作の際に必要な電磁力の双方とも、従来必要であった最大電磁力F+mgよりも小さくなる。 As described above, in the first invention, both the electromagnetic force required for the turning operation and the electromagnetic force required for the axis movement operation are smaller than the maximum electromagnetic force F + mg conventionally required.
  第2の発明は、第1の発明において、前記制御部(20)は、前記駆動軸(13)が、前記旋回動作において前記駆動軸(13)の軸心が前記磁気軸受(14)の中心軸よりも上方となる位置まで移動するように、前記磁気軸受(14)の電磁力を制御することを特徴としている。 In a second aspect based on the first aspect, the control unit (20) is configured such that the drive shaft (13) is centered on the magnetic bearing (14) while the axis of the drive shaft (13) is in the turning motion. The electromagnetic force of the magnetic bearing (14) is controlled so as to move to a position above the shaft.
  第2の発明では、図5(C)にも示すように、駆動軸(13)が軸移動動作する際の力に、駆動軸(13)に作用する重力を利用できるため、軸移動動作の際に必要な電磁力を軽減できる。 In the second invention, as shown in FIG. 5 (C), since the gravity acting on the drive shaft (13) can be used for the force when the drive shaft (13) performs the shaft moving operation, the shaft moving operation can be performed. Can reduce the electromagnetic force required.
  第3の発明は、第2の発明において、前記制御部(20)は、前記駆動軸(13)が、前記旋回動作において前記円筒部材(19)の内周上端部まで移動するように、前記磁気軸受(14)の電磁力を制御することを特徴としている。 In a third aspect based on the second aspect, the control unit (20) is configured so that the drive shaft (13) moves to the inner peripheral upper end of the cylindrical member (19) in the turning operation. It is characterized by controlling the electromagnetic force of the magnetic bearing (14).
  第3の発明では、図5(D)にも示すように、駆動軸(13)が軸移動動作する際の力に、駆動軸(13)に作用する重力の大きさをそのまま利用できるため、軸移動動作の際に必要な電磁力を効果的に軽減できる。 In the third invention, as shown in FIG. 5 (D), the magnitude of the gravity acting on the drive shaft (13) can be used as it is for the force when the drive shaft (13) moves. The electromagnetic force required for the shaft movement operation can be effectively reduced.
  第4の発明は、電動機であり、第1から第3の発明のうちいずれか1つの軸受機構(8)と、前記磁気軸受(14)によって支持される駆動軸(13)が連結されるロータ(12)と、該ロータ(12)を回転させるためのステータ(11)と、を備えることを特徴としている。 A fourth invention is an electric motor, and a rotor to which any one of the bearing mechanisms (8) of the first to third inventions and a drive shaft (13) supported by the magnetic bearing (14) are coupled. (12) and a stator (11) for rotating the rotor (12).
  第4の発明では、第1から第3の発明のうちいずれか1つの軸受機構(8)が、電動機に用いられる。 In the fourth invention, any one of the first to third inventions of the bearing mechanism (8) is used for the electric motor.
  第5の発明は、第4の発明において、前記ステータ(11)又は前記ロータ(12)は、永久磁石(12a)を備えることを特徴としている。 The fifth invention is characterized in that, in the fourth invention, the stator (11) or the rotor (12) includes a permanent magnet (12a).
  第5の発明では、駆動軸(13)が円筒部材(19)によって支持されているとき、ステータ(11)とロータ(12)との間には、永久磁石(12a)の吸引力に起因する比較的大きな不平衡吸引力が発生する。そうなると、従来の場合だと、磁気軸受(14)に必要な最大電磁力(F+mg)が非常に大きくなってしまう。これに対して、第5の発明では、第1から第3の発明の軸受機構(8)を用いることにより、磁気軸受(14)に必要な最大電磁力が低減する。 In the fifth invention, when the drive shaft (13) is supported by the cylindrical member (19), the stator (11) and the rotor (12) are caused by the attractive force of the permanent magnet (12a). A relatively large unbalanced suction force is generated. Then, in the conventional case, the maximum electromagnetic force (F + mg) required for the magnetic bearing (14) becomes very large. On the other hand, in the fifth invention, the maximum electromagnetic force required for the magnetic bearing (14) is reduced by using the bearing mechanism (8) of the first to third inventions.
  第6の発明は、圧縮機であり、第4又は第5の発明の電動機(10)を備えることを特徴としている。 The sixth invention is a compressor and is characterized by including the electric motor (10) of the fourth or fifth invention.
  第6の発明では、第4又は第5の発明の電動機(10)が、圧縮機に用いられる。 In the sixth invention, the electric motor (10) of the fourth or fifth invention is used for the compressor.
  第7の発明は、第6の発明において、ターボ圧縮機(1)で構成されていることを特徴としている。 The seventh invention is characterized in that, in the sixth invention, it is constituted by a turbo compressor (1).
  第7の発明では、圧縮機が、ターボ圧縮機(1)で構成されている。 In the seventh invention, the compressor is composed of a turbo compressor (1).
  第8の発明は、冷凍装置であり、第6又は第7の発明の圧縮機(1)が設けられた冷媒回路(41,51)を備え、該冷媒回路(41,51)で冷凍サイクルを行うことを特徴としている。 The eighth invention is a refrigeration apparatus, comprising a refrigerant circuit (41, 51) provided with the compressor (1) of the sixth or seventh invention, wherein the refrigerant circuit (41, 51) performs a refrigeration cycle. It is characterized by doing.
  第8の発明では、第6又は第7の発明の圧縮機(1)が、冷媒回路(41,51)で冷凍サイクルを行う冷凍装置に用いられる。 In the eighth invention, the compressor (1) of the sixth or seventh invention is used in a refrigeration apparatus that performs a refrigeration cycle in a refrigerant circuit (41, 51).
  前記第1の発明は、磁気軸受(14)の通電開始時に、駆動軸(13)を、いったん円筒部材(19)の周方向に沿って上昇させた後、磁気軸受(14)の中心軸方向へ移動させている。こうすると、駆動軸(13)を磁気軸受(14)の中心軸方向へ移動させるのに必要な最大電磁力を低減できるため、磁気軸受(14)や、該磁気軸受(14)の電磁力を制御するためのパワーデバイス等を有する制御部(20)の大型化を抑制できる。しかも、前記最大電磁力を低減するために駆動軸(13)と円筒部材(19)とのクリアランスを小さくする必要がなくなる。これにより、駆動軸(13)の加工コストや、円筒部材(19)に駆動軸(13)を組み付ける際の組立コストを低減できる。 In the first aspect of the present invention, at the start of energization of the magnetic bearing (14), the drive shaft (13) is once raised along the circumferential direction of the cylindrical member (19) and then the direction of the central axis of the magnetic bearing (14) Has been moved to. This can reduce the maximum electromagnetic force required to move the drive shaft (13) in the direction of the central axis of the magnetic bearing (14), so that the electromagnetic force of the magnetic bearing (14) and the magnetic bearing (14) can be reduced. An increase in the size of the control unit (20) having a power device or the like for controlling can be suppressed. Moreover, it is not necessary to reduce the clearance between the drive shaft (13) and the cylindrical member (19) in order to reduce the maximum electromagnetic force. Thereby, the processing cost of a drive shaft (13) and the assembly cost at the time of attaching a drive shaft (13) to a cylindrical member (19) can be reduced.
  また、前記第2の発明によれば、駆動軸(13)に作用する重力を利用して該駆動軸(13)を磁気軸受(14)の中心軸方向へ移動できるため、磁気軸受(14)の最大電磁力をより低減できる。 According to the second aspect of the present invention, since the drive shaft (13) can be moved in the direction of the central axis of the magnetic bearing (14) using gravity acting on the drive shaft (13), the magnetic bearing (14) The maximum electromagnetic force can be further reduced.
