WO2012106866A1 - 一种信号解调方法及接收装置 - Google Patents

一种信号解调方法及接收装置 Download PDF

Info

Publication number
WO2012106866A1
WO2012106866A1 PCT/CN2011/076860 CN2011076860W WO2012106866A1 WO 2012106866 A1 WO2012106866 A1 WO 2012106866A1 CN 2011076860 W CN2011076860 W CN 2011076860W WO 2012106866 A1 WO2012106866 A1 WO 2012106866A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample data
channel estimation
carrier
interference ratio
synchronization position
Prior art date
Application number
PCT/CN2011/076860
Other languages
English (en)
French (fr)
Inventor
张玉伦
范文奇
黄抒帆
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2011/076860 priority Critical patent/WO2012106866A1/zh
Priority to CN2011800010652A priority patent/CN102318205A/zh
Publication of WO2012106866A1 publication Critical patent/WO2012106866A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation

Definitions

  • the present invention relates to the field of communications, and in particular, to a signal demodulation method and a receiving apparatus. Background technique
  • GSM global system for mobile communications
  • TU typically city
  • RA rural area
  • HT mountain environment
  • the difference between these channel environments is the multipath delay and amplitude.
  • the multipath delay and fading also vary as the receiver moves at different rates.
  • Embodiments of the present invention provide a signal demodulation method and a receiving apparatus to solve the problem that the existing receiving apparatus has low resolution, inaccurate synchronization position, and poor demodulation performance.
  • a signal demodulation method including:
  • At least two sample data in one symbol period are output; for the at least two sample data, synchronous position calculation, channel estimation, and carrier-to-interference ratio calculation are respectively performed; The sample data with the largest carrier-to-interference ratio is selected as the data to be demodulated, and the channel estimation result corresponding to the sample data and the synchronization position calculation result are selected for demodulation.
  • a receiving device including:
  • An automatic gain control processing unit is configured to perform automatic gain control processing, and output at least 2 sample data in one symbol period after processing;
  • a calculating unit configured to perform synchronization position calculation, channel estimation, and carrier-to-interference ratio calculation for the at least two sample data
  • a selection unit configured to select the sample data with the largest load-to-interference ratio as the data to be demodulated, select the channel estimation result corresponding to the sample data, and calculate the synchronization position, and select the data to be demodulated And the channel estimation result and the synchronization position calculation result are sent to the demodulation unit;
  • a demodulation unit configured to perform demodulation according to the to-be-demodulated data, the channel estimation result, and the synchronization position calculation result selected by the selection unit.
  • the signal demodulation method and the receiving device provided by the embodiment of the present invention output at least two sample data in one symbol period after automatic gain control processing; and perform synchronous position calculation, channel estimation, and respectively for at least two sample data.
  • the carrier-to-interference ratio calculation is performed; the sample data with the largest carrier-to-interference ratio is selected as the data to be demodulated, and the channel estimation result corresponding to the data, the synchronization position calculation result, and the demodulation are selected. In this way, the sampling times are increased and the sampling interval is shortened in the same time.
  • the automatic gain control processing one sample data in one symbol period is not output, but at least two sample data are output, and each is calculated.
  • the carrier-to-interference ratio of the sample data so it is possible to select according to the carrier-to-interference ratio among the plurality of sample data, and to select the optimal carrier-to-interference ratio to determine the optimum sample data and synchronization information, thereby greatly improving the synchronization position. Select accuracy and improve demodulation performance.
  • FIG. 1 is a schematic flowchart of a signal demodulation method according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a receiving apparatus according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a receiving apparatus according to another embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a receiving apparatus according to another embodiment of the present invention.
  • the signal demodulation method provided by the embodiment of the present invention, as shown in FIG. 1, includes:
  • the receiving device outputs at least two sample data in one symbol period after the automatic gain control processing.
  • the automatic gain control process can output 2 sample data in 1 symbol period; or, output 3 sample data in 1 symbol period; or, output at least 4 in 1 symbol period Sample data.
  • the general output of 4 sample data in 1 symbol period is not high in complexity and the effect is good.
  • the receiving device performs synchronous position calculation, channel estimation, and carrier-to-interference ratio calculation for at least two sample data.
  • the carrier-to-interference ratio also known as the interference protection ratio, is the ratio of the received wanted signal level to the level of all non-useful signals.
  • the carrier-to-interference ratio is the ratio that reflects the quality of the signal transmitted by the electronic communication in the process of transmitting the signal at the receiving end, and is represented by the English letter C/I.
  • the receiving device selects the sample data with the largest carrier-to-interference ratio as the data to be demodulated, selects the channel estimation result corresponding to the sample data, and calculates the synchronization position, and performs demodulation.
