WO2012099066A1 - Desulfurizer - Google Patents

Desulfurizer Download PDF

Info

Publication number
WO2012099066A1
WO2012099066A1 PCT/JP2012/050734 JP2012050734W WO2012099066A1 WO 2012099066 A1 WO2012099066 A1 WO 2012099066A1 JP 2012050734 W JP2012050734 W JP 2012050734W WO 2012099066 A1 WO2012099066 A1 WO 2012099066A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
fuel
dispersion
partition
vessel
Prior art date
Application number
PCT/JP2012/050734
Other languages
French (fr)
Japanese (ja)
Inventor
暁 山本
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Publication of WO2012099066A1 publication Critical patent/WO2012099066A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/103Sulfur containing contaminants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0675Removal of sulfur
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a desulfurizer that is used in a hydrogen production apparatus in a fuel cell system and desulfurizes and removes sulfur compounds from a hydrocarbon fuel for hydrogen production.
  • the fuel cell system includes a hydrogen production apparatus that produces hydrogen (hydrogen-rich fuel gas) from hydrogen-containing fuels such as city gas, liquefied natural gas (LPG), kerosene, and alcohol fuel, and hydrogen produced by the hydrogen production apparatus. And a fuel cell stack that generates electricity by chemically reacting with oxygen in the air.
  • hydrogen-rich fuel gas hydrogen-containing fuels such as city gas, liquefied natural gas (LPG), kerosene, and alcohol fuel
  • a hydrocarbon is reformed by a reformer to generate a hydrogen-rich fuel gas.
  • a hydrocarbon-based system is obtained by passing a desulfurizer filled with a desulfurizing agent in a vessel. Sulfur compounds contained in fuel are desulfurized and removed.
  • the space in the desulfurizer is divided into a plurality of bent passage spaces by partition plates, and the ratio of the passage length to the passage sectional area (the circular passage section of the passage length L).
  • the gaseous fuel tends to proceed linearly toward the fuel outlet portion while being dispersed due to the pressure loss of the filled desulfurizing agent.
  • Such a fuel flow is difficult to contact the desulfurization agent at the corner of the container away from the gap portion (passage folding portion) between the partition plate and the container wall, and it is difficult to sufficiently improve the desulfurization efficiency.
  • Patent Document 1 makes it possible to lengthen the L / D and secure sufficient contact time between the raw fuel and the desulfurizing agent by turning back the flow path while gradually reducing the cross-sectional area of the flow path. Realize and improve desulfurization performance.
  • the desulfurizer according to the present invention is A rectangular parallelepiped container having a fuel inlet and a fuel outlet and a flow path forming body disposed inside the container.
  • a flow path formation body consists of a rectangular partition part and a dispersion
  • the partition part has three sides fixed at right angles to the upper surface, front side surface, and rear side surface of the container, and the remaining one side is fixed at right angles to the dispersion part.
  • the dispersing portion has a set of parallel sides that are not in contact with the inner wall of the container, and the other set of sides is parallel to the lower surface of the container and spaced apart from the front and rear sides of the container.
  • the inner wall and the other side of the partition are fixed at right angles.
  • the fuel inlet and the fuel outlet are each separated by a partition part, and are located in the container upper surface direction from the dispersion part.
  • the opening ratio of the cross section of the flow path at a height at which the dispersion part is located in parallel with the lower surface of the container may be 30 to 70%.
  • one side of the partition part of the desulfurizer may be further characterized by being fixed to the upper surface of the container at a position that bisects the upper surface of the container.
  • one side of the partition part may be further characterized in that it is fixed to the dispersion part at a position that bisects the dispersion part.
  • At least one of the fuel inlet and the fuel outlet of the desulfurizer may be further formed on the upper surface of the container. Further, at least one of the fuel inlet and the fuel outlet of the desulfurizer may be further formed on the front side, rear side, right side, or left side of the container.
  • the gaseous fuel flows into the container from the fuel introduction port, flows in one fuel introduction space partitioned by the partition, passes through the dispersion space that is a gap between the dispersion plate and the lower surface of the container facing the partition plate, It flows to the other partitioned fuel lead-out space and flows out from the fuel lead-out port.