  また、前記第3の発明によれば、駆動軸(13)に作用する重力を効果的に利用して該駆動軸(13)を磁気軸受(14)の中心軸方向へ移動できるため、磁気軸受(14)の最大電磁力を更に低減できる。 Further, according to the third aspect of the invention, since the drive shaft (13) can be moved in the direction of the central axis of the magnetic bearing (14) by effectively using the gravity acting on the drive shaft (13), the magnetic bearing The maximum electromagnetic force of (14) can be further reduced.
  また、前記第4の発明によれば、前記第1から第3の発明の軸受機構(8)を、電動機(10)に用いることができる。 Further, according to the fourth aspect of the invention, the bearing mechanism (8) of the first to third aspects of the invention can be used for the electric motor (10).
  また、前記第5の発明によれば、ステータ(11)又はロータ(12)に永久磁石が設けられることにより不平衡吸引力が比較的大きくなる電動機(10)において、前記軸受機構(8)を設けることにより、磁気軸受(14)や制御部(20)の大型化を効果的に抑制できる。 According to the fifth aspect of the present invention, in the electric motor (10) in which the unbalanced attractive force becomes relatively large by providing a permanent magnet in the stator (11) or the rotor (12), the bearing mechanism (8) By providing, the enlargement of a magnetic bearing (14) and a control part (20) can be suppressed effectively.
  また、前記第6の発明によれば、第4又は第5の発明の電動機(10)を、圧縮機に用いることができる。 Further, according to the sixth invention, the electric motor (10) of the fourth or fifth invention can be used for the compressor.
  また、前記第7の発明によれば、ターボ圧縮機で構成される圧縮機に、前記第4又は第5の発明の電動機(10)を用いることができる。 Further, according to the seventh aspect of the invention, the electric motor (10) of the fourth or fifth aspect of the invention can be used for a compressor constituted by a turbo compressor.
  また、前記第8の発明によれば、前記第6又は第7の圧縮機(1)を、冷凍装置に用いることができる。 Further, according to the eighth aspect of the invention, the sixth or seventh compressor (1) can be used for a refrigeration apparatus.
図1は、実施形態1に係るターボ圧縮機の構造を示す概略図である。FIG. 1 is a schematic diagram illustrating a structure of a turbo compressor according to the first embodiment. 図2は、図1におけるA方向から視た矢視図であって、磁気軸受の構造を示す平面図である。FIG. 2 is a plan view showing the structure of the magnetic bearing, as viewed from the direction A in FIG. 図3は、図2におけるIII-III線断面図である。3 is a cross-sectional view taken along line III-III in FIG. 図4は、制御部の制御動作を示すフローチャートである。FIG. 4 is a flowchart showing the control operation of the control unit. 図5は、駆動軸がタッチダウン軸受の内周面に沿って上方へ移動する様子を示す図であって、図5(A)は駆動軸がタッチダウン軸受の内周下部に位置する状態(磁気軸受が通電されていない時の状態)を示す図、図5(B)及び図5(C)は、移動途中の駆動軸を示す図、図5(D)は、駆動軸がタッチダウン軸受内の上端部に位置する状態を示す図である。FIG. 5 is a diagram illustrating a state in which the drive shaft moves upward along the inner peripheral surface of the touchdown bearing. FIG. 5A illustrates a state in which the drive shaft is located at the lower inner periphery of the touchdown bearing ( FIG. 5 (B) and FIG. 5 (C) are diagrams showing a driving shaft in the middle of movement, and FIG. 5 (D) is a touch-down bearing in which the driving shaft is a touch-down bearing. It is a figure which shows the state located in an upper end part. 図6は、実施形態2に係る空調機の冷媒回路図である。FIG. 6 is a refrigerant circuit diagram of the air conditioner according to the second embodiment. 図7は、実施形態3に係るチラーの冷媒回路図である。FIG. 7 is a refrigerant circuit diagram of the chiller according to the third embodiment.
  以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.
  〈発明の実施形態1〉
  本発明の実施形態1は、本発明に係る軸受機構(8)を有するターボ圧縮機(1)である。ターボ圧縮機(1)は、冷媒が循環して冷凍サイクル運転動作を行う冷媒回路(図示省略)に接続され、冷媒を圧縮するものである。
<Embodiment 1>
Embodiment 1 of the present invention is a turbo compressor (1) having a bearing mechanism (8) according to the present invention. The turbo compressor (1) is connected to a refrigerant circuit (not shown) that performs a refrigeration cycle operation by circulating the refrigerant, and compresses the refrigerant.
  ターボ圧縮機(1)は、図1に示すように、ケーシング(2)と、該ケーシング(2)内に収容される電動機(10)と、羽根車(30)とを備えている。 As shown in FIG. 1, the turbo compressor (1) includes a casing (2), an electric motor (10) accommodated in the casing (2), and an impeller (30).
  ケーシング(2)は、両端が閉塞された横長円筒状に形成されている。ケーシング(2)内の空間は、図1におけるケーシング(2)の右側端部から所定の距離を置いて配置される壁部(3)によって区画されている。該壁部(3)よりも右側の空間が、羽根車(30)を収容するインペラ室(4)を形成し、該壁部(3)よりも左側の空間が、電動機(10)を収容する電動機空間(5)を形成する。また、インペラ室(4)の外周側には、該インペラ室(4)と連通する圧縮空間(4a)が設けられている。 The casing (2) is formed in a horizontally long cylindrical shape with both ends closed. The space in the casing (2) is partitioned by a wall portion (3) arranged at a predetermined distance from the right end portion of the casing (2) in FIG. The space on the right side of the wall (3) forms an impeller chamber (4) that houses the impeller (30), and the space on the left of the wall (3) houses the electric motor (10). A motor space (5) is formed. A compression space (4a) communicating with the impeller chamber (4) is provided on the outer peripheral side of the impeller chamber (4).
  ケーシング(2)には、冷媒回路からの冷媒をインペラ室(4)内へ導くための吸入管(6)と、インペラ室(4)内で圧縮された高圧の冷媒を冷媒回路へ戻すための吐出管(7)とが接続されている。 The casing (2) includes a suction pipe (6) for guiding the refrigerant from the refrigerant circuit into the impeller chamber (4), and a high-pressure refrigerant compressed in the impeller chamber (4) for returning to the refrigerant circuit. The discharge pipe (7) is connected.
  羽根車(30)は、複数の羽根によって外形が略円錐形状となるように形成されている。羽根車(30)は、駆動軸(13)の一端に固定された状態で、インペラ室(4)内に収容されている。 The impeller (30) is formed by a plurality of blades so that the outer shape becomes a substantially conical shape. The impeller (30) is housed in the impeller chamber (4) in a state of being fixed to one end of the drive shaft (13).
  電動機(10)は、ケーシング(2)の内周壁に固定される略筒状のステータ(11)と、該ステータ(11)の内側に所定の隙間(エアギャップ)を介して挿通される円筒状のロータ(12)と、軸心が該ロータ(12)の軸心と同軸となるようにロータ(12)に挿通固定される駆動軸(13)とを備えている。ロータ(12)には、複数の永久磁石(12a)が埋設されている。ロータ(12)は、永久磁石(12a)がステータ(11)内で発生する回転磁界に引きつけられるように回転することにより、ステータ(11)内で回転する。駆動軸(13)は、水平方向に延びるように配置されている。 The electric motor (10) has a substantially cylindrical stator (11) fixed to the inner peripheral wall of the casing (2), and a cylindrical shape inserted through the stator (11) through a predetermined gap (air gap). And a drive shaft (13) that is inserted into and fixed to the rotor (12) so that the axis is coaxial with the axis of the rotor (12). A plurality of permanent magnets (12a) are embedded in the rotor (12). The rotor (12) rotates in the stator (11) by rotating so that the permanent magnet (12a) is attracted to the rotating magnetic field generated in the stator (11). The drive shaft (13) is arranged to extend in the horizontal direction.
