WO2012102178A1 - Method and apparatus for producing resin film - Google Patents

Method and apparatus for producing resin film Download PDF

Info

Publication number
WO2012102178A1
WO2012102178A1 PCT/JP2012/051115 JP2012051115W WO2012102178A1 WO 2012102178 A1 WO2012102178 A1 WO 2012102178A1 JP 2012051115 W JP2012051115 W JP 2012051115W WO 2012102178 A1 WO2012102178 A1 WO 2012102178A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
resin film
film
cooling
resin
Prior art date
Application number
PCT/JP2012/051115
Other languages
French (fr)
Japanese (ja)
Inventor
聡 白鳥
英俊 松本
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2012554756A priority Critical patent/JPWO2012102178A1/en
Publication of WO2012102178A1 publication Critical patent/WO2012102178A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/222Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0063Cutting longitudinally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent

Definitions

  • the present invention relates to a resin film manufacturing method and manufacturing apparatus, and in particular, eliminates slippage in the width direction due to shrinkage during cooling of the formed resin film, thereby suppressing optical distortion of the film and optical distortion.
  • the present invention relates to a resin film manufacturing method and a manufacturing apparatus in which the product yield is improved by reducing the variation of the resin.
  • Resin films used for optical applications are widely used for liquid crystal cells, retardation films, diffusion films, brightness enhancement films, etc. combined with optical disks and polarizing plates, for example.
  • the resin film used for these optical applications needs to make the optical distortion generated during the production as small as possible in order to exhibit predetermined optical characteristics.
  • a resin film is produced by setting the temperature of the first cooling roll (first cooling roll) to a predetermined temperature range with respect to the glass transition temperature or melting temperature of the resin.
  • a method is known (for example, refer to Patent Documents 1 and 2). These methods described in Patent Documents 1 and 2 are effective as a technique for reducing the optical distortion of a resin film having a smooth surface.
  • an optical resin film in addition to a resin film having a smooth surface, an optical resin film having a function of scattering light by forming an uneven shape on the surface of the resin film is required.
  • a resin film having a concavo-convex shape formed on the surface is obtained by extruding a molten transparent resin into a film shape from a die, a first cooling roll having a smooth outer peripheral surface, and a second rugged shape formed on the outer peripheral surface. It is obtained by being sandwiched between the cooling rolls, transferring the concavo-convex shape of the second cooling roll, winding it around the second cooling roll, and then taking it out with a take-up roll.
  • the present invention is intended to solve the above-described problems, and suppresses optical distortion of a resin film having an uneven surface formed on the surface, and reduces variation in optical distortion.
  • An object of the present invention is to provide a manufacturing method and a manufacturing apparatus.
  • the present inventors have reduced the optical distortion and reduced the optical distortion by suppressing the shrinkage of the resin film during cooling in the production of the resin film. Has been found to be able to be suppressed, and the present invention has been completed.
  • a molten thermoplastic resin (hereinafter also referred to as a molten resin) is extruded from a die into a film shape, and the extruded film-shaped molten resin is applied to the outer peripheral surface excluding both ends.
  • a molten resin molten thermoplastic resin
  • the apparatus for producing a resin film of the present invention includes an extrusion means having a die for extruding a molten thermoplastic resin into a film shape, a cooling roll having an uneven shape formed on the outer peripheral surface, and a predetermined interval between the cooling roll and the cooling roll.
  • the film-shaped molten resin extruded by the extruding unit is pressed between the cooling roll and the pressing unit to cool the thermoplastic resin while transferring the uneven shape to the surface.
  • the pressing means may be either mirror-finished or formed with a concavo-convex shape, and may be properly used according to the resin film to be produced.
  • a concavo-convex shape is applied to the outer peripheral surface so as to impart a desired concavo-convex shape to the surface of the thermoplastic resin extruded into a film shape by a pressing roll or a pressing belt.
  • the method and apparatus for producing a resin film of the present invention when the molten resin extruded into a film shape is cooled, it is produced by suppressing shrinkage in the width direction of the film-like molten resin on the cooling roll. As a result, the retardation of the resin film can be reduced. Moreover, according to the manufacturing method and manufacturing apparatus of the resin film of this invention, the dispersion
  • the quality (optical characteristics) of the obtained resin film becomes uniform, the product reliability is improved, and the region that can be used as a product in the obtained resin film is extremely wide, and the yield is very good.
  • the resin used in the present invention is a thermoplastic resin, and preferably an amorphous thermoplastic resin.
  • thermoplastic resin examples thereof include polysulfone, polystyrene, polycarbonate, polyvinyl chloride, cyclic polyolefin, polymethyl methacrylate (PMMA), and cellulose acetate resin.
  • PMMA polymethyl methacrylate
  • norbornene-based resins and polycarbonates that are cyclic polyolefins are preferably used because of excellent transparency, small intrinsic birefringence and photoelastic coefficient, and excellent heat resistance required in melt extrusion molding. It is done.
  • the resin is preferably a transparent resin.
  • the transparent means that the total light transmittance is 80% or more when both sheets have a smooth thickness of 100 ⁇ m. Means.
  • PMMA polymethyl methacrylate
  • aromatic polycarbonate resin aromatic polycarbonate resin
  • norbornene-based resin that is cyclic polyolefin resin can be preferably used.
  • thermoplastic resin An additive may be added to the thermoplastic resin as necessary.
  • Additives include UV absorbers, surfactants, impact agents, antistatic agents, antioxidants, lubricants, mold release agents, flame retardants, colorants such as dyes, pigments, etc., usually contained in resin films. Examples of known additives that can be used for this purpose are listed below.
  • a resin film manufacturing apparatus 1 as shown in FIG. 1 is used.
  • This apparatus includes an extruding means 2 comprising an extruder 2 for extruding a thermoplastic resin by heating and melting, and a die 3 for forming the molten thermoplastic resin into a film shape, and sandwiching and feeding the film-shaped thermoplastic resin from above and below.
  • a first cooling roll 4 that cools while rotating in the direction and transfers the shape of the outer peripheral surface thereof to form a resin film
  • a cooling molding means that includes a pressing roll 5 as a pressing means, and further a resin film
  • the second cooling roll 6 that cools the sheet and the feed roll 7 that further feeds the cooled resin film to the subsequent stage.
  • the extruder 2 heats and melts the resin raw material described above to make the thermoplastic resin a homogeneous state, and an extruder having the same structure as that used in a normal extrusion molding method can be used.
  • a thermoplastic resin supplied from above by a pellet dryer or a weighing hopper 8 is pumped to the die 3 while being heated and melted by a rotating screw.
  • the die 3 is for extruding a molten thermoplastic resin fed from the extruder 2 into a film in a molten state, and a T-die is usually used.
  • the die 3 may be a single-layer die that extrudes one type of molten resin as a single layer, or two or more types that are independently pumped from the extruder 2 such as a feed block die and a multi-manifold die.
  • a multilayer die that laminates and coextrudes molten resin may be used.
  • the film-like molten resin extruded from the die 3 is sandwiched between a first cooling roll 4 and a pressing roll 5 that are arranged opposite to each other, which will be described below.
  • the first cooling roll 4 is, for example, a metal roll having a diameter of about 250 to 1000 mm and an uneven shape formed on the outer peripheral surface.
  • a metal roll capable of controlling the temperature of the roll surface through a fluid, steam or the like inside a roll such as a mold roll, a satin roll, or a spiral roll having a hollow structure.
  • a predetermined concavo-convex shape is formed by sandblasting, engraving or the like in order to transfer to a film-like thermoplastic resin that is extruded from the extruder 2 and then cooled and solidified. Yes.
  • the uneven shape formed on the outer peripheral surface of the first cooling roll 4 includes a mat shape having a maximum roughness (Rmax) of 0.1 to 10 ⁇ m, a prism shape having a pitch and height of 1 ⁇ m to 3 mm, and a lenticular shape.
  • Rmax a maximum roughness
  • a desired concavo-convex shape and concavo-convex pattern can be adopted according to a resin film having a required function such as a concavo-convex shape for giving desired characteristics such as a lens shape and the like.
  • the maximum roughness (Rmax) is a value obtained by measuring with a surface roughness meter in accordance with JIS B0601-2001.
  • the uneven shape is a central portion 4 a portion excluding both ends of the outer peripheral surface of the first cooling roll 4. It is formed only on the outer peripheral surface.
  • This concavo-convex shape is transferred to the surface of the resin film as a product, and a resin film having a concavo-convex shape reversed from the concavo-convex shape of the first cooling roll 4 is obtained. Further, both end portions 4b of the outer peripheral surface of the first cooling roll 4 are mirror-finished.
  • the both end portions 4b of the first cooling roll 4 are mirror-finished so that the resin film 50 comes into close contact with the mirror-surface portion and resists the shrinkage force of the resin film 50 generated during cooling.
  • the edge is constrained on the first cooling roll.
  • contraction to the roll center direction of the both edges of the resin film 50 can be suppressed.
  • the mirror surface processing means processing in which the maximum roughness (Rmax) of the outer peripheral surface is within a range of 0.8 ⁇ m or less so that it can be in close contact with the resin film. If Rmax is 0.1 ⁇ m, it is practically sufficient.
  • the range to be mirror-finished is provided so that both ends of the resin film to be wound overlap from the both ends of the first cooling roll 4 to the inside.
  • the overlap between the mirror-finished region and the resin film is preferably 30 mm or more in the width direction, and the shrinkage of the resin film can be effectively suppressed and the product range can be widened to 50 to 100 mm. More preferred.
  • the range for mirror finishing is 5 to 20% of the surface length of the first cooling roll 4 from the end (for example, in the case of a cooling roll having a total length of 1600 mm, the one end is 80 to 320 mm). It is preferable at such points.
  • the right and left ends do not have to be the same, such as the right end 150 mm and the left end 200 mm, but preferably the left and right ends are the same or the difference between the left and right ends is within 50 mm.
  • the surface length of a roll means the maximum length of the roll 4 in the axial direction in FIG.
  • the temperature control of the first cooling roll 4 is performed by controlling the surface temperature of the first cooling roll 4 by a known control method such as PID control or ON-OFF control. That's fine.
  • the pressing roll 5 is, for example, a pressing roll having a diameter of about 250 to 1000 mm and having an outer peripheral surface such as a rubber roll or a metal elastic roll made of an elastic body.
  • examples of the rubber roll include a silicon rubber roll and a fluorine rubber roll, and it is also possible to employ a material in which sand is mixed to improve releasability.
  • a range of Shore hardness A50 ° to A90 ° measured in accordance with JIS K6253 is preferably used.
  • the hardness of the rubber roll can be arbitrarily set, for example, by adjusting the degree of crosslinking and composition of the rubber constituting the rubber roll.
  • examples of the metal elastic roll include those in which the inside of the roll is made of rubber and those in which fluid is injected, and the outer peripheral portion is made of a metal thin film having flexibility. . Specifically, when a silicon rubber roll is coated with a cylindrical stainless steel thin film having a thickness of about 0.2 to 1 mm, or a fluid such as water or oil is injected, the thickness is about 2 to 5 mm. A cylindrical thin film made of stainless steel is fixed at the end of the roll, and a fluid is sealed inside.
  • the pressure roll 5 is configured to be temperature-controllable.
  • a backup cooling roll may be attached to each roll.
  • the temperature of the fluid may be controlled by a known control method such as PID control or ON-OFF control.
  • the metal thin film of the metal elastic roll or the surface shape of the rubber roll may be selected according to the resin film to be manufactured. That is, when embossing only one surface of the resin film, the outer peripheral surface of the pressing roll 5 is smooth, and when embossing both surfaces of the resin film, the first cooling roll is formed on the outer peripheral surface of the pressing roll 5. It is sufficient to provide a concavo-convex shape as in FIG. When embossing is performed on both surfaces of the resin film, the uneven shape on the outer peripheral surface of the pressing roll 5 and the uneven shape on the outer peripheral surface of the first cooling roll 4 may be similar patterns or different patterns. Good.
  • the press roll 5 and the 1st cooling roll 4 are the predetermined space
  • the predetermined interval may be set as appropriate so that the surface shape of each roll can be sufficiently transferred to the extruded film-like molten resin.
  • the second cooling roll 6 has, for example, a diameter of about 250 to 1000 mm, is a metal roll, a rubber roll, etc., and is a cooling roll capable of controlling the temperature of the outer peripheral surface.
  • This 2nd cooling roll 6 is arbitrary structures, and even if it comprises so that the resin film 50 by which the surface shape was transcribe
  • the resin film 50 having the surface shape transferred by the first cooling roll 4 and the pressing roll 5 is passed through the second cooling roll 6 while being wound around the first cooling roll 4, the resin film 50 is Since it can cool gradually in steps, the optical distortion of the resin film 50 can be made smaller. Furthermore, by winding on the 1st cooling roll 4, the contact time of the thermoplastic resin solidifying and the outer peripheral surface of the 1st cooling roll 4 can be ensured stably, and uneven
  • the second cooling roll 6 is not particularly limited as long as the temperature can be controlled as described above, and for example, a cooling roll conventionally used in extrusion molding can be employed. Specific examples include a mold roll, a satin roll, a spiral roll, and the like.
  • the surface of the second cooling roll 6 is not particularly limited as long as it can stably wind the resin film 50 that has been cooled and solidified without slipping, and may be smooth and have an uneven shape. Also good. In addition, you may make it cool more gradually in steps using a 3rd, 4th, ..., and several cooling roll.
  • the feed roll 7 has a diameter of about 90 to 150 mm, for example, and is formed of a metal roll, a rubber roll, or the like.
