WO2012100416A1 - 用于液体燃料燃烧用燃烧添加剂的添加方法及等离子化装置 - Google Patents

用于液体燃料燃烧用燃烧添加剂的添加方法及等离子化装置 Download PDF

Info

Publication number
WO2012100416A1
WO2012100416A1 PCT/CN2011/070631 CN2011070631W WO2012100416A1 WO 2012100416 A1 WO2012100416 A1 WO 2012100416A1 CN 2011070631 W CN2011070631 W CN 2011070631W WO 2012100416 A1 WO2012100416 A1 WO 2012100416A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
additive
plasma
electrode
liquid fuel
Prior art date
Application number
PCT/CN2011/070631
Other languages
English (en)
French (fr)
Inventor
徐维礼
朱核光
Original Assignee
深圳市泓耀环境科技发展股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市泓耀环境科技发展股份有限公司 filed Critical 深圳市泓耀环境科技发展股份有限公司
Priority to PCT/CN2011/070631 priority Critical patent/WO2012100416A1/zh
Priority to CN201180041524XA priority patent/CN103210702A/zh
Publication of WO2012100416A1 publication Critical patent/WO2012100416A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/48Generating plasma using an arc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • F23C99/001Applying electric means or magnetism to combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J7/00Arrangement of devices for supplying chemicals to fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B2900/00Special features of, or arrangements for combustion apparatus using solid fuels; Combustion processes therefor
    • F23B2900/00006Means for applying electricity to flame, e.g. an electric field
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/99005Combustion techniques using plasma gas