  電動機(10)は、軸受機構(8)を備えている。軸受機構(8)は、略筒状に形成された2つの磁気軸受(14,14)と、円筒部材としての2つのタッチダウン軸受(19,19)と、磁気軸受(14)の電磁力を制御する制御部(20)とを備えている。なお、図示は省略するが、電動機(10)は、駆動軸(13)をスラスト方向に支持するタッチダウン軸受を備える場合もある。 The electric motor (10) has a bearing mechanism (8). The bearing mechanism (8) has two magnetic bearings (14, 14) formed in a substantially cylindrical shape, two touchdown bearings (19, 19) as cylindrical members, and the electromagnetic force of the magnetic bearing (14). And a control unit (20) for controlling. In addition, although illustration is abbreviate | omitted, an electric motor (10) may be provided with the touchdown bearing which supports a drive shaft (13) in a thrust direction.
  磁気軸受(14)及びタッチダウン軸受(19)は、駆動軸(13)をラジアル方向に支持するためのものである。磁気軸受(14)及びタッチダウン軸受(19)は、ともにケーシング(2)内に固定されている。磁気軸受(14)は、通電時に駆動軸を非接触状態で支持するように構成されている。また、タッチダウン軸受(19)は、磁気軸受(14)の非通電時(具体的には、電動機(10)の停止時や、何らかの理由により磁気軸受(14)が制御不能となって非通電となっている場合等)に駆動軸(13)を支持するように構成されている。磁気軸受(14,14)は、駆動軸(13)の両端側を支持するように駆動軸(13)の一端側と他端側とに配置されている。タッチダウン軸受(19,19)は、駆動軸(13)の両端部を支持するように磁気軸受(14,14)よりも外側に配置されている。 The magnetic bearing (14) and the touchdown bearing (19) are for supporting the drive shaft (13) in the radial direction. Both the magnetic bearing (14) and the touchdown bearing (19) are fixed in the casing (2). The magnetic bearing (14) is configured to support the drive shaft in a non-contact state when energized. The touchdown bearing (19) is not energized when the magnetic bearing (14) is de-energized (specifically, when the motor (10) is stopped or for some reason the magnetic bearing (14) becomes uncontrollable). Etc.), the drive shaft (13) is supported. The magnetic bearings (14, 14) are arranged on one end side and the other end side of the drive shaft (13) so as to support both end sides of the drive shaft (13). The touchdown bearings (19, 19) are arranged outside the magnetic bearings (14, 14) so as to support both ends of the drive shaft (13).
  磁気軸受(14)は、図2及び図3に示すように、いわゆるホモポーラ型のラジアル軸受で構成されている。磁気軸受(14)は、略筒状に形成される筒部(15a)と、該筒部(15a)の内周面から径方向内方へ向かって突出する複数の突出部(15b)とが一体形成されたコア部(15)と、突出部(15b)のそれぞれに巻回されるコイル線(16)とを備えている。コイル線(16)には、電源(図示省略)が接続されている。突出部(15b)は、実施形態1では、8つ設けられている。8つのうちの4つの突出部(15b)は、筒部(15a)における軸方向の一端部(図3における左端部)から、該筒部(15a)の周方向に等間隔を置いて(すなわち互いに90度の間隔を置いて)、径方向内方へ突出するように形成されている。残りの4つの突出部(15b)は、筒部(15a)における軸方向の他端部(図3における右端部)から、該筒部(15a)の周方向に互いに90度の間隔を置いて、径方向内方へ突出するように形成されている。また、磁気軸受(14)は、永久磁石(17)を備えている。永久磁石(17)は、図3に示すように、磁気軸受(14)の軸方向に隣接する2つの突出部(15b,15b)の間に設けられている。なお、前記磁気軸受は、永久磁石を有さない、いわゆるヘテロポーラ型のラジアル軸受で構成されていてもよい。 The magnetic bearing (14) is constituted by a so-called homopolar radial bearing as shown in FIGS. The magnetic bearing (14) has a cylindrical portion (15a) formed in a substantially cylindrical shape and a plurality of protruding portions (15b) protruding radially inward from the inner peripheral surface of the cylindrical portion (15a). The core part (15) integrally formed and the coil wire (16) wound around each of the protrusion part (15b) are provided. A power source (not shown) is connected to the coil wire (16). In the first embodiment, eight protrusions (15b) are provided. Four of the eight projecting portions (15b) are spaced equidistantly from one axial end portion (left end portion in FIG. 3) of the cylindrical portion (15a) in the circumferential direction of the cylindrical portion (15a) (that is, They are formed so as to protrude radially inwardly at intervals of 90 degrees from each other. The remaining four protrusions (15b) are spaced from each other by 90 degrees in the circumferential direction of the cylindrical portion (15a) from the other axial end portion (right end portion in FIG. 3) of the cylindrical portion (15a). It is formed so as to protrude radially inward. The magnetic bearing (14) includes a permanent magnet (17). As shown in FIG. 3, the permanent magnet (17) is provided between two projecting portions (15b, 15b) adjacent in the axial direction of the magnetic bearing (14). The magnetic bearing may be a so-called heteropolar radial bearing that does not have a permanent magnet.
  タッチダウン軸受(19)は、玉軸受で構成されている。タッチダウン軸受(19)の内径は、磁気軸受(14)の内径よりも小さくなるように形成されている。これにより、磁気軸受(14)の非通電時に、駆動軸(13)を内周下部で支持することができるため、磁気軸受(14)の破損を防止できる。また、ケーシング(2)の内側には、ギャップセンサ(図示省略)が取り付けられていて、タッチダウン軸受(19)内における駆動軸(13)の位置が検出される。なお、本実施形態1では、タッチダウン軸受(19)は、上述のように玉軸受で構成されているが、この限りでなく、例えば単なる円筒状の部材で構成されていてもよい。 The touchdown bearing (19) is a ball bearing. The inner diameter of the touchdown bearing (19) is formed to be smaller than the inner diameter of the magnetic bearing (14). Thereby, when the magnetic bearing (14) is not energized, the drive shaft (13) can be supported by the lower portion of the inner periphery, so that the magnetic bearing (14) can be prevented from being damaged. Further, a gap sensor (not shown) is attached to the inside of the casing (2), and the position of the drive shaft (13) in the touchdown bearing (19) is detected. In the first embodiment, the touch-down bearing (19) is configured with a ball bearing as described above, but is not limited thereto, and may be configured with, for example, a simple cylindrical member.
  上述のように、タッチダウン軸受(19)は、磁気軸受(14)が通電されていない場合に、駆動軸(13)を支持する。タッチダウン軸受(19)は、内周下部で駆動軸(13)を支持するため、図5(A)にも示す通り、駆動軸(13)とタッチダウン軸受(19)との隙間は、上側よりも下側の方が狭くなっている。このとき、駆動軸(13)と磁気軸受(14)との隙間についても、上側よりも下側の方が狭くなる。そうなると、磁気軸受(14)の下側の吸引力の方が、上側の吸引力よりも大きくなる。つまりこのとき、駆動軸(13)には、下向きの不平衡吸引力が作用している。なお、電動機(10)のステータ(11)とロータ(12)との隙間についても同様に、不平衡吸引力が作用している。 As described above, the touchdown bearing (19) supports the drive shaft (13) when the magnetic bearing (14) is not energized. Since the touchdown bearing (19) supports the drive shaft (13) at the lower part of the inner periphery, the clearance between the drive shaft (13) and the touchdown bearing (19) is on the upper side as shown in FIG. The lower side is narrower. At this time, the gap between the drive shaft (13) and the magnetic bearing (14) is also narrower on the lower side than on the upper side. Then, the lower attractive force of the magnetic bearing (14) becomes larger than the upper attractive force. That is, at this time, a downward unbalanced suction force acts on the drive shaft (13). Similarly, an unbalanced attractive force acts on the gap between the stator (11) and the rotor (12) of the electric motor (10).