  • the ratio L / D between the passage length L and the passage cross-sectional area equivalent diameter D can be earned. Since the fluid flows into and out of the gap between the dispersing portion and the lower surface of the container at a distance, the distance from the fuel flow center line to the farthest desulfurizing agent can be reduced. Thereby, fuel can be disperse
  • FIG. 1 is a perspective view of 1st embodiment which concerns on this invention
  • FIG. 1 is a perspective view of 1st embodiment which concerns on this invention
  • FIG. 1 is a perspective view of 1st embodiment which concerns on this invention
  • FIG. 1 is a perspective view of 1st embodiment which concerns on this invention
  • FIG. 1 is a perspective view of 1st embodiment which concerns on this invention
  • FIG. 1 is a perspective view of 1st embodiment which concerns on this invention
  • FIG. 1st embodiment which concerns on this invention
  • FIG. 1st embodiment which concerns on this invention
  • FIG. 1st embodiment which concerns on this invention
  • FIG. 1 is a perspective view of a flow path forming body according to the present invention.
  • the flow path forming body 1 includes a partition part 2 and a dispersion part 3.
  • Fig.2 (a) shows the perspective view of 1st embodiment which concerns on this invention.
  • FIG. 2B is a cross-sectional view taken along the alternate long and short dash line in FIG.
  • the desulfurizer has a rectangular parallelepiped container 4, and a flow path forming body 1 including a partition part 2 and a dispersion part 3 is disposed inside the container 4.
  • the partition part 2 has three sides fixed at right angles to the inner walls of the upper surface 4a, front side surface 4c and rear side surface 4d of the container, and the remaining one side is fixed to one surface of the dispersion part 3 at right angles.
  • the dispersing portion 3 has a pair of parallel sides 3a and 3b that do not contact the inner wall of the container 4, and the other set of sides is parallel to the lower surface 2b of the container and has a predetermined gap L7. Are fixed at right angles to the inner walls of the front side surface 4c and the rear side surface 4d.
  • the distances from the partition part 2 to a pair of parallel sides 3a and 3b that do not contact the inner wall of the container 4 of the dispersion part 3 are L1 and L3, respectively.
  • the distance between the side 3a not contacting the inner wall of the container 4 and the right side 4e is L2
  • the distance between the side 3b not contacting the inner wall of the container 4 and the left side 4f is L4.
  • FIG. 3 is a front view and a side view of the desulfurizer 100 according to the first embodiment of the present invention.
  • Gaseous fuel such as liquefied natural gas (LPG) and city gas supplied from the fuel introduction pipe 12 is separated from the fuel introduction port 5 by the flow path forming body 1 in the container 4 via the inlet connector 11. While flowing into the space 6 and entering the layer of the desulfurizing agent 10 filled close to the fuel introduction port 5, pressure loss occurs and the fuel flows downward while being dispersed in the peripheral portion while being decelerated.
  • the fuel in contact with the desulfurizing agent 10 is desulfurized when the sulfur compound contained in the fuel is adsorbed on the desulfurizing agent 10.
  • the fuel that has reached the lower end of the inflow side space 6 enters the dispersion space 7 below the dispersion portion 3 from the gap L7. Then, it flows to the outflow side space 8 and flows upward while being desulfurized while entering the desulfurization agent 10 layer in the outflow side space 8. Then, the fuel is supplied from the fuel outlet 9 to the reformer via the outlet connector 13 and the fuel outlet pipe 14.
  • Gaseous fuel tends to travel the shortest distance from the fuel inlet 5 to the fuel outlet 9.
  • the flow direction of the fuel in the container 4 is such that the partition portion from the fuel inlet 5 in the inflow side space 6. 2 is an oblique direction connecting up to the gap between the lower end and the inner surface of the container bottom wall, and in the outflow side space 8 is an oblique direction connecting from the gap below the partition part 2 to the fuel outlet 9.
  • the flow center line of the entire container is V-shaped as shown by the arrow y in FIG.
  • the flow direction of the fuel can be separated from the partition part 2 by disposing the dispersion part 3. That is, the flow direction of the fuel is as shown by a solid arrow x in FIG. 3 (thick line arrow is a flow center line xc), from the fuel inlet 5 to the inlet of the dispersion space 7 below the dispersion portion 3 in the inflow side space 6. In the outflow side space 8, the direction is substantially vertically upward from the outlet of the dispersion space 7 to the fuel outlet 9.
