WO2012101984A1 - Printed wiring board and method for producing printed wiring board - Google Patents

Printed wiring board and method for producing printed wiring board Download PDF

Info

Publication number
WO2012101984A1
WO2012101984A1 PCT/JP2012/000259 JP2012000259W WO2012101984A1 WO 2012101984 A1 WO2012101984 A1 WO 2012101984A1 JP 2012000259 W JP2012000259 W JP 2012000259W WO 2012101984 A1 WO2012101984 A1 WO 2012101984A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
layer
printed wiring
wiring board
copper
Prior art date
Application number
PCT/JP2012/000259
Other languages
French (fr)
Japanese (ja)
Inventor
伸樹 田中
哲平 伊藤
和也 濱谷
邦治 梅野
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to KR1020137022430A priority Critical patent/KR20140009322A/en
Publication of WO2012101984A1 publication Critical patent/WO2012101984A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/108Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by semi-additive methods; masks therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/022Electroplating of selected surface areas using masking means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1827Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment only one step pretreatment
    • C23C18/1831Use of metal, e.g. activation, sensitisation with noble metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/58Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1184Underetching, e.g. etching of substrate under conductors or etching of conductor under dielectrics; Means for allowing or controlling underetching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/425Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern
    • H05K3/427Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern initial plating of through-holes in metal-clad substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits

Definitions

  • the present invention relates to a printed wiring board and a method for manufacturing the printed wiring board.
  • a resist pattern is formed on a double-sided copper-clad laminate, and subsequently, a plating layer is filled in the opening of the resist pattern, and then the resist pattern is removed. Thereafter, it is described that a conductive circuit pattern composed of a plating layer and a copper foil is formed by etching a lower layer copper foil using the pattern of the plating layer as a mask.
  • the conventional conductive circuit pattern is composed of two layers, an upper layer (plating layer) and a lower layer (copper foil), and the upper layer and lower layer have different surface orientations and constituent materials. is there. For this reason, even if the etching conditions are adjusted according to the upper layer, the etching rate is increased or decreased in the lower layer. As a result, in plan view, a part of the lower layer (copper foil) may remain (hereinafter referred to as a skirt residue) so as to protrude from the side wall of the upper layer (plating layer) to the outside region. However, if the etching amount is increased in order to remove the bottom of the lower layer, the upper layer (plating layer) will be excessively scraped, resulting in a poor wiring shape in the conventional process of forming a conductive circuit pattern. obtain.
  • the carrier substrate Separating the carrier substrate from a laminate in which a copper foil with a carrier substrate is laminated on at least one surface of the insulating layer; Forming a metal layer thicker than the copper foil on the entire surface or selectively on the copper foil; Obtaining a conductive circuit pattern composed of the copper foil and the metal layer by etching at least the copper foil, and On the surface of the copper foil in contact with the metal layer, the surface orientation (111), (200), (220) and (311) with respect to the sum of the peak intensities when measured by the XRD thin film method. 200), a method for manufacturing a printed wiring board is provided, in which the ratio of the peak intensity is 26% or less.
  • the inventors have determined that the ratio of the plane orientation (200) that is more easily etched than the plane orientation (111) on the upper surface of the lower layer. It was found that a lower layer (copper foil) having superior etching characteristics as compared with the prior art can be obtained by reducing the amount. Based on these findings, the present inventors can realize an unprecedented good wiring shape by setting the ratio of the crystal plane (200) in the upper surface of the lower layer (the surface in contact with the metal layer) to a predetermined value or less. This is the headline and the present invention.
  • An insulating layer An insulating layer; A conductive circuit pattern provided on the insulating layer and configured by laminating a copper foil and a metal layer; On the surface of the copper foil in contact with the metal layer, the surface orientation (111), (200), (220) and (311) with respect to the sum of the peak intensities when measured by the XRD thin film method. 200), a printed wiring board having a peak intensity ratio of 26% or less is provided.
  • the ratio of the plane orientation (200) on the upper surface (surface in contact with the metal layer) of the copper foil is a predetermined value or less, as described above, an unprecedented good wiring shape is easily formed, A structure with excellent yield is realized.
  • a printed wiring board excellent in yield can be provided.
  • FIG. 1 is a cross-sectional view illustrating a process procedure of a method for manufacturing a printed wiring board according to the first embodiment.
  • the method of manufacturing the printed wiring board 101 according to the first embodiment includes a carrier substrate from a laminate (copper-clad laminate 10 with a carrier foil) in which a copper foil with a carrier substrate is laminated on at least one surface of the insulating layer 102.
  • the carrier foil layer 106) is separated; on the copper foil layer 104, the metal layer 115 thicker than the copper foil layer 104 is formed on the entire surface or selectively; and at least the copper foil layer 104 is etched.
  • the ratio of the peak intensity of the plane orientation (200) to the sum of the peak intensity of (311) is 26% or less.
  • FIG. 2 is an enlarged sectional view of the conductive circuit 119 in the printed wiring board 101 according to the first embodiment.
  • the printed wiring board 101 according to the present embodiment is provided on the insulating layer 102 and the insulating layer 102, and the pattern of the conductive circuit 119 including the copper foil layer 104 and the metal layer 115.
  • the surface (upper surface 20) of the copper foil layer 104 in contact with the metal layer 115 is in relation to the sum of the peak intensities of the surface orientations (111), (200), (220), and (311) as measured by the XRD thin film method.
  • the ratio of the peak intensity of the plane orientation (200) is specified by 26% or less.
  • the XRD thin film method uses a condition where the incident angle is 0.2 to 10 degrees.
  • the peak intensity obtained by the XRD thin film method means the maximum value of the intensity corresponding to each plane orientation. Specifically, measurement was performed using a fully automatic powder X-ray diffractometer (manufactured by Philips, model PW1700) and Cu—K ⁇ ray as a radiation source.
  • the incident angle ( ⁇ ) of X-rays is made incident at an angle of 1 ° with respect to the sample surface (in this case, the surface from which the carrier foil has been peeled off), and the surface orientation (111) detected by 2 ⁇ scanning,
  • the peak integrated intensities of the diffraction lines from (200), (220) and (311) are respectively obtained.
  • the thin film method since the incident angle is fixed, the indication of ⁇ is used to distinguish it from ⁇ , and 2 ⁇ is the same as the normal method in the sense of the position of the counter with respect to the incident line. Displayed.
  • the thin film method can suppress the penetration depth of X-rays to the necessary minimum, and can analyze the crystal structure in the range of several nanometers to several microns on the sample surface. Therefore, in order to accurately evaluate the crystal orientation of the 0.1 to 5.0 ⁇ m thick copper foil layer, X-ray diffraction by the above-mentioned thin film method is necessary.
  • the main crystal plane of copper metal for example, copper powder
  • the main crystal plane of copper metal is composed of plane orientations (111), (200), (220), and (311). Yes.
  • These peak intensity values are proportional to the area of the crystal plane.
  • the total value of the peak intensities of the plane orientations (111), (200), (220) and (311) on the upper surface of the copper foil is proportional to the total value of the areas of various crystal planes on the upper surface. Therefore, the ratio of the peak intensity of the plane orientation (200) to the sum of the peak intensities of the plane orientations (111), (200), (220) and (311) is the plane orientation with respect to the main crystal plane on the upper surface of the copper foil. It can be said that the occupied area ratio of (200) is shown.
  • the atomic plane density of the copper foil is in the order of plane orientation (111)> plane orientation (200)> plane orientation (220).
  • the etching characteristics in the copper foil are in the order of plane orientation (220)> plane orientation (200)> plane orientation (111). That is, it can be said that the plane orientation (220) and the plane orientation (200) are higher than the plane orientation (111).
  • the ratio of the peak intensity of the plane orientation (200) to the sum of the peak intensity of the plane orientation (111), (200), (220) and (311) when measured by the XRD thin film method is low.
  • the occupation area ratio of the plane orientation (200) becomes low the etching characteristics on the upper surface of the copper foil are low.
  • the ratio of the peak intensity and the ratio of the occupied area have the same technical meaning. Therefore, these are sometimes collectively referred to as a ratio.
  • etching on the side surface 24 of the copper foil layer 104 is referred to as side etching. In this side etching, etching proceeds in the horizontal direction with respect to the upper surface of the insulating layer 102.
  • etching on the upper surface 20 of the copper foil layer 104 is referred to as vertical etching. In this vertical etching, etching proceeds in a direction perpendicular to the upper surface of the insulating layer 102.
  • the process of the manufacturing method of the printed wiring board of 1st Embodiment includes the following processes. That is, first, as shown to Fig.1 (a), the copper clad laminated board 10 with carrier foil is prepared. In this copper clad laminate 10 with carrier foil, a carrier foil layer 106 is attached to both surfaces of the insulating layer 102 together with the copper foil layer 104. Subsequently, as shown in FIG. 1 (b), the carrier foil layer 106 is removed from the copper clad laminate 10 with the carrier foil by peeling off. Subsequently, as shown in FIG. 1C, a resist layer 112 having a predetermined opening pattern is formed on the remaining copper foil layer 104.
  • a plating layer (metal layer 115) is formed by plating in the opening pattern of the resist layer 112 and on the copper foil layer 104 (FIG. 1D). Subsequently, as shown in FIG. 1E, the resist layer 112 is removed. Thereby, the pattern of the predetermined metal layer 115 can be selectively formed on the copper foil layer 104. At this time, in the region not covered with the metal layer 115, the ratio of the peak intensity of the plane orientation (200) on the upper surface 20 of the copper foil layer 104 is 26% or less. Thereafter, as shown in FIG. 1F, the copper foil layer 104 in the region not covered with the metal layer 115 is removed by, for example, soft etching.
  • the pattern of the conductive circuit 119 can be formed by the remaining copper foil layer 104 and the metal layer 115.
  • the printed wiring board 101 of this Embodiment is obtained by the above process (FIG. 1, FIG. 2).
  • a conventional method for manufacturing a printed wiring board includes the following steps. That is, as described above, the upper metal layer 14 having a predetermined pattern is formed on the plain-shaped copper foil layer 4, and the lower copper foil layer 4 is removed by etching using the metal layer 14 as a mask.
  • the copper foil layer 4 and the metal layer 14 have different constituent materials and plane orientations on the upper surface. Is also different. Therefore, conventionally, even if such etching conditions are adjusted to such a condition that the metal layer 14 is not scraped, the etching rate with respect to the copper foil layer 4 may be slow, and the bottom of the copper foil layer 4 may be generated. Is obtained (FIG. 3 (a)). When such a skirt residue exists, a space S2 between the conductive circuits 19 (hereinafter referred to as a space S2) becomes narrow, and it becomes difficult to form a fine wiring pattern.
  • a space S2 between the conductive circuits 19 hereinafter referred to as a space S2 becomes narrow, and it becomes difficult to form a fine wiring pattern.
  • the present inventors have found that, in order to control the etching rate of the lower layer (copper foil), a surface orientation (200) that is more easily etched than the surface orientation (111) on the upper surface 20 of the lower layer. It was found that a lower layer (copper foil) having superior side etching characteristics as compared with the prior art can be obtained by reducing the ratio of). Although this mechanism is not clear, by reducing the ratio of the plane orientation (200) having excellent etching characteristics on the upper surface 20 of the copper foil layer 104, the ratio of the plane orientation (200) is increased on the side surface 24. It can be inferred that the side etching rate at 24 can be improved.
  • the ratio of the plane orientation (200) excellent in etching characteristics on the upper surface 20 of the copper foil layer 104 is set to a predetermined value or less.
  • a good wiring shape refers to a shape that is specified by the characteristic that there is less skirt residue compared to the conventional case.
  • the skirt remainder is formed by protruding the copper foil layer 4 in a region outside the metal layer 14 in the width direction orthogonal to the extending direction of the metal layer 14 in plan view. Say part. The determination as to whether or not the tail remains has been described with reference to FIGS.
  • L1 ⁇ L2 ⁇ L is larger than 0, it is determined that the tail remains.
  • ⁇ L only needs to be smaller than that of the conventional circuit, more preferably, L1 and L2 are the same (FIG. 2A), and more preferably L1 is It is smaller than L2.
  • the copper foil layer 104 in cross-sectional view has a region where the width in the planar direction of the copper foil layer 104 is smaller than the width in the planar direction of the metal layer 115 (FIG. 2B). .
  • Such a shape of the conductive circuit 119 specified by L1 and L2 can be said to be a good wiring shape.
  • the favorable wiring shape in this Embodiment refers to what the shape of the metal layer 115 is specified by the characteristic that the desired shape is maintained (FIG. 2A and FIG. 2).
  • the desired shape here means a shape as designed, for example, a square shape or the like. Even when L1 is the same as L2 and L1 is smaller than L2, the side etching characteristics of the copper foil layer 104 are improved, and thus such a shape can be realized.
  • the cross-sectional shape of the copper foil layer 104 may be a rectangular shape having the same width as the metal layer 115 as shown in FIG. 2A, or may be an inversely tapered shape as shown in FIG. Good.
  • the reverse taper-shaped copper foil layer 104 may have a surface area that decreases from the first surface (upper surface 20) to the second surface (lower surface 22) in plan view (however, due to variations in the manufacturing process). , Irregularities may be formed on a part of the side surface 24). Further, as shown in FIG.
  • an angle ⁇ (a counterclockwise angle) formed between a perpendicular to the insulating layer 102 and the side surface 24 is, for example, preferably 0 degrees or more and 20 degrees or less, More preferably, it is 1 degree or more and 10 degrees or less.
  • the shape of the other copper foil layer 104 may be a kamaboko shape shown in FIG. 6 (a) or a constricted shape shown in FIG. 6 (b).
  • L1 can be made smaller than L2 in the conductive circuit 119, and more than a certain contact area with the insulating layer 102 is ensured as compared with the reverse tapered shape. It is also possible.
  • the line and space (hereinafter referred to as L / S) controllability is excellent.
  • the space S2 and the space S1 illustrated in FIG. 4 indicate the distance between the adjacent conductive circuits 19 and 119 in the width direction perpendicular to the direction in which the conductive circuits 19 and 119 extend. .
  • the etching conditions of the copper foil layer 4 were adjusted so as not to etch the shape of the metal layer 14, so the length of the remaining hem extending outside the metal layer 14 is It gets longer or shorter. In order to always leave such a skirt remainder part, as shown in FIG.4 (b), it was necessary to ensure space S2. In other words, the space S2 needs to be adjusted according to the variation of L1.
  • the controllability of L1 / S2 is low, it is difficult to form fine wiring.
  • the side etching characteristics of the copper foil layer 104 can be improved, so that the width of the metal layer 115 is maintained while maintaining the desired shape.
  • the width of the copper foil layer 104 in the direction can be controlled.
  • L1 can be made equal to or less than L2 (that is, since there is no remaining skirt), the space S1 can be determined by the minimum width L2 of the metal layer 115.
  • L2 can be a value as designed. Therefore, in the method for manufacturing a printed wiring board according to the present embodiment, the controllability of L2 / S1 is excellent. Therefore, since the L / S controllability is excellent, it is possible to obtain a method for manufacturing a printed wiring board capable of fine wiring processing while suppressing connection failure.
  • the step of forming the through hole 108, the step of bringing the chemical solution into contact with at least the inner wall of the through hole 108, and the copper foil layer 104 on the upper surface and the back surface of the insulating layer 102 are electrically connected by electroless plating.
  • the point which further includes the process of forming the electroless-plating layer 110 differs from 1st Embodiment. 7 and 8 are cross-sectional views showing process steps of the method for manufacturing a printed wiring board according to the second embodiment.
  • a copper clad laminate 10 with a carrier foil is prepared in which a copper foil layer 104 is bonded to both surfaces of an insulating layer 102 together with a carrier foil layer 106.
  • a peelable carrier foil layer 106 is laminated on at least one surface of the copper clad laminate 100.
  • the copper clad laminate 100 (hereinafter also referred to as a laminate) is not particularly limited.
  • a copper foil layer 104 is laminated on at least one surface of an insulating layer 102 having an insulating resin layer containing a base material. Can be used (the fiber substrate is omitted in the figure).
  • the laminated plate may be a single layer or may have a multilayer structure. That is, as a laminated board, you may be comprised only by the core layer, However, You may use what has the buildup layer formed on the core layer.
  • a laminated plate As such a laminated plate, a known one can be applied, for example, a laminate of a plurality of prepregs can be used.
  • this prepreg is not specifically limited, For example, it obtains by methods, such as impregnating base materials, such as glass cloth, with the resin composition containing a thermosetting resin, a hardening
  • a laminated board what superposed
  • the same material as that of the core layer may be used for the interlayer insulating layer of the buildup layer, but the base material or the resin composition may be different.
  • the insulating layer 102 corresponds to an insulating resin layer constituting a core layer or a build-up layer, and may be either a single layer or a multilayer structure.
  • An example using a laminated board provided with a buildup layer will be described later in a third embodiment.
  • a known resin used as an insulating material of a printed wiring board (hereinafter also referred to as an insulating resin composition) can be used.
  • thermosetting resins having good heat resistance and chemical resistance are mainly used.
  • the resin composition is not particularly limited, and is preferably a resin composition containing at least a thermosetting resin.
  • thermosetting resins examples include urea (urea) resins, melamine resins, maleimide compounds, polyurethane resins, unsaturated polyester resins, resins having a benzoxazine ring, bisallyl nadiimide compounds, vinyl benzyl resins, vinyl benzyl ether resins. Benzocyclobutene resin, cyanate resin, epoxy resin and the like.
  • the curable resin is preferably a combination having a glass transition temperature of 200 ° C. or higher.
  • cyanate resin including prepolymer of cyanate resin
  • maleimide compound it is preferable to use a benzocyclobutene resin or a resin having a benzoxazine ring.
  • combining epoxy resin and / or cyanate resin with a high amount of fillers has the advantage of excellent flame retardancy, heat resistance, impact resistance, high rigidity, and electrical properties (low dielectric constant, low dielectric loss tangent) There is.
  • the improvement in heat resistance is that the glass transition temperature becomes 200 ° C. or higher after the curing reaction of the thermosetting resin, the thermal decomposition temperature of the cured resin composition increases, and the reaction at 250 ° C. or higher. This is considered to result from the reduction of low molecular weight such as residues.
  • the improvement in flame retardancy is due to the fact that the benzene ring is easily carbonized (graphitized) and a carbonized portion is generated because of the high proportion of the benzene ring due to its structure due to the aromatic thermosetting resin. It is thought to be caused.
  • the resin composition may further contain a flame retardant as long as the effects of the present invention are not impaired, but a non-halogen flame retardant is preferred from the environmental aspect.
  • a flame retardant include an organic phosphorus flame retardant, an organic nitrogen-containing phosphorus compound, a nitrogen compound, a silicone flame retardant, and a metal hydroxide.
  • organophosphorus flame retardants include phosphine compounds such as HCA, HCA-HQ, and HCA-NQ manufactured by Sanko Co., Ltd., and phosphorus-containing benzoxazine compounds such as HFB-2006M manufactured by Showa Polymer Co., Ltd.
  • Phosphoric acid ester compounds such as PPQ manufactured by Clariant Co., Ltd., OP930 manufactured by Clariant Co., Ltd., PX200 manufactured by Daihachi Chemical Co., Ltd., phosphorus-containing epoxy resins such as FX289 and FX310 manufactured by Toto Kasei Co., Ltd. Examples thereof include phosphorus-containing phenoxy resins such as ERF001 manufactured by Co., Ltd.
  • organic nitrogen-containing phosphorus compounds include phosphate ester amide compounds such as SP670 and SP703 manufactured by Shikoku Kasei Kogyo Co., Ltd., SPB100 and SPE100 manufactured by Otsuka Chemical Co., Ltd., and FP-series manufactured by Fushimi Seisakusho Co., Ltd. And phosphazene compounds.
  • the metal hydroxide include magnesium hydroxide such as UD650 and UD653 manufactured by Ube Materials Co., Ltd., CL310 manufactured by Sumitomo Chemical Co., Ltd., aluminum hydroxide such as HP-350 manufactured by Showa Denko Co., Ltd., and the like. It is done.
  • epoxy resin used in the resin composition examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, bisphenol M type epoxy resin, bisphenol P type epoxy resin, and bisphenol Z.
  • aryl alkylene type epoxy resin Naphthol type epoxy resin, naphthalene diol type epoxy resin, bifunctional to tetrafunctional epoxy type naphthalene resin, naphthylene ether type epoxy Naphthalene-type epoxy resins such as Si resin, binaphthyl-type epoxy resin, naphthalene-aralkyl-type epoxy resin, anthracene-type epoxy resin, phenoxy-type epoxy resin, dicyclopentadiene-type epoxy resin, norbornene-type epoxy resin, adamantane-type epoxy resin, fluorene-type epoxy Resin etc. are mentioned.
  • epoxy resin one of these may be used alone, or two or more having different weight average molecular weights may be used in combination. Moreover, you may use together 1 type, or 2 or more types of these, and those prepolymers.
  • aryl alkylene type epoxy resins are particularly preferable. Thereby, moisture-absorbing solder heat resistance and flame retardance can be further improved.
  • the arylalkylene type epoxy resin refers to an epoxy resin having one or more arylalkylene groups in a repeating unit.
  • a xylylene type epoxy resin, a biphenyl dimethylene type epoxy resin, etc. are mentioned.
  • a biphenyl dimethylene type epoxy resin is preferable.
  • mold epoxy resin can be shown, for example by following General formula (1).
  • Examples of the biphenyl dimethylene type epoxy resin include NC-3000, NC-3000L, and NC-3000-FH manufactured by Nippon Kayaku Co., Ltd.
  • the average repeating unit n of the biphenyl dimethylene type epoxy resin represented by the general formula (1) is an arbitrary integer.
  • the lower limit of n is not particularly limited, but is preferably 1 or more, and particularly preferably 2 or more. When n is too small, the biphenyl dimethylene type epoxy resin is easily crystallized, and the solubility in a general-purpose solvent is relatively lowered, which may make handling difficult.
  • the upper limit of n is not particularly limited, but is preferably 10 or less, and particularly preferably 5 or less. If n is too large, the fluidity of the resin is lowered, which may cause molding defects.
  • epoxy resin other than the above a novolac type epoxy resin having a condensed ring aromatic hydrocarbon structure is preferable. Thereby, heat resistance and low thermal expansibility can further be improved.
  • the novolak type epoxy resin having a condensed ring aromatic hydrocarbon structure is a novolak type epoxy resin having a naphthalene, anthracene, phenanthrene, tetracene, chrysene, pyrene, triphenylene, and tetraphen or other condensed ring aromatic hydrocarbon structure.
  • the novolac type epoxy resin having a condensed ring aromatic hydrocarbon structure is excellent in low thermal expansion because a plurality of aromatic rings can be regularly arranged. Moreover, since the glass transition temperature is also high, it is excellent in heat resistance.
  • the molecular weight of the repeating structure is large, it is superior in flame retardancy as compared with conventional novolac type epoxy resins, and the weakness of the weakness of the cyanate resin can be improved by combining with the cyanate resin. Therefore, when used in combination with a cyanate resin, the glass transition temperature is further increased, so that the lead-free compatible mounting reliability is excellent.
  • the novolak-type epoxy resin having a condensed ring aromatic hydrocarbon structure is obtained by epoxidizing a novolac-type phenol resin synthesized from a phenol compound, a formaldehyde compound, and a condensed ring aromatic hydrocarbon compound.
  • the phenol compound is not particularly limited, but examples thereof include cresols such as phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2, 6-xylenol, 3,4-xylenol, xylenols such as 3,5-xylenol, trimethylphenols such as 2,3,5 trimethylphenol, ethyl such as o-ethylphenol, m-ethylphenol, p-ethylphenol Phenols, alkylphenols such as isopropylphenol, butylphenol, t-butylphenol, o-phenylphenol, m-phenylphenol, p-phenylphenol, catechol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphtha And naphthalenediols such as 2,7-dihydroxy
  • the aldehyde compound is not particularly limited, and examples thereof include formaldehyde, paraformaldehyde, trioxane, acetaldehyde, propionaldehyde, polyoxymethylene, chloral, hexamethylenetetramine, furfural, glyoxal, n-butyraldehyde, caproaldehyde, allylaldehyde, Examples include benzaldehyde, crotonaldehyde, acrolein, tetraoxymethylene, phenylacetaldehyde, o-tolualdehyde, salicylaldehyde, dihydroxybenzaldehyde, trihydroxybenzaldehyde, 4-hydroxy-3-methoxyaldehyde paraformaldehyde and the like.
  • the fused ring aromatic hydrocarbon compound is not particularly limited, but for example, naphthalene derivatives such as methoxynaphthalene and butoxynaphthalene, anthracene derivatives such as methoxyanthracene, phenanthrene derivatives such as methoxyphenanthrene, other tetracene derivatives, chrysene derivatives, pyrene derivatives, Derivatives such as triphenylene and tetraphen derivatives are mentioned.
  • the novolak-type epoxy resin having a condensed ring aromatic hydrocarbon structure is not particularly limited.
  • methoxynaphthalene-modified orthocresol novolak epoxy resin, butoxynaphthalene-modified meta (para) cresol novolak epoxy resin, and methoxynaphthalene-modified novolak epoxy resin Etc are preferable.
  • An example of the novolak type epoxy resin having a condensed ring aromatic hydrocarbon structure is HP-5000 manufactured by DIC Corporation.
  • Ar is a condensed ring aromatic hydrocarbon group
  • R may be the same or different from each other, and is a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, a halogen element, a phenyl group, It is a group selected from an aryl group such as a benzyl group and an organic group containing glycidyl ether, n, p and q are integers of 1 or more, and the values of p and q may be the same for each repeating unit, May be different.
  • (Ar in formula (2) is a structure represented by (Ar1) to (Ar4) in formula (3), and R in formula (3) may be the same or different from each other. It is often a group selected from a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms or a halogen element, an aryl group such as a phenyl group and a benzyl group, and an organic group including glycidyl ether.
  • naphthalene type epoxy resins such as naphthol type epoxy resin, naphthalene diol type epoxy resin, bifunctional or tetrafunctional epoxy type naphthalene resin, naphthylene ether type epoxy resin and the like are preferable.
  • heat resistance and low thermal expansibility can further be improved.
  • the naphthalene ring has a higher ⁇ - ⁇ stacking effect than the benzene ring, it is particularly excellent in low thermal expansion and low thermal shrinkage.
  • the polycyclic structure has a high rigidity effect and the glass transition temperature is particularly high, the change in heat shrinkage before and after reflow is small.
  • the naphthol type epoxy resin can be represented, for example, by the following general formula (4-1).
  • Examples of the naphthol type epoxy resin include ESN-375 manufactured by Nippon Steel Chemical Co., Ltd.
  • the naphthalene diol type epoxy resin can be represented by, for example, the following formula (4-2).
  • An example of the naphthalene diol type epoxy resin is HP-4032D manufactured by DIC Corporation.
  • the bifunctional to tetrafunctional epoxy type naphthalene resin can be represented by, for example, the following formulas (4-3) (4-4) (4-5).
  • Examples of the bifunctional to tetrafunctional epoxy type naphthalene resins include HP-4700 and HP-4770 manufactured by DIC Corporation.
  • the naphthylene ether type epoxy resin can be represented by, for example, the following general formula (4-6). Examples of the naphthylene ether type epoxy resin include HP-6000 manufactured by DIC Corporation.
  • N represents an average number of 1 to 6, and R represents a glycidyl group or a hydrocarbon group having 1 to 10 carbon atoms.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aralkyl group, a naphthalene group, or a glycidyl ether group-containing naphthalene group.
  • O and m are each an integer of 0 to 2, and at least one of o and m is 1 or more.
  • the cyanate resin used in the resin composition can be obtained, for example, by reacting a cyanogen halide compound with phenols.
  • the cyanate resin include novolak-type cyanate resins such as phenol novolak-type cyanate resins and cresol novolak-type cyanate resins, naphthol aralkyl-type cyanate resins, dicyclopentadiene-type cyanate resins, biphenyl-type cyanate resins, and bisphenol A-type cyanate resins.
  • bisphenol type cyanate resins such as bisphenol AD type cyanate resin and tetramethyl bisphenol F type cyanate resin.
  • the resin composition preferably contains 10% by weight or more of this cyanate resin in the total solid content of the resin composition.
  • the heat resistance (glass transition temperature, thermal decomposition temperature) of a prepreg can be improved.
  • the thermal expansion coefficient of the prepreg can be reduced.
  • the stress strain of the multilayer printed wiring can be reduced.
  • the connection reliability can be greatly improved.
  • a novolak-type cyanate resin represented by the following formula (5) is preferable.
  • it is preferably used in combination with a novolak-type cyanate resin represented by the formula (5) of 200 to 1,300 (hereinafter, “to” represents that it includes an upper limit value and a lower limit value unless otherwise specified).
  • the weight average molecular weight is a value measured by a gel-permeation chromatography method in terms of polystyrene.
  • n represents an integer of 0 or more.
  • the cyanate resin represented by following General formula (6) is also used suitably.
  • Cyanate resins represented by the following general formula (6) include naphthols such as ⁇ -naphthol and ⁇ -naphthol, p-xylylene glycol, ⁇ , ⁇ '-dimethoxy-p-xylene, 1,4-di (2- It is obtained by condensing naphthol aralkyl resin obtained by reaction with hydroxy-2-propyl) benzene and cyanic acid.
  • n is 1 or more, but is more preferably 10 or less.
  • n 10 or less
  • the resin viscosity is not high, the impregnation property to the base material is good, and the deterioration of the performance as a laminate can be suppressed.
  • intramolecular polymerization is unlikely to occur at the time of synthesis, and the liquid separation property at the time of washing with water is improved, so that a decrease in yield can be prevented.
  • R represents a hydrogen atom or a methyl group
  • R may be the same or different
  • n represents an integer of 1 or more.
  • a dicyclopentadiene type cyanate resin represented by the following general formula (7) is also preferably used.
  • n in the following general formula (7) is more preferably 0 or more and 8 or less.
  • n is 8 or less, the resin viscosity is not high, the impregnation property to the base material is good, and the deterioration of the performance as a laminated board can be prevented.
  • a dicyclopentadiene type cyanate resin it is excellent in low hygroscopicity and chemical resistance.
  • n an integer of 0 to 8.
  • the resin composition may further contain a curing accelerator.
  • a curing accelerator for phenol resin, epoxy resin, or cyanate resin can be used.
  • the phenol resin is not particularly limited.
  • resol type phenol resins such as oil-modified resol phenol resins modified with the above.
  • a phenol novolak or a cresol novolak resin is preferable.
  • biphenyl aralkyl-modified phenol novolac resin is preferable from the viewpoint of moisture absorption solder heat resistance.
  • One of these can be used alone, or two or more having different weight average molecular weights can be used in combination, or one or two or more of these prepolymers can be used in combination.
  • the curing accelerator is not particularly limited.
  • organic metals such as zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), and trisacetylacetonate cobalt (III) Salts
  • tertiary amines such as triethylamine, tributylamine, diazabicyclo [2,2,2] octane, 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-ethyl-4-ethylimidazole 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 2-phenyl- 4-
  • the thermosetting resin may contain a maleimide compound from the viewpoint of heat resistance.
  • the maleimide compound is not particularly limited as long as it is a compound having one or more maleimide groups in one molecule. Specific examples thereof include N-phenylmaleimide, N-hydroxyphenylmaleimide, bis (4-maleimidophenyl) methane, 2,2-bis ⁇ 4- (4-maleimidophenoxy) -phenyl ⁇ propane, bis (3,5 -Dimethyl-4-maleimidophenyl) methane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, bis (3,5-diethyl-4-maleimidophenyl) methane, polyphenylmethanemaleimide, these maleimide compounds Or a prepolymer of a maleimide compound and an amine compound.
  • the thermosetting resin may contain a phenoxy resin, a polyvinyl alcohol resin, a polyimide, a polyamide, a polyamideimide, a polyethersulfone resin, or a polyphenylene ether resin from the viewpoint of adhesion to the metal foil. Good.
  • the phenoxy resin examples include a phenoxy resin having a bisphenol skeleton, a phenoxy resin having a naphthalene skeleton, and a phenoxy resin having a biphenyl skeleton.
  • a phenoxy resin having a structure having a plurality of these skeletons can also be used.
  • the glass transition temperature of the phenoxy resin can be increased due to the rigidity of the biphenyl skeleton, and the adhesion between the phenoxy resin and the metal can be improved due to the presence of the bisphenol S skeleton.
  • the heat resistance of the insulating layer 102 can be improved, and the adhesion of the wiring portion (conductive circuit 118) to the insulating layer 102 can be improved when a multilayer substrate is manufactured. It is also preferable to use a phenoxy resin having a bisphenol A skeleton and a bisphenol F skeleton as the phenoxy resin. Thereby, the adhesiveness to the insulating layer 102 of a wiring part can further be improved at the time of manufacture of a multilayer substrate.
  • phenoxy resins examples include FX280 and FX293 manufactured by Toto Kasei Co., Ltd., YX8100, YX6954, YL6974, YL7482, YL7553, YL6793, YL7213, and YL7290 manufactured by Japan Epoxy Resin Co., Ltd.
  • the molecular weight of the phenoxy resin is not particularly limited, but the weight average molecular weight is preferably 5,000 to 70,000, and more preferably 10,000 to 60,000.
  • its content is not particularly limited, but it is preferably 1 to 40% by weight, more preferably 5 to 30% by weight based on the entire resin composition.
  • Examples of commercially available polyvinyl alcohol resins include Denka Butylal 4000-2, 5000-A, 6000-C and 6000-EP manufactured by Denki Kagaku Kogyo Co., Ltd., S-Rec BH Series, BX Series, KS manufactured by Sekisui Chemical Co., Ltd. Series, BL series, BM series and the like. Particularly preferred are those having a glass transition temperature of 80 ° C. or higher.
  • polyimide, polyamide, and polyamideimide Commercially available products of polyimide, polyamide, and polyamideimide include “Viromax HR11NN (registered trademark)” and “HR-16NN” and “HR15ET” manufactured by Toyobo Co., Ltd., and polyamide imide “KS” manufactured by Hitachi Chemical Co., Ltd. -9300 "and the like.
  • “Neoprim C-1210” manufactured by Mitsubishi Gas Chemical Company, Inc. soluble polyimide “Rika Coat SN20 (registered trademark)” and “Rika Coat PN20 (registered trademark)” manufactured by Shin Nippon Rika Co., Ltd., GE Plastics Co., Ltd.
  • polyethersulfone resin As a commercial item of polyethersulfone resin, a well-known thing can be used, for example, PES4100P, PES4800P, PES5003P, and PES5200P by Sumitomo Chemical Co., Ltd. can be mentioned.
  • polyphenylene ether resins examples include poly (2,6-dimethyl-1,4-phenylene) oxide, poly (2,6-diethyl-1,4-phenylene) oxide, and poly (2-methyl-6-ethyl-). 1,4-phenylene) oxide, poly (2-methyl-6-propyl-1,4-phenylene) oxide, poly (2,6-dipropyl-1,4-phenylene) oxide, poly (2-ethyl-6- And propyl-1,4-phenylene) oxide.
  • Examples of commercially available products include Japanese G.P. E.
  • reactive oligophenylene oxide having a terminal modified with a functional group is preferable.
  • compatibility with a thermosetting resin improves, and since the three-dimensional crosslinked structure between polymers can be formed, it is excellent in mechanical strength.
  • 2,2 ′, 3,3 ′, 5,5′-hexamethylbiphenyl-4,4′-diol-2,6-dimethylphenol polycondensate described in JP-A-2006-28111 and A reaction product with chloromethylstyrene is mentioned.
  • Such reactive oligophenylene oxide can be produced by a known method. Commercial products can also be used.
  • the weight average molecular weight of the reactive oligophenylene oxide is preferably 2,000 to 20,000, and more preferably 4,000 to 15,000.
  • the weight average molecular weight of reactive oligophenylene oxide exceeds 20,000, it becomes difficult to dissolve in a volatile solvent.
  • the weight average molecular weight is less than 2,000, the crosslink density becomes too high, which adversely affects the elastic modulus and flexibility of the cured product.
  • the amount of the thermosetting resin in the resin composition used in the present embodiment is not particularly limited as long as it is appropriately adjusted according to the purpose, but in the total solid content of the resin composition, the thermosetting resin is It is preferably 10 to 90% by weight, more preferably 20 to 70% by weight, and still more preferably 25 to 50% by weight.
  • the epoxy resin is preferably 5 to 50% by weight in the total solid content of the resin composition. 5 to 25% by weight is preferred.
  • the total solid content of the resin composition is preferably 5 to 50% by weight of the cyanate resin, and more preferably 10 to 25% by weight of the cyanate resin.
  • the resin composition contains an inorganic filler.
  • magnesium hydroxide, aluminum hydroxide, boehmite, silica, fused silica, talc, calcined talc, and alumina are preferable.
  • Silica is particularly preferable in terms of low thermal expansion and insulation reliability, and spherical fused silica is more preferable.
  • aluminum hydroxide is preferable in terms of flame resistance.
  • the quantity of an inorganic filler can be increased in the said resin composition.
  • the inorganic filler has a high concentration in the resin composition, the drill wearability is deteriorated, but when the inorganic filler is boehmite, the drill wearability is preferable.
  • the particle diameter of the inorganic filler is not particularly limited, but an inorganic filler having a monodispersed average particle diameter can be used, or an inorganic filler having a polydispersed average particle diameter can be used. Furthermore, one or two or more inorganic fillers having an average particle size of monodisperse and / or polydisperse may be used in combination.
  • the average particle size of the inorganic filler is not particularly limited, but is preferably 0.1 ⁇ m to 5.0 ⁇ m, and particularly preferably 0.1 ⁇ m to 3.0 ⁇ m. If the particle size of the inorganic filler is less than the lower limit, the viscosity of the resin composition becomes high, which may affect workability during prepreg production.
  • the average particle diameter can be measured using a laser diffraction / scattering particle size distribution measuring device (manufactured by Shimadzu Corporation, general equipment such as SALD-7000).
  • the content of the inorganic filler is not particularly limited, but is preferably 10% by weight to 90% by weight, more preferably 30% by weight to 80% by weight, and even more 50% by weight in the total solid content of the resin composition. It is preferable that the amount be ⁇ 75% by weight. In the case where the resin composition contains a cyanate resin and / or a prepolymer thereof, the content of the inorganic filler is preferably 50 to 75% by weight in the total solid content of the resin composition. If the inorganic filler content exceeds the above upper limit, the fluidity of the resin composition may be extremely poor, which may be undesirable, and if it is less than the lower limit, the strength of the insulating layer made of the resin composition is not sufficient, It may not be preferable.
  • the resin composition used in the present embodiment can also contain a rubber component.
  • the rubber particles that can be used in the present embodiment include core-shell type rubber particles and crosslinked acrylonitrile butadiene rubber particles. Cross-linked styrene butadiene rubber particles, acrylic rubber particles, silicone particles and the like.
  • the core-shell type rubber particles are rubber particles having a core layer and a shell layer.
  • a two-layer structure in which an outer shell layer is formed of a glassy polymer and an inner core layer is formed of a rubbery polymer or Examples include a three-layer structure in which the outer shell layer is made of a glassy polymer, the intermediate layer is made of a rubbery polymer, and the core layer is made of a glassy polymer.
  • the glassy polymer layer is made of, for example, a polymer of methyl methacrylate, and the rubbery polymer layer is made of, for example, a butyl acrylate polymer (butyl rubber).
  • core-shell type rubber particles include Staphyloid AC3832, AC3816N (trade name, manufactured by Ganz Kasei Co., Ltd.), and Metabrene KW-4426 (trade name, manufactured by Mitsubishi Rayon Co., Ltd.).
  • NBR crosslinked acrylonitrile butadiene rubber
  • XER-91 average particle size 0.5 ⁇ m, manufactured by JSR Corporation).
  • SBR crosslinked styrene butadiene rubber
  • acrylic rubber particles include methabrene W300A (average particle size 0.1 ⁇ m), W450A (average particle size 0.2 ⁇ m) (manufactured by Mitsubishi Rayon Co., Ltd.), and the like.
  • the silicone particles are not particularly limited as long as they are rubber elastic fine particles formed of organopolysiloxane.
  • Silicone rubber fine particles include KMP-605, KMP-600, KMP-597, KMP-594 (manufactured by Shin-Etsu Chemical Co., Ltd.), Trefil E-500, Trefil E-600 (manufactured by Toray Dow Corning Co., Ltd.), etc. Commercial products can be used.
  • the above resin composition may further contain a coupling agent.
  • the coupling agent improves the wettability of the interface between the thermosetting resin and the inorganic filler, thereby uniformly fixing the resin and the inorganic filler to the base material, and heat resistance, particularly solder heat resistance after moisture absorption. In order to improve the properties.
  • the said coupling agent is not specifically limited, For example, an epoxy silane coupling agent, a cationic silane coupling agent, an aminosilane coupling agent, a titanate coupling agent, a silicone oil type coupling agent etc. are mentioned. Thereby, the wettability with the interface of an inorganic filler can be made high, and thereby heat resistance can be improved more.
  • the amount of the coupling agent to be added is not particularly limited, but is preferably 0.05 to 3 parts by weight, particularly preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the inorganic filler. If the content is less than the lower limit, the inorganic filler cannot be sufficiently coated, and thus the effect of improving the heat resistance may be reduced. If the content exceeds the upper limit, the reaction is affected, and the bending strength is reduced. There is a case.
  • the resin composition used in the present embodiment includes an antifoaming agent, a leveling agent, an ultraviolet absorber, a foaming agent, an antioxidant, a flame retardant, a flame retardant aid such as silicone powder, and an ion scavenger as necessary. You may add additives other than the said components, such as.
  • the above resin composition preferably contains at least an epoxy resin, a cyanate resin, and an inorganic filler, from the viewpoint of easily realizing low linear expansion, high rigidity, and high heat resistance of the prepreg.
  • the solid content of the resin composition preferably contains 5 to 50% by weight of epoxy resin, 5 to 50% by weight of cyanate resin, and 10 to 90% by weight of inorganic filler, and further contains 5 to 50% of epoxy resin.
  • it contains ⁇ 25 wt%, cyanate resin 10 ⁇ 25 wt%, and inorganic filler 30 ⁇ 80 wt%.
  • the prepreg used in the present embodiment is obtained by impregnating or coating a base material with a varnish of a resin composition.
  • a base material well-known ones used for various types of laminates for electrical insulating materials are used. Can be used.
  • the material of the substrate include inorganic fibers such as E glass, D glass, T glass, S glass, and Q glass, organic fibers such as polyimide, polyester, and tetrafluoroethylene, and mixtures thereof.
  • These base materials have shapes such as woven fabric, non-woven fabric, low-ink, chopped strand mat, surfacing mat, etc., and the material and shape are selected depending on the intended use and performance of the molded product, and can be used alone or as required.
  • the thickness of the base material is not particularly limited, but usually about 0.01 to 0.5 mm is used, and the surface is treated with a silane coupling agent or the like, or mechanically opened and flattened. These are suitable in terms of heat resistance, moisture resistance and processability.
  • the prepreg is usually impregnated or coated with a resin so that the resin content is 20 to 90% by weight after drying, and is heated and dried at a temperature of 120 to 220 ° C. for 1 to 20 minutes. A semi-cured state (B stage state) can be obtained.
  • a laminated sheet can be obtained by laminating 1 to 20 sheets of this prepreg and laminating them by heating and pressing in a configuration in which an ultrathin copper foil with a carrier foil is disposed on both sides thereof.
  • the thickness of the plurality of prepreg layers varies depending on the application, but a thickness of 0.03 to 2 mm is usually preferable.
  • a laminating method a normal laminating method can be applied. For example, a multistage press, a multistage vacuum press, continuous molding, an autoclave molding machine or the like is used.
  • Lamination can be performed under conditions of 0.1 to 5 hours, or lamination can be performed under conditions of lamination conditions of 50 to 150 ° C., 0.1 to 5 MPa, and vacuum pressure of 1.0 to 760 mmHg using a vacuum laminating apparatus.
  • the copper foil layer 104 used in the present embodiment has a ratio of the peak intensity of the plane orientation (200) measured by the XRD thin film method on the upper surface 20 (the surface opposite to the insulating layer 102 side). However, it is 26% or less, preferably 25% or less, more preferably 24% with respect to the sum of the peak intensities of the plane orientations (111), (200), (220) and (311). By making the ratio of the plane orientation (200) within the above range, the side etching characteristics of the copper foil layer 104 can be improved.
  • the ratio of the sum of the peak intensities of the plane orientations (200) and (220) on the upper surface 20 of the copper foil layer 104 is the sum of the peak intensities of the plane orientations (111), (200), (220) and (311). On the other hand, it is preferably 32% or less, more preferably 31% or less, and further preferably 30% or less.
  • a copper foil having a thickness of about 30 ⁇ m is usually formed on the electrode by plating.
  • the copper foil sometimes takes over the orientation of the lower metal layer (for example, electrode), and it is difficult to produce a copper foil having a desired crystal plane.
  • the film thickness of the copper foil is thick, for example, when it is 30 ⁇ m or more, the crystal grains tend to become coarser in the thickness direction, and the ratio of the plane orientation (220) on the upper surface is corresponding to this. Can be expensive.
  • a release layer is formed on the electrode, and the copper foil layer 104 is formed on the release layer. For this reason, it can suppress that the copper foil layer 104 takes over the orientation of the lower layer electrode.
  • the crystal plane of the copper foil layer 104 constitutes a layer, so that the orientation on one surface can be inherited to the other surface. It becomes possible. Thereby, the copper foil layer 104 having a desired orientation can be formed.
  • the ratio of the plane orientation (200) excellent in etching characteristics can be set to a predetermined value or less on the upper surface of the copper foil layer 104, the side etching of the copper foil layer 104 in the process described later is performed. Characteristics can be improved. As a result, an unprecedented good wiring shape can be realized, and as a result, a printed wiring board excellent in yield can be obtained. A detailed method for forming the copper foil layer 104 will be described later.
  • the film thickness of the copper foil layer 104 is not particularly limited, but is preferably 0.1 ⁇ m to 5 ⁇ m, more preferably 0.5 ⁇ m to 3 ⁇ m, and particularly preferably 0.5 ⁇ m to 2 ⁇ m. It is as follows. By setting the film thickness of the copper foil layer 104 within such a range, the grain sizes of the crystal grains of the copper foil layer 104 can be made uniform. Thereby, it can suppress that the orientation changes in the film thickness direction of the copper foil layer 104.
  • the orientation on the upper surface 20 of the copper foil layer 104 can be controlled.
  • the ratio of crystal planes ie, the orientation
  • the same means that a slight difference in the manufacturing process is allowed.
  • the ratio of the plane orientation (200) on the lower surface 22 of the copper foil layer 104 is ⁇ 5 of the ratio of the plane orientation (200) on the upper surface 20. Means within%. Therefore, the ratio of the plane orientation of the lower surface 22 of the copper foil layer 104 measured by the XRD thin film method can be said to be the ratio of the upper surface 20 of the copper foil layer 104.
  • the value of the copper foil layer (copper foil with peelable carrier foil) before heat-press molding is maintained.
  • the ratio of the plane orientation (200) in the upper surface 20 of the heat-pressed copper foil layer 104 is 26% or less, preferably 24% or less, more preferably 23% or less
  • the ratio of the plane orientation (200) and the plane orientation (220) is preferably 32% or less, more preferably 31% or less, and even more preferably 30% or less.
  • the conditions for the heat and pressure molding here are, for example, 1 hour at 200 ° C. and a pressure of 3 MPa.
  • the reason why the ratio is maintained in this way is not clear, but it is presumed that the average grain size of the crystal grains in the copper foil layer 104 is small and that the average grain size is uniform to a certain extent.
  • the ratio of the plane orientation (200) on the upper surface of the copper foil layer 104 that is, the contact surface with the metal layer 116 (for example, the electroless plating layer 110) also before and after the etching process of the copper foil layer 104 described later, It can be said that the ratio of the plane orientation (200) and the plane orientation (220) is the same.
  • the copper foil layer 104 of the present embodiment preferably has crystal grains having an average long side length of 2 ⁇ m or less.
  • the shape of the crystal grains in the copper foil layer 104 is, for example, a columnar shape or a triangular pyramid shape.
  • the maximum length of the crystal grains of the copper foil layer 104 is a long side in a cross-sectional view.
  • the average length of this long side is about 10,000 to 10,000 times using FIB-SIM (Focused Ion Beam Scanning Ion Microscope) or FIB-SEM (Focused Ion Beam Scanning Electron Microscope).
  • An average is calculated from cross-sectional images of 10 ⁇ m and 10 ⁇ m in width, and is calculated as an average value of a total of three visual field images. Thereby, the etching characteristics of the copper foil layer 104 are improved.
  • the area ratio occupied by crystal grains having an average long side length of 2 ⁇ m or less in a cross-sectional view is preferably 80% or more, more preferably 85% or more. More preferably, it is 90% or more.
  • This area ratio is calculated as an average value of a total of three fields of view by performing image processing on the field of view of the cross-sectional image as described above. Thereby, the etching characteristics of the copper foil layer 104 are improved.
  • the ultrathin copper foil with a carrier foil (copper foil layer 104) used in the present embodiment is said to be a bumpy electrodeposit layer (yake plating) on the roughened surface of the ultrathin copper foil. 9-1995096), roughening surface treatment by oxidation treatment, reduction treatment, etching or the like. Therefore, the surface roughness of the roughened surface of the ultrathin copper foil used in the present embodiment preferably has an upper limit of 10-point average roughness (Rz) shown in JIS B0601 of 5.0 ⁇ m or less. The lower limit is not particularly limited, but is preferably 0.1 ⁇ m or more.
  • the arithmetic average roughness (Ra) is preferably 1.0 ⁇ m or less, and more preferably 0.5 ⁇ m or less. It should be noted that the copper foil layer 104 is formed on the bulk portion and the bump portion formed on one surface of the bulk portion (hereinafter referred to as a rough foot portion) by forming a hump-shaped electrodeposit layer or roughening surface treatment. Also called).
  • the copper foil layer 104 copper containing an additive metal component such as nickel or aluminum in addition to copper foil made of copper (excluding contaminants inevitably mixed in the manufacturing process) is used.
  • Foil may be used (in this case, the copper content is not particularly limited, but is preferably 90% by weight or more, more preferably 95% by weight or more based on the total weight of all metal components constituting the copper foil layer 104). It is preferably 99% by weight or more, and the additive metal component may be used alone or in combination of two or more.
  • a metal foil such as a nickel foil or an aluminum foil may be used instead of the copper foil layer 104.
  • the difference in Vickers hardness of the copper foil layer 104 before and after heat treatment at 230 ° C. for 1 hour is preferably 0 Hv or more and 50 Hv or less, more preferably 0 Hv or more and 30 Hv or less.
  • the recrystallization of the copper foil layer 104 proceeds by heating and the crystal grain size is increased, thereby suppressing the etching rate from being slowed or after etching. It is possible to suppress the accumulation of distortion of the fine circuit.
  • the copper foil layer 104 has a Vickers hardness after heat treatment at 230 ° C. for 1 hour, preferably from 180 Hv to 240 Hv, more preferably from 185 Hv to 235 Hv.
  • a Vickers hardness after heating By setting the Vickers hardness after heating to 180 Hv or more, it is possible to suppress recrystallization of the thin copper layer (copper foil layer 104) due to heating and to increase the crystal grain size, or to reduce circuit linearity after etching. This can be suppressed.
  • by setting the Vickers hardness after heating to 240 Hv or less it is possible to suppress the thin copper layer from becoming too hard and becoming brittle. Thereby, it can suppress that a crack generate
  • the Vickers altitude can be measured by the following method. That is, the measurement of Vickers hardness is performed at 23 ° C. using a micro hardness meter (model number MVK-2H) manufactured by Akashi Corporation according to JIS Z 2244 according to the following procedure.
  • the ultrathin copper foil with a support formed up to a thin copper layer is left in an oven (nitrogen atmosphere) heated to 230 ° C. for 1 hour, and then cut into 10 ⁇ 10 mm squares.
  • An indentation is made on the cut sample under conditions of a load speed of 3 ⁇ m / second, a test load of 5 gf, and a holding time of 15 seconds, and Vickers hardness is calculated from the measurement result of the indentation.
  • pieces be the value of the Vickers hardness of this Embodiment.
  • the etching rate of the copper foil layer 104 is 0.68 ⁇ m / min or more and 1.25 ⁇ m / min or less, more preferably 0.68 ⁇ m / min or more and 1.24 ⁇ m / min or less, Preferably they are 0.69 micrometer / min or more and 1.23 micrometer / min or less.
  • the etching rate of the copper foil layer 104 of the present embodiment indicates only the etching rate of the bulk portion.
  • the above-mentioned etching rate of the copper foil layer 104 is 60 g of 95% sulfuric acid, 1000 cc of pure water, and 20 cc of 34.5% hydrogen peroxide solution, and the sulfuric acid / hydrogen peroxide solution has a liquid temperature of 30 ° C. ⁇ 1 ° C. In addition, it is specified under etching conditions for immersing the laminate.
  • the etching rate of the copper foil layer 104 by setting the etching rate of the copper foil layer 104 to the lower limit value or more, the etching residue of the copper foil layer 104 can be reduced and the wiring shape can be improved.
  • the etching rate of the copper foil by setting the etching rate of the copper foil to the upper limit value or less, it is possible to prevent a notch from being formed in the side wall of the copper foil layer 104 and to reduce the adhesion between the wiring and the insulating layer.
  • etching up to the roughened foot portion of the copper foil layer 104 it is possible to suppress the occurrence of abnormal constriction in the bulk portion of the copper foil layer 104.
  • the etching rate of the copper foil can be measured by the following method. 1.
  • the substrate (copper-clad laminate 100) from which the carrier foil (carrier foil layer 106) has been removed and the ultrathin copper foil is laminated on both sides is cut into 40 mm ⁇ 80 mm to obtain sample pieces. Read the sample piece with a caliper to 2 digits after the decimal point, and calculate the area of the sample piece. 2.
  • the sample piece is dried at 80 ° C. for 1 minute ⁇ 3 times in a horizontal drying line. 3.
  • the initial weight W0 of the sample piece is measured (however, including the substrate weight). 4). Adjust the etchant.
  • 4-1 Weigh 60 g of 95% sulfuric acid (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) and place in a 1 L beaker.
  • 4-2 Put pure water into a beaker to make a total of 1000cc.
  • 4-3 Stir for 3 minutes at 30 ⁇ 1 ° C. with a magnetic stirrer.
  • 4-4 Weigh 20 cc of 34.5% hydrogen peroxide solution (Kanto Chemical Co., Ltd., deer grade 1) and place in a beaker. 5.
  • Immerse in the etching solution liquid temperature 30 ⁇ 1 ° C., stirring condition magnetic stirrer, 250 rpm). 6).
  • the processed weight W1 is measured every 30 seconds until the bulk layer of the ultrathin foil is completely etched (including the substrate weight). 7.
  • the slope K is calculated by the least square method.
  • Etching rate ( ⁇ m / min) K (g / sec ⁇ m 2 ) ⁇ 8.92 (copper specific gravity g / cm 3 ) ⁇ 60 (sec / min)
  • the copper foil layer 104 (especially, by reducing the crystal grain size of the copper foil layer 104, reducing the change in Vickers hardness after heating, increasing the etching rate of the roughened foot portion, etc.) ,
  • the etching rate of the bulk portion can be increased.
  • the etching rate of the roughened foot portion is usually slower than that of the bulk portion, but can be increased by reducing the electrolytic density, for example.
  • the method for producing the copper foil used in the present embodiment is not particularly limited.
  • An inorganic compound or organic compound layer is formed, and a copper foil is formed on the release layer by plating.
  • the conditions for the plating treatment for example, when a copper sulfate bath is used, sulfuric acid 50 to 100 g / L, copper 30 to 100 g / L, liquid temperature 20 ° C.
  • the peelable type metal foil is a metal foil having a carrier and is a metal foil that can be peeled off by the carrier.
  • the copper foil is formed on the release layer by, for example, cathodic electrolysis using a copper sulfate plating bath containing 15 to 35 ppm of gelatin having an average molecular weight of 5000 or less as an additive. it can.
  • the formation of the copper foil is performed by using the carrier foil on which the release layer is formed as a cathode, performing electrolytic treatment using the copper sulfate plating bath, and copper plating on the release layer.
  • a method for forming a copper foil it is possible to form a copper foil that has an appropriate mechanical strength even after high-temperature heating, is excellent in etching properties, and is excellent in handling properties. Such an effect results from the fact that the crystals constituting the copper foil can be made finer by adding gelatin.
  • the average molecular weight of gelatin is preferably 500 to 5000, and more preferably 1000 to 5000.
  • the average molecular weight of gelatin By setting the average molecular weight of gelatin to 500 or more, it is possible to suppress the gelatin added to the copper sulfate plating bath from being decomposed in an acidic solution and decomposed into an organic compound such as a low molecular weight amino acid. Thereby, it can suppress that the effect of preventing recrystallization by gelatin being taken in into a crystal grain boundary at the time of plating falls.
  • the gelatin concentration in the copper sulfate plating bath is preferably 15 to 35 ppm.
  • the gelatin concentration is 15 ppm or more, the effect of suppressing recrystallization by heating can be sufficiently obtained. For this reason, it becomes possible to maintain a fine crystal state after heating.
  • the gelatin concentration is 35 ppm or less, it is possible to suppress an increase in internal stress of the copper foil formed by plating. Thereby, it can suppress that an ultra-thin copper foil with a carrier foil curls, and a malfunction generate
  • the copper sulfate plating bath for example, a sulfuric acid copper sulfate plating bath containing copper sulfate pentahydrate, sulfuric acid, gelatin and chlorine is preferably used.
  • the concentration of copper sulfate pentahydrate in the copper sulfate plating bath is preferably 50 g / L to 300 g / L, more preferably 100 g / L to 200 g / L.
  • the concentration of sulfuric acid is preferably 40 g / L to 160 g / L, more preferably 80 g / L to 120 g / L.
  • the concentration of gelatin is as described above.
  • the concentration of chlorine is preferably 1 to 20 ppm, more preferably 3 to 10 ppm.
  • the solvent for the plating bath is usually water.
  • the temperature of the plating bath is preferably 20 to 60 ° C., more preferably 30 to 50 ° C.
  • the current density during the electrolytic treatment is preferably 1 to 15 A / dm 2 , more preferably 2 to 10 A / dm 2 .
  • strike plating using a so-called good plating bath can be used before the electrolytic treatment using the copper sulfate plating bath to prevent the generation of pinholes.
  • the plating bath used for strike plating include a copper pyrophosphate plating bath, a copper citrate plating bath, a copper citrate nickel plating bath, and the like.
  • the copper pyrophosphate plating bath for example, a plating bath containing copper pyrophosphate and potassium pyrophosphate is suitable.
  • the concentration of copper pyrophosphate in the copper pyrophosphate plating bath is preferably 60 g / L to 110 g / L, more preferably 70 g / L to 90 g / L.
  • the concentration of potassium pyrophosphate is preferably 240 g / L to 470 g / L, more preferably 300 g / L to 400 g / L.
  • the solvent for the plating bath is usually water.
  • the pH of the plating bath is preferably 8.0 to 9.0, more preferably 8.2 to 8.8.
  • ammonia water or the like may be added (hereinafter the same).
  • the temperature of the plating bath is preferably 20 to 60 ° C., more preferably 30 to 50 ° C.
  • the current density during the electrolytic treatment is preferably 0.5 to 10 A / dm 2 , more preferably 1 to 7 A / dm 2 .
  • the electrolytic treatment time is preferably 5 to 40 seconds, more preferably 10 to 30 seconds.
  • a plating bath containing copper sulfate pentahydrate and trisodium citrate dihydrate is suitable.
  • the concentration of copper sulfate pentahydrate in the copper citrate plating bath is preferably 10 g / L to 50 g / L, more preferably 20 g / L to 40 g / L.
  • the concentration of trisodium citrate dihydrate is preferably 20 g / L to 60 g / L, more preferably 30 g / L to 50 g / L.
  • the solvent for the plating bath is usually water.
  • the pH of the plating bath is preferably 5.5 to 7.5, more preferably 6.0 to 7.0.
  • the temperature of the plating bath is preferably 20 to 60 ° C., more preferably 30 to 50 ° C.
  • the current density during the electrolytic treatment is preferably 0.5 to 8 A / dm 2 , more preferably 1 to 4 A / dm 2 .
  • the electrolytic treatment time is preferably 5 to 40 seconds, more preferably 10 to 30 seconds.
  • the copper nickel citrate plating bath for example, a plating bath containing copper sulfate pentahydrate, nickel sulfate hexahydrate and trisodium citrate dihydrate is suitable.
  • the concentration of copper sulfate pentahydrate in the copper nickel citrate plating bath is preferably 10 g / L to 50 g / L, more preferably 20 g / L to 40 g / L.
  • the concentration of nickel sulfate hexahydrate is preferably 1 g / L to 10 g / L, more preferably 3 g / L to 8 g / L.
  • the concentration of trisodium citrate dihydrate is preferably 20 g / L to 60 g / L, more preferably 30 g / L to 50 g / L.
  • the solvent for the plating bath is usually water.
  • the pH of the plating bath is preferably 5.5 to 7.5, more preferably 6.0 to 7.0.
  • the temperature of the plating bath is preferably 20 to 60 ° C., more preferably 30 to 50 ° C.
  • the current density during the electrolytic treatment is preferably 0.5 to 8 A / dm 2 , more preferably 1 to 4 A / dm 2 .
  • the electrolytic treatment time is preferably 5 to 40 seconds, more preferably 10 to 30 seconds.
  • the release layer is an inorganic compound or organic compound layer such as a metal, and a known layer can be used as long as it can be peeled off even when subjected to heat treatment at 100 to 300 ° C. during lamination.
  • a metal oxide for example, zinc, chromium, nickel, copper, molybdenum, an alloy system, or a mixture of a metal and a metal compound is used.
  • an organic compound it is preferable to use what consists of 1 type, or 2 or more types selected from a nitrogen-containing organic compound, a sulfur-containing organic compound, and carboxylic acid.
  • the nitrogen-containing organic compound is preferably a nitrogen-containing organic compound having a substituent.
  • BTA 1,2,3-benzotriazole
  • CBTA carboxybenzotriazole
  • N ′ N '-Bis (benzotriazolylmethyl) urea
  • BTD-U 1H-1,2,4-triazole
  • TA 3-amino-1H— 1,2,4-triazole
  • ATA 3-amino-1H— 1,2,4-triazole
  • sulfur-containing organic compounds examples include mercaptobenzothiazole (hereinafter referred to as “MBT”), thiocyanuric acid (hereinafter referred to as “TCA”), 2-benzimidazolethiol (hereinafter referred to as “BIT”), and the like. It is preferable to use it.
  • carboxylic acid it is particularly preferable to use a monocarboxylic acid, and it is particularly preferable to use oleic acid, linoleic acid, linolenic acid, or the like.
  • a desired orientation is realized on the upper surface of the copper foil layer 104 of the present embodiment by appropriately controlling the manufacturing method such as increasing the electrolytic density or reducing the film thickness. be able to.
  • the lower surface 22 (the surface in contact with one surface of the insulating layer 102) of the copper foil layer 104 used in this embodiment is used to make the adhesion between the copper foil layer 104 and the insulating layer 102 at a practical level or higher.
  • the surface treatment may be performed. Examples of the roughening treatment for the metal foil used for the copper foil layer 104 include rust prevention treatment, chromate treatment, silane coupling treatment, or a combination thereof. Any surface treatment means can be appropriately selected in accordance with the resin material constituting the insulating layer 102.
  • the rust prevention treatment is performed by forming a thin film on a metal foil by sputtering, electroplating, or electroless plating, for example, any one of metals such as nickel, tin, zinc, chromium, molybdenum, and cobalt, or an alloy thereof. Can be applied. From the viewpoint of cost, electroplating is preferable.
  • a complexing agent such as citrate, tartrate or sulfamic acid can be added in the required amount.
  • the plating solution is usually used in an acidic region and is performed at a temperature of room temperature (for example, 25 ° C.) to 80 ° C.
  • the plating conditions are appropriately selected from the range of current density of 0.1 to 10 A / dm 2 , energization time of 1 to 60 seconds, preferably 1 to 30 seconds.
  • the amount of the rust-proofing metal varies depending on the type of metal, but is preferably 10 to 2000 ⁇ g / dm 2 in total. If the rust preventive treatment is too thick, it may cause etching inhibition and deterioration of electrical characteristics, and if it is too thin, it may cause a reduction in peel strength with the resin.
  • the cyanate resin is contained in the resin composition constituting the insulating layer 102, it is preferable that the rust prevention treatment is performed with a metal containing nickel. This combination is useful in that there is little reduction in peel strength in the heat resistance deterioration test and moisture resistance deterioration test.
  • an aqueous solution containing hexavalent chromium ions is preferably used.
  • the chromate treatment can be performed by a simple immersion treatment, but is preferably performed by a cathode treatment.
  • Sodium dichromate is preferably used under the conditions of 0.1 to 50 g / L, pH 1 to 13, bath temperature 0 to 60 ° C., current density 0.1 to 5 A / dm 2 , and electrolysis time 0.1 to 100 seconds. It can also carry out using chromic acid or potassium dichromate instead of sodium dichromate.
  • the chromate treatment is preferably performed on the rust preventive treatment. Thereby, the adhesiveness of an insulating resin composition layer (insulating layer 102) and metal foil (copper foil layer 104) can be improved more.
  • silane coupling agent used in the silane coupling treatment examples include epoxy functional silanes such as 3-glycidoxypropyltrimethoxysilane and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-amino Amino-functional silanes such as propyltrimethoxysilane, N-2- (aminoethyl) 3-aminopropyltrimethoxysilane, N-2- (aminoethyl) 3-aminopropylmethyldimethoxysilane, vinyltrimethoxysilane, vinylphenyl Olefin functional silanes such as trimethoxysilane and vinyltris (2-methoxyethoxy) silane, acrylic functional silanes such as 3-acryloxypropyltrimethoxysilane, and methacrylic functional silanes such as 3-methacryloxypropyltrimethoxysilane, 3 - And mercapto-functional silanes
  • These coupling agents are used by dissolving in a solvent such as water at a concentration of 0.1 to 15 g / L, and applying the obtained solution to a metal foil at a temperature of room temperature to 50 ° C. Adsorb the silane coupling agent on the foil. A coating film is formed on the metal foil by these silane coupling agents being condensed and bonded to the hydroxyl group of the rust-preventing metal on the surface of the metal foil. After the silane coupling treatment, such bonding is stabilized by heating, ultraviolet irradiation or the like. In the heat treatment, for example, drying at a temperature of 100 to 200 ° C. for 2 to 60 seconds is preferable.
  • the ultraviolet irradiation is preferably performed in a wavelength range of 200 to 400 nm and 200 to 2500 mJ / cm 2 , for example.
  • the silane coupling treatment is preferably performed on the outermost layer of the metal foil.
  • the insulating resin composition constituting the insulating layer 102 contains a cyanate resin, it is preferably treated with an aminosilane-based coupling agent. This combination is useful with little reduction in peel strength in heat and moisture resistance tests.
  • the silane coupling agent used for the silane coupling treatment preferably reacts with the insulating resin composition constituting the insulating layer 102 by heating at 60 to 200 ° C., more preferably 80 to 150 ° C. It is preferable.
  • the functional group in the said insulating resin composition and the functional group of a silane coupling agent react chemically, and it becomes possible to obtain the more excellent adhesiveness.
  • an epoxy resin that is liquid at room temperature is preferable to use as the insulating resin of the insulating resin composition used in this embodiment.
  • a chemical reaction between the epoxy resin and the silane coupling agent is likely to occur, and as a result, a strong peel strength can be obtained.
  • bisphenol A type epoxy resin, bisphenol F type epoxy resin, and phenol novolac type epoxy resin having an epoxy equivalent of about 200 are preferable.
  • the insulating resin composition contains a curing agent
  • a thermosetting latent curing agent as the curing agent. That is, when the functional group in the insulating resin composition and the functional group of the silane coupling agent chemically react, the reaction temperature of the functional group in the insulating resin composition and the functional group of the silane coupling agent is the same as that of the insulating resin composition. It is preferable to select the curing agent so that it is lower than the temperature at which the curing reaction is initiated.
  • thermosetting latent curing agent for the insulating resin composition containing an epoxy resin include solid dispersion-heat-dissolving curing agents such as dicyandiamide, dihydrazide compounds, imidazole compounds, and amine-epoxy adducts, urea compounds, onium salts, Examples thereof include reactive group block type curing agents such as boron trichloride / amine salts and block carboxylic acid compounds.
  • the prepreg containing the insulating resin composition as described above and the ultrathin copper foil with carrier foil that has been subjected to the roughening treatment with a fine and uniform roughened surface and the above-mentioned surface treatment are laminated and integrated by the above-described method.
  • the copper clad laminated board 10 with carrier foil as shown to Fig.7 (a) can be obtained.
  • the carrier-clad laminate 106 having the copper foil layer 104 on both surfaces of the insulating layer 102 is obtained by peeling off the carrier foil layer 106.
  • the copper foil layer 104 may be formed on at least one surface of the insulating layer 102 or may be formed on the entire surface or a part of the insulating layer 102.
  • a through hole 108 for interlayer connection penetrating from the upper surface to the lower surface is formed in the copper clad laminate 100.
  • Various known means can be used as a method of forming the through hole 108.
  • a drill or the like is used from the viewpoint of productivity.
  • a gas laser such as carbon dioxide or excimer, or a solid laser such as YAG is suitable.
  • At least a catalyst nucleus can be provided on the copper foil layer 104, but in this embodiment, the catalyst nucleus is provided on the entire surface of the copper foil layer 104 and on the inner wall surface of the through hole 108.
  • the catalyst nucleus is not particularly limited.
  • a noble metal ion or palladium colloid can be used.
  • an electroless plating layer is formed using this catalyst nucleus as a nucleus.
  • smear removal with a chemical solution or the like may be performed on the surface of the copper foil layer 104 or the through hole 108. good.
  • the desmear treatment is not particularly limited, and is a wet method using an oxidant solution having an organic substance decomposing action, and an organic substance by irradiating a target object with an active species (plasma, radical, etc.) having a strong oxidizing action directly.
  • a known method such as a dry method such as a plasma method for removing the residue can be used.
  • Specific examples of the wet desmear treatment include a method in which the resin surface is subjected to a swelling treatment, etched by an alkali treatment, and then subjected to a neutralization treatment.
  • a thin electroless plating layer 110 is formed on the copper foil layer 104 provided with catalyst nuclei and the inner walls of the through holes 108 by electroless plating.
  • the electroless plating layer 110 electrically connects the copper foil layer 104 on the upper surface of the insulating layer 102 and the copper foil layer 104 on the lower surface thereof.
  • electroless plating for example, one containing copper sulfate, formalin, complexing agent, sodium hydroxide or the like can be used.
  • it is preferable to stabilize the plating film by performing a heat treatment at 100 to 250 ° C. after the electroless plating. A heat treatment at 120 to 180 ° C.
  • the average thickness of the electroless plating layer 110 may be any thickness that allows the next electroplating to be performed. For example, about 0.1 to 1 ⁇ m is sufficient.
  • the inside of the through hole 108 may be filled with a conductive paste or an insulating paste, or may be filled with electric pattern plating.
  • a resist layer 112 having a predetermined opening pattern is formed on the electroless plating layer 110 provided on the copper foil layer 104.
  • This opening pattern corresponds to a conductive circuit pattern described later. Therefore, the resist layer 112 is provided so as to cover the non-circuit formation region on the copper foil layer 104. In other words, the resist layer 112 is not formed in the conductive circuit formation region on the through hole 108 and the copper foil layer 104.
  • the resist layer 112 is not particularly limited, and a known material can be used, but liquid and dry films can be used. In the case of forming fine wiring, it is preferable to use a photosensitive dry film or the like as the resist layer 112.
  • the resist layer 112 for example, a photosensitive dry film is laminated on the electroless plating layer 110, the non-circuit formation region is exposed and photocured, and the unexposed portion is dissolved and removed with a developer. The remaining cured photosensitive dry film becomes the resist layer 112. It is preferable that the thickness of the resist layer 112 be equal to or greater than the thickness of the conductor (plating layer 114) to be subsequently plated.
  • a plating layer 114 is formed by electroplating at least inside the opening pattern of the resist layer 112 and on the electroless plating layer 110.
  • the copper foil layer 104 serves as a power feeding layer.
  • the plating layer 114 may be provided continuously over the upper surface of the insulating layer 102, the inner wall of the through hole 108, and the lower surface thereof.
  • Such electroplating is not particularly limited, but a known method used in ordinary printed wiring boards can be used. For example, in a state where the plating solution is immersed in a plating solution such as copper sulfate, an electric current is supplied to the plating solution. A method such as flowing a stream can be used.
  • the thickness of the plating layer 114 is not particularly limited as long as it can be used as a circuit conductor.
  • the thickness is preferably in the range of 1 to 100 ⁇ m, and more preferably in the range of 5 to 50 ⁇ m.
  • the plating layer 114 may be a single layer or may have a multilayer structure.
  • the material of the plating layer 114 is not particularly limited, and for example, copper, copper alloy, 42 alloy, nickel, iron, chromium, tungsten, gold, solder, or the like can be used.
  • the resist layer 112 is removed using an alkaline stripping solution, sulfuric acid, a commercially available resist stripping solution, or the like.
  • the electroless plating layer 110 and the copper foil layer 104 other than the region where the plating layer 114 is formed are removed.
  • a technique for removing the copper foil layer 104 for example, soft etching (flash etching) or the like is used.
  • stacking the copper foil layer 104 and the metal layer 116 (the electroless-plating layer 110 and the plating layer 114) can be formed.
  • the reverse tapered shape shown in FIG. Either the kamaboko shape shown in (b) or the constricted shape shown in FIG.
  • the etching solution used for the soft etching of this embodiment will be described below.
  • the etching solution is not particularly limited.
  • circuit formation tends to be deteriorated because the exchange of the solution is inevitably worsened for fine portions of the wiring.
  • reaction-limited etching solution for example, one containing hydrogen peroxide and an acid not containing a halogen element as main components can be mentioned. Since hydrogen peroxide is used as the oxidizing agent, strict etching rate control becomes possible by managing the concentration. If a halogen element is mixed in the etching solution, the dissolution reaction tends to be diffusion-limited.
  • acid not containing halogen nitric acid, sulfuric acid, organic acid, and the like can be used, but sulfuric acid is preferable because it is inexpensive.
  • sulfuric acid and hydrogen peroxide are the main components, the respective concentrations are preferably 5 to 300 g / L and 5 to 200 g / L from the viewpoint of etching rate and liquid stability. Examples thereof include ammonium persulfate, sodium persulfate, and sodium persulfate.
  • the conductive circuit 118 having a desired shape can be obtained by appropriately selecting the etching characteristics and etching conditions of the copper foil layer 104.
  • the printed wiring board 200 in which the conductive circuit 118 is formed on both surfaces of the insulating layer 102 is obtained.
  • the same effects as those of the first embodiment can be obtained.
  • a solder resist layer 120 may be formed so as to cover the insulating layer 102 and part of the conductive circuit 118.
  • the solder resist layer 120 for example, a filler or a substrate excellent in insulating properties may be included, and a heat resistant resin composition such as a photosensitive resin, a thermosetting resin, and a thermoplastic resin is used.
  • the first plating layer 122 and the second plating layer 124 may be further formed on the conductive circuit 118 provided with the opening of the solder resist layer 120.
  • the metal layer 116 may have a multilayer structure of two or more.
  • a gold plating layer can be adopted.
  • the gold plating method may be a conventionally known method, and is not particularly limited. For example, electroless nickel plating is performed on the plating layer 114 to about 0.1 to 10 ⁇ m, and displacement gold plating is performed to 0.01 to 0. There is a method of performing electroless gold plating about 0.1 to 2 ⁇ m after about 5 ⁇ m. As a result, the printed wiring board 202 shown in FIG. 8D-1 is obtained. Further, as shown in FIG. 8D-2, the first plating layer 122 and the second plating layer 124 may be formed around the conductive circuit 118 without forming the solder resist layer 120. .
  • a semiconductor device (not shown) can be mounted on these printed wiring boards 200, 202, and 204 to obtain a semiconductor device.
  • FIGS. 10 to 12 are cross-sectional views showing the steps of the manufacturing process of the printed wiring board manufacturing method according to the third embodiment.
  • the printed wiring board manufacturing method of the third embodiment uses, for example, the printed wiring boards 200, 202, and 204 obtained in the second embodiment as inner layer circuit boards, and builds on the inner layer circuit boards. An up layer is further formed.
  • the printed wiring board 200 obtained in FIG. 8C is adopted as the inner layer circuit board.
  • the inner layer circuit (conductive circuit 118) of the printed wiring board 200 is subjected to a roughening process.
  • the roughening treatment means performing a chemical treatment, a plasma treatment, or the like on the surface of the conductor circuit.
  • a blackening treatment using oxidation reduction or a chemical solution treatment using a known roughening solution of sulfuric acid-hydrogen peroxide system can be used.
  • the adhesiveness of the interlayer insulation material which comprises the insulating layer 130, and the conductive circuit 118 of the printed wiring board 200 can be improved.
  • the inner layer circuit board is not particularly limited in place of the printed wiring board 200 obtained in the second embodiment, but the resin composition does not include a prepreg or a base material by a plated through hole method, a build-up method, or the like.
  • a normal multilayer printed wiring board in which physical layers and the like are laminated can also be used.
  • the conductor circuit layer serving as the inner layer circuit may be formed by a conventionally known circuit forming method.
  • through-holes are formed by drilling, laser processing, etc. on the laminate (a laminate obtained by laminating multiple prepregs) and metal-clad laminate as the core layer. Then, the inner circuit on both sides can be electrically connected by plating or the like.
  • an insulating layer 130 (prepreg) and a copper foil layer 105 with a carrier foil layer 107 (carrier foil) are formed on both sides of a printed wiring board 200 having a roughened conductor circuit surface, respectively.
  • a multilayer laminate is formed by subjecting the laminate in which these layers are stacked to heat and pressure.
  • the carrier foil layer 107 is peeled and removed.
  • a part of the insulating layer 130 and the copper foil layer 105 is removed to form a hole 109.
  • a part of the surface of the conductive circuit 118 is exposed on the bottom surface of the hole 109.
  • the method for forming the hole 109 is not particularly limited. For example, a method of forming a blind via hole having a hole diameter of 100 ⁇ m or less using a gas laser such as carbon dioxide gas or excimer or a solid laser such as YAG is used. it can.
  • the hole 109 is represented by a non-through hole in FIG. 10D, it may be a through hole. In the case of a through hole, it may be formed by laser irradiation or using a drilling machine.
  • a thin electroless plating layer 111 is formed on the conductive circuit 118 provided with the above-described catalyst nucleus, on the inner wall of the hole 109, and on the copper foil layer 105.
  • the electroless plating layer 111 is formed in the same manner as the electroless plating layer 110 described above.
  • desmear treatment such as smear removal with a chemical solution may be performed.
  • the thickness of the electroless plating layer 110 may be any thickness that allows subsequent electroplating to be performed, and about 0.1 to 1 ⁇ m is sufficient.
  • the inside of the hole 109 (blind via hole) can be filled with a conductive paste or an insulating paste, or may be filled with electric pattern plating.
  • a resist layer 113 having an opening pattern corresponding to the conductor circuit pattern is formed on the electroless plating layer 110.
  • the non-circuit forming portion is masked by forming the resist layer 113.
  • the thickness of the resist layer 113 is preferably set to be approximately the same as or thicker than that of the conductor circuit to be subsequently plated.
  • a plating layer 132 is formed inside the opening pattern of the resist layer 113.
  • the plating layer 132 may be formed on the conductive circuit 118 inside the hole 109 or may be formed on the electroless plating layer 111 inside the opening pattern.
  • the electroplating for forming the plating layer 132 can use the same technique as that for the plating layer 114 described above.
  • the thickness of the plating layer 132 may be used as a circuit conductor. For example, the thickness is preferably in the range of 1 to 100 ⁇ m, and more preferably in the range of 5 to 50 ⁇ m.
  • the resist layer 113 is peeled in the same manner as the resist layer 112 described above.
  • the copper foil layer 105 and the electroless plating layer 111 are removed by soft etching (flash etching) in the same manner as the copper foil layer 104 described above.
  • the conductive circuit pattern comprised from the copper foil layer 105, the electroless-plating layer 111, and the plating layer 132 can be formed.
  • vias and pads that are electrically connected to the conductive circuit 118 can be formed using the plating layer 132.
  • the printed wiring board 201 is obtained as described above.
  • a solder resist layer 121 may be formed on the insulating layer 130, the conductive circuit pattern plating layer 132, and a part of the pad plating layer 132.
  • the solder resist layer 121 the same thing as the above-mentioned solder resist layer 120 can be used.
  • a first plating layer 123 and a second plating layer 125 made of, for example, a nickel plating layer and a gold plating layer are further formed on the plating layer 132 in which the opening of the solder resist layer 121 is provided. May be.
  • the printed wiring board 203 shown in FIG. 12C-1 is obtained. Further, as shown in FIG.
  • the first plating layer 123 and the second plating layer 125 described above are formed around the conductive circuit pattern and the pad without forming the solder resist layer 121. May be formed.
  • the printed wiring board 205 shown in FIG. 12C-2 is obtained.
  • the same effect as in the first and second embodiments can be obtained.
  • the metal layer is selectively formed on the copper foil, but the present modification is different in that the metal layer is formed on the entire surface of the copper foil. It is.
  • a method for manufacturing the printed wiring board of the present modification will be described.
  • the copper clad laminated board 10 with carrier foil is prepared.
  • a carrier foil layer 106 is attached to both surfaces of the insulating layer 102 together with the copper foil layer 104.
  • the carrier foil layer 106 is peeled from the copper clad laminated board 10 with carrier foil.
  • a metal layer 115 (plating layer) is formed on the entire surface of the copper foil layer 104 by plating.
  • a resist layer 112 having a predetermined opening pattern is formed on the plane-shaped metal layer 115.
  • the metal layer 115 and the copper foil layer 104 in the opening pattern of the resist layer 112 are removed by, for example, etching.
  • the resist layer 112 is removed.
  • the pattern of the conductive circuit 119 comprised from the copper foil layer 104 and the metal layer 115 can be formed.
  • the printed wiring board 101 of this modification is obtained by the above process.
  • fine circuit processing of an ultrathin copper foil with a carrier foil, a fine circuit shape, and a method of manufacturing a printed wiring board excellent in insulation reliability, and the printed wiring board can be provided.
  • the printed wiring board manufacturing method of the present embodiment is not only for forming a conductor circuit layer on both sides of a printed wiring board substrate, but also for forming a conductor circuit layer only on one side of the printed wiring board substrate. Can be applied. Further, as shown in FIG. 8C, the double-sided printed wiring board can be used as an inner layer circuit board, and the multilayer printed wiring board of the third embodiment can also be applied. Therefore, any of a single-sided printed wiring board, a double-sided printed wiring board, and a multilayer printed wiring board can be produced by the method for producing a printed wiring board of the present embodiment.
  • an electrolytic copper foil with a carrier foil according to the present invention and a copper-clad laminate using the copper foil will be manufactured, and an embodiment of a method for manufacturing a printed wiring board according to the present invention will be described.
  • the case where an electrolytic copper foil is used as the carrier foil will be mainly described.
  • the present invention will be described in detail based on examples and comparative examples, but the present invention is not limited thereto.
  • the carrier foil was immersed in an acid cleaning tank (dilute sulfuric acid solution, 150 g / L, liquid temperature 30 ° C.) for 20 seconds to remove oil and oxide film on the surface.
  • acid cleaning tank dilute sulfuric acid solution, 150 g / L, liquid temperature 30 ° C.
  • a bonding interface forming tank (carboxybenzotriazole solution, 5 g / L, liquid temperature 40 ° C., pH 5) to form a bonding interface layer on the glossy surface of the carrier foil.
  • a bonding interface forming tank carrier foil
  • a bulk copper formation bath copper sulfate solution; sulfuric acid concentration 150 g / L, copper concentration 65 g / L, gelatin concentration 5 ppm, chloride ion 10 ppm, liquid temperature 45 ° C.
  • a flat anode electrode (lead) was placed in parallel and electrolyzed under smooth plating conditions with a current density of 20 A / dm 2 to form a bulk copper layer of 1.5 ⁇ m.
  • Electrolysis was performed under smooth plating conditions to form 0.5 ⁇ m fine roughening, and a total thickness of 2.0 ⁇ m ultrathin copper foil was produced.
  • a rust prevention treatment tank (zinc sulfate solution; sulfuric acid concentration 70 g / L, zinc concentration 20 g / L, liquid temperature 40 ° C.), electrolyzed at a current density of 15 A / dm 2 and subjected to rust prevention treatment using zinc. went.
  • a soluble anode using a zinc plate as the anode electrode was used.
  • a chromate treatment tank chromic acid solution; chromic acid concentration 5 g / L, pH 11.5, liquid temperature 55 ° C.
  • a copper foil with a carrier foil was obtained by passing through a furnace heated to an atmospheric temperature of 110 ° C. by an electric heater in a drying treatment tank over 60 seconds.
  • it is immersed and washed in the water washing tank which can be washed for about 30 seconds between the processes for each tank.
  • F2-WS electrolytic copper foil
  • Ra 0.2 ⁇ m
  • Rz 1.2 ⁇ m
  • the carrier foil was immersed in an acid cleaning tank (dilute sulfuric acid solution, 150 g / L, liquid temperature 30 ° C.) for 20 seconds to remove oil and oxide film on the surface.
  • a bonding interface forming tank (carboxybenzotriazole solution, 5 g / L, liquid temperature 40 ° C., pH 5) to form a bonding interface layer on the glossy surface of the carrier foil.
  • a bulk copper formation tank (copper sulfate solution; sulfuric acid concentration 150 g / L, copper concentration 65 g / L, gelatin concentration 3 ppm, chloride ions 30 ppm, liquid temperature 45 ° C.)
  • a flat anode electrode (lead) was placed in parallel and electrolyzed under smooth plating conditions with a current density of 25 A / dm 2 to form a bulk copper layer of 1.5 ⁇ m.
  • Electrolysis was performed under smooth plating conditions to form 0.5 ⁇ m fine roughening, and an ultrathin copper foil having a total thickness of 2.0 ⁇ m was produced.
  • a rust prevention treatment tank (zinc sulfate solution; sulfuric acid concentration 70 g / L, zinc concentration 20 g / L, liquid temperature 40 ° C.), electrolyzed at a current density of 15 A / dm 2 and subjected to rust prevention treatment using zinc. went.
  • a soluble anode using a zinc plate as the anode electrode was used.
  • a chromate treatment tank chromic acid solution; chromic acid concentration 5 g / L, pH 11.5, liquid temperature 55 ° C.
  • a copper foil with a carrier foil was obtained by passing through a furnace heated to an atmospheric temperature of 110 ° C. by an electric heater in a drying treatment tank over 60 seconds.
  • it is immersed and washed in the water washing tank which can be washed for about 30 seconds between the processes for each tank.
  • F2-WS electrolytic copper foil
  • Ra 0.2 ⁇ m
  • Rz 1.2 ⁇ m
  • the carrier foil was immersed in an acid cleaning tank (dilute sulfuric acid solution; 150 g / L, liquid temperature 30 ° C.) for 20 seconds to remove oil and oxide film on the surface.
  • a bonding interface formation tank (carboxybenzotriazole solution; 5 g / L, liquid temperature 40 ° C., pH 5) to form a bonding interface layer on the glossy surface of the carrier foil.
  • a bonding interface formation tank (carboxybenzotriazole solution; 5 g / L, liquid temperature 40 ° C., pH 5)
  • a bonding interface layer on the glossy surface of the carrier foil.
  • a bulk copper formation tank copper pyrophosphate solution; potassium pyrophosphate concentration 250 g / L, copper concentration 25 g / L, pH 11, liquid temperature 45 ° C.
  • Electrodes (lead) were arranged in parallel and electrolyzed under smooth plating conditions with a current density of 10 A / dm 2 to form a 1.5 ⁇ m bulk copper layer.
  • Electrolysis was performed under smooth plating conditions to form 0.5 ⁇ m fine roughening, and a total thickness of 2.0 ⁇ m ultrathin copper foil was produced. Then, antirust treatment tank (zinc sulfate solution; sulfuric acid concentration of 70 g / L, zinc concentration 20 g / L, liquid temperature 40 ° C.) was immersed in the rust-proof treatment with zinc and electrolysis at a current density of 15A / dm 2 went. Here, a soluble anode using a zinc plate as the anode electrode was used. Next, it was immersed in a chromate treatment tank (chromic acid solution; chromic acid concentration 5 g / L, pH 11.5, liquid temperature 55 ° C.) for 4 seconds.
  • a chromate treatment tank chromic acid solution; chromic acid concentration 5 g / L, pH 11.5, liquid temperature 55 ° C.
  • a copper foil with a carrier foil was obtained by passing through a furnace heated to an atmospheric temperature of 110 ° C. by an electric heater in a drying treatment tank over 60 seconds. In addition, it is immersed and washed in the water washing tank which can be washed for about 30 seconds between the processes for each tank.
  • Example 1 As epoxy resin, 8.5 parts by weight of naphthalene-modified cresol novolak epoxy resin (manufactured by DIC, HP-5000), and as phenol curing agent, biphenylaralkyl type phenol resin (Maywa Kasei Co., Ltd., MEH7851-4H) 8.5 parts by weight.
  • the resin varnish was impregnated into a glass woven fabric (basis weight 104 g, thickness 87 ⁇ m, Nittobo E glass woven fabric, WEA-116E), dried in a heating furnace at 150 ° C. for 2 minutes, and varnish solid content in the prepreg About 50% by weight of prepreg was obtained.
  • Two prepregs are stacked, and an ultra-thin copper foil (metal foil 1) with a carrier foil is stacked and heat-pressed for 1 hour at a pressure of 3 MPa and a temperature of 200 ° C., and an insulating layer is formed on both sides with a thickness of 0.20 mm.
  • the laminated board which has this was obtained (FIG.7 (a)).
  • the carrier foil of the laminate obtained in the example was peeled and removed (FIG. 7 (b)), and as shown in FIG. 7 (c), a carbon dioxide laser (ML605GTX3 manufactured by Mitsubishi Electric Corporation) was applied from above the ultrathin metal foil.
  • a through-hole having a diameter of 75 ⁇ m was opened by ⁇ 5100 U2), and immersed in an aqueous solution of potassium permanganate 60 g / L and sodium hydroxide 45 g / L at a liquid temperature of 80 ° C. for 2 minutes to perform desmear treatment.
  • Example 2 Example 1 was the same as Example 1 except that the ultrathin copper foil with carrier foil was changed to metal foil 2.
  • Example 3 Example 1 was the same as Example 1 except that the ultrathin copper foil with carrier foil was changed to metal foil 3.
  • Example 4 Example 1 was the same as Example 1 except that the conditions for flash etching of the electroless plating layer as the power feeding layer and the underlying copper foil (2 ⁇ m) were changed as follows.
  • the electroless plating layer and the underlying copper foil (2 ⁇ m) as the power feeding layer were removed by treating for 240 seconds with flash etching (CPE-800 manufactured by Mitsubishi Gas Chemical Company, liquid temperature: 30 ° C., spray pressure 0.23 MPa).
  • flash etching CPE-800 manufactured by Mitsubishi Gas Chemical Company, liquid temperature: 30 ° C., spray pressure 0.23 MPa.
  • a pattern of L / S 20/20 ⁇ m was formed (patterned etching) to obtain a printed wiring board.
  • Example 5 It was the same as Example 1 except having changed the resin composition used for a laminated board.
  • an epoxy resin 11 parts by weight of a biphenyl aralkyl type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., NC-3000), 20 parts by weight of a bismaleimide compound (manufactured by KAI Kasei Kogyo Co., Ltd., BMI-70), 4,4′-diaminodiphenylmethane 3 0.5 parts by weight, 65 parts by weight of aluminum hydroxide (HP-360, Showa Denko) and 0.5 parts by weight of epoxy silane (KBE-403, manufactured by Shin-Etsu Chemical Co., Ltd.) were mixed and dissolved in methyl ethyl ketone.
  • a biphenyl aralkyl type epoxy resin manufactured by Nippon Kayaku Co., Ltd., NC-3000
  • a bismaleimide compound manufactured by KAI Kasei Kogyo Co., Ltd.
  • the resin varnish was prepared.
  • the resin varnish was impregnated into a glass woven fabric (basis weight 104 g, thickness 87 ⁇ m, Nittobo E glass woven fabric, WEA-116E), dried in a heating furnace at 150 ° C. for 2 minutes, and varnish solid content in the prepreg About 50% by weight of prepreg was obtained.
  • An ultra-thin copper foil (metal foil 1) with a carrier foil is stacked and heat-pressed for 1 hour at a pressure of 3 MPa and a temperature of 200 ° C., and an insulating layer is formed on both sides with a thickness of 0.20 mm.
  • an acid cleaning tank dilute sulfuric acid solution, 150 g / L, liquid temperature 30 ° C.
  • a bonding interface forming tank (carboxybenzotriazole solution, 5 g / L, liquid temperature 40 ° C., pH 5) to form a bonding interface layer on the glossy surface of the carrier foil.
  • a bonding interface forming tank (carboxybenzotriazole solution, 5 g / L, liquid temperature 40 ° C., pH 5)
  • a bonding interface layer on the glossy surface of the carrier foil.
  • a flat plate anode electrode (lead) is applied to one side of the carrier foil.
  • a 1.5- ⁇ m bulk copper layer was formed by parallel placement and electrolysis under smooth plating conditions with a current density of 2 A / dm 2 .
  • Electrolysis was performed under smooth plating conditions to form 0.5 ⁇ m fine roughening, and an ultrathin copper foil having a total thickness of 2.0 ⁇ m was produced.
  • a rust prevention treatment tank (zinc sulfate solution; sulfuric acid concentration 70 g / L, zinc concentration 20 g / L, liquid temperature 40 ° C.), electrolyzed at a current density of 10 A / dm 2 and subjected to rust prevention treatment using zinc. went.
  • a soluble anode using a zinc plate as the anode electrode was used.
  • a copper foil with a carrier foil was obtained by passing through a furnace heated to an atmospheric temperature of 110 ° C. by an electric heater in a drying treatment tank over 60 seconds. In addition, it is immersed and washed in the water washing tank which can be washed for about 30 seconds between the processes for each tank.
  • a printed wiring board was obtained in the same manner as in Example 1 except that the ultrathin copper foil with carrier foil was changed to metal foil 4.
  • an acid cleaning tank dilute sulfuric acid solution; 150 g / L, liquid temperature 30 ° C.
  • a flat anode electrode (lead) is arranged in parallel to one side of the carrier foil, electrolyzed under smooth plating conditions with a current density of 1.5 A / dm 2 , and then a bulk copper forming tank 2 (copper sulfate solution; sulfuric acid)
  • a flat plate anode electrode (lead) is placed in parallel to one side of the carrier foil while being immersed in a concentration of 100 g / L, a copper concentration of 200 g
  • Electrolysis was performed under smooth plating conditions to form 0.5 ⁇ m fine roughening, and an ultrathin copper foil having a total thickness of 2.0 ⁇ m was produced.
  • a rust prevention treatment tank (zinc sulfate solution; sulfuric acid concentration 70 g / L, zinc concentration 20 g / L, liquid temperature 40 ° C.), electrolyzed at a current density of 15 A / dm 2 and subjected to rust prevention treatment using zinc. went.
  • a soluble anode using a zinc plate as the anode electrode was used.
  • a copper foil with a carrier foil was obtained by passing through a furnace heated to an atmospheric temperature of 110 ° C. by an electric heater in a drying treatment tank over 60 seconds. In addition, it is immersed and washed in the water washing tank which can be washed for about 30 seconds between the processes for each tank.
  • a printed wiring board was obtained in the same manner as in Example 1 except that the ultrathin copper foil with carrier foil was changed to the metal foil 5.
  • XRD thin film method Measurement was performed using a fully automatic powder X-ray diffractometer (manufactured by Philips, PW1700 type) and Cu—K ⁇ ray as a radiation source. The peak integrated intensities of diffraction lines from the plane orientations (111), (200), (220), and (311) detected by the 2 ⁇ scanning are obtained.
  • the sample used the thin foil surface before and behind heat-processing the copper foil with a carrier foil obtained by the manufacture example on 200 degreeC 1 hour and the conditions of pressure 3MPa with a vacuum press machine as a sample surface. Detailed measurement conditions are shown below. ⁇ Measurement conditions> X-ray source: Cu-K ⁇ Voltage: 40 kV Current: 50 mA Incident angle: 1.0 deg Diffraction angle: 30-120deg Scan speed: 0.02 deg / sec