  制御部(20)は、図示しないIGBT等のパワーデバイスを有していて、磁気軸受(14)の電磁力を制御するように構成されている。具体的には、制御部(20)は、タッチダウン軸受(19)によって支持される駆動軸(13)が、後述する旋回動作及び軸移動動作を行うように、コイル線(16)を流れる電流を調整することにより磁気軸受(14)内の電磁力を制御する。前記旋回動作は、駆動軸(13)が円筒部材(19)の内周面に沿って上方へ移動する動作である。前記軸移動動作は、旋回動作後の駆動軸(13)が前記磁気軸受(14)の中心軸方向へ移動する動作である。 The control unit (20) has a power device such as an IGBT (not shown) and is configured to control the electromagnetic force of the magnetic bearing (14). Specifically, the control unit (20) controls the current flowing through the coil wire (16) so that the drive shaft (13) supported by the touchdown bearing (19) performs a turning operation and a shaft movement operation, which will be described later. The electromagnetic force in the magnetic bearing (14) is controlled by adjusting. The turning operation is an operation in which the drive shaft (13) moves upward along the inner peripheral surface of the cylindrical member (19). The shaft moving operation is an operation in which the drive shaft (13) after the turning operation moves in the direction of the central axis of the magnetic bearing (14).
  -運転動作-
  次に、ターボ圧縮機(1)の運転動作について説明する。
-Driving operation-
Next, the operation of the turbo compressor (1) will be described.
  電動機(10)が起動されると、磁気軸受(14)の通電が開始される。すると駆動軸(13)は、磁気軸受(14)内に生成される電磁力によって、詳しくは後述する旋回動作及び軸移動動作を行うことにより、磁気軸受(14)によって非接触状態で支持される。 When the motor (10) is started, energization of the magnetic bearing (14) is started. Then, the drive shaft (13) is supported in a non-contact state by the magnetic bearing (14) by performing a turning operation and a shaft moving operation, which will be described in detail later, by an electromagnetic force generated in the magnetic bearing (14). .
  また、電動機(10)の起動によりロータ(12)が回転駆動すると、羽根車(30)がインペラ室(4)内で回転する。これにより、吸入管(6)から冷媒が吸入されるとともに、該吸入された冷媒が羽根車(30)によって圧縮空間(4a)へ送られて高圧まで圧縮される。このように圧縮された冷媒は、吐出管(7)から吐出されて冷媒回路へ戻される。 In addition, when the rotor (12) is driven to rotate by starting the electric motor (10), the impeller (30) rotates in the impeller chamber (4). Thereby, the refrigerant is sucked from the suction pipe (6), and the sucked refrigerant is sent to the compression space (4a) by the impeller (30) and compressed to a high pressure. The refrigerant thus compressed is discharged from the discharge pipe (7) and returned to the refrigerant circuit.
  -電動機の起動時における制御部の動作-
  電動機(10)が起動されると、磁気軸受(14)の通電が開始され、制御部(20)が磁気軸受(14)内の電磁力の制御を開始する。これに伴って、駆動軸(13)がタッチダウン軸受(19)内を移動する。この動作を、図4及び図5に基づいて説明する。
-Operation of control unit at motor start-
When the electric motor (10) is started, energization of the magnetic bearing (14) is started, and the control unit (20) starts controlling the electromagnetic force in the magnetic bearing (14). Along with this, the drive shaft (13) moves in the touch-down bearing (19). This operation will be described with reference to FIGS.
  図4におけるステップS1で電動機(10)の起動指令が出されると、ステップS2では、駆動軸(13)が、タッチダウン軸受(19)内の内周上端部(目標位置(P)とする)に到達しているか否かが判定される。具体的には、ギャップセンサで検出された駆動軸(13)が目標位置(P)に到達している場合(Yesの場合)には、ステップS5へ進む。一方、ギャップセンサで検出された駆動軸(13)が目標位置(P)に到達していない場合(Noの場合)には、ステップS3へ進む。磁気軸受(14)の通電がなされていない場合、駆動軸(13)は通常、タッチダウン軸受(19)の下端部に位置するため(図5(A)参照)、ステップ2では、駆動軸(13)の高さが目標位置(P)よりも低いと判定される場合が多い。なお、ステップS2は省略することも可能である。この場合、ステップS1からステップS3へ直接進む。 When a start command for the electric motor (10) is issued in step S1 in FIG. 4, in step S2, the drive shaft (13) has an inner peripheral upper end portion (referred to as a target position (P)) in the touchdown bearing (19). It is determined whether or not Specifically, when the drive shaft (13) detected by the gap sensor has reached the target position (P) (Yes), the process proceeds to step S5. On the other hand, when the drive shaft (13) detected by the gap sensor has not reached the target position (P) (No), the process proceeds to step S3. When the magnetic bearing (14) is not energized, the drive shaft (13) is normally located at the lower end of the touchdown bearing (19) (see FIG. 5A). In many cases, it is determined that the height of 13) is lower than the target position (P). Step S2 can be omitted. In this case, the process proceeds directly from step S1 to step S3.
  次いで、ステップS3では、駆動軸(13)がタッチダウン軸受(19)の内周面に沿って上方へ移動する旋回動作を行うように、制御部(20)が磁気軸受(14)の電磁力を制御する。具体的には、制御部(20)は、駆動軸(13)が前記旋回動作を行うように、磁気軸受(14)のコイル線(16)を流れる電流を制御する。これにより、磁気軸受(14)内には、駆動軸(13)が旋回動作するような電磁力が生成される。その結果、駆動軸(13)は旋回動作を行い、タッチダウン軸受(19)の内周面に沿って上方へ移動する。 Next, in step S3, the control unit (20) performs an electromagnetic force of the magnetic bearing (14) so that the drive shaft (13) performs a turning operation in which the drive shaft (13) moves upward along the inner peripheral surface of the touchdown bearing (19). To control. Specifically, a control part (20) controls the electric current which flows through the coil wire (16) of a magnetic bearing (14) so that a drive shaft (13) may perform the said turning operation | movement. Thereby, an electromagnetic force is generated in the magnetic bearing (14) so that the drive shaft (13) rotates. As a result, the drive shaft (13) performs a turning operation and moves upward along the inner peripheral surface of the touchdown bearing (19).
  次いでステップS4では、ステップS2と同様、駆動軸(13)が目標位置(P)に到達しているか否かが判定される。駆動軸(13)の位置が目標位置(P)に到達していると判定された場合(Yesの場合)には、ステップS5へ進む。一方、駆動軸(13)の位置が目標位置(P)に到達していないと判定された場合(Noの場合)には、再びステップS3に戻り、駆動軸(13)の旋回動作が継続して行われる。つまり、駆動軸(13)は、図5(B)の状態及び図5(C)の状態を経て、目標位置(P)に到達するまで旋回動作を続ける。そして、駆動軸(13)が目標位置(P)に到達すると(図5(D)参照)、ステップS5へ進む。 Next, in step S4, as in step S2, it is determined whether or not the drive shaft (13) has reached the target position (P). If it is determined that the position of the drive shaft (13) has reached the target position (P) (Yes), the process proceeds to step S5. On the other hand, when it is determined that the position of the drive shaft (13) has not reached the target position (P) (in the case of No), the process returns to step S3 again and the turning operation of the drive shaft (13) continues. Done. That is, the drive shaft (13) continues to turn until it reaches the target position (P) through the state of FIG. 5 (B) and the state of FIG. 5 (C). When the drive shaft (13) reaches the target position (P) (see FIG. 5D), the process proceeds to step S5.
  なお、ステップS4を省略して、ステップS3からステップS5へ直接進むことも可能である。具体的には、駆動軸(13)が目標位置(P)に到達するために必要なコイル線(16)の電流値を予め算出しておく。この電流値をコイル線(16)に流すことにより、駆動軸(13)を目標位置(P)まで旋回させることができる。 It is also possible to skip step S4 and proceed directly from step S3 to step S5. Specifically, the current value of the coil wire (16) necessary for the drive shaft (13) to reach the target position (P) is calculated in advance. By passing this current value through the coil wire (16), the drive shaft (13) can be turned to the target position (P).