  • the signal demodulation method provided by the embodiment of the present invention outputs at least two sample data in one symbol period after automatic gain control processing; and performs synchronous position calculation, channel estimation, and carrier-to-interference ratio for at least two sample data respectively. Calculate; select the sample with the largest carrier-to-interference ratio, the data as the data to be demodulated, select the sample, the channel estimation result corresponding to the data, Synchronize the position calculation result and perform demodulation. In this way, the number of samples is increased and the sampling interval is shortened in the same time. After the automatic gain control process, one sample data in one symbol period is not output, but at least two sample data are output, and each is calculated.
  • the carrier-to-interference ratio of the sample data so it is possible to select according to the carrier-to-interference ratio among the plurality of sample data, and to select the optimal carrier-to-interference ratio to determine the optimum sample data and synchronization information, thereby greatly improving the synchronization position. Select accuracy and improve demodulation performance.
  • the beneficial effects produced by the embodiments of the present invention are particularly significant.
  • a notable feature of the HT (Mountain Environment) channel is that it has two equal-strong, equally strong positions adjacent to each other.
  • the traditional GSM receiver has lower synchronization position accuracy and the resolution can only reach 1 symbol. Therefore, under the HT (Mountain Environment) channel, the synchronization calculation module of the existing receiver is very good for the two strongest paths existing adjacent to each other.
  • the signal demodulation method provided by the embodiment of the invention increases the sampling times and shortens the sampling interval in the same time, and does not output one sample data in one symbol period after the automatic gain control processing, but Output at least 2 sample data, and calculate the carrier-to-interference ratio of each sample data, so it can be selected according to the carrier-to-interference ratio among multiple sample data, and the optimal carrier-to-interference ratio is selected to determine the optimal sample data and Synchronization information, the resolution of the receiving device has been greatly improved, and the problem of low resolution, inaccurate synchronization position, and demodulation performance of the conventional GSM receiver under the HT (Mountain Environment) channel scenario is overcome.
  • HT Micrountain Environment
  • the receiving device 20 provided by the embodiment of the present invention, as shown in FIG. 2, includes: an automatic gain control processing unit 201, configured to perform automatic gain control processing, and output at least two sample data in one symbol period after processing.
  • an automatic gain control processing unit 201 configured to perform automatic gain control processing, and output at least two sample data in one symbol period after processing.
  • the calculating unit 202 is configured to perform synchronization position calculation, channel estimation, and carrier-to-interference ratio calculation for at least two sample data.
  • the selecting unit 203 is configured to select the sample data with the largest carrier-to-interference ratio as the data to be demodulated, select the channel estimation result corresponding to the sample data, and calculate the synchronization position, and select the data to be demodulated and the channel to be demodulated.
  • the estimation result and the synchronization position calculation result are sent to the demodulation unit 204.
  • the demodulation unit 204 is configured to perform demodulation according to the data to be demodulated, the channel estimation result, and the synchronization position calculation result selected by the selection unit 203.
  • the receiving apparatus provided by the embodiment of the present invention outputs at least two sample data in one symbol period after automatic gain control processing; and performs synchronous position calculation, channel estimation, and carrier-to-interference ratio calculation for at least two sample data; The sample data with the largest carrier-to-interference ratio is selected as the data to be demodulated, and the channel estimation result corresponding to the sample data and the synchronization position calculation result are selected for demodulation. In this way, the sampling times are increased and the sampling interval is shortened in the same time.
  • one sample data in one symbol period is not output, but at least two sample data are output, and each is calculated.
  • the carrier-to-interference ratio of the sample data so it is possible to select according to the carrier-to-interference ratio among the plurality of sample data, and to select the optimal carrier-to-interference ratio to determine the optimum sample data and synchronization information, thereby greatly improving the synchronization position. Select accuracy and improve demodulation performance.
  • the computing unit 202 includes:
  • the synchronization position calculation module 2021 is configured to calculate a synchronization position of the sample data, and send the synchronization position calculation result to the channel estimation module 2022.
  • the channel estimation module 2022 is configured to perform parameter estimation on the synchronization position calculation result, and send the parameter estimation result to the carrier-to-interference ratio calculation module 2023.
  • the carrier-to-interference ratio calculation module 2023 is configured to perform a carrier-to-interference ratio calculation unit 203 for the parameter estimation result, including:
  • the comparator 203 1 is configured to select a maximum value of the carrier-to-interference ratio values of the sample data obtained by the load-to-interference ratio calculation module 2023, and send the sample data information corresponding to the maximum value to the first gate 2032 The second gate 2033 and the third gate 2034.
  • the first strobe 2032 is configured to select the sample data corresponding to the sample data information from the output data of the automatic gain control processing unit 201 according to the sample data information sent by the comparator 203 1 .
  • the second strobe 2033 is configured to select, according to the sample data information sent by the comparator 203 1 , the synchronization position calculation result corresponding to the sample data information from the output result of the synchronization position calculation module 2021.
  • the third strobe 2034 is configured to select, according to the sample data information sent by the comparator 203 1 , the corresponding data of the sample data from the output result of the channel estimation module 2022. Channel estimation result.