  • the distance from the flow center line (thick arrow) xc to the furthest desulfurizing agent 10 in the container 4 can be reduced.
  • the fuel can be evenly dispersed throughout the desulfurizing agent 10, and the desulfurization efficiency is further improved as the dispersibility is improved. Can do.
  • FIG. 5 shows a flow velocity distribution diagram at the bottom of the container 4. 5 (a), 5 (b) and 5 (c), the same size container 4 is used, and the partition part 2 is installed at a position where the upper surface 4a of the container 4 is divided into two parts for comparison.
  • FIG. 5 (a) is a flow velocity distribution diagram in the first embodiment.
  • the size of the dispersion portion was determined so that the aperture ratio [(L2 ⁇ L4) / ⁇ (L1 + L2) ⁇ L4 ⁇ ⁇ 100] of the flow passage was 55%.
  • FIG. 5 (b) is a flow velocity distribution diagram in the first prior art, which has only a partition portion and no dispersion portion.
  • the partition portion was installed with a dimension determined such that a distance L5 between one side that does not contact the container of the partition portion and the lower surface 4b of the container is equal to that of the first embodiment.
  • FIG. 5 (c) is a flow velocity distribution diagram in the second prior art in which a punching plate having the same shape as the cross section of the container 4 (L3 ⁇ L4) is used as a substitute dispersion part instead of the dispersion part 3.
  • a substitute dispersion portion a plurality of holes are evenly arranged, and the aperture ratio [(L1 + L2) ⁇ (total area of holes included in the area of L4) / ⁇ (L1 + L2) ⁇ L4 ⁇ ⁇ 100] is 55%.
  • distribution part and the lower surface 4b of a container becomes equal to 1st embodiment.
  • the flow velocity range of the fuel increases in the order of A> B> C> D> E> F shown in the figure.
  • F is a stagnation part where the flow velocity is substantially 0, and the flow velocity region E is substantially at a suitable speed at which the fuel and the desulfurizing agent can flow while ensuring a good desulfurization function by contacting the fuel and the desulfurization agent for a sufficiently long time. is there.
  • FIG. 5A and FIG. 5B are compared with respect to the change in flow velocity due to the return of fuel.
  • a region of flow velocities A to D is generated upstream in FIG. 5B, and in the outflow side space 8, the flow velocities A to D are further increased in FIG. You can see that the area is expanding.
  • FIG. 5 (a) the regions of the flow velocities A to D on the semi-ellipse are generated in two places.
  • the regions of the flow velocities A to D in the vicinity of the edge portions 3a and 3b of the dispersion portion 3 are about half of those in FIG. 5B in the vertical and horizontal directions. It can be seen that the low flow rate is maintained in the inflow side space 6 just before the return of the fuel, the high flow rate is passed through the dispersion space 7 to return, and the outflow side space 8 is rapidly decelerated to the low flow rate.
  • edge portions 3a and 3b are provided at positions where the flow velocity range of the flow velocity A to D on the semi-ellipse does not reach the partition portion 2 or the right side surface or the left side surface, the lateral flow of the fuel gas is applied to the wall surface. The phenomenon of collision and turning into a vertical flow is suppressed. From FIG. 5A, it can be said that the edge portions 3a and 3b are preferably positioned so that the aperture ratio is 30 to 70%.
  • FIG. 5B shows two portions of the stagnation portions A1 and A2.
  • the stagnation portion in addition to A1 and A2, the stagnation portion It can be seen that A3 and A4 occur.
  • FIG. 5A is about half of FIG. 5B in the height direction and the width direction. That is, in the first embodiment, the number of occurrences of the stagnation portion is increased, but the region of the flow velocity F occupying the entire container is suppressed to be small, and it is understood that the stagnation portion is reduced as a whole container.
  • the structure of the present application has advantages from the viewpoint of manufacturing.
  • the punching plate is used as a substitute dispersion portion and the entire flow path is covered at a distance L5 from the lower surface 4b of the container 4, the entire length of the punching plate needs to be welded, so that the welding length increases.
  • the pair of sides that do not contact the container 4 of the dispersion plate 3 do not need to be welded, so that the weld length can be reduced accordingly. Further, since the fuel flow direction is folded only once in the container 4, the desulfurization catalyst can be easily filled as compared with the conventional technique in which the folding is performed a plurality of times.