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a printed wiring board having superior yield. A method for producing the printed wiring board (101) includes: a step for separating a carrier substrate from a laminate sheet wherein a copper foil attached to the carrier substrate has been laminated to one surface of an insulating layer (102), at least; a step for forming a metal layer (115) that is thicker than the copper foil layer (104) on the entire surface or selectively on the copper foil layer (104); and a step for obtaining a pattern of a conductive circuit (119) configured from the copper foil layer (104) and the metal layer (115) by means of etching at least the copper foil layer (104). In the surface (upper surface (20)) of the copper foil layer (104) that contacts the metal layer (115), the ratio of the peak intensity of plane orientation (200) to the sum of the peak intensities of plane orientations (111), (200), (220) and (311) when measuring by means of a thin film x-ray diffraction (XRD) method is no greater than 26%.

Description

プリント配線板およびプリント配線板の製造方法Printed wiring board and printed wiring board manufacturing method
 本発明は、プリント配線板およびプリント配線板の製造方法に関する。 The present invention relates to a printed wiring board and a method for manufacturing the printed wiring board.
 電子機器の高機能化等の要求に伴い、電子部品の高密度集積化、さらには高密度実装化等が進んでおり、これらに使用される高密度実装対応のプリント配線板等は、従来にも増して、小型薄型化、高密度化、及び多層化が進んでいる。
 こうしたプリント配線板の基板上に高密度でパターン精度の高い導体回路層を効率よく形成する方法としてセミアディティブ法が行われ始めている。このセミアディティブ法を用いたプリント配線板の製造方法は、たとえば、特許文献1、および特許文献2に記載されている。
 特許文献1および2に記載の製造方法は、まず、両面銅張積層板上にレジストパターンを形成し、続いて、レジストパターンの開口部内にめっき層を充填した後、このレジストパターンを除去する。この後、めっき層のパターンをマスクとして、下層の銅箔をエッチングすることにより、めっき層及び銅箔から構成される導電回路パターンを形成することが記載されている。
With the demand for higher functionality of electronic equipment, etc., high-density integration of electronic parts, and further high-density mounting, etc. are progressing. In addition, miniaturization, thinning, high density, and multilayering are progressing.
As a method for efficiently forming a conductive circuit layer having a high density and high pattern accuracy on the substrate of such a printed wiring board, a semi-additive method has begun to be performed. The printed wiring board manufacturing method using this semi-additive method is described in, for example, Patent Document 1 and Patent Document 2.
In the manufacturing methods described in Patent Documents 1 and 2, first, a resist pattern is formed on a double-sided copper-clad laminate, and subsequently, a plating layer is filled in the opening of the resist pattern, and then the resist pattern is removed. Thereafter, it is described that a conductive circuit pattern composed of a plating layer and a copper foil is formed by etching a lower layer copper foil using the pattern of the plating layer as a mask.
特開2003-69218号公報JP 2003-69218 A 特開2003-60341号公報JP 2003-60341 A
 しかしながら、従来の微細な導電回路パターンを形成する工程においては、配線形状を所望の形状に維持することが難しい点に改善の余地があった。
 すなわち、従来の導電回路パターンは、上層(めっき層)と下層(銅箔)との2層で構成されており、これらの上層と下層とでは、その上面の面方位や構成材料が異なることがある。このため、上層に合わせてエッチング条件を調整したとしても、下層においてエッチング速度が速くなったり遅くなったりする。その結果、平面視において、上層(めっき層)の側壁から外側の領域に、はみ出すようにして下層(銅箔)の一部が残ること(以下、裾残りという)が生じることがあり得る。
 しかし、この下層の裾残りを除去するためにエッチング量を多くすると、反対に上層(めっき層)が過剰に削られることになるので、従来の導電回路パターンを形成する工程では配線形状が不良となり得る。
However, in the conventional process of forming a fine conductive circuit pattern, there is room for improvement in that it is difficult to maintain the wiring shape in a desired shape.
That is, the conventional conductive circuit pattern is composed of two layers, an upper layer (plating layer) and a lower layer (copper foil), and the upper layer and lower layer have different surface orientations and constituent materials. is there. For this reason, even if the etching conditions are adjusted according to the upper layer, the etching rate is increased or decreased in the lower layer. As a result, in plan view, a part of the lower layer (copper foil) may remain (hereinafter referred to as a skirt residue) so as to protrude from the side wall of the upper layer (plating layer) to the outside region.
However, if the etching amount is increased in order to remove the bottom of the lower layer, the upper layer (plating layer) will be excessively scraped, resulting in a poor wiring shape in the conventional process of forming a conductive circuit pattern. obtain.
 本発明によれば、
 少なくとも絶縁層の一面上にキャリア基材付き銅箔が積層された積層板から前記キャリア基材を分離する工程と、
 前記銅箔上に、前記銅箔よりも厚い金属層を全面にまたは選択的に形成する工程と、
 少なくとも前記銅箔をエッチングすることにより、前記銅箔および前記金属層から構成される導電回路パターンを得る工程と、を含み、
 前記金属層と接する前記銅箔の面において、XRD薄膜法で測定したときの面方位(111)、(200)、(220)および(311)のピーク強度の和に対して、前記面方位(200)のピーク強度の比率が26%以下である、プリント配線板の製造方法が提供される。
According to the present invention,
Separating the carrier substrate from a laminate in which a copper foil with a carrier substrate is laminated on at least one surface of the insulating layer;
Forming a metal layer thicker than the copper foil on the entire surface or selectively on the copper foil;
Obtaining a conductive circuit pattern composed of the copper foil and the metal layer by etching at least the copper foil, and
On the surface of the copper foil in contact with the metal layer, the surface orientation (111), (200), (220) and (311) with respect to the sum of the peak intensities when measured by the XRD thin film method. 200), a method for manufacturing a printed wiring board is provided, in which the ratio of the peak intensity is 26% or less.
 本発明者らは、下層(銅箔)のエッチングレートをコントロールするために、種々の実験を行った結果、下層の上面において、面方位(111)よりエッチングされやすい面方位(200)の比率を少なくすることにより、従来と比較してエッチング特性に優れた下層(銅箔)が得られることを見出した。
 本発明者らは、こうした知見に基づいて、下層の上面(金属層と接する面)における結晶面(200)の比率を所定値以下とすることにより、従来にない良好な配線形状を実現できることを見出し、本発明に至ったものである。
As a result of various experiments conducted to control the etching rate of the lower layer (copper foil), the inventors have determined that the ratio of the plane orientation (200) that is more easily etched than the plane orientation (111) on the upper surface of the lower layer. It was found that a lower layer (copper foil) having superior etching characteristics as compared with the prior art can be obtained by reducing the amount.
Based on these findings, the present inventors can realize an unprecedented good wiring shape by setting the ratio of the crystal plane (200) in the upper surface of the lower layer (the surface in contact with the metal layer) to a predetermined value or less. This is the headline and the present invention.
 また、本発明によれば、
 絶縁層と、
 前記絶縁層上に設けられており、銅箔および金属層が積層して構成される導電回路パターンと、を備え、
 前記金属層と接する前記銅箔の面において、XRD薄膜法で測定したときの面方位(111)、(200)、(220)および(311)のピーク強度の和に対して、前記面方位(200)のピーク強度の比率が26%以下である、プリント配線板が提供される。
Moreover, according to the present invention,
An insulating layer;
A conductive circuit pattern provided on the insulating layer and configured by laminating a copper foil and a metal layer;
On the surface of the copper foil in contact with the metal layer, the surface orientation (111), (200), (220) and (311) with respect to the sum of the peak intensities when measured by the XRD thin film method. 200), a printed wiring board having a peak intensity ratio of 26% or less is provided.
 本発明によれば、銅箔の上面(金属層と接する面)における面方位(200)の比率が所定値以下であるので、前述のとおり、従来にない良好な配線形状が形成されやすくなり、歩留まりに優れた構造が実現される。 According to the present invention, since the ratio of the plane orientation (200) on the upper surface (surface in contact with the metal layer) of the copper foil is a predetermined value or less, as described above, an unprecedented good wiring shape is easily formed, A structure with excellent yield is realized.
 本発明により、歩留まりに優れたプリント配線板を提供することができる。 According to the present invention, a printed wiring board excellent in yield can be provided.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
第1の実施の形態のプリント配線板の製造方法の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the manufacturing method of the printed wiring board of 1st Embodiment. 第1の実施の形態のプリント配線板の一部を模式的に示す断面図である。It is sectional drawing which shows typically a part of printed wiring board of 1st Embodiment. 裾残りを説明するためのプリント配線板を模式的に示す断面図である。It is sectional drawing which shows typically the printed wiring board for demonstrating the skirt remainder. 第1の実施の形態の効果を説明するためのプリント配線板を模式的に示す平面図である。It is a top view which shows typically the printed wiring board for demonstrating the effect of 1st Embodiment. 第1の実施の形態の配線形状を説明するための断面図である。It is sectional drawing for demonstrating the wiring shape of 1st Embodiment. 第1の実施の形態の配線形状の変形例を模式的に示す断面図である。It is sectional drawing which shows typically the modification of the wiring shape of 1st Embodiment. 第2の実施の形態のプリント配線板の製造方法の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the manufacturing method of the printed wiring board of 2nd Embodiment. 第2の実施の形態のプリント配線板の製造方法の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the manufacturing method of the printed wiring board of 2nd Embodiment. 第2の実施の形態の配線形状の変形例を模式的に示す断面図である。It is sectional drawing which shows typically the modification of the wiring shape of 2nd Embodiment. 第3の実施の形態のプリント配線板の製造方法の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the manufacturing method of the printed wiring board of 3rd Embodiment. 第3の実施の形態のプリント配線板の製造方法の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the manufacturing method of the printed wiring board of 3rd Embodiment. 第3の実施の形態のプリント配線板の製造方法の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the manufacturing method of the printed wiring board of 3rd Embodiment. 第1の実施の形態のプリント配線板の製造方法の変形例を模式的に示す断面図である。It is sectional drawing which shows typically the modification of the manufacturing method of the printed wiring board of 1st Embodiment.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
(第1の実施の形態)
 図1は、第1の実施の形態のプリント配線板の製造方法の工程手順を示す断面図である。第1の実施の形態のプリント配線板101の製造方法は、少なくとも絶縁層102の一面上にキャリア基材付き銅箔が積層された積層板(キャリア箔付き銅張積層板10)からキャリア基材(キャリア箔層106)を分離する工程と、銅箔層104上に、銅箔層104よりも厚い金属層115を全面にまたは選択的に形成する工程と、少なくとも銅箔層104をエッチングすることにより、銅箔層104および金属層115から構成される導電回路119のパターンを得る工程と、を含む。本製造工程において、金属層115と接する銅箔層104の面(上面20)において、XRD(X-ray Diffraction)薄膜法で測定したときの面方位(111)、(200)、(220)および(311)のピーク強度の和に対して、面方位(200)のピーク強度の比率が26%以下である。
(First embodiment)
FIG. 1 is a cross-sectional view illustrating a process procedure of a method for manufacturing a printed wiring board according to the first embodiment. The method of manufacturing the printed wiring board 101 according to the first embodiment includes a carrier substrate from a laminate (copper-clad laminate 10 with a carrier foil) in which a copper foil with a carrier substrate is laminated on at least one surface of the insulating layer 102. (The carrier foil layer 106) is separated; on the copper foil layer 104, the metal layer 115 thicker than the copper foil layer 104 is formed on the entire surface or selectively; and at least the copper foil layer 104 is etched. The process of obtaining the pattern of the electrically conductive circuit 119 comprised from the copper foil layer 104 and the metal layer 115 by these. In the present manufacturing process, the surface orientation (111), (200), (220) and the surface orientation when measured by the XRD (X-ray Diffraction) thin film method on the surface (upper surface 20) of the copper foil layer 104 in contact with the metal layer 115 and The ratio of the peak intensity of the plane orientation (200) to the sum of the peak intensity of (311) is 26% or less.
 また、図2は、第1の実施の形態のプリント配線板101における導電回路119の拡大断面図である。図2に示すように、本実施の形態のプリント配線板101は、絶縁層102と、絶縁層102上に設けられており、銅箔層104および金属層115から構成される導電回路119のパターンと、を備えている。この金属層115と接する銅箔層104の面(上面20)は、XRD薄膜法で測定したときの面方位(111)、(200)、(220)および(311)のピーク強度の和に対して、面方位(200)のピーク強度の比率が26%以下により特定される。 FIG. 2 is an enlarged sectional view of the conductive circuit 119 in the printed wiring board 101 according to the first embodiment. As shown in FIG. 2, the printed wiring board 101 according to the present embodiment is provided on the insulating layer 102 and the insulating layer 102, and the pattern of the conductive circuit 119 including the copper foil layer 104 and the metal layer 115. And. The surface (upper surface 20) of the copper foil layer 104 in contact with the metal layer 115 is in relation to the sum of the peak intensities of the surface orientations (111), (200), (220), and (311) as measured by the XRD thin film method. Thus, the ratio of the peak intensity of the plane orientation (200) is specified by 26% or less.
 本実施の形態において、XRD薄膜法は、入射角が0.2~10度の条件を用いる。XRD薄膜法により得られたピーク強度とは、各面方位に相当する強度における最大値を意味する。具体的には、全自動粉末X線回折装置(Philips社製、PW1700型)、線源としてCu-Kα線を使用して測定した。X線の入射角(α)を、試料面(今回の場合、キャリア箔を剥離した表面)に対して1°の角度となるように入射させ、2θ走査で検出される面方位(111)、(200)、(220)および(311)からの回折線のピーク積分強度をそれぞれ求めるものである。薄膜法の場合、入射角は固定であるため、θと区別するため、αとの表示が用いられ、2θについては、入射線に対する計数管の位置という意味において、通常法と同じであるので同じ表示をしている。また、薄膜法は、通常法と異なり、X線の侵入深さを必要最小限に抑えることができ、試料面の数ナノ~数ミクロンの範囲での結晶構造解析が可能である。このため、0.1~5.0μm厚み銅箔層の結晶配向を正確に評価するためには上述の薄膜法によるX線回折が必要である。 In the present embodiment, the XRD thin film method uses a condition where the incident angle is 0.2 to 10 degrees. The peak intensity obtained by the XRD thin film method means the maximum value of the intensity corresponding to each plane orientation. Specifically, measurement was performed using a fully automatic powder X-ray diffractometer (manufactured by Philips, model PW1700) and Cu—Kα ray as a radiation source. The incident angle (α) of X-rays is made incident at an angle of 1 ° with respect to the sample surface (in this case, the surface from which the carrier foil has been peeled off), and the surface orientation (111) detected by 2θ scanning, The peak integrated intensities of the diffraction lines from (200), (220) and (311) are respectively obtained. In the case of the thin film method, since the incident angle is fixed, the indication of α is used to distinguish it from θ, and 2θ is the same as the normal method in the sense of the position of the counter with respect to the incident line. Displayed. In addition, unlike the normal method, the thin film method can suppress the penetration depth of X-rays to the necessary minimum, and can analyze the crystal structure in the range of several nanometers to several microns on the sample surface. Therefore, in order to accurately evaluate the crystal orientation of the 0.1 to 5.0 μm thick copper foil layer, X-ray diffraction by the above-mentioned thin film method is necessary.
 また、XRD薄膜法により測定される銅金属(たとえば、銅粉末)の主な結晶面は、面方位(111)、(200)、(220)および(311)から構成されることが知られている。これらのピーク強度の値は、結晶面の面積に比例する関係にある。
 このことから、銅箔の上面における面方位(111)、(200)、(220)および(311)のピーク強度の合計値は、その上面における各種の結晶面の面積の合計値に比例する。したがって、面方位(111)、(200)、(220)および(311)のピーク強度の和に対する、面方位(200)のピーク強度の比率は、銅箔の上面における主要な結晶面に対する面方位(200)の占有面積率を示すと言える。
Also, it is known that the main crystal plane of copper metal (for example, copper powder) measured by the XRD thin film method is composed of plane orientations (111), (200), (220), and (311). Yes. These peak intensity values are proportional to the area of the crystal plane.
From this, the total value of the peak intensities of the plane orientations (111), (200), (220) and (311) on the upper surface of the copper foil is proportional to the total value of the areas of various crystal planes on the upper surface. Therefore, the ratio of the peak intensity of the plane orientation (200) to the sum of the peak intensities of the plane orientations (111), (200), (220) and (311) is the plane orientation with respect to the main crystal plane on the upper surface of the copper foil. It can be said that the occupied area ratio of (200) is shown.
 また、銅箔の原子面密度は、面方位(111)>面方位(200)>面方位(220)の順となる。原子面密度が小さいほど、通常、エッチングされやすさを示すエッチング特性が高くなる。このため、銅箔におけるエッチング特性は、面方位(220)>面方位(200)>面方位(111)の順となる。すなわち、面方位(220)および面方位(200)は、面方位(111)より高いことが言える。 Also, the atomic plane density of the copper foil is in the order of plane orientation (111)> plane orientation (200)> plane orientation (220). The smaller the atomic surface density, the higher the etching characteristics indicating the ease of etching. For this reason, the etching characteristics in the copper foil are in the order of plane orientation (220)> plane orientation (200)> plane orientation (111). That is, it can be said that the plane orientation (220) and the plane orientation (200) are higher than the plane orientation (111).
 以上より、XRD薄膜法で測定したときの面方位(111)、(200)、(220)および(311)のピーク強度の和に対して、面方位(200)のピーク強度の比率が低いことは、面方位(200)の占有面積率が低くなるので、その銅箔の上面におけるエッチング特性が低いことを示す。このようにピーク強度の比率は占有面積の比率とは、同じ技術的意味を示すので、以下、これらをまとめて、単に比率と呼称することがある。 From the above, the ratio of the peak intensity of the plane orientation (200) to the sum of the peak intensity of the plane orientation (111), (200), (220) and (311) when measured by the XRD thin film method is low. Indicates that since the occupation area ratio of the plane orientation (200) becomes low, the etching characteristics on the upper surface of the copper foil are low. As described above, the ratio of the peak intensity and the ratio of the occupied area have the same technical meaning. Therefore, these are sometimes collectively referred to as a ratio.
 また、本書において、銅箔層104のおける側面24に対するエッチングを、サイドエッチングという。このサイドエッチングにおいては、絶縁層102の上面に対して水平方向にエッチングが進行する。
 一方、銅箔層104の上面20に対するエッチングを、縦エッチングという。この縦エッチングにおいては、絶縁層102の上面に対して垂直方向にエッチングが進行する。
Further, in this document, etching on the side surface 24 of the copper foil layer 104 is referred to as side etching. In this side etching, etching proceeds in the horizontal direction with respect to the upper surface of the insulating layer 102.
On the other hand, etching on the upper surface 20 of the copper foil layer 104 is referred to as vertical etching. In this vertical etching, etching proceeds in a direction perpendicular to the upper surface of the insulating layer 102.
 以下、第1の実施の形態のプリント配線板の製造方法の概略について説明した後に、この製造方法の作用効果を、従来の製造方法と比較しながら説明する。なお、第1の実施の形態の詳細な製法条件や材料等については、第2の実施の形態の欄にて後述する。 Hereinafter, after describing the outline of the manufacturing method of the printed wiring board according to the first embodiment, the operation and effect of this manufacturing method will be described in comparison with the conventional manufacturing method. Detailed manufacturing conditions, materials, and the like of the first embodiment will be described later in the column of the second embodiment.
 第1の実施の形態のプリント配線板の製造方法の工程は以下の工程を含む。すなわち、まず、図1(a)に示すように、キャリア箔付き銅張積層板10を準備する。このキャリア箔付き銅張積層板10においては、絶縁層102の両面に銅箔層104とともにキャリア箔層106が貼り付けられている。続いて、図1(b)に示すように、キャリア箔付き銅張積層板10からキャリア箔層106を引きはがす等して除去する。続いて、図1(c)に示すように、残された銅箔層104上に所定の開口パターンを有するレジスト層112を形成する。このレジスト層112の開口パターン内および銅箔層104上に、めっき処理によりめっき層(金属層115)を形成する(図1(d))。引き続き、図1(e)に示すように、レジスト層112を除去する。これにより、銅箔層104上に所定の金属層115のパターンを選択に形成できる。このとき、金属層115に覆われていない領域においては、銅箔層104の上面20における面方位(200)のピーク強度の比率が26%以下である。この後、図1(f)に示すように、金属層115に覆われていない領域における銅箔層104を、例えば、ソフトエッチングにより除去する。このような銅箔層104の除去工程の後、残された銅箔層104と金属層115とにより、導電回路119のパターンを形成することができる。
 以上の工程により、本実施の形態のプリント配線板101が得られる(図1、図2)。
The process of the manufacturing method of the printed wiring board of 1st Embodiment includes the following processes. That is, first, as shown to Fig.1 (a), the copper clad laminated board 10 with carrier foil is prepared. In this copper clad laminate 10 with carrier foil, a carrier foil layer 106 is attached to both surfaces of the insulating layer 102 together with the copper foil layer 104. Subsequently, as shown in FIG. 1 (b), the carrier foil layer 106 is removed from the copper clad laminate 10 with the carrier foil by peeling off. Subsequently, as shown in FIG. 1C, a resist layer 112 having a predetermined opening pattern is formed on the remaining copper foil layer 104. A plating layer (metal layer 115) is formed by plating in the opening pattern of the resist layer 112 and on the copper foil layer 104 (FIG. 1D). Subsequently, as shown in FIG. 1E, the resist layer 112 is removed. Thereby, the pattern of the predetermined metal layer 115 can be selectively formed on the copper foil layer 104. At this time, in the region not covered with the metal layer 115, the ratio of the peak intensity of the plane orientation (200) on the upper surface 20 of the copper foil layer 104 is 26% or less. Thereafter, as shown in FIG. 1F, the copper foil layer 104 in the region not covered with the metal layer 115 is removed by, for example, soft etching. After such a step of removing the copper foil layer 104, the pattern of the conductive circuit 119 can be formed by the remaining copper foil layer 104 and the metal layer 115.
The printed wiring board 101 of this Embodiment is obtained by the above process (FIG. 1, FIG. 2).
 続いて、特許文献1や2等の従来のプリント配線板の製造方法で発生する裾残りについて、図3を用いて説明する。
 従来のプリント配線板の製造方法は、以下の工程を含む。すなわち、前述のとおり、プレーン形状の銅箔層4上に所定のパターンを有する上層の金属層14を形成し、この金属層14をマスクとして、下層の銅箔層4をエッチングにより除去する。
Next, the skirt residue generated in the conventional printed wiring board manufacturing method such as Patent Documents 1 and 2 will be described with reference to FIG.
A conventional method for manufacturing a printed wiring board includes the following steps. That is, as described above, the upper metal layer 14 having a predetermined pattern is formed on the plain-shaped copper foil layer 4, and the lower copper foil layer 4 is removed by etching using the metal layer 14 as a mask.
 しかし、本発明者らの検討によれば、従来のプリント配線板の製造方法においては、これらの銅箔層4と金属層14とは構成材料や上面における面方位が異なるので、これらのエッチングレートも異なる。したがって、従来、こうしたエッチングの条件を、金属層14が削られないような条件に調整したとしても、銅箔層4に対するエッチング速度が遅くなり、銅箔層4の裾残りが発生することがあり得る(図3(a))。このような裾残りが存在すると、導電回路19の間のスペースS2(以下、スペースS2という)が狭くなり、微細な配線パターンを形成することが難しくなる。
 これに対して、こうしたスペースS2を広くすることを目的として、裾残りを除去するために、下層の銅箔層104に対するエッチング量を増加させると、金属層14が削られることになる(図3(b))。この金属層14の形状が変形すると、導電回路19の形状(配線形状)が不良となり、接続不良が発生することがあり得る、という事が判明した。
However, according to the study by the present inventors, in the conventional printed wiring board manufacturing method, the copper foil layer 4 and the metal layer 14 have different constituent materials and plane orientations on the upper surface. Is also different. Therefore, conventionally, even if such etching conditions are adjusted to such a condition that the metal layer 14 is not scraped, the etching rate with respect to the copper foil layer 4 may be slow, and the bottom of the copper foil layer 4 may be generated. Is obtained (FIG. 3 (a)). When such a skirt residue exists, a space S2 between the conductive circuits 19 (hereinafter referred to as a space S2) becomes narrow, and it becomes difficult to form a fine wiring pattern.
On the other hand, when the etching amount with respect to the lower copper foil layer 104 is increased in order to remove the remaining tail for the purpose of widening the space S2, the metal layer 14 is scraped (FIG. 3). (B)). It has been found that when the shape of the metal layer 14 is deformed, the shape (wiring shape) of the conductive circuit 19 becomes defective and a connection failure may occur.
 本発明者らは、さらに検討した結果、下層(銅箔)のエッチングレートをコントロールするために、種々の実験結果から、下層の上面20において、面方位(111)よりエッチングされやすい面方位(200)の比率を少なくすることにより、従来と比較してサイドエッチング特性に優れた下層(銅箔)が得られることを見出した。
 このメカニズムは明確ではないが、銅箔層104の上面20において、エッチング特性に優れる面方位(200)の比率を低くすることにより、側面24において面方位(200)の比率が高くなるので、側面24におけるサイドエッチングの速度を向上させることができると、推察される。
 こうした知見から、本実施の形態においては、銅箔層104の上面20において、エッチング特性に優れる面方位(200)の比率を所定値以下としている。これにより、銅箔層104のサイドエッチング特性を向上させることができるので、従来にない良好な配線形状を実現でき、その結果、歩留まりに優れたプリント配線板が得られる。
As a result of further study, the present inventors have found that, in order to control the etching rate of the lower layer (copper foil), a surface orientation (200) that is more easily etched than the surface orientation (111) on the upper surface 20 of the lower layer. It was found that a lower layer (copper foil) having superior side etching characteristics as compared with the prior art can be obtained by reducing the ratio of).
Although this mechanism is not clear, by reducing the ratio of the plane orientation (200) having excellent etching characteristics on the upper surface 20 of the copper foil layer 104, the ratio of the plane orientation (200) is increased on the side surface 24. It can be inferred that the side etching rate at 24 can be improved.
From this knowledge, in the present embodiment, the ratio of the plane orientation (200) excellent in etching characteristics on the upper surface 20 of the copper foil layer 104 is set to a predetermined value or less. Thereby, since the side etching characteristics of the copper foil layer 104 can be improved, an unprecedented good wiring shape can be realized, and as a result, a printed wiring board excellent in yield can be obtained.
 ここで、良好な配線形状について、図2~図4を用いて説明する。図4において、銅張積層板1は、絶縁層2、銅箔層4、金属層14を有する。良好な配線形状とは、第1に、従来と比較して裾残りが少ないという特性で特定されている形状を指す。この裾残りとは、図4に示すように、平面視において、金属層14の延在方向と直交する幅方向において、金属層14の外側の領域に銅箔層4がはみ出て形成されている部分をいう。この裾残りが発生しているか否かの判断について、図2、図3を用いて説明する。これらの図に示すように、たとえば、断面視において、上記幅方向における銅箔層104(14)の最大幅をL1とし、上記幅方向における金属層115(14)の最小幅をL2としたとき、L1-L2=ΔLが0より大きい場合には、裾残りが発生していると判断する。こうした場合において、本実施の形態における導電回路119においては、ΔLが従来のものより小さければよく、より好ましくは、L1とL2とが同一であり(図2(a))、さらに好ましくはL1がL2より小さいものである。L1がL2より小さい場合に、断面視における銅箔層104が、銅箔層104の平面方向の幅が金属層115の平面方向の幅よりも小さいくなる領域を有する(図2(b))。このようなL1およびL2で特定される導電回路119の形状は、良好な配線形状ということができる。 Here, a favorable wiring shape will be described with reference to FIGS. In FIG. 4, the copper clad laminate 1 has an insulating layer 2, a copper foil layer 4, and a metal layer 14. First, a good wiring shape refers to a shape that is specified by the characteristic that there is less skirt residue compared to the conventional case. As shown in FIG. 4, the skirt remainder is formed by protruding the copper foil layer 4 in a region outside the metal layer 14 in the width direction orthogonal to the extending direction of the metal layer 14 in plan view. Say part. The determination as to whether or not the tail remains has been described with reference to FIGS. As shown in these drawings, for example, when viewed in cross-section, when the maximum width of the copper foil layer 104 (14) in the width direction is L1, and the minimum width of the metal layer 115 (14) in the width direction is L2. , L1−L2 = ΔL is larger than 0, it is determined that the tail remains. In such a case, in the conductive circuit 119 in this embodiment, ΔL only needs to be smaller than that of the conventional circuit, more preferably, L1 and L2 are the same (FIG. 2A), and more preferably L1 is It is smaller than L2. When L1 is smaller than L2, the copper foil layer 104 in cross-sectional view has a region where the width in the planar direction of the copper foil layer 104 is smaller than the width in the planar direction of the metal layer 115 (FIG. 2B). . Such a shape of the conductive circuit 119 specified by L1 and L2 can be said to be a good wiring shape.
 また、本実施の形態における良好な配線形状とは、第2に、金属層115の形状が、所望の形状を維持しているという特性で特定されているものを指す(図2(a)および(b))。ここでいう、所望の形状とは、設計通りの形状を意味しており、例えば、四角形状などを指す。L1がL2と同一、さらにはL1がL2より小さい場合であっても、銅箔層104のサイドエッチング特性を向上させているので、このような形状が実現できる。 Moreover, the favorable wiring shape in this Embodiment refers to what the shape of the metal layer 115 is specified by the characteristic that the desired shape is maintained (FIG. 2A and FIG. 2). (B)). The desired shape here means a shape as designed, for example, a square shape or the like. Even when L1 is the same as L2 and L1 is smaller than L2, the side etching characteristics of the copper foil layer 104 are improved, and thus such a shape can be realized.
 また、銅箔層104の断面形状としては、図2(a)に示すように、金属層115と同じ幅を有する矩形形状でもよいし、図2(b)に示すように、逆テーパ形状でもよい。この逆テーパ形状の銅箔層104は、平面視において、第1面(上面20)から第2面(下面22)に向かって、その面積が小さくなるものでもよい(ただし、製造工程におけるバラツキにより、側面24の一部において凹凸が形成されていてもよい)。また、図5に示すように、幅方向の断面視において、絶縁層102に対する垂線と側面24との成す角θ(左回りの角度)が、たとえば、好ましくは0度以上20度以下であり、より好ましくは1度以上10度以下である。 Further, the cross-sectional shape of the copper foil layer 104 may be a rectangular shape having the same width as the metal layer 115 as shown in FIG. 2A, or may be an inversely tapered shape as shown in FIG. Good. The reverse taper-shaped copper foil layer 104 may have a surface area that decreases from the first surface (upper surface 20) to the second surface (lower surface 22) in plan view (however, due to variations in the manufacturing process). , Irregularities may be formed on a part of the side surface 24). Further, as shown in FIG. 5, in a cross-sectional view in the width direction, an angle θ (a counterclockwise angle) formed between a perpendicular to the insulating layer 102 and the side surface 24 is, for example, preferably 0 degrees or more and 20 degrees or less, More preferably, it is 1 degree or more and 10 degrees or less.
 また、その他の銅箔層104の形状としては、図6(a)に示す、かまぼこ形状でもよいし、図6(b)に示す、くびれ形状でもよい。このような形状の銅箔層104を用いることで、導電回路119においてL1をL2より小さくすることができ、さらには、逆テーパ形状と比較して絶縁層102との接触面積を一定以上確保することも可能となる。 Further, the shape of the other copper foil layer 104 may be a kamaboko shape shown in FIG. 6 (a) or a constricted shape shown in FIG. 6 (b). By using the copper foil layer 104 having such a shape, L1 can be made smaller than L2 in the conductive circuit 119, and more than a certain contact area with the insulating layer 102 is ensured as compared with the reverse tapered shape. It is also possible.
 また、本実施の形態のプリント配線板においては、ラインアンドスペース(以下、L/Sと呼称する)制御性が優れることについて、図4を用いて説明する。
 図4に示す、スペースS2およびスペースS1は、導電回路19、119が延在する方向に対して、直交する方向の幅方向における、最も隣接している導電回路19、119の間の距離を示す。
 従来のプリント配線板の製造方法においては、銅箔層4のエッチング条件は金属層14の形状をエッチングしないように調整されていたため、金属層14の外側に延在する裾残りの長さは、長くなったり短くなったりする。こうした裾残り部分を常に離間するために、図4(b)に示すように、スペースS2を充分確保する必要があった。言い換えると、スペースS2は、L1の変動に合わせて、調整する必要がある。従来のプリント配線板の製造方法においては、こうしたL1/S2の制御性は低いために、微細な配線を形成することが難しかった。
In the printed wiring board of the present embodiment, it will be described with reference to FIG. 4 that the line and space (hereinafter referred to as L / S) controllability is excellent.
The space S2 and the space S1 illustrated in FIG. 4 indicate the distance between the adjacent conductive circuits 19 and 119 in the width direction perpendicular to the direction in which the conductive circuits 19 and 119 extend. .
In the conventional method for manufacturing a printed wiring board, the etching conditions of the copper foil layer 4 were adjusted so as not to etch the shape of the metal layer 14, so the length of the remaining hem extending outside the metal layer 14 is It gets longer or shorter. In order to always leave such a skirt remainder part, as shown in FIG.4 (b), it was necessary to ensure space S2. In other words, the space S2 needs to be adjusted according to the variation of L1. In the conventional printed wiring board manufacturing method, since the controllability of L1 / S2 is low, it is difficult to form fine wiring.
 これに対して、本実施の形態のプリント配線板の製造方法においては、銅箔層104のサイドエッチング特性を向上させることができるので、金属層115の形状を所望の形状に維持したまま、幅方向における銅箔層104の幅を制御することが可能となる。このため、L1をL2以下とすることができるので(すなわち、裾残りがなくなるので)、スペースS1を、金属層115の最小幅L2により決定することができる。このL2は、前述のとおり、設計通りの値とすることができる。したがって、本実施の形態のプリント配線板の製造方法においては、こうしたL2/S1の制御性に優れている。したがって、L/S制御性に優れているので、接続不良を抑制しつつも、微細配線加工が可能なプリント配線板の製造方法が得られる。 On the other hand, in the printed wiring board manufacturing method of the present embodiment, the side etching characteristics of the copper foil layer 104 can be improved, so that the width of the metal layer 115 is maintained while maintaining the desired shape. The width of the copper foil layer 104 in the direction can be controlled. For this reason, L1 can be made equal to or less than L2 (that is, since there is no remaining skirt), the space S1 can be determined by the minimum width L2 of the metal layer 115. As described above, L2 can be a value as designed. Therefore, in the method for manufacturing a printed wiring board according to the present embodiment, the controllability of L2 / S1 is excellent. Therefore, since the L / S controllability is excellent, it is possible to obtain a method for manufacturing a printed wiring board capable of fine wiring processing while suppressing connection failure.
(第2の実施の形態)
 以下、第2の実施の形態のプリント配線板の製造方法について説明する。第2の実施の形態では、第1の実施の形態で省略した、詳細な製法条件や材料等について例示する。
(Second Embodiment)
Hereinafter, a method for manufacturing a printed wiring board according to the second embodiment will be described. In the second embodiment, detailed manufacturing conditions, materials, and the like omitted in the first embodiment will be exemplified.
 第2の実施の形態のプリント配線板の製造方法は、金属層116を全面にまたは選択的に形成する工程が、銅箔層104および絶縁層102から構成される銅張積層板100を貫通する貫通孔108を形成する工程と、少なくとも貫通孔108の内壁に薬液を接触させる工程と、無電解めっきにより、絶縁層102の上面上と裏面上との銅箔層104とを電気的に接続する無電解めっき層110を形成する工程と、をさらに含む点が、第1の実施の形態と異なる。
 図7および図8は、第2の実施の形態のプリント配線板の製造方法の工程手順を示す断面図である。
In the method of manufacturing a printed wiring board according to the second embodiment, the step of forming the metal layer 116 on the entire surface or selectively penetrates the copper clad laminate 100 composed of the copper foil layer 104 and the insulating layer 102. The step of forming the through hole 108, the step of bringing the chemical solution into contact with at least the inner wall of the through hole 108, and the copper foil layer 104 on the upper surface and the back surface of the insulating layer 102 are electrically connected by electroless plating. The point which further includes the process of forming the electroless-plating layer 110 differs from 1st Embodiment.
7 and 8 are cross-sectional views showing process steps of the method for manufacturing a printed wiring board according to the second embodiment.
 まず、図7(a)に示すように、絶縁層102の両面にキャリア箔層106とともに銅箔層104を張り合わせたキャリア箔付き銅張積層板10を準備する。 First, as shown in FIG. 7A, a copper clad laminate 10 with a carrier foil is prepared in which a copper foil layer 104 is bonded to both surfaces of an insulating layer 102 together with a carrier foil layer 106.
 キャリア箔付き銅張積層板10としては、たとえば、銅張積層板100の少なくとも一面に剥離可能なキャリア箔層106が積層されている。この銅張積層板100は(以下、積層板と呼称することもある)、特に限定されないが、例えば、基材入りの絶縁樹脂層を有する絶縁層102の少なくとも一面に銅箔層104が積層されたものを用いることができる(図では、繊維基材を省略)。この積層板は、単層でもよいが多層構造を有していてもよい。すなわち、積層板としては、コア層のみで構成されていてもよいが、コア層上にビルドアップ層が形成されているものを用いてもよい。このような積層板は、公知のものを適用することができ、例えば、プリプレグを複数枚重ね合わせたもの等を用いることができる。このプリプレグは、特に限定されないが、例えば、ガラスクロス等の基材に、熱硬化性樹脂、硬化剤、及び充填剤等を含有した樹脂組成物を含浸させる等の方法によって得られる。そして、積層板としては、少なくとも片面にキャリア箔付き極薄金属箔を重ね合わせて加熱加圧成形したもの等を用いることができる。また、ビルドアップ層の層間絶縁層には、コア層と同じ材料のものを用いてもよいが、基材または樹脂組成物が異なっていてもよい。本実施の形態では、絶縁層102は、コア層またはビルドアップ層を構成する絶縁樹脂層に相当するものであり、単層又は多層構造のいずれでもよい。ビルドアップ層を備える積層板を用いた例については、第3の実施の形態にて後述する。 As the copper clad laminate 10 with carrier foil, for example, a peelable carrier foil layer 106 is laminated on at least one surface of the copper clad laminate 100. The copper clad laminate 100 (hereinafter also referred to as a laminate) is not particularly limited. For example, a copper foil layer 104 is laminated on at least one surface of an insulating layer 102 having an insulating resin layer containing a base material. Can be used (the fiber substrate is omitted in the figure). The laminated plate may be a single layer or may have a multilayer structure. That is, as a laminated board, you may be comprised only by the core layer, However, You may use what has the buildup layer formed on the core layer. As such a laminated plate, a known one can be applied, for example, a laminate of a plurality of prepregs can be used. Although this prepreg is not specifically limited, For example, it obtains by methods, such as impregnating base materials, such as glass cloth, with the resin composition containing a thermosetting resin, a hardening | curing agent, a filler, etc. And as a laminated board, what superposed | stacked the ultra-thin metal foil with a carrier foil on at least one surface and heat-press-molded etc. can be used. Moreover, the same material as that of the core layer may be used for the interlayer insulating layer of the buildup layer, but the base material or the resin composition may be different. In the present embodiment, the insulating layer 102 corresponds to an insulating resin layer constituting a core layer or a build-up layer, and may be either a single layer or a multilayer structure. An example using a laminated board provided with a buildup layer will be described later in a third embodiment.
 本実施の形態に用いられる積層板、および層間絶縁層を構成する樹脂組成物は、プリント配線板の絶縁材料として用いられる公知の樹脂(以下、絶縁樹脂組成物とも称する)を用いることができ、通常、耐熱性、耐薬品性の良好な熱硬化性樹脂が主に用いられる。上記樹脂組成物は、特に限定されず、少なくとも熱硬化性樹脂が含まれる樹脂組成物であることが好ましい。 As the resin composition constituting the laminate and the interlayer insulating layer used in the present embodiment, a known resin used as an insulating material of a printed wiring board (hereinafter also referred to as an insulating resin composition) can be used. Usually, thermosetting resins having good heat resistance and chemical resistance are mainly used. The resin composition is not particularly limited, and is preferably a resin composition containing at least a thermosetting resin.
 熱硬化性樹脂としては、例えば、ユリア(尿素)樹脂、メラミン樹脂、マレイミド化合物、ポリウレタン樹脂、不飽和ポリエステル樹脂、ベンゾオキサジン環を有する樹脂、ビスアリルナジイミド化合物、ビニルベンジル樹脂、ビニルベンジルエーテル樹脂、ベンゾシクロブテン樹脂、シアネート樹脂、エポキシ樹脂等が挙げられる。これらの中でも、硬化性樹脂は、ガラス転移温度が200℃以上になる組合せが好ましい。例えば、スピロ環含有、複素環式、トリメチロール型、ビフェニル型、ナフタレン型、アントラン型、ノボラック型の2または3官能以上のエポキシ樹脂、シアネート樹脂(シアネート樹脂のプレポリマーを含む)、マレイミド化合物、ベンゾシクロブテン樹脂、ベンゾオキサジン環を有する樹脂を用いるのが好ましい。エポキシ樹脂および/またはシアネート樹脂を用いる場合には、線膨張が小さくなり、耐熱性が著しく向上する。また、エポキシ樹脂および/またはシアネート樹脂を高充填量の充填材と組み合わせると、難燃性、耐熱性、耐衝撃性、高剛性、および電気特性(低誘電率、低誘電正接)に優れるというメリットがある。ここで、耐熱性の向上は、上記熱硬化性樹脂の硬化反応後にガラス転移温度が200℃以上になること、硬化後の樹脂組成物の熱分解温度が高くなること、250℃以上での反応残渣などの低分子量が低減することに起因すると考えられる。更に、また、難燃性の向上は、芳香族系の熱硬化性樹脂のためその構造上ベンゼン環の割合が高いため、このベンゼン環が炭化(グラファイト化)し易く、炭化部分が生じることに起因すると考えられる。 Examples of thermosetting resins include urea (urea) resins, melamine resins, maleimide compounds, polyurethane resins, unsaturated polyester resins, resins having a benzoxazine ring, bisallyl nadiimide compounds, vinyl benzyl resins, vinyl benzyl ether resins. Benzocyclobutene resin, cyanate resin, epoxy resin and the like. Among these, the curable resin is preferably a combination having a glass transition temperature of 200 ° C. or higher. For example, spiro ring-containing, heterocyclic, trimethylol type, biphenyl type, naphthalene type, anthran type, novolak type bifunctional or trifunctional epoxy resin, cyanate resin (including prepolymer of cyanate resin), maleimide compound, It is preferable to use a benzocyclobutene resin or a resin having a benzoxazine ring. When using an epoxy resin and / or a cyanate resin, the linear expansion is reduced and the heat resistance is remarkably improved. In addition, combining epoxy resin and / or cyanate resin with a high amount of fillers has the advantage of excellent flame retardancy, heat resistance, impact resistance, high rigidity, and electrical properties (low dielectric constant, low dielectric loss tangent) There is. Here, the improvement in heat resistance is that the glass transition temperature becomes 200 ° C. or higher after the curing reaction of the thermosetting resin, the thermal decomposition temperature of the cured resin composition increases, and the reaction at 250 ° C. or higher. This is considered to result from the reduction of low molecular weight such as residues. Furthermore, the improvement in flame retardancy is due to the fact that the benzene ring is easily carbonized (graphitized) and a carbonized portion is generated because of the high proportion of the benzene ring due to its structure due to the aromatic thermosetting resin. It is thought to be caused.
 上記樹脂組成物は、さらに、本発明の効果を損なわない範囲で難燃剤を含有しても良いが、環境の側面から非ハロゲン系難燃剤が好ましい。難燃剤としては、例えば、有機リン系難燃剤、有機系窒素含有リン化合物、窒素化合物、シリコーン系難燃剤、金属水酸化物等が挙げられる。有機リン系難燃剤としては、三光(株)製のHCA、HCA-HQ、HCA-NQ等のホスフィン化合物、昭和高分子(株)製のHFB-2006M等のリン含有ベンゾオキサジン化合物、北興化学工業(株)製のPPQ、クラリアント(株)製のOP930、大八化学(株)製のPX200等のリン酸エステル化合物、東都化成(株)製のFX289、FX310等のリン含有エポキシ樹脂、東都化成(株)製のERF001等のリン含有フェノキシ樹脂等が挙げられる。有機系窒素含有リン化合物としては、四国化成工業(株)製のSP670、SP703等のリン酸エステルアミド化合物、大塚化学(株)社製のSPB100、SPE100、(株)伏見製作所製FP-series等のホスファゼン化合物等が挙げられる。金属水酸化物としては、宇部マテリアルズ(株)製のUD650、UD653等の水酸化マグネシウム、住友化学(株)製CL310、昭和電工(株)製、HP-350等の水酸化アルミニウム等が挙げられる。 The resin composition may further contain a flame retardant as long as the effects of the present invention are not impaired, but a non-halogen flame retardant is preferred from the environmental aspect. Examples of the flame retardant include an organic phosphorus flame retardant, an organic nitrogen-containing phosphorus compound, a nitrogen compound, a silicone flame retardant, and a metal hydroxide. Examples of organophosphorus flame retardants include phosphine compounds such as HCA, HCA-HQ, and HCA-NQ manufactured by Sanko Co., Ltd., and phosphorus-containing benzoxazine compounds such as HFB-2006M manufactured by Showa Polymer Co., Ltd. Phosphoric acid ester compounds such as PPQ manufactured by Clariant Co., Ltd., OP930 manufactured by Clariant Co., Ltd., PX200 manufactured by Daihachi Chemical Co., Ltd., phosphorus-containing epoxy resins such as FX289 and FX310 manufactured by Toto Kasei Co., Ltd. Examples thereof include phosphorus-containing phenoxy resins such as ERF001 manufactured by Co., Ltd. Examples of organic nitrogen-containing phosphorus compounds include phosphate ester amide compounds such as SP670 and SP703 manufactured by Shikoku Kasei Kogyo Co., Ltd., SPB100 and SPE100 manufactured by Otsuka Chemical Co., Ltd., and FP-series manufactured by Fushimi Seisakusho Co., Ltd. And phosphazene compounds. Examples of the metal hydroxide include magnesium hydroxide such as UD650 and UD653 manufactured by Ube Materials Co., Ltd., CL310 manufactured by Sumitomo Chemical Co., Ltd., aluminum hydroxide such as HP-350 manufactured by Showa Denko Co., Ltd., and the like. It is done.
 上記樹脂組成物に用いるエポキシ樹脂としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールM型エポキシ樹脂、ビスフェノールP型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂などのビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂などのアリールアルキレン型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、2官能ないし4官能エポキシ型ナフタレン樹脂、ナフチレンエーテル型エポキシ樹脂、ビナフチル型エポキシ樹脂、ナフタレンアラルキル型エポキシ樹脂などのナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、フェノキシ型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノルボルネン型エポキシ樹脂、アダマンタン型エポキシ樹脂、フルオレン型エポキシ樹脂などが挙げられる。 Examples of the epoxy resin used in the resin composition include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, bisphenol M type epoxy resin, bisphenol P type epoxy resin, and bisphenol Z. Type epoxy resin, bisphenol type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, etc. novolac type epoxy resin, biphenyl type epoxy resin, xylylene type epoxy resin, biphenyl aralkyl type epoxy resin, etc. aryl alkylene type epoxy resin , Naphthol type epoxy resin, naphthalene diol type epoxy resin, bifunctional to tetrafunctional epoxy type naphthalene resin, naphthylene ether type epoxy Naphthalene-type epoxy resins such as Si resin, binaphthyl-type epoxy resin, naphthalene-aralkyl-type epoxy resin, anthracene-type epoxy resin, phenoxy-type epoxy resin, dicyclopentadiene-type epoxy resin, norbornene-type epoxy resin, adamantane-type epoxy resin, fluorene-type epoxy Resin etc. are mentioned.
 エポキシ樹脂として、これらの中の1種類を単独で用いてもよいし、異なる重量平均分子量を有する2種類以上を併用してもよい。また、これらの中の1種類または2種類以上と、それらのプレポリマーとを併用してもよい。 As the epoxy resin, one of these may be used alone, or two or more having different weight average molecular weights may be used in combination. Moreover, you may use together 1 type, or 2 or more types of these, and those prepolymers.
 これらエポキシ樹脂の中でもとくにアリールアルキレン型エポキシ樹脂が好ましい。これにより、吸湿半田耐熱性および難燃性をさらに向上させることができる。 Among these epoxy resins, aryl alkylene type epoxy resins are particularly preferable. Thereby, moisture-absorbing solder heat resistance and flame retardance can be further improved.
 アリールアルキレン型エポキシ樹脂とは、繰り返し単位中に一つ以上のアリールアルキレン基を有するエポキシ樹脂をいう。例えばキシリレン型エポキシ樹脂、ビフェニルジメチレン型エポキシ樹脂などが挙げられる。これらの中でもビフェニルジメチレン型エポキシ樹脂が好ましい。ビフェニルジメチレン型エポキシ樹脂は、例えば下記一般式(1)で示すことができる。また、ビフェニルジメチレン型エポキシ樹脂としては、例えば日本化薬(株)製のNC-3000、NC-3000L、NC-3000-FHが挙げられる。 The arylalkylene type epoxy resin refers to an epoxy resin having one or more arylalkylene groups in a repeating unit. For example, a xylylene type epoxy resin, a biphenyl dimethylene type epoxy resin, etc. are mentioned. Among these, a biphenyl dimethylene type epoxy resin is preferable. A biphenyl dimethylene type | mold epoxy resin can be shown, for example by following General formula (1). Examples of the biphenyl dimethylene type epoxy resin include NC-3000, NC-3000L, and NC-3000-FH manufactured by Nippon Kayaku Co., Ltd.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記一般式(1)で示されるビフェニルジメチレン型エポキシ樹脂の平均繰り返し単位nは任意の整数である。nの下限は、とくに限定されないが、1以上が好ましく、とくに2以上が好ましい。nが小さすぎると、ビフェニルジメチレン型エポキシ樹脂が結晶化しやすくなり、汎用溶媒に対する溶解性が比較的低下するため、取り扱いが困難となる場合がある。nの上限は、とくに限定されないが、10以下が好ましく、とくに5以下が好ましい。nが大きすぎると樹脂の流動性が低下し、成形不良などの原因となる場合がある。 The average repeating unit n of the biphenyl dimethylene type epoxy resin represented by the general formula (1) is an arbitrary integer. The lower limit of n is not particularly limited, but is preferably 1 or more, and particularly preferably 2 or more. When n is too small, the biphenyl dimethylene type epoxy resin is easily crystallized, and the solubility in a general-purpose solvent is relatively lowered, which may make handling difficult. The upper limit of n is not particularly limited, but is preferably 10 or less, and particularly preferably 5 or less. If n is too large, the fluidity of the resin is lowered, which may cause molding defects.
 上記以外のエポキシ樹脂としては、縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂が好ましい。これにより、耐熱性、低熱膨張性をさらに向上させることができる。 As the epoxy resin other than the above, a novolac type epoxy resin having a condensed ring aromatic hydrocarbon structure is preferable. Thereby, heat resistance and low thermal expansibility can further be improved.
 縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂は、ナフタレン、アントラセン、フェナントレン、テトラセン、クリセン、ピレン、トリフェニレン、およびテトラフェン、その他の縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂である。縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂は、複数の芳香環が規則的に配列することができるため低熱膨張性に優れる。また、ガラス転移温度も高いため耐熱性に優れる。さらに、繰返し構造の分子量が大きいため従来のノボラック型エポキシ樹脂に比べ難燃性に優れ、シアネート樹脂と組合せることでシアネート樹脂の弱点の脆弱性を改善することができる。したがって、シアネート樹脂と併用して用いることで、さらにガラス転移温度が高くなるため鉛フリー対応の実装信頼性に優れる。 The novolak type epoxy resin having a condensed ring aromatic hydrocarbon structure is a novolak type epoxy resin having a naphthalene, anthracene, phenanthrene, tetracene, chrysene, pyrene, triphenylene, and tetraphen or other condensed ring aromatic hydrocarbon structure. . The novolac type epoxy resin having a condensed ring aromatic hydrocarbon structure is excellent in low thermal expansion because a plurality of aromatic rings can be regularly arranged. Moreover, since the glass transition temperature is also high, it is excellent in heat resistance. Furthermore, since the molecular weight of the repeating structure is large, it is superior in flame retardancy as compared with conventional novolac type epoxy resins, and the weakness of the weakness of the cyanate resin can be improved by combining with the cyanate resin. Therefore, when used in combination with a cyanate resin, the glass transition temperature is further increased, so that the lead-free compatible mounting reliability is excellent.
 縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂は、フェノール類化合物とホルムアルデヒド類化合物、および縮合環芳香族炭化水素化合物から合成された、ノボラック型フェノール樹脂をエポキシ化したものである。 The novolak-type epoxy resin having a condensed ring aromatic hydrocarbon structure is obtained by epoxidizing a novolac-type phenol resin synthesized from a phenol compound, a formaldehyde compound, and a condensed ring aromatic hydrocarbon compound.
 フェノール類化合物は、とくに限定されないが、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾールなどのクレゾール類、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノールなどのキシレノール類、2,3,5トリメチルフェノールなどのトリメチルフェノール類、o-エチルフェノール、m-エチルフェノール、p-エチルフェノールなどのエチルフェノール類、イソプロピルフェノール、ブチルフェノール、t-ブチルフェノールなどのアルキルフェノール類、o-フェニルフェノール、m-フェニルフェノール、p-フェニルフェノール、カテコール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレンなどのナフタレンジオール類、レゾルシン、カテコール、ハイドロキノン、ピロガロール、フルオログルシンなどの多価フェノール類、アルキルレゾルシン、アルキルカテコール、アルキルハイドロキノンなどのアルキル多価フェノール類が挙げられる。これらのうち、コスト面および分解反応に与える効果から、フェノールが好ましい。 The phenol compound is not particularly limited, but examples thereof include cresols such as phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2, 6-xylenol, 3,4-xylenol, xylenols such as 3,5-xylenol, trimethylphenols such as 2,3,5 trimethylphenol, ethyl such as o-ethylphenol, m-ethylphenol, p-ethylphenol Phenols, alkylphenols such as isopropylphenol, butylphenol, t-butylphenol, o-phenylphenol, m-phenylphenol, p-phenylphenol, catechol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphtha And naphthalenediols such as 2,7-dihydroxynaphthalene, polyphenols such as resorcin, catechol, hydroquinone, pyrogallol, and fluoroglucin, and alkyl polyhydric phenols such as alkylresorcin, alkylcatechol, and alkylhydroquinone. . Of these, phenol is preferable from the viewpoint of cost and the effect on the decomposition reaction.
 アルデヒド類化合物は、とくに限定されないが、例えば、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、プロピオンアルデヒド、ポリオキシメチレン、クロラール、ヘキサメチレンテトラミン、フルフラール、グリオキザール、n-ブチルアルデヒド、カプロアルデヒド、アリルアルデヒド、ベンズアルデヒド、クロトンアルデヒド、アクロレイン、テトラオキシメチレン、フェニルアセトアルデヒド、o-トルアルデヒド、サリチルアルデヒド、ジヒドロキシベンズアルデヒド、トリヒドロキシベンズアルデヒド、4-ヒドロキシ-3-メトキシアルデヒドパラホルムアルデヒドなどが挙げられる。 The aldehyde compound is not particularly limited, and examples thereof include formaldehyde, paraformaldehyde, trioxane, acetaldehyde, propionaldehyde, polyoxymethylene, chloral, hexamethylenetetramine, furfural, glyoxal, n-butyraldehyde, caproaldehyde, allylaldehyde, Examples include benzaldehyde, crotonaldehyde, acrolein, tetraoxymethylene, phenylacetaldehyde, o-tolualdehyde, salicylaldehyde, dihydroxybenzaldehyde, trihydroxybenzaldehyde, 4-hydroxy-3-methoxyaldehyde paraformaldehyde and the like.
