WO2012103706A1 - 随机接入方法、基站控制设备和基站 - Google Patents

随机接入方法、基站控制设备和基站 Download PDF

Info

Publication number
WO2012103706A1
WO2012103706A1 PCT/CN2011/076285 CN2011076285W WO2012103706A1 WO 2012103706 A1 WO2012103706 A1 WO 2012103706A1 CN 2011076285 W CN2011076285 W CN 2011076285W WO 2012103706 A1 WO2012103706 A1 WO 2012103706A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
cells
access
control device
random access
Prior art date
Application number
PCT/CN2011/076285
Other languages
English (en)
French (fr)
Inventor
王守峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN2011800007679A priority Critical patent/CN102273310A/zh
Priority to PCT/CN2011/076285 priority patent/WO2012103706A1/zh
Publication of WO2012103706A1 publication Critical patent/WO2012103706A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions

Definitions

  • Random access method base station control device and base station
  • the present invention relates to the field of communications, and in particular, to a random access method, a base station control device, and a base station. Background technique
  • a wireless network In a wireless network, if the user equipment needs to establish communication with the network, it needs to go through a random access procedure, establish an uplink synchronization relationship with the network, and request the network to allocate corresponding channel resources.
  • the existing random access procedure is as follows:
  • the base station control device allocates an access subchannel of a RACH (Random Access Channel) to a cell, and transmits the allocation information to the base station.
  • the base station performs a preamle search in the entire cell range, and performs operations such as channel estimation, demodulation, and decoding.
  • the base station determines whether the user equipment is allowed to perform. Random access.
  • the base station processing the random access procedure of the user equipment requires a certain processing resource.
  • the processing resources of the base station are limited, the number of cells that the base station can support is also limited. Summary of the invention
  • the embodiment of the present invention provides a random access method, a base station control device, and a base station.
  • the technical solution is as follows:
  • a method for random access comprising:
  • the base station control device allocates an access subchannel of the random access channel RACH to the N cells configured by the base station, where N is a positive integer greater than or equal to 2;
  • the base station control device configures a physical random access channel PRACH parameter of each of the N cells, where the PRACH parameter includes an access subchannel corresponding to each of the N cells;
  • the PRACH parameter of each of the N cells is sent to the base station, so that the base station determines whether to allow user equipment in the corresponding cell to access according to the PRACH parameter of each cell.
  • a method for random access comprising:
  • the base station receives a physical random access channel PRACH parameter sent by the base station control device, where the base station configures N cells, the N is a positive integer greater than or equal to 2, and the PRACH parameter includes each of the N cells.
  • PRACH parameter includes each of the N cells.
  • Residential area An access subchannel of the corresponding random access channel RACH, where the access subchannel of the random access channel RACH is allocated by the base station control device to N cells configured by the base station, in the N cells
  • the PRACH parameter of each cell is configured by the base station control device;
  • the base station determines, according to the PRACH parameter, whether the user equipment in the corresponding cell is allowed to perform random access.
  • a base station control device where the base station control device includes:
  • An allocation module configured to allocate an access subchannel of a random access channel RACH to N cells configured by a base station, where N is a positive integer greater than or equal to 2;
  • a configuration module configured to configure a physical random access channel PRACH parameter of each of the N cells, where the PRACH parameter includes an access subchannel corresponding to each of the N cells;
  • a sending module configured to send a PRACH parameter of each of the N cells to the base station, and determine, by the base station, whether to allow user equipment in the corresponding cell to access according to a PRACH parameter of each cell.
  • a base station, the base station includes:
  • a receiving module configured to receive a physical random access channel PRACH parameter sent by the base station control device, where the base station is configured with N cells, the N is a positive integer greater than or equal to 2, and the PRACH parameter includes the N cells
  • the PRACH parameters of each of the N cells are configured by the base station control device;
  • the determining module is configured to determine, according to the PRACH parameter, whether the user equipment in the corresponding cell is allowed to perform random access.
  • the embodiment of the present invention allocates an access subchannel of a random access channel to multiple cells, and passes the allocation result
  • the PRACH parameters are sent to the base station to implement time division multiplexing of the access subchannels between different cells.
  • the base station computing resources are limited, the number of cells that the base station can support is increased.
  • Embodiment 1 is a flowchart of a method for random access provided by Embodiment 1 of the present invention
  • Embodiment 1 of the present invention is a flowchart of another method for random access provided by Embodiment 1 of the present invention.
  • Embodiment 3 is an information interaction diagram of random access provided by Embodiment 2 of the present invention.
  • FIG. 4 is a mapping diagram of a random access channel and a physical random access channel according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural diagram of a base station control device according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic structural diagram of a base station according to Embodiment 4 of the present invention. detailed description
  • this embodiment provides a method for random access, which may be performed by a base station control device, and the method includes:
  • the base station control device allocates an access subchannel of the random access channel RACH to the N cells configured by the base station, where N is a positive integer greater than or equal to 2;
  • the base station control device configures a PRACH (Physical Random Access Channel) parameter of each of the N cells, where the PRACH parameter includes an access corresponding to each of the N cells.
  • PRACH Physical Random Access Channel
  • the access subchannel of the random access channel is allocated to multiple cells, and the allocation result is sent to the base station through the PRACH parameter, because the access subchannel is time-sharing in the random access channel, thus implementing The time division multiplexing of the access subchannels in different cells, and the number of cells that the base station can support is improved when the computing resources of the base station are limited.
  • this embodiment provides a method for random access.
  • the method may be performed by a base station, where the method includes: 201: The base station receives a physical random access channel PRACH parameter sent by the base station control device, where the base station is configured with N cells, where the N is a positive integer greater than or equal to 2, and the PRACH parameter includes An access subchannel of the random access channel RACH corresponding to each of the N cells, where the access subchannel of the random access channel RACH is allocated by the base station control device to the N cells configured by the base station The PRACH parameter of each of the N cells is configured by the base station control device;
  • the base station determines, according to the PRACH parameter, whether the user equipment in the corresponding cell is allowed to perform random access.
  • the N cells are configured, and the PRACH parameters sent by the base station control device are received, where the PRACH parameter includes an access subchannel of the RACH corresponding to each of the N cells, where the RACH access subchannel
  • the base station control device allocates to the N cells configured by the base station, and the base station determines, according to the PRACH parameter, whether the user equipment in the corresponding cell is allowed to perform random access, because the access subchannel is time-sharing in the random access channel,