  駆動軸(13)の旋回は、図5(A)~図5(C)にも示すように、駆動軸(13)に作用する不平衡吸引力Fと直交する方向に向かって行われる。つまり、不平衡吸引力Fは、駆動軸(13)の旋回には影響を及ぼさない。従って、駆動軸(13)を旋回させるために必要な電磁力は、従来必要であった最大電磁力F+mgよりも小さくなる。 The turning of the drive shaft (13) is performed in a direction orthogonal to the unbalanced suction force F acting on the drive shaft (13), as shown in FIGS. 5 (A) to 5 (C). That is, the unbalanced suction force F does not affect the turning of the drive shaft (13). Therefore, the electromagnetic force required for turning the drive shaft (13) is smaller than the maximum electromagnetic force F + mg that has been conventionally required.
  ステップS5では、駆動軸(13)が磁気軸受(14)の中心軸方向へ移動する軸移動動作を行うように、制御部(20)が磁気軸受(14)の電磁力を制御する。具体的には、制御部(20)は、駆動軸(13)が前記軸移動動作を行うように、磁気軸受(14)のコイル線(16)を流れる電流を制御する。これにより、磁気軸受(14)内には、駆動軸(13)が軸移動動作するような電磁力が生成される。その結果、駆動軸(13)は軸移動動作を行う。 In step S5, the control unit (20) controls the electromagnetic force of the magnetic bearing (14) so that the drive shaft (13) moves in the direction of the central axis of the magnetic bearing (14). Specifically, the control unit (20) controls the current flowing through the coil wire (16) of the magnetic bearing (14) so that the drive shaft (13) performs the shaft moving operation. As a result, an electromagnetic force is generated in the magnetic bearing (14) so that the drive shaft (13) moves in the axial direction. As a result, the drive shaft (13) performs an axis movement operation.
  駆動軸(13)が軸移動動作を行う際に必要な電磁力は、図5(D)にも示すように、駆動軸(13)に作用する上向きの不平衡吸引力Fと、該駆動軸(13)に作用する下向きの重力mgとの差分(F-mg)となる。 As shown in FIG. 5D, the electromagnetic force required when the drive shaft (13) performs the shaft moving operation includes the upward unbalanced attractive force F acting on the drive shaft (13) and the drive shaft. This is the difference (F−mg) from the downward gravity mg acting on (13).
  上述のように駆動軸(13)が軸移動動作を行うと、駆動軸(13)は磁気軸受(14)によって非接触状態で保持される。 When the drive shaft (13) performs the shaft moving operation as described above, the drive shaft (13) is held in a non-contact state by the magnetic bearing (14).
  -実施形態1の効果-
  以上のように、実施形態1に係るターボ圧縮機(1)では、電動機(10)の初動時、駆動軸(13)をタッチダウン軸受(19)の周方向に沿って、該タッチダウン軸受(19)の内周上端部まで移動させた後、磁気軸受(14)の中心軸方向へ移動させている。こうすると、従来、磁気軸受の最大電磁力がF+mg必要であったのに対して、磁気軸受(14)の最大電磁力をF-mgまで低減できる。その結果、磁気軸受(14)や、該磁気軸受(14)の電磁力を制御する制御部(20)を小型化できる。しかも、上述のように最大電磁力を低減できるため、コイル線(16)に流す電流を抑制できる。これにより、コイル線(16)にかかるストレスを低減できる。また、実施形態1によれば、磁気軸受の最大電磁力を低減するために駆動軸(13)とタッチダウン軸受(19)とのクリアランスを小さくする必要がないため、駆動軸(13)の加工コストや、円筒部材(19)に駆動軸(13)を組み付ける際の組立コストを低減できる。
-Effect of Embodiment 1-
As described above, in the turbo compressor (1) according to the first embodiment, when the electric motor (10) is initially moved, the drive shaft (13) is moved along the circumferential direction of the touch-down bearing (19). After being moved to the inner peripheral upper end of 19), it is moved in the direction of the central axis of the magnetic bearing (14). Thus, the maximum electromagnetic force of the magnetic bearing (14) can be reduced to F-mg, whereas the maximum electromagnetic force of the magnetic bearing conventionally required F + mg. As a result, the magnetic bearing (14) and the control unit (20) for controlling the electromagnetic force of the magnetic bearing (14) can be reduced in size. And since the maximum electromagnetic force can be reduced as mentioned above, the electric current sent through a coil wire (16) can be suppressed. Thereby, the stress concerning a coil wire (16) can be reduced. Further, according to the first embodiment, since it is not necessary to reduce the clearance between the drive shaft (13) and the touchdown bearing (19) in order to reduce the maximum electromagnetic force of the magnetic bearing, the processing of the drive shaft (13) is performed. Cost and assembly cost when assembling the drive shaft (13) to the cylindrical member (19) can be reduced.
  〈発明の実施形態2〉
  発明の実施形態2は、実施形態1に係る圧縮機(1)を備える空調機(40)である。
<Embodiment 2 of the invention>
Embodiment 2 of the invention is an air conditioner (40) including the compressor (1) according to Embodiment 1.
  -全体構成-
  空調機(40)は、冷媒が充填される冷媒回路(41)を備え、冷媒が循環して冷凍サイクルを行う冷凍装置を構成している。冷媒回路(41)には、前記圧縮機(1)と、室外熱交換器(42)と、室内熱交換器(43)と、膨張弁(44)と、四路切換弁(45)とが接続されている。この冷媒回路(41)では、冷媒が循環することで蒸気圧縮式の冷凍サイクルが行われる。
-overall structure-
The air conditioner (40) includes a refrigerant circuit (41) filled with a refrigerant, and constitutes a refrigeration apparatus that performs a refrigeration cycle by circulating the refrigerant. The refrigerant circuit (41) includes the compressor (1), an outdoor heat exchanger (42), an indoor heat exchanger (43), an expansion valve (44), and a four-way switching valve (45). It is connected. In the refrigerant circuit (41), a refrigerant is circulated to perform a vapor compression refrigeration cycle.
  室外熱交換器(42)は、室外空間に配置されている。室外熱交換器(42)では、その内部を流れる冷媒と室外空気とが熱交換する。室内熱交換器(43)は、室内空間に配置されている。室内熱交換器(43)では、その内部を流れる冷媒と室内空気とが熱交換する。 The outdoor heat exchanger (42) is arranged in the outdoor space. In the outdoor heat exchanger (42), the refrigerant flowing inside the outdoor air exchanges heat. The indoor heat exchanger (43) is disposed in the indoor space. In the indoor heat exchanger (43), heat is exchanged between the refrigerant flowing in the indoor heat exchanger and the room air.
  膨張弁(44)は、室外熱交換器(42)と室内熱交換器(43)との間に接続されている。膨張弁(44)は、例えば電子膨張弁で構成されている。 The expansion valve (44) is connected between the outdoor heat exchanger (42) and the indoor heat exchanger (43). The expansion valve (44) is composed of, for example, an electronic expansion valve.
  四路切換弁(45)は、第1から第4までの4つのポートを備えている。四路切換弁(45)では、第1ポートが室内熱交換器(43)と繋がり、第2ポートが圧縮機(1)の吐出管(7)と繋がり、第3ポートが圧縮機(1)の吸入管(6)と繋がり、第4ポートが室外熱交換器(42)と繋がっている。四路切換弁(45)は、第1ポートと第3ポートとを連通させると同時に第2ポートと第4ポートとを連通させる第1状態(図6の実線の状態)と、第1ポートと第2ポートとを連通させると同時に第3ポートと第4ポートとを連通させる第2状態(図6の破線の状態)とに切換可能となっている。 The four-way switching valve (45) has four ports from first to fourth. In the four-way selector valve (45), the first port is connected to the indoor heat exchanger (43), the second port is connected to the discharge pipe (7) of the compressor (1), and the third port is the compressor (1). The fourth port is connected to the outdoor heat exchanger (42). The four-way selector valve (45) communicates the first port with the third port and simultaneously communicates the second port with the fourth port (solid line in FIG. 6), The second port can be switched to the second state (the state indicated by the broken line in FIG. 6) in which the third port and the fourth port are simultaneously communicated with each other.