  • the receiving device 40 according to the embodiment of the present invention will be described below with reference to FIG. In the present embodiment, it is assumed that four sample data in one symbol period are output after the automatic gain control processing.
  • the automatic gain control processing unit 401 is connected to the four synchronous position calculation modules 402, respectively. After the signal received by the receiving device 40 is processed by the automatic gain control processing unit 401, four sample data in one symbol period are output, and the four sample data are respectively sent to the respective synchronous position calculating modules 402. On the other hand, the four sample data output from the automatic gain control processing unit 401 are connected to the first gate 408, respectively.
  • the four synchronous position calculation modules 402 are respectively connected to the four channel estimation modules 403, and the other ends of the four channel estimation modules 403 are respectively connected to four carrier-to-interference ratio calculation modules 404, and the other ends of the four carrier-to-interference ratio calculation modules 404 and the comparators. 405 connection.
  • the four sync position calculation modules 402 are also respectively connected to the second gate 407, and the four channel estimation modules 403 are respectively connected to the third gate 406.
  • the first strobe 408, the second strobe 407, and the third strobe 406 are connected to the demodulation unit 409.
  • the automatic gain control processing unit 401 After the signal received by the receiving device 40 is processed by the automatic gain control processing unit 401, four sample data in one symbol period are output, and the four sample data are respectively sent to each synchronous position calculating module 402 and the first selection. In the 408. Thereafter, the four synchronization position calculation modules 402 respectively perform synchronization position calculation, and send the calculation results to the four channel estimation modules 403 and the second gates 407, respectively. Next, the four channel estimation modules 403 perform channel estimation, and send the obtained results to the four carrier ratio calculation modules 404 and the third gates 406. Thereafter, the four carrier-to-interference ratio calculation modules 404 calculate the carrier-to-interference ratios of the respective data, and send the calculation results to the comparator 405.
  • the comparator 405 selects the maximum value of the carrier-to-interference ratio values of the sample data obtained by the four carrier-to-interference ratio calculation modules 404, and sends the sample data information corresponding to the maximum value to the first gate 408 and the second selection.
  • the first gate 408 selects the sample data information from the output data of the automatic gain control processing unit 401 according to the sample data information transmitted by the comparator 405.
  • Corresponding sample data as data to be demodulated.
  • the second strobe 407 selects the synchronization position calculation result corresponding to the sample data information from the output results of the respective synchronization position calculation modules 402 according to the sample data information sent by the comparator 405.
  • the third strobe 406 selects a channel estimation result corresponding to the sample data information from the output results of the respective channel estimation modules 403 according to the sample data information sent by the comparator 405.
  • the first strobe 408, the second strobe 407, and the third strobe 406 send the selected data to the demodulation unit 409 for demodulation.
  • the information of the sample data transmitted by the comparator 405 may be a certain number, the line number where the data is located, and the like.
  • the receiving apparatus outputs 4 sample data in one symbol period after automatic gain control processing; and performs synchronous position calculation, channel estimation, and carrier-to-interference ratio calculation for 4 sample data respectively;
  • the sample data with the largest dry ratio is used as the data to be demodulated, and the channel estimation result corresponding to the sample data and the synchronization position calculation result are selected for demodulation.
  • the sampling times are increased and the sampling interval is shortened in the same time.
  • one sample data in one symbol period is not output, but four sample data are output, and each sample is calculated.
  • the carrier-to-interference ratio of the point data so it is possible to select according to the carrier-to-interference ratio among the plurality of sample data, and to select the optimal carrier-to-interference ratio to determine the optimum sample data and synchronization information, thereby greatly improving the selection of the synchronization position. Accuracy improves demodulation performance.
  • the receiving apparatus provided by the embodiment of the present invention has a particularly advantageous effect on the HT (Mountain Environment) channel scenario.
  • a notable feature of the HT (Mountain Environment) channel is its two strongest paths of equal amplitude and adjacent position.
  • the traditional GSM receiver has lower synchronization position accuracy and the resolution can only reach 1 symbol. Therefore, under the HT (Mountain Environment) channel, the synchronization calculation module of the existing receiver is very good for the two most powerful paths existing adjacent to each other.
  • the receiving device provided by the embodiment of the present invention increases the sampling times and shortens the sampling interval in the same time, and determines the optimal sample data and synchronization information by selecting the optimal carrier-to-interference ratio, and the resolution of the receiving device is Great mention High, overcomes the problem of low resolution, inaccurate synchronization position, and demodulation performance of traditional GSM receivers in HT (Mountain Environment) channel scenarios.
  • a person skilled in the art can understand that all or part of the steps of implementing the above method embodiments may be completed by using hardware related to program instructions, and the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • an application specific integrated circuit or an FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Circuits Of Receivers In General (AREA)