 縮合環芳香族炭化水素化合物は、とくに限定されないが、例えば、メトキシナフタレン、ブトキシナフタレンなどのナフタレン誘導体、メトキシアントラセンなどのアントラセン誘導体、メトキシフェナントレンなどのフェナントレン誘導体、その他テトラセン誘導体、クリセン誘導体、ピレン誘導体、誘導体トリフェニレン、およびテトラフェン誘導体などが挙げられる。 The fused ring aromatic hydrocarbon compound is not particularly limited, but for example, naphthalene derivatives such as methoxynaphthalene and butoxynaphthalene, anthracene derivatives such as methoxyanthracene, phenanthrene derivatives such as methoxyphenanthrene, other tetracene derivatives, chrysene derivatives, pyrene derivatives, Derivatives such as triphenylene and tetraphen derivatives are mentioned.
 縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂は、とくに限定されないが、例えば、メトキシナフタレン変性オルトクレゾールノボラックエポキシ樹脂、ブトキシナフタレン変性メタ(パラ)クレゾールノボラックエポキシ樹脂、およびメトキシナフタレン変性ノボラックエポキシ樹脂などが挙げられる。これらの中でも、下記式(2)で表される縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂が好ましい。また、縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂としては、例えばDIC(株)製のHP-5000が挙げられる。 The novolak-type epoxy resin having a condensed ring aromatic hydrocarbon structure is not particularly limited. For example, methoxynaphthalene-modified orthocresol novolak epoxy resin, butoxynaphthalene-modified meta (para) cresol novolak epoxy resin, and methoxynaphthalene-modified novolak epoxy resin Etc. Among these, a novolac type epoxy resin having a condensed ring aromatic hydrocarbon structure represented by the following formula (2) is preferable. An example of the novolak type epoxy resin having a condensed ring aromatic hydrocarbon structure is HP-5000 manufactured by DIC Corporation.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、Arは縮合環芳香族炭化水素基であり、Rは互いに同一であっても異なっていてもよく、水素原子、炭素数1以上10以下の炭化水素基またはハロゲン元素、フェニル基、ベンジル基などのアリール基、およびグリシジルエーテルを含む有機基から選ばれる基であり、n、p、およびqは1以上の整数であり、またp、qの値は、繰り返し単位毎に同一でも、異なっていてもよい。) (In the formula, Ar is a condensed ring aromatic hydrocarbon group, R may be the same or different from each other, and is a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, a halogen element, a phenyl group, It is a group selected from an aryl group such as a benzyl group and an organic group containing glycidyl ether, n, p and q are integers of 1 or more, and the values of p and q may be the same for each repeating unit, May be different.)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式(2)中のArは、式(3)中の(Ar1)~(Ar4)で表される構造であり、式(3)中のRは、互いに同一であっても異なっていてもよく、水素原子、炭素数1以上10以下の炭化水素基またはハロゲン元素、フェニル基、ベンジル基などのアリール基、およびグリシジルエーテルを含む有機基から選ばれる基である。) (Ar in formula (2) is a structure represented by (Ar1) to (Ar4) in formula (3), and R in formula (3) may be the same or different from each other. It is often a group selected from a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms or a halogen element, an aryl group such as a phenyl group and a benzyl group, and an organic group including glycidyl ether.)
 さらに上記以外のエポキシ樹脂としてはナフトール型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、2官能ないし4官能エポキシ型ナフタレン樹脂、ナフチレンエーテル型エポキシ樹脂などのナフタレン型エポキシ樹脂が好ましい。これにより、耐熱性、低熱膨張性をさらに向上させることができる。また、ベンゼン環に比べナフタレン環のπ-πスタッキン効果が高いため、特に、低熱膨張性、低熱収縮性に優れる。更に、多環構造のため剛直効果が高く、ガラス転移温度が特に高いため、リフロー前後の熱収縮変化が小さい。
 ナフトール型エポキシ樹脂は、例えば下記一般式(4-1)で示すことができる。また、ナフトール型エポキシ樹脂としては、例えば新日鐵化学(株)製のESN-375が挙げられる。
 ナフタレンジオール型エポキシ樹脂は、例えば下記式(4-2)で示すことができる。ナフタレンジオール型エポキシ樹脂としては、例えばDIC(株)製のHP-4032Dが挙げられる。
 2官能ないし4官能エポキシ型ナフタレン樹脂は、例えば下記式(4-3)(4-4)(4-5)で示すことができる。2官能ないし4官能エポキシ型ナフタレン樹脂としては、例えばDIC(株)製のHP-4700、HP-4770が挙げられる。
 ナフチレンエーテル型エポキシ樹脂は、例えば下記一般式(4-6)で示すことができる。ナフチレンエーテル型エポキシ樹脂としては、例えばDIC(株)製のHP-6000が挙げられる。
Further, as the epoxy resin other than the above, naphthalene type epoxy resins such as naphthol type epoxy resin, naphthalene diol type epoxy resin, bifunctional or tetrafunctional epoxy type naphthalene resin, naphthylene ether type epoxy resin and the like are preferable. Thereby, heat resistance and low thermal expansibility can further be improved. In addition, since the naphthalene ring has a higher π-π stacking effect than the benzene ring, it is particularly excellent in low thermal expansion and low thermal shrinkage. Furthermore, since the polycyclic structure has a high rigidity effect and the glass transition temperature is particularly high, the change in heat shrinkage before and after reflow is small.
The naphthol type epoxy resin can be represented, for example, by the following general formula (4-1). Examples of the naphthol type epoxy resin include ESN-375 manufactured by Nippon Steel Chemical Co., Ltd.
The naphthalene diol type epoxy resin can be represented by, for example, the following formula (4-2). An example of the naphthalene diol type epoxy resin is HP-4032D manufactured by DIC Corporation.
The bifunctional to tetrafunctional epoxy type naphthalene resin can be represented by, for example, the following formulas (4-3) (4-4) (4-5). Examples of the bifunctional to tetrafunctional epoxy type naphthalene resins include HP-4700 and HP-4770 manufactured by DIC Corporation.
The naphthylene ether type epoxy resin can be represented by, for example, the following general formula (4-6). Examples of the naphthylene ether type epoxy resin include HP-6000 manufactured by DIC Corporation.
Figure JPOXMLDOC01-appb-C000004
(nは平均1以上6以下の数を示し、Rはグリシジル基または炭素数1以上10以下の炭化水素基を示す。)
Figure JPOXMLDOC01-appb-C000004
(N represents an average number of 1 to 6, and R represents a glycidyl group or a hydrocarbon group having 1 to 10 carbon atoms.)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
(式中、Rは水素原子又はメチル基を表し、Rはそれぞれ独立的に水素原子、炭素原子数1~4のアルキル基、アラルキル基、ナフタレン基、又はグリシジルエーテル基含有ナフタレン基を表し、o及びmはそれぞれ0~2の整数であって、かつo又はmの少なくとも何れか一方は1以上である。)
Figure JPOXMLDOC01-appb-C000007
(Wherein R 1 represents a hydrogen atom or a methyl group, and R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aralkyl group, a naphthalene group, or a glycidyl ether group-containing naphthalene group. , O and m are each an integer of 0 to 2, and at least one of o and m is 1 or more.)
 上記樹脂組成物に用いるシアネート樹脂は、例えばハロゲン化シアン化合物とフェノール類とを反応させることにより得ることができる。シアネート樹脂の具体例としては、例えばフェノールノボラック型シアネート樹脂、クレゾールノボラック型シアネート樹脂等のノボラック型シアネート樹脂、ナフトールアラルキル型シアネート樹脂、ジシクロペンタジエン型シアネート樹脂、ビフェニル型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールAD型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂等のビスフェノール型シアネート樹脂等を挙げることができる。 The cyanate resin used in the resin composition can be obtained, for example, by reacting a cyanogen halide compound with phenols. Specific examples of the cyanate resin include novolak-type cyanate resins such as phenol novolak-type cyanate resins and cresol novolak-type cyanate resins, naphthol aralkyl-type cyanate resins, dicyclopentadiene-type cyanate resins, biphenyl-type cyanate resins, and bisphenol A-type cyanate resins. And bisphenol type cyanate resins such as bisphenol AD type cyanate resin and tetramethyl bisphenol F type cyanate resin.
 これらの中でも特にノボラック型シアネート樹脂、ナフトールアラルキル型シアネート樹脂、ジシクロペンタジエン型シアネート樹脂、ビフェニル型シアネート樹脂を含むことが好ましい。さらに、樹脂組成物は、このシアネート樹脂を樹脂組成物の全固形分中に10重量%以上含むことが好ましい。これにより、プリプレグの耐熱性(ガラス転移温度、熱分解温度)を向上できる。またプリプレグの熱膨張係数(特に、プリプレグの厚さ方向の熱膨張係数)を低下することができる。プリプレグの厚さ方向の熱膨張係数が低下すると、多層プリント配線の応力歪みを軽減できる。更に、微細な層間接続部を有する多層プリント配線板においては、その接続信頼性を大幅に向上することができる。 Among these, it is particularly preferable to include a novolak type cyanate resin, a naphthol aralkyl type cyanate resin, a dicyclopentadiene type cyanate resin, and a biphenyl type cyanate resin. Furthermore, the resin composition preferably contains 10% by weight or more of this cyanate resin in the total solid content of the resin composition. Thereby, the heat resistance (glass transition temperature, thermal decomposition temperature) of a prepreg can be improved. Further, the thermal expansion coefficient of the prepreg (particularly, the thermal expansion coefficient in the thickness direction of the prepreg) can be reduced. When the thermal expansion coefficient in the thickness direction of the prepreg is lowered, the stress strain of the multilayer printed wiring can be reduced. Furthermore, in a multilayer printed wiring board having fine interlayer connection portions, the connection reliability can be greatly improved.
 上記樹脂組成物に用いるノボラック型シアネート樹脂の中でも好適なものとしては、下記式(5)で表わされるノボラック型シアネート樹脂が挙げられる。重量平均分子量が2000以上、より好ましくは2,000~10,000、更に好ましくは2,200~3,500の式(5)で表わされるノボラック型シアネート樹脂と、重量平均分子量が1500以下、より好ましくは200~1,300の式(5)で表わされるノボラック型シアネート樹脂とを組み合わせて用いることが好ましい(以下、「~」は、特に明示しない限り、上限値と下限値を含むことを表す)。なお、本実施の形態において重量平均分子量は、ポリスチレン換算のゲルパーミエーションクロマトグラフィー法で測定した値である。 Among the novolak-type cyanate resins used in the resin composition, a novolak-type cyanate resin represented by the following formula (5) is preferable. A novolac type cyanate resin represented by the formula (5) having a weight average molecular weight of 2000 or more, more preferably 2,000 to 10,000, still more preferably 2,200 to 3,500, and a weight average molecular weight of 1500 or less, more Preferably, it is preferably used in combination with a novolak-type cyanate resin represented by the formula (5) of 200 to 1,300 (hereinafter, “to” represents that it includes an upper limit value and a lower limit value unless otherwise specified). ). In the present embodiment, the weight average molecular weight is a value measured by a gel-permeation chromatography method in terms of polystyrene.
Figure JPOXMLDOC01-appb-C000008
 式(5)中、nは0以上の整数を示す。
 また、シアネート樹脂としては、下記一般式(6)で表わされるシアネート樹脂も好適に用いられる。下記一般式(6)で表わされるシアネート樹脂は、α-ナフトールあるいはβ-ナフトール等のナフトール類とp-キシリレングリコール、α,α'-ジメトキシ-p-キシレン、1,4-ジ(2-ヒドロキシ-2-プロピル)ベンゼン等との反応により得られるナフトールアラルキル樹脂とシアン酸とを縮合させて得られるものである。一般式(6)のnは1以上であるが、10以下であることがさらに望ましい。nが10以下の場合、樹脂粘度が高くならず、基材への含浸性が良好で、積層板としての性能の低下を抑制できる。また、合成時に分子内重合が起こりにくく、水洗時の分液性が向上し、収量の低下を防止できる。
Figure JPOXMLDOC01-appb-C000008
In formula (5), n represents an integer of 0 or more.
Moreover, as cyanate resin, the cyanate resin represented by following General formula (6) is also used suitably. Cyanate resins represented by the following general formula (6) include naphthols such as α-naphthol and β-naphthol, p-xylylene glycol, α, α'-dimethoxy-p-xylene, 1,4-di (2- It is obtained by condensing naphthol aralkyl resin obtained by reaction with hydroxy-2-propyl) benzene and cyanic acid. In the general formula (6), n is 1 or more, but is more preferably 10 or less. When n is 10 or less, the resin viscosity is not high, the impregnation property to the base material is good, and the deterioration of the performance as a laminate can be suppressed. In addition, intramolecular polymerization is unlikely to occur at the time of synthesis, and the liquid separation property at the time of washing with water is improved, so that a decrease in yield can be prevented.
Figure JPOXMLDOC01-appb-C000009
 式(6)中、Rは水素原子またはメチル基を示し、Rは同一でも異なっていてもよく、nは1以上の整数を示す。
Figure JPOXMLDOC01-appb-C000009
In formula (6), R represents a hydrogen atom or a methyl group, R may be the same or different, and n represents an integer of 1 or more.
 また、シアネート樹脂としては、下記一般式(7)で表わされるジシクロペンタジエン型シアネート樹脂も好適に用いられる。下記一般式(7)で表わされジシクロペンタジエン型シアネート樹脂は、下記一般式(7)のnは0以上8以下であることがさらに望ましい。nが8以下の場合、樹脂粘度が高くならず、基材への含浸性が良好で、積層板としての性能の低下を防止できる。また、ジシクロペンタジエン型シアネート樹脂を用いることで、低吸湿性、および耐薬品に優れる。 Also, as the cyanate resin, a dicyclopentadiene type cyanate resin represented by the following general formula (7) is also preferably used. In the dicyclopentadiene type cyanate resin represented by the following general formula (7), n in the following general formula (7) is more preferably 0 or more and 8 or less. When n is 8 or less, the resin viscosity is not high, the impregnation property to the base material is good, and the deterioration of the performance as a laminated board can be prevented. Moreover, by using a dicyclopentadiene type cyanate resin, it is excellent in low hygroscopicity and chemical resistance.
Figure JPOXMLDOC01-appb-C000010
 nは0~8の整数を示す。
Figure JPOXMLDOC01-appb-C000010
n represents an integer of 0 to 8.
 また、樹脂組成物はさらに硬化促進剤を含有しても良い。例えば、熱硬化性樹脂がエポキシ樹脂やシアネート樹脂であれば、フェノール樹脂やエポキシ樹脂やシアネート樹脂の硬化促進剤を用いることができる。フェノール樹脂は、特に限定されないが、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂、アリールアルキレン型ノボラック樹脂等のノボラック型フェノール樹脂、未変性のレゾールフェノール樹脂、桐油、アマニ油、クルミ油等で変性した油変性レゾールフェノール樹脂等のレゾール型フェノール樹脂等が挙げられる。上記フェノール樹脂としては、フェノールノボラック又はクレゾールノボラック樹脂が好ましい。中でも、ビフェニルアラルキル変性フェノールノボラック樹脂が、吸湿半田耐熱性の点から好ましい。
 これらの中の1種類を単独で用いることもできるし、異なる重量平均分子量を有する2種類以上を併用したり、1種類または2種類以上と、それらのプレポリマーを併用したりすることもできる。
Moreover, the resin composition may further contain a curing accelerator. For example, if the thermosetting resin is an epoxy resin or a cyanate resin, a curing accelerator for phenol resin, epoxy resin, or cyanate resin can be used. The phenol resin is not particularly limited. For example, phenol novolak resin, cresol novolak resin, bisphenol A novolak resin, arylalkylene type novolak resin and other novolak type phenol resins, unmodified resole phenol resin, tung oil, linseed oil, walnut oil Examples thereof include resol type phenol resins such as oil-modified resol phenol resins modified with the above. As said phenol resin, a phenol novolak or a cresol novolak resin is preferable. Among these, biphenyl aralkyl-modified phenol novolac resin is preferable from the viewpoint of moisture absorption solder heat resistance.
One of these can be used alone, or two or more having different weight average molecular weights can be used in combination, or one or two or more of these prepolymers can be used in combination.
 上記硬化促進剤は、特に限定されないが、例えば、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)、トリスアセチルアセトナートコバルト(III)等の有機金属塩、トリエチルアミン、トリブチルアミン、ジアザビシクロ[2,2,2]オクタン等の3級アミン類、2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-エチル-4-エチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、2-ウンデシルイミダゾール、1-シアノエチルー2-エチル-4-メチルイミダゾール、1-シアノエチルー2-ウンデシルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシイミダゾール、2-フェニル-4,5-ジヒドロキシイミダゾール、2,3-ジヒドロ-1H-ピロロ(1,2-a)ベンズイミダゾール等のイミダゾール類、フェノール、ビスフェノールA、ノニルフェノール等のフェノール化合物、酢酸、安息香酸、サリチル酸、パラトルエンスルホン酸等の有機酸、オニウム塩化合物等またはこの混合物が挙げられる。これらの中の誘導体も含めて1種類を単独で用いることもできるし、これらの誘導体も含めて2種類以上を併用したりすることもできる。 The curing accelerator is not particularly limited. For example, organic metals such as zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), and trisacetylacetonate cobalt (III) Salts, tertiary amines such as triethylamine, tributylamine, diazabicyclo [2,2,2] octane, 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-ethyl-4-ethylimidazole 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 2-phenyl- 4-methyl Imidazoles such as 5-hydroxyimidazole, 2-phenyl-4,5-dihydroxyimidazole, 2,3-dihydro-1H-pyrrolo (1,2-a) benzimidazole, phenolic compounds such as phenol, bisphenol A, nonylphenol, Examples include acetic acid, benzoic acid, salicylic acid, organic acids such as p-toluenesulfonic acid, onium salt compounds, and the like, or mixtures thereof. One of these can be used alone, including derivatives thereof, or two or more of these can be used in combination.
 また、上記熱硬化性樹脂中には、耐熱性の点から、マレイミド化合物が含まれていてもよい。マレイミド化合物は1分子中に1個以上のマレイミド基を有する化合物であれば、特に限定されるものではない。その具体例としては、N-フェニルマレイミド、N-ヒドロキシフェニルマレイミド、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタン、ポリフェニルメタンマレイミド、これらマレイミド化合物のプレポリマー、もしくはマレイミド化合物とアミン化合物のプレポリマーなどが挙げられる。 The thermosetting resin may contain a maleimide compound from the viewpoint of heat resistance. The maleimide compound is not particularly limited as long as it is a compound having one or more maleimide groups in one molecule. Specific examples thereof include N-phenylmaleimide, N-hydroxyphenylmaleimide, bis (4-maleimidophenyl) methane, 2,2-bis {4- (4-maleimidophenoxy) -phenyl} propane, bis (3,5 -Dimethyl-4-maleimidophenyl) methane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, bis (3,5-diethyl-4-maleimidophenyl) methane, polyphenylmethanemaleimide, these maleimide compounds Or a prepolymer of a maleimide compound and an amine compound.
 また、上記熱硬化性樹脂中には、金属箔との密着性の点から、フェノキシ樹脂、ポリビニルアルコール系樹脂、ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂が含まれていてもよい。 The thermosetting resin may contain a phenoxy resin, a polyvinyl alcohol resin, a polyimide, a polyamide, a polyamideimide, a polyethersulfone resin, or a polyphenylene ether resin from the viewpoint of adhesion to the metal foil. Good.
 フェノキシ樹脂としては、例えば、ビスフェノール骨格を有するフェノキシ樹脂、ナフタレン骨格を有するフェノキシ樹脂、ビフェニル骨格を有するフェノキシ樹脂等が挙げられる。また、これらの骨格を複数種有した構造のフェノキシ樹脂を用いることもできる。
 これらの中でも、フェノキシ樹脂には、ビフェニル骨格およびビスフェノールS骨格を有するフェノキシ樹脂を用いるのが好ましい。これにより、ビフェニル骨格が有する剛直性により、フェノキシ樹脂のガラス転移温度を高くすることができるとともに、ビスフェノールS骨格の存在により、フェノキシ樹脂と金属との密着性を向上させることができる。その結果、絶縁層102の耐熱性の向上を図ることができるとともに、多層基板を製造する際に、絶縁層102に対する配線部(導電回路118)の密着性を向上させることができる。また、フェノキシ樹脂には、ビスフェノールA骨格およびビスフェノールF骨格を有するフェノキシ樹脂を用いるのも好ましい。これにより、多層基板の製造時に、配線部の絶縁層102への密着性をさらに向上させることができる。
Examples of the phenoxy resin include a phenoxy resin having a bisphenol skeleton, a phenoxy resin having a naphthalene skeleton, and a phenoxy resin having a biphenyl skeleton. A phenoxy resin having a structure having a plurality of these skeletons can also be used.
Among these, it is preferable to use a phenoxy resin having a biphenyl skeleton and a bisphenol S skeleton as the phenoxy resin. Thereby, the glass transition temperature of the phenoxy resin can be increased due to the rigidity of the biphenyl skeleton, and the adhesion between the phenoxy resin and the metal can be improved due to the presence of the bisphenol S skeleton. As a result, the heat resistance of the insulating layer 102 can be improved, and the adhesion of the wiring portion (conductive circuit 118) to the insulating layer 102 can be improved when a multilayer substrate is manufactured. It is also preferable to use a phenoxy resin having a bisphenol A skeleton and a bisphenol F skeleton as the phenoxy resin. Thereby, the adhesiveness to the insulating layer 102 of a wiring part can further be improved at the time of manufacture of a multilayer substrate.
 フェノキシ樹脂の市販品としては、東都化成(株)製FX280およびFX293、ジャパンエポキシレジン(株)製YX8100、YX6954、YL6974、YL7482、YL7553、YL6794、YL7213およびYL7290等が挙げられる。フェノキシ樹脂の分子量は、特に限定されないが、重量平均分子量が5,000~70,000であるのが好ましく、10,000~60,000であるのがより好ましい。
 フェノキシ樹脂を用いる場合、その含有量は、特に限定されないが、樹脂組成物全体の1~40重量%であるのが好ましく、5~30重量%であるのがより好ましい。
Examples of commercially available phenoxy resins include FX280 and FX293 manufactured by Toto Kasei Co., Ltd., YX8100, YX6954, YL6974, YL7482, YL7553, YL6793, YL7213, and YL7290 manufactured by Japan Epoxy Resin Co., Ltd. The molecular weight of the phenoxy resin is not particularly limited, but the weight average molecular weight is preferably 5,000 to 70,000, and more preferably 10,000 to 60,000.
When the phenoxy resin is used, its content is not particularly limited, but it is preferably 1 to 40% by weight, more preferably 5 to 30% by weight based on the entire resin composition.
 ポリビニルアルコール系樹脂の市販品としては、電気化学工業(株)製電化ブチラール4000-2、5000-A、6000-Cおよび6000-EP、積水化学工業(株)製エスレックBHシリーズ、BXシリーズ、KSシリーズ、BLシリーズおよびBMシリーズ等が挙げられる。特に、ガラス転移温度が80℃以上のものが特に好ましい。 Examples of commercially available polyvinyl alcohol resins include Denka Butylal 4000-2, 5000-A, 6000-C and 6000-EP manufactured by Denki Kagaku Kogyo Co., Ltd., S-Rec BH Series, BX Series, KS manufactured by Sekisui Chemical Co., Ltd. Series, BL series, BM series and the like. Particularly preferred are those having a glass transition temperature of 80 ° C. or higher.
 ポリイミド、ポリアミド、ポリアミドイミド、の市販品としては、東洋紡績(株)社製「バイロマックスHR11NN(登録商標)」及び「HR-16NN」「HR15ET」、日立化成工業(株)製ポリアミドイミド「KS-9300」などが挙げられる。三菱ガス化学(株)社製「ネオプリムC-1210」、新日本理化(株)社製の可溶性ポリイミド「リカコートSN20(登録商標)」及び「リカコートPN20(登録商標)」、日本GEプラスチックス(株)社製のポリエーテルイミド「ウルテム(登録商標)」、DIC(株)製「V8000」及び「V8002」及び「V8005」:日本化薬(株)製「BPAM155」等が挙げられる。 Commercially available products of polyimide, polyamide, and polyamideimide include “Viromax HR11NN (registered trademark)” and “HR-16NN” and “HR15ET” manufactured by Toyobo Co., Ltd., and polyamide imide “KS” manufactured by Hitachi Chemical Co., Ltd. -9300 "and the like. “Neoprim C-1210” manufactured by Mitsubishi Gas Chemical Company, Inc., soluble polyimide “Rika Coat SN20 (registered trademark)” and “Rika Coat PN20 (registered trademark)” manufactured by Shin Nippon Rika Co., Ltd., GE Plastics Co., Ltd. Polyetherimide “Ultem (registered trademark)” manufactured by DIC Corporation, “V8000”, “V8002” and “V8005” manufactured by DIC Corporation: “BPAM155” manufactured by Nippon Kayaku Co., Ltd., and the like.
 ポリエーテルスルホン樹脂の市販品としては、公知のものを用いることができ、例えば、住友化学社製のPES4100P、PES4800P、PES5003P、およびPES5200Pなどを挙げることができる。 As a commercial item of polyethersulfone resin, a well-known thing can be used, for example, PES4100P, PES4800P, PES5003P, and PES5200P by Sumitomo Chemical Co., Ltd. can be mentioned.
 ポリフェニレンエーテル樹脂としては、例えば、ポリ(2,6-ジメチル-1,4-フェニレン)オキサイド、ポリ(2,6-ジエチル-1,4-フェニレン)オキサイド、ポリ(2-メチル-6-エチル-1,4-フェニレン)オキサイド、ポリ(2-メチル-6-プロピル-1,4-フェニレン)オキサイド、ポリ(2、6-ジプロピル-1,4-フェニレン)オキサイド、ポリ(2-エチル-6-プロピル-1,4-フェニレン)オキサイド等が挙げられる。市販品としては、例えば、日本G.E.プラスチック社製「ノリルPX9701(登録商標)」(数平均分子量Mn=14,000)、「ノリル640-111(登録商標)」(数平均分子量Mn=25,000)、及び旭化成社製「SA202」(数平均分子量Mn=20,000)などがあり、これらを公知の方法で低分子量化して用いることができる。 Examples of polyphenylene ether resins include poly (2,6-dimethyl-1,4-phenylene) oxide, poly (2,6-diethyl-1,4-phenylene) oxide, and poly (2-methyl-6-ethyl-). 1,4-phenylene) oxide, poly (2-methyl-6-propyl-1,4-phenylene) oxide, poly (2,6-dipropyl-1,4-phenylene) oxide, poly (2-ethyl-6- And propyl-1,4-phenylene) oxide. Examples of commercially available products include Japanese G.P. E. “Noryl PX9701 (registered trademark)” (number average molecular weight Mn = 14,000), “Noryl 640-111 (registered trademark)” (number average molecular weight Mn = 25,000) manufactured by Plastic, and “SA202” manufactured by Asahi Kasei Corporation (Number average molecular weight Mn = 20,000) and the like, and these can be used by reducing the molecular weight by a known method.
 これらの中でも、末端を官能基で変性した反応性オリゴフェニレンオキサイドが好ましい。これにより、熱硬化性樹脂との相溶性が向上し、ポリマー間の3次元架橋構造を形成することできるため機械強度に優れる。例えば、特開2006-28111号公報に記載されている2,2′,3,3′,5,5′-ヘキサメチルビフェニル‐4,4′-ジオール-2,6-ジメチルフェノール重縮合物とクロロメチルスチレンとの反応生成物が挙げられる。
 このような反応性オリゴフェニレンオキサイドは、公知の方法により製造することができる。また、市販品を用いることもできる。例えば、OPE-2st 2200(三菱瓦斯化学社製)を好適に使用することができる。
 反応性オリゴフェニレンオキサイドの重量平均分子量は、2,000~20,000であることが好ましく、4、000~15、000であることがより好ましい。反応性オリゴフェニレンオキサイドの重量平均分子量が20,000を超えると、揮発性溶剤に溶解し難くなる。一方、重量平均分子量が2,000未満であると、架橋密度が高くなりすぎるため、硬化物の弾性率や可撓性に悪影響がでる。
Among these, reactive oligophenylene oxide having a terminal modified with a functional group is preferable. Thereby, compatibility with a thermosetting resin improves, and since the three-dimensional crosslinked structure between polymers can be formed, it is excellent in mechanical strength. For example, 2,2 ′, 3,3 ′, 5,5′-hexamethylbiphenyl-4,4′-diol-2,6-dimethylphenol polycondensate described in JP-A-2006-28111 and A reaction product with chloromethylstyrene is mentioned.
Such reactive oligophenylene oxide can be produced by a known method. Commercial products can also be used. For example, OPE-2st 2200 (manufactured by Mitsubishi Gas Chemical Co., Inc.) can be preferably used.
The weight average molecular weight of the reactive oligophenylene oxide is preferably 2,000 to 20,000, and more preferably 4,000 to 15,000. When the weight average molecular weight of reactive oligophenylene oxide exceeds 20,000, it becomes difficult to dissolve in a volatile solvent. On the other hand, when the weight average molecular weight is less than 2,000, the crosslink density becomes too high, which adversely affects the elastic modulus and flexibility of the cured product.
 本実施の形態に用いる樹脂組成物中の熱硬化性樹脂の量は、その目的に応じて適宜調整されれば良く特に限定されないが、樹脂組成物の全固形分中に、熱硬化性樹脂は10~90重量%であることが好ましく、更に20~70重量%、より更に25~50重量%であることが好ましい。
 また、熱硬化性樹脂として、エポキシ樹脂及び/又はシアネート樹脂を用いる場合には、上記樹脂組成物の全固形分中に、エポキシ樹脂は5~50重量%であることが好ましく、更にエポキシ樹脂は5~25重量%であることが好ましい。また、樹脂組成物の全固形分中に、シアネート樹脂は5~50重量%であることが好ましく、更にシアネート樹脂は10~25重量%であることが好ましい。
The amount of the thermosetting resin in the resin composition used in the present embodiment is not particularly limited as long as it is appropriately adjusted according to the purpose, but in the total solid content of the resin composition, the thermosetting resin is It is preferably 10 to 90% by weight, more preferably 20 to 70% by weight, and still more preferably 25 to 50% by weight.
When an epoxy resin and / or cyanate resin is used as the thermosetting resin, the epoxy resin is preferably 5 to 50% by weight in the total solid content of the resin composition. 5 to 25% by weight is preferred. The total solid content of the resin composition is preferably 5 to 50% by weight of the cyanate resin, and more preferably 10 to 25% by weight of the cyanate resin.
 上記樹脂組成物中には、無機充填材を含有することが、低熱膨張と機械強度の点から好ましい。無機充填材は、特に限定されないが、例えばタルク、焼成クレー、未焼成クレー、マイカ、ガラス等のケイ酸塩、酸化チタン、アルミナ、シリカ、溶融シリカ等の酸化物、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイト等の炭酸塩、水酸化アルミニウム、ベーマイト(AlO(OH)、「擬」ベーマイトと通常呼ばれるベーマイト(すなわち、Al・xHO、ここで、x=1から2)、水酸化マグネシウム、水酸化カルシウム等の金属水酸化物、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウム等の硫酸塩または亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム等のホウ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素、窒化炭素等の窒化物、チタン酸ストロンチウム、チタン酸バリウム等のチタン酸塩等を挙げることができる。これらの中の1種類を単独で用いることもできるし、2種類以上を併用することもできる。 It is preferable from the viewpoint of low thermal expansion and mechanical strength that the resin composition contains an inorganic filler. The inorganic filler is not particularly limited, but for example, silicates such as talc, fired clay, unfired clay, mica, glass, oxides such as titanium oxide, alumina, silica, fused silica, calcium carbonate, magnesium carbonate, hydrous Carbonates such as talcite, aluminum hydroxide, boehmite (AlO (OH), boehmite commonly referred to as “pseudo” boehmite (ie, Al 2 O 3 .xH 2 O, where x = 1 to 2), hydroxylation Metal hydroxides such as magnesium and calcium hydroxide, sulfates or sulfites such as barium sulfate, calcium sulfate, and calcium sulfite, boron such as zinc borate, barium metaborate, aluminum borate, calcium borate, and sodium borate Nitrate such as acid salt, aluminum nitride, boron nitride, silicon nitride, carbon nitride, titanium titanate Strontium, and titanium salt such as barium titanate. It is possible to use one kind among these alone, it can be used in combination of two or more.
 これらの中でも水酸化マグネシウム、水酸化アルミニウム、ベーマイト、シリカ、溶融シリカ、タルク、焼成タルク、アルミナが好ましい。低熱膨張性、および絶縁信頼性の点で特にシリカが好しく、更に好ましくは、球状の溶融シリカである。また、耐燃性の点で、水酸化アルミニウムが好ましい。また、本実施の形態では、無機充填材であっても含浸しやすい基材を用いるため、上記樹脂組成物中に無機充填材の量を多くすることができる。樹脂組成物中に無機充填材が高濃度の場合、ドリル摩耗性が悪化するが、無機充填材がベーマイトの場合にはドリル摩耗性が良好になる点から好ましい。 Among these, magnesium hydroxide, aluminum hydroxide, boehmite, silica, fused silica, talc, calcined talc, and alumina are preferable. Silica is particularly preferable in terms of low thermal expansion and insulation reliability, and spherical fused silica is more preferable. Moreover, aluminum hydroxide is preferable in terms of flame resistance. Moreover, in this Embodiment, since it is a base material which is easy to impregnate even if it is an inorganic filler, the quantity of an inorganic filler can be increased in the said resin composition. When the inorganic filler has a high concentration in the resin composition, the drill wearability is deteriorated, but when the inorganic filler is boehmite, the drill wearability is preferable.
 無機充填材の粒径は、特に限定されないが、平均粒径が単分散の無機充填材を用いることもできるし、平均粒径が多分散の無機充填材を用いることができる。さらに平均粒径が単分散及び/または、多分散の無機充填材を1種類または2種類以上併用したりすることもできる。前記無機充填材の平均粒径は、特に限定されないが、0.1μm~5.0μmが好ましく、特に0.1μm~3.0μmが好ましい。無機充填材の粒径が前記下限値未満であると樹脂組成物の粘度が高くなるため、プリプレグ作製時の作業性に影響を与える場合がある。また、前記上限値を超えると、樹脂組成物中で無機充填材の沈降等の現象が起こる場合がある。尚、平均粒径は、レーザー回折/散乱式粒度分布測定装置(島津製作所製、SALD-7000等の一般的な機器)を用いて測定することができる。 The particle diameter of the inorganic filler is not particularly limited, but an inorganic filler having a monodispersed average particle diameter can be used, or an inorganic filler having a polydispersed average particle diameter can be used. Furthermore, one or two or more inorganic fillers having an average particle size of monodisperse and / or polydisperse may be used in combination. The average particle size of the inorganic filler is not particularly limited, but is preferably 0.1 μm to 5.0 μm, and particularly preferably 0.1 μm to 3.0 μm. If the particle size of the inorganic filler is less than the lower limit, the viscosity of the resin composition becomes high, which may affect workability during prepreg production. When the upper limit is exceeded, phenomena such as sedimentation of the inorganic filler may occur in the resin composition. The average particle diameter can be measured using a laser diffraction / scattering particle size distribution measuring device (manufactured by Shimadzu Corporation, general equipment such as SALD-7000).
 無機充填材の含有量は、特に限定されないが、上記樹脂組成物の全固形分中に10重量%~90重量%であることが好ましく、更に30重量%~80重量%、より更に50重量%~75重量%であることが好ましい。上記樹脂組成物中にシアネート樹脂及び/又はそのプレポリマーを含有する場合には、上記無機充填材の含有量は、樹脂組成物の全固形分中に50~75重量%であることが好ましい。無機充填材含有量が上記上限値を超えると樹脂組成物の流動性が極めて悪くなるため好ましくない場合があり、上記下限値未満であると樹脂組成物からなる絶縁層の強度が十分でなく、好ましくない場合がある。 The content of the inorganic filler is not particularly limited, but is preferably 10% by weight to 90% by weight, more preferably 30% by weight to 80% by weight, and even more 50% by weight in the total solid content of the resin composition. It is preferable that the amount be ˜75% by weight. In the case where the resin composition contains a cyanate resin and / or a prepolymer thereof, the content of the inorganic filler is preferably 50 to 75% by weight in the total solid content of the resin composition. If the inorganic filler content exceeds the above upper limit, the fluidity of the resin composition may be extremely poor, which may be undesirable, and if it is less than the lower limit, the strength of the insulating layer made of the resin composition is not sufficient, It may not be preferable.
 また、本実施の形態に用いる樹脂組成物は、ゴム成分も配合することができ、例えば、本実施の形態で使用され得るゴム粒子の好ましい例としては、コアシェル型ゴム粒子、架橋アクリロニトリルブタジエンゴム粒子、架橋スチレンブタジエンゴム粒子、アクリルゴム粒子、シリコーン粒子等が挙げられる。 The resin composition used in the present embodiment can also contain a rubber component. For example, preferable examples of the rubber particles that can be used in the present embodiment include core-shell type rubber particles and crosslinked acrylonitrile butadiene rubber particles. Cross-linked styrene butadiene rubber particles, acrylic rubber particles, silicone particles and the like.
 コアシェル型ゴム粒子は、コア層とシェル層とを有するゴム粒子であり、例えば、外層のシェル層がガラス状ポリマーで構成され、内層のコア層がゴム状ポリマーで構成される2層構造、または外層のシェル層がガラス状ポリマーで構成され、中間層がゴム状ポリマーで構成され、コア層がガラス状ポリマーで構成される3層構造のもの等が挙げられる。ガラス状ポリマー層は、例えば、メタクリル酸メチルの重合物等で構成され、ゴム状ポリマー層は、例えば、ブチルアクリレート重合物(ブチルゴム)等で構成される。コアシェル型ゴム粒子の具体例としては、スタフィロイドAC3832、AC3816N(商品名、ガンツ化成(株)製)、メタブレンKW-4426(商品名、三菱レイヨン(株)製)が挙げられる。架橋アクリロニトリルブタジエンゴム(NBR)粒子の具体例としては、XER-91(平均粒子径0.5μm、JSR(株)製)等が挙げられる。 The core-shell type rubber particles are rubber particles having a core layer and a shell layer. For example, a two-layer structure in which an outer shell layer is formed of a glassy polymer and an inner core layer is formed of a rubbery polymer, or Examples include a three-layer structure in which the outer shell layer is made of a glassy polymer, the intermediate layer is made of a rubbery polymer, and the core layer is made of a glassy polymer. The glassy polymer layer is made of, for example, a polymer of methyl methacrylate, and the rubbery polymer layer is made of, for example, a butyl acrylate polymer (butyl rubber). Specific examples of the core-shell type rubber particles include Staphyloid AC3832, AC3816N (trade name, manufactured by Ganz Kasei Co., Ltd.), and Metabrene KW-4426 (trade name, manufactured by Mitsubishi Rayon Co., Ltd.). Specific examples of the crosslinked acrylonitrile butadiene rubber (NBR) particles include XER-91 (average particle size 0.5 μm, manufactured by JSR Corporation).
 架橋スチレンブタジエンゴム(SBR)粒子の具体例としては、XSK-500(平均粒子径0.5μm、JSR(株)製)等が挙げられる。アクリルゴム粒子の具体例としては、メタブレンW300A(平均粒子径0.1μm)、W450A(平均粒子径0.2μm)(三菱レイヨン(株)製)等が挙げられる。 Specific examples of the crosslinked styrene butadiene rubber (SBR) particles include XSK-500 (average particle diameter 0.5 μm, manufactured by JSR Corporation). Specific examples of the acrylic rubber particles include methabrene W300A (average particle size 0.1 μm), W450A (average particle size 0.2 μm) (manufactured by Mitsubishi Rayon Co., Ltd.), and the like.
 シリコーン粒子は、オルガノポリシロキサンで形成されたゴム弾性微粒子であれば特に限定されず、例えば、シリコーンゴム(オルガノポリシロキサン架橋エラストマー)そのものからなる微粒子、及び二次元架橋主体のシリコーンからなるコア部を三次元架橋型主体のシリコーンで被覆したコアシェル構造粒子等が挙げられる。シリコーンゴム微粒子としては、KMP-605、KMP-600、KMP-597、KMP-594(信越化学(株)製)、トレフィルE-500、トレフィルE-600(東レ・ダウコーニング(株)製)等の市販品を用いることができる。 The silicone particles are not particularly limited as long as they are rubber elastic fine particles formed of organopolysiloxane. For example, fine particles made of silicone rubber (organopolysiloxane crosslinked elastomer) itself, and a core portion made of silicone mainly composed of two-dimensional crosslinking. Examples thereof include core-shell structured particles coated with silicone mainly composed of a three-dimensional crosslinking type. Silicone rubber fine particles include KMP-605, KMP-600, KMP-597, KMP-594 (manufactured by Shin-Etsu Chemical Co., Ltd.), Trefil E-500, Trefil E-600 (manufactured by Toray Dow Corning Co., Ltd.), etc. Commercial products can be used.
 上記樹脂組成物には、更にカップリング剤を含有しても良い。カップリング剤は、熱硬化性樹脂と無機充填材との界面の濡れ性を向上させることにより、基材に対して樹脂および無機充填材を均一に定着させ、耐熱性、特に吸湿後の半田耐熱性を改良するために配合する。 The above resin composition may further contain a coupling agent. The coupling agent improves the wettability of the interface between the thermosetting resin and the inorganic filler, thereby uniformly fixing the resin and the inorganic filler to the base material, and heat resistance, particularly solder heat resistance after moisture absorption. In order to improve the properties.
 上記カップリング剤は、特に限定されないが、例えば、エポキシシランカップリング剤、カチオニックシランカップリング剤、アミノシランカップリング剤、チタネート系カップリング剤、シリコーンオイル型カップリング剤等が挙げられる。これにより、無機充填材の界面との濡れ性を高くすることができ、それによって耐熱性をより向上させることできる。
 上記カップリング剤の添加量は、特に限定されないが、無機充填材100重量部に対して0.05~3重量部が好ましく、特に0.1~2重量部が好ましい。含有量が前記下限値未満であると無機充填材を十分に被覆できないため耐熱性を向上する効果が低下する場合があり、前記上限値を超えると反応に影響を与え、曲げ強度等が低下する場合がある。
Although the said coupling agent is not specifically limited, For example, an epoxy silane coupling agent, a cationic silane coupling agent, an aminosilane coupling agent, a titanate coupling agent, a silicone oil type coupling agent etc. are mentioned. Thereby, the wettability with the interface of an inorganic filler can be made high, and thereby heat resistance can be improved more.
The amount of the coupling agent to be added is not particularly limited, but is preferably 0.05 to 3 parts by weight, particularly preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the inorganic filler. If the content is less than the lower limit, the inorganic filler cannot be sufficiently coated, and thus the effect of improving the heat resistance may be reduced. If the content exceeds the upper limit, the reaction is affected, and the bending strength is reduced. There is a case.
 本実施の形態に用いる樹脂組成物には、必要に応じて、消泡剤、レベリング剤、紫外線吸収剤、発泡剤、酸化防止剤、難燃剤、シリコーンパウダー等の難燃助剤、イオン捕捉剤等の上記成分以外の添加物を添加しても良い。 The resin composition used in the present embodiment includes an antifoaming agent, a leveling agent, an ultraviolet absorber, a foaming agent, an antioxidant, a flame retardant, a flame retardant aid such as silicone powder, and an ion scavenger as necessary. You may add additives other than the said components, such as.
 上記樹脂組成物は、プリプレグの低線膨張化、高剛性化、及び高耐熱化を実現しやすい点から、少なくともエポキシ樹脂、シアネート樹脂、及び無機充填材を含むことが好ましい。中でも、樹脂組成物の固形分中に、エポキシ樹脂を5~50重量%、シアネート樹脂を5~50重量%、及び無機充填材を10~90重量%含むことが好ましく、更に、エポキシ樹脂を5~25重量%、シアネート樹脂を10~25重量%、及び無機充填材を30~80重量%含むことが好ましい。 The above resin composition preferably contains at least an epoxy resin, a cyanate resin, and an inorganic filler, from the viewpoint of easily realizing low linear expansion, high rigidity, and high heat resistance of the prepreg. Among them, the solid content of the resin composition preferably contains 5 to 50% by weight of epoxy resin, 5 to 50% by weight of cyanate resin, and 10 to 90% by weight of inorganic filler, and further contains 5 to 50% of epoxy resin. Preferably, it contains ˜25 wt%, cyanate resin 10˜25 wt%, and inorganic filler 30˜80 wt%.
 本実施の形態に用いるプリプレグは、基材に樹脂組成物のワニスを含浸又は塗工してなるものであり、基材としては各種の電気絶縁材料用積層板に用いられている周知のものが使用できる。基材の材質の例としては、Eガラス、Dガラス、Tガラス、Sガラス又はQガラス等の無機物繊維、ポリイミド、ポリエステル又はテトラフルオロエチレン等の有機繊維、及びそれらの混合物等が挙げられる。これらの基材は、例えば織布、不織布、ロービンク、チョップドストランドマット、サーフェシングマット等の形状を有するが、材質及び形状は、目的とする成形物の用途や性能により選択され必要により単独もしくは2種類以上の材質及び形状からの使用が可能である。基材の厚みには特に制限はないが、通常0.01~0.5mm程度のものを使用し、シランカップリング剤等で表面処理したものや機械的に開繊処理、および扁平化を施したものは耐熱性や耐湿性、加工性の面から好適である。また、プリプレグは、通常、その樹脂含有率が乾燥後で20~90重量%となるように基材に樹脂を含浸又は塗工し、120~220℃の温度で1~20分加熱乾燥し、半硬化状態(Bステージ状態)とすることで得ることができる。さらに、このプリプレグを通常1~20枚重ね、さらにその両面にキャリア箔付き極薄銅箔を配置した構成で加熱加圧して積層することで、積層板を得ることができる。複数枚のプリプレグ層の厚みは用途によって異なるが、通常0.03~2mmの厚みのものが良い。積層方法としては通常の積層板の手法が適用でき、例えば多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用し、通常、温度100~250℃、圧力0.2~10MPa、加熱時間0.1~5時間の条件で積層したり、真空ラミネート装置などを用いてラミネート条件50~150℃、0.1~5MPa、真空圧1.0~760mmHgの条件でラミネートすることができる。 The prepreg used in the present embodiment is obtained by impregnating or coating a base material with a varnish of a resin composition. As the base material, well-known ones used for various types of laminates for electrical insulating materials are used. Can be used. Examples of the material of the substrate include inorganic fibers such as E glass, D glass, T glass, S glass, and Q glass, organic fibers such as polyimide, polyester, and tetrafluoroethylene, and mixtures thereof. These base materials have shapes such as woven fabric, non-woven fabric, low-ink, chopped strand mat, surfacing mat, etc., and the material and shape are selected depending on the intended use and performance of the molded product, and can be used alone or as required. It can be used from more than a variety of materials and shapes. The thickness of the base material is not particularly limited, but usually about 0.01 to 0.5 mm is used, and the surface is treated with a silane coupling agent or the like, or mechanically opened and flattened. These are suitable in terms of heat resistance, moisture resistance and processability. The prepreg is usually impregnated or coated with a resin so that the resin content is 20 to 90% by weight after drying, and is heated and dried at a temperature of 120 to 220 ° C. for 1 to 20 minutes. A semi-cured state (B stage state) can be obtained. Furthermore, a laminated sheet can be obtained by laminating 1 to 20 sheets of this prepreg and laminating them by heating and pressing in a configuration in which an ultrathin copper foil with a carrier foil is disposed on both sides thereof. The thickness of the plurality of prepreg layers varies depending on the application, but a thickness of 0.03 to 2 mm is usually preferable. As a laminating method, a normal laminating method can be applied. For example, a multistage press, a multistage vacuum press, continuous molding, an autoclave molding machine or the like is used. Lamination can be performed under conditions of 0.1 to 5 hours, or lamination can be performed under conditions of lamination conditions of 50 to 150 ° C., 0.1 to 5 MPa, and vacuum pressure of 1.0 to 760 mmHg using a vacuum laminating apparatus.
 本実施の形態に用いる銅箔層104は、前述のとおり、その上面20(絶縁層102側とは反対の面)における、XRD薄膜法で測定したときの面方位(200)のピーク強度の比率が、面方位(111)、(200)、(220)および(311)のピーク強度の和に対して、26%以下であり、好ましくは25%以下であり、より好ましくは24%である。面方位(200)の比率を上記範囲内とすることにより、銅箔層104のサイドエッチング特性を向上させることができる。 As described above, the copper foil layer 104 used in the present embodiment has a ratio of the peak intensity of the plane orientation (200) measured by the XRD thin film method on the upper surface 20 (the surface opposite to the insulating layer 102 side). However, it is 26% or less, preferably 25% or less, more preferably 24% with respect to the sum of the peak intensities of the plane orientations (111), (200), (220) and (311). By making the ratio of the plane orientation (200) within the above range, the side etching characteristics of the copper foil layer 104 can be improved.
 また、銅箔層104の上面20における面方位(200)および(220)のピーク強度の和の比率が、面方位(111)、(200)、(220)および(311)のピーク強度の和に対して、好ましくは32%以下であり、より好ましくは31%以下であり、さらに好ましくは30%以下である。面方位(200)および(220)のピーク強度の和の比率を上記範囲内とすることにより、一層、銅箔層104のサイドエッチング特性を向上させることができる。したがって、信頼性に優れたプリント配線板が得られるので、その製造方法の歩留まりを向上させることが可能となる。 Further, the ratio of the sum of the peak intensities of the plane orientations (200) and (220) on the upper surface 20 of the copper foil layer 104 is the sum of the peak intensities of the plane orientations (111), (200), (220) and (311). On the other hand, it is preferably 32% or less, more preferably 31% or less, and further preferably 30% or less. By making the ratio of the sum of the peak intensities of the plane orientations (200) and (220) within the above range, the side etching characteristics of the copper foil layer 104 can be further improved. Therefore, since a printed wiring board having excellent reliability can be obtained, the yield of the manufacturing method can be improved.
 従来の銅箔の形成方法としては、通常、電極上に30μm程度の膜厚の銅箔をめっき処理により形成していた。しかしながら、この形成方法では、銅箔が下層の金属層(たとえば、電極)の配向性を引き継ぐことがあり、所望の結晶面を有する銅箔を作成することが難しかった。また、銅箔の膜厚が厚いと、たとえば30μm以上であると、厚み方向に向かって結晶粒が粗大化する傾向があり、これに対応して、その上面における面方位(220)の比率が高くなり得る。これにより、従来では、面方位(111)よりもエッチング特性に優れた面方位(220)等の比率を高めることにより、銅箔における縦エッチング性を向上させて、上層の金属層に対する下層の銅箔のエッチングレートを上げようとしていた。 As a conventional method for forming a copper foil, a copper foil having a thickness of about 30 μm is usually formed on the electrode by plating. However, in this formation method, the copper foil sometimes takes over the orientation of the lower metal layer (for example, electrode), and it is difficult to produce a copper foil having a desired crystal plane. Moreover, when the film thickness of the copper foil is thick, for example, when it is 30 μm or more, the crystal grains tend to become coarser in the thickness direction, and the ratio of the plane orientation (220) on the upper surface is corresponding to this. Can be expensive. Thus, conventionally, by increasing the ratio of the plane orientation (220), etc., which has better etching characteristics than the plane orientation (111), the vertical etching property in the copper foil is improved, and the lower layer copper with respect to the upper metal layer An attempt was made to increase the etching rate of the foil.
 これに対して、本実施の形態の銅箔層104の形成方法では、電極上に剥離層を形成し、この剥離層上に銅箔層104を形成している。このため、銅箔層104が下層の電極の配向性を引き継ぐことを抑制できる。言い換えると、剥離層と接する銅箔層104の一面における配向性を適切に制御することにより、銅箔層104の結晶面がレイヤーを構成するので、一面における配向性を他面まで引き継がせることが可能となる。これにより、所望の配向性を有する銅箔層104を形成できる。したがって、本実施の形態においては、銅箔層104の上面において、エッチング特性に優れる面方位(200)の比率を所定値以下とすることができるので、後述の工程における銅箔層104のサイドエッチング特性を向上させることができる。これにより、従来にない良好な配線形状を実現でき、その結果、歩留まりに優れたプリント配線板が得られる。なお、詳細な銅箔層104の形成方法は、後述する。 In contrast, in the method for forming the copper foil layer 104 of the present embodiment, a release layer is formed on the electrode, and the copper foil layer 104 is formed on the release layer. For this reason, it can suppress that the copper foil layer 104 takes over the orientation of the lower layer electrode. In other words, by appropriately controlling the orientation on one surface of the copper foil layer 104 in contact with the release layer, the crystal plane of the copper foil layer 104 constitutes a layer, so that the orientation on one surface can be inherited to the other surface. It becomes possible. Thereby, the copper foil layer 104 having a desired orientation can be formed. Therefore, in the present embodiment, since the ratio of the plane orientation (200) excellent in etching characteristics can be set to a predetermined value or less on the upper surface of the copper foil layer 104, the side etching of the copper foil layer 104 in the process described later is performed. Characteristics can be improved. As a result, an unprecedented good wiring shape can be realized, and as a result, a printed wiring board excellent in yield can be obtained. A detailed method for forming the copper foil layer 104 will be described later.
 また、銅箔層104の膜厚は、とくに限定されないが、このましくは0.1μm以上5μm以下であり、より好ましくは0.5μm以上3μm以下であり、特に好ましくは、0.5μm以上2μm以下である。銅箔層104の膜厚を、こうした範囲内とすることにより、銅箔層104の結晶粒の粒径を揃えることができる。これにより、銅箔層104の膜厚方向において、その配向性が変動することを抑制できる。 The film thickness of the copper foil layer 104 is not particularly limited, but is preferably 0.1 μm to 5 μm, more preferably 0.5 μm to 3 μm, and particularly preferably 0.5 μm to 2 μm. It is as follows. By setting the film thickness of the copper foil layer 104 within such a range, the grain sizes of the crystal grains of the copper foil layer 104 can be made uniform. Thereby, it can suppress that the orientation changes in the film thickness direction of the copper foil layer 104.
 以上により、銅箔層104の上面20における配向性を制御することができ、たとえば、銅箔層104の下面22から上面20にかけて、結晶面の比率(すなわち、配向性)を同一、たとえば、面方位(200)の比率、又は面方位(200)および面方位(220)の比率を同一とすることができる。ここでいう同一とは、製造工程上の微差を許容し、例えば、銅箔層104の下面22における面方位(200)の比率が、その上面20における面方位(200)の比率の±5%以内であることを意味する。したがって、XRD薄膜法で測定された銅箔層104の下面22の面方位の比率は、銅箔層104の上面20の比率と言うことができる。 Thus, the orientation on the upper surface 20 of the copper foil layer 104 can be controlled. For example, the ratio of crystal planes (ie, the orientation) is the same from the lower surface 22 to the upper surface 20 of the copper foil layer 104, for example, the surface The ratio of the orientation (200), or the ratio of the plane orientation (200) and the plane orientation (220) can be made the same. Here, the same means that a slight difference in the manufacturing process is allowed. For example, the ratio of the plane orientation (200) on the lower surface 22 of the copper foil layer 104 is ± 5 of the ratio of the plane orientation (200) on the upper surface 20. Means within%. Therefore, the ratio of the plane orientation of the lower surface 22 of the copper foil layer 104 measured by the XRD thin film method can be said to be the ratio of the upper surface 20 of the copper foil layer 104.
 また、加熱加圧成形により銅張積層板100を形成した後の銅箔層104の上面20においても、前述の面方位(200)の比率や、面方位(200)および面方位(220)の比率は、加熱加圧成形前の銅箔層(ピーラブルタイプのキャリア箔付き銅箔)の値が維持されている。言い換えると、加熱加圧成形の銅箔層104の上面20における、面方位(200)の比率は、26%以下であり、好ましくは24%以下であり、より好ましくは23%以下であり、一方、面方位(200)および面方位(220)の比率は、好ましくは32%以下であり、より好ましくは31%以下であり、さらに好ましくは30%以下である。ここでの加熱加圧成形の条件としては、たとえば、200℃で1h、圧力3MPaとする。このように比率が維持される理由は明確ではないが、銅箔層104の中の結晶粒の平均粒径が小さいこと、この平均粒径が一定程度そろっていること等が推察される。
 したがって、後述の銅箔層104のエッチング工程の前後においても、銅箔層104の上面(すなわち、金属層116(たとえば無電解めっき層110)との接触面)における面方位(200)の比率や、面方位(200)および面方位(220)の比率は同一であるといえる。
Moreover, also in the upper surface 20 of the copper foil layer 104 after forming the copper clad laminated board 100 by heating and pressing, the ratio of the above-mentioned plane orientation (200), the plane orientation (200), and the plane orientation (220). As for the ratio, the value of the copper foil layer (copper foil with peelable carrier foil) before heat-press molding is maintained. In other words, the ratio of the plane orientation (200) in the upper surface 20 of the heat-pressed copper foil layer 104 is 26% or less, preferably 24% or less, more preferably 23% or less, The ratio of the plane orientation (200) and the plane orientation (220) is preferably 32% or less, more preferably 31% or less, and even more preferably 30% or less. The conditions for the heat and pressure molding here are, for example, 1 hour at 200 ° C. and a pressure of 3 MPa. The reason why the ratio is maintained in this way is not clear, but it is presumed that the average grain size of the crystal grains in the copper foil layer 104 is small and that the average grain size is uniform to a certain extent.
Accordingly, the ratio of the plane orientation (200) on the upper surface of the copper foil layer 104 (that is, the contact surface with the metal layer 116 (for example, the electroless plating layer 110)) also before and after the etching process of the copper foil layer 104 described later, It can be said that the ratio of the plane orientation (200) and the plane orientation (220) is the same.
 本実施の形態の銅箔層104は、長辺の平均長さが2μm以下の結晶粒を有していることが好ましい。銅箔層104中の結晶粒の形状としては、例えば、柱状、三角錐形状となる。このため、断面視において、銅箔層104の結晶粒の最大の長さを長辺とする。この長辺の平均長さは、FIB-SIM(Focused Ion Beam Scanning Ion Microscope)、またはFIB-SEM(Focused Ion Beam Scanning Electron Microscope)を用いて約1万~1万2千倍の間で、縦10μm、横10μmの断面画像から平均を算出し、合計3つの視野画像の平均値として算出する。これにより、銅箔層104のエッチング特性が向上する。 The copper foil layer 104 of the present embodiment preferably has crystal grains having an average long side length of 2 μm or less. The shape of the crystal grains in the copper foil layer 104 is, for example, a columnar shape or a triangular pyramid shape. For this reason, the maximum length of the crystal grains of the copper foil layer 104 is a long side in a cross-sectional view. The average length of this long side is about 10,000 to 10,000 times using FIB-SIM (Focused Ion Beam Scanning Ion Microscope) or FIB-SEM (Focused Ion Beam Scanning Electron Microscope). An average is calculated from cross-sectional images of 10 μm and 10 μm in width, and is calculated as an average value of a total of three visual field images. Thereby, the etching characteristics of the copper foil layer 104 are improved.