  • the feed roll 7 only needs to be able to stably feed the cooled resin film 50 to the subsequent stage, and the outer peripheral surface thereof may be smooth or may have an uneven shape.
  • the first cooling roll 4, the pressing roll 5, the second cooling roll 6 and the feed roll 7 transfer the surface shape of the roll to the film-like thermoplastic resin extruded from the extruder 2,
  • the width of the roll is larger than the width of the extruded resin film, for example, about 50 to 100 mm larger than the width of the resin film Is preferred.
  • a cutting means or the like may be provided.
  • thermoplastic resin supplied from the top is heated and melted by the pellet dryer or the weighing hopper 8, and the thermoplastic resin (molten resin) melted by the rotating screw is transferred from the extruder 2 to the die 3.
  • the molten resin is extruded from the die 3 into a film.
  • the extruded film-like molten resin is sandwiched between the first cooling roll 4 and the pressing roll 5 described above, and the outer peripheral surface shapes of the first cooling roll 4 and the pressing roll 5 are transferred.
  • the film-shaped molten resin is cooled at the same time as the uneven shape of the outer peripheral surface of the roll is transferred, and a cooling molding process is performed.
  • the uneven shape is fixed to the film, and the film shape is stabilized.
  • shrinkage occurs during this cooling, and the shrinkage in the width direction of the resin film mainly affects the characteristics of the product.
  • the resin film shrinks while sliding on the roll surface and the film width decreases, but at this time, the resin film slips greatly at both ends of the roll.
  • the degree of shrinkage varies from place to place. Then, the optical characteristics of the obtained resin film differ at the center and both ends, and a homogeneous resin film cannot be obtained.
  • both end portions of the resin film in contact with the mirror surface portion 4b of the first cooling roll 4 are mirror-finished as in the present invention.
  • the resin film is in close contact with the roll 4 and cooled while resisting the shrinkage force. That is, the shrinkage in the width direction that occurs during cooling of the resin film is effectively suppressed, and a homogeneous resin film can be obtained without greatly changing the optical characteristics of the central portion and both end portions.
  • the resin film 50 having the concavo-convex shape transferred thereon is wound around the first cooling roll 4 and further wound around the second cooling roll 6 to be cooled. Further, the resin film 50 is further fed to the subsequent stage by the feed roll 7 while being wound around the second cooling roll 6.
  • the treatment as required includes, for example, measurement of product thickness, inspection of foreign matter, insertion of a masking film, cutting, and the like.
  • the resin film 50 obtained by the present invention includes a central portion 50a to which the concavo-convex shape is transferred and both end portions 50b formed on the mirror surface.
  • this resin film 50 since the product is the central portion 50a, it is preferable to cut the unnecessary both end portions 50b with a cutting means or the like before forming a roll-shaped article.
  • the resin film 50 fed by the feed roll 7 may be cut into a desired size instead of a roll-shaped article and handled as a sheet.
  • the first cooling roll 4 the pressing roll 5, so that the resin film 50 is stretched without loosening and further does not have a force to stretch in the flow direction of the resin film 50.
  • the peripheral speed of each roll is not particularly limited because it depends on the discharge amount of the extruder and the thickness and width of the film, but it is usually preferably 5 to 30 m / min for each roll.
  • the surface temperature of the first cooling roll is preferably (Tg ⁇ 70 to Tg + 30) ° C., and (Tg ⁇ 60 to Tg + 10) ° C. when the glass transition point of the thermoplastic resin is expressed as Tg. Is more preferable.
  • the surface temperature of the pressing roll is preferably (Tg-100 to Tg-50) ° C., more preferably (Tg-90 to Tg-60) ° C. If these surface temperatures are too low, the uneven shape of the first cooling roll 4 cannot be transferred sufficiently, unevenness occurs in the uneven shape of the resin film 50, and sufficient optical characteristics cannot be obtained, and the surface temperature is too high. As a result, optical distortion increases.
  • the surface temperature of the first cooling roll is (Tg ⁇ 70 to Tg + 30) ° C.
  • the surface temperature of the pressing roll is (Tg ⁇ 100 to Tg ⁇ 50) ° C.
  • the temperature of the cooling roll is preferably (Tg-100 to Tg-20) ° C. from the viewpoint of stabilizing the retardation (phase difference) low.
  • the second cooling roll 6 is disposed obliquely below the first cooling roll 4, but may be disposed vertically below the first cooling roll 4. Further, the positions of the first cooling roll 4 and the pressing roll 5 may be reversed up and down. In this case, the second cooling roll 6 is disposed obliquely above or vertically above the first cooling roll 4.
  • the molten resin is extruded from the horizontally arranged die 3, but as shown in FIG. 4, the molten resin may be extruded from the vertically arranged die 3. Also in this case, a metal elastic roll, a rubber roll, or the like is preferably used as the pressing roll 5.
  • the pressing roll 5 is used as the pressing means.
  • a pressing belt 15 may be used as the pressing means.
  • the pressing belt 15 is preferably a metal seamless belt, and is preferably provided with an uneven shape. In the pressing belt 15, the contact area when pressing is significantly increased as compared with the roll, which is effective in reducing distortion. 4 and 5, parts having the same functions as those shown in FIG. 1 are denoted by the same reference numerals.
  • the resin film 50 obtained by the apparatus and method of the present invention has an optical distortion, specifically, a maximum value in a measurement range of retardation (hereinafter also referred to as phase difference) at 590 nm by an automatic birefringence meter.
  • 50 nm or less preferably 20 nm or less, more preferably 15 nm or less and 10 nm or less.
  • the retardation is within the above range, and the variation in retardation is preferably 20 nm or less, the variation is more preferably 7 nm or less, and the variation is 5 nm or less.
  • the variation in retardation means a difference between the maximum value and the minimum value in the measurement range.
  • the measurement range may be, for example, a range of 100 mm from the film end (hereinafter also referred to as film end) and a range of 50 mm from the center of the film (hereinafter also referred to as film central).
  • the film end refers to a contact portion (50b in FIG. 3) of the resin film obtained by the above-described production method of the present invention and both ends of the resin film on which the mirror-finished portion of the cooling roll is applied. Part), or the end of the embossing region inside the contact part, and the end of the resin film that has been embossed is the width direction end.
  • the maximum value of the retardation of the film end in the range of 100 mm from the film end and the center of the film in the range of 50 mm uniformly from the center of the film is both 15 nm or less. It is preferably 13 nm or less, more preferably 10 nm or less.
  • the maximum retardation value at the film end and the maximum retardation value at the center of the film are not necessarily the same.
  • the maximum retardation value at the film edge may be 15 nm or less, and the maximum retardation value at the center of the film may be different from 10 nm or less.
  • the haze value of the resin film 50 obtained by the apparatus and method of the present invention may be appropriately selected depending on the application. For example, when a light diffusing film is used, it is usually preferable that the haze value is 50% or more.
  • the thickness of the resin film 50 obtained by the apparatus and method of the present invention is preferably in the range of 30 to 500 ⁇ m, for example, when the resin film 50 is used as a light diffusion film. If the thickness is less than 30 ⁇ m, the roll structure of the present invention cannot stably obtain the resin film 50, and if it exceeds 500 ⁇ m, it is difficult to handle as a film.
  • the thickness of the resin film 50 can be adjusted by the thickness of the film-like molten resin extruded from the die 3, the distance between the first cooling roll 4 and the pressing roll 5, and the like. As a width of the resin film 50, for example, a preferable range is 200 to 2000 mm.
  • the thickness of the resin film 50 is preferably in the range of approximately 500 ⁇ m to 2 mm, and is appropriately set according to the required application.
  • the thickness of the resin film 50 exceeds 500 ⁇ m, it is not easy to handle it as a roll-shaped article wound around a winding core. It is preferable to handle as
  • the resin film 50 has an uneven shape formed on the surface and has a function of scattering light, for example, a film for automobile interior, a film for lighting, a film for building materials, etc. in addition to a diffusion film, a brightness enhancement film, and the like. Applicable to. Further, as a concavo-convex shape, it can be applied to a prism sheet by forming a desired prism shape, and to a lens sheet, a lenticular lens sheet, or the like by giving a desired lens shape.
  • the present invention will be described in more detail with reference to examples, but it is needless to say that the present invention is not limited to these examples.
  • the structure of the manufacturing apparatus of the used resin film is as follows.
  • Extruder 2 Screw diameter 110 mm, single screw type.
  • Die 3 T die, extrusion lip width 1473 mm, lip gap 0.8 mm.
  • First cooling roll 4 The outer diameter is 400 mm ⁇ and the width is 1677 mm. Both end portions of the outer peripheral surface are mirror-finished with a width of 223.5 mm and a maximum roughness (Rmax) of 0.4 ⁇ m.
  • Pressing roll 5 A silicon rubber roll having a hardness of A70 ° having an outer diameter of 300 mm ⁇ and an outer peripheral surface polished to a maximum roughness (Ra) of 1 ⁇ m.
  • the first cooling roll 4 was arranged in parallel.
  • Second cooling roll 6 a heat-resistant rubber rubber roll having an outer diameter of 300 mm ⁇ .
  • Feed roll 7 A feed roll made of a silicon rubber roll having an outer diameter of 150 mm.
  • the extruder 2, the die 3, the first cooling roll 4, the pressing roll 5, the second cooling roll 6, and the feed roll 7 are arranged as shown in FIG. 1, and the first cooling roll 4 and the pressing roll 5 are electrically driven. It was configured to connect to a motor and rotate at a predetermined peripheral speed, and no driving force was provided to the second cooling roll 6 and the feed roll 7.
  • Example 1 First, an aromatic polycarbonate resin (manufactured by Sumitomo Dow, trade name: Caliber 301-22; glass transition point (Tg): 155 ° C.) was obtained by melt-kneading while heating to 260 ° C. in the extruder 2.
  • the resin composition was extruded as a film from the die 3 in a molten state. In this case, since the width of the obtained film contracted in the air, the width of the extrusion lip of the die 3 was smaller than 1473 mm and became 1380 mm.
  • the film-like resin composition extruded from the die 3 is supplied so as to be sandwiched between the rotating first cooling roll 4 and the pressing roll 5, while cooling the film-like resin composition,
  • corrugated shape of the 1st cooling roll 4 is transcribe
  • This resin film was wound around the second cooling roll 6, it was cooled while being sequentially fed to the subsequent stage by the feed roll 7.
  • the 1st cooling roll 4, the press roll 5, and the 2nd cooling roll 6 are made to become fixed temperature, circulating cooling water inside, and set temperature of the circulating water to 97 degreeC and 45 degreeC, respectively. 137 ° C.
  • the surface temperature of the 1st cooling roll 4 was about 95 degreeC
  • the surface temperature of the press roll 5 was about 70 degreeC
  • the surface temperature of the 2nd cooling roll 6 was about 130 degreeC.
  • the resin film 50 that passed through the second cooling roll 6 was sampled in the state of 50a in FIG. 3 to obtain a resin film having a width of 1380 mm and a thickness of 130 ⁇ m.
  • the resin film obtained here had good thickness accuracy, and was 130 ⁇ m ⁇ 1 ⁇ m here.
  • Comparative Example 1 As a first cooling roll, a resin film was obtained under the same conditions as in Example 1 using a resin film manufacturing apparatus having the same configuration as in Example 1 except that the entire outer peripheral surface had an uneven shape. It was.
  • Example 2 For each resin film obtained in Example 1 and Comparative Example 1, the positional distribution of the retardation was measured for a further central part 1200 mm of the roll central part 1230 mm that was not mirror-finished, and the results are shown in FIGS. 6 and 7, respectively. It was.
  • the resin film obtained in Example 1 has a maximum retardation value of about 7 nm in the measurement range, whereas the maximum value obtained in Comparative Example 1 is about 18 nm. It was. While the variation of the retardation of Example 1 was about 6 nm, the variation of the retardation of Comparative Example 1 was as large as about 11 nm. In addition, the maximum retardation value at the end of the film of Example 1 is about 5 nm, whereas the maximum retardation value at the center of the film is about 7 nm, indicating that the optical homogeneity is high.
  • the maximum retardation value at the film edge of Comparative Example 1 is about 18 nm, whereas the maximum retardation value at the center of the film is about 9 nm, which is inferior in optical homogeneity to Example 1.
  • a concavo-convex shape is imparted to the film surface and a small optical distortion is obtained only by using a roll having a simple structure in which both end surfaces of the outer peripheral surface are mirror-finished as a cooling roll. It is done.
  • Example 1 even when the molding was continuously performed for 48 hours, the retardation of the resin film was stable at 10 nm or less and the deviation was within 5 nm.
  • the optical distortion of the resin film to be manufactured is suppressed by suppressing the shrinkage in the width direction of the film-like molten resin on the cooling roll.
  • the phase difference can be reduced, the variation in the width direction of the phase difference of the obtained resin film can be suppressed, and the resin film for various uses can be produced uniformly and with a good production yield.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

Provided are a method and apparatus for producing a resin film which has a concavoconvex surface, in which optical distortion is suppressed and which has little variation. A method for producing a resin film has the following steps: an extrusion step, in which a molten thermoplastic resin is extruded in the form of a film from a die (3), the extruded film-like thermoplastic resin is fed between a first cooling roller (4), the outer peripheral surface of which, excluding the edge parts, has a concavoconvex pattern formed thereon and the outer peripheral surface of the edge parts of the first cooling roller (4) are subjected to mirror finishing, and a pressing means (5) disposed at a prescribed distance from the first cooling roller (4) in such a way that the edge parts of the resin film come into contact with the mirror finished edge parts of the first cooling roller (4); and a cooling and forming step, in which a resin composition is formed into a resin film by pressing the thermoplastic resin onto the first cooling roller (4) by the pressing means (5) so as to cool the thermoplastic resin and transfer the concavoconvex pattern of the first cooling roller (4) to the surface of the thermoplastic resin.