Description

一种信号解调方法及接收装置 技术领域
本发明涉及通信领域,尤其涉及一种信号解调方法及接收装置。 背景技术
无线通信的一个重要特征是存在多径传播, 同一发射源的信号, 通过不同的传播路径到达同一个接收机, 往往存在微小的时间差。 这些先后达到的信号相互干涉, 形成多径衰落。 这将导致到达接收 机的信号存在码间干扰, 降低信号的信噪比。
在 3 GPP ( 3rd Generation Partnership Proj ect , 第三代合作伙伴 计划 )协议中,根据不同的多径衰落类型,定义了 GSM( global system for mobile communications , 全球移动通信***) 的多种典型信道场 景, 其中包括 Static (静态), TU (典型都市), RA ( 乡村地区 ), HT ( 山地环境) 等。 这些信道环境的区别在于多径的延迟和幅度不 同。 随着接收机移动速率不同, 多径的延迟和衰落也有变化。
在上述各典型信道场景中, HT ( 山地环境) 信道的一个显著特 点是具有 2个幅度相等, 位置相邻的最强径。 而传统的 GSM接收机 同步位置精度较低, 分辨率只能达到 1 个符号, 因此在 HT ( 山地环 境) 信道下, 对于相邻存在的 2 个最强径, 现有接收机的同步计算 模块很难进行区分, 从而导致同步位置不准, 解调性能下降。
发明内容
本发明的实施例提供一种信号解调方法及接收装置, 以解决现 有接收装置分辨率低、 同步位置不准、 解调性能不佳的问题。
为达到上述目 的, 本发明的实施例采用如下技术方案:
一方面, 提供一种信号解调方法, 包括:
自动增益控制处理后输出 1个符号周期内的至少 2个样点数据; 针对所述至少 2个样点数据, 分别进行同步位置计算、 信道估 计和载干比计算; 选择载干比值最大的样点数据作为待解调数据, 选择所述样点 数据对应的信道估计结果、 同步位置计算结果, 进行解调。
一方面, 提供一种接收装置, 包括:
自动增益控制处理单元, 用于进行自动增益控制处理, 处理后 输出 1个符号周期内的至少 2个样点数据;
计算单元, 用于针对所述至少 2个样点数据, 分别进行同步位 置计算、 信道估计以及载干比计算;
选择单元, 用于选择出载干比值最大的样点数据作为待解调数 据, 选择出所述样点数据对应的信道估计结果、 同步位置计算结果, 并将选择出的所述待解调数据、 信道估计结果、 同步位置计算结果 发送给所述解调单元;
解调单元, 用于根据所述选择单元选择出的所述待解调数据、 所述信道估计结果、 同步位置计算结果进行解调。
本发明实施例提供的信号解调方法及接收装置, 自动增益控制 处理后输出 1 个符号周期内的至少 2个样点数据; 针对至少 2个样 点数据, 分别进行同步位置计算、 信道估计和载干比计算; 选择载 干比值最大的样点数据作为待解调数据, 选择该样 , ^数据对应的信 道估计结果、 同步位置计算结果, 进行解调。 这样一来, 在相同时 间内采样次数增加、 采样间隔缩短, 在自动增益控制处理后不再输 出 1 个符号周期内的 1 个样点数据, 而是输出至少 2个样点数据, 并计算各个样点数据的载干比, 因此可以在多个样点数据中根据载 干比进行选择, 通过选择最佳载干比以确定最佳样点数据与同步信 息, 从而大大地提高了同步位置的选择精准度, 提高了解调性能。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下 面将对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于 本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以 根据这些附图获得其他的附图。 图 1 为本发明实施例提供的信号解调方法的流程示意图; 图 2为本发明实施例提供的接收装置的结构示意图;
图 3为本发明另一实施例提供的接收装置的结构示意图; 图 4为本发明又一实施例提供的接收装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术 方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明 一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本 领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明保护的范围。
本发明实施例提供的信号解调方法, 如图 1所示, 包括:
5101、 接收装置在自动增益控制处理后输出 1 个符号周期内的 至少 2个样点数据。
示例性的, 自动增益控制处理后可以输出 1 个符号周期内的 2 个样点数据; 或者, 输出 1 个符号周期内的 3 个样点数据; 或者, 输出 1 个符号周期内的至少 4个样点数据。 在实际应用中, 一般输 出 1 个符号周期内的 4个样点数据时复杂度不高, 且效果较好。
5102、 接收装置针对至少 2个样点数据, 分别进行同步位置计 算、 信道估计和载干比计算。
载干比, 也称干扰保护比, 是指接收到的有用信号电平与所有 非有用信号电平的比值。 载干比是反映电子通讯的信号在空间传播 的过程中, 接收端接收信号好坏的比值, 用英文字母 C/I表示。
5103、接收装置选择载干比值最大的样点数据作为待解调数据, 选择该样点数据对应的信道估计结果、 同步位置计算结果, 进行解 调。
本发明实施例提供的信号解调方法, 自动增益控制处理后输出 1 个符号周期内的至少 2 个样点数据; 针对至少 2 个样点数据, 分 别进行同步位置计算、 信道估计和载干比计算; 选择载干比值最大 的样 , 数据作为待解调数据, 选择该样 , 数据对应的信道估计结果、 同步位置计算结果, 进行解调。 这样一来, 在相同时间内采样次数 增加、 采样间隔缩短, 在自动增益控制处理后不再输出 1 个符号周 期内的 1 个样点数据, 而是输出至少 2个样点数据, 并计算各个样 点数据的载干比, 因此可以在多个样点数据中根据载干比进行选择, 通过选择最佳载干比以确定最佳样点数据与同步信息, 从而大大地 提高了同步位置的选择精准度, 提高了解调性能。
特别地, 对于 HT ( 山地环境)信道场景, 本发明实施例所产生 的有益效果尤其显著。 HT ( 山地环境) 信道的一个显著特点是具有 2个幅度相等, 位置相邻的最强径。 传统的 GSM接收机同步位置精 度较低, 分辨率只能达到 1 个符号, 因此在 HT ( 山地环境)信道下, 对于相邻存在的 2 个最强径, 现有接收机的同步计算模块很难进行 区分, 本发明实施例提供的信号解调方法, 在相同时间内采样次数 增加、 采样间隔缩短, 在自动增益控制处理后不再输出 1 个符号周 期内的 1 个样点数据, 而是输出至少 2个样点数据, 并计算各个样 点数据的载干比, 因此可以在多个样点数据中根据载干比进行选择, 通过选择最佳载干比以确定最佳样点数据与同步信息, 接收装置的 分辨率有了很大的提高, 克服了 HT ( 山地环境) 信道场景下传统 GSM接收机分辨率低、 同步位置不准、 解调性能下降的问题。
本发明实施例提供的接收装置 20 , 如图 2所示, 包括: 自动增益控制处理单元 201 , 用于进行自动增益控制处理, 处 理后输出 1个符号周期内的至少 2个样点数据。
计算单元 202 , 用于针对至少 2 个样点数据, 分别进行同步位 置计算、 信道估计以及载干比计算。
选择单元 203 , 用于选择出载干比值最大的样点数据作为待解 调数据, 选择出该样点数据对应的信道估计结果、 同步位置计算结 果, 并将选择出的待解调数据、 信道估计结果、 同步位置计算结果 发送给解调单元 204。
解调单元 204 , 用于根据选择单元 203 选择出的待解调数据、 信道估计结果、 同步位置计算结果进行解调。 本发明实施例提供的接收装置, 自动增益控制处理后输出 1 个 符号周期内的至少 2个样点数据; 针对至少 2个样点数据, 分别进 行同步位置计算、 信道估计和载干比计算; 选择载干比值最大的样 点数据作为待解调数据, 选择该样点数据对应的信道估计结果、 同 步位置计算结果, 进行解调。 这样一来, 在相同时间内采样次数增 加、 采样间隔缩短, 在自动增益控制处理后不再输出 1 个符号周期 内的 1 个样点数据, 而是输出至少 2个样点数据, 并计算各个样点 数据的载干比, 因此可以在多个样点数据中根据载干比进行选择, 通过选择最佳载干比以确定最佳样点数据与同步信息, 从而大大地 提高了同步位置的选择精准度, 提高了解调性能。
进一步地, 如图 3所示, 计算单元 202 包括:
同步位置计算模块 2021 , 用于计算样点数据的同步位置, 并将 同步位置计算结果发送至信道估计模块 2022。
信道估计模块 2022 , 用于对该同步位置计算结果进行参数估 计, 并将参数估计结果发送至载干比计算模块 2023。
载干比计算模块 2023 , 用于对该参数估计结果进行载干比计 选择单元 203 包括:
比较器 203 1 , 用于选择出载干比计算模块 2023 得到的各样点 数据的载干比值中的最大值, 将该最大值对应的样点数据信息发送 给第一选通器 2032、 第二选通器 2033 以及第三选通器 2034。