  • the time division multiplexing of the access subchannels between different cells improves the number of cells that the base station can support when the base station computing resources are limited.
  • the random access scheme according to the embodiment of the present invention is applicable to 3G (3rd-generation, third generation), or 2G. (2nd generation, second generation) and other communication systems.
  • the base station control device may be an RNC (Radio Network Controller), and the base station may be a NodeB (base station).
  • the base station control device may be a BSC (Base Station Controller), and the base station may be a BTS (Base Transceiver Station).
  • the cell involved in this embodiment may be a normal cell or/and a super far cell, that is, N cells are N common cells; or, N cells are N super far cells; or, N cells include common Cell and super far cell. Therefore, the solution provided in this embodiment is applicable to multiple common cells, or multiple super-far cells, or a hybrid cell composed of a common cell and a super-far cell.
  • the super far cell may refer to a cell with a cell radius greater than 30 km
  • the common cell may refer to a cell with a cell radius less than or equal to 30 km.
  • the random access procedure of the user equipment such as preamble search, channel estimation, demodulation, decoding, etc., needs to occupy the computing resources of the base station.
  • the base station computing resource occupied by one super-far cell is far larger than the base station computing resource occupied by the common cell.
  • the computing resources of the base station are related to their hardware. If the computing resources of the base station are configured to support multiple remote cells, when the base station processes the normal cells, the computing resources of the base station are seriously wasted. Therefore, in order to achieve a balance between service and cost, the computing resources of the base station are often configured to support a super far cell in the prior art.
  • the solution provided by the embodiment of the present invention can support more cells in a case where the computing resources of the base station are limited, and in particular, can support more super far cells.
  • the computing resources of the base station according to the prior art can only support one.
  • the ultra-far cell the technical solution provided by the embodiment of the present invention, enables the base station to support multiple super-far cells by using the time division multiplexing access subchannel.
  • the access subchannel corresponding to each cell that is, reducing the granularity of time division multiplexing, the number of super far cells supported by the base station can be increased.
  • this embodiment provides a method for random access, including:
  • the base station control device allocates an access subchannel of the random access channel RACH to the N cells configured by the base station, where N is a positive integer greater than or equal to 2;
  • the base station control device may allocate all the access subchannels of the random access channel RACH to the N cells evenly; or, the base station control device may use the random access channel RACH according to the number of users in each of the N cells. All access subchannels are allocated to N cells. Further, the base station control device may further reserve a preset number of access subchannels between each of the N cells. If the computing resources of the base station can satisfy at least two cells, that is, when the computing resources of the base station are sufficient, the access subchannel may not be reserved, so that the channel resources are fully utilized, and if the computing resources of the base station can only satisfy one cell. In order to enable the base station to have sufficient time for handover configuration and processing of the access subchannel of the next cell, a certain number of access subchannels may be reserved between the cells, thereby ensuring time division multiplexing. Going smoothly.
  • the base station control device allocates all access subchannels of the random access channel RACH to N cells equally.
  • the access subchannel is not reserved between different cells:
  • the total number of access subchannels is divided by the number of cells and rounded, and the result of the rounding is used as the number of access subchannels corresponding to each cell.
  • the formula is expressed as follows:
  • N indicates the number of access subchannels corresponding to the cell
  • T indicates the total number of access subchannels
  • C indicates the number of cells
  • L indicates rounding down.
  • N indicates the number of access subchannels corresponding to the cell
  • T indicates the total number of access subchannels
  • C indicates the number of cells
  • [" indicates rounding down
  • Z indicates reserved access subchannels.
  • the remaining access subchannels may be reserved or may be allocated to the multiple Part of a cell in a cell.
  • the base station control device allocates all access subchannels of the random access channel RACH to the N cells according to the number of users in each of the N cells.
  • the base station control device allocates all access subchannels of the random access channel RACH to N cells according to the proportion of the number of users in each of the N cells.
  • the base station control device allocates a preset number of access subchannels between each of the N cells according to the proportion of the number of users in each of the N cells, and then randomly accesses the channel RACH. All access subchannels are allocated to N cells.
  • RACH Random Access Channel
  • RACH includes 12 access subchannels, each of which occupies a different time slot. If an evenly allocated scheme is employed and one access subchannel is reserved between each cell, then each cell uses three access subchannels. It is assumed that cell 0 uses access subchannels 0, 1, and 2, and is indicated by a left oblique line. Cell 1 uses access subchannels 4, 5, and 6, which are indicated by right oblique lines, and cell 2 uses access subchannels 8, 9, 10, indicated by a dot plot, reserved access subchannels 3, 7, 11 are indicated by blank boxes.
  • the physical random access channel PRACH includes 15 access slots, and each access slot occupies 2 slots. , each access subchannel Occupies an access slot.
  • the abscissa (X-axis) of the map represents 15 access slots 0-14, and the ordinate (y-axis) represents the physical random access channel PRACH, and the number in the box indicates the access subchannel number.
  • the mappings of the four physical random access channels PRACH are given in the mapping diagram.
  • the mapping relationship between the other physical random access channels PRACH and the segment is the same. For example, the mapping relationship between PRACH4 and PRACH0 is the same, and the mapping relationship between PRACH5 and PRACH1 is the same.
  • the mapping relationship with PRACH2 is the same, the mapping relationship between PRACH7 and PRACH3 is the same, the mapping relationship between PRACH8 and PRACH0 is the same, and so on.
  • the base station control device configures a physical random access channel PRACH parameter of each of the N cells, where the PRACH parameter includes an access subchannel corresponding to each of the N cells;
  • the PRACH parameter may further include an identifier of each cell, and an identifier of each cell corresponds to an access subchannel of the cell.
  • the base station control device separately sends PRACH parameters of each of the N cells to the base station.
  • the base station control device may specifically be an RNC or a BSC. Specifically, when the base station control device is an RNC, the base station control device may separately send a plurality of common transport channel establishment requests COMMON TRANSPOT CHANNEL SETUP REQUEST to the base station, and each common transport channel setup request carries a PRACH parameter of one cell.
  • the message carrying the PRACH parameter is not limited, and those skilled in the art may understand that other base station control devices other than the RNC may use other messages to carry the PRACH parameter.
  • the base station receives the PRACH parameter sent by the base station control device, and returns whether the result of establishing the common transport channel is allowed to be sent to the base station control device;
  • the base station may specifically be a NodeB, a BTS, or the like. Specifically, when the base station is a NodeB, if the establishment is allowed, the base station returns a common transport channel establishment response COMMON TRANSPOT CHANNEL SETUP RESPONSE to the base station control device, if the establishment is not allowed, the base station returns the common transport channel establishment failure COMMON TRANSPOT CHANNEL SETUP FAILURE to the base station control device.