Description

樹脂フィルムの製造方法及び製造装置Manufacturing method and manufacturing apparatus for resin film
 本発明は、樹脂フィルムの製造方法及び製造装置に係り、特に、形成される樹脂フィルムの冷却時収縮による幅方向のすべりをなくして、フィルムの光学的な歪みを抑制するとともに、光学的な歪みのバラツキを低減することで製品歩留まりを向上させた樹脂フィルムの製造方法及び製造装置に関する。 The present invention relates to a resin film manufacturing method and manufacturing apparatus, and in particular, eliminates slippage in the width direction due to shrinkage during cooling of the formed resin film, thereby suppressing optical distortion of the film and optical distortion. The present invention relates to a resin film manufacturing method and a manufacturing apparatus in which the product yield is improved by reducing the variation of the resin.
 光学用途に用いられる樹脂フィルムは、例えば、光ディスクや偏光板と組み合わせた液晶セル、位相差フィルム、拡散フィルム、輝度向上フィルム等に広く用いられている。これらの光学用途に用いられる樹脂フィルムは、所定の光学特性を発現させるために製造時に生じる光学的な歪みをできるだけ小さくする必要がある。 Resin films used for optical applications are widely used for liquid crystal cells, retardation films, diffusion films, brightness enhancement films, etc. combined with optical disks and polarizing plates, for example. The resin film used for these optical applications needs to make the optical distortion generated during the production as small as possible in order to exhibit predetermined optical characteristics.
 製造時に生じる光学的な歪みを小さくする方法として、例えば、最初の冷却ロール(第1の冷却ロール)の温度を樹脂のガラス転移温度や溶融温度に対して所定の温度範囲として樹脂フィルムを製造する方法が知られている(例えば、特許文献1乃至2参照。)。これら特許文献1、2に記載されている方法は、表面が平滑な樹脂フィルムの光学的な歪みを小さくする手法としては有効である。 As a method for reducing optical distortion that occurs during production, for example, a resin film is produced by setting the temperature of the first cooling roll (first cooling roll) to a predetermined temperature range with respect to the glass transition temperature or melting temperature of the resin. A method is known (for example, refer to Patent Documents 1 and 2). These methods described in Patent Documents 1 and 2 are effective as a technique for reducing the optical distortion of a resin film having a smooth surface.
 一方、光学樹脂フィルムとしては、表面が平滑な樹脂フィルムのほかに、樹脂フィルムの表面に凹凸形状を形成し、光を散乱させる機能を付与したものが求められている。一般に、表面に凹凸形状が形成された樹脂フィルムは、溶融した透明樹脂をダイからフィルム状に押出し、外周面が平滑な第1の冷却ロールと、外周面に凹凸形状が形成された第2の冷却ロールとの間に挟み込んで第2の冷却ロールの凹凸形状を転写し、第2の冷却ロールに巻き掛けた後、引取りロールで引取ることによって得られる。 On the other hand, as an optical resin film, in addition to a resin film having a smooth surface, an optical resin film having a function of scattering light by forming an uneven shape on the surface of the resin film is required. In general, a resin film having a concavo-convex shape formed on the surface is obtained by extruding a molten transparent resin into a film shape from a die, a first cooling roll having a smooth outer peripheral surface, and a second rugged shape formed on the outer peripheral surface. It is obtained by being sandwiched between the cooling rolls, transferring the concavo-convex shape of the second cooling roll, winding it around the second cooling roll, and then taking it out with a take-up roll.
 ところが、このような表面に凹凸形状を形成した樹脂フィルムの成形条件を、特許文献1、2に記載されているように、冷却ロールの温度を樹脂のガラス転移温度と関連付けて設定すると、第1、第2の冷却ロール間に挟み込まれた樹脂フィルムに凹凸形状を転写する過程で光学的な歪みが大きくなるという問題があった。 However, as described in Patent Documents 1 and 2, the molding conditions of the resin film having a concavo-convex shape formed on the surface are set in association with the glass transition temperature of the resin, as described in Patent Documents 1 and 2. There is a problem that optical distortion increases in the process of transferring the uneven shape to the resin film sandwiched between the second cooling rolls.
 そこで、凹凸形状を有する樹脂フィルムについて、その製造過程での光学的な歪みを低減させる方法としては、冷却ロールと押圧ロールとの周速度の関係、さらには第2の冷却ロール又は引取りロールとの周速度の関係が所定の範囲を満たすようにして光学的な歪みを低減させる方法が提案されている(例えば、特許文献3及び4参照。)。 Therefore, for a resin film having a concavo-convex shape, as a method of reducing optical distortion in the manufacturing process, the relationship between the peripheral speed of the cooling roll and the pressing roll, and further, the second cooling roll or the take-up roll There has been proposed a method for reducing the optical distortion so that the relationship between the peripheral speeds satisfies a predetermined range (see, for example, Patent Documents 3 and 4).
日本特許第3754519号公報Japanese Patent No. 3754519 日本特開2007-301821号公報Japanese Unexamined Patent Publication No. 2007-301821 日本特開平4-224924号公報Japanese Unexamined Patent Publication No. 4-224924 日本特開2009-196327号公報Japanese Unexamined Patent Publication No. 2009-196327
 しかしながら、上記の特許文献3及び4に記載されているような周速度を所定範囲とする方法は、樹脂フィルムの種類や厚さ、フィルムの冷却条件などが変わると制御条件も変わるため、作業が複雑になるという問題がある。加えて、これらの方法では、光学的な歪みの低減が不充分な場合がある。 However, the method of setting the peripheral speed in the predetermined range as described in Patent Documents 3 and 4 above requires a change in the control conditions when the type and thickness of the resin film, the cooling conditions of the film, and the like change. There is a problem of complexity. In addition, these methods may be insufficient in reducing optical distortion.
 そこで、本発明は、上記問題点を解決しようとするものであり、表面に凹凸形状がエンボス加工された樹脂フィルムの光学的な歪みを低く抑えるとともに、光学的な歪みのバラツキを少なくする樹脂フィルムの製造方法及び製造装置の提供を目的とする。 Accordingly, the present invention is intended to solve the above-described problems, and suppresses optical distortion of a resin film having an uneven surface formed on the surface, and reduces variation in optical distortion. An object of the present invention is to provide a manufacturing method and a manufacturing apparatus.
 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、樹脂フィルム製造において冷却時の樹脂フィルムの収縮を抑えることで、光学的な歪みを低く、かつ、光学的な歪みのバラツキを抑制できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have reduced the optical distortion and reduced the optical distortion by suppressing the shrinkage of the resin film during cooling in the production of the resin film. Has been found to be able to be suppressed, and the present invention has been completed.
 すなわち、本発明の樹脂フィルムの製造方法は、溶融した熱可塑性樹脂(以下、溶融樹脂ともいう)をダイからフィルム状に押し出し、押し出されたフィルム状の溶融樹脂を、両端部を除く外周面に凹凸形状が形成されるとともに前記両端部の外周面が鏡面加工された冷却ロールと前記冷却ロールと所定の間隔をおいて配置された押圧手段との間に、その両端部が前記冷却ロールの鏡面加工された両端部にかかるように供給する押出工程と、前記フィルム状の溶融樹脂を、前記押圧手段で前記冷却ロールに押し付けて、前記溶融樹脂を冷却しつつ、表面に前記冷却ロールの凹凸形状を転写して前記溶融樹脂を樹脂フィルムに成形する冷却成形工程と、を有することを特徴とする。 That is, in the method for producing a resin film of the present invention, a molten thermoplastic resin (hereinafter also referred to as a molten resin) is extruded from a die into a film shape, and the extruded film-shaped molten resin is applied to the outer peripheral surface excluding both ends. Between the cooling roll in which the concave and convex shape is formed and the outer peripheral surfaces of the both ends are mirror-finished, and the pressing means arranged at a predetermined interval from the cooling roll, both ends are mirror surfaces of the cooling roll. An extrusion step of supplying the processed both ends so as to cover both ends, and the film-shaped molten resin is pressed against the cooling roll by the pressing means to cool the molten resin, and the uneven shape of the cooling roll on the surface And a cooling molding step of molding the molten resin into a resin film.
 本発明の樹脂フィルムの製造装置は、溶融した熱可塑性樹脂をフィルム状に押し出すダイを有する押出手段と、外周面に凹凸形状が形成された冷却ロールと前記冷却ロールと所定の間隔をおいて配置された押圧手段とを備え、前記押出手段で押出されたフィルム状の溶融樹脂を前記冷却ロールと押圧手段との間で挟圧して、前記熱可塑性樹脂を冷却しつつ、表面に凹凸形状を転写する冷却成形手段と、を備えた樹脂フィルムの製造装置であって、前記冷却ロールの凹凸形状が両端部を除く外周面に形成されており、前記両端部の外周面は鏡面加工とされていることを特徴とする。 The apparatus for producing a resin film of the present invention includes an extrusion means having a die for extruding a molten thermoplastic resin into a film shape, a cooling roll having an uneven shape formed on the outer peripheral surface, and a predetermined interval between the cooling roll and the cooling roll. The film-shaped molten resin extruded by the extruding unit is pressed between the cooling roll and the pressing unit to cool the thermoplastic resin while transferring the uneven shape to the surface. A cooling film forming device, wherein the cooling roll has an irregular shape formed on an outer peripheral surface thereof excluding both end portions, and the outer peripheral surfaces of both end portions are mirror-finished. It is characterized by that.
 この樹脂フィルムの製造方法及び製造装置において、押圧手段は、鏡面加工されていても、凹凸形状が形成されていてもいずれでもよく、製造しようとする樹脂フィルムに合わせて使い分ければよい。この押圧手段としては、たとえば、押圧ロール、あるいは押圧ベルトで、フィルム状に押し出された熱可塑性樹脂の表面に所望の凹凸形状を付与するように、その外周面に凹凸形状が施されている。また、冷却成形工程の後、さらに樹脂フィルムを冷却するようにして、段階的に樹脂フィルムを冷却するのが好ましい。 In this method and apparatus for producing a resin film, the pressing means may be either mirror-finished or formed with a concavo-convex shape, and may be properly used according to the resin film to be produced. As the pressing means, for example, a concavo-convex shape is applied to the outer peripheral surface so as to impart a desired concavo-convex shape to the surface of the thermoplastic resin extruded into a film shape by a pressing roll or a pressing belt. Moreover, it is preferable to cool the resin film stepwise after the cooling molding step so that the resin film is further cooled.
 本発明の樹脂フィルムの製造方法及び製造装置によれば、フィルム状に押し出した溶融樹脂を冷却する際、冷却ロール上でフィルム状の溶融樹脂の幅方向への収縮を抑制することで、製造される樹脂フィルムの光学的な歪みを抑え、その結果、位相差を低くできる。また、本発明の樹脂フィルムの製造方法及び製造装置によれば、得られる樹脂フィルムの位相差の幅方向におけるバラツキも抑制できる。さらに、冷却ロールの温度範囲を狭くする必要がないため、作業性が良好で、Hazeや表面形状の転写率の制御が容易であるため生産性にも優れる。 According to the method and apparatus for producing a resin film of the present invention, when the molten resin extruded into a film shape is cooled, it is produced by suppressing shrinkage in the width direction of the film-like molten resin on the cooling roll. As a result, the retardation of the resin film can be reduced. Moreover, according to the manufacturing method and manufacturing apparatus of the resin film of this invention, the dispersion | variation in the width direction of the phase difference of the resin film obtained can also be suppressed. Furthermore, since it is not necessary to narrow the temperature range of the cooling roll, workability is good, and control of the transfer rate of Haze and surface shape is easy, so that productivity is also excellent.
 そのため、得られる樹脂フィルムの品質(光学特性)が均一となり、製品信頼性が向上し、また、得られる樹脂フィルムにおいて製品として使用できる領域が極めて広く、歩留まりが非常に良好となる。 Therefore, the quality (optical characteristics) of the obtained resin film becomes uniform, the product reliability is improved, and the region that can be used as a product in the obtained resin film is extremely wide, and the yield is very good.
本発明の樹脂フィルムの製造装置の一実施形態の概略を示した図である。It is the figure which showed the outline of one Embodiment of the manufacturing apparatus of the resin film of this invention. 本発明で用いる冷却ロールの外周面(転写面)の構成の概略を示した図である。It is the figure which showed the outline of the structure of the outer peripheral surface (transfer surface) of the cooling roll used by this invention. 図1の製造装置において、冷却ロールにより表面形状が転写された樹脂フィルムの構成の概略を示した図である。In the manufacturing apparatus of FIG. 1, it is the figure which showed the outline of the structure of the resin film by which the surface shape was transcribe | transferred with the cooling roll. 本発明の樹脂フィルムの製造装置の他の実施形態の概略を示した図である。It is the figure which showed the outline of other embodiment of the manufacturing apparatus of the resin film of this invention. 本発明の樹脂フィルムの製造装置のさらに他の実施形態の概略を示した図である。It is the figure which showed the outline of other embodiment of the manufacturing apparatus of the resin film of this invention. 実施例1で得られた樹脂フィルムの幅方向の位置と位相差(リタデーション)との関係を示した図である。It is the figure which showed the relationship between the position of the width direction of the resin film obtained in Example 1, and phase difference (retardation). 比較例1で得られた樹脂フィルムの幅方向の位置と位相差(リタデーション)との関係を示した図である。It is the figure which showed the relationship between the position of the width direction of the resin film obtained by the comparative example 1, and phase difference (retardation).
 本発明において用いられる樹脂は、熱可塑性樹脂であり、非晶性熱可塑性樹脂が好ましい。ポリサルホン、ポリスチレン、ポリカーボネート、ポリ塩化ビニル、環状ポリオレフィン、ポリメタクリル酸メチル(PMMA)、セルロースアセテート樹脂等が挙げられる。これらのなかでも、透明性に優れるうえ、固有複屈折率や光弾性係数が小さく、溶融押出成形において要求される耐熱性にも優れることから、環状ポリオレフィンであるノルボルネン系樹脂、ポリカーボネートが好適に用いられる。 The resin used in the present invention is a thermoplastic resin, and preferably an amorphous thermoplastic resin. Examples thereof include polysulfone, polystyrene, polycarbonate, polyvinyl chloride, cyclic polyolefin, polymethyl methacrylate (PMMA), and cellulose acetate resin. Among these, norbornene-based resins and polycarbonates that are cyclic polyolefins are preferably used because of excellent transparency, small intrinsic birefringence and photoelastic coefficient, and excellent heat resistance required in melt extrusion molding. It is done.
 なお、本発明において、上記樹脂としては透明樹脂であることが好ましく、この場合、透明とは、両表面が平滑な厚さ100μmのシートとしたときの全光線透過率が80%以上であることを意味する。 In the present invention, the resin is preferably a transparent resin. In this case, the transparent means that the total light transmittance is 80% or more when both sheets have a smooth thickness of 100 μm. Means.
 これらの中でも、光学特性が良好であることから、ポリメタクリル酸メチル(PMMA)、芳香族ポリカーボネート樹脂、および環状ポリオレフィン樹脂であるノルボルネン系樹脂を好ましく使用できる。 Among these, since the optical properties are good, polymethyl methacrylate (PMMA), aromatic polycarbonate resin, and norbornene-based resin that is cyclic polyolefin resin can be preferably used.
 上記熱可塑性樹脂には、必要に応じて添加剤を添加してもよい。 An additive may be added to the thermoplastic resin as necessary.