Definitions

  • the present invention relates to a method and an apparatus for adding a combustion-supporting additive, and more particularly to a method of adding a combustion-supporting additive for liquid fuel combustion and a plasma apparatus.
  • Burning additive In order to make the liquid fuels such as liquefied natural gas, gasoline, fuel oil and diesel oil fully burned, reduce the smoke and nitrogen oxides in the combustion exhaust gas, and improve the efficiency of the use of key equipment in the combustion system, it is often necessary to add in the combustion process of these fuels.
  • Burning additive include various organometallic compounds (organometallic) Compound), inorganic metal compound, alcohols, organic acid Acid), aromatic compound (aromatic) Compounds, etc., which act as a catalytic combustion reaction, adjust the octane number and oxygen content of the oil, improve the lubricity of the oil, and hinder the scaling of the combustion chamber and heat exchange equipment.
  • Organometallic compounds such as dicyclopentadienyl iron (ferrocene or bis (cyclopentadienyl) Iron, commonly known as ferrocene, is a very effective class of combustion regulators and catalysts.
  • ferrocene dicyclopentadienyl iron
  • bis (cyclopentadienyl) Iron commonly known as ferrocene
  • the addition of ferrocene to gasoline can increase the octane rating of gasoline and reduce the emissions and fuel consumption of vehicles using the gasoline [1].
  • US Patent US Pat No 4,389,220 discloses a two-stage process for adding ferrocene to a diesel engine combustion system, that is, the concentration of ferrocene to diesel in the initial stage is 20-30.
  • Ppm which reduces carbon deposition in the combustion chamber and deposits a layer of catalytic iron oxide on the surface of the combustion chamber; in the subsequent maintenance phase, only 10-15 is added Pg ferrocene to maintain an iron oxide coating.
  • Adding the same concentration of ferrocene to the initial stage in the latter stage will destroy its improvement in combustion and weaken the catalytic effect of the catalytic iron oxide coating on the combustion chamber wall. It has been observed that ferrocene can rapidly form agglomerated particles of iron oxide in the flame zone during combustion, and the carbon fuel particles formed thereafter are adsorbed on the surface of the iron oxide particles, and the combustion process of adding ferrocene is The particle size and soot concentration in the exhaust gas are greatly reduced.
  • picric acid is used as an oxidizing agent
  • iron sulfate is used as a combustion catalyst
  • nitrobenzene is used as a solvent and an auxiliary oxidizing agent
  • toluene and isopropanol are used as a solvent.
  • the use of this additive can increase the fuel consumption per unit mileage of the car by 13-27%, increase the CO2 concentration in the exhaust gas, reduce the coke in the exhaust gas and eliminate the deposition on the engine and exhaust components.
  • US Pat No 3,902,868 discloses a combustion regulator comprising methanol, isopropanol, methyl ethyl ketone (Methyl Ethyl) Ketone), toluene ( Toluene), and water, and added it to the air and oil mixing chamber in the form of steam to enter the combustion reaction; when the amount of additive is 20ml / gallon of gasoline, the fuel's combustion efficiency can be increased by 12%, hydrocarbon pollutant emissions are reduced 70%.
  • US Pat No. 2,789,891 discloses that the addition of alcohols and lubricating oils and other additives to gasoline is more effective than the combination of additives with alcohols and water.
  • additives for liquid fuels are generally carried out by direct mixing of fuels (eg US Pat No 4,145,190 and US Pat). No 4,891,050), such an addition method is simple and easy, but the amount of the additive cannot be adjusted.
  • the liquid addition device such as the already commercialized Harlo Motor Klean Fuel System (Manufactured by Canadian company Harlo Repower Ltd., Clear-brook, BC, Canada) Injected into the oil and gas path into the combustion system.
  • the liquid addition device such as the already commercialized Harlo Motor Klean Fuel System
  • organometallic compound combustion additives that are easier to sublimate and volatilize, it is possible to first sublimate it and then add it to the fuel or air to enter the combustion process.
  • Such as the US patent US Pat No 2,867,516 proposes to preheat the gaseous hydrocarbon fuel, or air or oxygen through the ferrocene crystal bed to vaporize and mix the ferrocene into the fuel and air mixture; this method can control the addition of ferrocene to a concentration Range 0.05 - 5% by weight; if the concentration is added properly, the quality of the combustion can be significantly improved and the products burned are cleaner.
  • US Pat No 5,113,804 proposes to spread the platinum-containing solid combustion catalyst onto a heating plate where the catalyst is sublimed and added to the air to enter the combustion process; the addition of ferrocene is measured by various parameters including fuel consumption rate or some kind The rate of production of combustion products is adjusted.
  • US Patent US Pat No 5,235,936 proposes to add ferrocene to a special gasification chamber with a heating device.
  • the ferrocene in the container is controlled by the temperature of the container, and when the air passes through the diffusion port of the gasification chamber, The ferrocene steam produces convection, and the ferrocene is passively brought into the gas phase to enter the combustion reaction; in order to achieve good addition, the temperature must be controlled above the ambient temperature (greater than 37) °C), but the optimum temperature is about (77-93 °C).
  • combustion catalyst Obviously, the choice of combustion catalyst and its catalytic effect are affected by the fuel properties and combustion process, and the efficiency of the additive is also greatly affected by the addition of metering and addition methods. There are still many limitations to the various ways in which the combustion additives currently used are added.
  • the method of adding to the liquid fuel in advance is only applicable to the additive having a good solubility in the fuel, and although it can be uniformly added, the amount of the additive cannot be controlled.
  • the method of dissolving them in a solvent and then injecting them into the combustion system can also control the amount of adjustment additives, but requires the use of additional solvents; due to organometallic compounds And the solubility of inorganic metal compounds in general solvents is lower (less than 10%), the use of this method requires a large amount of liquid solvent, which will bring about a large increase in the cost of use and operation of the additives. Inconvenience.
  • organometallic compound additives for sublimation and the volatilization of certain fuel additives to vaporize them and add them to the combustion system is a relatively advanced addition method that allows the additives to enter the combustion directly in smaller particles.
  • Process thereby increasing the efficiency of use of the additive, but the disadvantage of this method is that it cannot be used for additives that are not volatile or sublimate like lubricants, organic or inorganic metal combustion catalysts, such as due to the boiling point of ferrocene °C, it takes a very high temperature to completely vaporize it.
  • Sublimation at low temperature is affected by the surface area of ferrocene deposit, air convection, pressure and temperature, etc. It is difficult to control the actual addition amount.
  • the existing addition method in addition to the method of adding after the first evaporation sublimation, the added catalyst must first be dissolved in the liquid fuel or solvent.
  • the combustion reaction is essentially a gas phase reaction.
  • These liquid additives must be vaporized into free state molecules before they enter the combustion reaction to function as a catalytic combustion. This will inevitably delay the catalytic reaction and cause localized uneven distribution of the catalyst. Increase the amount of catalyst used.
  • Even if it is added by evaporation sublimation, the added additive is still in the free form of molecular form, because the true catalytic combustion is caused by the decomposition of the metal molecules and oxygen radicals generated by the decomposition of the additive molecules.
  • the conversion of particles from molecular states to active metal oxides and oxygen-containing free radicals still takes some time, which also causes some degree of catalytic combustion to retard, thereby weakening the effectiveness of these additives.
  • the plasma internal combustion engine system disclosed in the present invention uses a plasma reforming reaction to convert a hydrocarbon fuel into a hydrogen-rich plasma combustible gas and then enters a combustion engine, which can greatly improve the combustion efficiency of the internal combustion engine and greatly reduce the emission of pollutant gas and reduce The use of combustion additives, but due to the need to consume a portion of the energy of the plasma, the energy efficiency of the entire system may not be as good as other internal combustion engines.
  • the object of the present invention is to provide an effective and reliable method for accurately controlling the addition and addition of a combustion additive to a combustion fuel during combustion, and to participate in a combustion reaction of liquid fuel and oxygen. To improve fuel combustion efficiency and quality, save fuel and reduce emissions of gaseous pollutants.
  • the object of the present invention can be achieved by the following technical solution: a method for adding a combustion additive for liquid fuel combustion, wherein the adding method is:
  • the combustion additive enters the electrode zone in the plasmalization device or the plasma reaction zone outside the electrode zone to become a plasmad gas; the plasmad gas is introduced into the combustion chamber to participate in the combustion of the liquid fuel.
  • the method for adding a combustion additive for liquid fuel combustion is: an organometallic compound, an inorganic metal compound, an organic acid, an alcohol, a hydrocarbon, water or a mixture thereof.
  • the method for adding a combustion additive for burning a liquid fuel may be a liquid or a solid at a normal temperature, and may be a pure agent or a mixture, or a mixture dissolved in a solvent or a carrier.
  • the method for adding a combustion additive for liquid fuel combustion is coal powder, coal ash, water, gasoline, diesel oil, heavy oil, aviation coal, solvent oil, aromatic hydrocarbon, dimethylformamide, tetrahydrofuran , isopropanol, petroleum ether, ethyl acetate.
  • the method for adding a combustion additive for liquid fuel combustion wherein the metal element in the organometallic compound is iron, manganese, platinum, titanium, chromium, palladium, nickel, vanadium, niobium, tantalum, copper, zinc, antimony, Zirconium, hafnium, molybdenum, tin, antimony, magnesium, tungsten or antimony.
  • the metal element in the organometallic compound is iron, manganese, platinum, titanium, chromium, palladium, nickel, vanadium, niobium, tantalum, copper, zinc, antimony, Zirconium, hafnium, molybdenum, tin, antimony, magnesium, tungsten or antimony.
  • the method for adding the combustion additive for liquid fuel combustion is such that when the combustion additive enters the plasma device, the combustion additive that is easily plasmaized and plasmaized enters the combustion system, and is also passed through the plasma device.
  • the carrier gas With carrier gas, the carrier gas is first plasmaized as it enters the electrode zone within the plasma reactor.
  • the method for adding a combustion additive for liquid fuel combustion may be air, water vapor, oxygen, argon, flue gas or a mixture of the foregoing.
  • a plasma reaction apparatus for a combustion additive for liquid fuel combustion consisting of the following components:
  • Reaction vessel mainly provides a plasma reaction site for vaporizing the combustion additive; and is used for fixing an electrode, a carrier gas, a gas device, an additive feeding device and a plasma reaction vessel outlet, which will be described below;
  • Electrode divided into a positive electrode and a negative electrode, the positive electrode and the negative electrode are fixed inside or the peripheral wall of the reaction vessel, and the positive electrode and the negative electrode are respectively connected to the two poles of the high-voltage power source, and the setting thereof should ensure all or all of the carrier gas entering the reaction container or Most of the electricity passes through the space between the electrodes, that is, the electrode region, and a voltage of 3 kV to 150 kV is formed between the electrodes, and the energy of the free electrons formed by the discharge is 0.9. - Within the range of 20 eV, the electron density is usually between 106 and 1018 cm-3;
  • Power supply used to supply power to the electrodes and the required voltage
  • the carrier gas inlet device comprises: a gas source disposed outside the reaction vessel and a carrier gas inlet port introduced into the reaction vessel, the arrangement being such that all or most of the carrier gas entering the reactor is passed between the electrodes space;
  • the device can make the solid or liquid combustion additive uniformly enter the electrode reaction zone of the reactor or the plasma reaction zone outside the electrode zone, and can be thoroughly mixed with the carrier gas passing through the electrode zone;
  • Plasma reaction vessel outlet used to draw the plasmaized additive out of the reaction vessel and into the combustion chamber.
  • the electrode may be a single pair of electrodes or a plurality of pairs of electrodes.
  • the plasma reaction device for a combustion additive for liquid fuel combustion has a power source of a high voltage power source and may be a direct current power source or an alternating current power source.
  • the plasma reaction device for a combustion additive for liquid fuel combustion may be provided with a charging device disposed on the carrier gas passage so that the combustion additive can enter the carrier gas passage and enter the reactor with the carrier gas.
  • the plasma reaction device for a combustion additive for liquid fuel combustion wherein the electrode, the high voltage discharge between the positive electrode and the negative electrode is in the form of a plasma torch, a sliding arc discharge, a corona discharge or a dielectric barrier discharge.
  • the present invention has the following advantages:
  • the combustion additive can be conveniently, flexibly and accurately added to the primary or secondary air into the combustion chamber after being plasmaized in the plasma device of the present invention, or can be directly added to the combustion chamber through a special nozzle to fully contact the combustion flame, without The combustion system undergoes major modifications.
  • the added amount can be accurately measured, and the quality and quantity of the added catalyst can be adjusted by adjusting the carrier gas amount, the voltage and the actual addition amount to adapt to different combustion conditions, and the additive addition is optimized.
  • the combustion additive After passing through the device, the combustion additive is not only vaporized but also partially or completely activated or ionized in advance, thereby generating highly active particles, and promoting the catalytic reaction in advance, significantly improving the efficiency of use of the catalyst and reducing the amount of catalyst used. .
  • organometallic compounds that are stable under conventional conditions are not suitable for use as combustion additives because of their strong chemical bonds.
  • the present invention can be easily ionized into free metal ions by using the present invention, which can increase the selection range of the metal compound combustion additive and reduce the cost of the additive.
  • combustion additive by the present invention can be combined with the selection of the carrier gas to more effectively control the harmful substances including carbon particles, SOx and NOx generated in the combustion.
  • the plasma of the combustion additive can form a very uniform metal oxide film on the inner wall of the burner, thereby continuously playing a catalytic combustion role.
  • FIG. 1 is a schematic view showing a form of a high-voltage discharge between electrodes of a plasmalizing apparatus for a combustion additive for liquid fuel combustion according to the present invention
  • FIG. 2 is a schematic view showing a form of a corona discharge in the form of a high-voltage discharge between electrodes of a plasmalizing apparatus for a combustion additive for liquid fuel combustion according to the present invention
  • FIG. 3 is a schematic view showing a design of a dielectric barrier discharge type-tubular electrode in the form of a high voltage discharge between electrodes of a plasmalizing apparatus for a combustion additive for liquid fuel combustion;
  • FIG. 4 is a schematic view showing a design of a dielectric barrier discharge type-plate electrode in the form of a high voltage discharge between electrodes of a plasmalizing apparatus for a combustion additive for liquid fuel combustion according to the present invention
  • Fig. 5 is a schematic view showing the form of a plasma torch in the form of a high voltage discharge between electrodes of a plasmalizing apparatus for a combustion additive for liquid fuel combustion according to the present invention.