  -運転動作-
  次に、実施形態2に係る空調機(40)の運転動作について説明する。空調機(40)の冷媒回路(41)では、四路切換弁(45)の設定に応じて、冷媒の循環方向が切り換わる。具体的には、四路切換弁(45)は、冷房運転において図6の実線で示す状態となる。その結果、冷房運転では、室外熱交換器(42)が放熱器となり、室内熱交換器(43)が蒸発器となる冷凍サイクルが行われる。一方、四路切換弁(45)は、暖房運転において図6の破線で示す状態となる。その結果、暖房運転では、室外熱交換器(42)が蒸発器となり、室内熱交換器(43)が放熱器となる冷凍サイクルが行われる。以下には、このような空調機(40)の冷房運転を代表に説明する。
-Driving operation-
Next, the operation of the air conditioner (40) according to the second embodiment will be described. In the refrigerant circuit (41) of the air conditioner (40), the refrigerant circulation direction is switched according to the setting of the four-way switching valve (45). Specifically, the four-way selector valve (45) is in the state indicated by the solid line in FIG. 6 in the cooling operation. As a result, in the cooling operation, a refrigeration cycle is performed in which the outdoor heat exchanger (42) serves as a radiator and the indoor heat exchanger (43) serves as an evaporator. On the other hand, the four-way selector valve (45) is in a state indicated by a broken line in FIG. As a result, in the heating operation, a refrigeration cycle is performed in which the outdoor heat exchanger (42) serves as an evaporator and the indoor heat exchanger (43) serves as a radiator. Hereinafter, the cooling operation of such an air conditioner (40) will be described as a representative.
  図6に示す冷媒回路(41)において、圧縮機(1)で圧縮された冷媒は、吐出管(7)より吐出される。その後、冷媒は室外熱交換器(42)を流れる。室外熱交換器(42)では、高圧冷媒が室外空気へ放熱する。室外熱交換器(42)で放熱した後の高圧冷媒は、膨張弁(44)を通過する際に減圧されて、低圧冷媒となる。その後、冷媒は室内熱交換器(43)を流れる。室内熱交換器(43)では、冷媒が室内空気から吸熱して蒸発する。その結果、室内の冷房が行われる。室内熱交換器(43)で蒸発した冷媒は、吸入管(6)を流れて圧縮機(1)に吸入され、再び圧縮される。 In the refrigerant circuit (41) shown in FIG. 6, the refrigerant compressed by the compressor (1) is discharged from the discharge pipe (7). Thereafter, the refrigerant flows through the outdoor heat exchanger (42). In the outdoor heat exchanger (42), the high-pressure refrigerant radiates heat to the outdoor air. The high-pressure refrigerant after radiating heat in the outdoor heat exchanger (42) is decompressed when passing through the expansion valve (44), and becomes a low-pressure refrigerant. Thereafter, the refrigerant flows through the indoor heat exchanger (43). In the indoor heat exchanger (43), the refrigerant absorbs heat from the indoor air and evaporates. As a result, the room is cooled. The refrigerant evaporated in the indoor heat exchanger (43) flows through the suction pipe (6), is sucked into the compressor (1), and is compressed again.
  〈発明の実施形態3〉
  発明の実施形態3は、実施形態1に係る圧縮機(1)を備えるチラー(50)である。実施形態3では、いわゆる水冷式のチラーを例として説明する。
Embodiment 3 of the Invention
Embodiment 3 of the invention is a chiller (50) including the compressor (1) according to Embodiment 1. In the third embodiment, a so-called water-cooled chiller will be described as an example.
  -全体構成-
  チラー(50)は、冷媒が充填される冷媒回路(51)を備え、冷媒が循環して冷凍サイクルを行う冷凍装置を構成している。冷媒回路(51)には、前記圧縮機(1)と、放熱器(52)と、蒸発器(53)と、膨張弁(54)とが接続されている。この冷媒回路(51)では、冷媒が循環することで蒸気圧縮式の冷凍サイクルが行われる。
-overall structure-
The chiller (50) includes a refrigerant circuit (51) filled with a refrigerant, and constitutes a refrigeration apparatus that performs a refrigeration cycle by circulating the refrigerant. The compressor (1), the radiator (52), the evaporator (53), and the expansion valve (54) are connected to the refrigerant circuit (51). In the refrigerant circuit (51), a refrigerant is circulated to perform a vapor compression refrigeration cycle.
  放熱器(52)は、冷媒回路(51)と接続する第1伝熱管(52a)と、冷却水回路(60)(詳しくは後述する)と接続する第2伝熱管(52b)とを有している。つまり、冷媒回路(51)は、放熱器(52)を介して冷却水回路(60)に接続している。放熱器(52)では、第1伝熱管(52a)を流れる冷媒と第2伝熱管(52b)を流れる冷却水とが熱交換する。 The radiator (52) includes a first heat transfer pipe (52a) connected to the refrigerant circuit (51) and a second heat transfer pipe (52b) connected to the cooling water circuit (60) (described in detail later). ing. That is, the refrigerant circuit (51) is connected to the cooling water circuit (60) through the radiator (52). In the radiator (52), the refrigerant flowing through the first heat transfer tube (52a) and the cooling water flowing through the second heat transfer tube (52b) exchange heat.
  蒸発器(53)は、冷媒回路(51)と接続する第1伝熱管(53a)と、冷水回路(70)(詳しくは後述する)と接続する第2伝熱管(53b)とを有している。つまり、冷媒回路(51)は、蒸発器(53)を介して冷水回路(70)に接続している。蒸発器(53)では、第1伝熱管(53a)を流れる冷媒と第2伝熱管(53b)を流れる冷水が熱交換する。 The evaporator (53) includes a first heat transfer pipe (53a) connected to the refrigerant circuit (51) and a second heat transfer pipe (53b) connected to the chilled water circuit (70) (described in detail later). Yes. That is, the refrigerant circuit (51) is connected to the cold water circuit (70) through the evaporator (53). In the evaporator (53), the refrigerant flowing through the first heat transfer tube (53a) and the cold water flowing through the second heat transfer tube (53b) exchange heat.
  冷却水回路(60)には、前記放熱器(52)と、冷却水ポンプ(61)と、クーリングタワー(62)とが接続されている。冷却水ポンプ(61)は、冷却水回路(60)内の冷却水を搬送して循環させる。クーリングタワー(62)では、冷却水回路(60)を循環する冷却水が冷却される。 The radiator (52), the cooling water pump (61), and the cooling tower (62) are connected to the cooling water circuit (60). The cooling water pump (61) conveys and circulates the cooling water in the cooling water circuit (60). In the cooling tower (62), the cooling water circulating in the cooling water circuit (60) is cooled.
  冷水回路(70)には、前記蒸発器(53)と、冷水ポンプ(71)と、空気熱交換器(72)とが接続されている。蒸発器(53)では、冷水回路(70)を循環する冷水が冷却される。このように冷却された冷水回路(70)内の水は、空気熱交換器(72)を介して、該空気熱交換器(72)の周囲の空気と熱交換する。 The evaporator (53), the cold water pump (71), and the air heat exchanger (72) are connected to the cold water circuit (70). In the evaporator (53), the cold water circulating in the cold water circuit (70) is cooled. The water in the chilled water circuit (70) thus cooled exchanges heat with the air around the air heat exchanger (72) via the air heat exchanger (72).
  -運転動作-
  チラー(50)を起動すると、冷却水ポンプ(61)、冷水ポンプ(71)、圧縮機(1)が駆動される。
-Driving operation-
When the chiller (50) is activated, the cooling water pump (61), the cold water pump (71), and the compressor (1) are driven.