第一选通器 2032 , 用于根据比较器 203 1发送的样点数据信息, 从自动增益控制处理单元 201 的输出数据中选择出该样点数据信息 对应的样点数据。
第二选通器 2033 , 用于根据比较器 203 1发送的样点数据信息, 从同步位置计算模块 2021 的输出结果中选择出该样点数据信息对 应的同步位置计算结果。
第三选通器 2034 , 用于根据比较器 203 1发送的样点数据信息, 从信道估计模块 2022 的输出结果中选择出该样点数据信息对应的 信道估计结果。
以下参照图 4对本发明实施例提供的接收装置 40进行说明。在 本实施例中, 假设自动增益控制处理后输出 1 个符号周期内的 4个 样点数据。
自动增益控制处理单元 401 分别与 4个同步位置计算模块 402 相连接。接收装置 40接收到的信号经自动增益控制处理单元 401处 理后, 输出 1 个符号周期内的 4个样点数据, 这 4个样点数据分别 输送到各个同步位置计算模块 402 中。 另一方面, 自动增益控制处 理单元 401输出的 4个样点数据又分别与第一选通器 408连接。
四个同步位置计算模块 402分别与四个信道估计模块 403连接, 四个信道估计模块 403另一端分别与四个载干比计算模块 404连接, 四个载干比计算模块 404另一端与比较器 405连接。
此外, 四个同步位置计算模块 402还分别与第二选通器 407连 接, 四个信道估计模块 403 分别与第三选通器 406连接。 第一选通 器 408、 第二选通器 407以及第三选通器 406与解调单元 409连接。
接收装置 40 接收到的信号经自动增益控制处理单元 401 处理 后, 输出 1 个符号周期内的 4个样点数据, 这 4个样点数据分别输 送到各个同步位置计算模块 402、 以及第一选通器 408 中。 之后, 四个同步位置计算模块 402 分别进行同步位置计算, 将计算结果分 别发送至四个信道估计模块 403、 以及第二选通器 407 中。 接着, 四个信道估计模块 403 进行信道估计, 将得到的结果发送至四个载 干比计算模块 404、 以及第三选通器 406 中。 之后, 四个载干比计 算模块 404 分别计算各路数据的载干比, 将计算结果发送至比较器 405 中。
比较器 405选择出四个载干比计算模块 404得到的各样点数据 的载干比值中的最大值, 将该最大值对应的样点数据信息发送给第 一选通器 408、 第二选通器 407以及第三选通器 406。
此时, 第一选通器 408根据比较器 405发送的样点数据信息, 从自动增益控制处理单元 401 的输出数据中选择出该样点数据信息 对应的样点数据, 作为待解调数据。 第二选通器 407根据比较器 405 发送的该样点数据信息, 从各个同步位置计算模块 402 的输出结果 中选择出该样点数据信息对应的同步位置计算结果。第三选通器 406 根据比较器 405 发送的该样点数据信息, 从各个信道估计模块 403 的输出结果中选择出该样点数据信息对应的信道估计结果。
最后, 第一选通器 408、 第二选通器 407 以及第三选通器 406 将选出的数据发送至解调单元 409进行解调。
在本实施例中, 比较器 405发送的样点数据的信息可以是某一 样 , 数据所在的线路编号等等。
本发明实施例提供的接收装置, 自动增益控制处理后输出 1 个 符号周期内的 4个样点数据; 针对 4个样点数据, 分别进行同步位 置计算、 信道估计和载干比计算; 选择载干比值最大的样点数据作 为待解调数据, 选择该样点数据对应的信道估计结果、 同步位置计 算结果, 进行解调。 这样一来, 在相同时间内采样次数增加、 采样 间隔缩短, 在自动增益控制处理后不再输出 1 个符号周期内的 1 个 样点数据, 而是输出 4个样点数据, 并计算各个样点数据的载干比, 因此可以在多个样点数据中根据载干比进行选择, 通过选择最佳载 干比以确定最佳样点数据与同步信息, 从而大大地提高了同步位置 的选择精准度, 提高了解调性能。
此外, 输出 1 个符号周期内的 4个样点数据, 在实际应用中, 复杂度不高, 实现简单。