  • the message that the base station returns the result is not limited, and those skilled in the art may understand that other base station returns may be used for other base stations other than the NodeB.
  • the base station determines, according to the PRACH parameter of each cell, whether the user equipment in the corresponding cell is allowed to access.
  • the base station determines whether the access subchannel randomly accessed by the user equipment meets the access subchannel indicated by the PRACH parameter of the cell where the user equipment is located, and if yes, allows the user equipment to access, if not, does not allow the access User equipment access.
  • the access subchannel of the random access channel is allocated to multiple cells, and the allocation result is sent to the base station through the PRACH parameter, because the access subchannel is time-sharing in the random access channel, thus implementing Access subchannel at Time division multiplexing between different cells improves the number of cells that the base station can support when the base station computing resources are limited. Moreover, the fewer access subchannels corresponding to each cell, and the smaller the granularity of instant sub-multiplexing, the more the number of cells that the base station can support.
  • this embodiment provides a base station control device, including:
  • the allocation module 401 is configured to allocate an access subchannel of the random access channel RACH to the N cells configured by the base station, where N is a positive integer greater than or equal to 2;
  • the configuration module 402 is configured to configure a physical random access channel PRACH parameter of each of the N cells, where the PRACH parameter includes an access subchannel corresponding to each of the N cells;
  • the sending module 403 is configured to send a PRACH parameter of each of the N cells to the base station, so that the base station determines whether the user equipment in the corresponding cell is allowed to access according to the PRACH parameter of each cell.
  • the allocating module 401 includes a first allocating unit, configured to allocate an average of all access subchannels of the random access channel RACH to N cells;
  • the allocating module 401 includes a second allocating unit, configured to allocate all access subchannels of the random access channel RACH to the N cells according to the number of users of each cell in the N cells.
  • the allocation module 401 includes a reservation unit for reserving a preset number of access subchannels between each of the N cells. If the computing resources of the base station can satisfy at least two cells, that is, when the computing resources of the base station are sufficient, the access subchannel may not be reserved, so that the channel resources are fully utilized, and if the computing resources of the base station can only satisfy one cell. In order to enable the base station to have sufficient time for the handover configuration and processing of the access subchannel of the next cell, a certain number of access subchannels may be reserved between the cells, thereby ensuring smooth time-division multiplexing.
  • the first allocation unit is specifically used for:
  • the total number of access subchannels is divided by the number of cells and rounded, and the result of the rounding is used as the number of access subchannels corresponding to each cell; the formula is as follows:
  • N represents the number of access subchannels corresponding to the cell
  • T represents the total number of access subchannels
  • C represents the number of cells
  • L"3 ⁇ 4 indicates rounding down.
  • the total number of access subchannels is divided by the number of cells and rounded, and the result of the rounding is subtracted from the reserved access subchannels to obtain a difference, and the difference is used as the number of access subchannels corresponding to each cell.
  • the formula is expressed as follows:
  • N indicates the number of access subchannels corresponding to the cell
  • T indicates the total number of access subchannels
  • C indicates the number of cells
  • [" indicates rounding down
  • Z indicates reserved access subchannels.
  • the second allocation unit is specifically used to:
  • All access subchannels of the random access channel RACH are allocated to N cells according to the proportion of the number of users in each of the N cells.
  • the sending module 403 is specifically configured to: respectively send N common transport channel setup requests to the base station, and each common transport channel setup request carries a PRACH parameter of the small cell.
  • the cell involved in this embodiment may be a normal cell or/and a super far cell, that is, N cells are N common cells; or, N cells are N super far cells; or, N cells include common Cell and super far cell.
  • the distribution module, the configuration module, and the transmission module involved in this embodiment may be a distributor, a configurator, and a transmitter.
  • the base station control device and the method embodiment of the present embodiment are in the same concept. For details, refer to the method implementation example, and details are not described herein again.
  • the access subchannel of the random access channel is allocated to multiple cells, and the allocation result is sent to the base station through the PRACH parameter, because the access subchannel is time-sharing in the random access channel, thus implementing
  • the time division multiplexing of the access subchannels between different cells improves the number of cells that the base station can support when the base station computing resources are limited.
  • this embodiment provides a base station, including:
  • the receiving module 501 is configured to receive a physical random access channel PRACH parameter sent by the base station control device, where the base station configures N cells, where N is a positive integer greater than or equal to 2, and the PRACH parameter includes each cell in the N cells.
  • Access subchannel of the random access channel RACH where the access subchannel of the random access channel RACH is allocated by the base station control device to the N cells configured by the base station, and the PRACH parameters of each of the N cells are determined by the base station Control device configuration;
  • the determining module 502 is configured to determine, according to the PRACH parameter, whether the user equipment in the corresponding cell is allowed to perform random access.
  • the determining module 502 is specifically configured to:
  • the access subchannel Determining whether the access subchannel randomly accessed by the user equipment meets the PRACH parameter indication of the cell where the user equipment is located. The access subchannel, if it is compliant, allows the user equipment to access, and if it does not, the user equipment is not allowed to access.
  • the cell involved in this embodiment may be a normal cell or/and a super far cell, that is, N cells are N common cells; or, N cells are N super far cells; or, N cells include common Cell and super far cell.
  • the receiving module and the determining module according to the embodiment may be a receiver and a determiner.
  • the base station and the method embodiments in this embodiment are in the same concept. For details, refer to the method embodiment, and details are not described herein.
  • the N cells are configured, and the PRACH parameters sent by the base station control device are received, where the PRACH parameter includes an access subchannel of the RACH corresponding to each of the N cells, where the RACH access subchannel
  • the base station control device allocates to the N cells configured by the base station, and the base station determines, according to the PRACH parameter, whether the user equipment in the corresponding cell is allowed to perform random access, because the access subchannel is time-sharing in the random access channel,
  • the time division multiplexing of the access subchannels between different cells improves the number of cells that the base station can support when the base station computing resources are limited.
  • the base station control device may be an RNC (Radio Network Controller), and the base station may be a NodeB (base station).
  • the base station control device may be a BSC (Base Station Controller), and the base station may be a BTS (Base Transceiver Station).
  • RNC Radio Network Controller
  • BSC Base Station Controller
  • BTS Base Transceiver Station