  • the flow path forming body 1 is welded to the container 4 assembled up to the upper surface 4a, the front side surface 4c, the rear side surface 4d, the right side surface 4e and the left side surface 4f.
  • the inflow space 6 and the outflow space 9 are filled with the desulfurization catalyst from the opening, and the dispersion space 7 is filled with the desulfurization catalyst.
  • the entire circumference of the lower surface 4b is welded.
  • the desulfurization catalyst can be filled easily by welding the partition part 2 to the container 4 and then welding the dispersion part 3 to form the flow path forming body 1.
  • the partition part 2 is welded to the container 4 assembled to the upper surface 4a, the front side surface 4c, the rear side surface 4d, the right side surface 4e, and the left side surface 4f.
  • the inflow side space 6 and the outflow side space 8 are filled with a desulfurization catalyst.
  • the dispersion part 3 is welded to one side of the partition part 2 and the fixed side surface 4c of the container.
  • the dispersion space 7 is filled with a desulfurization catalyst.
  • the entire circumference of the lower surface 4b of the container is welded.
  • the fuel inlet 5 and the fuel outlet 9 are disposed on the upper surface 4a of the container 4.
  • at least one of the fuel inlet 5 and the fuel outlet 9 is provided. May be disposed on the front side surface 4c, the rear side surface 4d, the right side surface 4e, or the left side surface 4f of the container 4.
  • a configuration in which the longitudinal direction of the container 4 of the present embodiment is installed horizontally may be used.
  • the upper surface 4a, the lower surface 4b, the front side surface 4c, the rear side surface 4d, the right side surface 4e, and the left side surface 4f of the six surfaces constituting the rectangular parallelepiped container 4 are described. However, it does not specify the top, bottom, left, or right in the installed state of the fuel cell system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel Cell (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

Provided is a desulfurizer that, with a simple configuration, can increase desulfurization efficiency by improving fuel dispersion properties. The desulfurizer (100), which is provided on the upstream side of a reformer in a fuel cell system and eliminates sulfur compounds in a gaseous fuel, is provided with: a rectangular-solid-shaped vessel (4) having a fuel inlet (5) and a fuel outlet (9); and a duct formation body disposed within the vessel (4). The duct formation body is provided with: a rectangular partition section (2); and a rectangular dispersion section (3). Three sides of the partition section (2) respectively are perpendicularly affixed to the upper surface (4a), front side surface (4c) and back side surface (4d) of the vessel (4), and the remaining side is perpendicularly affixed to the dispersion section (3). The dispersion section (3) has a pair of parallel sides that do not contact the inner walls of the vessel (4), and, at a position that is parallel to the bottom surface of the vessel (4) at a predetermined spacing, the other pair of sides respectively are perpendicularly affixed to the inner wall of the front side surface (4c) and the back side surface (4d) of the vessel (4), and the side of the partition section (2) that does not contact the vessel (4). The fuel inlet (5) and fuel outlet (9) are positioned towards the upper surface of the vessel (4) from the dispersion section (3), and are separated by the partition section (2).

Description

脱硫器Desulfurizer
 本発明は、燃料電池システムにおける水素製造装置に用いられ、水素製造用の炭化水素系燃料から硫黄化合物を脱硫除去する脱硫器に関する。 The present invention relates to a desulfurizer that is used in a hydrogen production apparatus in a fuel cell system and desulfurizes and removes sulfur compounds from a hydrocarbon fuel for hydrogen production.
 燃料電池システムは、都市ガス、液化天然ガス(LPG)、灯油、アルコール燃料等の水素含有燃料から水素(水素リッチな燃料ガス)を製造する水素製造装置と、この水素製造装置により製造した水素と空気中の酸素とを化学反応させることにより発電する燃料電池スタックと、を含んで構成される。 The fuel cell system includes a hydrogen production apparatus that produces hydrogen (hydrogen-rich fuel gas) from hydrogen-containing fuels such as city gas, liquefied natural gas (LPG), kerosene, and alcohol fuel, and hydrogen produced by the hydrogen production apparatus. And a fuel cell stack that generates electricity by chemically reacting with oxygen in the air.