  • Fig. 6 is a schematic view showing the form of a plasma torch in the form of a high voltage discharge between electrodes of a plasmalizing apparatus for a combustion additive for liquid fuel combustion according to the present invention.
  • the gasification device of the present invention is a plasma generation and reaction device utilizing the principle of electrical energy and high-voltage discharge, the plasma is mainly a non-equilibrium plasma (non-equilibrium) Plasma) or non-thermal plasma, also known as non-completed plasma or Atmospheric non-thermal plasma, which usually has an electron temperature of about 1 ev.
  • the apparent temperature of the plasma is several hundred K (not more than 2300 K) or even room temperature.
  • both solid and liquid fuel additives can be vaporized in an instant, and partially, or partially, decomposed, ionized, excited, and activated. Such a gas mixture can promote combustion more efficiently than the original additive after it is introduced into the combustion system.
  • a plasma is a gas-like state in which molecules or atomic particles are partially ionized. Ionization means that an atom or molecule acquires or is deprived of one or more electrons such that the atom or molecule exhibits a charged ionic state. As the temperature rises, the energy of the molecules in the material gradually increases, and the material undergoes a phase change, that is, sequentially changes from a solid to a liquid, a liquid to a gaseous state, and a gaseous state to a plasma state. Therefore, the physics community also refers to the plasma state as the fourth state of matter.
  • the use of plasma reactors to convert materials into plasma forms and reuse them in reactions to improve reaction efficiency is an emerging development in the chemical energy industry. The use of plasma in the use and addition of combustion additives is still a blank.
  • the combustion additive which is easily plasmaized and plasmaized enters the combustion system, and a carrier gas is also introduced into the plasma apparatus to cause the combustion additive to enter the plasma reaction.
  • the carrier gas is first plasmaized.
  • a plasma is first formed to transfer energy for the gasification and plasmaization of the additive
  • an additive acts to carry the additive into the reaction apparatus.
  • the carrier gas is vaporized, and the formed high-energy plasma collides and exchanges energy between the combustion additive particles entering the electrode region or the plasma reaction zone outside the electrode, so that the combustion additive is rapidly vaporized and partially plasmaized; the plasmaized Gas is introduced into the combustion chamber to participate in the combustion of the liquid fuel.
  • the body of the present invention is a non-equilibrium or non-thermal plasma gasification unit that can be used to add various combustion additives including ferrocene.
  • the plasma gasification device is a plasma reactor composed of a reaction vessel, a carrier gas inlet device, a positive and negative electrode, a power source, a charging device, and a reactor outlet.
  • the reaction vessel is typically machined from glass or ceramic or engineering plastic or stainless steel or other materials and may be cylindrical or rectangular or any other shape.
  • the air inlet is provided on the peripheral wall of the container, or is introduced into any position inside the reaction container by a conduit.
  • the air inlet may be single or multiple; the positive and negative electrodes are disposed at the peripheral wall of the reactor or at any position in the middle, and the electrode should be disposed.
  • the electrode may be a single pair of electrodes or a plurality of pairs of electrodes, and the positive and negative electrodes are respectively connected to the two poles of the high voltage power supply, and a voltage of 3 kV to 120 kV is generated between the electrodes; when the DC power source is used, the anode of the electrode may be Acted by the grounding pole.
  • the high-voltage power supply provides high-voltage alternating current or high-voltage pulsed direct current.
  • the charging device is usually placed on the top of the reactor or The side portion allows the solid or liquid additive to be uniformly added to the electrode zone in the reactor or the plasma reaction zone after the carrier gas leaves the electrode; the charging device can also be connected to the carrier gas inlet passage along with the carrier gas.
  • the feeding device can also use a part of the auxiliary carrier gas to bring the additive into the plasma reaction zone after the electrode zone.
  • the reaction zone outlet is the connecting passage connecting the reactor to the combustion system.
  • the carrier gas generates a plasma under the action of the electric field, and when the combustion additive is added to the electric field region or the plasma reaction region in the reactor, the gasification is instantaneously generated by the action of electrons and other charged ions or excited activated atoms or molecules, and is generated.
  • a catalytically active ion or an excited activated molecule ie, a plasma that enters the combustion chamber and other fuels that have been gasified or will be vaporized.
  • the molecules and oxygen are fully contacted and collided to increase the efficiency and quality of combustion, increase the efficiency of fuel use, and reduce the emission of polluting gases.
  • the carrier gas used may be air, water vapor, oxygen, argon, and flue gas or any gas or gas mixture.
  • the high voltage discharge may be in the form of a plasma torch, a gliding arc, a corona arc or a dielectric barrier discharge.
  • the combustion additive to which the present invention is applicable includes various combustion catalysts, oxygen regulators, corrosion inhibitors, scale inhibitors, and may be a mixture of organometallic compounds, inorganic metal compounds, organic acids, alcohols, hydrocarbons, water, and the like.
  • the mixture means a non-pure substance composed of an organometallic compound, an inorganic metal compound, an organic acid, an alcohol, a hydrocarbon, and water.
  • These combustion additives may be liquid or solid at ordinary temperatures, and may be pure agents or mixture or a mixture dissolved in a solvent or a carrier.
  • Common solvents or carriers such as coal powder, coal ash, water, gasoline, diesel, heavy oil, aviation coal, solvent oil, aromatic hydrocarbons, dimethylformamide, tetrahydrofuran, isopropanol, petroleum ether, ethyl acetate, and the like.
  • the invention is particularly suitable for the addition of organometallic compound combustion additives, including various metal-containing cyclic hydrocarbon-based organic compounds and metal-containing cyclic hydrocarbon-based organic compounds.
  • Typical metal-containing cyclic hydrocarbon-based organic compounds are the cyclic hydrocarbon-based iron compound AFeA' and the cyclic hydrocarbon-based manganese compound AMn(CO) 3 .
  • a and A' are any cyclopentadienyl group having 5 to 13 carbon atoms or more, and these groups are composed of a hydrocarbon atom and have a single ring. , double-ring, or three-ring structure.
  • organometallic compound catalysts are: ferrocene dicyclopentadienyl iron (ferrocene), dimethylcyclopentadienyl iron (dimethylferrocene), or methylcyclopentadienyl (methylcyclopentadienyl) Manganese tricarbonyl, bismuth carboxylate, bismuth naphthenate, iron naphthenate, nickel carbonyl, and the like.
  • the metal element in the above organometallic compound combustion additive may be iron, manganese, platinum, titanium, chromium, palladium, nickel, vanadium, niobium, tantalum, copper, zinc, lanthanum, zirconium, hafnium, molybdenum, tin, antimony, magnesium. , any metal element such as tungsten or tantalum.
  • the transition and rare earth elements have an empty d orbit which can be used for bonding and a high charge/radius ratio, are more active and lower in cost, and are therefore more commonly used as a combustion additive than precious metals.
  • the organometallic compound combustion additive to which the present invention is applied also includes a mixture, a derivative, a eutectic compound, a coordination compound of the above-mentioned organometallic compound.
  • Derivatives such as ferrocene 1,3 – Diferrocenyl -1- butene.
  • 1 is a schematic diagram of a high-pressure discharge between electrodes of a combustion additive plasma ionization apparatus of the present invention in the form of a sliding arc discharge; the carrier gas is tangentially entered into the reaction vessel at a certain speed, and the intake speed must be sufficiently large (eg, 10 m/ a second or so) to form a gas vortex in the reaction vessel, and the gas in a vortex enters the electrode region to generate a plasma and slip, which contacts and exchanges energy with the combustion additive entering the electrode and the plasma reaction zone.
  • the combustion additive is rapidly vaporized and partially plasmatized, and driven by the carrier gas, exits the reaction vessel from the outlet of the plasma reactor and enters the combustion system.
  • 1 For the reaction vessel, 2 is the inlet device, 3 is the electrode positive electrode, 4 is the electrode negative electrode, 5 is the power source, 6 is the feeding device, 7 is the plasma reactor outlet, and 8 is the electrode zone.
  • the carrier gas is selected from the air; under the action of the air intake device 2, the carrier gas is The speed of 10 m / sec tangentially enters the electrode region 8 of the reaction vessel 1 composed of the positive electrode 3 and the negative electrode 4; the power source 5 uses 220 volts of alternating current, and generates a high voltage of 50 kV through its built-in substation, plus A voltage of about 40 kV is formed between the two electrodes; the catalyst is ferrocene, and the feeding device 6 enters the reaction vessel 1 with an additive amount of 15 Mg/L fuel oil; the catalyst becomes plasma-assisted gas under the action of high voltage.
  • the gasifier outlet 7 is coupled to the fuel oil and air mixing chamber such that the plasma assisted gas exiting the gasifier outlet 7 and the mixture of air and fuel oil enters the combustion chamber for combustion.
  • the catalytic efficiency of the catalyst is increased by 300% compared to the manner in which the liquid is sprayed with the catalyst.
  • FIG. 2 is a schematic view showing a form of high-voltage discharge between the electrodes of the combustion-assisting combustion additive plasma ionization apparatus of the present invention as a corona discharge; the carrier gas enters the reactor from the bottom at a certain speed, passes through the corona discharge electrode region, and forms a plasma. Body, the plasma and the combustion additive entering the plasma reaction zone are contacted and exchanged, so that the combustion additive is rapidly vaporized and plasmaized, and driven by the carrier gas, exits the reaction vessel from the outlet of the plasma reactor and enters the combustion system. .
  • 1 is the reaction vessel
  • 2 is the inlet device
  • 3 is the electrode anode
  • 4 Negative for the electrode 5 for the power supply
  • 6 for the charging device
  • 7 for the plasma reactor outlet
  • 8 for the electrode zone
  • 9 for the plasma reaction zone.
  • the specific working process is: air is selected for the carrier gas; under the action of the air intake device 2, the carrier gas enters the reaction vessel 1 from the bottom at a speed of 2 m/sec and passes through the electrode region 8; the power source 5 uses 220 volts of alternating current, The built-in substation generates a high voltage of 120 kV and is loaded between the positive electrode 3 and the negative electrode 4 of the two electrodes; the catalyst is ferrocene, and the additive amount is 10 mg/L of fuel oil; the plasma from the outlet 7 of the gasifier is made. The mixture of combustion gas and air and fuel oil enters the combustion chamber for combustion. By using the ionization device for the combustion-supporting catalyst, the catalytic efficiency of the catalyst is increased by 300% compared to the manner in which the liquid is sprayed with the catalyst.
  • FIG. 3 and FIG. 4 are schematic diagrams showing the form of dielectric barrier discharge between the electrodes of the plasma additive plasma ionization apparatus of the present invention; the carrier gas enters the reactor from the bottom or the side at a certain speed, and passes through the dielectric barrier discharge electrode region. Forming a plasma, the plasma and the combustion additive entering the plasma zone are contacted and exchanged, so that the combustion additive is rapidly vaporized and plasmaized, and driven by the carrier gas, exits the reaction vessel from the outlet of the plasma reactor and enters the combustion system. go with.
  • 1 is the reaction vessel
  • 2 is the inlet device
  • 3 is the electrode anode
  • 4 Negative for the electrode 5 for the power supply
  • 6 for the charging device 7 for the plasma reactor outlet
  • 8 for the electrode zone 9 for the plasma reaction zone
  • the carrier gas is selected from air; under the action of the air intake device 2, the carrier gas enters the reaction vessel 1 from the side at a speed of 2 m/sec and passes through the electrode zone 8.
  • the power source 5 uses 220 volts of alternating current, generates a high voltage of 120 kV through a built-in substation, and adds an alternating voltage of about 120 kV between the two electrodes; the catalyst is ferrocene, and the additive amount is 15 mg/L of fuel oil;
  • the mixture of plasma-assisted combustion gas and air and fuel oil exiting the plasma reactor outlet 7 is combusted into the combustion chamber.
  • Fig. 5 is a schematic view showing the form of a plasma torch in the form of a high voltage discharge between electrodes of a combustion additive plasma ionization apparatus of the present invention.
  • the electrode is disposed inside the plasma torch nozzle, and the carrier gas generally passes through the space between the internal electrodes of the plasma torch nozzle at a certain speed, and a plasma flame is formed downstream of the nozzle, and the plasma flame is generally injected into the reactor from the side.
  • contacting the combustion additive entering the reactor from above the reactor so that the combustion additive is rapidly vaporized and plasmaized, and driven by the carrier gas, exits the reaction vessel from the outlet of the gasifier and enters the combustion system.
  • 1 is the reaction vessel
  • 5 is the power source
  • 6 is the feeding device
  • 7 is the gasifier outlet
  • 9 is the plasma reaction zone
  • 12 is an integrated air intake device integrating the air intake device 2, the electrode positive electrode 3, and the electrode negative electrode 4.
  • the specific working process is: air is selected for the carrier gas; under the action of the air intake composite device 12, the carrier gas enters the electrode region disposed inside the torch nozzle from the side at a speed of 2 m/sec and enters the reaction vessel 1.
  • the power supply 5 uses 220 volts of alternating current, generates a high voltage of 50 kV through a built-in substation of the power supply, and is loaded between the two electrodes; the catalyst uses ferrocene, the additive amount is 20 mg/L of fuel oil; and the plasma reactor is used.
  • the plasma-assisted gas from the outlet 7 and the mixture of air and fuel oil enter the combustion chamber for combustion.
  • Fig. 6 is a schematic view showing the form of a plasma torch in the form of a high voltage discharge between electrodes of a combustion aid additive plasma ionization apparatus of the present invention.
  • the electrode is disposed inside the plasma torch nozzle, and the carrier gas passes through the space between the internal electrodes of the plasma torch nozzle at a certain speed, and the auxiliary carrier gas is used to bring the additive from the central portion of the plasma torch nozzle to the exit edge of the electrode region. And mixing with the carrier gas passing through the electrode region and forming a plasma flame downstream of the nozzle.
  • the plasma flame is typically injected into the reactor from the side and exits the reaction vessel from the outlet located on the other side of the reactor and into the combustion system.
  • 1 is the reaction vessel
  • 5 is the power source
  • 6 is the feeding device
  • 7 is the plasma reactor outlet
  • 8 In the electrode region
  • 9 is a plasma reaction zone
  • 12 is an air intake composite device integrating the air intake device 2, the electrode positive electrode 3, and the electrode negative electrode 4.
  • the specific working process is: air is selected for the carrier gas; under the action of the air intake composite device 12, the carrier gas enters the electrode region disposed inside the torch nozzle from the side and enters the reaction vessel 1 at a speed of 1 m/sec; Under the action of the auxiliary carrier gas, it enters the exit edge of the electrode zone from the central part inside the plasma torch, and mixes and exchanges energy with the carrier gas coming out from the electrode zone to form a plasma flame.
  • the power source 5 uses a 110 volt AC power source, generates a DC voltage of 10 kV through a substation, and is loaded between the two electrodes; the catalyst is ferrocene, and the additive amount is 15 mg/L fuel oil.
  • the plasma assisted combustion gas exiting the plasma reactor outlet 7 and the mixture of air and fuel oil are combusted into the combustion chamber of the combustor.
  • the combustion efficiency of the fuel is increased by 5% and the emission of black smoke is reduced by 50%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