 添加剤としては、紫外線吸収剤、界面活性剤、耐衝撃剤、帯電防止剤、酸化防止剤、滑剤、離型剤、難燃剤、染料、顔料等の着色剤等、通常、樹脂フィルムに含有させるために使用できる公知の添加剤が挙げられる。 Additives include UV absorbers, surfactants, impact agents, antistatic agents, antioxidants, lubricants, mold release agents, flame retardants, colorants such as dyes, pigments, etc., usually contained in resin films Examples of known additives that can be used for this purpose are listed below.
 上記したような原料から樹脂フィルムを製造するには、例えば、図1に示したような樹脂フィルムの製造装置1が用いられる。この装置は、熱可塑性樹脂を加熱溶融して押し出す押出機2と溶融状態の熱可塑性樹脂をフィルム状に成形するダイ3とからなる押出手段と、フィルム状の熱可塑性樹脂を上下から挟持し送り出し方向に回転しつつ冷却して、その外周面の形状を転写して樹脂フィルムとする第1の冷却ロール4及び押圧手段としての押圧ロール5からなる冷却成形手段と、を有し、さらに樹脂フィルムを冷却する第2の冷却ロール6と、冷却された樹脂フィルムをさらに後段に送る送りロール7と、から構成される。 In order to manufacture a resin film from the raw materials as described above, for example, a resin film manufacturing apparatus 1 as shown in FIG. 1 is used. This apparatus includes an extruding means 2 comprising an extruder 2 for extruding a thermoplastic resin by heating and melting, and a die 3 for forming the molten thermoplastic resin into a film shape, and sandwiching and feeding the film-shaped thermoplastic resin from above and below. A first cooling roll 4 that cools while rotating in the direction and transfers the shape of the outer peripheral surface thereof to form a resin film, and a cooling molding means that includes a pressing roll 5 as a pressing means, and further a resin film The second cooling roll 6 that cools the sheet and the feed roll 7 that further feeds the cooled resin film to the subsequent stage.
 押出機2は、上記した樹脂の原料を加熱溶融することにより熱可塑性樹脂を均質な状態とするものであり、通常の押出成形法で用いられるのと同様の構造を有するものが使用できる。例えば、図1に示したように、ペレット乾燥器や計量ホッパー8により上部から供給される熱可塑性樹脂を、回転するスクリューにより加熱溶融しながらダイ3に圧送する。 The extruder 2 heats and melts the resin raw material described above to make the thermoplastic resin a homogeneous state, and an extruder having the same structure as that used in a normal extrusion molding method can be used. For example, as shown in FIG. 1, a thermoplastic resin supplied from above by a pellet dryer or a weighing hopper 8 is pumped to the die 3 while being heated and melted by a rotating screw.
 ダイ3は、押出機2から圧送された、溶融した熱可塑性樹脂を、溶融状態のままフィルム状に押出成形するもので、通常、Tダイが用いられる。ダイ3は、1種の溶融樹脂を単層で押し出す単層ダイであってもよいし、フィードブロックダイ、マルチマニホールドダイ等のように、それぞれ独立して押出機2から圧送された2種以上の溶融樹脂を積層して共押出しする多層ダイであってもよい。ダイ3から押し出されたフィルム状の溶融樹脂は、次に説明する、上下に対向配置された第1の冷却ロール4と押圧ロール5との間に挟み込まれる。 The die 3 is for extruding a molten thermoplastic resin fed from the extruder 2 into a film in a molten state, and a T-die is usually used. The die 3 may be a single-layer die that extrudes one type of molten resin as a single layer, or two or more types that are independently pumped from the extruder 2 such as a feed block die and a multi-manifold die. A multilayer die that laminates and coextrudes molten resin may be used. The film-like molten resin extruded from the die 3 is sandwiched between a first cooling roll 4 and a pressing roll 5 that are arranged opposite to each other, which will be described below.
 第1の冷却ロール4は、例えば、直径が250~1000mm程度であり、外周面に凹凸形状が形成された金属製のロールである。具体的には、例えば、型ロール、梨地ロール、中空構造のスパイラルロール等のロール内部に流体、蒸気等を通してロール表面の温度を制御できる金属ロールが挙げられる。これら金属ロールの外周面には、押出機2から押し出された後、冷却されて固化しつつあるフィルム状の熱可塑性樹脂に転写するために、サンドブラストや彫刻等によって所定の凹凸形状が形成されている。 The first cooling roll 4 is, for example, a metal roll having a diameter of about 250 to 1000 mm and an uneven shape formed on the outer peripheral surface. Specifically, for example, a metal roll capable of controlling the temperature of the roll surface through a fluid, steam or the like inside a roll such as a mold roll, a satin roll, or a spiral roll having a hollow structure. On the outer peripheral surfaces of these metal rolls, a predetermined concavo-convex shape is formed by sandblasting, engraving or the like in order to transfer to a film-like thermoplastic resin that is extruded from the extruder 2 and then cooled and solidified. Yes.
 第1の冷却ロール4の外周面に形成される凹凸形状としては、最大粗さ(Rmax)で0.1~10μmのマット形状の他、ピッチや高さが1μm~3mmのプリズム形状、レンチキュラー形状やレンズ形状等、所望の特性をもたせるための凹凸形状等、要求される機能を有する樹脂フィルムに応じて所望の凹凸形状、凹凸パターンを採用できる。最大粗さ(Rmax)は、JIS B0601-2001に準拠して表面粗さ計で測定して得られる値である。 The uneven shape formed on the outer peripheral surface of the first cooling roll 4 includes a mat shape having a maximum roughness (Rmax) of 0.1 to 10 μm, a prism shape having a pitch and height of 1 μm to 3 mm, and a lenticular shape. A desired concavo-convex shape and concavo-convex pattern can be adopted according to a resin film having a required function such as a concavo-convex shape for giving desired characteristics such as a lens shape and the like. The maximum roughness (Rmax) is a value obtained by measuring with a surface roughness meter in accordance with JIS B0601-2001.
 上記凹凸形状は、図2に第1の冷却ロール4のロール軸の垂直方向から見た図で示したように、第1の冷却ロール4の外周面のうち、両端部を除く中央部4a部分の外周面にのみ形成される。この凹凸形状が、製品となる樹脂フィルムの表面に転写され、上記した第1の冷却ロール4の凹凸形状とは反転した凹凸形状を有する表面形状が形成された樹脂フィルムが得られる。また、第1の冷却ロール4の外周面の内、両端部4bは鏡面加工されている。 As shown in FIG. 2 as viewed from the direction perpendicular to the roll axis of the first cooling roll 4, the uneven shape is a central portion 4 a portion excluding both ends of the outer peripheral surface of the first cooling roll 4. It is formed only on the outer peripheral surface. This concavo-convex shape is transferred to the surface of the resin film as a product, and a resin film having a concavo-convex shape reversed from the concavo-convex shape of the first cooling roll 4 is obtained. Further, both end portions 4b of the outer peripheral surface of the first cooling roll 4 are mirror-finished.
 このように第1の冷却ロール4の両端部4bを鏡面加工しておくことで、樹脂フィルム50はこの鏡面部分と密着し、冷却時に生じる樹脂フィルム50の収縮力に抗して樹脂フィルムの両縁部を第1の冷却ロール上に拘束する。これにより、樹脂フィルム50の両縁部のロール中央方向への収縮を抑制できる。ここで、鏡面加工とは、樹脂フィルムと密着できるように、外周面の最大粗さ(Rmax)を0.8μm以下の範囲とする加工を意味する。Rmaxが0.1μmであれば、実用的には充分である。 In this way, the both end portions 4b of the first cooling roll 4 are mirror-finished so that the resin film 50 comes into close contact with the mirror-surface portion and resists the shrinkage force of the resin film 50 generated during cooling. The edge is constrained on the first cooling roll. Thereby, shrinkage | contraction to the roll center direction of the both edges of the resin film 50 can be suppressed. Here, the mirror surface processing means processing in which the maximum roughness (Rmax) of the outer peripheral surface is within a range of 0.8 μm or less so that it can be in close contact with the resin film. If Rmax is 0.1 μm, it is practically sufficient.
 このとき、鏡面加工する範囲は、第1の冷却ロール4の両端から内側に、巻きかけられる樹脂フィルムの両端部が重なるように設ける。例えば、この鏡面加工の領域と樹脂フィルムの重なりは、それぞれ幅方向に30mm以上とするのが好ましく、樹脂フィルムの収縮を効果的に抑制でき、製品とする範囲も広くとれる点で50~100mmがより好ましい。また、鏡面加工する範囲としては、端から第1の冷却ロール4の面長の5~20%とする(例えば、全長1600mmの冷却ロールの場合、片端80~320mmとする。)ことが生産性などの点で好ましい。鏡面加工する範囲は、例えば、右端150mm、左端200mmなどのように、左右端が同一でなくてもよいが、好ましくは、左右端が同一、又は左右端の差が50mm以内であることが好ましい。なお、ロールの面長とは、図2においてロール4の軸方向の最大長さをいう。 At this time, the range to be mirror-finished is provided so that both ends of the resin film to be wound overlap from the both ends of the first cooling roll 4 to the inside. For example, the overlap between the mirror-finished region and the resin film is preferably 30 mm or more in the width direction, and the shrinkage of the resin film can be effectively suppressed and the product range can be widened to 50 to 100 mm. More preferred. Further, the range for mirror finishing is 5 to 20% of the surface length of the first cooling roll 4 from the end (for example, in the case of a cooling roll having a total length of 1600 mm, the one end is 80 to 320 mm). It is preferable at such points. For example, the right and left ends do not have to be the same, such as the right end 150 mm and the left end 200 mm, but preferably the left and right ends are the same or the difference between the left and right ends is within 50 mm. . In addition, the surface length of a roll means the maximum length of the roll 4 in the axial direction in FIG.
 また、この第1の冷却ロール4の温度制御は、内部に流通する流体の温度を、PID制御やON-OFF制御等の公知の制御方法により、第1の冷却ロール4の表面温度を制御すればよい。 The temperature control of the first cooling roll 4 is performed by controlling the surface temperature of the first cooling roll 4 by a known control method such as PID control or ON-OFF control. That's fine.
 押圧ロール5は、例えば、直径が250~1000mm程度であり、ゴムロール、金属弾性ロール等の外周面が弾性体からなる押圧ロールである。 The pressing roll 5 is, for example, a pressing roll having a diameter of about 250 to 1000 mm and having an outer peripheral surface such as a rubber roll or a metal elastic roll made of an elastic body.
 ここで、ゴムロールとしては、例えば、シリコンゴムロールやフッ素ゴムロール等が挙げられ、離型性を上げるために砂を混ぜたものを採用することもできる。ゴムロールの硬度としては、JIS K6253に準拠して測定したショア硬度A50°~A90°の範囲が好ましく用いられる。ゴムロールの硬度を上記所定の値にするには、例えば、ゴムロールを構成するゴムの架橋度や組成を調整することによって任意に行うことができる。 Here, examples of the rubber roll include a silicon rubber roll and a fluorine rubber roll, and it is also possible to employ a material in which sand is mixed to improve releasability. As the hardness of the rubber roll, a range of Shore hardness A50 ° to A90 ° measured in accordance with JIS K6253 is preferably used. The hardness of the rubber roll can be arbitrarily set, for example, by adjusting the degree of crosslinking and composition of the rubber constituting the rubber roll.
 ここで、金属弾性ロールとは、ロールの内部がゴムで構成されているものや、流体を注入しているものが挙げられ、その外周部は屈曲性を持った金属製薄膜で構成されている。具体的には、シリコンゴムロールに厚さ0.2~1mm程度の円筒形のステンレス鋼製薄膜を被覆したものや、水や油等の流体を注入しているものでは、厚さ2~5mm程度のステンレス鋼製の円筒形薄膜をロール端部で固定し、内部に流体を封入した構造を有する。 Here, examples of the metal elastic roll include those in which the inside of the roll is made of rubber and those in which fluid is injected, and the outer peripheral portion is made of a metal thin film having flexibility. . Specifically, when a silicon rubber roll is coated with a cylindrical stainless steel thin film having a thickness of about 0.2 to 1 mm, or a fluid such as water or oil is injected, the thickness is about 2 to 5 mm. A cylindrical thin film made of stainless steel is fixed at the end of the roll, and a fluid is sealed inside.
 この押圧ロール5は、温度制御可能に構成されており、ゴムロール及びゴムロールに円筒形の金属製薄膜を被覆した金属弾性ロールを温度制御するには、例えば、バックアップ冷却ロールを各ロールに取り付ければよい。また、内部に流体を封入した金属弾性ロールを温度制御するには、流体の温度を、例えば、PID制御やON-OFF制御等の公知の制御方法により制御すればよい。 The pressure roll 5 is configured to be temperature-controllable. In order to control the temperature of the rubber roll and the metal elastic roll obtained by coating the rubber roll with a cylindrical metal thin film, for example, a backup cooling roll may be attached to each roll. . Further, in order to control the temperature of the metal elastic roll in which the fluid is sealed, the temperature of the fluid may be controlled by a known control method such as PID control or ON-OFF control.
 このような押圧ロール5は、金属弾性ロールの金属製薄膜やゴムロールの表面形状は製造しようとする樹脂フィルムに応じて選択すればよい。すなわち、樹脂フィルムの片面のみエンボス加工する場合には、押圧ロール5の外周面は平滑なものとし、樹脂フィルムの両面をエンボス加工する場合には、押圧ロール5の外周面に第1の冷却ロール4と同様に凹凸形状を設ければよい。樹脂フィルムの両面にエンボス加工する場合、押圧ロール5の外周面の凹凸形状と、第1の冷却ロール4の外周面の凹凸形状は同様なパターンであってもよいし、異なるパターンであってもよい。 For such a pressing roll 5, the metal thin film of the metal elastic roll or the surface shape of the rubber roll may be selected according to the resin film to be manufactured. That is, when embossing only one surface of the resin film, the outer peripheral surface of the pressing roll 5 is smooth, and when embossing both surfaces of the resin film, the first cooling roll is formed on the outer peripheral surface of the pressing roll 5. It is sufficient to provide a concavo-convex shape as in FIG. When embossing is performed on both surfaces of the resin film, the uneven shape on the outer peripheral surface of the pressing roll 5 and the uneven shape on the outer peripheral surface of the first cooling roll 4 may be similar patterns or different patterns. Good.
 そして、押圧ロール5と、第1の冷却ロール4とは、上記ダイ3から押し出されたフィルム状の溶融樹脂に、第1の冷却ロール4及び押圧ロール5の表面形状を転写できるだけの所定の間隔をおいて平行配置される。この所定の間隔とは、押し出されるフィルム状の溶融樹脂に各ロールの表面形状が十分に転写できるように、適宜設定されればよい。 And the press roll 5 and the 1st cooling roll 4 are the predetermined space | intervals which can transfer the surface shape of the 1st cooling roll 4 and the press roll 5 to the film-form molten resin extruded from the said die | dye 3. Placed in parallel. The predetermined interval may be set as appropriate so that the surface shape of each roll can be sufficiently transferred to the extruded film-like molten resin.
 第2の冷却ロール6は、例えば、直径が250~1000mm程度であり、金属ロール、ゴムロール等であって、外周面の温度制御が可能な冷却ロールである。この第2の冷却ロール6は任意の構成であり、第1の冷却ロール4及び押圧ロール5で表面形状が転写された樹脂フィルム50を、そのまま後述する送りロール7により送るように構成してもよい。 The second cooling roll 6 has, for example, a diameter of about 250 to 1000 mm, is a metal roll, a rubber roll, etc., and is a cooling roll capable of controlling the temperature of the outer peripheral surface. This 2nd cooling roll 6 is arbitrary structures, and even if it comprises so that the resin film 50 by which the surface shape was transcribe | transferred with the 1st cooling roll 4 and the press roll 5 may be sent with the feed roll 7 mentioned later as it is. Good.
 しかしながら、第1の冷却ロール4及び押圧ロール5により表面形状が転写された樹脂フィルム50を、第1の冷却ロール4に巻きかけながらこの第2の冷却ロール6を経由させると、樹脂フィルム50を段階的に緩やかに冷却できるので、樹脂フィルム50の光学的な歪みをより小さくできる。さらに、第1の冷却ロール4へ巻きかけることで、固化しつつある熱可塑性樹脂と第1の冷却ロール4の外周面との接触時間を安定して確保し、凹凸形状を安定して転写できる。 However, when the resin film 50 having the surface shape transferred by the first cooling roll 4 and the pressing roll 5 is passed through the second cooling roll 6 while being wound around the first cooling roll 4, the resin film 50 is Since it can cool gradually in steps, the optical distortion of the resin film 50 can be made smaller. Furthermore, by winding on the 1st cooling roll 4, the contact time of the thermoplastic resin solidifying and the outer peripheral surface of the 1st cooling roll 4 can be ensured stably, and uneven | corrugated shape can be transferred stably. .