 前記水素製造装置では、改質器により炭化水素を改質して水素リッチな燃料ガスを生成するが、これに先立って、容器内に脱硫剤を充填した脱硫器を通すことにより、炭化水素系燃料に含まれる硫黄化合物を脱硫除去している。 In the hydrogen production apparatus, a hydrocarbon is reformed by a reformer to generate a hydrogen-rich fuel gas. Prior to this, a hydrocarbon-based system is obtained by passing a desulfurizer filled with a desulfurizing agent in a vessel. Sulfur compounds contained in fuel are desulfurized and removed.
 ここで、上記都市ガスやLPG等の気体燃料を脱硫する脱硫器の脱硫効率を高めるためには、燃料を脱硫器内の脱硫剤全体に分散させて満遍なく接触させることが望ましい。
 このため、特許文献1に記載される脱硫器では、脱硫器内の空間を仕切り板によって複数の屈曲した通路空間に仕切って、通路長の通路断面積に対する比率(通路長Lの円形通路断面の断面積に換算したときの等価直径Dに対する比率L/Dで表す)を増大させることにより、脱硫剤との接触効率を高めて脱硫効率の向上を図ったものがある。
Here, in order to increase the desulfurization efficiency of the desulfurizer that desulfurizes the gas fuel such as the city gas and LPG, it is desirable to disperse the fuel throughout the desulfurizing agent in the desulfurizer and to make it evenly contact.
For this reason, in the desulfurizer described in Patent Document 1, the space in the desulfurizer is divided into a plurality of bent passage spaces by partition plates, and the ratio of the passage length to the passage sectional area (the circular passage section of the passage length L). Some increase the desulfurization efficiency by increasing the contact efficiency with the desulfurization agent by increasing the ratio L / D with respect to the equivalent diameter D when converted into a cross-sectional area.
 しかし、気体燃料は、充填された脱硫剤の圧力損失の影響により分散されつつも、燃料出口部分に向かって直線状に進む傾向にある。このような燃料の偏流は、仕切り板と容器壁との間隙部分(通路折り返し部分)から離れた容器角部の脱硫剤に接触しにくく、脱硫効率を十分向上させることが困難であった。 However, the gaseous fuel tends to proceed linearly toward the fuel outlet portion while being dispersed due to the pressure loss of the filled desulfurizing agent. Such a fuel flow is difficult to contact the desulfurization agent at the corner of the container away from the gap portion (passage folding portion) between the partition plate and the container wall, and it is difficult to sufficiently improve the desulfurization efficiency.
 そこで、特許文献1に記載の技術は、流路断面積を徐々に減少させながら流路を折り返すことにより、L/Dの長尺化、原燃料と脱硫剤との十分な接触時間の確保を実現し、脱硫性能の向上を図るものである。 Therefore, the technique described in Patent Document 1 makes it possible to lengthen the L / D and secure sufficient contact time between the raw fuel and the desulfurizing agent by turning back the flow path while gradually reducing the cross-sectional area of the flow path. Realize and improve desulfurization performance.
日本国特許公報:  特開2010-067353号公報Japanese Patent Gazette: JP 2010-066733
 しかし、特許文献1に記載の技術では、仕切り板が垂直に配置されている形態においては、特に断面積が大きい領域で、燃料が間隙部分に直線状に進むことを十分に抑制することができておらず、通路折り返し部分から離れた角部の脱硫剤を十分に有効活用することができていない。また、複数の通路折り返し部分を有するため、脱硫剤の充填が困難であるという製造上の不都合もあった、
 本発明は、このような従来の課題に着目してなされたもので、簡易で低コストに製作できる構成にして、気体燃料の容器内の脱硫剤との接触効率を高めて脱硫効率を高めた脱硫器を提供することを目的とする。
However, in the technique described in Patent Document 1, in the form in which the partition plates are arranged vertically, it is possible to sufficiently suppress the fuel from proceeding linearly to the gap portion, particularly in a region having a large cross-sectional area. However, the desulfurization agent at the corners away from the passage turn-back portion cannot be fully utilized effectively. In addition, because it has a plurality of passage folding portions, there was also a manufacturing disadvantage that it was difficult to fill with a desulfurization agent,
The present invention has been made paying attention to such a conventional problem, and has a structure that can be manufactured easily and at low cost, and the contact efficiency of the gaseous fuel with the desulfurization agent in the container is increased to increase the desulfurization efficiency. An object is to provide a desulfurizer.