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种随机接入方法、基站控制设备和基站,涉及通信领域,该方法包括:基站控制设备将RACH的接入子信道分配给基站配置的N个小区,该N为大于或等于2的正整数;配置该N个小区中的每个小区的PRACH参数,该PRACH参数包括该N个小区中的每个小区所对应的接入子信道;发送该N个小区中的每个小区的PRACH参数给该基站,使该基站根据每个小区的PRACH参数判断是否允许相应小区中的用户设备进行接入。相应的,基站接收基站控制设备发送的PRACH参数,根据PRACH参数判断是否允许相应小区中的用户设备进行随机接入。本发明实现了接入子信道在不同小区之间的时分复用,在基站运算资源受限时,提高了基站能够支持的小区数量。

Description

随机接入方法、 基站控制设备和基站 技术领域
本发明涉及通信领域, 特别涉及一种随机接入方法、 基站控制设备和基站。 背景技术
在无线网络中, 如果用户设备需要与网络建立通信, 则需要经过随机接入过程, 与网 络建立上行同步关系, 请求网络分配相应的信道资源等。
现有的随机接入过程为: 基站控制设备将 RACH ( Random Access Channel , 随机接入信 道) 的接入子信道分配给一个小区, 并将分配信息发送给基站。 基站在整个小区范围内进 行前导 (preamle ) 的搜索, 并进行信道估计、 解调、 译码等操作, 当搜索到来自该小区的 用户设备发起的随机接入请求时, 判断是否允许用户设备进行随机接入。
在实现本发明的过程中, 发明人发现现有技术至少存在以下问题:
基站处理用户设备的随机接入过程需要一定的处理资源, 在基站的处理资源受限的情 况下, 基站能够支持的小区数量也受到限制。 发明内容
为了在运算资源受限的情况下, 提高基站能够支持的小区数量, 本发明实施例提供了 一种随机接入方法、 基站控制设备和基站。 所述技术方案如下:
一种随机接入的方法, 所述方法包括:
基站控制设备将随机接入信道 RACH的接入子信道分配给基站配置的 N个小区, 所述 N 为大于或等于 2的正整数;
所述基站控制设备配置所述 N个小区中的每个小区的物理随机接入信道 PRACH参数, 所述 PRACH参数包括所述 N个小区中的每个小区所对应的接入子信道;
发送所述 N个小区中的每个小区的 PRACH参数给所述基站, 使所述基站根据每个小区 的 PRACH参数判断是否允许相应小区中的用户设备进行接入。
一种随机接入的方法, 所述方法包括:
基站接收基站控制设备发送的物理随机接入信道 PRACH参数, 所述基站配置了 N个小 区, 所述 N为大于或等于 2的正整数, 所述 PRACH参数包括所述 N个小区中的每个小区所 对应的随机接入信道 RACH的接入子信道, 其中, 所述随机接入信道 RACH的接入子信道由 所述基站控制设备分配给所述基站配置的 N个小区, 所述 N个小区中的每个小区的 PRACH 参数由所述基站控制设备进行配置;
所述基站根据所述 PRACH参数判断是否允许相应小区中的用户设备进行随机接入。 一种基站控制设备, 所述基站控制设备包括:
分配模块, 用于将随机接入信道 RACH的接入子信道分配给基站配置的 N个小区, 所述 N为大于或等于 2的正整数;
配置模块, 用于配置所述 N个小区中的每个小区的物理随机接入信道 PRACH参数, 所 述 PRACH参数包括所述 N个小区中的每个小区所对应的接入子信道;
发送模块, 用于发送所述 N个小区中的每个小区的 PRACH参数给所述基站, 使所述基 站根据每个小区的 PRACH参数判断是否允许相应小区中的用户设备进行接入。
一种基站, 所述基站包括:
接收模块, 用于接收基站控制设备发送的物理随机接入信道 PRACH参数, 所述基站配 置了 N个小区, 所述 N为大于或等于 2的正整数, 所述 PRACH参数包括所述 N个小区中的 每个小区所对应的随机接入信道 RACH的接入子信道, 其中, 所述随机接入信道 RACH的接 入子信道由所述基站控制设备分配给所述基站配置的 N个小区, 所述 N个小区中的每个小 区的 PRACH参数由所述基站控制设备进行配置;
判断模块, 用于根据所述 PRACH参数判断是否允许相应小区中的用户设备进行随机接 入。
本发明实施例通过将随机接入信道的接入子信道分配给多个小区, 并将分配结果通过
PRACH参数发送给基站, 实现了接入子信道在不同小区之间的时分复用, 在基站运算资源受 限的情况下, 提高了基站能够支持的小区数量。 附图说明
图 1是本发明实施例 1提供的随机接入的方法流程图;
图 2是本发明实施例 1提供的随机接入的另一方法流程图;
图 3是本发明实施例 2提供的随机接入的信息交互图;
图 4是本发明实施例 2提供的随机接入信道与物理随机接入信道的映射图;
图 5是本发明实施例 3提供的基站控制设备结构示意图;
图 6是本发明实施例 4提供的基站结构示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施方式作 进一步地详细描述。
实施例 1
参见图 1, 本实施例提供了一种随机接入的方法, 该方法可以由基站控制设备执行, 该 方法包括:
101: 基站控制设备将随机接入信道 RACH的接入子信道分配给基站配置的 N个小区, 该 N为大于或等于 2的正整数;
102: 该基站控制设备配置该 N个小区中的每个小区的 PRACH (Physical Random Access Channel , 物理随机接入信道) 参数, 该 PRACH参数包括该 N个小区中的每个小区所对应的 接入子信道;
103: 发送该 N个小区中的每个小区的 PRACH参数给该基站, 使该基站根据每个小区的 PRACH参数判断是否允许相应小区中的用户设备进行接入。
本实施例通过将随机接入信道的接入子信道分配给多个小区,并将分配结果通过 PRACH 参数发送给基站, 由于接入子信道在随机接入信道中是分时的, 因此实现了接入子信道在 不同小区之间的时分复用, 在基站运算资源受限的情况下, 提高了基站能够支持的小区数 参见图 2,本实施例提供了一种随机接入的方法,该方法可以由基站执行,该方法包括: 201: 基站接收基站控制设备发送的物理随机接入信道 PRACH参数, 该基站配置了 N个 小区, 该 N为大于或等于 2的正整数, 该 PRACH参数包括该 N个小区中的每个小区所对应 的随机接入信道 RACH的接入子信道, 其中, 该随机接入信道 RACH的接入子信道由该基站 控制设备分配给该基站配置的 N个小区, 该 N个小区中的每个小区的 PRACH参数由该基站 控制设备进行配置;
202: 基站根据该 PRACH参数判断是否允许相应小区中的用户设备进行随机接入。
本实施例通过配置 N个小区, 并接收基站控制设备发送的 PRACH参数, 该 PRACH参数 包括该 N个小区中的每个小区所对应的 RACH的接入子信道, 其中, RACH的接入子信道由基 站控制设备分配给基站配置的 N个小区, 基站根据该 PRACH参数判断是否允许相应小区中 的用户设备进行随机接入, 由于接入子信道在随机接入信道中是分时的, 因此实现了接入 子信道在不同小区之间的时分复用, 在基站运算资源受限的情况下, 提高了基站能够支持 的小区数量。