 第2の冷却ロール6としては、上記の通り温度制御ができるものであれば特に限定されず、例えば、従来から押出成形で使用されている冷却ロールを採用できる。具体例としては、型ロール、梨地ロールやスパイラルロール等が挙げられる。第2の冷却ロール6の表面は、冷却して固化された樹脂フィルム50を滑らずに安定して巻きかけることができれば特に制限はなく、平滑であってもよく、凹凸形状を有していてもよい。なお、さらに第3、第4、…と複数の冷却ロールを用いて、さらに段階的に穏やかに冷却するようにしてもよい。 The second cooling roll 6 is not particularly limited as long as the temperature can be controlled as described above, and for example, a cooling roll conventionally used in extrusion molding can be employed. Specific examples include a mold roll, a satin roll, a spiral roll, and the like. The surface of the second cooling roll 6 is not particularly limited as long as it can stably wind the resin film 50 that has been cooled and solidified without slipping, and may be smooth and have an uneven shape. Also good. In addition, you may make it cool more gradually in steps using a 3rd, 4th, ..., and several cooling roll.
 送りロール7は、例えば、直径が90~150mm程度であり、金属ロール、ゴムロール等で形成される。この送りロール7は、冷却された樹脂フィルム50を安定して後段に送れればよく、その外周面は平滑でも、凹凸形状が形成されていてもよい。 The feed roll 7 has a diameter of about 90 to 150 mm, for example, and is formed of a metal roll, a rubber roll, or the like. The feed roll 7 only needs to be able to stably feed the cooled resin film 50 to the subsequent stage, and the outer peripheral surface thereof may be smooth or may have an uneven shape.
 なお、これらの第1の冷却ロール4、押圧ロール5、第2の冷却ロール6及び送りロール7は、押出機2から押し出されたフィルム状の熱可塑性樹脂に、ロールの表面形状を転写し、冷却して樹脂フィルムとし、これを引取り、後段に送る作業を安定に行うため、そのロールの幅は押し出される樹脂フィルムの幅よりも大きく、例えば、樹脂フィルムの幅より50~100mm程度大きいものが好ましい。 The first cooling roll 4, the pressing roll 5, the second cooling roll 6 and the feed roll 7 transfer the surface shape of the roll to the film-like thermoplastic resin extruded from the extruder 2, In order to stably carry out the work of cooling to take a resin film, taking it out and sending it to the subsequent stage, the width of the roll is larger than the width of the extruded resin film, for example, about 50 to 100 mm larger than the width of the resin film Is preferred.
 また、送りロール7の後段には、樹脂フィルム50に必要に応じて様々な処理を施して製品とするために、製品厚みを検査するX線測定手段、異物検査手段、マスキングフィルムの挿し入れ手段、切断手段等を設けてもよい。さらに、途中にフィルムを一時的に滞留させるアキュームレーターなどの他のローラー類を設けると、ラインの一部の緊急停止等に対応でき好ましい。 Further, in the subsequent stage of the feed roll 7, an X-ray measuring means for inspecting the product thickness, a foreign matter inspecting means, and a masking film insertion means in order to make the resin film 50 variously processed as necessary. A cutting means or the like may be provided. Furthermore, it is preferable to provide other rollers such as an accumulator for temporarily retaining the film in the middle because it can cope with an emergency stop of a part of the line.
 次に、本発明の樹脂フィルムの製造方法について、図1の樹脂フィルムの製造装置1を用いた場合を例に説明する。 Next, the method for producing the resin film of the present invention will be described by taking the case of using the resin film production apparatus 1 of FIG. 1 as an example.
 本発明においては、まず、ペレット乾燥器や計量ホッパー8により上部から供給される熱可塑性樹脂を加熱溶融し、回転するスクリューにより溶融した熱可塑性樹脂(溶融樹脂)を、押出機2からダイ3に圧送し、ダイ3から溶融樹脂をフィルム状に押し出す。押し出されたフィルム状の溶融樹脂は、上記した第1の冷却ロール4と押圧ロール5との間に挟み込まれて、第1の冷却ロール4と押圧ロール5の外周面形状が転写される。 In the present invention, first, the thermoplastic resin supplied from the top is heated and melted by the pellet dryer or the weighing hopper 8, and the thermoplastic resin (molten resin) melted by the rotating screw is transferred from the extruder 2 to the die 3. The molten resin is extruded from the die 3 into a film. The extruded film-like molten resin is sandwiched between the first cooling roll 4 and the pressing roll 5 described above, and the outer peripheral surface shapes of the first cooling roll 4 and the pressing roll 5 are transferred.
 ここで、第1の冷却ロール4及び押圧ロール5では、ロールの外周面の凹凸形状を転写するのと同時にフィルム状の溶融樹脂が冷却されて、冷却成形工程が施され、樹脂フィルム50として表面に凹凸形状が固定され、フィルム形状が安定する。しかし、樹脂の特性上、この冷却の際に収縮が生じ、主に樹脂フィルムの幅方向の収縮が製品の特性に影響を与える。 Here, in the first cooling roll 4 and the pressing roll 5, the film-shaped molten resin is cooled at the same time as the uneven shape of the outer peripheral surface of the roll is transferred, and a cooling molding process is performed. The uneven shape is fixed to the film, and the film shape is stabilized. However, due to the characteristics of the resin, shrinkage occurs during this cooling, and the shrinkage in the width direction of the resin film mainly affects the characteristics of the product.
 すなわち、従来のように冷却ロール4の外周面が全面凹凸形状であると、樹脂フィルムはロール表面をすべりながら収縮しフィルム幅が小さくなるが、このときロールの両端側で樹脂フィルムの滑りが大きく収縮の度合いが場所によって異なってしまう。すると、得られる樹脂フィルムの光学特性は、中央部と両端部で異なってしまい均質な樹脂フィルムが得られない。 That is, if the outer peripheral surface of the cooling roll 4 has an uneven surface as in the prior art, the resin film shrinks while sliding on the roll surface and the film width decreases, but at this time, the resin film slips greatly at both ends of the roll. The degree of shrinkage varies from place to place. Then, the optical characteristics of the obtained resin film differ at the center and both ends, and a homogeneous resin film cannot be obtained.
 一方、本願発明のように、第1の冷却ロール4の外周面の両端面を鏡面加工すると、第1の冷却ロール4の鏡面部分4bと接触している樹脂フィルムの両端部は、第1のロール4と密着し、樹脂フィルムは収縮力に抗しながら冷却される。すなわち、樹脂フィルムの冷却時に生じる幅方向の収縮を効果的に抑制して、中央部と両端部との光学特性を大きく変化させずに、均質な樹脂フィルムが得られる。 On the other hand, when both end surfaces of the outer peripheral surface of the first cooling roll 4 are mirror-finished as in the present invention, both end portions of the resin film in contact with the mirror surface portion 4b of the first cooling roll 4 are The resin film is in close contact with the roll 4 and cooled while resisting the shrinkage force. That is, the shrinkage in the width direction that occurs during cooling of the resin film is effectively suppressed, and a homogeneous resin film can be obtained without greatly changing the optical characteristics of the central portion and both end portions.
 このように凹凸形状が転写された樹脂フィルム50は、第1の冷却ロール4に巻きかけられて、さらに、第2の冷却ロール6に巻きかけられて冷却される。さらに、第2の冷却ロール6に巻きかけながら、樹脂フィルム50は送りロール7により、さらに後段に送られる。 The resin film 50 having the concavo-convex shape transferred thereon is wound around the first cooling roll 4 and further wound around the second cooling roll 6 to be cooled. Further, the resin film 50 is further fed to the subsequent stage by the feed roll 7 while being wound around the second cooling roll 6.
 送りロール7により送られた後は、必要に応じて様々な処理を施して、最終的に巻芯等に巻き取って、ロール状物品として製品とする。ここで、必要に応じた処理とは、例えば、製品厚みの測定、異物検査、マスキングフィルム挿し入れ、切断等が挙げられる。 After being fed by the feed roll 7, various treatments are performed as necessary, and finally wound around a winding core or the like to obtain a product as a roll-shaped article. Here, the treatment as required includes, for example, measurement of product thickness, inspection of foreign matter, insertion of a masking film, cutting, and the like.
 特に、本発明により得られる樹脂フィルム50は、図3に示したように、凹凸形状が転写された中央部50aと、鏡面に形成された両端部50bと、からなる。この樹脂フィルム50において、製品となるのは中央部50aであるから、切断手段等により不要な両端部50bを切断してからロール状物品とするのが好ましい。 In particular, as shown in FIG. 3, the resin film 50 obtained by the present invention includes a central portion 50a to which the concavo-convex shape is transferred and both end portions 50b formed on the mirror surface. In this resin film 50, since the product is the central portion 50a, it is preferable to cut the unnecessary both end portions 50b with a cutting means or the like before forming a roll-shaped article.
 また、送りロール7により送られた樹脂フィルム50は、ロール状物品ではなく所望の大きさに切断し、枚葉として扱ってもよい。 Further, the resin film 50 fed by the feed roll 7 may be cut into a desired size instead of a roll-shaped article and handled as a sheet.
 また、樹脂フィルム50には、製造時に余計なストレスを掛けないように、ダイ2から第1の冷却ロール4及び押圧ロール5までの間、第1の冷却ロール4から第2の冷却ロール6までの間、第2の冷却ロール6から送りロール7までの間、のように支持されない時間をできるだけ短くするために、それぞれの距離を可能な限り小さくすることが好ましい。 Moreover, from the die 2 to the 1st cooling roll 4 and the press roll 5, between the 1st cooling roll 4 and the 2nd cooling roll 6 so that the resin film 50 may not give unnecessary stress at the time of manufacture. In order to minimize the non-supported time between the second cooling roll 6 and the feed roll 7, it is preferable to make each distance as small as possible.
 したがって、支持するものがないところでは、樹脂フィルム50が緩まずに張っていて、さらに、樹脂フィルム50の流れ方向にも延伸する力がかからないように、第1の冷却ロール4、押圧ロール5、第2の冷却ロール6、送りロール7等のロールの周速度が調整されるようにしておくことが均質な製品を得るために好ましい。 Therefore, where there is nothing to support, the first cooling roll 4, the pressing roll 5, so that the resin film 50 is stretched without loosening and further does not have a force to stretch in the flow direction of the resin film 50. In order to obtain a homogeneous product, it is preferable to adjust the peripheral speeds of the second cooling roll 6, the feed roll 7, and the like.
 各ロールの周速度については、押出機の吐出量、フィルムの厚みや幅によって左右されるため、特に限定はされないが、通常、各ロールとも5~30m/分であるのが好ましい。 The peripheral speed of each roll is not particularly limited because it depends on the discharge amount of the extruder and the thickness and width of the film, but it is usually preferably 5 to 30 m / min for each roll.
 また、第1の冷却ロールの表面温度は、熱可塑性樹脂のガラス転移点をTgと表すと、(Tg-70~Tg+30)℃とするのが好ましく、(Tg-60~Tg+10)℃とするのがより好ましい。また、押圧ロールの表面温度は、(Tg-100~Tg-50)℃とするのが好ましく、(Tg-90~Tg-60)℃とするのがより好ましい。これら表面温度が低すぎると、第1の冷却ロール4の凹凸形状の転写が十分に行えず、樹脂フィルム50の凹凸形状にムラが生じ、十分な光学特性が得られなくなり、表面温度が高すぎると、光学的な歪みが大きくなってしまう。 The surface temperature of the first cooling roll is preferably (Tg−70 to Tg + 30) ° C., and (Tg−60 to Tg + 10) ° C. when the glass transition point of the thermoplastic resin is expressed as Tg. Is more preferable. The surface temperature of the pressing roll is preferably (Tg-100 to Tg-50) ° C., more preferably (Tg-90 to Tg-60) ° C. If these surface temperatures are too low, the uneven shape of the first cooling roll 4 cannot be transferred sufficiently, unevenness occurs in the uneven shape of the resin film 50, and sufficient optical characteristics cannot be obtained, and the surface temperature is too high. As a result, optical distortion increases.
 第2の冷却ロールを用いる場合には、第1の冷却ロールの表面温度を(Tg-70~Tg+30)℃、押圧ロールの表面温度を(Tg-100~Tg-50)℃とし、第2の冷却ロールの温度を(Tg-100~Tg-20)℃とすることが、レタデーション(位相差)を低く安定させる点で好ましい。 In the case of using the second cooling roll, the surface temperature of the first cooling roll is (Tg−70 to Tg + 30) ° C., the surface temperature of the pressing roll is (Tg−100 to Tg−50) ° C., The temperature of the cooling roll is preferably (Tg-100 to Tg-20) ° C. from the viewpoint of stabilizing the retardation (phase difference) low.
 図1に示した態様では、第2の冷却ロール6が、第1の冷却ロール4の斜め下方に配置されているが、第1の冷却ロール4の鉛直下方に配置されていてもよい。また、第1の冷却ロール4と押圧ロール5の位置は、上下が逆転していてもよい。この場合、第2の冷却ロール6は、第1の冷却ロール4の斜め上方または鉛直上方に配置される。 1, the second cooling roll 6 is disposed obliquely below the first cooling roll 4, but may be disposed vertically below the first cooling roll 4. Further, the positions of the first cooling roll 4 and the pressing roll 5 may be reversed up and down. In this case, the second cooling roll 6 is disposed obliquely above or vertically above the first cooling roll 4.
 さらに、図1では、水平配置されたダイ3から溶融樹脂が押し出されるが、図4に示すように、鉛直配置されたダイ3から溶融樹脂を押し出してもよい。この場合も、押圧ロール5としては、金属弾性ロールやゴムロールなどが好適に使用される。 Further, in FIG. 1, the molten resin is extruded from the horizontally arranged die 3, but as shown in FIG. 4, the molten resin may be extruded from the vertically arranged die 3. Also in this case, a metal elastic roll, a rubber roll, or the like is preferably used as the pressing roll 5.
 図1および図4に示した態様では、押圧手段として押圧ロール5を用いているが、図5に示すように押圧手段として押圧ベルト15を用いてもよい。この押圧ベルト15は、金属製のシームレスベルトであることが好ましく、凹凸形状が付与されていることが好ましい。この押圧ベルト15では、押圧する際の接触面積がロールに比べて大幅に増え、歪みの低減に有効である。
 図4及び5において、図1に記載した部品と同一機能を有する部品には、同一符号を付している。
In the embodiment shown in FIGS. 1 and 4, the pressing roll 5 is used as the pressing means. However, as shown in FIG. 5, a pressing belt 15 may be used as the pressing means. The pressing belt 15 is preferably a metal seamless belt, and is preferably provided with an uneven shape. In the pressing belt 15, the contact area when pressing is significantly increased as compared with the roll, which is effective in reducing distortion.
4 and 5, parts having the same functions as those shown in FIG. 1 are denoted by the same reference numerals.
 なお、本発明の装置及び方法で得られる樹脂フィルム50は、光学的な歪み、具体的には、自動複屈折計により590nmにおけるリタデーション(以下、位相差ともいう)の測定範囲での最大値が、50nm以下、好ましくは20nm以下、より好ましくは15nm以下、10nm以下とすると特に好ましい。リタデーションが前記範囲で、かつ、リタデーションのバラツキが20nm以下が好ましく、前記バラツキが7nm以下がより好ましく、前記バラツキが5nm以下であると特に好ましい。なお、本明細書において、リタデーションのバラツキとは、測定範囲での最大値と最小値との差をいう。このとき、測定範囲は、例えば、フィルム端から100mmの範囲(以下、フィルム端部ともいう)とフィルム中央から均等に50mmの範囲(以下、フィルム中央部ともいう)とすればよい。ここにおいて、フィルム端とは、前述の本発明の製造方法により得られた樹脂フィルムにおいて、この樹脂フィルムの上記冷却ロールの鏡面加工部分が施された両端部との接触部(図3において50bの部分)を、あるいは当該接触部よりも内側のエンボス加工領域の端部側までも切断して切り取り去った場合には、残ったエンボス加工の施された樹脂フィルムの幅方向の端をいう。 The resin film 50 obtained by the apparatus and method of the present invention has an optical distortion, specifically, a maximum value in a measurement range of retardation (hereinafter also referred to as phase difference) at 590 nm by an automatic birefringence meter. 50 nm or less, preferably 20 nm or less, more preferably 15 nm or less and 10 nm or less. It is particularly preferable that the retardation is within the above range, and the variation in retardation is preferably 20 nm or less, the variation is more preferably 7 nm or less, and the variation is 5 nm or less. In the present specification, the variation in retardation means a difference between the maximum value and the minimum value in the measurement range. At this time, the measurement range may be, for example, a range of 100 mm from the film end (hereinafter also referred to as film end) and a range of 50 mm from the center of the film (hereinafter also referred to as film central). Here, the film end refers to a contact portion (50b in FIG. 3) of the resin film obtained by the above-described production method of the present invention and both ends of the resin film on which the mirror-finished portion of the cooling roll is applied. Part), or the end of the embossing region inside the contact part, and the end of the resin film that has been embossed is the width direction end.