用于液体燃料燃烧用燃烧添加剂的添加方法及等离子化装置 技术领域:
本发明涉及助燃用添加剂的添加方法及装置,尤其是液体燃料燃烧用助燃添加剂的添加方法及等离子化装置。
背景技术:
为了使得液化天然气、汽油、燃料油和柴油等液体燃料能得到充分燃烧,降低燃烧尾气中的烟尘和氮氧化合物,提高燃烧***关键设备的使用效率,在这些燃料的的燃烧过程中往往需要添加燃烧添加剂。目前常用的燃烧添加剂包括各种有机金属化合物(organometallic compound)、无机金属化合物(inorganic metallic compound)、醇类(alcohols)、有机酸(organic acid)、芳香属化合物(aromatic compound)等,它们起到催化燃烧反应,调节油品的辛烷值和氧含量,改善油品的润滑性,阻碍燃烧室及热交换设备的结垢等作用。
有机金属化合物,如二环戊二烯合铁(ferrocene或bis (cyclopentadienyl) iron,俗称二茂铁)是一类非常有效的燃烧调节剂和催化剂。在汽油中添加二茂铁能增加汽油的辛烷值,并能降低使用该汽油的车辆的尾气排放和油耗[1]。美国专利US Pat No 4,389,220揭示了一种两段法添加二茂铁到柴油发动机燃烧***中去的方法,即开始阶段添加二茂铁到柴油中的浓度为20-30 ppm,这样可以降低燃烧室中的碳沉积,并且在燃烧室表面沉积一层具有催化作用的氧化铁;在而后的维护阶段,只需添加10-15 ppm的二茂铁以维持氧化铁涂层。在这后一阶段如果添加与初始阶段相同浓度的二茂铁反而会破坏其对燃烧的改进,削弱燃烧室壁上催化性氧化铁涂层的催化效果。已有研究观察到二茂铁在燃烧中能在火焰区快速形成氧化铁的凝聚颗粒,而在其后形成的碳性燃料颗粒被吸附在氧化铁颗粒的表面,添加二茂铁的燃烧过程其尾气中的颗粒大小和烟碳(soot)浓度大幅度降低,当用钯氧化物的气溶胶注入到没有添加二茂铁的燃料燃烧中去,可以获得相同的去除效果[2]。美国专利US Pat No 4,891,050揭示含环辛二烯苯甲基铂(cyclooctadienyl-benzyl platinum)一类的有机铂化合物以0.01-1ppm的计量,预先混入乙醇(ethanol)、四氢呋喃(tetrahydrofuran)、和甲基三丁基醚(methyl tertiary butyl ether)等含氧有机溶剂,并加入汽油中,使得燃料中氧和铂的比例达到1000:1-10000:1,可以明显提高内燃机中汽油的燃烧效率降低尾气中CO的浓度;含氧有机溶剂除了可以帮助溶解有机金属化合物同时也起到补充氧气的作用使燃料在贫氧的状态下得到充分的燃烧。美国专利US Pat No 4,151,190揭示了一种液体燃料添加剂MSX Mix,它的主要成分为苦味酸(picric acid,1,2,3-trinitrophenol)和硫酸铁、另外还含有甲苯(toluene)、异丙醇(isopropyl alcohol)、硝基苯(nitrobenzene)、长链胺(long chain amine)和水。其中苦味酸作为氧化剂,硫酸铁作为燃烧催化剂,硝基苯作为溶剂和辅佐性氧化剂,甲苯和异丙醇为溶剂。使用这种添加剂可以使汽车的单位里程油耗增加13-27%,增加尾气中的CO2浓度,减少尾气中的焦炭并使得发动机和尾气部件上的沉积消除。US Pat No 3,902,868揭示了一种燃烧调节剂,它含甲醇(methanol)、异丙醇( Isopropanol)、甲基乙基酮 (Methyl Ethyl Ketone)、甲苯( Toluene)、和水,并将它以蒸汽的形式加入到空气和油的混合室中进入燃烧反应;当添加剂量为20ml/加仑汽油可以使得油的燃烧效率提高12%,烃类污染物排放降低70%。US Pat No2,789,891揭示在汽油中加醇类和润滑油和其它添加物比用醇类和水的添加剂组合更为有效。
液体燃料用添加剂的添加一般采用直接混入燃料的方法 (如US Pat No 4,145,190和US Pat No 4,891,050),这样的添加方法简单易行,但对添加剂量无法进行调节。在US Pat No4,891,050和US Pat No 4,099,930中提出了可把添加剂预先溶解在醇和水中,然后用液剂添加装置(如已经商品化的Harlo Motor Klean Fuel System (由加拿大公司Harlo Repower Ltd., Clear-brook, BC, Canada制造) 注入到油气通路内进入燃烧***。正如在US Pat No 3,902,868提到的,可以先把添加剂变成蒸汽,然后以蒸汽的形式将其加入到空气和油的混合室中进入燃烧反应。美国专利US Pat No 3,927,992涉及有机金属化合物添加剂,它虽然没有具体说明使该添加剂汽化的方法,但也提到了可以添加此类催化剂的蒸汽进入燃烧气相中去同样可以起到促进燃烧的效果。
对于一些较容易升华挥发的有机金属化合物燃烧添加剂,有可以采用先将它升华汽化,然后将其加入燃料或空气中进入燃烧过程。如美国专利US Pat No 2,867,516提出让预热的气体碳氢燃料,或者空气或氧气通过二茂铁晶体床使得二茂铁气化并混入到燃料和空气的混合物中;这种方法可以控制二茂铁的添加至一个浓度范围0.05 - 5%(重量);如果添加的浓度合适,燃烧的质量可以明显提高,燃烧的产物更为清洁。另一个美国专利(US Pat No 5,113,804)则提出了把含铂固体燃烧催化剂散布到某一加热板上,在那里催化剂得以升华并加入到空气中进入燃烧过程;二茂铁的添加计量由各种参数包括燃料消耗速率或某种燃烧产物的产生速率来调节。美国专利US Pat No 5,235,936则提出把二茂铁加入到一个特制的带有加温装置的气化室中,容器中二茂铁的生华由容器的温度来控制,当空气通过气化室的扩散口时对二茂铁蒸汽产生对流作用,并把二茂铁被动地带入到气相中去从而进入燃烧反应;为了达到良好的添加效果,其温度必须控制在环境温度以上(大于37 °C),但最佳温度大约在(77-93 °C)。
此外,美国专利US Pat No 5,425,332 揭示了一种等离子体内燃机***,在这一***中碳氢燃料在其等离子反应室(Plasmatron)内先转化为富氢的等离子化可燃气体,然后再进入普通的内燃机***进行燃烧,这样可以大大提高内燃机的燃烧效率,降低尾气中的NOx和CO排放,并减少燃烧添加剂的使用。但是,由于燃料的等离子气化重整需要添加水,这种***的总能量效率不及普通的内燃机。
显而易见,燃烧催化剂的选用以及其催化作用的发挥受到燃料性质及燃烧过程的影响,同时添加剂效率的发挥也在很大程度上受到添加计量和添加方式的影响。目前所使用的燃烧添加剂的各种添加方式还存在很多局限性。如预先添加到液体燃料中去的方法只适用于在燃料中有较好溶解度的添加剂,它虽然可以做到添加均匀,但添加剂量无法控制调节。而把它们先溶于某种溶剂中再用泵注入到燃烧***中去的方法,虽然可以适用于所有的添加剂,同时也可以控制调节添加剂量,但需要用到额外的溶剂;由于有机金属化合物和无机金属化合物在一般的溶剂中的溶解度较低(低于10%),用此法添加这类添加剂时需要用到大量的液体溶剂,这样便会带来添加剂使用成本的大幅度增加和操作上的不便。
利用有机金属化合物添加剂易升华以及某些燃料添加剂易挥发的特性将其汽化并加入到燃烧***中去的方法是一种相对先进的添加方法,它可以使添加剂以更小的颗粒形式直接进入燃烧过程,从而提高添加剂的使用效率,但此方法的缺点是:不能用于像润滑剂、有机或无机金属燃烧催化剂那样的不易挥发或升华的添加剂,如由于二茂铁沸点为249 °C,完全将其汽化需要很高的温度,在低温下升华则受二茂铁堆积物的表面积大小、空气对流情况、压强和温度等因素影响,很难控制其实际的添加量。用空气通过二茂铁床可以通过控制空气的流量,一定程度上控制二茂铁的加量,但准确的计量仍然无法实现,用燃烧监控的方法来调节加量则需要有可靠的实时监测***,工程上也难于实现。
更为重要的是,现有的添加方法,除了采取先蒸发升华后添加的方法,所添加的催化剂都必须先溶解于液体燃料或溶剂中。而燃烧反应本质上是一种气相反应,这些液态的添加剂在进入燃烧反应前必须被汽化成自由态的分子才能发挥催化助燃的作用,这必然会延缓催化反应,同时造成局部的催化剂分布不均匀,增加催化剂的使用量。即使是采用蒸发升华的方法添加,所添加的添加剂仍然为自由态的分子形态,由于真正起催化助燃作用的是添加剂分子分解后所产生的金属氧化物和含氧自由基这类的更小的颗粒,从分子态转化成有活性的金属氧化物和含氧自由基仍然需要一定的时间,这也会造成某种程度的催化助燃作用延缓,从而削弱这些添加剂效力。
像在美国专利US Pat No 5,425,332 中所揭示的那种等离子体内燃机***,用等离子重整反应使得碳氢燃料先转化成富氢的等离子可燃气体,然后进入燃烧发动机,可以大大提高内燃机的燃烧效率,并大大降低污染气体排放,减少燃烧添加剂的使用,但由于等离子体化需要消耗一部分能量,整个***的能量效率有可能不及其它内燃机。