本发明实施例所涉及的随机接入方案适用于 3G ( 3rd-generation, 第三代)、 或者 2G ( 2nd generation, 第二代)等通信***。在 3G通信***中, 基站控制设备具体可以是 RNC ( Radio Network Control ler, 无线网络控制器), 基站具体可以是 NodeB (基站)。 在 2G 通信***中, 基站控制设备具体可以是 BSC (Base Station Control ler, 基站控制器), 基 站具体可以是或 BTS (Base Transceiver Station, 基站收发台)。
本实施例所涉及的小区可以是普通小区或 /和超远小区, 也即, N个小区为 N个普通小 区; 或, N个小区为 N个超远小区; 或, N个小区同时包括普通小区和超远小区。 因此, 本 实施例提供的方案适用于多个普通小区, 或者多个超远小区, 或者由普通小区和超远小区 组成的混合小区。 其中, 超远小区可以是指小区半径大于 30公里的小区, 普通小区可以是 指小区半径小于或等于 30公里的小区。 处理用户设备的随机接入过程, 如前导搜索、 信道 估计、 解调、 译码等, 需要占用基站的运算资源。 由于超远小区覆盖范围通常远大于普通 小区, 因此, 一个超远小区占用的基站运算资源远大于普通小区占用的基站运算资源。 基 站的运算资源与其硬件相关, 如果为了支持多个超远小区, 而将基站的运算资源配置的较 多, 则当基站处理普通小区时, 就会造成基站运算资源的严重浪费。 因此, 为了实现业务 与成本之间的平衡, 现有技术中往往将基站的运算资源配置为支持一个超远小区。
本发明实施例提供的方案, 能够在基站运算资源受限的情况下, 支持更多的小区, 特 别是能够支持更多的超远小区, 例如, 按照现有技术基站的运算资源仅能支持一个超远小 区, 本发明实施例提供的技术方案, 通过分时复用接入子信道, 使得基站能够支持多个超 远小区。 另外, 通过减少每个小区所对应的接入子信道, 也即减少时分复用的粒度, 可以 增加基站支持的超远小区的数目。 实施例 2
参见图 3, 本实施例提供了一种随机接入的方法, 包括:
301: 基站控制设备将随机接入信道 RACH的接入子信道分配给基站配置的 N个小区, 该 N为大于或等于 2的正整数;
具体的, 基站控制设备可以将随机接入信道 RACH的所有接入子信道平均分配给 N个小 区; 或者, 基站控制设备可以根据 N个小区中每个小区的用户数量, 将随机接入信道 RACH 的所有接入子信道分配给 N个小区。 进一步的, 基站控制设备还可以在 N个小区中每个小 区之间预留预设数量的接入子信道。 如果基站的运算资源能够满足至少两个小区, 也即在 基站的运算资源充裕的情况下, 可以不预留接入子信道, 从而充分利用信道资源, 如果基 站的运算资源能只能满足一个小区, 为了使基站有足够的时间进行下一小区的接入子信道 的切换配置和处理, 则可以在小区之间预留一定数量的接入子信道, 从而保障分时复用的 顺利进行。
对于基站控制设备将随机接入信道 RACH 的所有接入子信道平均分配给 N个小区的情 况, 至少有以下两种方法:
( 1 ) 不同小区之间不预留接入子信道: 将接入子信道的总数除以小区数量并取整, 将 取整的结果作为每个小区对应的接入子信道的数量。 公式表示如下:
N = Lr /c」
其中, N表示小区对应的接入子信道的数量, T表示接入子信道的总数, C表示小区数 量, L」 示向下取整。
( 2 ) 不同小区之间预留接入子信道: 将接入子信道的总数除以小区数量并取整, 取整 的结果减去预留的接入子信道得到一差值, 将差值作为每个小区对应的接入子信道的数量。 公式表示如下:
Figure imgf000007_0001
其中, N表示小区对应的接入子信道的数量, T表示接入子信道的总数, C表示小区数 量, [」表示向下取整, Z表示预留的接入子信道。
进一步的, 对于上述两种方法, 在 JV C不能整除的情况下, 分配给每个小区之后会有 剩余的接入子信道, 剩余的接入子信道可以预留, 也可以分配给上述多个小区中的部分小 区。
对于基站控制设备可以根据 N个小区中每个小区的用户数量, 将随机接入信道 RACH的 所有接入子信道分配给 N个小区的情况, 至少有以下两种方法:
( 1 )基站控制设备按照 N个小区中每个小区的用户数量的比例, 将随机接入信道 RACH 的所有接入子信道分配给 N个小区。
( 2 ) 基站控制设备按照 N个小区中每个小区的用户数量的比例, 并且在 N个小区中每 个小区之间预留预设数量的接入子信道, 再将随机接入信道 RACH的所有接入子信道分配给 N个小区。
下面给出一个接入子信道的分配实例。 设有 3个小区, 随机接入信道 RACH包括 12个 接入子信道, 每个接入子信道占用不同的时隙。 如果采用平均分配的方案, 并且每个小区 之间预留一个接入子信道,则每个小区使用 3个接入子信道。假设小区 0使用接入子信道 0、 1、 2, 用左斜线表示, 小区 1使用接入子信道 4、 5、 6, 用右斜线表示, 小区 2使用接入子 信道 8、 9、 10, 用点图表示, 预留接入子信道 3、 7、 11 , 用空白框表示。
参见图 4所示的随机接入信道 RACH与物理随机接入信道 PRACH的映射图, 物理随机接 入信道 PRACH包括 15个接入时隙, 每个接入时隙占用 2个时隙 (slot ), 每个接入子信道 占用一个接入时隙。 映射图的横坐标 (X轴) 表示 15个接入时隙 0-14, 纵坐标 (y轴) 表 示物理随机接入信道 PRACH, 方框中的数字表示接入子信道号。映射图中给出了 4个物理随 机接入信道 PRACH 的片段, 其他物理随机接入信道 PRACH 与该片段的映射关系相同, 如 PRACH4与 PRACH0的映射关系相同, PRACH5与 PRACH1的映射关系相同, PRACH6与 PRACH2 的映射关系相同, PRACH7与 PRACH3的映射关系相同, PRACH8又与 PRACH0的映射关系相同, 以此类推。
302:基站控制设备配置 N个小区中的每个小区的物理随机接入信道 PRACH参数, PRACH 参数包括 N个小区中的每个小区所对应的接入子信道;
进一步的, PRACH参数还可以包括每个小区的标识, 每个小区的标识与该小区的接入子 信道对应。
303: 基站控制设备分别发送 N个小区中的每个小区的 PRACH参数给基站;
其中, 基站控制设备具体可以是 RNC或 BSC等。 具体的, 当基站控制设备是 RNC时, 基站控制设备可以分别发送多条公共传输信道建立请求 COMMON TRANSPOT CHANNEL SETUP REQUEST给基站, 每条公共传输信道建立请求携带一个小区的 PRACH参数。
需要说明是, 本实施例并不限定携带 PRACH参数的消息, 本领域技术人员可以理解, 对于 RNC之外的其他基站控制设备, 可以采用其他消息携带 PRACH参数。
304: 基站接收基站控制设备发送的 PRACH参数, 并返回是否允许建立公共传输信道的 结果给基站控制设备;
其中, 基站具体可以是 NodeB、或 BTS等。具体的, 当基站是 NodeB时, 如果允许建立, 基站返回公共传输信道建立响应 COMMON TRANSPOT CHANNEL SETUP RESPONSE给基站控制 设备, 如果不允许建立, 基站返回公共传输信道建立失败 COMMON TRANSPOT CHANNEL SETUP FAILURE给基站控制设备。