特别地, 上述本发明实施例提供的接收装置, 对于 HT ( 山地环 境) 信道场景, 所产生的有益效果尤其显著。 HT ( 山地环境) 信道 的一个显著特点是具有 2 个幅度相等, 位置相邻的最强径。 传统的 GSM接收机同步位置精度较低, 分辨率只能达到 1 个符号, 因此在 HT ( 山地环境) 信道下, 对于相邻存在的 2个最强径, 现有接收机 的同步计算模块很难进行区分, 本发明实施例提供的接收装置, 在 相同时间内采样次数增加、 采样间隔缩短, 并通过选择最佳载干比 以确定最佳样点数据与同步信息, 接收装置的分辨率有了很大的提 高, 克服了 HT ( 山地环境)信道场景下传统 GSM接收机分辨率低、 同步位置不准、 解调性能下降的问题。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或 部分步骤可以通过程序指令相关的硬件来完成, 前述的程序可以存 储于一计算机可读取存储介质中, 该程序在执行时, 执行包括上述 方法实施例的步骤; 而前述的存储介质包括: ROM、 RAM , 磁碟或 者光盘等各种可以存储程序代码的介质。 具体的, 本发明实施例在 实际实施过程当 中, 可以采用专用集成电路或者 FPGA ( Field - Programmable Gate Array , 现场可编程门阵列 )这两种方案来实现所 需要的信号解调。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围 并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技 术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应以所述权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种信号解调方法, 其特征在于, 包括:
自动增益控制处理后输出 1个符号周期内的至少 2个样点数据; 针对所述至少 2个样点数据, 分别进行同步位置计算、 信道估计 和载干比计算;
选择载干比值最大的样点数据作为待解调数据,选择所述样, ^数 据对应的信道估计结果、 同步位置计算结果, 进行解调。
2、 根据权利要求 1 所述的方法, 其特征在于, 所述输出 1 个符 号周期内的至少 2个样点数据包括:
输出 1个符号周期内的 2个样点数据; 或者, 输出 1个符号周期 内的 3个样点数据; 或者, 输出 1个符号周期内的 4个样点数据。
3、 一种接收装置, 其特征在于, 包括:
自动增益控制处理单元, 用于进行自动增益控制处理, 处理后输 出 1个符号周期内的至少 2个样点数据;
计算单元, 用于针对所述至少 2个样点数据, 分别进行同步位置 计算、 信道估计以及载干比计算;
选择单元, 用于选择出载干比值最大的样点数据作为待解调数 据, 选择出所述样点数据对应的信道估计结果、 同步位置计算结果, 并将选择出的所述待解调数据、 信道估计结果、 同步位置计算结果发 送给所述解调单元;
解调单元, 用于根据所述选择单元选择出的所述待解调数据、 所 述信道估计结果、 同步位置计算结果进行解调。
4、 根据权利要求 3 所述的接收装置, 其特征在于, 所述计算单 元包括:
同步位置计算模块, 用于计算所述样点数据的同步位置, 并将同 步位置计算结果发送至信道估计模块;
信道估计模块, 用于对所述同步位置计算结果进行参数估计, 并 将参数估计结果发送至载干比计算模块;
载干比计算模块, 用于对所述参数估计结果进行载干比计算。
5、 根据权利要求 4所述的接收装置, 其特征在于, 所述选择单 元包括:
比较器,用于选择出载干比计算模块得到的各样点数据的载干比 值中的最大值, 将所述最大值对应的样点数据信息发送给所述第一选 通器、 第二选通器以及第三选通器;
第一选通器, 用于根据所述比较器发送的所述样点数据信息, 选 择出所述样点数据信息对应的样点数据;
第二选通器, 用于根据所述比较器发送的所述样点数据信息, 选 择出所述样点数据信息对应的同步位置计算结果;
第三选通器, 用于根据所述比较器发送的所述样点数据信息, 从 所述信道估计模块的输出结果中选择出所述样, 数据信息对应的信 道估计结果。
PCT/CN2011/076860 2011-07-05 2011-07-05 一种信号解调方法及接收装置 WO2012106866A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/076860 WO2012106866A1 (zh) 2011-07-05 2011-07-05 一种信号解调方法及接收装置
CN2011800010652A CN102318205A (zh) 2011-07-05 2011-07-05 一种信号解调方法及接收装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/076860 WO2012106866A1 (zh) 2011-07-05 2011-07-05 一种信号解调方法及接收装置