技术内容
本发明目的是,针对以上现有技术的不足,提供一种有效可靠并能进行精确控制的方法来实施液体燃料在燃烧时对燃烧添加剂的添加添加方法及设备,参与液体燃料和氧气的燃烧反应,以提高燃料的燃烧效率和质量、节约燃料和降低气体污染物排放等作用。
本发明的目的可通过以下技术方案实现:一种用于液体燃料燃烧用燃烧添加剂的添加方法,其所述添加方法为:
燃烧添加剂进入等离子化装置内的电极区或电极区外的等离子反应区,使其成为等离子化的气体;将等离子化的气体引入燃烧室,使其参与液体燃料的燃烧。
所述的用于液体燃料燃烧用燃烧添加剂的添加方法,其燃烧添加剂为:有机金属化合物,无机金属化合物,有机酸,醇类,烃类,水或其混合物。
所述的用于液体燃料燃烧用燃烧添加剂的添加方法,其燃烧添加剂在常温下可以是液体,也可以是固体,可以是纯剂或混合剂,或溶于溶剂或携带剂中的混合剂。
所述的用于液体燃料燃烧用燃烧添加剂的添加方法,其溶剂或携带剂为煤粉、煤灰、水、汽油、柴油、重油、航煤、溶剂油、芳烃、二甲基甲酰胺、四氢呋喃、异丙醇、石油醚、乙酸乙酯。
所述的用于液体燃料燃烧用燃烧添加剂的添加方法,其有机金属化合物中的金属元素为铁、锰、铂、钛、铬、钯、镍、钒、铈、镧、铜、锌、钇、锆、铌、钼、锡、锑、镁、钨或锇。
所述的用于液体燃料燃烧用燃烧添加剂的添加方法,为使燃烧添加剂在进入等离子化装置内时,易于被等离子化及被等离子化后的燃烧添加剂进入燃烧***,在等离子化装置内还通有载气,在使燃烧添加剂进入等离子反应装置内的电极区时,载气首先被等离子化。
所述的用于液体燃料燃烧用燃烧添加剂的添加方法,其所述的载气,可以是空气、水蒸气、氧气、氩气、烟道气或前述气体混合物。
用于液体燃料燃烧用燃烧添加剂的等离子反应装置,由以下部分组成:
反应容器:主要提供让燃烧添加剂气化的等离子反应场所;同时用于固定下面将述及的电极、载气其气装置和添加剂加料装置和等离子化反应容器出口;
电极:分为正电极和负电极,正电极和负电极固定在反应容器内部或周壁,正电极和负电极分别连接到高压电源的两极,其设置应能保证进入反应容器的载气的全部或绝大部分通过电极之间的空间,即电极区,在两电极之间形成3千伏到150千伏的电压,放电所形成的自由电子的能量在0.9 - 20 eV范围之内,电子密度通常在106-1018cm-3;
电源:用于为电极提供电能及所需的电压;
载气进气装置:包括设于反应容器外的气源及通入反应容器内的载气进气口,其设置应能保证进入反应器的载气的全部或绝大部分通过电极之间的空间;
加料装置:该装置可以使得固体或液体燃烧添加剂均匀地进入到反应器的电极区或电极区外的等离子反应区,并能与通过电极区的载气进行充分混合;
等离子化反应容器出口:用于将等离子化的添加剂引出反应容器并进入燃烧室。
所述的用于液体燃料燃烧用燃烧添加剂的等离子反应装置,其所述的电极,可以是单对电极,也可以是多对电极。
所述的用于液体燃料燃烧用燃烧添加剂的等离子反应装置,其电源为高压电源,可以是直流电源或交流电源。
所述的用于液体燃料燃烧用燃烧添加剂的等离子反应装置,其加料装置,可以设在载气通道上,使得燃烧添加剂能进入到载气通路中并随载气进入到反应器内。
所述的用于液体燃料燃烧用燃烧添加剂的等离子反应装置,其所述的电极,正电极与负电极之间高压放电的形式是等离子体火炬、滑弧放电、电晕放电或介质阻挡放电中的一种方式。
本发明与现有技术相比,有以下优点:
(1) 燃烧添加剂在本发明的等离子化装置内经等离子化后可以比较方便灵活准确地加入到初级或二次空气进入燃烧室,也可以通过专门的喷口直接加入燃烧室与燃烧火焰充分接触,无须对原有燃烧***进行大的改造。所加的量可以准确地进行计量,并通过对载气量、电压及实际加量的控制对添加的催化剂的质和量进行调节以适应不同的燃烧工况,达到添加剂添加的优化。
(2) 对于某些纯剂的使用无须使用其它溶剂对其预先进行溶解或稀释,可以节约由此带来的成本。
(3) 燃烧添加剂经过本装置后不仅得到汽化而且部分或全部地提前得到了离子化或激化活化,从而产生有较强活性的粒子,并促使催化反应提前进行,明显提高催化剂的使用效率,降低催化剂使用量。
(4) 一些常规条件下稳定的有机金属化合物,因为化学键牢固,不适合作为燃烧添加剂使用。对于这些有机金属化合物,使用本发明,可以容易地将其电离成自由态金属离子,这可以增大金属化合物燃烧添加剂的选择范围,降低添加剂成本。
(5) 利用本发明进行燃烧添加剂的添加可以结合载气的选择对燃烧中产生的包括碳颗粒、SOx及NOx在内的有害物质进行更为有效的控制。
(6) 燃烧添加剂等离子化后可以在燃烧器的内壁形成十分均匀的金属氧化层膜,从而持续起到催化燃烧的作用。
附图说明
图1为本发明用于液体燃料燃烧用燃烧添加剂的等离子化装置电极之间高压放电的形式为滑弧放电型的示意图;
图2为本发明用于液体燃料燃烧用燃烧添加剂的等离子化装置电极之间高压放电的形式为电晕放电型的示意图;
图3为发明用于液体燃料燃烧用燃烧添加剂的等离子化装置电极之间高压放电的形式为介质阻挡放电型-管状电极设计的示意图;
图4为本发明用于液体燃料燃烧用燃烧添加剂的等离子化装置电极之间高压放电的形式为介质阻挡放电型-板状电极设计的示意图;
图5为本发明用于液体燃料燃烧用燃烧添加剂的等离子化装置电极之间高压放电的形式为等离子体火炬型的示意图。
图6为本发明用于液体燃料燃烧用燃烧添加剂的等离子化装置电极之间高压放电的形式为等离子体火炬型的示意图。
具体实施方式
本发明涉及到的气化装置为一种利用电能及高压放电原理的等离子体发生和反应装置,所述的等离子体主要为非平衡等离子体(non-equilibrium plasma)或非热等离子体(non-thermal plasma),非热等离子体也称为非完全等离子体(non-completed plasma)或 大气非热等离子体(atmospheric non-thermal plasma),这种等离子体通常具有电子温度1ev左右, 等离子体表观温度在几百K(不大于2300K)甚至室温。在这种等离子体反应器中,无论是固体的还是液体的燃料添加剂都能在瞬间得以气化,并且部分或全部地获得分解、离子化、激化和活化。这样的气体混合物在导入燃烧***中后可以比原来的添加剂更有效地在促进燃烧。
等离子体是一种类似气体的物质状态,其中的分子或原子颗粒被部分离子化。 离子化的意思是原子或者分子获得或被剥夺一个或一个以上电子,这样原子或者分子就呈现出带电的离子状态。随着温度的上升,物质中分子的能量逐步提高,物质会发生相变,即依次从固态变为液态,液态变为气态,气态变为等离子态。因此,物理学界也将等离子态称为物质的第四态。利用等离子反应装置把物质转化成等离子形态,再用于反应中去提高反应效率是化学能源工业的一个新兴开发领域,在燃烧添加剂的使用和添加领域等离子体的应用还是个空白。
本发明中,为使燃烧添加剂在进入等离子化装置内时,易于被等离子化及被等离子化后的燃烧添加剂进入燃烧***,在等离子化装置内还通有载气,在使燃烧添加剂进入等离子反应装置内的电极区时,载气首先被等离子化。
载气在使燃烧添加剂进入等离子反应装置内有以下作用:
1、 它进入电极区后首先形成等离子体,为添加剂气化和等离子化转递能量;
2、 携带气化和等离子化后的添加剂进入燃烧***;
3、 在某些场合(如添加剂加入到载气进气通道时,或添加剂由一部分载气携带输送至电极区或电极后的等离子反应区的情形)起到携带添加剂进入本反应装置的作用。载气被气化,所形成的高能等离子体,于进入电极区或电极外的等离子反应区的燃烧添加剂颗粒发生碰撞和能量交换,使得燃烧添加剂发生迅速气化并部分等离子化;将等离子化的气体引入燃烧室,使其参与液体燃料的燃烧。
本发明的主体为一种非平衡或非热等离子体气化装置,可用于添加包括二茂铁在内的各类燃烧添加剂。这种等离子体气化装置是一种等离子体反应器,它由反应容器、载气进气装置、正负电极、电源以及加料装置、反应器出口所组成。反应容器一般为玻璃或陶瓷或工程塑料或不锈钢或其他材料加工而成的,其形状可以是圆柱形也可以是立矩形或其它任何形状。进气口设在容器的周壁,或以导管导入反应容器内部任何位置,进气口可以是单个也可以是多个;正负电极设置在反应器的周壁或中间任何位置,电极的设置应能保证进入反应器的载气的全部或绝大部分能通过电极之间的空间。电极可以是单对电极也可以是多对电极,正负电极分别连接到高压电源的两极,在两电极之间产生3千伏到120千伏的电压;当使用直流电源时,电极的阳极可以由接地极充当。高压电源提供高压交流电流或高压脉冲直流电流,它一般使用常规交流电源(90-240伏)经内置变压整流装置把常规电流变成高压或高频电流;加料装置一般设在反应器顶部或侧部,使得的固体或液体的添加剂能均匀地加入到反应器中的电极区或载气离开电极后进入的等离子反应区;加料装置也可连接到载气的进气通路中随载气一起进入电极区和等离子反应区,加料装置也可利用一部分辅佐载气将添加剂带入电极区后的等离子反应区。反应区出口为连接反应器到燃烧***的连接通路。