  圧縮機(1)が駆動されると、該圧縮機(1)で圧縮された冷媒が、吐出管(7)より吐出される。その後、冷媒は放熱器(52)を流れる。放熱器(52)では、第1伝熱管(52a)を流れる冷媒が、第2伝熱管(52b)を流れる冷却水に放熱して凝縮する。放熱器(52)の第2伝熱管(52b)で加熱された冷却水は、クーリングタワー(62)によって冷却される。放熱器(52)で凝縮された冷媒は、膨張弁(54)を通過する際に減圧された後、蒸発器(53)を流れる。蒸発器(53)では、第1伝熱管(53a)を流れる冷媒が、第2伝熱管(53b)を流れる冷水から吸熱して蒸発する。蒸発器(53)で蒸発した冷媒は、圧縮機(1)に戻されて圧縮される。 When the compressor (1) is driven, the refrigerant compressed by the compressor (1) is discharged from the discharge pipe (7). Thereafter, the refrigerant flows through the radiator (52). In the radiator (52), the refrigerant flowing through the first heat transfer tube (52a) dissipates heat to the cooling water flowing through the second heat transfer tube (52b) and condenses. The cooling water heated by the second heat transfer tube (52b) of the radiator (52) is cooled by the cooling tower (62). The refrigerant condensed in the radiator (52) is reduced in pressure when passing through the expansion valve (54) and then flows through the evaporator (53). In the evaporator (53), the refrigerant flowing through the first heat transfer tube (53a) absorbs heat from the cold water flowing through the second heat transfer tube (53b) and evaporates. The refrigerant evaporated in the evaporator (53) is returned to the compressor (1) and compressed.
  冷水回路(70)では、蒸発器(53)の第2伝熱管(53b)で冷却された水は、冷水ポンプ(71)によって空気熱交換器(72)へ搬送される。この水は、空気熱交換器(72)を介して該空気熱交換器(72)の周囲の空気から吸熱する。これにより、該空気熱交換器(72)の周囲の空気が冷却される。空気熱交換器(72)を通過した水は、冷水回路(70)の蒸発器(53)へ戻されて、該蒸発器(53)で再び冷却される。 In the cold water circuit (70), the water cooled by the second heat transfer tube (53b) of the evaporator (53) is conveyed to the air heat exchanger (72) by the cold water pump (71). This water absorbs heat from the air around the air heat exchanger (72) via the air heat exchanger (72). Thereby, the air around the air heat exchanger (72) is cooled. The water that has passed through the air heat exchanger (72) is returned to the evaporator (53) of the cold water circuit (70), and is cooled again by the evaporator (53).
  -その他の実施形態-
  前記実施形態については、以下のような構成にしてもよい。
-Other embodiments-
The embodiment may be configured as follows.
  前記実施形態1では、旋回動作において、駆動軸(13)を磁気軸受(14)の内周上端部まで移動させたが、この限りでなく、磁気軸受(14)の中心軸よりも上方となる位置、より詳しくは、磁気軸受(14)の中心軸を含む仮想水平面よりも上方となる位置まで移動させてもよい。この後に軸移動動作を行う際に必要となる電磁力は、図5(C)にも示すように、F+mgcosθ(90°<θ<270°)となる。このように、旋回動作において駆動軸(13)を磁気軸受(14)の中心軸よりも上方まで移動させることで、軸移動動作の際に駆動軸(13)に作用する重力を利用できる。その結果、磁気軸受(14)の最大電磁力を低減できる。 In the first embodiment, in the turning operation, the drive shaft (13) is moved to the upper end of the inner periphery of the magnetic bearing (14). However, the present invention is not limited to this, and the drive shaft (13) is located above the central axis of the magnetic bearing (14). The position, more specifically, the magnetic bearing (14) may be moved to a position above the virtual horizontal plane including the central axis. The electromagnetic force required for performing the axis movement operation after this is F + mgcos θ (90 ° <θ <270 °) as shown in FIG. In this way, by moving the drive shaft (13) above the central axis of the magnetic bearing (14) in the turning operation, the gravity acting on the drive shaft (13) during the shaft movement operation can be used. As a result, the maximum electromagnetic force of the magnetic bearing (14) can be reduced.
  また、旋回動作において、駆動軸(13)を、磁気軸受(14)の中心軸よりも下方となる位置まで移動させてもよい。言いかえれば、駆動軸(13)が磁気軸受(14)の内周下端部に位置する状態(図5(A)の状態)から、駆動軸(13)を少しでも上方へ移動させればよい。これにより、この後の軸移動動作を行う際に必要となる電磁力は、図5(B)にも示すように、F+mgcosθ(0°<θ≦90°、270°≦θ<360°)となる。従って、従来必要であった磁気軸受の最大電磁力F+mgよりも、磁気軸受(14)の最大電磁力を小さくできる。 In the turning operation, the drive shaft (13) may be moved to a position below the central axis of the magnetic bearing (14). In other words, the drive shaft (13) may be moved slightly upward from the state where the drive shaft (13) is located at the lower end of the inner periphery of the magnetic bearing (14) (the state shown in FIG. 5A). . As a result, the electromagnetic force required for the subsequent axial movement operation is F + mgcos θ (0 ° <θ ≦ 90 °, 270 ° ≦ θ <360 °) as shown in FIG. 5B. Become. Therefore, the maximum electromagnetic force of the magnetic bearing (14) can be made smaller than the maximum electromagnetic force F + mg of the magnetic bearing that was conventionally required.
  また、前記実施形態2では、実施形態1に係る圧縮機(1)を空調機(40)に適用し、実施形態3では、実施形態1に係る圧縮機(1)をチラー(50)に適用しているが、この限りでなく、その他の冷凍装置に適用することができる。例えば、実施形態1に係る圧縮機(1)を、給湯器や冷蔵庫、冷凍庫等に適用することもできる。 In the second embodiment, the compressor (1) according to the first embodiment is applied to the air conditioner (40), and in the third embodiment, the compressor (1) according to the first embodiment is applied to the chiller (50). However, the present invention is not limited to this and can be applied to other refrigeration apparatuses. For example, the compressor (1) according to the first embodiment can be applied to a water heater, a refrigerator, a freezer, and the like.
  以上説明したように、本発明は、駆動軸が水平方向に延びるように配置される電動機を備えるターボ圧縮機に特に有用である。 As described above, the present invention is particularly useful for a turbo compressor including an electric motor arranged so that a drive shaft extends in the horizontal direction.
1    ターボ圧縮機(圧縮機)
8    軸受機構
10    電動機
11    ステータ
12    ロータ
12a    永久磁石
13    駆動軸
14    磁気軸受
19    タッチダウン軸受(円筒部材)
20    制御部
40    空調機(冷凍装置)
50    チラー(冷凍装置)
1 Turbo compressor (compressor)
8 Bearing mechanism 10 Electric motor 11 Stator 12 Rotor 12a Permanent magnet 13 Drive shaft 14 Magnetic bearing 19 Touchdown bearing (cylindrical member)
20 Control unit 40 Air conditioner (refrigeration equipment)
50 Chiller (refrigeration equipment)

Claims (8)

  1.   水平方向に延びるように配置される駆動軸(13)を、通電時に非接触状態で回転自在に支持する磁気軸受(14)と、
      前記駆動軸(13)を囲む円筒状に形成され、前記磁気軸受(14)の非通電時に前記駆動軸(13)を内周下部で支持する円筒部材(19)と、
      前記磁気軸受(14)の通電開始時に前記円筒部材(19)の内周下部に支持される駆動軸(13)が、前記円筒部材(19)の内周面に沿って上方へ移動する旋回動作と、該旋回動作後の駆動軸(13)が前記磁気軸受(14)の中心軸方向へ移動する軸移動動作と、を行うように、前記磁気軸受(14)の電磁力を制御する制御部(20)と、を備えることを特徴とする軸受機構。
    A magnetic bearing (14) that rotatably supports a drive shaft (13) arranged to extend in a horizontal direction in a non-contact state when energized;
    A cylindrical member (19) which is formed in a cylindrical shape surrounding the drive shaft (13) and supports the drive shaft (13) at the lower part of the inner periphery when the magnetic bearing (14) is not energized
    A turning operation in which the drive shaft (13) supported on the lower inner periphery of the cylindrical member (19) moves upward along the inner peripheral surface of the cylindrical member (19) when energization of the magnetic bearing (14) starts. And a controller that controls the electromagnetic force of the magnetic bearing (14) so that the drive shaft (13) after the turning operation moves in the direction of the central axis of the magnetic bearing (14). (20). A bearing mechanism comprising:
  2.   請求項1において、
      前記制御部(20)は、前記駆動軸(13)が、前記旋回動作において前記駆動軸(13)の軸心が前記磁気軸受(14)の中心軸よりも上方となる位置まで移動するように、前記磁気軸受(14)の電磁力を制御することを特徴とする軸受機構。
    In claim 1,
    The control unit (20) moves the drive shaft (13) to a position where the axis of the drive shaft (13) is above the central axis of the magnetic bearing (14) in the turning operation. A bearing mechanism for controlling the electromagnetic force of the magnetic bearing (14).