 フィルムの光学特性の均質性を重視する場合には、フィルム端から100mmの範囲のフィルム端部及びフィルム中央から均等に50mmの範囲のフィルム中央部のリタデーションの最大値が、共に15nm以下であると好ましく、13nm以下であるとより好ましく、10nm以下であると特に好ましい。なお、この場合、フィルム端部のリタデーションの最大値と、フィルム中央部のリタデーションの最大値とは、必ずしも同じでなくてもよい。例えば、フィルム端部のリタデーションの最大値を15nm以下とし、フィルム中央部のリタデーションの最大値を10nm以下と異なる値であってもよい。 When emphasizing the homogeneity of the optical properties of the film, the maximum value of the retardation of the film end in the range of 100 mm from the film end and the center of the film in the range of 50 mm uniformly from the center of the film is both 15 nm or less. It is preferably 13 nm or less, more preferably 10 nm or less. In this case, the maximum retardation value at the film end and the maximum retardation value at the center of the film are not necessarily the same. For example, the maximum retardation value at the film edge may be 15 nm or less, and the maximum retardation value at the center of the film may be different from 10 nm or less.
 さらに、本発明の装置及び方法で得られる樹脂フィルム50のヘイズ値は、用途によって適宜選択されればよい。たとえば、光拡散フィルムとする場合、通常は、ヘイズ値は50%以上であることが好ましい。 Furthermore, the haze value of the resin film 50 obtained by the apparatus and method of the present invention may be appropriately selected depending on the application. For example, when a light diffusing film is used, it is usually preferable that the haze value is 50% or more.
 また、本発明の装置及び方法で得られる樹脂フィルム50の厚さは、たとえば、樹脂フィルム50が光拡散フィルムとして用いられる場合、30~500μmの範囲が好ましい。厚さが30μm未満であると、本発明のロール構成では安定して樹脂フィルム50を得られず、500μmを超えると、フィルムとして取り扱うことが困難となる。樹脂フィルム50の厚みは、ダイ3から押し出されるフィルム状の溶融樹脂の厚み、第1の冷却ロール4と押圧ロール5との間隔等により調整できる。なお、樹脂フィルム50の幅としては、例えば、200~2000mmが好ましい範囲として挙げられる。 The thickness of the resin film 50 obtained by the apparatus and method of the present invention is preferably in the range of 30 to 500 μm, for example, when the resin film 50 is used as a light diffusion film. If the thickness is less than 30 μm, the roll structure of the present invention cannot stably obtain the resin film 50, and if it exceeds 500 μm, it is difficult to handle as a film. The thickness of the resin film 50 can be adjusted by the thickness of the film-like molten resin extruded from the die 3, the distance between the first cooling roll 4 and the pressing roll 5, and the like. As a width of the resin film 50, for example, a preferable range is 200 to 2000 mm.
 一方、プリズムやレンチキュラーレンズとして用いられる場合は、樹脂フィルム50の厚さはおおよそ500μm~2mmの範囲が好ましく、要求される用途に応じて適宜設定される。樹脂フィルム50の厚さが500μmを超える場合は、巻芯に巻きとったロール状物品として取り扱うことが容易でなくなるため、送りロール7から送られた後は所望の大きさに切断され、枚葉として取り扱うことが好ましい。 On the other hand, when used as a prism or a lenticular lens, the thickness of the resin film 50 is preferably in the range of approximately 500 μm to 2 mm, and is appropriately set according to the required application. When the thickness of the resin film 50 exceeds 500 μm, it is not easy to handle it as a roll-shaped article wound around a winding core. It is preferable to handle as
 樹脂フィルム50は、表面に凹凸形状が形成され、光を散乱させる機能が付与されているので、例えば、拡散フィルム、輝度向上フィルム等の他、自動車内装用フィルム、照明用フィルム、建材用フィルム等に適用できる。また、凹凸形状として、所望のプリズム形状を形成することによりプリズムシートに、また所望のレンズ形状を付与することによりレンズシートやレンチキュラーレンズシート等に適用できる。 Since the resin film 50 has an uneven shape formed on the surface and has a function of scattering light, for example, a film for automobile interior, a film for lighting, a film for building materials, etc. in addition to a diffusion film, a brightness enhancement film, and the like. Applicable to. Further, as a concavo-convex shape, it can be applied to a prism sheet by forming a desired prism shape, and to a lens sheet, a lenticular lens sheet, or the like by giving a desired lens shape.
 以下、本発明を実施例によりさらに詳細に説明するが、本発明はこの例に限定されないことは勿論である。なお、使用した樹脂フィルムの製造装置の構成は、次のとおりである。 Hereinafter, the present invention will be described in more detail with reference to examples, but it is needless to say that the present invention is not limited to these examples. In addition, the structure of the manufacturing apparatus of the used resin film is as follows.
  ・押出機2:スクリュー径110mm、一軸式。
  ・ダイ3:Tダイ、押出リップの幅1473mm、リップギャップ0.8mm。
  ・第1の冷却ロール4:外径400mmφで、幅は1677mm。外周面の内、両端部は、それぞれ223.5mmの幅で最大粗さ(Rmax)0.4μmに鏡面加工されており、それ以外の中央部(幅1230mm)はブラスト処理によって最大粗さ(Rmax)2μmの凹凸形状が形成されたステンレス鋼製の金属ロール(型ロール)。
  ・押圧ロール5:外径300mmφで、外周面は最大粗さ(Ra)1μmに研磨仕上げした硬度A70°のシリコンゴムロール。第1の冷却ロール4と平行配置した。
  ・第2の冷却ロール6:外径300mmφの耐熱ゴム製のゴムロール。
  ・送りロール7:外径150mmφのシリコンゴムロールからなる送りロール。
Extruder 2: Screw diameter 110 mm, single screw type.
Die 3: T die, extrusion lip width 1473 mm, lip gap 0.8 mm.
First cooling roll 4: The outer diameter is 400 mmφ and the width is 1677 mm. Both end portions of the outer peripheral surface are mirror-finished with a width of 223.5 mm and a maximum roughness (Rmax) of 0.4 μm. ) A metal roll (mold roll) made of stainless steel having a 2 μm uneven shape.
Pressing roll 5: A silicon rubber roll having a hardness of A70 ° having an outer diameter of 300 mmφ and an outer peripheral surface polished to a maximum roughness (Ra) of 1 μm. The first cooling roll 4 was arranged in parallel.
Second cooling roll 6: a heat-resistant rubber rubber roll having an outer diameter of 300 mmφ.
Feed roll 7: A feed roll made of a silicon rubber roll having an outer diameter of 150 mm.
 押出機2、ダイ3、第1の冷却ロール4、押圧ロール5、第2の冷却ロール6、送りロール7を図1に示すように配置し、第1の冷却ロール4及び押圧ロール5を電動モータに接続して所定の周速度で回転するように構成し、第2の冷却ロール6及び送りロール7には駆動力を設けなかった。 The extruder 2, the die 3, the first cooling roll 4, the pressing roll 5, the second cooling roll 6, and the feed roll 7 are arranged as shown in FIG. 1, and the first cooling roll 4 and the pressing roll 5 are electrically driven. It was configured to connect to a motor and rotate at a predetermined peripheral speed, and no driving force was provided to the second cooling roll 6 and the feed roll 7.
(実施例1)
 まず、芳香族ポリカーボネート樹脂〔住友ダウ社製、商品名:カリバー301-22;ガラス転移点(Tg):155℃〕を押出機2にて260℃の温度に加熱しながら溶融混練して得た樹脂組成物を、溶融状態のままダイ3からフィルム状に押し出した。この場合、得られたフィルムの幅は、空中で収縮するため、ダイ3の押出リップの幅1473mmより小さく、1380mmとなった。このフィルムと押出ロールの鏡面部との重なりは、両端部合わせて、1380-1230=150mmとなり、片方の端部では、その半分の75mmずつとなる。
Example 1
First, an aromatic polycarbonate resin (manufactured by Sumitomo Dow, trade name: Caliber 301-22; glass transition point (Tg): 155 ° C.) was obtained by melt-kneading while heating to 260 ° C. in the extruder 2. The resin composition was extruded as a film from the die 3 in a molten state. In this case, since the width of the obtained film contracted in the air, the width of the extrusion lip of the die 3 was smaller than 1473 mm and became 1380 mm. The overlap between the film and the mirror surface of the extrusion roll is 1380-1230 = 150 mm when both ends are combined, and is 75 mm, which is half of that at one end.
 ついで、ダイ3から押し出されたフィルム状の樹脂組成物を、回転する第1の冷却ロール4と押圧ロール5との間に挟み込むように供給し、フィルム状の樹脂組成物を冷却しながら、その表面に第1の冷却ロール4の凹凸形状を転写して、樹脂フィルムに成形する。この樹脂フィルムを第2の冷却ロール6に巻き掛けながら、送りロール7によって順次、後段に送りながら冷却した。第1の冷却ロール4、押圧ロール5、第2の冷却ロール6は、内部に冷却水を循環させながら一定の温度となるようにしており、それぞれ循環させる水の設定温度を97℃、45℃、137℃とした。このとき、第1の冷却ロール4の表面温度は約95℃、押圧ロール5の表面温度は約70℃、第2の冷却ロール6の表面温度は約130℃であった。 Next, the film-like resin composition extruded from the die 3 is supplied so as to be sandwiched between the rotating first cooling roll 4 and the pressing roll 5, while cooling the film-like resin composition, The uneven | corrugated shape of the 1st cooling roll 4 is transcribe | transferred to the surface, and it shape | molds in a resin film. While this resin film was wound around the second cooling roll 6, it was cooled while being sequentially fed to the subsequent stage by the feed roll 7. The 1st cooling roll 4, the press roll 5, and the 2nd cooling roll 6 are made to become fixed temperature, circulating cooling water inside, and set temperature of the circulating water to 97 degreeC and 45 degreeC, respectively. 137 ° C. At this time, the surface temperature of the 1st cooling roll 4 was about 95 degreeC, the surface temperature of the press roll 5 was about 70 degreeC, and the surface temperature of the 2nd cooling roll 6 was about 130 degreeC.
 第2の冷却ロール6を通過した樹脂フィルム50を図3の50aの状態でサンプリングし、幅1380mm、厚さ130μmの樹脂フィルムを得た。なお、ここで得られた樹脂フィルムは厚み精度も良好で、ここでは130μm±1μmであった。 The resin film 50 that passed through the second cooling roll 6 was sampled in the state of 50a in FIG. 3 to obtain a resin film having a width of 1380 mm and a thickness of 130 μm. The resin film obtained here had good thickness accuracy, and was 130 μm ± 1 μm here.
(比較例1)
 第1の冷却ロールとして、外周面の全面が凹凸形状を有するものとした以外は実施例1と同一の構成を有する樹脂フィルムの製造装置を用いて、実施例1と同条件で樹脂フィルムを得た。
(Comparative Example 1)
As a first cooling roll, a resin film was obtained under the same conditions as in Example 1 using a resin film manufacturing apparatus having the same configuration as in Example 1 except that the entire outer peripheral surface had an uneven shape. It was.
(試験例)
 実施例1及び比較例1で得られた各樹脂フィルムについて、鏡面加工していないロール中央部分1230mmのさらに中央部分1200mmについてリタデーションの位置分布を測定し、その結果をそれぞれ図6及び図7に示した。
(Test example)
For each resin film obtained in Example 1 and Comparative Example 1, the positional distribution of the retardation was measured for a further central part 1200 mm of the roll central part 1230 mm that was not mirror-finished, and the results are shown in FIGS. 6 and 7, respectively. It was.
〔リタデーション〕
 樹脂フィルムのリタデーションは、自動複屈折計(王子計測機器株式会社製、商品名:KOBRA-CCD/X)により590nmにおける値を測定した。
[Retardation]
The retardation of the resin film was measured at 590 nm using an automatic birefringence meter (manufactured by Oji Scientific Instruments, trade name: KOBRA-CCD / X).
 上記試験例の結果から、実施例1で得られた樹脂フィルムは、測定範囲でのリタデーションの最大値が約7nmであるのに対して、比較例1で得られた最大値は約18nmであった。実施例1のリタデーションのバラツキが約6nmであるのに対して、比較例1のリタデーションのバラツキは約11nmとバラツキが大きくなっていた。
 また、実施例1のフィルム端部のリタデーションの最大値は約5nmであるのに対して、フィルム中央部でのリタデーションの最大値は約7nmで、光学的均質性が高いことがわかる。一方、比較例1のフィルム端部のリタデーションの最大値は約18nmであるのに対して、フィルム中央部でのリタデーションの最大値は約9nmで、実施例1に比べて光学的均質性が劣っていることがわかる。すなわち、本製造法により、リタデーションが小さく、しかも、光学的均質性の高いフィルムが簡便に得られることがわかる。
 したがって、本発明によれば、冷却ロールとして外周面の両端面を鏡面加工するという簡便な構造のロールを用いるだけでフィルム表面に凹凸形状を付与し、かつ光学的な歪みの小さい樹脂フィルムが得られる。なお、実施例1において、48時間連続成形した場合においても、樹脂フィルムのリタデーションは10nm以下、偏差も5nm以内と安定していた。
From the results of the above test examples, the resin film obtained in Example 1 has a maximum retardation value of about 7 nm in the measurement range, whereas the maximum value obtained in Comparative Example 1 is about 18 nm. It was. While the variation of the retardation of Example 1 was about 6 nm, the variation of the retardation of Comparative Example 1 was as large as about 11 nm.
In addition, the maximum retardation value at the end of the film of Example 1 is about 5 nm, whereas the maximum retardation value at the center of the film is about 7 nm, indicating that the optical homogeneity is high. On the other hand, the maximum retardation value at the film edge of Comparative Example 1 is about 18 nm, whereas the maximum retardation value at the center of the film is about 9 nm, which is inferior in optical homogeneity to Example 1. You can see that That is, it can be seen that a film having small retardation and high optical homogeneity can be easily obtained by this production method.
Therefore, according to the present invention, a concavo-convex shape is imparted to the film surface and a small optical distortion is obtained only by using a roll having a simple structure in which both end surfaces of the outer peripheral surface are mirror-finished as a cooling roll. It is done. In Example 1, even when the molding was continuously performed for 48 hours, the retardation of the resin film was stable at 10 nm or less and the deviation was within 5 nm.
 本発明の樹脂フィルムの製造方法及び製造装置によれば、冷却ロール上でフィルム状の溶融樹脂の幅方向への収縮を抑制することで、製造される樹脂フィルムの光学的な歪みを抑え、位相差を低くでき、得られる樹脂フィルムの位相差の幅方向におけるバラツキも抑制でき、様々な用途の樹脂フィルムを均質に、かつ、製造歩留まりを良好に製造できる。
 なお、2011年1月28日に出願された日本特許出願2011-016687号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
According to the resin film manufacturing method and manufacturing apparatus of the present invention, the optical distortion of the resin film to be manufactured is suppressed by suppressing the shrinkage in the width direction of the film-like molten resin on the cooling roll. The phase difference can be reduced, the variation in the width direction of the phase difference of the obtained resin film can be suppressed, and the resin film for various uses can be produced uniformly and with a good production yield.
The entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2011-016687 filed on January 28, 2011 are incorporated herein as the disclosure of the present invention. .
1…樹脂フィルムの製造装置、2…押出機、3…ダイ、4…冷却ロール、5…押圧ロール、6…第2の冷却ロール、7…送りロール、8…ホッパー、15…押圧ベルト、50…樹脂フィルム DESCRIPTION OF SYMBOLS 1 ... Resin film manufacturing apparatus, 2 ... Extruder, 3 ... Die, 4 ... Cooling roll, 5 ... Pressing roll, 6 ... 2nd cooling roll, 7 ... Feeding roll, 8 ... Hopper, 15 ... Pressing belt, 50 ... resin film