 また、本実施の形態の銅箔層104においては、断面視において、長辺の平均長さが2μm以下の結晶粒が占める面積率が、好ましくは80%以上であり、より好ましくは85%以上であり、さらに好ましくは90%以上である。この面積率は、前記と同様の断面画像の視野を画像処理して、合計3つの視野の平均値として算出する。これにより、銅箔層104のエッチング特性が向上する。 In the copper foil layer 104 of the present embodiment, the area ratio occupied by crystal grains having an average long side length of 2 μm or less in a cross-sectional view is preferably 80% or more, more preferably 85% or more. More preferably, it is 90% or more. This area ratio is calculated as an average value of a total of three fields of view by performing image processing on the field of view of the cross-sectional image as described above. Thereby, the etching characteristics of the copper foil layer 104 are improved.
 また、本実施の形態に用いる、キャリア箔付き極薄銅箔(銅箔層104)は、その極薄銅箔の粗化面にこぶ状の電着物層(ヤケめっきといわれる。たとえば、特開平9-195096号参照)の形成や酸化処理、還元処理、エッチングなどによる粗化面処理がされている。したがって、本実施の形態に用いる極薄銅箔の粗化面の表面粗さはJIS B0601に示す10点平均粗さ(Rz)の上限値が、5.0μm以下であることが好ましく、2.0μm以下であることがより好ましく、一方、下限値は特に限定されないが、0.1μm以上が好ましい。さらに、算術平均粗さ(Ra)1.0μm以下であることが好ましく、0.5μm以下であることがより好ましい。
 なお、こぶ状の電着物層の形成や、粗化面処理が行われることにより、銅箔層104は、バルク部分、およびバルク部分の一面に形成されたこぶ付け部分(以下、粗化足部分ともいう。)を有することとなる。
Further, the ultrathin copper foil with a carrier foil (copper foil layer 104) used in the present embodiment is said to be a bumpy electrodeposit layer (yake plating) on the roughened surface of the ultrathin copper foil. 9-1995096), roughening surface treatment by oxidation treatment, reduction treatment, etching or the like. Therefore, the surface roughness of the roughened surface of the ultrathin copper foil used in the present embodiment preferably has an upper limit of 10-point average roughness (Rz) shown in JIS B0601 of 5.0 μm or less. The lower limit is not particularly limited, but is preferably 0.1 μm or more. Furthermore, the arithmetic average roughness (Ra) is preferably 1.0 μm or less, and more preferably 0.5 μm or less.
It should be noted that the copper foil layer 104 is formed on the bulk portion and the bump portion formed on one surface of the bulk portion (hereinafter referred to as a rough foot portion) by forming a hump-shaped electrodeposit layer or roughening surface treatment. Also called).
 また、本実施の形態においては、銅箔層104としては、銅からなる銅箔(製造工程上に不可避に混入する混入物を除く)の他に、ニッケルやアルミなどの添加金属成分を含む銅箔でもよい(この場合、銅の含有量は、特に限定されないが、銅箔層104を構成する全金属成分の重量の合計値に対して、90重量%以上が好ましく、95重量%以上がより好ましく、99重量%以上がさらに好ましい。また、添加金属成分としては、単独でもよいし、複数種併用しても良い)。また、銅箔層104に代えて、ニッケル箔、アルミ箔などの金属箔を用いてもよい。 Further, in the present embodiment, as the copper foil layer 104, copper containing an additive metal component such as nickel or aluminum in addition to copper foil made of copper (excluding contaminants inevitably mixed in the manufacturing process) is used. Foil may be used (in this case, the copper content is not particularly limited, but is preferably 90% by weight or more, more preferably 95% by weight or more based on the total weight of all metal components constituting the copper foil layer 104). It is preferably 99% by weight or more, and the additive metal component may be used alone or in combination of two or more. Further, instead of the copper foil layer 104, a metal foil such as a nickel foil or an aluminum foil may be used.
 230℃、1時間の条件の加熱処理の前後における、銅箔層104のビッカース硬度の差は、好ましくは0Hv以上50Hv以下であり、より好ましくは0Hv以上30Hv以下である。銅箔層104のビッカース硬度の差を上限値以下とすることにより、加熱によって銅箔層104の再結晶が進んで結晶粒度が大きくなることでエッチング速度が遅くなることを抑制したり、エッチング後の細回路の歪みが蓄積することを抑制したりすることができる。 The difference in Vickers hardness of the copper foil layer 104 before and after heat treatment at 230 ° C. for 1 hour is preferably 0 Hv or more and 50 Hv or less, more preferably 0 Hv or more and 30 Hv or less. By setting the difference in Vickers hardness of the copper foil layer 104 to the upper limit value or less, the recrystallization of the copper foil layer 104 proceeds by heating and the crystal grain size is increased, thereby suppressing the etching rate from being slowed or after etching. It is possible to suppress the accumulation of distortion of the fine circuit.
 また、銅箔層104は、230℃、1時間加熱処理後のビッカース硬度が、好ましくは180Hv以上240Hv以下であり、より好ましくは185Hv以上235Hv以下である。加熱後のビッカース硬度を180Hv以上とすることにより、加熱によって薄銅層(銅箔層104)の再結晶が進んで結晶粒度が大きくなることを抑制したり、エッチング後の回路直線性が低下することを抑制したりすることができる。一方、加熱後のビッカース硬度を240Hv以下とすることにより、薄銅層が硬くなり過ぎて脆くなることを抑制することができる。これにより、ハンドリング時に割れが発生することを抑制すること、および、形成した微細配線の冷熱衝撃耐性を向上させることができる。 Further, the copper foil layer 104 has a Vickers hardness after heat treatment at 230 ° C. for 1 hour, preferably from 180 Hv to 240 Hv, more preferably from 185 Hv to 235 Hv. By setting the Vickers hardness after heating to 180 Hv or more, it is possible to suppress recrystallization of the thin copper layer (copper foil layer 104) due to heating and to increase the crystal grain size, or to reduce circuit linearity after etching. This can be suppressed. On the other hand, by setting the Vickers hardness after heating to 240 Hv or less, it is possible to suppress the thin copper layer from becoming too hard and becoming brittle. Thereby, it can suppress that a crack generate | occur | produces at the time of handling, and can improve the thermal shock resistance of the formed fine wiring.
 本実施の形態において、ビッカース高度は以下の方法により測定できる。
 すなわち、ビッカース硬度の測定は、JIS Z 2244に準拠し、以下の手順で、アカシ社製、微小硬度計(型番MVK-2H)を用いて23℃で行う。(1)薄銅層まで形成した支持体付極薄銅箔を230℃に加熱したオーブン(窒素雰囲気)中に1時間放置した後、10×10mm角にカットする。(2)カット試料に負荷速度3μm/秒、試験荷重5gf、保持時間15秒の条件で圧痕をつけ、圧痕の測定結果からビッカース硬度を算出する。(3)任意の5点のビッカース硬度を測定した平均値を、本実施の形態のビッカース硬度の値とする。
In the present embodiment, the Vickers altitude can be measured by the following method.
That is, the measurement of Vickers hardness is performed at 23 ° C. using a micro hardness meter (model number MVK-2H) manufactured by Akashi Corporation according to JIS Z 2244 according to the following procedure. (1) The ultrathin copper foil with a support formed up to a thin copper layer is left in an oven (nitrogen atmosphere) heated to 230 ° C. for 1 hour, and then cut into 10 × 10 mm squares. (2) An indentation is made on the cut sample under conditions of a load speed of 3 μm / second, a test load of 5 gf, and a holding time of 15 seconds, and Vickers hardness is calculated from the measurement result of the indentation. (3) Let the average value which measured the Vickers hardness of arbitrary 5 points | pieces be the value of the Vickers hardness of this Embodiment.
 銅箔層104(薄層銅箔)のエッチングレートは、0.68μm/min以上1.25μm/min以下であり、より好ましくは0.68μm/min以上、1.24μm/min以下であり、さらに好ましくは0.69μm/min以上、1.23μm/min以下である。本実施の形態の銅箔層104のエッチングレートは、とくに、バルク部分のエッチングレートのみを指し示す。
 なお、上述した銅箔層104のエッチングレートは、60gの95%硫酸、1000ccの純水、及び20ccの34.5%過酸化水素水からなり、かつ液温30℃±1℃の硫酸過水に、積層板を浸漬させるエッチング条件下において特定されるものである。
The etching rate of the copper foil layer 104 (thin layer copper foil) is 0.68 μm / min or more and 1.25 μm / min or less, more preferably 0.68 μm / min or more and 1.24 μm / min or less, Preferably they are 0.69 micrometer / min or more and 1.23 micrometer / min or less. In particular, the etching rate of the copper foil layer 104 of the present embodiment indicates only the etching rate of the bulk portion.
The above-mentioned etching rate of the copper foil layer 104 is 60 g of 95% sulfuric acid, 1000 cc of pure water, and 20 cc of 34.5% hydrogen peroxide solution, and the sulfuric acid / hydrogen peroxide solution has a liquid temperature of 30 ° C. ± 1 ° C. In addition, it is specified under etching conditions for immersing the laminate.
 本実施の形態において、銅箔層104のエッチングレートを下限値以上とすることにより、銅箔層104のエッチング残渣を低減できるとともに、配線形状を良好とすることができる。また、銅箔のエッチングレートを上限値以下とすることにより、銅箔層104の側壁に切り欠きが形成され、配線と絶縁層との密着性が低下することを抑制できる。また、銅箔層104の粗化足部分までエッチングする際に、銅箔層104のバルク部分に異常なくびれが発生することを抑制することができる。 In the present embodiment, by setting the etching rate of the copper foil layer 104 to the lower limit value or more, the etching residue of the copper foil layer 104 can be reduced and the wiring shape can be improved. In addition, by setting the etching rate of the copper foil to the upper limit value or less, it is possible to prevent a notch from being formed in the side wall of the copper foil layer 104 and to reduce the adhesion between the wiring and the insulating layer. Moreover, when etching up to the roughened foot portion of the copper foil layer 104, it is possible to suppress the occurrence of abnormal constriction in the bulk portion of the copper foil layer 104.
 本実施の形態において、銅箔のエッチングレートは、以下の方法により測定できる。
1.キャリア箔(キャリア箔層106)を除去した、極薄銅箔を両面に積層した基板(銅張積層板100)を、40mm×80mmに裁断してサンプル片を得る。サンプル片をノギスで、小数点以下2桁まで読み取り、サンプル片の片面積を算出する。
2.水平乾燥ラインにて、80℃ 1分×3回の乾燥処理をサンプル片に行う。
3.サンプル片の初期重量W0を測定する(ただし、基板重量含む)。
4.エッチング液を調整する。
 4-1:95%硫酸(和光純薬社製、特級)を60g秤量し、1Lのビーカーに入れる。
 4-2:純水をビーカーに投入し、計1000ccにする。
 4-3:マグネチックスターラーで30±1℃で、3分攪拌する。
 4-4:34.5%過酸化水素水(関東化学社製、鹿一級)を20cc秤量し、ビーカーに入れる。
5.上記エッチング液(液温30±1℃、攪拌条件マグネチックスターラー、250rmp)に浸漬する。
6.極薄箔のバルク層が完全にエッチングされるまで、30秒ごとに、処理後の重量W1を測定する(ただし、基板重量含む)。
7.エッチング重量(W0-W1)/(浸漬させた両面面積=m)を算出し、X軸に時間(秒)、Y軸にエッチング質量(g/m)をプロットし、0~150秒の間を最小二乗法で、傾きKを算出する。
In the present embodiment, the etching rate of the copper foil can be measured by the following method.
1. The substrate (copper-clad laminate 100) from which the carrier foil (carrier foil layer 106) has been removed and the ultrathin copper foil is laminated on both sides is cut into 40 mm × 80 mm to obtain sample pieces. Read the sample piece with a caliper to 2 digits after the decimal point, and calculate the area of the sample piece.
2. The sample piece is dried at 80 ° C. for 1 minute × 3 times in a horizontal drying line.
3. The initial weight W0 of the sample piece is measured (however, including the substrate weight).
4). Adjust the etchant.
4-1: Weigh 60 g of 95% sulfuric acid (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) and place in a 1 L beaker.
4-2: Put pure water into a beaker to make a total of 1000cc.
4-3: Stir for 3 minutes at 30 ± 1 ° C. with a magnetic stirrer.
4-4: Weigh 20 cc of 34.5% hydrogen peroxide solution (Kanto Chemical Co., Ltd., deer grade 1) and place in a beaker.
5. Immerse in the etching solution (liquid temperature 30 ± 1 ° C., stirring condition magnetic stirrer, 250 rpm).
6). The processed weight W1 is measured every 30 seconds until the bulk layer of the ultrathin foil is completely etched (including the substrate weight).
7. The etching weight (W0-W1) / (both surface area immersed = m 2 ) was calculated, the time (seconds) was plotted on the X axis, and the etching mass (g / m 2 ) was plotted on the Y axis. The slope K is calculated by the least square method.
 本実施の形態のエッチングレートの換算式を示す。
 エッチングレート(μm/min)=K(g/sec・m)÷8.92(銅比重g/cm)×60(sec/min)
The conversion formula of the etching rate of this Embodiment is shown.
Etching rate (μm / min) = K (g / sec · m 2 ) ÷ 8.92 (copper specific gravity g / cm 3 ) × 60 (sec / min)
 本実施の形態では、銅箔層104の結晶粒径を小さくすること、加熱後のビッカース硬度の変化を小さくすること、粗化足部分のエッチング速度を高めることなどにより、銅箔層104(とくに、バルク部分)のエッチング速度を高めることができる。また、粗化足部分のエッチング速度は、通常、バルク部分よりもエッチング速度が遅いものであるが、たとえば、電解密度を小さくすることにより高めることが可能となる。 In the present embodiment, the copper foil layer 104 (especially, by reducing the crystal grain size of the copper foil layer 104, reducing the change in Vickers hardness after heating, increasing the etching rate of the roughened foot portion, etc.) , The etching rate of the bulk portion) can be increased. In addition, the etching rate of the roughened foot portion is usually slower than that of the bulk portion, but can be increased by reducing the electrolytic density, for example.
 ここで、銅箔層104に用いるピーラブルタイプの銅箔の詳細な形成方法を説明する。
 本実施の形態に用いる銅箔の製造方法としては、特に限定されず、例えば、キャリアを有するピーラブルタイプの銅箔を製造する場合、厚み10~50μmのキャリア箔上に剥離層となる金属等の無機化合物或いは有機化合物層を形成し、その剥離層上に銅箔をめっき処理により形成する。めっき処理の条件としては、例えば、硫酸銅浴を用いた場合には、硫酸50~100g/L、銅30~100g/L、液温20℃~80℃、電流密度0.5~100A/dmの条件であり、ピロリン酸銅浴を用いた場合には、ピロリン酸カリウム100~700g/L、銅10~50g/L、液温30℃~60℃、pH8~12、電流密度1~10A/dmの条件とすることができる。また、銅箔の物性や平滑性を考慮して、上記浴中に各種添加剤を添加してもよい。なお、ピーラブルタイプの金属箔とは、キャリアを有する金属箔であり、キャリアが引き剥がし可能な金属箔である。
Here, a detailed method of forming a peelable type copper foil used for the copper foil layer 104 will be described.
The method for producing the copper foil used in the present embodiment is not particularly limited. For example, in the case of producing a peelable type copper foil having a carrier, a metal that becomes a release layer on a carrier foil having a thickness of 10 to 50 μm, etc. An inorganic compound or organic compound layer is formed, and a copper foil is formed on the release layer by plating. As the conditions for the plating treatment, for example, when a copper sulfate bath is used, sulfuric acid 50 to 100 g / L, copper 30 to 100 g / L, liquid temperature 20 ° C. to 80 ° C., current density 0.5 to 100 A / dm. When a copper pyrophosphate bath is used, potassium pyrophosphate 100-700 g / L, copper 10-50 g / L, liquid temperature 30 ° C.-60 ° C., pH 8-12, current density 1-10 A / can be a condition of dm 2. Further, various additives may be added to the bath in consideration of the physical properties and smoothness of the copper foil. Note that the peelable type metal foil is a metal foil having a carrier and is a metal foil that can be peeled off by the carrier.
 本実施の形成において、剥離層上への銅箔の形成は、例えば平均分子量が5000以下のゼラチンを添加剤として15~35ppm含有する硫酸銅めっき浴を用いて陰極電解処理することにより行うことができる。この場合、銅箔の形成は、剥離層を形成したキャリア箔を陰極とし、上記の硫酸銅めっき浴を用いて電解処理して剥離層上に銅めっきすることにより行われる。このような銅箔の形成方法によれば、高温加熱後も適度な機械的強度を有し、エッチング性に優れ、かつハンドリング性にも優れる銅箔を形成することができる。このような効果は、ゼラチンを添加することにより、銅箔を構成する結晶を微細化できることに起因する。 In this embodiment, the copper foil is formed on the release layer by, for example, cathodic electrolysis using a copper sulfate plating bath containing 15 to 35 ppm of gelatin having an average molecular weight of 5000 or less as an additive. it can. In this case, the formation of the copper foil is performed by using the carrier foil on which the release layer is formed as a cathode, performing electrolytic treatment using the copper sulfate plating bath, and copper plating on the release layer. According to such a method for forming a copper foil, it is possible to form a copper foil that has an appropriate mechanical strength even after high-temperature heating, is excellent in etching properties, and is excellent in handling properties. Such an effect results from the fact that the crystals constituting the copper foil can be made finer by adding gelatin.
 ゼラチンの平均分子量が5000以下である場合、加熱による薄銅層の再結晶を抑制することができる。これにより、加熱後における結晶の微細化が実現される。この理由については十分に解明されていないが、ゼラチンの分子量を一定値以下とすることで、ゼラチンがめっき時に結晶粒界に取り込まれやすくなり、結果として再結晶が進むことを抑制することができるためと考えられる。ゼラチンの平均分子量は、500~5000であることが好ましく、1000~5000であることがより好ましい。ゼラチンの平均分子量が500以上とすることで、硫酸銅めっき浴に添加したゼラチンが酸性溶液中で分解されて、低分子量のアミノ酸等の有機化合物に分解されることを抑制することができる。これにより、ゼラチンがめっき時に結晶粒界に取り込まれることにより再結晶を防止する、という効果が低下してしまうことを抑制することができる。 When the average molecular weight of gelatin is 5000 or less, recrystallization of the thin copper layer due to heating can be suppressed. Thereby, the refinement | miniaturization of the crystal | crystallization after a heating is implement | achieved. Although the reason for this has not been fully elucidated, by making the molecular weight of gelatin below a certain value, gelatin can be easily taken into the grain boundary during plating, and as a result, it is possible to suppress the progress of recrystallization. This is probably because of this. The average molecular weight of gelatin is preferably 500 to 5000, and more preferably 1000 to 5000. By setting the average molecular weight of gelatin to 500 or more, it is possible to suppress the gelatin added to the copper sulfate plating bath from being decomposed in an acidic solution and decomposed into an organic compound such as a low molecular weight amino acid. Thereby, it can suppress that the effect of preventing recrystallization by gelatin being taken in into a crystal grain boundary at the time of plating falls.
 硫酸銅めっき浴中のゼラチンの濃度は15~35ppmであることが好ましい。ゼラチンの濃度が15ppm以上である場合、加熱による再結晶の抑制効果を十分に得ることができる。このため、加熱後において微細な結晶状態を維持することが可能となる。ゼラチンの濃度が35ppm以下である場合、めっきにより形成される銅箔の内部応力が高くなることを抑制することができる。これにより、キャリア箔付極薄銅箔がカールして、搬送時に不具合が発生することを抑制することができる。 The gelatin concentration in the copper sulfate plating bath is preferably 15 to 35 ppm. When the gelatin concentration is 15 ppm or more, the effect of suppressing recrystallization by heating can be sufficiently obtained. For this reason, it becomes possible to maintain a fine crystal state after heating. When the gelatin concentration is 35 ppm or less, it is possible to suppress an increase in internal stress of the copper foil formed by plating. Thereby, it can suppress that an ultra-thin copper foil with a carrier foil curls, and a malfunction generate | occur | produces at the time of conveyance.
 硫酸銅めっき浴としては、例えば、硫酸銅5水和物、硫酸、ゼラチン及び塩素を含有する硫酸酸性硫酸銅メッキ浴が好適に用いられる。硫酸銅めっき浴中の硫酸銅5水和物の濃度は、好ましくは50g/L~300g/L、より好ましくは100g/L~200g/Lである。硫酸の濃度は、好ましくは40g/L~160g/L、より好ましくは80g/L~120g/Lである。ゼラチンの濃度は、上記のとおりである。塩素の濃度は、好ましくは1~20ppm、より好ましくは3~10ppmである。めっき浴の溶媒は、通常、水である。めっき浴の温度は、好ましくは20~60℃、より好ましくは30~50℃である。電解処理時の電流密度は、好ましくは1~15A/dmであり、より好ましくは2~10A/dmである。 As the copper sulfate plating bath, for example, a sulfuric acid copper sulfate plating bath containing copper sulfate pentahydrate, sulfuric acid, gelatin and chlorine is preferably used. The concentration of copper sulfate pentahydrate in the copper sulfate plating bath is preferably 50 g / L to 300 g / L, more preferably 100 g / L to 200 g / L. The concentration of sulfuric acid is preferably 40 g / L to 160 g / L, more preferably 80 g / L to 120 g / L. The concentration of gelatin is as described above. The concentration of chlorine is preferably 1 to 20 ppm, more preferably 3 to 10 ppm. The solvent for the plating bath is usually water. The temperature of the plating bath is preferably 20 to 60 ° C., more preferably 30 to 50 ° C. The current density during the electrolytic treatment is preferably 1 to 15 A / dm 2 , more preferably 2 to 10 A / dm 2 .
 銅箔を形成する際、上記の硫酸銅めっき浴を用いる電解処理前に、ピンホールの発生を防止するため、いわゆる付きまわりの良いめっき浴を用いたストライクめっきを用いることができる。ストライクめっきに用いられるめっき浴としては、例えば、ピロリン酸銅めっき浴、クエン酸銅めっき浴、クエン酸銅ニッケルめっき浴等が挙げられる。 When forming the copper foil, strike plating using a so-called good plating bath can be used before the electrolytic treatment using the copper sulfate plating bath to prevent the generation of pinholes. Examples of the plating bath used for strike plating include a copper pyrophosphate plating bath, a copper citrate plating bath, a copper citrate nickel plating bath, and the like.
 ピロリン酸銅めっき浴としては、例えば、ピロリン酸銅及びピロリン酸カリウムを含有するめっき浴が好適である。ピロリン酸銅めっき浴中のピロリン酸銅の濃度は、好ましくは60g/L~110g/L、より好ましくは70g/L~90g/Lである。ピロリン酸カリウムの濃度は、好ましくは240g/L~470g/L、より好ましくは300g/L~400g/Lである。めっき浴の溶媒は、通常、水である。めっき浴のpHは、好ましくは8.0~9.0、より好ましくは8.2~8.8である。pH値調整のために、アンモニア水等を添加してもよい(以下同様)。めっき浴の温度は、好ましくは20~60℃、より好ましくは30~50℃である。電解処理時の電流密度は、好ましくは0.5~10A/dmであり、より好ましくは1~7A/dmである。電解処理時間は、好ましくは5~40秒、より好ましくは10~30秒である。 As the copper pyrophosphate plating bath, for example, a plating bath containing copper pyrophosphate and potassium pyrophosphate is suitable. The concentration of copper pyrophosphate in the copper pyrophosphate plating bath is preferably 60 g / L to 110 g / L, more preferably 70 g / L to 90 g / L. The concentration of potassium pyrophosphate is preferably 240 g / L to 470 g / L, more preferably 300 g / L to 400 g / L. The solvent for the plating bath is usually water. The pH of the plating bath is preferably 8.0 to 9.0, more preferably 8.2 to 8.8. In order to adjust the pH value, ammonia water or the like may be added (hereinafter the same). The temperature of the plating bath is preferably 20 to 60 ° C., more preferably 30 to 50 ° C. The current density during the electrolytic treatment is preferably 0.5 to 10 A / dm 2 , more preferably 1 to 7 A / dm 2 . The electrolytic treatment time is preferably 5 to 40 seconds, more preferably 10 to 30 seconds.
 クエン酸銅めっき浴としては、例えば、硫酸銅5水和物及びクエン酸3ナトリウム2水和物を含有するめっき浴が好適である。クエン酸銅めっき浴中の硫酸銅5水和物の濃度は、好ましくは10g/L~50g/L、より好ましくは20g/L~40g/Lである。クエン酸3ナトリウム2水和物の濃度は、好ましくは20g/L~60g/L、より好ましくは30g/L~50g/Lである。めっき浴の溶媒は、通常、水である。めっき浴のpHは、好ましくは5.5~7.5、より好ましくは6.0~7.0である。めっき浴の温度は、好ましくは20~60℃、より好ましくは30~50℃である。電解処理時の電流密度は、好ましくは0.5~8A/dmであり、より好ましくは1~4A/dmである。電解処理時間は、好ましくは5~40秒、より好ましくは10~30秒である。 As the copper citrate plating bath, for example, a plating bath containing copper sulfate pentahydrate and trisodium citrate dihydrate is suitable. The concentration of copper sulfate pentahydrate in the copper citrate plating bath is preferably 10 g / L to 50 g / L, more preferably 20 g / L to 40 g / L. The concentration of trisodium citrate dihydrate is preferably 20 g / L to 60 g / L, more preferably 30 g / L to 50 g / L. The solvent for the plating bath is usually water. The pH of the plating bath is preferably 5.5 to 7.5, more preferably 6.0 to 7.0. The temperature of the plating bath is preferably 20 to 60 ° C., more preferably 30 to 50 ° C. The current density during the electrolytic treatment is preferably 0.5 to 8 A / dm 2 , more preferably 1 to 4 A / dm 2 . The electrolytic treatment time is preferably 5 to 40 seconds, more preferably 10 to 30 seconds.
 クエン酸銅ニッケルめっき浴としては、例えば、硫酸銅5水和物、硫酸ニッケル6水和物及びクエン酸3ナトリウム2水和物を含有するめっき浴が好適である。クエン酸銅ニッケルめっき浴中の硫酸銅5水和物の濃度は、好ましくは10g/L~50g/L、より好ましくは20g/L~40g/Lである。硫酸ニッケル6水和物の濃度は、好ましくは1g/L~10g/L、より好ましくは3g/L~8g/Lである。クエン酸3ナトリウム2水和物の濃度は、好ましくは20g/L~60g/L、より好ましくは30g/L~50g/Lである。めっき浴の溶媒は、通常、水である。めっき浴のpHは、好ましくは5.5~7.5、より好ましくは6.0~7.0である。めっき浴の温度は、好ましくは20~60℃、より好ましくは30~50℃である。電解処理時の電流密度は、好ましくは0.5~8A/dmであり、より好ましくは1~4A/dmである。電解処理時間は、好ましくは5~40秒、より好ましくは10~30秒である。 As the copper nickel citrate plating bath, for example, a plating bath containing copper sulfate pentahydrate, nickel sulfate hexahydrate and trisodium citrate dihydrate is suitable. The concentration of copper sulfate pentahydrate in the copper nickel citrate plating bath is preferably 10 g / L to 50 g / L, more preferably 20 g / L to 40 g / L. The concentration of nickel sulfate hexahydrate is preferably 1 g / L to 10 g / L, more preferably 3 g / L to 8 g / L. The concentration of trisodium citrate dihydrate is preferably 20 g / L to 60 g / L, more preferably 30 g / L to 50 g / L. The solvent for the plating bath is usually water. The pH of the plating bath is preferably 5.5 to 7.5, more preferably 6.0 to 7.0. The temperature of the plating bath is preferably 20 to 60 ° C., more preferably 30 to 50 ° C. The current density during the electrolytic treatment is preferably 0.5 to 8 A / dm 2 , more preferably 1 to 4 A / dm 2 . The electrolytic treatment time is preferably 5 to 40 seconds, more preferably 10 to 30 seconds.
 上記剥離層は、金属物等の無機化合物或いは有機化合物層であり、積層時の100~300℃の間の熱処理を受けても剥離可能であれば公知のものを用いることができる。金属酸化物としては、例えば、亜鉛、クロム、ニッケル、銅、モリブデン、合金系、金属と金属化合物との混合物が用いられる。有機化合物としては、窒素含有有機化合物、硫黄含有有機化合物及びカルボン酸の中から選択される1種又は2種以上からなるものを用いることが好ましい。 The release layer is an inorganic compound or organic compound layer such as a metal, and a known layer can be used as long as it can be peeled off even when subjected to heat treatment at 100 to 300 ° C. during lamination. As the metal oxide, for example, zinc, chromium, nickel, copper, molybdenum, an alloy system, or a mixture of a metal and a metal compound is used. As an organic compound, it is preferable to use what consists of 1 type, or 2 or more types selected from a nitrogen-containing organic compound, a sulfur-containing organic compound, and carboxylic acid.
 上記窒素含有有機化合物は、置換基を有する窒素含有有機化合物であることが好ましい。具体的には、置換基を有するトリアゾール化合物である1,2,3-ベンゾトリアゾール(以下、「BTA」と称する。)、カルボキシベンゾトリアゾール(以下、「CBTA」と称する。)、N',N'-ビス(ベンゾトリアゾリルメチル)ユリア(以下、「BTD-U」と称する。)、1H-1,2,4-トリアゾール(以下、「TA」と称する。)及び3-アミノ-1H-1,2,4-トリアゾール(以下、「ATA」と称する。)等を用いることが好ましい。 The nitrogen-containing organic compound is preferably a nitrogen-containing organic compound having a substituent. Specifically, 1,2,3-benzotriazole (hereinafter referred to as “BTA”) which is a triazole compound having a substituent, carboxybenzotriazole (hereinafter referred to as “CBTA”), N ′, N '-Bis (benzotriazolylmethyl) urea (hereinafter referred to as “BTD-U”), 1H-1,2,4-triazole (hereinafter referred to as “TA”) and 3-amino-1H— 1,2,4-triazole (hereinafter referred to as “ATA”) or the like is preferably used.
 硫黄含有有機化合物としては、メルカプトベンゾチアゾール(以下、「MBT」と称する。)、チオシアヌル酸(以下、「TCA」と称する。)及び2-ベンズイミダゾールチオール(以下、「BIT」と称する)等を用いることが好ましい。 Examples of sulfur-containing organic compounds include mercaptobenzothiazole (hereinafter referred to as “MBT”), thiocyanuric acid (hereinafter referred to as “TCA”), 2-benzimidazolethiol (hereinafter referred to as “BIT”), and the like. It is preferable to use it.
 カルボン酸としては、特にモノカルボン酸を用いることが好ましく、中でもオレイン酸、リノール酸及びリノレイン酸等を用いることが好ましい。 As the carboxylic acid, it is particularly preferable to use a monocarboxylic acid, and it is particularly preferable to use oleic acid, linoleic acid, linolenic acid, or the like.
 以上のように、電解密度を高くしたり、膜厚を薄くしたりする等、製法を適切に制御することにより、本実施の形態の銅箔層104の上面において、所望の配向性を実現することができる。 As described above, a desired orientation is realized on the upper surface of the copper foil layer 104 of the present embodiment by appropriately controlling the manufacturing method such as increasing the electrolytic density or reducing the film thickness. be able to.
 また、本実施の形態に用いる銅箔層104の少なくとも下面22(絶縁層102の一面と接する面)には、銅箔層104と絶縁層102との密着性を実用レベルもしくはそれ以上とするために表面処理が施されていてもよい。銅箔層104に用いる金属箔に対する粗し処理としては、例えば、防錆処理、クロメート処理、シランカップリング処理のいずれか、もしくはこれらの組み合わせなどが挙げられる。絶縁層102を構成する樹脂材料に合わせて、適切にいずれの表面処理手段を選択することができる。 Further, at least the lower surface 22 (the surface in contact with one surface of the insulating layer 102) of the copper foil layer 104 used in this embodiment is used to make the adhesion between the copper foil layer 104 and the insulating layer 102 at a practical level or higher. The surface treatment may be performed. Examples of the roughening treatment for the metal foil used for the copper foil layer 104 include rust prevention treatment, chromate treatment, silane coupling treatment, or a combination thereof. Any surface treatment means can be appropriately selected in accordance with the resin material constituting the insulating layer 102.
 上記防錆処理は、例えば、ニッケル、錫、亜鉛、クロム、モリブデン、コバルトなどの金属のいずれか、若しくはそれらの合金を、スパッタや電気めっき、無電解めっきにより金属箔上に薄膜形成することで施すことができる。コストの面からは電気めっきが好ましい。金属イオンの析出を容易にするためにクエン酸塩、酒石酸塩、スルファミン酸等の錯化剤を必要量添加することも出来る。めっき液は、通常酸性領域で用い、室温(たとえば、25℃)~80℃の温度で行う。めっき条件は、電流密度0.1~10A/dm、通電時間1~60秒、好ましくは1~30秒の範囲から適宜選択する。防錆処理金属の量は、金属の種類によって異なるが、合計で10~2000μg/dmが好適である。防錆処理が厚すぎるとエッチング阻害と電気特性の低下を引き起こし、薄すぎると樹脂とのピール強度低下の要因となりうる。 The rust prevention treatment is performed by forming a thin film on a metal foil by sputtering, electroplating, or electroless plating, for example, any one of metals such as nickel, tin, zinc, chromium, molybdenum, and cobalt, or an alloy thereof. Can be applied. From the viewpoint of cost, electroplating is preferable. In order to facilitate the precipitation of metal ions, a complexing agent such as citrate, tartrate or sulfamic acid can be added in the required amount. The plating solution is usually used in an acidic region and is performed at a temperature of room temperature (for example, 25 ° C.) to 80 ° C. The plating conditions are appropriately selected from the range of current density of 0.1 to 10 A / dm 2 , energization time of 1 to 60 seconds, preferably 1 to 30 seconds. The amount of the rust-proofing metal varies depending on the type of metal, but is preferably 10 to 2000 μg / dm 2 in total. If the rust preventive treatment is too thick, it may cause etching inhibition and deterioration of electrical characteristics, and if it is too thin, it may cause a reduction in peel strength with the resin.
 また、絶縁層102を構成する樹脂組成物中にシアネート樹脂を含む場合には、防錆処理がニッケルを含む金属により行われていることが好ましい。この組み合わせにおいては、耐熱劣化試験や耐湿劣化試験におけるピール強度の低下が少なく有用である。 Moreover, when the cyanate resin is contained in the resin composition constituting the insulating layer 102, it is preferable that the rust prevention treatment is performed with a metal containing nickel. This combination is useful in that there is little reduction in peel strength in the heat resistance deterioration test and moisture resistance deterioration test.
 上記クロメート処理として、好ましくは六価クロムイオンを含む水溶液を用いる。クロメート処理は単純な浸漬処理でも可能であるが、好ましくは陰極処理で行う。重クロム酸ナトリウム0.1~50g/L、pH1~13、浴温0~60℃、電流密度0.1~5A/dm、電解時間0.1~100秒の条件で行うことが好ましい。重クロム酸ナトリウムの代わりにクロム酸或いは重クロム酸カリウムを用いて行うことも出来る。また、上記クロメート処理は上記防錆処理上に重ねて施すことが好ましい。これにより、絶縁樹脂組成物層(絶縁層102)と金属箔(銅箔層104)との密着性をより向上させることができる。 As the chromate treatment, an aqueous solution containing hexavalent chromium ions is preferably used. The chromate treatment can be performed by a simple immersion treatment, but is preferably performed by a cathode treatment. Sodium dichromate is preferably used under the conditions of 0.1 to 50 g / L, pH 1 to 13, bath temperature 0 to 60 ° C., current density 0.1 to 5 A / dm 2 , and electrolysis time 0.1 to 100 seconds. It can also carry out using chromic acid or potassium dichromate instead of sodium dichromate. Further, the chromate treatment is preferably performed on the rust preventive treatment. Thereby, the adhesiveness of an insulating resin composition layer (insulating layer 102) and metal foil (copper foil layer 104) can be improved more.
 上記シランカップリング処理に用いるシランカップリング剤としては、例えば、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ官能性シラン、3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)3-アミノプロピルメチルジメトキシシラン等のアミノ官能性シラン、ビニルトリメトキシシラン、ビニルフェニルトリメトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン等のオレフィン官能性シラン、3-アクリロキシプロピルトリメトキシシラン等のアクリル官能性シラン、3-メタクリロキシプロピルトリメトキシシラン等のメタクリル官能性シラン、3-メルカプトプロピルトリメトキシシラン等のメルカプト官能性シランなどが用いられる。これらは単独で用いても良いし、複数を混合して用いても良い。これらのカップリング剤は水などの溶媒に0.1~15g/Lの濃度で溶解させて用い、得られた溶液を室温~50℃の温度で金属箔に塗布または電着させることで、金属箔にシランカップリング剤を吸着させる。これらのシランカップリング剤が金属箔表面の防錆処理金属の水酸基と縮合結合することで、金属箔上に被膜が形成される。シランカップリング処理後は、加熱、紫外線照射等によって、かかる結合を安定的にさせる。加熱処理においては、たとえば、100~200℃の温度、2~60秒の乾燥を行うことが好ましい。紫外線照射は、例えば、波長200~400nm、200~2500mJ/cmの範囲で行うことが好ましい。また、シランカップリング処理は金属箔の最外層に行うことが好ましい。絶縁層102を構成する絶縁樹脂組成物中にシアネート樹脂を含む場合には、アミノシラン系のカップリング剤で処理されていることが好ましい。この組み合わせは、耐熱劣化試験や耐湿劣化試験におけるピール強度の低下が少なく有用である。 Examples of the silane coupling agent used in the silane coupling treatment include epoxy functional silanes such as 3-glycidoxypropyltrimethoxysilane and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-amino Amino-functional silanes such as propyltrimethoxysilane, N-2- (aminoethyl) 3-aminopropyltrimethoxysilane, N-2- (aminoethyl) 3-aminopropylmethyldimethoxysilane, vinyltrimethoxysilane, vinylphenyl Olefin functional silanes such as trimethoxysilane and vinyltris (2-methoxyethoxy) silane, acrylic functional silanes such as 3-acryloxypropyltrimethoxysilane, and methacrylic functional silanes such as 3-methacryloxypropyltrimethoxysilane, 3 - And mercapto-functional silanes such as Le mercaptopropyl trimethoxysilane is used. These may be used alone or in combination. These coupling agents are used by dissolving in a solvent such as water at a concentration of 0.1 to 15 g / L, and applying the obtained solution to a metal foil at a temperature of room temperature to 50 ° C. Adsorb the silane coupling agent on the foil. A coating film is formed on the metal foil by these silane coupling agents being condensed and bonded to the hydroxyl group of the rust-preventing metal on the surface of the metal foil. After the silane coupling treatment, such bonding is stabilized by heating, ultraviolet irradiation or the like. In the heat treatment, for example, drying at a temperature of 100 to 200 ° C. for 2 to 60 seconds is preferable. The ultraviolet irradiation is preferably performed in a wavelength range of 200 to 400 nm and 200 to 2500 mJ / cm 2 , for example. The silane coupling treatment is preferably performed on the outermost layer of the metal foil. When the insulating resin composition constituting the insulating layer 102 contains a cyanate resin, it is preferably treated with an aminosilane-based coupling agent. This combination is useful with little reduction in peel strength in heat and moisture resistance tests.
 また、シランカップリング処理に用いるシランカップリング剤としては、好ましくは60~200℃、より好ましくは80~150℃の加熱により、絶縁層102を構成する絶縁樹脂組成物と化学反応するものであることが好ましい。これにより、上記絶縁樹脂組成物中の官能基とシランカップリング剤の官能基が化学反応し、より優れた密着性を得ることが可能となる。例えば、エポキシ基が含まれる絶縁樹脂組成物に対しては、アミノ官能性シランを含むシランカップリング剤を用いることが好ましい。これは、熱によりエポキシ基とアミノ基が容易に強固な化学結合を形成し、この結合が熱や水分に対して極めて安定であることに起因する。このように化学結合を形成する組み合わせとして、エポキシ基-アミノ基、エポキシ基-エポキシ基、エポキシ基-メルカプト基、エポキシ基-水酸基、エポキシ基-カルボキシル基、エポキシ基-シアナト基、アミノ基-水酸基、アミノ基-カルボキシル基、アミノ基-シアナト基などが例示される。 Further, the silane coupling agent used for the silane coupling treatment preferably reacts with the insulating resin composition constituting the insulating layer 102 by heating at 60 to 200 ° C., more preferably 80 to 150 ° C. It is preferable. Thereby, the functional group in the said insulating resin composition and the functional group of a silane coupling agent react chemically, and it becomes possible to obtain the more excellent adhesiveness. For example, it is preferable to use a silane coupling agent containing an amino-functional silane for an insulating resin composition containing an epoxy group. This is because the epoxy group and amino group easily form a strong chemical bond by heat, and this bond is extremely stable against heat and moisture. As a combination for forming a chemical bond in this way, epoxy group-amino group, epoxy group-epoxy group, epoxy group-mercapto group, epoxy group-hydroxyl group, epoxy group-carboxyl group, epoxy group-cyanato group, amino group-hydroxyl group And amino group-carboxyl group, amino group-cyanato group and the like.
 また、本実施の形態に用いる絶縁樹脂組成物の絶縁樹脂として、常温で液状のエポキシ樹脂を用いることが好ましく、この場合、溶融時の粘度が大幅に低下するため、接着界面における濡れ性が向上し、エポキシ樹脂とシランカップリング剤の化学反応が起こりやすくなり、その結果、強固なピール強度が得られる。具体的にはエポキシ当量200程度のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂が好ましい。 In addition, it is preferable to use an epoxy resin that is liquid at room temperature as the insulating resin of the insulating resin composition used in this embodiment. In addition, a chemical reaction between the epoxy resin and the silane coupling agent is likely to occur, and as a result, a strong peel strength can be obtained. Specifically, bisphenol A type epoxy resin, bisphenol F type epoxy resin, and phenol novolac type epoxy resin having an epoxy equivalent of about 200 are preferable.
 また、絶縁樹脂組成物が硬化剤を含む場合、硬化剤としては、特に加熱硬化型潜在性硬化剤を用いることが好ましい。すなわち、絶縁樹脂組成物中の官能基とシランカップリング剤の官能基が化学反応する場合は、絶縁樹脂組成物中の官能基とシランカップリング剤の官能基の反応温度が絶縁樹脂組成物の硬化反応が開始される温度より低くなるように硬化剤を選択することが好ましい。これにより、絶縁樹脂組成物中の官能基とシランカップリング剤の官能基の反応が優先的、選択的に行われ、金属箔(銅箔層104)と絶縁樹脂組成物層(絶縁層102)の密着性がより高くなる。エポキシ樹脂を含む絶縁樹脂組成物に対する熱硬化型潜在性硬化剤としては、例えば、ジシアンジアミド、ジヒドラジド化合物、イミダゾール化合物、アミン-エポキシアダクトなどの固体分散-加熱溶解型硬化剤や尿素化合物、オニウム塩類、ボロントリクロライド・アミン塩類、ブロックカルボン酸化合物などの反応性基ブロック型硬化剤が挙げられる。 Further, when the insulating resin composition contains a curing agent, it is particularly preferable to use a thermosetting latent curing agent as the curing agent. That is, when the functional group in the insulating resin composition and the functional group of the silane coupling agent chemically react, the reaction temperature of the functional group in the insulating resin composition and the functional group of the silane coupling agent is the same as that of the insulating resin composition. It is preferable to select the curing agent so that it is lower than the temperature at which the curing reaction is initiated. Thereby, the reaction between the functional group in the insulating resin composition and the functional group of the silane coupling agent is preferentially and selectively performed, and the metal foil (copper foil layer 104) and the insulating resin composition layer (insulating layer 102) The adhesion of becomes higher. Examples of the thermosetting latent curing agent for the insulating resin composition containing an epoxy resin include solid dispersion-heat-dissolving curing agents such as dicyandiamide, dihydrazide compounds, imidazole compounds, and amine-epoxy adducts, urea compounds, onium salts, Examples thereof include reactive group block type curing agents such as boron trichloride / amine salts and block carboxylic acid compounds.
 以上のような絶縁樹脂組成物を含有するプリプレグと、粗化面が微細で均一な粗し処理され、なおかつ上記表面処理が施されたキャリア箔付き極薄銅箔とを前述の方法により積層一体化することで、図7(a)に示すような、キャリア箔付き銅張積層板10を得ることができる。続いて、図7(b)に示すように、このキャリア箔層106を引きはがすことにより、銅箔層104を絶縁層102の両面に有する銅張積層板100が得られる。なお、この態様に限定されず、銅箔層104は、絶縁層102の少なくとも一面に形成されていればよく、また、絶縁層102の全面または一部に形成されていてもよい。 The prepreg containing the insulating resin composition as described above and the ultrathin copper foil with carrier foil that has been subjected to the roughening treatment with a fine and uniform roughened surface and the above-mentioned surface treatment are laminated and integrated by the above-described method. By making it, the copper clad laminated board 10 with carrier foil as shown to Fig.7 (a) can be obtained. Subsequently, as shown in FIG. 7 (b), the carrier-clad laminate 106 having the copper foil layer 104 on both surfaces of the insulating layer 102 is obtained by peeling off the carrier foil layer 106. Note that the present invention is not limited thereto, and the copper foil layer 104 may be formed on at least one surface of the insulating layer 102 or may be formed on the entire surface or a part of the insulating layer 102.
 次いで、図7(c)に示すように、銅張積層板100に、その上面から下面に貫通する層間接続用の貫通孔108を形成する。貫通孔108を形成する方法は、各種の公知の手段を用いることができるが、たとえば、孔径が100μm以上の貫通孔108を形成する場合には、生産性の観点から、ドリル等を用いる手段が適しており、100μm以下の貫通孔108を形成する場合には、炭酸ガスやエキシマ等の気体レーザーやYAG等の固体レーザーを用いる手段が適している。 Next, as shown in FIG. 7 (c), a through hole 108 for interlayer connection penetrating from the upper surface to the lower surface is formed in the copper clad laminate 100. Various known means can be used as a method of forming the through hole 108. For example, when forming the through hole 108 having a hole diameter of 100 μm or more, means using a drill or the like is used from the viewpoint of productivity. In order to form the through-hole 108 of 100 μm or less, means using a gas laser such as carbon dioxide or excimer, or a solid laser such as YAG is suitable.
 次いで、少なくとも銅箔層104上に触媒核を付与することもできるが、本実施の形態では、銅箔層104の全面上および貫通孔108の内壁面上に触媒核を付与する。この触媒核としては、特に限定されないが、例えば、貴金属イオンやパラジウムコロイドを用いることができる。引き続き、この触媒核を核として無電解めっき層を形成するが、この無電解めっき処理前に、銅箔層104や貫通孔108の表面上に対して、例えば薬液によるスミア除去等を行っても良い。デスミア処理としては、特に限定されず、有機物分解作用を有する酸化剤溶液等を使用した湿式法、及び対象物となるものに直接酸化作用の強い活性種(プラズマ、ラジカル等)を照射して有機物残渣を除去するプラズマ法等の乾式法等の公知の方法を用いることができる。湿式法のデスミア処理としては、具体的には、樹脂表面の膨潤処理を施した後、アルカリ処理によりエッチングを行い、続いて中和処理を行う方法等が挙げられる。 Next, at least a catalyst nucleus can be provided on the copper foil layer 104, but in this embodiment, the catalyst nucleus is provided on the entire surface of the copper foil layer 104 and on the inner wall surface of the through hole 108. The catalyst nucleus is not particularly limited. For example, a noble metal ion or palladium colloid can be used. Subsequently, an electroless plating layer is formed using this catalyst nucleus as a nucleus. Before the electroless plating treatment, for example, smear removal with a chemical solution or the like may be performed on the surface of the copper foil layer 104 or the through hole 108. good. The desmear treatment is not particularly limited, and is a wet method using an oxidant solution having an organic substance decomposing action, and an organic substance by irradiating a target object with an active species (plasma, radical, etc.) having a strong oxidizing action directly. A known method such as a dry method such as a plasma method for removing the residue can be used. Specific examples of the wet desmear treatment include a method in which the resin surface is subjected to a swelling treatment, etched by an alkali treatment, and then subjected to a neutralization treatment.
 次いで、図7(d)に示すように、触媒核を付与した銅箔層104上および貫通孔108の内壁上に、無電解めっき処理により薄層の無電解めっき層110を形成する。この無電解めっき層110は、絶縁層102の上面上の銅箔層104とその下面上の銅箔層104とを電気的に接続している。無電解めっきには、例えば、硫酸銅、ホルマリン、錯化剤、水酸化ナトリウム等を含むものを用いる事ができる。なお、無電解めっき後に、100~250℃の加熱処理を施し、めっき被膜を安定化させることが好ましい。120~180℃の加熱処理が酸化を抑制できる被膜を形成できる点で、特に好ましい。また、無電解めっき層110の平均厚さは、次の電気めっきが行うことができる厚さであればよく、例えば、0.1~1μm程度で十分である。また、貫通孔108の内部は、導電ペースト、又は絶縁ペーストを充填してもよいし、電気パターンめっきで充填してもよい。 Next, as shown in FIG. 7 (d), a thin electroless plating layer 110 is formed on the copper foil layer 104 provided with catalyst nuclei and the inner walls of the through holes 108 by electroless plating. The electroless plating layer 110 electrically connects the copper foil layer 104 on the upper surface of the insulating layer 102 and the copper foil layer 104 on the lower surface thereof. For electroless plating, for example, one containing copper sulfate, formalin, complexing agent, sodium hydroxide or the like can be used. In addition, it is preferable to stabilize the plating film by performing a heat treatment at 100 to 250 ° C. after the electroless plating. A heat treatment at 120 to 180 ° C. is particularly preferable in that a film capable of suppressing oxidation can be formed. Further, the average thickness of the electroless plating layer 110 may be any thickness that allows the next electroplating to be performed. For example, about 0.1 to 1 μm is sufficient. Further, the inside of the through hole 108 may be filled with a conductive paste or an insulating paste, or may be filled with electric pattern plating.
 次いで、図7(e)に示すように、銅箔層104上に設けられた無電解めっき層110上に所定の開口パターンを有するレジスト層112を形成する。この開口パターンは、後述の導電回路パターンに相当する。このため、レジスト層112は銅箔層104上の非回路形成領域を覆うように設けられている。言い換えると、レジスト層112は、貫通孔108上と銅箔層104上の導体回路形成領域には形成されていない。レジスト層112としては、特に限定されず、公知の材料を用いることができるが、液状およびドライフィルムを用いることができる。微細配線形成の場合には、レジスト層112としては、感光性ドライフィルム等を用いることが好ましい。レジスト層112を形成するには、例えば、無電解めっき層110上に感光性ドライフィルムを積層し、非回路形成領域を露光して光硬化させ、未露光部を現像液で溶解、除去する。なお、残存する硬化した感光性ドライフィルムが、レジスト層112となる。レジスト層112の厚さは、その後めっきする導体(めっき層114)の厚さと同程度かより厚い膜厚にするのが好適である。 Next, as shown in FIG. 7E, a resist layer 112 having a predetermined opening pattern is formed on the electroless plating layer 110 provided on the copper foil layer 104. This opening pattern corresponds to a conductive circuit pattern described later. Therefore, the resist layer 112 is provided so as to cover the non-circuit formation region on the copper foil layer 104. In other words, the resist layer 112 is not formed in the conductive circuit formation region on the through hole 108 and the copper foil layer 104. The resist layer 112 is not particularly limited, and a known material can be used, but liquid and dry films can be used. In the case of forming fine wiring, it is preferable to use a photosensitive dry film or the like as the resist layer 112. In order to form the resist layer 112, for example, a photosensitive dry film is laminated on the electroless plating layer 110, the non-circuit formation region is exposed and photocured, and the unexposed portion is dissolved and removed with a developer. The remaining cured photosensitive dry film becomes the resist layer 112. It is preferable that the thickness of the resist layer 112 be equal to or greater than the thickness of the conductor (plating layer 114) to be subsequently plated.
 次いで、図8(a)に示すように、少なくともレジスト層112の開口パターン内部かつ無電解めっき層110上に、電気めっき処理によりめっき層114を形成する。このとき銅箔層104は給電層として働く。本実施の形態では、絶縁層102の上面、貫通孔108の内壁及びその下面に亘って、連続してめっき層114が設けられていてもよい。こうした電気めっきとしては、特に限定されないが、通常のプリント配線板で用いられる公知の方法を使用することができ、例えば、硫酸銅等のめっき液中に浸漬させた状態で、かかるめっき液に電流を流す等の方法を使用することができる。めっき層114の厚さは、特に限定されないが、回路導体として使用できればよく、例えば、1~100μmの範囲であることが好ましく、5~50μmの範囲であることがより好ましい。めっき層114は単層でもよく多層構造を有していてもよい。めっき層114の材料としては、特に限定されないが、例えば、銅、銅合金、42合金、ニッケル、鉄、クロム、タングステン、金、半田などを用いることができる。 Next, as shown in FIG. 8A, a plating layer 114 is formed by electroplating at least inside the opening pattern of the resist layer 112 and on the electroless plating layer 110. At this time, the copper foil layer 104 serves as a power feeding layer. In the present embodiment, the plating layer 114 may be provided continuously over the upper surface of the insulating layer 102, the inner wall of the through hole 108, and the lower surface thereof. Such electroplating is not particularly limited, but a known method used in ordinary printed wiring boards can be used. For example, in a state where the plating solution is immersed in a plating solution such as copper sulfate, an electric current is supplied to the plating solution. A method such as flowing a stream can be used. The thickness of the plating layer 114 is not particularly limited as long as it can be used as a circuit conductor. For example, the thickness is preferably in the range of 1 to 100 μm, and more preferably in the range of 5 to 50 μm. The plating layer 114 may be a single layer or may have a multilayer structure. The material of the plating layer 114 is not particularly limited, and for example, copper, copper alloy, 42 alloy, nickel, iron, chromium, tungsten, gold, solder, or the like can be used.
 次いで、図8(b)に示すように、アルカリ性剥離液や硫酸又は市販のレジスト剥離液等を用いてレジスト層112を除去する。 Next, as shown in FIG. 8B, the resist layer 112 is removed using an alkaline stripping solution, sulfuric acid, a commercially available resist stripping solution, or the like.
 次いで、図8(c)に示すように、めっき層114が形成されている領域以外の無電解めっき層110および銅箔層104を除去する。この銅箔層104を除去する手法は、例えば、ソフトエッチング(フラッシュエッチング)等を用いる。これにより、銅箔層104及び金属層116(無電解めっき層110及びめっき層114)が積層して構成される導電回路118のパターンを形成することができる。 Next, as shown in FIG. 8C, the electroless plating layer 110 and the copper foil layer 104 other than the region where the plating layer 114 is formed are removed. As a technique for removing the copper foil layer 104, for example, soft etching (flash etching) or the like is used. Thereby, the pattern of the conductive circuit 118 comprised by laminating | stacking the copper foil layer 104 and the metal layer 116 (the electroless-plating layer 110 and the plating layer 114) can be formed.
 第2の実施の形態のプリント配線板200の導電回路118の断面形状としては、図9に示すように、通常の矩形形状の他にも、図9(a)に示す逆テーパ形状、図9(b)に示すかまぼこ形状、又は図9(c)に示すくびれ形状のいずれでもよい。 As the cross-sectional shape of the conductive circuit 118 of the printed wiring board 200 of the second embodiment, as shown in FIG. 9, in addition to the normal rectangular shape, the reverse tapered shape shown in FIG. Either the kamaboko shape shown in (b) or the constricted shape shown in FIG.
 ここで、本実施の形態のソフトエッチングに用いるエッチング液について以下説明する。エッチング液としては、特に限定されないが、従来の拡散律速タイプのエッチング液を用いた場合、配線の微細な部分はどうしても液の交換が悪くなるため回路形成性が悪化してしまう傾向がある。このため、エッチング液は、銅とエッチング液の反応が拡散律速ではなく、反応律速で進行するタイプを用いることが望ましい。銅とエッチング液の反応が反応律速であれば、拡散をそれ以上強めたとしてもエッチング速度は変わらない。即ち液交換の良い場所と悪い場所でのエッチング速度差が生じない。このような反応律速エッチング液としては、例えば、過酸化水素とハロゲン元素を含まない酸とを主成分とするものが挙げられる。酸化剤として過酸化水素を用いるので、その濃度を管理することで厳密なエッチング速度制御が可能になる。尚、エッチング液にハロゲン元素が混入すると、溶解反応が拡散律速になりやすい。ハロゲンを含まない酸としては、硝酸、硫酸、有機酸等が使用できるが、硫酸であることが安価で好ましい。更に硫酸と過酸化水素が主成分である場合には、それぞれの濃度を5~300g/L,5~200g/Lとする事がエッチング速度、液の安定性の面から好ましい。例えば、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸ソーダ系などが挙げられる。 Here, the etching solution used for the soft etching of this embodiment will be described below. The etching solution is not particularly limited. However, when a conventional diffusion-controlled etching solution is used, circuit formation tends to be deteriorated because the exchange of the solution is inevitably worsened for fine portions of the wiring. For this reason, it is desirable to use an etching solution in which the reaction between copper and the etching solution proceeds not at a diffusion rate but at a reaction rate. If the reaction between copper and the etchant is reaction-controlled, the etching rate does not change even if diffusion is further increased. That is, there is no difference in etching rate between a place where the liquid exchange is good and a place where the liquid exchange is bad. As such a reaction-limited etching solution, for example, one containing hydrogen peroxide and an acid not containing a halogen element as main components can be mentioned. Since hydrogen peroxide is used as the oxidizing agent, strict etching rate control becomes possible by managing the concentration. If a halogen element is mixed in the etching solution, the dissolution reaction tends to be diffusion-limited. As the acid not containing halogen, nitric acid, sulfuric acid, organic acid, and the like can be used, but sulfuric acid is preferable because it is inexpensive. Further, when sulfuric acid and hydrogen peroxide are the main components, the respective concentrations are preferably 5 to 300 g / L and 5 to 200 g / L from the viewpoint of etching rate and liquid stability. Examples thereof include ammonium persulfate, sodium persulfate, and sodium persulfate.
 このように、銅箔層104のエッチング特性やエッチング条件を適切に選択することにより、所望の形状の導電回路118が得られる。以上により、絶縁層102の両面に導電回路118が形成されたプリント配線板200が得られる。また、第2の実施の形態のプリント配線板200の製造方法においても、第1の実施の形態と同様の作用効果が得られる。 Thus, the conductive circuit 118 having a desired shape can be obtained by appropriately selecting the etching characteristics and etching conditions of the copper foil layer 104. As described above, the printed wiring board 200 in which the conductive circuit 118 is formed on both surfaces of the insulating layer 102 is obtained. In addition, in the method for manufacturing the printed wiring board 200 of the second embodiment, the same effects as those of the first embodiment can be obtained.