需要说明是, 本实施例并不限定基站返回结果的消息, 本领域技术人员可以理解, 对 于 NodeB之外的其他基站, 可以采用其他消息返回结果。
305: 如果允许建立公共传输信道, 基站根据每个小区的 PRACH参数判断是否允许相应 小区中的用户设备进行接入。
具体的, 基站判断用户设备随机接入的接入子信道是否符合该用户设备所在小区的 PRACH参数指示的接入子信道, 如果符合, 允许该用户设备进行接入, 如果不符合, 不允许 该用户设备进行接入。
本实施例通过将随机接入信道的接入子信道分配给多个小区,并将分配结果通过 PRACH 参数发送给基站, 由于接入子信道在随机接入信道中是分时的, 因此实现了接入子信道在 不同小区之间的时分复用, 在基站运算资源受限的情况下, 提高了基站能够支持的小区数 量。 并且, 每个小区所对应的接入子信道越少, 也即时分复用的粒度越小, 基站能够支持 的小区数量越多。 实施例 3
参见图 5, 本实施例提供了一种基站控制设备, 包括:
分配模块 401, 用于将随机接入信道 RACH的接入子信道分配给基站配置的 N个小区, 该 N为大于或等于 2的正整数;
配置模块 402, 用于配置该 N个小区中的每个小区的物理随机接入信道 PRACH参数, 该 PRACH参数包括该 N个小区中的每个小区所对应的接入子信道;
发送模块 403, 用于发送该 N个小区中的每个小区的 PRACH参数给该基站, 使该基站根 据每个小区的 PRACH参数判断是否允许相应小区中的用户设备进行接入。
分配模块 401包括第一分配单元, 用于将随机接入信道 RACH的所有接入子信道平均分 配给 N个小区;
或者,
分配模块 401包括第二分配单元, 用于根据 N个小区中每个小区的用户数量, 将随机 接入信道 RACH的所有接入子信道分配给 N个小区。
分配模块 401包括预留单元, 用于在 N个小区中每个小区之间预留预设数量的接入子 信道。 如果基站的运算资源能够满足至少两个小区, 也即在基站的运算资源充裕的情况下, 可以不预留接入子信道, 从而充分利用信道资源, 如果基站的运算资源能只能满足一个小 区, 为了使基站有足够的时间进行下一小区的接入子信道的切换配置和处理, 则可以在小 区之间预留一定数量的接入子信道, 从而保障分时复用的顺利进行。
第一分配单元具体用于:
将接入子信道的总数除以小区数量并取整, 将取整的结果作为每个小区对应的接入子 信道的数量; 公式表示如下:
N = Lr /c」
其中, N表示小区对应的接入子信道的数量, T表示接入子信道的总数, C表示小区数 量, L」¾示向下取整。
或者,
将接入子信道的总数除以小区数量并取整, 将取整的结果减去预留的接入子信道得到 一差值, 将差值作为每个小区对应的接入子信道的数量。 公式表示如下:
Figure imgf000010_0001
其中, N表示小区对应的接入子信道的数量, T表示接入子信道的总数, C表示小区数 量, [」表示向下取整, Z表示预留的接入子信道。
第二分配单元具体用于:
按照 N个小区中每个小区的用户数量的比例, 将随机接入信道 RACH的所有接入子信道 分配给 N个小区。
发送模块 403, 具体用于- 分别发送 N条公共传输信道建立请求给基站, 每条公共传输信道建立请求携带一个小 区的 PRACH参数。
本实施例所涉及的小区可以是普通小区或 /和超远小区, 也即, N个小区为 N个普通小 区; 或, N个小区为 N个超远小区; 或, N个小区同时包括普通小区和超远小区。
本实施例所涉及的分配模块、 配置模块和发送模块, 可以是分配器、 配置器和发送器。 本实施例所涉及的基站控制设备与方法实施例属于同一构思, 具体实现过程详见方法实施 例, 这里不再赘述。
本实施例通过将随机接入信道的接入子信道分配给多个小区,并将分配结果通过 PRACH 参数发送给基站, 由于接入子信道在随机接入信道中是分时的, 因此实现了接入子信道在 不同小区之间的时分复用, 在基站运算资源受限的情况下, 提高了基站能够支持的小区数 量。 并且, 每个小区所对应的接入子信道越少, 也即时分复用的粒度越小, 基站能够支持 的小区数量越多。 实施例 4
参见图 6, 本实施例提供了一种基站, 包括:
接收模块 501, 用于接收基站控制设备发送的物理随机接入信道 PRACH参数, 基站配置 了 N个小区, N为大于或等于 2的正整数, PRACH参数包括 N个小区中的每个小区所对应的 随机接入信道 RACH的接入子信道, 其中, 随机接入信道 RACH的接入子信道由基站控制设 备分配给基站配置的 N个小区, N个小区中的每个小区的 PRACH参数由基站控制设备进行配 置;
判断模块 502,用于根据该 PRACH参数判断是否允许相应小区中的用户设备进行随机接 入。
判断模块 502, 具体用于:
判断用户设备随机接入的接入子信道是否符合该用户设备所在小区的 PRACH参数指示 的接入子信道, 如果符合, 允许该用户设备进行接入, 如果不符合, 不允许该用户设备进 行接入。
本实施例所涉及的小区可以是普通小区或 /和超远小区, 也即, N个小区为 N个普通小 区; 或, N个小区为 N个超远小区; 或, N个小区同时包括普通小区和超远小区。
本实施例所涉及的接收模块、 和判断模块, 可以是接收器、 和判断器。 本实施例所涉 及的基站与方法实施例属于同一构思, 具体实现过程详见方法实施例, 这里不再赘述。
本实施例通过配置 N个小区, 并接收基站控制设备发送的 PRACH参数, 该 PRACH参数 包括该 N个小区中的每个小区所对应的 RACH的接入子信道, 其中, RACH的接入子信道由基 站控制设备分配给基站配置的 N个小区, 基站根据该 PRACH参数判断是否允许相应小区中 的用户设备进行随机接入, 由于接入子信道在随机接入信道中是分时的, 因此实现了接入 子信道在不同小区之间的时分复用, 在基站运算资源受限的情况下, 提高了基站能够支持 的小区数量。 并且, 每个小区所对应的接入子信道越少, 也即时分复用的粒度越小, 基站 能够支持的小区数量越多。 在本发明实施例提供技术方案中, 如果应用在 3G通信***中, 基站控制设备具体可以 是 RNC (Radio Network Controller, 无线网络控制器), 基站具体可以是 NodeB (基站)。 如果应用在 2G通信***中, 基站控制设备具体可以是 BSC (Base Station Controller, 基 站控制器), 基站具体可以是或 BTS (Base Transceiver Station, 基站收发台)。 本发明实施例所描述的方法、 装置实施例, 可以互相参照和引用。 本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完 成, 也可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一种计算机可读存储 介质中, 上述提到的存储介质可以是只读存储器, 磁盘或光盘等。 以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