Claims (8)

  1.  溶融した熱可塑性樹脂をダイからフィルム状に押し出し、押し出されたフィルム状の熱可塑性樹脂を、両端部を除く外周面に凹凸形状が形成されるとともに前記両端部の外周面が鏡面加工された冷却ロールと前記冷却ロールと所定の間隔をおいて配置された押圧手段との間に、その両端部が前記冷却ロールの鏡面加工された両端部にかかるように供給する押出工程と、
     前記フィルム状の熱可塑性樹脂を、前記押圧手段で前記冷却ロールに押し付けて、前記熱可塑性樹脂を冷却しつつ、表面に前記冷却ロールの凹凸形状を転写して前記熱可塑性樹脂を樹脂フィルムに成形する冷却成形工程と、
     を有することを特徴とする樹脂フィルムの製造方法。
    The molten thermoplastic resin is extruded from the die into a film shape, and the extruded film-shaped thermoplastic resin is formed with a concavo-convex shape on the outer peripheral surface excluding both ends, and the outer peripheral surface of the both ends is mirror-finished An extrusion step of supplying the both ends of the cooling roll and the pressing means disposed at a predetermined interval so that both ends thereof are mirror-finished both ends of the cooling roll;
    The film-like thermoplastic resin is pressed against the cooling roll by the pressing means, and the thermoplastic resin is molded into a resin film by transferring the uneven shape of the cooling roll to the surface while cooling the thermoplastic resin. A cooling molding process,
    The manufacturing method of the resin film characterized by having.
  2.  前記押圧手段の外周面に、凹凸形状が形成されている押圧手段を用いる、請求項1記載の樹脂フィルムの製造方法。 The method for producing a resin film according to claim 1, wherein pressing means having an uneven shape formed on an outer peripheral surface of the pressing means is used.
  3.  前記押圧手段が、押圧ロールまたは押圧ベルトであり、その外周面に凹凸形状が形成されている押圧ロールまたは押圧ベルトを用いる、請求項2記載の樹脂フィルムの製造方法。 The method for producing a resin film according to claim 2, wherein the pressing means is a pressing roll or a pressing belt, and a pressing roll or a pressing belt having a concavo-convex shape formed on an outer peripheral surface thereof is used.
  4.  前記冷却成型工程の後、前記押圧手段から、第2の冷却ロールに巻きかけて樹脂フィルムをさらに冷却する、請求項1乃至3のいずれか1項に記載の樹脂フィルムの製造方法。 The method for producing a resin film according to any one of claims 1 to 3, wherein after the cooling molding step, the resin film is further cooled from the pressing means by being wound around a second cooling roll.
  5.  前記熱可塑性樹脂がポリカーボネートである、請求項1乃至4のいずれか1項に記載の樹脂フィルムの製造方法。 The method for producing a resin film according to any one of claims 1 to 4, wherein the thermoplastic resin is polycarbonate.
  6.  前記冷却成形工程に続いて、少なくとも前記冷却ロールの鏡面加工された両端部と接触した前記樹脂フィルムの両側部を切り取る切断工程を有する、請求項1乃至5のいずれか1項に記載の樹脂フィルムの製造方法。 6. The resin film according to claim 1, further comprising a cutting step of cutting off both side portions of the resin film in contact with at least both mirror-finished ends of the cooling roll following the cooling molding step. Manufacturing method.
  7.  溶融した熱可塑性樹脂をフィルム状に押し出すダイを有する押出手段と、外周面に凹凸形状が形成された冷却ロールと前記冷却ロールと所定の間隔をおいて配置された押圧手段とを備え、前記押出手段で押出されたフィルム状の熱可塑性樹脂を前記冷却ロールと前記押圧手段との間で挟圧して、前記熱可塑性樹脂を冷却しつつ、表面に凹凸形状を転写する冷却成形手段と、を備えた樹脂フィルムの製造装置であって、
     前記冷却ロールの凹凸形状が両端部を除く外周面に形成されており、前記両端部の外周面は鏡面加工とされていることを特徴とする樹脂フィルムの製造装置。
    An extrusion unit having a die for extruding a molten thermoplastic resin into a film; a cooling roll having an uneven shape formed on an outer peripheral surface; and a pressing unit disposed at a predetermined interval from the cooling roll. A film forming thermoplastic resin extruded by the means, and a cooling molding means for transferring the concavo-convex shape to the surface while cooling the thermoplastic resin by sandwiching the film between the cooling roll and the pressing means. A resin film manufacturing apparatus,
    The apparatus for producing a resin film is characterized in that the concavo-convex shape of the cooling roll is formed on an outer peripheral surface excluding both ends, and the outer peripheral surface of both ends is mirror-finished.
  8.  冷却成形手段の後段に、さらに他の冷却ロールを有する、請求項7に記載の樹脂フィルムの製造装置。 The apparatus for producing a resin film according to claim 7, further comprising another cooling roll downstream of the cooling molding means.
PCT/JP2012/051115 2011-01-28 2012-01-19 Method and apparatus for producing resin film WO2012102178A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012554756A JPWO2012102178A1 (en) 2011-01-28 2012-01-19 Manufacturing method and manufacturing apparatus for resin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-016687 2011-01-28
JP2011016687 2011-01-28