 なお、図8(d-1)に示すように、絶縁層102上および導電回路118の一部を覆うようにソルダーレジスト層120を形成してもよい。ソルダーレジスト層120としては、例えば、絶縁性に優れた、フィラー、または基材を含んでも良く、感光性樹脂、熱硬化性樹脂、及び熱可塑性樹脂等の耐熱性樹脂組成物を用いる。次いで、ソルダーレジスト層120の開口部が設けられている導電回路118上に、第1のめっき層122および第2のめっき層124を更に形成してもよい。これにより、金属層116を2以上の多層構造としてもよい。これらの第1のめっき層122および第2のめっき層124としては、金めっき層を採用することができる。金めっきの方法としては、従来公知の方法でよく、特に限定されないが、例えば、めっき層114上に、無電解ニッケルめっきを0.1~10μm程度行い、置換金めっきを0.01~0.5μm程度行った後に無電解金めっきを0.1~2μm程度行うなどの方法がある。以上により、図8(d-1)に示すプリント配線板202が得られる。
 また、図8(d-2)に示すように、ソルダーレジスト層120を形成せずに、導電回路118の周囲に、第1のめっき層122および第2のめっき層124を形成してもよい。これらの第1のめっき層122および第2のめっき層124としては、例えば、ニッケルめっき層および金めっき層の積層体を採用してもよい。以上により、図8(d-2)に示すプリント配線板204が得られる。
As shown in FIG. 8D-1, a solder resist layer 120 may be formed so as to cover the insulating layer 102 and part of the conductive circuit 118. As the solder resist layer 120, for example, a filler or a substrate excellent in insulating properties may be included, and a heat resistant resin composition such as a photosensitive resin, a thermosetting resin, and a thermoplastic resin is used. Next, the first plating layer 122 and the second plating layer 124 may be further formed on the conductive circuit 118 provided with the opening of the solder resist layer 120. Thereby, the metal layer 116 may have a multilayer structure of two or more. As the first plating layer 122 and the second plating layer 124, a gold plating layer can be adopted. The gold plating method may be a conventionally known method, and is not particularly limited. For example, electroless nickel plating is performed on the plating layer 114 to about 0.1 to 10 μm, and displacement gold plating is performed to 0.01 to 0. There is a method of performing electroless gold plating about 0.1 to 2 μm after about 5 μm. As a result, the printed wiring board 202 shown in FIG. 8D-1 is obtained.
Further, as shown in FIG. 8D-2, the first plating layer 122 and the second plating layer 124 may be formed around the conductive circuit 118 without forming the solder resist layer 120. . As these 1st plating layer 122 and 2nd plating layer 124, you may employ | adopt the laminated body of a nickel plating layer and a gold plating layer, for example. Thus, the printed wiring board 204 shown in FIG. 8D-2 is obtained.
 また、これらのプリント配線板200、202、及び204上に不図示の半導体チップを実装して、半導体装置を得ることができる。 Also, a semiconductor device (not shown) can be mounted on these printed wiring boards 200, 202, and 204 to obtain a semiconductor device.
(第3の実施の形態)
 次に、第3の実施の形態のプリント配線板の製造方法について説明する。
 図10~図12は、第3の実施の形態のプリント配線板の製造方法の製造工程の手順を示す断面図である。第3の実施の形態のプリント配線板の製造方法は、たとえば、第2の実施の形態で得られたプリント配線板200、202、及び204を内層回路基板として用い、この内層回路基板上にビルドアップ層をさらに形成するものである。
(Third embodiment)
Next, the manufacturing method of the printed wiring board of 3rd Embodiment is demonstrated.
10 to 12 are cross-sectional views showing the steps of the manufacturing process of the printed wiring board manufacturing method according to the third embodiment. The printed wiring board manufacturing method of the third embodiment uses, for example, the printed wiring boards 200, 202, and 204 obtained in the second embodiment as inner layer circuit boards, and builds on the inner layer circuit boards. An up layer is further formed.
 まず、内層回路基板として、図8(c)で得たプリント配線板200を採用する。このプリント配線板200の内層回路(導電回路118)に対して、粗化処理を施す。ここで、粗化処理とは、導体回路表面に薬液処理、およびプラズマ処理等を実施することを意味する。粗化処理としては、例えば、酸化還元を利用した黒化処理、または、硫酸-過酸化水素系の公知の粗化液を利用した薬液処理等を用いることができる。これにより、絶縁層130を構成する層間絶縁材料とプリント配線板200の導電回路118との密着性を向上させることができる。また、内層回路基板は、第2の実施の形態で得られたプリント配線板200に代えて、特に限定されないが、メッキスルーホール法やビルドアップ法等により、プリプレグ又は基材を含まない樹脂組成物層等が積層された通常の多層プリント配線板を用いることもできる。内層回路となる導体回路層は、従来公知の回路形成方法によって形成しても良い。また、多層プリント配線板においては、そのコア層となる積層体(プリプレグを複数積層させて得られた積層体)及び金属張積層板に、ドリル加工、レーザー加工等を行うことによりスルーホールを形成し、次いで、めっき等で両面の内層回路を電気的接続することもできる。 First, the printed wiring board 200 obtained in FIG. 8C is adopted as the inner layer circuit board. The inner layer circuit (conductive circuit 118) of the printed wiring board 200 is subjected to a roughening process. Here, the roughening treatment means performing a chemical treatment, a plasma treatment, or the like on the surface of the conductor circuit. As the roughening treatment, for example, a blackening treatment using oxidation reduction or a chemical solution treatment using a known roughening solution of sulfuric acid-hydrogen peroxide system can be used. Thereby, the adhesiveness of the interlayer insulation material which comprises the insulating layer 130, and the conductive circuit 118 of the printed wiring board 200 can be improved. In addition, the inner layer circuit board is not particularly limited in place of the printed wiring board 200 obtained in the second embodiment, but the resin composition does not include a prepreg or a base material by a plated through hole method, a build-up method, or the like. A normal multilayer printed wiring board in which physical layers and the like are laminated can also be used. The conductor circuit layer serving as the inner layer circuit may be formed by a conventionally known circuit forming method. In multilayer printed wiring boards, through-holes are formed by drilling, laser processing, etc. on the laminate (a laminate obtained by laminating multiple prepregs) and metal-clad laminate as the core layer. Then, the inner circuit on both sides can be electrically connected by plating or the like.
 次いで、図10(a)に示すように、導体回路表面が粗化されたプリント配線板200の両側に、それぞれ、絶縁層130(プリプレグ)、及びキャリア箔層107付き銅箔層105(キャリア箔付き極薄銅箔)を配置する。次いで、図10(b)に示すように、これらを重ねた積層体を加熱加圧処理することにより、多層積層板を形成する。続いて、図10(c)に示すように、キャリア箔層107を剥離除去する。 Next, as shown in FIG. 10 (a), an insulating layer 130 (prepreg) and a copper foil layer 105 with a carrier foil layer 107 (carrier foil) are formed on both sides of a printed wiring board 200 having a roughened conductor circuit surface, respectively. With ultra-thin copper foil). Next, as shown in FIG. 10 (b), a multilayer laminate is formed by subjecting the laminate in which these layers are stacked to heat and pressure. Subsequently, as shown in FIG. 10C, the carrier foil layer 107 is peeled and removed.
 次いで、図10(d)に示すように、絶縁層130および銅箔層105の一部を除去して孔109を形成する。孔109の底面においては、導電回路118の表面の一部が露出している。この孔109を形成する手法としては、特に限定されないが、例えば、炭酸ガスやエキシマ等の気体レーザーやYAG等の固体レーザーを用いて、孔径100μm以下のブラインドビアホールを形成する手法などを用いることができる。なお、孔109は図10(d)では、非貫通孔で表しているが、貫通孔でもよい。また、貫通孔の場合は、レーザー照射でも、ドリル加工機を用いて形成してもよい。 Next, as shown in FIG. 10D, a part of the insulating layer 130 and the copper foil layer 105 is removed to form a hole 109. A part of the surface of the conductive circuit 118 is exposed on the bottom surface of the hole 109. The method for forming the hole 109 is not particularly limited. For example, a method of forming a blind via hole having a hole diameter of 100 μm or less using a gas laser such as carbon dioxide gas or excimer or a solid laser such as YAG is used. it can. In addition, although the hole 109 is represented by a non-through hole in FIG. 10D, it may be a through hole. In the case of a through hole, it may be formed by laser irradiation or using a drilling machine.
 次いで、図11(a)に示すように、前述の触媒核を付与した導電回路118上、孔109の内壁上、及び銅箔層105上に、薄層の無電解めっき層111を形成する。無電解めっき層111は、前述の無電解めっき層110と同様にして形成する。この無電解めっき前には、前述の通り、薬液によるスミア除去等のデスミア処理を行ってもよい。また、無電解めっき層110の厚さは、次の電気めっきが行うことができる厚さであればよく、0.1~1μm程度で十分である。また、孔109(ブラインドビアホール)の内部は、導電ペースト、あるいは、絶縁ペーストを充填することもでき、電気パターンめっきで充填しておいてもよい。 Next, as shown in FIG. 11A, a thin electroless plating layer 111 is formed on the conductive circuit 118 provided with the above-described catalyst nucleus, on the inner wall of the hole 109, and on the copper foil layer 105. The electroless plating layer 111 is formed in the same manner as the electroless plating layer 110 described above. Before this electroless plating, as described above, desmear treatment such as smear removal with a chemical solution may be performed. Further, the thickness of the electroless plating layer 110 may be any thickness that allows subsequent electroplating to be performed, and about 0.1 to 1 μm is sufficient. Further, the inside of the hole 109 (blind via hole) can be filled with a conductive paste or an insulating paste, or may be filled with electric pattern plating.
 次いで、図11(b)に示すように、無電解めっき層110上に、導体回路パターンに相当する開口パターンを有するレジスト層113を形成する。言い換えると、レジスト層113を形成することにより、非回路形成部をマスクする。このレジスト層113としては、前述のレジスト層112と同様のものを用いることができる。レジスト層113の厚さは、その後めっきする導体回路の厚さと同程度かより厚い膜厚にするのが好適である。 Next, as shown in FIG. 11B, a resist layer 113 having an opening pattern corresponding to the conductor circuit pattern is formed on the electroless plating layer 110. In other words, the non-circuit forming portion is masked by forming the resist layer 113. As this resist layer 113, the thing similar to the above-mentioned resist layer 112 can be used. The thickness of the resist layer 113 is preferably set to be approximately the same as or thicker than that of the conductor circuit to be subsequently plated.
 次いで、図11(c)に示すように、レジスト層113の開口パターン内部にめっき層132を形成する。このめっき層132は、孔109内部の導電回路118上に形成してもよいし、上記開口パターン内部の無電解めっき層111上に形成してもよい。めっき層132を形成する電気めっきは、前述のめっき層114と同様の手法を用いることができる。このめっき層132の厚さは、回路導体として使用できればよく、例えば、1~100μmの範囲である事が好ましく、5~50μmの範囲である事がより好ましい。 Next, as shown in FIG. 11C, a plating layer 132 is formed inside the opening pattern of the resist layer 113. The plating layer 132 may be formed on the conductive circuit 118 inside the hole 109 or may be formed on the electroless plating layer 111 inside the opening pattern. The electroplating for forming the plating layer 132 can use the same technique as that for the plating layer 114 described above. The thickness of the plating layer 132 may be used as a circuit conductor. For example, the thickness is preferably in the range of 1 to 100 μm, and more preferably in the range of 5 to 50 μm.
 次いで、図12(a)に示すように、前述のレジスト層112と同様にして、レジスト層113の剥離を行う。次いで、図12(b)に示すように、前述の銅箔層104と同様にして、銅箔層105及び無電解めっき層111をソフトエッチング(フラッシュエッチング)により除去する。これにより、銅箔層105、無電解めっき層111及びめっき層132から構成される導電回路パターンを形成することができる。また、導電回路118上には、それと電気的に接続するビア及びパッドをめっき層132により形成することができる。以上により、プリント配線板201が得られる。 Next, as shown in FIG. 12A, the resist layer 113 is peeled in the same manner as the resist layer 112 described above. Next, as shown in FIG. 12B, the copper foil layer 105 and the electroless plating layer 111 are removed by soft etching (flash etching) in the same manner as the copper foil layer 104 described above. Thereby, the conductive circuit pattern comprised from the copper foil layer 105, the electroless-plating layer 111, and the plating layer 132 can be formed. In addition, vias and pads that are electrically connected to the conductive circuit 118 can be formed using the plating layer 132. The printed wiring board 201 is obtained as described above.
 なお、図12(c-1)に示すように、絶縁層130上、導電回路パターンのめっき層132上および、パッドのめっき層132の一部上にソルダーレジスト層121を形成してもよい。ソルダーレジスト層121としては、前述のソルダーレジスト層120と同様のものを用いることができる。次いで、ソルダーレジスト層121の開口部が設けられているめっき層132上に、例えば、ニッケルめっき層および金めっき層から構成される第1のめっき層123および第2のめっき層125を更に形成してもよい。以上により、図12(c-1)に示すプリント配線板203が得られる。
 また、図12(c-2)に示すように、ソルダーレジスト層121を形成せずに、導電回路パターンの周囲およびパッドの周囲に、前述の第1のめっき層123および第2のめっき層125を形成してもよい。以上により、図12(c-2)に示すプリント配線板205が得られる。第3の実施の形態においても、第1および第2の実施の形態と同様の効果が得られる。
As shown in FIG. 12 (c-1), a solder resist layer 121 may be formed on the insulating layer 130, the conductive circuit pattern plating layer 132, and a part of the pad plating layer 132. As the solder resist layer 121, the same thing as the above-mentioned solder resist layer 120 can be used. Next, a first plating layer 123 and a second plating layer 125 made of, for example, a nickel plating layer and a gold plating layer are further formed on the plating layer 132 in which the opening of the solder resist layer 121 is provided. May be. Thus, the printed wiring board 203 shown in FIG. 12C-1 is obtained.
Further, as shown in FIG. 12C-2, the first plating layer 123 and the second plating layer 125 described above are formed around the conductive circuit pattern and the pad without forming the solder resist layer 121. May be formed. As a result, the printed wiring board 205 shown in FIG. 12C-2 is obtained. In the third embodiment, the same effect as in the first and second embodiments can be obtained.
 また、本実施の形態のプリント配線板の製造方法の変形例を図13を用いて説明する。
 前述の第1から第3の実施の形態においては、銅箔上に金属層を選択的に形成していたが、本変形例では、銅箔上に金属層を全面に形成する点が異なるものである。
 以下、本変形例のプリント配線板の製造方法を説明する。
 まず、図13(a)に示すように、キャリア箔付き銅張積層板10を準備する。このキャリア箔付き銅張積層板10においては、絶縁層102の両面に銅箔層104とともにキャリア箔層106が貼り付けられている。続いて、図13(b)に示すように、キャリア箔付き銅張積層板10からキャリア箔層106を引きはがす。続いて、図13(c)に示すように、銅箔層104の全面上に金属層115(めっき層)をめっき処理により形成する。続いて、図13(d)に示すように、プレーン形状の金属層115上に所定の開口パターンを有するレジスト層112を形成する。引き続き、図13(e)に示すように、このレジスト層112の開口パターン内の金属層115および銅箔層104を、例えば、エッチングにより除去する。この後、図13(f)に示すように、レジスト層112を除去する。これにより、銅箔層104および金属層115から構成される導電回路119のパターンを形成することができる。以上の工程により、本変形例のプリント配線板101が得られる。
A modification of the method for manufacturing a printed wiring board according to the present embodiment will be described with reference to FIG.
In the first to third embodiments described above, the metal layer is selectively formed on the copper foil, but the present modification is different in that the metal layer is formed on the entire surface of the copper foil. It is.
Hereinafter, a method for manufacturing the printed wiring board of the present modification will be described.
First, as shown to Fig.13 (a), the copper clad laminated board 10 with carrier foil is prepared. In this copper clad laminate 10 with carrier foil, a carrier foil layer 106 is attached to both surfaces of the insulating layer 102 together with the copper foil layer 104. Then, as shown in FIG.13 (b), the carrier foil layer 106 is peeled from the copper clad laminated board 10 with carrier foil. Subsequently, as shown in FIG. 13C, a metal layer 115 (plating layer) is formed on the entire surface of the copper foil layer 104 by plating. Subsequently, as shown in FIG. 13D, a resist layer 112 having a predetermined opening pattern is formed on the plane-shaped metal layer 115. Subsequently, as shown in FIG. 13E, the metal layer 115 and the copper foil layer 104 in the opening pattern of the resist layer 112 are removed by, for example, etching. Thereafter, as shown in FIG. 13F, the resist layer 112 is removed. Thereby, the pattern of the conductive circuit 119 comprised from the copper foil layer 104 and the metal layer 115 can be formed. The printed wiring board 101 of this modification is obtained by the above process.
 以上のように、本実施の形態によれば、キャリア箔付き極薄銅箔の微細回路加工、微細回路の形状、および絶縁信頼性に優れたプリント配線板の製造方法、およびをそのプリント配線板を提供することが可能となる。 As described above, according to the present embodiment, fine circuit processing of an ultrathin copper foil with a carrier foil, a fine circuit shape, and a method of manufacturing a printed wiring board excellent in insulation reliability, and the printed wiring board Can be provided.
 本実施の形態のプリント配線板の製造方法は、プリント配線板用基板の両面に導体回路層を形成する場合だけでなく、プリント配線板用基板の片面のみに導体回路層を形成する場合にも適用することができる。また、図8(c)に示すように両面プリント配線板を内層回路板として、第3の実施の形態の多層プリント配線板の場合も適用することができる。従って、本実施の形態のプリント配線板の製造方法によって、片面プリント配線板、両面プリント配線板、及び多層プリント配線板のいずれも製造することができる。 The printed wiring board manufacturing method of the present embodiment is not only for forming a conductor circuit layer on both sides of a printed wiring board substrate, but also for forming a conductor circuit layer only on one side of the printed wiring board substrate. Can be applied. Further, as shown in FIG. 8C, the double-sided printed wiring board can be used as an inner layer circuit board, and the multilayer printed wiring board of the third embodiment can also be applied. Therefore, any of a single-sided printed wiring board, a double-sided printed wiring board, and a multilayer printed wiring board can be produced by the method for producing a printed wiring board of the present embodiment.
 以下、本発明に係るキャリア箔付電解銅箔、およびその銅箔を用いた銅張積層板を製造し、本発明のプリント配線板の製造方法の実施の形態について説明する。ここではキャリア箔に電解銅箔を用いた場合を中心に説明するものとする。本発明を実施例及び比較例に基づいて詳細に説明するが、本発明はこれに限定されるものではない。 Hereinafter, an electrolytic copper foil with a carrier foil according to the present invention and a copper-clad laminate using the copper foil will be manufactured, and an embodiment of a method for manufacturing a printed wiring board according to the present invention will be described. Here, the case where an electrolytic copper foil is used as the carrier foil will be mainly described. The present invention will be described in detail based on examples and comparative examples, but the present invention is not limited thereto.
(金属箔1の製造)
 キャリア箔に、18μm厚の電解銅箔(三井金属工業社製、3EC-VLP、光沢面の表面粗さはRa=0.2μm、Rz=1.5μm)の光沢面に接合界面層および極薄銅箔層を順次形成した。製造条件として、まずキャリア箔を酸洗浄槽(希硫酸溶液、150g/L、液温30℃)に20秒浸漬し表面の油分、酸化被膜等の除去を行った。次に、接合界面形成槽(カルボキシベンゾトリアゾール溶液、5g/L、液温40℃、pH5)に浸漬し、キャリア箔の光沢表面に接合界面層を形成した。次に、バルク銅の形成槽(硫酸銅溶液;硫酸濃度150g/L、銅濃度65g/L、ゼラチン濃度5ppm、塩化物イオン10ppm、液温45℃)に浸漬しながら、キャリア箔の片面に対し、平板のアノード電極(鉛)を平行配置し、電流密度20A/dmの平滑めっき条件で電解し1.5μmのバルク銅層を形成した。次に、バルク銅層の表面に微細銅粒形成槽(硫酸銅溶液;硫酸濃度100g/L、銅濃度18g/Lの硫酸溶液、液温25℃)に浸漬しながら、キャリア箔の片面に対し、平板のアノード電極(鉛)を平行配置し、電流密度10A/dmのヤケめっき条件で電解した。次に、微細銅粒の脱落を防止するための被せめっき槽(硫酸銅溶液;硫酸濃度150g/L、銅濃度65g/L、液温45℃)に浸漬しながら、電流密度20A/dmの平滑めっき条件で電解し0.5μmの微細粗化を形成し、総厚2.0μm極薄銅箔を製造した。次に、防錆処理槽(硫酸亜鉛溶液;硫酸濃度70g/L、亜鉛濃度20g/L、液温40℃)に浸漬し、電流密度15A/dmで電解し亜鉛を用いて防錆処理を行った。ここでは、アノード電極として亜鉛板を用いた溶解性アノードとした。次に、クロメート処理槽(クロム酸溶液;クロム酸濃度5g/L、pH11.5、液温55℃)に4秒浸漬させた。最終的に、乾燥処理槽で電熱器により雰囲気温度110℃に加熱された炉内を60秒かけて通過することでキャリア箔付き銅箔を得た。尚、各槽毎の工程間には、約30秒間の水洗可能な水洗槽に浸漬洗浄している。
(Manufacture of metal foil 1)
18 μm thick electrolytic copper foil (made by Mitsui Kinzoku Kogyo Co., Ltd., 3EC-VLP, glossy surface roughness Ra = 0.2 μm, Rz = 1.5 μm) on the carrier foil, the bonding interface layer and ultrathin Copper foil layers were sequentially formed. As manufacturing conditions, first, the carrier foil was immersed in an acid cleaning tank (dilute sulfuric acid solution, 150 g / L, liquid temperature 30 ° C.) for 20 seconds to remove oil and oxide film on the surface. Next, it was immersed in a bonding interface forming tank (carboxybenzotriazole solution, 5 g / L, liquid temperature 40 ° C., pH 5) to form a bonding interface layer on the glossy surface of the carrier foil. Next, while immersing in a bulk copper formation bath (copper sulfate solution; sulfuric acid concentration 150 g / L, copper concentration 65 g / L, gelatin concentration 5 ppm, chloride ion 10 ppm, liquid temperature 45 ° C.) A flat anode electrode (lead) was placed in parallel and electrolyzed under smooth plating conditions with a current density of 20 A / dm 2 to form a bulk copper layer of 1.5 μm. Next, while immersing in the surface of the bulk copper layer in a fine copper grain formation tank (copper sulfate solution; sulfuric acid concentration 100 g / L, sulfuric acid solution with copper concentration 18 g / L, liquid temperature 25 ° C.) A flat anode electrode (lead) was arranged in parallel, and electrolysis was performed under the condition of burnt plating with a current density of 10 A / dm 2 . Next, a current density of 20 A / dm 2 is applied while being immersed in a coating bath (copper sulfate solution; sulfuric acid concentration 150 g / L, copper concentration 65 g / L, liquid temperature 45 ° C.) for preventing fine copper particles from falling off. Electrolysis was performed under smooth plating conditions to form 0.5 μm fine roughening, and a total thickness of 2.0 μm ultrathin copper foil was produced. Next, it is immersed in a rust prevention treatment tank (zinc sulfate solution; sulfuric acid concentration 70 g / L, zinc concentration 20 g / L, liquid temperature 40 ° C.), electrolyzed at a current density of 15 A / dm 2 and subjected to rust prevention treatment using zinc. went. Here, a soluble anode using a zinc plate as the anode electrode was used. Next, it was immersed in a chromate treatment tank (chromic acid solution; chromic acid concentration 5 g / L, pH 11.5, liquid temperature 55 ° C.) for 4 seconds. Finally, a copper foil with a carrier foil was obtained by passing through a furnace heated to an atmospheric temperature of 110 ° C. by an electric heater in a drying treatment tank over 60 seconds. In addition, it is immersed and washed in the water washing tank which can be washed for about 30 seconds between the processes for each tank.
(金属箔2の製造)
 キャリア箔に、12μm厚の電解銅箔(古河電気工業社製、F2-WS、光沢面の表面粗さはRa=0.2μm、Rz=1.2μm)の光沢面に接合界面層および極薄銅箔層を順次形成した。製造条件として、まずキャリア箔を酸洗浄槽(希硫酸溶液、150g/L、液温30℃)に20秒浸漬し表面の油分、酸化被膜等の除去を行った。次に、接合界面形成槽(カルボキシベンゾトリアゾール溶液、5g/L、液温40℃、pH5)に浸漬し、キャリア箔の光沢表面に接合界面層を形成した。次に、バルク銅の形成槽(硫酸銅溶液;硫酸濃度150g/L、銅濃度65g/L、ゼラチン濃度3ppm、塩化物イオン30ppm、液温45℃)に浸漬しながら、キャリア箔の片面に対し、平板のアノード電極(鉛)を平行配置し、電流密度25A/dmの平滑めっき条件で電解し1.5μmのバルク銅層を形成した。次に、バルク銅層の表面に微細銅粒形成槽(硫酸銅溶液;硫酸濃度100g/L、銅濃度18g/Lの硫酸溶液、液温25℃)に浸漬しながら、キャリア箔の片面に対し、平板のアノード電極(鉛)を平行配置し、電流密度10A/dmのヤケめっき条件で電解した。次に、微細銅粒の脱落を防止するための被せめっき槽(硫酸銅溶液;硫酸濃度150g/L、銅濃度65g/L、液温45℃)に浸漬しながら、電流密度20A/dmの平滑めっき条件で電解し0.5μmの微細粗化を形成し、総厚2.0μmの極薄銅箔を製造した。次に、防錆処理槽(硫酸亜鉛溶液;硫酸濃度70g/L、亜鉛濃度20g/L、液温40℃)に浸漬し、電流密度15A/dmで電解し亜鉛を用いて防錆処理を行った。ここでは、アノード電極として亜鉛板を用いた溶解性アノードとした。次に、クロメート処理槽(クロム酸溶液;クロム酸濃度5g/L、pH11.5、液温55℃)に4秒浸漬させた。最終的に、乾燥処理槽で電熱器により雰囲気温度110℃に加熱された炉内を60秒かけて通過することでキャリア箔付き銅箔を得た。尚、各槽毎の工程間には、約30秒間の水洗可能な水洗槽に浸漬洗浄している。
(Manufacture of metal foil 2)
The carrier foil has a 12 μm thick electrolytic copper foil (F2-WS, manufactured by Furukawa Electric Co., Ltd., glossy surface roughness Ra = 0.2 μm, Rz = 1.2 μm) on the glossy surface and the bonding interface layer and ultrathin Copper foil layers were sequentially formed. As manufacturing conditions, first, the carrier foil was immersed in an acid cleaning tank (dilute sulfuric acid solution, 150 g / L, liquid temperature 30 ° C.) for 20 seconds to remove oil and oxide film on the surface. Next, it was immersed in a bonding interface forming tank (carboxybenzotriazole solution, 5 g / L, liquid temperature 40 ° C., pH 5) to form a bonding interface layer on the glossy surface of the carrier foil. Next, while immersed in a bulk copper formation tank (copper sulfate solution; sulfuric acid concentration 150 g / L, copper concentration 65 g / L, gelatin concentration 3 ppm, chloride ions 30 ppm, liquid temperature 45 ° C.) A flat anode electrode (lead) was placed in parallel and electrolyzed under smooth plating conditions with a current density of 25 A / dm 2 to form a bulk copper layer of 1.5 μm. Next, while immersing in the surface of the bulk copper layer in a fine copper grain formation tank (copper sulfate solution; sulfuric acid concentration 100 g / L, sulfuric acid solution with copper concentration 18 g / L, liquid temperature 25 ° C.) A flat anode electrode (lead) was arranged in parallel, and electrolysis was performed under the condition of burnt plating with a current density of 10 A / dm 2 . Next, a current density of 20 A / dm 2 is applied while being immersed in a coating bath (copper sulfate solution; sulfuric acid concentration 150 g / L, copper concentration 65 g / L, liquid temperature 45 ° C.) for preventing fine copper particles from falling off. Electrolysis was performed under smooth plating conditions to form 0.5 μm fine roughening, and an ultrathin copper foil having a total thickness of 2.0 μm was produced. Next, it is immersed in a rust prevention treatment tank (zinc sulfate solution; sulfuric acid concentration 70 g / L, zinc concentration 20 g / L, liquid temperature 40 ° C.), electrolyzed at a current density of 15 A / dm 2 and subjected to rust prevention treatment using zinc. went. Here, a soluble anode using a zinc plate as the anode electrode was used. Next, it was immersed in a chromate treatment tank (chromic acid solution; chromic acid concentration 5 g / L, pH 11.5, liquid temperature 55 ° C.) for 4 seconds. Finally, a copper foil with a carrier foil was obtained by passing through a furnace heated to an atmospheric temperature of 110 ° C. by an electric heater in a drying treatment tank over 60 seconds. In addition, it is immersed and washed in the water washing tank which can be washed for about 30 seconds between the processes for each tank.
(金属箔3の製造)
 キャリア箔に、12μm厚の電解銅箔(古河電気工業社製、F2-WS、光沢面の表面粗さはRa=0.2μm、Rz=1.2μm)の光沢面に接合界面層および極薄銅箔層を順次形成した。製造条件として、まずキャリア箔を酸洗浄槽(希硫酸溶液;150g/L、液温30℃)に20秒浸漬し表面の油分、酸化被膜等の除去を行った。次に、接合界面形成槽(カルボキシベンゾトリアゾール溶液;5g/L、液温40℃、pH5)に浸漬し、キャリア箔の光沢表面に接合界面層を形成した。次に、バルク銅の形成槽(ピロリン酸銅溶液;ピロリン酸カリウム濃度250g/L、銅濃度25g/L、pH11、液温45℃)に浸漬しながら、キャリア箔の片面に対し、平板のアノード電極(鉛)を平行配置し、電流密度10A/dmの平滑めっき条件で電解し1.5μmのバルク銅層を形成した。次に、バルク銅層の表面に微細銅粒形成槽(硫酸銅溶液;硫酸濃度100g/L、銅濃度18g/Lの硫酸溶液、液温25℃)に浸漬しながら、キャリア箔の片面に対し、平板のアノード電極(鉛)を平行配置し、電流密度10A/dmのヤケめっき条件で電解した。次に、微細銅粒の脱落を防止するための被せめっき槽(硫酸銅溶液;硫酸濃度150g/L、銅濃度65g/L、液温45℃)に浸漬しながら、電流密度20A/dmの平滑めっき条件で電解し0.5μm微細粗化を形成し、総厚2.0μm極薄銅箔を製造した。次に、防錆処理槽(硫酸亜鉛溶液;硫酸濃度70g/L、亜鉛濃度20g/L、液温40℃)に浸漬し、電流密度15A/dmで電解し亜鉛を用いて防錆処理を行った。ここでは、アノード電極として亜鉛板を用いた溶解性アノードとした。次に、クロメート処理槽(クロム酸溶液;クロム酸濃度5g/L、pH11.5、液温55℃)に4秒浸漬させた。最終的に、乾燥処理槽で電熱器により雰囲気温度110℃に加熱された炉内を60秒かけて通過することでキャリア箔付き銅箔を得た。尚、各槽毎の工程間には、約30秒間の水洗可能な水洗槽に浸漬洗浄している。
(Manufacture of metal foil 3)
The carrier foil has a 12 μm thick electrolytic copper foil (F2-WS, manufactured by Furukawa Electric Co., Ltd., glossy surface roughness Ra = 0.2 μm, Rz = 1.2 μm) on the glossy surface and the bonding interface layer and ultrathin Copper foil layers were sequentially formed. As manufacturing conditions, first, the carrier foil was immersed in an acid cleaning tank (dilute sulfuric acid solution; 150 g / L, liquid temperature 30 ° C.) for 20 seconds to remove oil and oxide film on the surface. Next, it was immersed in a bonding interface formation tank (carboxybenzotriazole solution; 5 g / L, liquid temperature 40 ° C., pH 5) to form a bonding interface layer on the glossy surface of the carrier foil. Next, while immersing in a bulk copper formation tank (copper pyrophosphate solution; potassium pyrophosphate concentration 250 g / L, copper concentration 25 g / L, pH 11, liquid temperature 45 ° C.), a flat plate anode is formed on one side of the carrier foil. Electrodes (lead) were arranged in parallel and electrolyzed under smooth plating conditions with a current density of 10 A / dm 2 to form a 1.5 μm bulk copper layer. Next, while immersing in the surface of the bulk copper layer in a fine copper grain formation tank (copper sulfate solution; sulfuric acid concentration 100 g / L, sulfuric acid solution with copper concentration 18 g / L, liquid temperature 25 ° C.) A flat anode electrode (lead) was arranged in parallel, and electrolysis was performed under the condition of burnt plating with a current density of 10 A / dm 2 . Next, a current density of 20 A / dm 2 is applied while being immersed in a coating bath (copper sulfate solution; sulfuric acid concentration 150 g / L, copper concentration 65 g / L, liquid temperature 45 ° C.) for preventing fine copper particles from falling off. Electrolysis was performed under smooth plating conditions to form 0.5 μm fine roughening, and a total thickness of 2.0 μm ultrathin copper foil was produced. Then, antirust treatment tank (zinc sulfate solution; sulfuric acid concentration of 70 g / L, zinc concentration 20 g / L, liquid temperature 40 ° C.) was immersed in the rust-proof treatment with zinc and electrolysis at a current density of 15A / dm 2 went. Here, a soluble anode using a zinc plate as the anode electrode was used. Next, it was immersed in a chromate treatment tank (chromic acid solution; chromic acid concentration 5 g / L, pH 11.5, liquid temperature 55 ° C.) for 4 seconds. Finally, a copper foil with a carrier foil was obtained by passing through a furnace heated to an atmospheric temperature of 110 ° C. by an electric heater in a drying treatment tank over 60 seconds. In addition, it is immersed and washed in the water washing tank which can be washed for about 30 seconds between the processes for each tank.
(実施例1)
 エポキシ樹脂として、ナフタレン変性クレゾールノボラックエポキシ樹脂(DIC社製、HP-5000)8.5重量部、フェノール硬化剤として、ビフェニルアラルキル型フェノール樹脂(明和化成株式会社、MEH7851-4H)8.5重量部、フェノールノボラック型シアネート樹脂(LONZA社製、Primaset PT-30)17重量部、球状溶融シリカ(アドマテックス社製、SO-25R、平均粒径0.5μm)65.5重量部、エポキシシラン(信越化学工業社製、KBM-403)0.5重量部を、メチルエチルケトンに混合溶解させた。次いで、高速撹拌装置を用い撹拌して不揮発分70重量%となるように調整し、樹脂ワニスを調製した。
 前記樹脂ワニスをガラス織布(坪量104g、厚さ87μm、日東紡製Eガラス織布、WEA-116E)に含浸し、150℃の加熱炉で2分間乾燥して、プリプレグ中のワニス固形分が約50重量%のプリプレグを得た。
前記プリプレグ2枚重ね、キャリア箔付き極薄銅箔(金属箔1)を重ねて、圧力3MPa、温度200℃で1時間加熱加圧成形し、絶縁層が厚さ0.20mmの両面に銅箔を有する積層板を得た(図7(a))。
Example 1
As epoxy resin, 8.5 parts by weight of naphthalene-modified cresol novolak epoxy resin (manufactured by DIC, HP-5000), and as phenol curing agent, biphenylaralkyl type phenol resin (Maywa Kasei Co., Ltd., MEH7851-4H) 8.5 parts by weight. , 17 parts by weight of a phenol novolac type cyanate resin (manufactured by LONZA, Primaset PT-30), 65.5 parts by weight of spherical fused silica (manufactured by Admatechs, SO-25R, average particle size 0.5 μm), epoxy silane (Shin-Etsu) 0.5 parts by weight of KBM-403) manufactured by Chemical Industry Co., Ltd. was mixed and dissolved in methyl ethyl ketone. Subsequently, it stirred using the high-speed stirring apparatus and adjusted so that it might become 70 weight% of non volatile matters, and prepared the resin varnish.
The resin varnish was impregnated into a glass woven fabric (basis weight 104 g, thickness 87 μm, Nittobo E glass woven fabric, WEA-116E), dried in a heating furnace at 150 ° C. for 2 minutes, and varnish solid content in the prepreg About 50% by weight of prepreg was obtained.
Two prepregs are stacked, and an ultra-thin copper foil (metal foil 1) with a carrier foil is stacked and heat-pressed for 1 hour at a pressure of 3 MPa and a temperature of 200 ° C., and an insulating layer is formed on both sides with a thickness of 0.20 mm. The laminated board which has this was obtained (FIG.7 (a)).
 実施例で得られた、積層板のキャリア箔は剥離除去し(図7(b))、図7(c)に示すように、極薄金属箔上から炭酸ガスレーザー(三菱電機社製、ML605GTX3-5100U2)により、直径75μmの貫通スルーホールを開け、過マンガン酸カリウム60g/Lと水酸化ナトリウム45g/Lの水溶液に、液温80℃で2分間浸漬し、デスミア処理した。
 その後、パラジウム溶液(上村工業社製、MAT-2B/MAT-2A)に液温55℃で5分間浸漬し、触媒付与し、上村工業社製、スルカップPEA-6Aを使用し、液温36℃で15分間浸漬し、無電解めっき層を0.7μm形成した(図7(d))。
この無電解めっき層の表面に、厚さ25μmの紫外線感光性ドライフィルム(旭化成社製、サンフォートUFG-255)をホットロールラミネーターにより貼り合わせ、最小線幅/線間が20/20μmのパターンが描画されたガラスマスク(トピック社製)を使用して、位置を合わせ、露光装置(小野測器EV-0800)にて露光、炭酸ソーダ水溶液にて現像し、レジストマスクを形成した(図7(e))。次に、無電解めっき層を給電層電極として、電解銅めっき(奥野製薬社製81-HL)を3A/dm、25分間行って、厚さ約20μmの銅配線のパターンを形成した(図8(a))。次に、剥離機を用いて、モノエタノールアミン溶液(三菱ガス化学社製R-100)により、前記レジストマスクを剥離した(図8(b))。そして給電層である無電解めっき層及び下地銅箔(2μm)をフラッシュエッチング(三菱ガス化学社製 CPE-800、液温:30℃、スプレー圧0.23MPa)で180秒間処理することにより除去して、L/S=20/20μmのパターンを形成し(パターン状エッチング)、プリント配線板を得た(図8(c))。
 最後に、図8(d-1)に示すように、回路表面にソルダーレジスト(太陽インキ社製、PSR4000/AUS308)を形成し、ニッケルめっき層(奥野製薬工業社製、ICPニコロンGM)を、液温80℃で12分間浸漬し2.5μm、ついで金めっき層(奥野製薬工業社製、フラッシュゴールド330)を、液温80℃で9分間浸漬し0.05μmを形成し、プリント配線板を得た。尚、図8(d-2)に示すように、回路表面にソルダーレジストを形成しない場合もある。
The carrier foil of the laminate obtained in the example was peeled and removed (FIG. 7 (b)), and as shown in FIG. 7 (c), a carbon dioxide laser (ML605GTX3 manufactured by Mitsubishi Electric Corporation) was applied from above the ultrathin metal foil. A through-hole having a diameter of 75 μm was opened by −5100 U2), and immersed in an aqueous solution of potassium permanganate 60 g / L and sodium hydroxide 45 g / L at a liquid temperature of 80 ° C. for 2 minutes to perform desmear treatment.
Thereafter, it was immersed in a palladium solution (MAT-2B / MAT-2A, manufactured by Uemura Kogyo Co., Ltd.) for 5 minutes at a liquid temperature of 55 ° C. to give a catalyst. Was immersed for 15 minutes to form an electroless plating layer of 0.7 μm (FIG. 7D).
On the surface of this electroless plating layer, a 25 μm-thick UV photosensitive dry film (Sunfort UFG-255, manufactured by Asahi Kasei Co., Ltd.) was bonded using a hot roll laminator, and a pattern with a minimum line width / line spacing of 20/20 μm was formed. Using a drawn glass mask (manufactured by Topic Co., Ltd.), the position is adjusted, exposure is performed with an exposure apparatus (Ono Sokki EV-0800), and development is performed with a sodium carbonate aqueous solution to form a resist mask (FIG. 7 ( e)). Next, electrolytic copper plating (81-HL manufactured by Okuno Pharmaceutical Co., Ltd.) was performed at 3 A / dm 2 for 25 minutes using the electroless plating layer as a power feeding layer electrode to form a copper wiring pattern having a thickness of about 20 μm (see FIG. 8 (a)). Next, the resist mask was peeled off with a monoethanolamine solution (R-100, manufactured by Mitsubishi Gas Chemical Company) using a peeling machine (FIG. 8B). Then, the electroless plating layer and the underlying copper foil (2 μm) as the power feeding layer are removed by treating for 180 seconds with flash etching (CPE-800 manufactured by Mitsubishi Gas Chemical Company, liquid temperature: 30 ° C., spray pressure: 0.23 MPa). Then, a pattern of L / S = 20/20 μm was formed (patterned etching) to obtain a printed wiring board (FIG. 8C).
Finally, as shown in FIG. 8 (d-1), a solder resist (manufactured by Taiyo Ink, PSR4000 / AUS308) is formed on the circuit surface, and a nickel plating layer (Okuno Pharmaceutical Co., Ltd., ICP Nicolon GM) is formed. Immerse it for 12 minutes at a liquid temperature of 80 ° C. for 2.5 μm, then immerse the gold plating layer (Okuno Pharmaceutical Co., Ltd., Flash Gold 330) for 9 minutes at a liquid temperature of 80 ° C. to form 0.05 μm. Obtained. As shown in FIG. 8D-2, there is a case where no solder resist is formed on the circuit surface.
(実施例2)
 キャリア箔付き極薄銅箔を金属箔2に変えた以外は、実施例1と同じにした。
(Example 2)
Example 1 was the same as Example 1 except that the ultrathin copper foil with carrier foil was changed to metal foil 2.
(実施例3)
 キャリア箔付き極薄銅箔を金属箔3に変えた以外は、実施例1と同じにした。
(Example 3)
Example 1 was the same as Example 1 except that the ultrathin copper foil with carrier foil was changed to metal foil 3.
(実施例4)
 給電層である無電解めっき層及び下地銅箔(2μm)のフラッシュエッチングの条件を下記の通り変更した以外は、実施例1と同じにした。
 給電層である無電解めっき層及び下地銅箔(2μm)をフラッシュエッチング(三菱ガス化学社製 CPE-800、液温:30℃、スプレー圧0.23MPa)で240秒間処理することにより除去して、L/S=20/20μmのパターンを形成し(パターン状エッチング)、プリント配線板を得た。
Example 4
Example 1 was the same as Example 1 except that the conditions for flash etching of the electroless plating layer as the power feeding layer and the underlying copper foil (2 μm) were changed as follows.
The electroless plating layer and the underlying copper foil (2 μm) as the power feeding layer were removed by treating for 240 seconds with flash etching (CPE-800 manufactured by Mitsubishi Gas Chemical Company, liquid temperature: 30 ° C., spray pressure 0.23 MPa). A pattern of L / S = 20/20 μm was formed (patterned etching) to obtain a printed wiring board.
(実施例5)
 積層板に用いる樹脂組成物を変えた以外は、実施例1と同じにした。
エポキシ樹脂として、ビフェニルアラルキル型エポキシ樹脂(日本化薬社製、NC-3000)11重量部、ビスマレイミド化合物(ケイアイ化成工業社製、BMI-70)20重量部、4,4'-ジアミノジフェニルメタン3.5重量部、水酸化アルミニウム(昭和電工製HP-360)65重量部、エポキシシラン(信越化学工業社製、KBM-403)0.5重量部を、メチルエチルケトンに混合溶解させた。次いで、高速撹拌装置を用い撹拌して不揮発分70重量%となるように調整し、樹脂ワニスを調製した。
 前記樹脂ワニスをガラス織布(坪量104g、厚さ87μm、日東紡製Eガラス織布、WEA-116E)に含浸し、150℃の加熱炉で2分間乾燥して、プリプレグ中のワニス固形分が約50重量%のプリプレグを得た。前記プリプレグ2枚重ね、キャリア箔付き極薄銅箔(金属箔1)を重ねて、圧力3MPa、温度200℃で1時間加熱加圧成形し、絶縁層が厚さ0.20mmの両面に銅箔を有する積層板を得た。
(Example 5)
It was the same as Example 1 except having changed the resin composition used for a laminated board.
As an epoxy resin, 11 parts by weight of a biphenyl aralkyl type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., NC-3000), 20 parts by weight of a bismaleimide compound (manufactured by KAI Kasei Kogyo Co., Ltd., BMI-70), 4,4′-diaminodiphenylmethane 3 0.5 parts by weight, 65 parts by weight of aluminum hydroxide (HP-360, Showa Denko) and 0.5 parts by weight of epoxy silane (KBE-403, manufactured by Shin-Etsu Chemical Co., Ltd.) were mixed and dissolved in methyl ethyl ketone. Subsequently, it stirred using the high-speed stirring apparatus and adjusted so that it might become 70 weight% of non volatile matters, and the resin varnish was prepared.
The resin varnish was impregnated into a glass woven fabric (basis weight 104 g, thickness 87 μm, Nittobo E glass woven fabric, WEA-116E), dried in a heating furnace at 150 ° C. for 2 minutes, and varnish solid content in the prepreg About 50% by weight of prepreg was obtained. Two prepregs are stacked, and an ultra-thin copper foil (metal foil 1) with a carrier foil is stacked and heat-pressed for 1 hour at a pressure of 3 MPa and a temperature of 200 ° C., and an insulating layer is formed on both sides with a thickness of 0.20 mm. A laminated board having was obtained.
(比較例1)
(金属箔4の製造)
 キャリア箔に、35μm厚の電解銅箔(古河電気工業社製、F2-WS、光沢面の表面粗さはRa=0.2μm、Rz=1.2μm)の光沢面に接合界面層および極薄銅箔層を順次形成した。製造条件として、まずキャリア箔を酸洗浄槽(希硫酸溶液、150g/L、液温30℃)に20秒浸漬し表面の油分、酸化被膜等の除去を行った。次に、接合界面形成槽(カルボキシベンゾトリアゾール溶液、5g/L、液温40℃、pH5)に浸漬し、キャリア箔の光沢表面に接合界面層を形成した。次に、バルク銅の形成槽(硫酸銅溶液;硫酸濃度150g/L、銅濃度65g/L、液温45℃)に浸漬しながら、キャリア箔の片面に対し、平板のアノード電極(鉛)を平行配置し、電流密度2A/dmの平滑めっき条件で電解し1.5μmのバルク銅層を形成した。次に、バルク銅層の表面に微細銅粒形成槽(硫酸銅溶液;硫酸濃度100g/L、銅濃度18g/Lの硫酸溶液、液温25℃)に浸漬しながら、キャリア箔の片面に対し、平板のアノード電極(鉛)を平行配置し、電流密度10A/dmのヤケめっき条件で7秒間電解した。次に、微細銅粒の脱落を防止するための被せめっき槽(硫酸銅溶液;硫酸濃度150g/L、銅濃度65g/L、液温45℃)に浸漬しながら、電流密度10A/dmの平滑めっき条件で電解し0.5μmの微細粗化を形成し、総厚2.0μmの極薄銅箔を製造した。次に、防錆処理槽(硫酸亜鉛溶液;硫酸濃度70g/L、亜鉛濃度20g/L、液温40℃)に浸漬し、電流密度10A/dmで電解し亜鉛を用いて防錆処理を行った。ここでは、アノード電極として亜鉛板を用いた溶解性アノードとした。次に、クロメート処理槽(クロム酸溶液;クロム酸濃度5g/L、pH11.5、液温55℃)に4秒浸漬させた。最終的に、乾燥処理槽で電熱器により雰囲気温度110℃に加熱された炉内を60秒かけて通過することでキャリア箔付き銅箔を得た。尚、各槽毎の工程間には、約30秒間の水洗可能な水洗槽に浸漬洗浄している。
 キャリア箔付き極薄銅箔を金属箔4に変えた以外は、実施例1と同じにしてプリント配線板を得た。
(Comparative Example 1)
(Manufacture of metal foil 4)
The carrier foil has a 35 μm-thick electrolytic copper foil (F2-WS, manufactured by Furukawa Electric Co., Ltd., glossy surface roughness Ra = 0.2 μm, Rz = 1.2 μm). Copper foil layers were sequentially formed. As manufacturing conditions, first, the carrier foil was immersed in an acid cleaning tank (dilute sulfuric acid solution, 150 g / L, liquid temperature 30 ° C.) for 20 seconds to remove oil and oxide film on the surface. Next, it was immersed in a bonding interface forming tank (carboxybenzotriazole solution, 5 g / L, liquid temperature 40 ° C., pH 5) to form a bonding interface layer on the glossy surface of the carrier foil. Next, while immersing in a bulk copper formation tank (copper sulfate solution; sulfuric acid concentration 150 g / L, copper concentration 65 g / L, liquid temperature 45 ° C.), a flat plate anode electrode (lead) is applied to one side of the carrier foil. A 1.5-μm bulk copper layer was formed by parallel placement and electrolysis under smooth plating conditions with a current density of 2 A / dm 2 . Next, while immersing in the surface of the bulk copper layer in a fine copper grain formation tank (copper sulfate solution; sulfuric acid concentration 100 g / L, sulfuric acid solution with copper concentration 18 g / L, liquid temperature 25 ° C.) Then, flat anode electrodes (lead) were arranged in parallel, and electrolysis was performed for 7 seconds under a burn plating condition with a current density of 10 A / dm 2 . Next, a current density of 10 A / dm 2 is applied while being immersed in a covering plating tank (copper sulfate solution; sulfuric acid concentration 150 g / L, copper concentration 65 g / L, liquid temperature 45 ° C.) for preventing fine copper particles from falling off. Electrolysis was performed under smooth plating conditions to form 0.5 μm fine roughening, and an ultrathin copper foil having a total thickness of 2.0 μm was produced. Next, it is immersed in a rust prevention treatment tank (zinc sulfate solution; sulfuric acid concentration 70 g / L, zinc concentration 20 g / L, liquid temperature 40 ° C.), electrolyzed at a current density of 10 A / dm 2 and subjected to rust prevention treatment using zinc. went. Here, a soluble anode using a zinc plate as the anode electrode was used. Next, it was immersed in a chromate treatment tank (chromic acid solution; chromic acid concentration 5 g / L, pH 11.5, liquid temperature 55 ° C.) for 4 seconds. Finally, a copper foil with a carrier foil was obtained by passing through a furnace heated to an atmospheric temperature of 110 ° C. by an electric heater in a drying treatment tank over 60 seconds. In addition, it is immersed and washed in the water washing tank which can be washed for about 30 seconds between the processes for each tank.
A printed wiring board was obtained in the same manner as in Example 1 except that the ultrathin copper foil with carrier foil was changed to metal foil 4.
(比較例2)
(金属箔5の製造)
 キャリア箔に、35μm厚の電解銅箔(古河電気工業社製、F2-WS、光沢面の表面粗さはRa=0.2μm、Rz=1.2μm)の光沢面に接合界面層および極薄銅箔層を順次形成した。製造条件として、まずキャリア箔を酸洗浄槽(希硫酸溶液;150g/L、液温30℃)に20秒浸漬し表面の油分、酸化被膜等の除去を行った。次に、接合界面形成槽(カルボキシベンゾトリアゾール溶液;5g/L、液温40℃、pH5)に浸漬し、キャリア箔の光沢表面に接合界面層を形成した。次に、バルク銅の形成槽1(ピロリン酸銅溶液;ピロリン酸カリウム濃度320g/L、銅濃度80g/L、25%アンモニア水2ml/L、pH8.5、液温40℃)に浸漬しながら、キャリア箔の片面に対し、平板のアノード電極(鉛)を平行配置し、電流密度1.5A/dmの平滑めっき条件で電解し、続いてバルク銅の形成槽2(硫酸銅溶液;硫酸濃度100g/L、銅濃度200g/L、液温45℃)に浸漬しながら、キャリア箔の片面に対し、平板のアノード電極(鉛)を平行配置し、電流密度3A/dmの平滑めっき条件で電解し1.5μmのバルク銅層を形成した。次に、バルク銅層の表面に微細銅粒形成槽(硫酸銅溶液;硫酸濃度100g/L、銅濃度18g/Lの硫酸溶液、液温25℃)に浸漬しながら、キャリア箔の片面に対し、平板のアノード電極(鉛)を平行配置し、電流密度5A/dmのヤケめっき条件で電解した。次に、微細銅粒の脱落を防止するための被せめっき槽(硫酸銅溶液;硫酸濃度150g/L、銅濃度65g/L、液温45℃)に浸漬しながら、電流密度10A/dmの平滑めっき条件で電解し0.5μmの微細粗化を形成し、総厚2.0μmの極薄銅箔を製造した。次に、防錆処理槽(硫酸亜鉛溶液;硫酸濃度70g/L、亜鉛濃度20g/L、液温40℃)に浸漬し、電流密度15A/dmで電解し亜鉛を用いて防錆処理を行った。ここでは、アノード電極として亜鉛板を用いた溶解性アノードとした。次に、クロメート処理槽(クロム酸溶液;クロム酸濃度5g/L、pH11.5、液温55℃)に4秒浸漬させた。最終的に、乾燥処理槽で電熱器により雰囲気温度110℃に加熱された炉内を60秒かけて通過することでキャリア箔付き銅箔を得た。尚、各槽毎の工程間には、約30秒間の水洗可能な水洗槽に浸漬洗浄している。
 キャリア箔付き極薄銅箔を金属箔5に変えた以外は、実施例1と同じにしてプリント配線板を得た。
(Comparative Example 2)
(Manufacture of metal foil 5)
The carrier foil has a 35 μm-thick electrolytic copper foil (F2-WS, manufactured by Furukawa Electric Co., Ltd., glossy surface roughness Ra = 0.2 μm, Rz = 1.2 μm). Copper foil layers were sequentially formed. As manufacturing conditions, first, the carrier foil was immersed in an acid cleaning tank (dilute sulfuric acid solution; 150 g / L, liquid temperature 30 ° C.) for 20 seconds to remove oil and oxide film on the surface. Next, it was immersed in a bonding interface formation tank (carboxybenzotriazole solution; 5 g / L, liquid temperature 40 ° C., pH 5) to form a bonding interface layer on the glossy surface of the carrier foil. Next, while immersed in a bulk copper formation tank 1 (copper pyrophosphate solution; potassium pyrophosphate concentration 320 g / L, copper concentration 80 g / L, 25% aqueous ammonia 2 ml / L, pH 8.5, liquid temperature 40 ° C.) A flat anode electrode (lead) is arranged in parallel to one side of the carrier foil, electrolyzed under smooth plating conditions with a current density of 1.5 A / dm 2 , and then a bulk copper forming tank 2 (copper sulfate solution; sulfuric acid) A flat plate anode electrode (lead) is placed in parallel to one side of the carrier foil while being immersed in a concentration of 100 g / L, a copper concentration of 200 g / L, and a liquid temperature of 45 ° C., and smooth plating conditions with a current density of 3 A / dm 2 Was used to form a 1.5 μm bulk copper layer. Next, while immersing in the surface of the bulk copper layer in a fine copper grain formation tank (copper sulfate solution; sulfuric acid concentration 100 g / L, sulfuric acid solution with copper concentration 18 g / L, liquid temperature 25 ° C.) A flat anode electrode (lead) was arranged in parallel, and electrolysis was performed under the condition of burnt plating with a current density of 5 A / dm 2 . Next, a current density of 10 A / dm 2 is applied while being immersed in a covering plating tank (copper sulfate solution; sulfuric acid concentration 150 g / L, copper concentration 65 g / L, liquid temperature 45 ° C.) for preventing fine copper particles from falling off. Electrolysis was performed under smooth plating conditions to form 0.5 μm fine roughening, and an ultrathin copper foil having a total thickness of 2.0 μm was produced. Next, it is immersed in a rust prevention treatment tank (zinc sulfate solution; sulfuric acid concentration 70 g / L, zinc concentration 20 g / L, liquid temperature 40 ° C.), electrolyzed at a current density of 15 A / dm 2 and subjected to rust prevention treatment using zinc. went. Here, a soluble anode using a zinc plate as the anode electrode was used. Next, it was immersed in a chromate treatment tank (chromic acid solution; chromic acid concentration 5 g / L, pH 11.5, liquid temperature 55 ° C.) for 4 seconds. Finally, a copper foil with a carrier foil was obtained by passing through a furnace heated to an atmospheric temperature of 110 ° C. by an electric heater in a drying treatment tank over 60 seconds. In addition, it is immersed and washed in the water washing tank which can be washed for about 30 seconds between the processes for each tank.
A printed wiring board was obtained in the same manner as in Example 1 except that the ultrathin copper foil with carrier foil was changed to the metal foil 5.
(評価)
 各実施例および比較例で得られたプリント配線板を用いて、以下の評価を行った。評価項目を内容と共に示し、得られた結果を表1に示す。
(Evaluation)
The following evaluation was performed using the printed wiring board obtained in each Example and Comparative Example. The evaluation items are shown together with the contents, and the obtained results are shown in Table 1.
(1)XRD薄膜法
 全自動粉末X線回折装置(Philips社製、PW1700型)、線源としてCu-Kα線を使用して測定した。2θ走査で検出される面方位(111)、(200)、(220)および(311)からの回折線のピーク積分強度をそれぞれ求めるものである。尚、サンプルは、製造例で得られたキャリア箔付き銅箔を真空プレス機で200℃1時間、圧力3MPaの条件で熱処理する前後の薄箔表面を試料面として用いた。尚詳細な測定条件は下記に示す。
<測定条件>
 X線源:Cu-Kα
 電圧:40kV
 電流:50mA
 入射角:1.0deg
 回折角度:30~120deg
 スキャンスピード:0.02deg/秒
(1) XRD thin film method Measurement was performed using a fully automatic powder X-ray diffractometer (manufactured by Philips, PW1700 type) and Cu—Kα ray as a radiation source. The peak integrated intensities of diffraction lines from the plane orientations (111), (200), (220), and (311) detected by the 2θ scanning are obtained. In addition, the sample used the thin foil surface before and behind heat-processing the copper foil with a carrier foil obtained by the manufacture example on 200 degreeC 1 hour and the conditions of pressure 3MPa with a vacuum press machine as a sample surface. Detailed measurement conditions are shown below.
<Measurement conditions>
X-ray source: Cu-Kα
Voltage: 40 kV
Current: 50 mA
Incident angle: 1.0 deg
Diffraction angle: 30-120deg
Scan speed: 0.02 deg / sec
(2)銅箔の結晶粒径(長辺)
 FIB-FESEM(日立製作所社製 集束イオンビーム加工観察装置FB2000A、日立製作所社製 電界放射型走査電子顕微鏡 S-4500))を用いて、試料断面を集束イオンビーム加工し調製後、SEM像で10000倍の視野として、任意の3点を観察した。尚、サンプルは、製造例で得られたキャリア箔付き銅箔を真空プレス機で200℃1時間、圧力3MPaの条件で熱処理する前後の薄銅箔表面を試料面として用いた。
(2) Crystal grain size of copper foil (long side)
Using a FIB-FESEM (focused ion beam processing and observation apparatus FB2000A manufactured by Hitachi, Ltd., field emission scanning electron microscope S-4500 manufactured by Hitachi, Ltd.), the sample cross section is processed by focused ion beam and prepared, and then the SEM image is 10,000. As a double field of view, arbitrary three points were observed. In addition, the sample used the thin copper foil surface before and behind heat-treating copper foil with a carrier foil obtained by the manufacture example on 200 degreeC 1 hour and the conditions of pressure 3MPa with a vacuum press machine as a sample surface.
(3)LSの細線加工時の薄銅箔の形状
 走査型電子顕微鏡(日本電子社製、装置名:JSM-6060LV)を用いて、配線の真上、および斜め配線形状を観察した。尚、サンプルは、プリント配線板(図8(c))を用いた。
各符号は、以下の通りである。
○:薄銅箔部分の裾残りがない
×:薄銅箔部分の裾残りがある
(3) Shape of thin copper foil at the time of LS thin wire processing Using a scanning electron microscope (manufactured by JEOL Ltd., apparatus name: JSM-6060LV), the shape directly above the wiring and the oblique wiring shape were observed. As a sample, a printed wiring board (FIG. 8C) was used.
Each code is as follows.
○: There is no hem remaining in the thin copper foil part ×: There is a hem remaining in the thin copper foil part
(4)ΔL=L1-L2
 走査型電子顕微鏡(日本電子社製、装置名:JSM-6060LV)を用いて、配線の断面形状を観察し、薄銅箔の最大幅をL1、電気パターンめっきの最小幅をL2を算出して計算した。尚、サンプルは、プリント配線板(図8(c))を用いた。
(4) ΔL = L1−L2
Using a scanning electron microscope (manufactured by JEOL Ltd., apparatus name: JSM-6060LV), observe the cross-sectional shape of the wiring, and calculate the maximum width of thin copper foil L1 and the minimum width of electric pattern plating L2. Calculated. As a sample, a printed wiring board (FIG. 8C) was used.
(5)LS20(L/S=20μm/20μm)の線間BHAST
 微細配線間の電気絶縁信頼性は、印加電圧10V、温度130℃湿度85%の条件で、連続測定で評価した。尚、サンプルは、上記実施例で得られたプリント配線板(図12(b))を用いた。尚、絶縁抵抗値が10Ω未満となる時点で終了とした。
 各符号は以下の通りである。
 ◎:200時間を超えた。
 ○:100時間以上200時間以下であった。 
 ×:100時間未満であった。
(5) LS20 (L / S = 20 μm / 20 μm) line-to-line BHAST
The electrical insulation reliability between the fine wirings was evaluated by continuous measurement under the conditions of an applied voltage of 10 V and a temperature of 130 ° C. and a humidity of 85%. In addition, the printed wiring board (FIG.12 (b)) obtained in the said Example was used for the sample. The process was terminated when the insulation resistance value was less than 10 8 Ω.
Each code is as follows.
A: More than 200 hours.
○: 100 hours or more and 200 hours or less.
X: Less than 100 hours.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この出願は、2011年1月26日に出願された日本出願特願2011-14126号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2011-14126 filed on Jan. 26, 2011, the entire disclosure of which is incorporated herein.