 このため本発明に係る脱硫器は、
 燃料導入口及び燃料導出口を有する直方体状の容器と、容器の内部に配置される流路形成体とを備える。流路形成体は、長方形状の、仕切り部及び分散部からなる。仕切り部は、三辺が容器の上面、前側面及び後側面にそれぞれ直角に固定され、残る一辺は分散部に直角に固定される。分散部は、容器の内壁に接しない互いに平行な一組の辺を有し、他の一組の辺は、容器の下面と平行かつ所定の間隔をあけて、容器の前側面及び後側面の内壁、並びに仕切り部の残る一辺にそれぞれ直角に固定される。燃料導入口及び燃料導出口は、それぞれ仕切り部により離隔され、分散部より容器上面方向に位置することを特徴とする。
Therefore, the desulfurizer according to the present invention is
A rectangular parallelepiped container having a fuel inlet and a fuel outlet and a flow path forming body disposed inside the container. A flow path formation body consists of a rectangular partition part and a dispersion | distribution part. The partition part has three sides fixed at right angles to the upper surface, front side surface, and rear side surface of the container, and the remaining one side is fixed at right angles to the dispersion part. The dispersing portion has a set of parallel sides that are not in contact with the inner wall of the container, and the other set of sides is parallel to the lower surface of the container and spaced apart from the front and rear sides of the container. The inner wall and the other side of the partition are fixed at right angles. The fuel inlet and the fuel outlet are each separated by a partition part, and are located in the container upper surface direction from the dispersion part.
 また、分散部が容器の下面に平行に位置する高さにおける流路断面の開口率は、30~70%であることを、更に特徴としてもよい。
 また、脱硫器の仕切り部の一辺は、容器上面を対照に二等分する位置で容器上面に固定されていることを、更に特徴としてもよい。
また、仕切り部の一辺は、分散部を対照に二等分する位置で分散部に固定されていることを、更に特徴としてもよい。
Further, the opening ratio of the cross section of the flow path at a height at which the dispersion part is located in parallel with the lower surface of the container may be 30 to 70%.
Further, one side of the partition part of the desulfurizer may be further characterized by being fixed to the upper surface of the container at a position that bisects the upper surface of the container.
Further, one side of the partition part may be further characterized in that it is fixed to the dispersion part at a position that bisects the dispersion part.
 また、脱硫器の燃料導入口及び燃料導出口の少なくとも一方は、容器の上面に形成されることを、更に特徴としてもよい。
 また、脱硫器の燃料導入口及び燃料導出口の少なくとも一方は、容器の前側面、後側面、右側面、又は左側面に形成されることを、更に特徴としてもよい。
Further, at least one of the fuel inlet and the fuel outlet of the desulfurizer may be further formed on the upper surface of the container.
Further, at least one of the fuel inlet and the fuel outlet of the desulfurizer may be further formed on the front side, rear side, right side, or left side of the container.
 気体燃料は、燃料導入口から容器内に流入し、仕切り部で仕切られた一方の燃料導入空間を流動し、分散板と対向する容器の下面との間隙である分散空間を通って仕切り板で仕切られた他方の燃料導出空間へと流動し、燃料導出口から流出する。 The gaseous fuel flows into the container from the fuel introduction port, flows in one fuel introduction space partitioned by the partition, passes through the dispersion space that is a gap between the dispersion plate and the lower surface of the container facing the partition plate, It flows to the other partitioned fuel lead-out space and flows out from the fuel lead-out port.
 ここで、仕切り部によって燃料を容器内でUターンさせる流通経路としたことにより、通路長Lと通路断面積等価直径Dとの比L/Dを稼ぐことができると共に、分散板によって仕切り部から離れた所で分散部と容器の下面との間の間隙に流入及び流出するため、燃料の流動中心線から最も離れた脱硫剤までの距離を小さくすることができる。これにより、燃料を容器内の脱硫剤全体に分散させて脱硫剤との接触効率を向上させて、脱硫効率を向上させることができる。 Here, by using a flow path that causes the fuel to make a U-turn in the container, the ratio L / D between the passage length L and the passage cross-sectional area equivalent diameter D can be earned. Since the fluid flows into and out of the gap between the dispersing portion and the lower surface of the container at a distance, the distance from the fuel flow center line to the farthest desulfurizing agent can be reduced. Thereby, fuel can be disperse | distributed to the whole desulfurization agent in a container, contact efficiency with a desulfurization agent can be improved, and desulfurization efficiency can be improved.