Publications (1)

Publication Number Publication Date
WO2012106866A1 true WO2012106866A1 (zh) 2012-08-16

Family

ID=45429424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076860 WO2012106866A1 (zh) 2011-07-05 2011-07-05 一种信号解调方法及接收装置

Country Status (2)

Country Link
CN (1) CN102318205A (zh)
WO (1) WO2012106866A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105207961B (zh) * 2015-10-10 2018-05-22 北京中科汉天下电子技术有限公司 一种信号载干比和信号增益的估计方法及电路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1602004A (zh) * 2004-10-18 2005-03-30 威盛电子股份有限公司 全球移动通信***预测信道脉冲响应的装置及方法
CN1697345A (zh) * 2004-05-12 2005-11-16 北京信威通信技术股份有限公司 使用智能天线的码分多址***中下行业务码道的同步方法
CN101060509A (zh) * 2006-04-19 2007-10-24 株式会社日立国际电气 符号定时检测器和无线终端

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841410B (zh) * 2010-04-28 2013-01-02 华为技术有限公司 样点信号选择方法和接收端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1697345A (zh) * 2004-05-12 2005-11-16 北京信威通信技术股份有限公司 使用智能天线的码分多址***中下行业务码道的同步方法
CN1602004A (zh) * 2004-10-18 2005-03-30 威盛电子股份有限公司 全球移动通信***预测信道脉冲响应的装置及方法
CN101060509A (zh) * 2006-04-19 2007-10-24 株式会社日立国际电气 符号定时检测器和无线终端

Also Published As

Publication number Publication date
CN102318205A (zh) 2012-01-11

Similar Documents

Publication Publication Date Title
US7693227B2 (en) Channel length estimation and accurate FFT window placement for high-mobility OFDM receivers in single frequency networks
CN102497349B (zh) 联合多策略的ofdm帧同步方法
JP5774229B2 (ja) 無線機、無線機のアンテナ選択方法
JPWO2006033403A1 (ja) マルチアンテナ無線通信システムのシンボルタイミング検出方法
CN113225274B (zh) 一种针对快速移动的多径信道模型测量方法
JP4163971B2 (ja) 送信装置及び送信方法
US9553752B1 (en) Method and apparatus for frequency offset detection in OFDM systems with frequency reuse
JP6009059B2 (ja) 受信機によって受信されたシンボル上の周波数シフトを補正するための方法、デバイス、及びコンピュータプログラム
KR20130093678A (ko) 통신 시스템에서 초기 동기포착을 위한 방법들 및 장치
WO2024012170A1 (zh) Psfch信号检测方法、装置、存储介质及电子装置
CN111294917B (zh) 基于pdcch估计定时偏差的方法、装置、存储介质及用户设备
US10708032B2 (en) Symbol timing determining device and method
WO2012106866A1 (zh) 一种信号解调方法及接收装置
US20130279492A1 (en) Multicarrier packet synchronisation
CN101867543B (zh) 一种基于信噪比估计的帧到达检测方法
WO2011127728A1 (zh) 一种子帧粗同步的方法及装置
CN101622841A (zh) 用于信号检测的干扰方差估计
WO2013044638A1 (zh) 设置初始自动增益控制增益的方法及装置
JP2005311980A (ja) 受信品質判定方法及び受信装置
CN110535620B (zh) 一种基于判决反馈的信号检测与同步方法
US9413563B2 (en) Method and apparatus for channel estimation using localized SINR in wireless communication systems
JPWO2006092830A1 (ja) 受信装置
US8964815B2 (en) Method and apparatus for radio synchronization detection in a rake receiver
JP5347720B2 (ja) 復調回路、復調方法、及び受信システム
JP4105659B2 (ja) 受信装置および受信回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001065.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858209

Country of ref document: EP

Kind code of ref document: A1