Claims (11)

  1.  少なくとも絶縁層の一面上にキャリア基材付き銅箔が積層された積層板から前記キャリア基材を分離する工程と、
     前記銅箔上に、前記銅箔よりも厚い金属層を全面にまたは選択的に形成する工程と、
     少なくとも前記銅箔をエッチングすることにより、前記銅箔および前記金属層から構成される導電回路パターンを得る工程と、を含み、
     前記金属層と接する前記銅箔の面において、XRD薄膜法で測定したときの面方位(111)、(200)、(220)および(311)のピーク強度の和に対して、前記面方位(200)のピーク強度の比率が26%以下である、プリント配線板の製造方法。
    Separating the carrier substrate from a laminate in which a copper foil with a carrier substrate is laminated on at least one surface of the insulating layer;
    Forming a metal layer thicker than the copper foil on the entire surface or selectively on the copper foil;
    Obtaining a conductive circuit pattern composed of the copper foil and the metal layer by etching at least the copper foil, and
    On the surface of the copper foil in contact with the metal layer, the surface orientation (111), (200), (220) and (311) with respect to the sum of the peak intensities when measured by the XRD thin film method. 200) The method for producing a printed wiring board, wherein the ratio of the peak intensity is 26% or less.
  2.  請求項1に記載のプリント配線板の製造方法であって、
     前記金属層と接する前記銅箔の前記面において、前記ピーク強度の和に対して、前記面方位(200)および(220)のピーク強度の和の比率が32%以下である、プリント配線板の製造方法。
    It is a manufacturing method of the printed wiring board according to claim 1,
    In the surface of the copper foil in contact with the metal layer, the ratio of the sum of the peak intensities of the plane orientations (200) and (220) to the sum of the peak intensities is 32% or less. Production method.
  3.  請求項1または2に記載のプリント配線板の製造方法であって、
     前記銅箔は、長辺の平均長さが2μm以下の結晶粒を有している、プリント配線板の製造方法。
    It is a manufacturing method of the printed wiring board according to claim 1 or 2,
    The said copper foil is a manufacturing method of a printed wiring board which has a crystal grain whose average length of a long side is 2 micrometers or less.
  4.  請求項3に記載のプリント配線板の製造方法であって、
     断面視において、前記長辺の平均長さが2μm以下の前記結晶粒が占める面積率が80%以上である、プリント配線板の製造方法。
    It is a manufacturing method of the printed wiring board according to claim 3,
    The method for manufacturing a printed wiring board, wherein an area ratio occupied by the crystal grains having an average length of the long side of 2 μm or less is 80% or more in a cross-sectional view.
  5.  請求項1から4のいずれか1項に記載のプリント配線板の製造方法であって、
     前記銅箔の膜厚が、0.1μm以上5μm以下である、プリント配線板の製造方法。
    A method for manufacturing a printed wiring board according to any one of claims 1 to 4,
    The manufacturing method of a printed wiring board whose film thickness of the said copper foil is 0.1 micrometer or more and 5 micrometers or less.
  6.  請求項1から5のいずれか1項に記載のプリント配線板の製造方法であって、
     前記金属層を選択的に形成する前記工程は、
     前記銅箔上に開口パターンを有するレジストを形成する工程と、
     前記開口パターン内かつ前記銅箔上に、めっき処理により前記金属層となるめっき層を形成する工程と、
     前記レジストを除去する工程と、を含み、
     前記導電回路パターンを得る前記工程は、前記銅箔をソフトエッチングする工程を含む、プリント配線板の製造方法。
    A method for manufacturing a printed wiring board according to any one of claims 1 to 5,
    The step of selectively forming the metal layer includes:
    Forming a resist having an opening pattern on the copper foil;
    Forming a plating layer to be the metal layer by plating in the opening pattern and on the copper foil;
    Removing the resist, and
    The said process of obtaining the said conductive circuit pattern is a manufacturing method of a printed wiring board including the process of carrying out the soft etching of the said copper foil.
  7.  請求項1から6のいずれか1項に記載のプリント配線板の製造方法であって、
     前記金属層を全面にまたは選択的に形成する前記工程の前に、
      前記積層板に貫通孔又は非貫通孔を形成する工程と、
      少なくとも前記貫通孔又は非貫通孔の内壁に薬液を接触させる工程と、
      無電解めっきにより、少なくとも前記銅箔上及び、前記貫通孔の内壁上又は前記非貫通孔の内壁上に無電解めっき層を形成する工程と、をさらに含む、プリント配線板の製造方法。
    A method for producing a printed wiring board according to any one of claims 1 to 6,
    Before the step of forming the metal layer on the entire surface or selectively,
    Forming a through hole or a non-through hole in the laminate; and
    A step of bringing a chemical solution into contact with at least the inner wall of the through hole or the non-through hole;
    And a step of forming an electroless plating layer on at least the copper foil and the inner wall of the through hole or the inner wall of the non-through hole by electroless plating.
  8.  絶縁層と、
     前記絶縁層上に設けられており、銅箔および金属層が積層して構成される導電回路パターンと、を備え、
     前記金属層と接する前記銅箔の面において、XRD薄膜法で測定したときの面方位(111)、(200)、(220)および(311)のピーク強度の和に対して、前記面方位(200)のピーク強度の比率が26%以下である、プリント配線板。
    An insulating layer;
    A conductive circuit pattern provided on the insulating layer and configured by laminating a copper foil and a metal layer;
    On the surface of the copper foil in contact with the metal layer, the surface orientation (111), (200), (220) and (311) with respect to the sum of the peak intensities when measured by the XRD thin film method. 200) A printed wiring board having a peak intensity ratio of 26% or less.
  9.  請求項8に記載のプリント配線板であって、
     前記金属層が2層以上のめっき膜を含む、プリント配線板。
    The printed wiring board according to claim 8,
    The printed wiring board in which the metal layer includes two or more plating films.
  10.  請求項8又は9に記載のプリント配線板であって、
     断面視において、前記導電回路パターンの延在方向と直交する幅方向における前記銅箔の最大幅をL1とし、前記金属層の最小幅をL2としたとき、
     前記L1は、L2と同一、又はL2より小さい、プリント配線板。
    The printed wiring board according to claim 8 or 9,
    In cross-sectional view, when the maximum width of the copper foil in the width direction orthogonal to the extending direction of the conductive circuit pattern is L1, and the minimum width of the metal layer is L2,
    L1 is a printed wiring board which is the same as L2 or smaller than L2.
  11.  請求項10に記載のプリント配線板であって、
     平面視において、前記銅箔の第1面から第2面に向かって、前記銅箔の面積が小さくなる、プリント配線板。
    The printed wiring board according to claim 10,
    A printed wiring board in which the area of the copper foil decreases from the first surface to the second surface of the copper foil in plan view.
PCT/JP2012/000259 2011-01-26 2012-01-18 Printed wiring board and method for producing printed wiring board WO2012101984A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020137022430A KR20140009322A (en) 2011-01-26 2012-01-18 Printed wiring board and method for producing printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011014126 2011-01-26
JP2011-014126 2011-01-26