1、 一种随机接入的方法, 其特征在于, 所述方法包括:
基站控制设备将随机接入信道 RACH的接入子信道分配给基站配置的 N个小区,所述 N为 大于或等于 2的正整数;
所述基站控制设备配置所述 N个小区中的每个小区的物理随机接入信道 PRACH参数, 所 述 PRACH参数包括所述 N个小区中的每个小区所对应的接入子信道;
发送所述 N个小区中的每个小区的 PRACH参数给所述基站, 使所述基站根据每个小区的 PRACH参数判断是否允许相应小区中的用户设备进行接入。
2、 根据权利要求 1所述的方法, 其特征在于, 所述基站控制设备将随机接入信道 RACH 的接入子信道分配给基站配置的 N个小区, 包括:
所述基站控制设备将随机接入信道 RACH的所有接入子信道平均分配给所述 N个小区; 或者,
所述基站控制设备根据所述 N个小区中每个小区的用户数量,将随机接入信道 RACH的所 有接入子信道分配给所述 N个小区。
3、 根据权利要求 2所述的方法, 其特征在于, 所述基站控制设备将随机接入信道 RACH 的接入子信道分配给基站配置的 N个小区, 还包括:
所述基站控制设备在所述 N个小区中每个小区之间预留预设数量的接入子信道。
4、 根据权利要求 2或 3所述的方法, 其特征在于, 所述基站控制设备将随机接入信道 RACH的所有接入子信道平均分配给所述 N个小区, 包括:
将接入子信道的总数除以小区数量并取整, 将取整的结果作为每个小区对应的接入子信 道的数量;
或者,
将接入子信道的总数除以小区数量并取整, 将取整的结果减去预留的接入子信道得到一 差值, 将所述差值作为每个小区对应的接入子信道的数量。
5、 根据权利要求 2或 3所述的方法, 其特征在于, 所述基站控制设备根据所述 N个小区 中每个小区的用户数量,将随机接入信道 RACH的所有接入子信道分配给所述 N个小区,包括: 所述基站控制设备按照所述 N个小区中每个小区的用户数量的比例, 将随机接入信道 RACH的所有接入子信道分配给所述 N个小区。
6、 根据权利要求 1-5任一权利要求所述的方法, 其特征在于, 所述发送所述 N个小区中 的每个小区的 PRACH参数给所述基站, 包括: 分别发送 N条公共传输信道建立请求给所述基站, 每条公共传输信道建立请求携带一个 小区的 PRACH参数。
7、 根据权利要求 1-6任一权利要求所述的方法, 其特征在于,
所述 N个小区为 N个普通小区; 或,
所述 N个小区为 N个超远小区; 或,
所述 N个小区同时包括普通小区和超远小区。
8、 一种随机接入的方法, 其特征在于, 所述方法包括:
基站接收基站控制设备发送的物理随机接入信道 PRACH参数,所述基站配置了 N个小区, 所述 N为大于或等于 2的正整数, 所述 PRACH参数包括所述 N个小区中的每个小区所对应的 随机接入信道 RACH的接入子信道, 其中, 所述随机接入信道 RACH的接入子信道由所述基站 控制设备分配给所述基站配置的 N个小区, 所述 N个小区中的每个小区的 PRACH参数由所述 基站控制设备进行配置;
所述基站根据所述 PRACH参数判断是否允许相应小区中的用户设备进行随机接入。
9、 根据权利要求 8所述的方法, 其特征在于, 所述根据所述 PRACH参数判断是否允许相 应小区中的用户设备进行随机接入, 包括:
判断用户设备随机接入的接入子信道是否符合所述用户设备所在小区的 PRACH参数指示 的接入子信道, 如果符合, 允许所述用户设备进行接入, 如果不符合, 不允许所述用户设备 进行接入。
10、 一种基站控制设备, 其特征在于, 所述基站控制设备包括- 分配模块, 用于将随机接入信道 RACH的接入子信道分配给基站配置的 N个小区, 所述 N 为大于或等于 2的正整数;
配置模块, 用于配置所述 N个小区中的每个小区的物理随机接入信道 PRACH参数, 所述 PRACH参数包括所述 N个小区中的每个小区所对应的接入子信道;
发送模块, 用于发送所述 N个小区中的每个小区的 PRACH参数给所述基站, 使所述基站 根据每个小区的 PRACH参数判断是否允许相应小区中的用户设备进行接入。
11、 根据权利要求 10所述的基站控制设备, 其特征在于,
所述分配模块包括第一分配单元,用于将随机接入信道 RACH的所有接入子信道平均分配 给所述 N个小区;
或者,
所述分配模块包括第二分配单元, 用于根据所述 N个小区中每个小区的用户数量, 将随 机接入信道 RACH的所有接入子信道分配给所述 N个小区。
12、 根据权利要求 11所述的基站控制设备, 其特征在于, 所述分配模块包括预留单元, 用于在所述 N个小区中每个小区之间预留预设数量的接入子信道。
13、 根据权利要求 11或 12所述的基站控制设备, 其特征在于, 所述第一分配单元具体 用于- 将接入子信道的总数除以小区数量并取整, 将取整的结果作为每个小区对应的接入子信 道的数量;
或者,
将接入子信道的总数除以小区数量并取整, 将取整的结果减去预留的接入子信道得到一 差值, 将所述差值作为每个小区对应的接入子信道的数量。
14、 根据权利要求 11或 12所述的基站控制设备, 其特征在于, 所述第二分配单元具体 用于- 按照所述 N个小区中每个小区的用户数量的比例,将随机接入信道 RACH的所有接入子信 道分配给所述 N个小区。
15、 根据权利要求 10-14任一权利要求所述的基站控制设备, 其特征在于, 所述发送模 块, 具体用于- 分别发送 N条公共传输信道建立请求给所述基站, 每条公共传输信道建立请求携带一个 小区的 PRACH参数。
16、 一种基站, 其特征在于, 所述基站包括:
接收模块, 用于接收基站控制设备发送的物理随机接入信道 PRACH参数, 所述基站配置 了 N个小区, 所述 N为大于或等于 2的正整数, 所述 PRACH参数包括所述 N个小区中的每个 小区所对应的随机接入信道 RACH的接入子信道, 其中, 所述随机接入信道 RACH的接入子信 道由所述基站控制设备分配给所述基站配置的 N个小区,所述 N个小区中的每个小区的 PRACH 参数由所述基站控制设备进行配置;
判断模块,用于根据所述 PRACH参数判断是否允许相应小区中的用户设备进行随机接入。
17、 根据权利要求 16所述的基站, 其特征在于, 所述判断模块, 具体用于:
判断用户设备随机接入的接入子信道是否符合所述用户设备所在小区的 PRACH参数指示 的接入子信道, 如果符合, 允许所述用户设备进行接入, 如果不符合, 不允许所述用户设备 进行接入。
PCT/CN2011/076285 2011-06-24 2011-06-24 随机接入方法、基站控制设备和基站 WO2012103706A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800007679A CN102273310A (zh) 2011-06-24 2011-06-24 随机接入方法、基站控制设备和基站
PCT/CN2011/076285 WO2012103706A1 (zh) 2011-06-24 2011-06-24 随机接入方法、基站控制设备和基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/076285 WO2012103706A1 (zh) 2011-06-24 2011-06-24 随机接入方法、基站控制设备和基站