Publications (1)

Publication Number Publication Date
WO2012102178A1 true WO2012102178A1 (en) 2012-08-02

Family

ID=46580750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051115 WO2012102178A1 (en) 2011-01-28 2012-01-19 Method and apparatus for producing resin film

Country Status (3)

Country Link
JP (1) JPWO2012102178A1 (en)
TW (1) TW201235193A (en)
WO (1) WO2012102178A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014174197A (en) * 2013-03-06 2014-09-22 Fuji Xerox Co Ltd Image transfer device
JP2017144654A (en) * 2016-02-18 2017-08-24 信越ポリマー株式会社 Method of manufacturing resin film for film capacitor
JP2018001470A (en) * 2016-06-29 2018-01-11 信越ポリマー株式会社 Apparatus for manufacturing resin sheet, and method for manufacturing resin sheet
WO2019039932A1 (en) * 2017-08-25 2019-02-28 Top Glove International Sdn Bhd A method of embossing glove film and a glove film produced therefrom
JP2019209616A (en) * 2018-06-05 2019-12-12 ダイセル・エボニック株式会社 Sheet and sheet manufacturing method
EP3505581A4 (en) * 2016-08-29 2020-04-22 Zeon Corporation Method for producing adhesive sheet
CN113334721A (en) * 2021-05-31 2021-09-03 安徽嘉阳新材料科技有限公司 Online one-time embossing method for decorative film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI816118B (en) * 2021-05-10 2023-09-21 日商芝浦機械股份有限公司 Stretch film manufacturing equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121922A (en) * 1984-11-19 1986-06-09 Mitsubishi Heavy Ind Ltd Film forming device
JPH0516962A (en) * 1990-07-27 1993-01-26 Nippon Petrochem Co Ltd Tear sheet and its production
JP2001353767A (en) * 2000-06-14 2001-12-25 Teijin Chem Ltd Method for producing polycarbonate resin film
JP2011098479A (en) * 2009-11-05 2011-05-19 Sumitomo Chemical Co Ltd Method for manufacturing optical sheet having rugged shape on surface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121922A (en) * 1984-11-19 1986-06-09 Mitsubishi Heavy Ind Ltd Film forming device
JPH0516962A (en) * 1990-07-27 1993-01-26 Nippon Petrochem Co Ltd Tear sheet and its production
JP2001353767A (en) * 2000-06-14 2001-12-25 Teijin Chem Ltd Method for producing polycarbonate resin film
JP2011098479A (en) * 2009-11-05 2011-05-19 Sumitomo Chemical Co Ltd Method for manufacturing optical sheet having rugged shape on surface

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014174197A (en) * 2013-03-06 2014-09-22 Fuji Xerox Co Ltd Image transfer device
JP2017144654A (en) * 2016-02-18 2017-08-24 信越ポリマー株式会社 Method of manufacturing resin film for film capacitor
JP2018001470A (en) * 2016-06-29 2018-01-11 信越ポリマー株式会社 Apparatus for manufacturing resin sheet, and method for manufacturing resin sheet
EP3505581A4 (en) * 2016-08-29 2020-04-22 Zeon Corporation Method for producing adhesive sheet
WO2019039932A1 (en) * 2017-08-25 2019-02-28 Top Glove International Sdn Bhd A method of embossing glove film and a glove film produced therefrom
JP2020531305A (en) * 2017-08-25 2020-11-05 トップ グローブ インターナショナル エスディーエヌ ビーエイチディー How to emboss a glove film and a glove film produced by this method
JP7018886B2 (en) 2017-08-25 2022-02-14 トップ グローブ インターナショナル エスディーエヌ ビーエイチディー How to emboss a glove film and a glove film manufactured by this method
JP2019209616A (en) * 2018-06-05 2019-12-12 ダイセル・エボニック株式会社 Sheet and sheet manufacturing method
JP7107756B2 (en) 2018-06-05 2022-07-27 ポリプラ・エボニック株式会社 Sheet and sheet manufacturing method
US11953650B2 (en) 2018-06-05 2024-04-09 Daicel-Evonik Ltd. Sheet and method for producing sheet
CN113334721A (en) * 2021-05-31 2021-09-03 安徽嘉阳新材料科技有限公司 Online one-time embossing method for decorative film

Also Published As

Publication number Publication date
JPWO2012102178A1 (en) 2014-06-30
TW201235193A (en) 2012-09-01

Similar Documents

Publication Publication Date Title
WO2012102178A1 (en) Method and apparatus for producing resin film
JP4506733B2 (en) Manufacturing method of optical film
TWI388419B (en) Optical sheet manufacture method and optical sheet
US20100109185A1 (en) Method and apparatus for manufacturing uneven thickness resin sheet
JP3710800B2 (en) Tubular resin film manufacturing apparatus and manufacturing method
JP3846566B2 (en) Method for producing thermoplastic resin sheet
EP2576181B1 (en) Method of eliminating defects while extrusion coating film using speed control of the nip roll
JP2008039807A (en) Method for manufacturing longitudinal uniaxial oriented retardation film and longitudinal uniaxial oriented retardation film
WO2009116423A1 (en) Method for producing partially thick resin sheet
JP2012066922A (en) Wound body of optical film and method of manufacturing the same
JP3662912B2 (en) Tubular resin film manufacturing equipment
JP3846567B2 (en) Method for producing thermoplastic resin sheet
JPH08132515A (en) Thin sheet and manufacture thereof
JP3844211B2 (en) Method for producing amorphous thermoplastic resin sheet
JP5119228B2 (en) Resin sheet manufacturing apparatus and manufacturing method
KR101645760B1 (en) Method for producing optical film, optical film, and apparatus for producing optical film
JP5671404B2 (en) Manufacturing method of resin molding
KR20140063680A (en) Method for manufacturing film
JP2006175616A (en) Resin film
JP2009292116A (en) Optical film roll and manufacturing method therefor
JP2009226847A (en) Floating type longitudinally orienting device and forming method of thermoplastic resin film
JP2008246758A (en) Method for producing optical film
JP2006327011A (en) Polymer film manufacturing method and roll of polymer film
JP5530247B2 (en) Resin sheet manufacturing apparatus and manufacturing method
JP2005284141A (en) Optical film and manufacturing method therefof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739152

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012554756

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12739152

Country of ref document: EP

Kind code of ref document: A1