无论采取何种放电形式,所形成的电子的能量(电子温度)在0.9-20eV范围之内,电子密度在106-101 8cm-3。载气在该电场作用下产生等离子体,当燃烧添加剂加入到反应器内的电场区或等离子反应区,在电子和其它带电离子或激化活化的原子或分子作用下,瞬间进行气化,并产生有燃烧催化作用的离子或激化活化的分子(即等离子体),这种等离子化的燃料添加剂以及由载气激发而来的其它的激活成分进入燃烧室,和已经气化或将要气化的燃料分子和氧气进行充分接触碰撞,达到增加燃烧的效率和质量,增加燃料的使用效率和降低污染气体的排放等的目的。所用的载气可以是空气、水蒸气、氧气、氩气、及烟道气或任何气体或气体混合物。高压放电的形式可以是等离子火炬放电(plasma torch)、滑弧放电(gliding arc)、电晕放电(corona arc)或介质阻挡放电(dielectric barrier discharge)。
本发明适用的燃烧添加剂包括各类燃烧催化剂,氧调节剂,缓蚀剂,阻垢剂,可以是有机金属化合物,无机金属化合物,有机酸,醇类,烃类,水等混合物。这里混合物指由有机金属化合物、无机金属化合物、有机酸、醇类、烃类、和水等组成的非纯净物。这些燃烧添加剂在常温下可以液体也可以是固体,可以是纯剂或合剂或溶于溶剂或携带剂中的混剂。常见的溶剂或携带剂如煤粉、煤灰、水、汽油、柴油、重油、航煤、溶剂油、芳烃、二甲基甲酰胺、四氢呋喃、异丙醇、石油醚、乙酸乙酯等。
本发明尤其适合于有机金属化合物燃烧添加剂的添加,包括各类含金属的环烃基有机化合物和含金属的环烃基有机化合物以外的其它有机金属化合物。典型的含金属的环烃基有机化合物有环烃基铁化合物AFeA'和环烃基锰化合物AMn(CO)3。在上述的环烃基金属化合物的通式中,A和A'是任何具有5-13个碳原子或更多的环戊二烯基类基团,这些基团由碳氢原子组成并具有单环、双环、或三环的结构。代表性的有机金属化合物催化剂有: 二茂铁dicyclopentadienyl iron (ferrocene), 二甲基环戊二烯基铁bis(methylcyclopentadienyl) iron (dimethylferrocene), 或甲基环戊二烯基三羰基锰(methylcyclopentadienyl) manganese tricarbonyl,羧酸镧、环烷酸铈、环烷酸铁、羰基镍)等。
上述的有机金属化合物燃烧添加剂中的金属元素可以是铁、锰、铂、钛、铬、钯、镍、钒、铈、镧、铜、锌、钇、锆、铌、钼、锡、锑、镁、钨、锇等任何金属元素。其中的过渡及稀土元素具有能用于成键的空d轨道以及较高的电荷/半径比,活性较强以及成本较低,所以比贵金属更常用于作为燃烧添加剂使用。
适用本发明的有机金属化合物燃烧添加剂还包括上述提到的有机金属化合物的混合物、衍生物、共晶化合物、配位化合物。如二茂铁的衍生物1,3 – diferrocenyl -1- butene。
实施例1:
图1所述,为本发明的燃烧添加剂等离子化装置电极之间高压放电的形式为滑弧放电的示意图;载气以一定速度切向进入反应容器,进气速度必须足够大(如10米/秒左右),以便在反应容器内形成气体漩涡,处于漩涡状态下的气体进入电极区从而产生等离子体并出现滑弧,该等离子体和进入电极及等离子反应区的燃烧添加剂进行接触和能量交换,使得燃烧添加剂快速汽化并部分等离子化,在载气的带动下,由等离子反应器出口离开反应容器,进入到燃烧***中去。图中:1 为反应容器,2 为进气装置,3 为电极正极,4 为电极负极,5为电源,6为加料装置,7为等离子反应器出口,8 为电极区。
其具体工作过程为:载气选用空气;在进气装置2的作用下,载气以 10米/秒的速度切向进入反应容器1的由正电极3与负电极4组成的电极区8;电源5使用220伏的交流电,并经其内置变电装置产生50千伏的高压,加在两电极之间形成约40千伏的电压;催化剂选用二茂铁,由加料装置6进入反应容器1,添加剂量为15 mg/L燃料油;催化剂在高电压作用下,成为等离子化助燃气。将气化器出口7与燃料油与空气混合室配合,使由气化器出口7出来的等离子化助燃气与空气与燃料油的混合物进入燃烧室内燃烧。经使用本助燃用催化剂等离子化装置,催化剂的催化效率和液体喷洒催化剂的方式相比提高300%。
实施例2:
图2为本发明的助燃用燃烧添加剂等离子化装置电极之间高压放电的形式为电晕放电的示意图;载气以一定速度从底部进入反应器,并穿过电晕放电电极区,并形成等离子体,该等离子体和进入等离子反应区的燃烧添加剂进行接触和能量交换,使得燃烧添加剂快速汽化并等离子化,在载气的带动下,由等离子反应器出口离开反应容器,进入到燃烧***中去。
图中:1 为反应容器,2 为进气装置,3 为电极正极,4 为电极负,5为电源,6为加料装置,7为等离子反应器出口,8 为电极区,9为等离子反应区。
其具体工作过程为:载气选用空气;在进气装置2的作用下,载气以2米/秒的速度从底部进入反应容器1,并通过电极区8;电源5使用220伏的交流电,经内置变电装置产生120千伏的高压,并加载在两电极正极3及负极4之间;催化剂选用二茂铁,添加剂量为10mg/L燃料油;使由气化器出口7出来的等离子化助燃气与空气与燃料油的混合物进入燃烧室内燃烧。经使用本助燃用催化剂等离子化装置,催化剂的催化效率和液体喷洒催化剂的方式相比提高300%。
实施例3:
图3、图4为本发明的燃烧添加剂等离子化装置电极之间高压放电的形式为介质阻挡放电的示意图;载气以一定速度从底部或侧面进入反应器,并穿过介质阻挡放电电极区,形成等离子体,该等离子体和进入等离子区的燃烧添加剂进行接触和能量交换,使得燃烧添加剂快速汽化并等离子化,在载气的带动下,由等离子反应器出口离开反应容器,进入到燃烧***中去。
图中:1 为反应容器,2 为进气装置,3 为电极正极,4 为电极负,5为电源,6为加料装置,7为等离子反应器出口,8 为电极区,9为等离子反应区,10为管状设计的电极。
其具体工作过程为:载气选用空气;在进气装置2的作用下,载气以2米/秒的速度从侧面进入反应容器1,并通过电极区8。电源5使用220伏的交流电,经内置变电装置产生120千伏的高压,加在两电极之间形成约120千伏的交流电压;催化剂选用二茂铁,添加剂量为15mg/L燃料油;使由等离子反应器出口7出来的等离子化助燃气与空气与燃料油的混合物进入燃烧室内燃烧。经使用本助燃用等离子化装置的前后对比,使用本装置后普通工业燃油锅炉燃烧效率显著提高10%。
实施例4:
图5为本发明的燃烧添加剂等离子化装置电极之间高压放电的形式为等离子火炬的示意图。电极设置在等离子体火炬喷嘴的内部,载气一般以一定速度从等离子体火炬喷嘴的内部电极之间的空间通过,并在喷嘴的下游形成等离子体火焰,等离子体火焰一般从侧面喷入反应器,并与从反应器上方进入反应器的燃烧添加剂进行接触反应,使得燃烧添加剂快速汽化并等离子化,在载气的带动下,由气化器出口离开反应容器,进入到燃烧***中去。
图中:1 为反应容器, 5为电源,6为加料装置,7为气化器出口,8 为电极区,9为等离子反应区,12为集进气装置2、电极正极3、电极负极4于一体的进气复合装置.
其具体工作过程为:载气选用空气;在进气复合装置12的作用下,载气以2米/秒的速度从侧部进入设在火炬喷嘴内部的电极区并进入反应容器1。电源5使用220伏的交流电,经电源内置的变电装置产生50千伏的高压,并加载在两电极之间;催化剂选用二茂铁,添加剂量为20mg/L燃料油;使由等离子反应器出口7出来的等离子化助燃气与空气与燃料油的混合物进入燃烧室内燃烧。经使用本助燃用等离子化装置的前后对比,使用后燃油的燃烧效率有明显的提高,烟碳的产生受到明显的抑制。
实施例5
图6为本发明的另一种助燃用燃烧添加剂等离子化装置电极之间高压放电的形式为等离子火炬的示意图。电极设置在等离子体火炬喷嘴的内部,载气以一定速度从等离子体火炬喷嘴的内部电极之间的空间通过,利用辅助载气把添加剂从等离子火炬喷嘴的中心部位带入到电极区的出口边缘,并与经过电极区的载气混合,并在喷嘴的下游形成等离子体火焰。等离子体火焰一般从侧面喷入反应器,并从位于反应器另一侧的出口离开反应容器,进入到燃烧***中去。
图中:1 为反应容器, 5为电源,6为加料装置,7为等离子反应器出口,8 为电极区,9为等离子反应区,12为集进气装置2、电极正极3、电极负极4于一体的进气复合装置。
其具体工作过程为:载气选用空气;在进气复合装置12的作用下,载气从侧部进入设在火炬喷嘴内部的电极区并以1米/秒的速度进入反应容器1;催化剂在辅助载气的作用下从等离子火炬内部的中心部位进入到电极区的出口边缘,并与从电极区出来的载气进行混合和能量交换,形成等离子体火焰。电源5使用110伏的交流电源,经变电装置产生10千伏的直流高压,并加载在两电极之间;催化剂选用二茂铁,添加剂量选用15mg/L燃料油。使由等离子反应器出口7出来的等离子化助燃气与空气与燃料油的混合物进入燃烧器的燃烧室内燃烧。经使用本助燃用等离子化装置的前后对比,使用后燃油的燃烧效率提高5%,黑烟的排放降低50%。