Publications (1)

Publication Number Publication Date
WO2012103706A1 true WO2012103706A1 (zh) 2012-08-09

Family

ID=45053618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076285 WO2012103706A1 (zh) 2011-06-24 2011-06-24 随机接入方法、基站控制设备和基站

Country Status (2)

Country Link
CN (1) CN102273310A (zh)
WO (1) WO2012103706A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108243508A (zh) * 2016-12-23 2018-07-03 北京佰才邦技术有限公司 一种资源配置方法、信息发送方法、基站及终端
WO2018137246A1 (zh) * 2017-01-26 2018-08-02 华为技术有限公司 终端设备定位方法以及网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020058619A (ko) * 2000-12-30 2002-07-12 엘지전자 주식회사 시분할 듀플렉스 모드에서의 랜덤 액세스 방법
CN1905750A (zh) * 2006-08-08 2007-01-31 华为技术有限公司 一种实现多小区接入前导检测资源复用的方法和装置
CN1946238A (zh) * 2006-10-31 2007-04-11 华为技术有限公司 一种多小区上行随机物理信道接入的方法和装置
CN101242671A (zh) * 2008-03-13 2008-08-13 北京北方烽火科技有限公司 一种wcdma基站rach前导检测功能实现方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020058619A (ko) * 2000-12-30 2002-07-12 엘지전자 주식회사 시분할 듀플렉스 모드에서의 랜덤 액세스 방법
CN1905750A (zh) * 2006-08-08 2007-01-31 华为技术有限公司 一种实现多小区接入前导检测资源复用的方法和装置
CN1946238A (zh) * 2006-10-31 2007-04-11 华为技术有限公司 一种多小区上行随机物理信道接入的方法和装置
CN101242671A (zh) * 2008-03-13 2008-08-13 北京北方烽火科技有限公司 一种wcdma基站rach前导检测功能实现方法

Also Published As

Publication number Publication date
CN102273310A (zh) 2011-12-07

Similar Documents

Publication Publication Date Title
TWI661741B (zh) 通訊系統,通訊裝置及方法
KR102087656B1 (ko) 디바이스 대 디바이스 통신 시스템에서 자원의 분산 스케줄링 방법 및 장치
US20180049068A1 (en) Method and apparatus for supporting flexible ue bandwidth in next generation communication system
JP7188379B2 (ja) 無線通信に用いられる電子装置及び方法
WO2018171643A1 (zh) 信息传输方法、装置及***
KR102013437B1 (ko) 셀룰러 기반 단말간 직접통신의 스케쥴링을 위한 방법 및 장치
US11432335B2 (en) Back-off timer per SSB in NR
EP3255928B1 (en) Random access method and user equipment
WO2008111821A1 (en) Preamble allocation method and random access method in mobile communication system
KR101849212B1 (ko) Wlan에서 ofdma 리소스 관리를 위한 시스템 및 방법
WO2013026414A1 (zh) 接入通信***的方法、下行信息发送方法、终端及基站
JP6195666B2 (ja) エアインターフェースベースの同期方法、基地局、制御装置、及び無線通信システム
EP3128706B1 (en) Resource reuse method and apparatus
US9155115B2 (en) Method and apparatus for generating connection identifier for device-to-device communication
KR101910219B1 (ko) 리소스 요청방법, 스테이션 및 중심 액세스 포인트
JP2023511897A (ja) 初期帯域幅部bwp及び記憶媒体を決定するための方法及び装置
WO2015067197A1 (zh) D2d发现信号的发送方法和发送装置
KR20140122429A (ko) 통신 시스템에서 채널 할당 장치 및 방법
WO2015085839A1 (zh) 一种数据通信方法、***及装置
WO2016026087A1 (zh) 数据传输方法和装置
CN104303554B (zh) 一种通讯方法、基站和用户设备
WO2022063173A1 (zh) 传输接收点的确定方法及装置
US9491759B2 (en) Method and apparatus for assigning connection identifiers of device-to-device communications
WO2016127348A1 (zh) 接入点ap、站点sta、通信***及数据传输方法
CN109151832B (zh) 免授权资源访问方法、调度方法及装置、存储介质、终端、基站

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180000767.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11857788

Country of ref document: EP

Kind code of ref document: A1