  3.   請求項2において、
      前記制御部(20)は、前記駆動軸(13)が、前記旋回動作において前記円筒部材(19)の内周上端部まで移動するように、前記磁気軸受(14)の電磁力を制御することを特徴とする軸受機構。
    In claim 2,
    The controller (20) controls the electromagnetic force of the magnetic bearing (14) so that the drive shaft (13) moves to the inner peripheral upper end of the cylindrical member (19) in the turning operation. Bearing mechanism.
  4.   請求項1から3のうちいずれか1つの軸受機構(8)と、
      前記磁気軸受(14)によって支持される駆動軸(13)が連結されるロータ(12)と、
      前記ロータ(12)を回転させるためのステータ(11)と、を備えることを特徴とする電動機。
    A bearing mechanism (8) according to any one of claims 1 to 3;
    A rotor (12) to which a drive shaft (13) supported by the magnetic bearing (14) is coupled;
    And a stator (11) for rotating the rotor (12).
  5.   請求項4において、前記ステータ(11)又は前記ロータ(12)は、永久磁石(12a)を備えることを特徴とする電動機。 The electric motor according to claim 4, wherein the stator (11) or the rotor (12) includes a permanent magnet (12a).
  6.   請求項4又は5の電動機(10)を備えることを特徴とする圧縮機。 A compressor comprising the electric motor (10) according to claim 4 or 5.
  7.   請求項6において、ターボ圧縮機(1)で構成されていることを特徴とする圧縮機。 The compressor according to claim 6, wherein the compressor is composed of a turbo compressor (1).
  8.   請求項6又は7の圧縮機(1)が設けられた冷媒回路(41,51)を備え、該冷媒回路(41,51)で冷凍サイクルを行うことを特徴とする冷凍装置。 A refrigeration apparatus comprising the refrigerant circuit (41, 51) provided with the compressor (1) according to claim 6 or 7, and performing a refrigeration cycle in the refrigerant circuit (41, 51).
PCT/JP2012/000865 2011-02-10 2012-02-09 Bearing mechanism, electric motor, compressor, and refrigeration device WO2012108199A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011027178A JP2012167699A (en) 2011-02-10 2011-02-10 Bearing mechanism, electric motor, compressor, and refrigeration device
JP2011-027178 2011-02-10

Publications (1)

Publication Number Publication Date
WO2012108199A1 true WO2012108199A1 (en) 2012-08-16

Family

ID=46638420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000865 WO2012108199A1 (en) 2011-02-10 2012-02-09 Bearing mechanism, electric motor, compressor, and refrigeration device

Country Status (2)

Country Link
JP (1) JP2012167699A (en)
WO (1) WO2012108199A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111426088A (en) * 2020-04-20 2020-07-17 珠海格力电器股份有限公司 Air conditioner control method and device and air conditioner system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6487163B2 (en) * 2014-07-31 2019-03-20 三菱重工サーマルシステムズ株式会社 Turbo refrigerator
DE102014217684A1 (en) * 2014-09-04 2016-03-10 Siemens Aktiengesellschaft Device for magnetically supporting a shaft
JP2017172770A (en) * 2016-03-25 2017-09-28 三菱重工業株式会社 Stop method of rotary machine and controller of rotary machine
KR102613952B1 (en) * 2016-07-25 2023-12-15 엘지전자 주식회사 Center error value of bearings measuring method
JP6451778B2 (en) * 2017-05-09 2019-01-16 ダイキン工業株式会社 Load operation control system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223123A (en) * 1992-02-12 1993-08-31 Yaskawa Electric Corp Controller of magnetic bering and control method
JPH0643346U (en) * 1992-11-18 1994-06-07 光洋精工株式会社 Magnetic bearing device
JPH10148408A (en) * 1996-11-20 1998-06-02 Daikin Ind Ltd Refrigerating system
JPH11166533A (en) * 1997-12-02 1999-06-22 Koyo Seiko Co Ltd Magnetic bearing device
JPH11166532A (en) * 1997-12-02 1999-06-22 Koyo Seiko Co Ltd Magnetic bearing device
JP2009270797A (en) * 2008-05-09 2009-11-19 Daikin Ind Ltd Refrigerating device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223123A (en) * 1992-02-12 1993-08-31 Yaskawa Electric Corp Controller of magnetic bering and control method
JPH0643346U (en) * 1992-11-18 1994-06-07 光洋精工株式会社 Magnetic bearing device
JPH10148408A (en) * 1996-11-20 1998-06-02 Daikin Ind Ltd Refrigerating system
JPH11166533A (en) * 1997-12-02 1999-06-22 Koyo Seiko Co Ltd Magnetic bearing device
JPH11166532A (en) * 1997-12-02 1999-06-22 Koyo Seiko Co Ltd Magnetic bearing device
JP2009270797A (en) * 2008-05-09 2009-11-19 Daikin Ind Ltd Refrigerating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111426088A (en) * 2020-04-20 2020-07-17 珠海格力电器股份有限公司 Air conditioner control method and device and air conditioner system
CN111426088B (en) * 2020-04-20 2021-08-20 珠海格力电器股份有限公司 Air conditioner control method and device and air conditioner system

Also Published As

Publication number Publication date
JP2012167699A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
CN110574260B (en) Turbo compressor
WO2012108199A1 (en) Bearing mechanism, electric motor, compressor, and refrigeration device
JPWO2018235832A1 (en) Heat transfer system
US10027191B2 (en) Compressor, heat pump device, air conditioner, and freezing machine
TWI703267B (en) Induction motor for a chiller assembly and vapor compression system thereof
US10962020B2 (en) Compressor and chiller system including same
JPWO2019021450A1 (en) Air conditioner, air conditioning system, and control method of air conditioner
JP6710325B2 (en) Air conditioner and operation control method for air conditioner
EP3605833B1 (en) Load operation control system
JP2015169402A (en) air conditioner
WO2021256562A1 (en) System and method for magnetic bearings
US11909271B2 (en) Rotating machine, outdoor unit of air conditioning apparatus, and air conditioning apparatus
JP7141010B1 (en) drive systems, turbo compressors, refrigeration equipment
CN114483657B (en) Compressor and cooling device comprising same
WO2023190259A1 (en) Compressor and refrigeration device
US20240053048A1 (en) Blower and air conditioner
JP2023050797A (en) Motor, compressor, and refrigerator
JP2015121365A (en) Air conditioner
JP2020526712A (en) Magnetic bearing Self-centering auxiliary bearing in cartridge
JP6296934B2 (en) Heat pump refrigeration system
KR20220112581A (en) Motor assembly for chillier
JP2017172770A (en) Stop method of rotary machine and controller of rotary machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12744856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12744856

Country of ref document: EP

Kind code of ref document: A1