Claims (12)

  1. 一种用于液体燃料燃烧用燃烧添加剂的添加方法,其特征在于,所述添加方法为:
    燃烧添加剂进入等离子化装置内的电极区或电极区外的等离子反应区,使其成为等离子化的气体;将等离子化的气体引入燃烧室,使其参与液体燃料的燃烧。
  2. 根据权利要求1所述的用于液体燃料燃烧用燃烧添加剂的添加方法,其特征在于,所述燃烧添加剂为: 有机金属化合物,无机金属化合物,有机酸,醇类,烃类,水或其混合物。
  3. 根据权利要求1或2所述的用于液体燃料燃烧用燃烧添加剂的添加方法,其特征在于,所述燃烧添加剂在常温下可以是液体,也可以是固体,可以是纯剂或混合剂,或溶于溶剂或携带剂中的混合剂。
  4. 根据权利要求3所述的用于液体燃料燃烧用燃烧添加剂的添加方法,其特征在于,所述的溶剂或携带剂为煤粉、煤灰、水、汽油、柴油、重油、航煤、溶剂油、芳烃、二甲基甲酰胺、四氢呋喃、异丙醇、石油醚、乙酸乙酯。
  5. 根据权利要求2所述的用于液体燃料燃烧用燃烧添加剂的添加方法,其特征在于,所述的有机金属化合物中的金属元素为铁、锰、铂、钛、铬、钯、镍、钒、铈、镧、铜、锌、钇、锆、铌、钼、锡、锑、镁、钨或锇。
  6. 根据权利要求1所述的用于液体燃料燃烧用燃烧添加剂的添加方法,其特征在于,为使燃烧添加剂在进入等离子化装置内时,易于被等离子化及被等离子化后的燃烧添加剂进入燃烧***,在等离子化装置内还通有载气,在使燃烧添加剂进入等离子反应装置内的电极区时,载气首先被等离子化。
  7. 根据权利要求6所述的用于液体燃料燃烧用燃烧添加剂的添加方法,其特征在于,所述的载气,可以是空气、水蒸气、氧气、氩气、烟道气或前述气体混合物。
  8. 用于液体燃料燃烧用燃烧添加剂的等离子反应装置,其特征在于,由以下部分组成:
    反应容器:主要提供让燃烧添加剂气化的等离子反应场所;同时用于固定下面将述及的电极、载气其气装置和添加剂加料装置和等离子化反应容器出口;
    电极:分为正电极和负电极,正电极和负电极固定在反应容器内部或周壁,正电极和负电极分别连接到高压电源的两极,其设置应能保证进入反应容器的载气的全部或绝大部分通过电极之间的空间,即电极区,在两电极之间形成3千伏到150千伏的电压,放电所形成的自由电子的能量在0.9 - 20 eV范围之内,电子密度通常在106-1018cm-3;
    电源:用于为电极提供电能及所需的电压;
    载气进气装置:包括设于反应容器外的气源及通入反应容器内的载气进气口,其设置应能保证进入反应器的载气的全部或绝大部分通过电极之间的空间;
    加料装置:该装置可以使得固体或液体燃烧添加剂均匀地进入到反应器的电极区或电极区外的等离子反应区,并能与通过电极区的载气进行充分混合;
    等离子化反应容器出口:用于将等离子化的添加剂引出反应容器并进入燃烧室。
  9. 根据权利要求8所述的用于液体燃料燃烧用燃烧添加剂的等离子反应装置,其特征在于,所述的电极,可以是单对电极,也可以是多对电极。
  10. 根据权利要求8所述的用于液体燃料燃烧用燃烧添加剂的等离子反应装置,其特征在于,所述的电源为高压电源,可以是直流电源或交流电源。
  11. 根据权利要求8所述的用于液体燃料燃烧用燃烧添加剂的等离子反应装置,其特征在于,所述加料装置,可以设在载气通道上,使得燃烧添加剂能进入到载气通路中并随载气进入到反应器内。
  12. 根据权利要求8所述的用于液体燃料燃烧用燃烧添加剂的等离子反应装置,其特征在于,所述的电极,正电极与负电极之间高压放电的形式是等离子体火炬、滑弧放电、电晕放电或介质阻挡放电中的一种方式。
PCT/CN2011/070631 2011-01-26 2011-01-26 用于液体燃料燃烧用燃烧添加剂的添加方法及等离子化装置 WO2012100416A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/070631 WO2012100416A1 (zh) 2011-01-26 2011-01-26 用于液体燃料燃烧用燃烧添加剂的添加方法及等离子化装置
CN201180041524XA CN103210702A (zh) 2011-01-26 2011-01-26 用于液体燃料燃烧用燃烧添加剂的添加方法及等离子化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/070631 WO2012100416A1 (zh) 2011-01-26 2011-01-26 用于液体燃料燃烧用燃烧添加剂的添加方法及等离子化装置