Publications (1)

Publication Number Publication Date
WO2012101984A1 true WO2012101984A1 (en) 2012-08-02

Family

ID=46580563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000259 WO2012101984A1 (en) 2011-01-26 2012-01-18 Printed wiring board and method for producing printed wiring board

Country Status (4)

Country Link
JP (1) JP5929219B2 (en)
KR (1) KR20140009322A (en)
TW (1) TWI561128B (en)
WO (1) WO2012101984A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140096382A1 (en) * 2012-10-08 2014-04-10 Subtron Technology Co., Ltd. Manufacturing method of substrate structure
JP2015183294A (en) * 2014-03-21 2015-10-22 長春石油化學股▲分▼有限公司 electrolytic copper foil
JP2017188565A (en) * 2016-04-05 2017-10-12 住友金属鉱山株式会社 Conductive substrate and method for producing the same

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054811A1 (en) * 2012-10-04 2014-04-10 Jx日鉱日石金属株式会社 Production method for multilayer printed wiring board, and base material
KR101391187B1 (en) 2013-01-24 2014-05-07 하이쎌(주) Flexible module with enhanced radiating ability and method for manufacturing the same
KR102198541B1 (en) * 2014-03-17 2021-01-06 삼성전기주식회사 Carrier member
CN106715118B (en) * 2014-10-30 2021-04-16 三井金属矿业株式会社 Copper foil with carrier and method for manufacturing printed wiring board using the copper foil with carrier
JP6417964B2 (en) * 2015-01-23 2018-11-07 住友金属鉱山株式会社 LAMINATED BOARD, WIRING BOARD AND METHOD FOR PRODUCING THEM
KR102040605B1 (en) 2015-07-15 2019-12-05 엘지이노텍 주식회사 The printed circuit board and the method for manufacturing the same
JP2017199854A (en) * 2016-04-28 2017-11-02 Tdk株式会社 Through wiring board
JP2018026392A (en) * 2016-08-08 2018-02-15 イビデン株式会社 Wiring board and manufacturing method thereof
KR102302184B1 (en) * 2018-02-01 2021-09-13 에스케이넥실리스 주식회사 Copper Film With Dimensional Stability And Texture Stability At High Temperature, And Manufacturing Methods Thereof
JP7070188B2 (en) 2018-07-17 2022-05-18 株式会社村田製作所 Inductor parts
JP6962284B2 (en) * 2018-07-17 2021-11-05 株式会社村田製作所 Inductor parts
US11979983B2 (en) 2019-07-04 2024-05-07 Sumitomo Electric Industries, Ltd. Printed wiring board and method of manufacturing the same
US11512406B2 (en) 2019-10-17 2022-11-29 Rohm And Haas Electronic Materials Llc Method of enhancing copper electroplating
KR102108433B1 (en) * 2019-10-30 2020-05-11 엘지이노텍 주식회사 The printed circuit board and the method for manufacturing the same
KR102175534B1 (en) * 2020-04-29 2020-11-06 엘지이노텍 주식회사 The printed circuit board and the method for manufacturing the same
TWI823044B (en) * 2020-09-28 2023-11-21 財團法人工業技術研究院 Electrolytic copper foil and negative current collector of lithium battery
KR102413300B1 (en) * 2020-12-10 2022-06-27 와이엠티 주식회사 Metal foil, carrier with metal foil comprising the same and printed circuit board comprising the same
TWI809441B (en) * 2021-07-06 2023-07-21 長春石油化學股份有限公司 Surface-treated copper foil and copper clad laminate
TWI761251B (en) * 2021-07-06 2022-04-11 長春石油化學股份有限公司 Surface-treated copper foil and copper clad laminate
US11540389B1 (en) 2021-07-06 2022-12-27 Chang Chun Petrochemical Co., Ltd. Surface-treated copper foil and copper clad laminate
US20230019067A1 (en) * 2021-07-06 2023-01-19 Chang Chun Petrochemical Co., Ltd. Surface-treated copper foil and copper clad laminate
WO2023013525A1 (en) * 2021-08-05 2023-02-09 住友電工プリントサーキット株式会社 Printed wiring board
KR20230080171A (en) * 2021-11-29 2023-06-07 와이엠티 주식회사 Method for fabricating circuit pattern of substrate using metal foil having low surface roughness

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268678A (en) * 1994-03-31 1995-10-17 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil for printed circuit board and its production
JP2000307245A (en) * 1999-04-23 2000-11-02 Ibiden Co Ltd Print wiring board, manufacture thereof and metallic laminated plate
JP2003243810A (en) * 2002-02-15 2003-08-29 Mitsubishi Gas Chem Co Inc Method of manufacturing printed wiring board equipped with very fine wire pattern
JP2007095910A (en) * 2005-09-28 2007-04-12 Elna Co Ltd Manufacturing method of wiring board
JP2007182623A (en) * 2005-12-08 2007-07-19 Mitsui Mining & Smelting Co Ltd Method for producing thin metal product
WO2009057688A1 (en) * 2007-10-31 2009-05-07 Mitsui Mining & Smelting Co., Ltd. Electrolytic copper foil and process for producing the electrolytic copper foil

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2680234B2 (en) * 1992-11-12 1997-11-19 株式会社日立製作所 Wiring pattern forming method
JP2008258309A (en) * 2007-04-03 2008-10-23 Hitachi Chem Co Ltd Punching method for printed circuit board, and printed circuit board
CN101472407B (en) * 2007-12-25 2012-01-25 日本特殊陶业株式会社 Wiring substrate and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268678A (en) * 1994-03-31 1995-10-17 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil for printed circuit board and its production
JP2000307245A (en) * 1999-04-23 2000-11-02 Ibiden Co Ltd Print wiring board, manufacture thereof and metallic laminated plate
JP2003243810A (en) * 2002-02-15 2003-08-29 Mitsubishi Gas Chem Co Inc Method of manufacturing printed wiring board equipped with very fine wire pattern
JP2007095910A (en) * 2005-09-28 2007-04-12 Elna Co Ltd Manufacturing method of wiring board
JP2007182623A (en) * 2005-12-08 2007-07-19 Mitsui Mining & Smelting Co Ltd Method for producing thin metal product
WO2009057688A1 (en) * 2007-10-31 2009-05-07 Mitsui Mining & Smelting Co., Ltd. Electrolytic copper foil and process for producing the electrolytic copper foil

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140096382A1 (en) * 2012-10-08 2014-04-10 Subtron Technology Co., Ltd. Manufacturing method of substrate structure
US9131635B2 (en) * 2012-10-08 2015-09-08 Subtron Technology Co., Ltd. Manufacturing method of substrate structure
JP2015183294A (en) * 2014-03-21 2015-10-22 長春石油化學股▲分▼有限公司 electrolytic copper foil
JP2017188565A (en) * 2016-04-05 2017-10-12 住友金属鉱山株式会社 Conductive substrate and method for producing the same

Also Published As

Publication number Publication date
TW201251532A (en) 2012-12-16
TWI561128B (en) 2016-12-01
KR20140009322A (en) 2014-01-22
JP5929219B2 (en) 2016-06-01
JP2012169597A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
JP5929219B2 (en) Printed wiring board and printed wiring board manufacturing method
JP5929220B2 (en) Printed wiring board and printed wiring board manufacturing method
JP5378620B2 (en) LAMINATED BOARD AND PRINTED WIRING BOARD MANUFACTURING METHOD
TWI701289B (en) Resin composition
US9062172B2 (en) Resin composition adhesive film and prepreg containing the same, multilayered printed wiring board containing an insulating layer formed by curing such a resin composition, semiconductor device containing such a multilayered printed wiring board, and method of producing such a resin composition
TWI737649B (en) Resin composition
JP2020023714A (en) Resin material and multilayer printed board
KR20130105810A (en) Resin composition, cured resin product, wiring board, and manufacturing method for wiring board
JP6379038B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP5521099B1 (en) Copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and printed wiring board manufacturing method
JP6931542B2 (en) Cured resin composition, resin composition and multilayer substrate
WO2014065430A1 (en) Copper foil with carrier, copper-clad laminate using copper foil with carrier, printed wiring board, printed circuit board, and printed wiring board production method
JP2007001291A (en) Metallic foil with adhesion adjuvant, printed-wiring board using the same, and manufacturing method for printed-wiring board
JP2015043351A (en) Resin substrate, printed wiring board, printed circuit board, copper clad laminate, and method for manufacturing printed wiring board
WO2014065431A1 (en) Copper foil with carrier, copper-clad laminate using copper foil with carrier, printed wiring board, printed circuit board, and printed wiring board production method
JP6593979B2 (en) Surface treated copper foil, copper foil with carrier, base material, copper clad laminate manufacturing method, electronic device manufacturing method, and printed wiring board manufacturing method
JP2014194067A (en) Carrier-fitted copper foil, method for manufacturing carrier-fitted copper foil, printed wiring board, printed circuit board, copper-clad laminate sheet, and method for manufacturing printed wiring board
TW201925333A (en) Resin composition layer applied to a printed wiring board and a semiconductor device
WO2012101992A1 (en) Method for producing printed wiring board
JP2014229775A (en) Printed wiring board, semiconductor package, semiconductor device and printed wiring board manufacturing method
JP2015078421A (en) Carrier-provided copper foil, method of producing carrier-provided copper foil, printed wiring board, printed circuit board, copper-clad laminated plate, and method of producing printed wiring board
JP5482831B2 (en) Metal foil with adhesion aid, printed wiring board using the same, and method for producing the same
JP6848950B2 (en) Resin composition
JP2017145376A (en) Adhesive film for multilayer printed wiring board
JP2015043419A (en) Resin substrate, copper clad laminate, printed wiring board, electronic equipment, and method for manufacturing printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137022430

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12739851

Country of ref document: EP

Kind code of ref document: A1