Publications (1)

Publication Number Publication Date
WO2012100416A1 true WO2012100416A1 (zh) 2012-08-02

Family

ID=46580191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070631 WO2012100416A1 (zh) 2011-01-26 2011-01-26 用于液体燃料燃烧用燃烧添加剂的添加方法及等离子化装置

Country Status (2)

Country Link
CN (1) CN103210702A (zh)
WO (1) WO2012100416A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114323904B (zh) * 2021-12-22 2023-07-14 中国科学技术大学 一种用于可燃气燃烧实验的气体预热与添加剂汽化装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4035684A (en) * 1976-02-23 1977-07-12 Ustav Pro Vyzkum, Vyrobu A Vyuziti Radiosotopu Stabilized plasmatron
US5425332A (en) * 1993-08-20 1995-06-20 Massachusetts Institute Of Technology Plasmatron-internal combustion engine system
JP2003020484A (ja) * 2001-07-11 2003-01-24 Mitsubishi Heavy Ind Ltd ガソリン製造装置及び精製装置及びガソリン製造設備及びガソリン製造方法及び精製方法
CN201028565Y (zh) * 2007-04-05 2008-02-27 韩强 等离子体燃料燃烧器物化处理装置
US20090151322A1 (en) * 2007-12-18 2009-06-18 Perriquest Defense Research Enterprises Llc Plasma Assisted Combustion Device
CN100540857C (zh) * 2003-12-18 2009-09-16 丰田自动车株式会社 等离子体喷射器、排气净化***、及还原剂喷射方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7029636B2 (en) * 1999-12-15 2006-04-18 Plasmasol Corporation Electrode discharge, non-thermal plasma device (reactor) for the pre-treatment of combustion air
CN2663039Y (zh) * 2003-09-22 2004-12-15 中国科学院力学研究所 采用等离子体电弧技术处理危险废物的装置
CN2672046Y (zh) * 2004-01-16 2005-01-19 浙江大学 一种滑动弧放电等离子体有机废水处理装置
KR100704855B1 (ko) * 2005-03-31 2007-04-09 인하대학교 산학협력단 경유 개질용 다전극 플라즈마 반응기
CN101737786B (zh) * 2009-12-24 2012-08-08 童加增 一种等离子熔融裂解处理设备
CN201615480U (zh) * 2010-02-09 2010-10-27 济南海普电力节能科技有限公司 煤粉锅炉微波等离子预热煤粉气化小油枪点火装置
CN201652348U (zh) * 2010-04-07 2010-11-24 中国石油化工集团公司 一种等离子体燃烧器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4035684A (en) * 1976-02-23 1977-07-12 Ustav Pro Vyzkum, Vyrobu A Vyuziti Radiosotopu Stabilized plasmatron
US5425332A (en) * 1993-08-20 1995-06-20 Massachusetts Institute Of Technology Plasmatron-internal combustion engine system
JP2003020484A (ja) * 2001-07-11 2003-01-24 Mitsubishi Heavy Ind Ltd ガソリン製造装置及び精製装置及びガソリン製造設備及びガソリン製造方法及び精製方法
CN100540857C (zh) * 2003-12-18 2009-09-16 丰田自动车株式会社 等离子体喷射器、排气净化***、及还原剂喷射方法
CN201028565Y (zh) * 2007-04-05 2008-02-27 韩强 等离子体燃料燃烧器物化处理装置
US20090151322A1 (en) * 2007-12-18 2009-06-18 Perriquest Defense Research Enterprises Llc Plasma Assisted Combustion Device

Also Published As

Publication number Publication date
CN103210702A (zh) 2013-07-17

Similar Documents

Publication Publication Date Title
WO2012097496A1 (zh) 固体燃料燃烧添加剂等离子化装置及使用方法
US6606855B1 (en) Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas
KR100636853B1 (ko) 유해 폐기물 처리 방법 및 장치
CN115199442B (zh) 一种基于等离子体辅助氨燃烧及氨催化裂解的发动机***
CN204082267U (zh) 一种基于低温等离子体的汽车尾气处理的装置
US20060219096A1 (en) Use of manganese compounds to improve the efficiency of and reduce back-corona discharge on electrostatic precipitators
WO2012100416A1 (zh) 用于液体燃料燃烧用燃烧添加剂的添加方法及等离子化装置
CN106765210A (zh) 一种炼厂有机废气的焚烧处理方法及装置
JPH02132188A (ja) 液状炭化水素の改良燃焼方法
CN202350009U (zh) 低温等离子体旋流煤粉炉炉内深度分级低NOx燃烧***
Kong Atmospheric pressure plasma process and applications
Yao et al. Metal sulfates enhanced plasma oxidization of diesel particulate matter
JPH06265109A (ja) プラズマ助燃燃焼炉用バーナー
CN106369615B (zh) 一种有机废气的焚烧处理方法及装置
CN203803484U (zh) 用于液体燃料燃烧用燃烧添加剂的等离子化装置
CN102199458A (zh) 重质油多功能无灰助燃剂
CN203703957U (zh) 固体燃料燃烧添加剂等离子化装置
CN213119115U (zh) 有机残液处理***
JP6574183B2 (ja) 固体、液体、または気体炭化水素(hc)原材料の熱機関での燃焼のプロセス、炭化水素(hc)材料からエネルギーを作り出す熱機関およびシステム
CN112484024A (zh) 一种基于水蒸气热等离子体的煤粉燃烧装置和燃烧方法
CN102338374A (zh) 低温等离子体旋流煤粉炉炉内深度分级低NOx燃烧***
EP3779169A1 (en) Method and system for reducing concentration of pollutants in smoke generated by combustion
Dorosz et al. Cold Plasma Gliding Arc Reactor System for Nanoparticles’ Removal From Diesel Cars Exhaust Gases
Mutaf-Yardimci et al. Plasma-catalytic treatment of organic compounds in atmospheric pressure non-equilibrium discharges
JPH04136602A (ja) NOxの低減方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (17.12.2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11857175

Country of ref document: EP

Kind code of ref document: A1