本発明に係る流路形成体の斜視図。The perspective view of the flow-path formation body concerning this invention. (a)は本発明に係る第一の実施形態の斜視図、(b)は(a)の一点鎖線部における断面図。(A) is a perspective view of 1st embodiment which concerns on this invention, (b) is sectional drawing in the dashed-dotted line part of (a). 本発明に係る第一の実施形態の正面図及び側面図。The front view and side view of 1st embodiment which concern on this invention. 従来技術に係る脱硫器の正面図。The front view of the desulfurizer based on a prior art. 容器下面周辺における流速分布図。Flow velocity distribution diagram around the lower surface of the container. 本発明に係る第二の実施形態の斜視図。The perspective view of 2nd embodiment which concerns on this invention.
 以下に、本発明の実施形態を図に基づいて説明する。図1は、本発明に係る流路形成体の斜視図を示す。流路形成体1は、仕切り部2と分散部3から成る。
 図2(a)は、本発明に係る第一の実施形態の斜視図を示す。図2(b)は、図2(a)の一点鎖線部における断面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of a flow path forming body according to the present invention. The flow path forming body 1 includes a partition part 2 and a dispersion part 3.
Fig.2 (a) shows the perspective view of 1st embodiment which concerns on this invention. FIG. 2B is a cross-sectional view taken along the alternate long and short dash line in FIG.
 脱硫器は、直方体状の容器4を有し、容器4の内部に仕切り部2と分散部3からなる流路形成体1が配置される。
 仕切り部2は、三辺が容器の上面4a、前側面4c及び後側面4dの内壁にそれぞれ直角に固定され、残る一辺は分散部3の一方の面に直角に固定される。分散部3は、容器4の内壁に接しない互いに平行な一組の辺3a及び3bを有し、他の一組の辺は、容器の下面2bと平行かつ所定の間隙L7をあけて、容器の前側面4c及び後側面4dの内壁にそれぞれ直角に固定される。
The desulfurizer has a rectangular parallelepiped container 4, and a flow path forming body 1 including a partition part 2 and a dispersion part 3 is disposed inside the container 4.
The partition part 2 has three sides fixed at right angles to the inner walls of the upper surface 4a, front side surface 4c and rear side surface 4d of the container, and the remaining one side is fixed to one surface of the dispersion part 3 at right angles. The dispersing portion 3 has a pair of parallel sides 3a and 3b that do not contact the inner wall of the container 4, and the other set of sides is parallel to the lower surface 2b of the container and has a predetermined gap L7. Are fixed at right angles to the inner walls of the front side surface 4c and the rear side surface 4d.
 仕切り部2から、分散部3の容器4の内壁に接しない互いに平行な一組の辺3a及び3bまでの距離はそれぞれL1及びL3である。また、容器4の内壁に接しない一辺3aと右側面4eとの間隔はL2、容器4の内壁に接しない一辺3bと左側面4fとの間隔はL4である。 The distances from the partition part 2 to a pair of parallel sides 3a and 3b that do not contact the inner wall of the container 4 of the dispersion part 3 are L1 and L3, respectively. The distance between the side 3a not contacting the inner wall of the container 4 and the right side 4e is L2, and the distance between the side 3b not contacting the inner wall of the container 4 and the left side 4f is L4.
 燃料導入口5及び燃料導出口9は、容器の上面4aに形成される。
 かかる構成を有した脱硫器100の作用を、図3を用いて説明する。
 図3は、本発明に係る第一の実施形態の脱硫器100の正面図及び側面図である。
The fuel inlet 5 and the fuel outlet 9 are formed on the upper surface 4a of the container.
The operation of the desulfurizer 100 having such a configuration will be described with reference to FIG.
FIG. 3 is a front view and a side view of the desulfurizer 100 according to the first embodiment of the present invention.
 燃料導入配管12から供給される液化天然ガス(LPG)、都市ガス等の気体燃料は、入口コネクタ11を介して、燃料導入口5から容器4内の流路形成体1で仕切られた流入側空間6に流入し、燃料導入口5まで近接して充填された脱硫剤10の層に進入しつつ、圧力損失を生じて減速しながら周辺部に分散しつつ下方へ流動する。脱硫剤10と接触した燃料は、燃料中に含まれる硫黄化合物が脱硫剤10に吸着し、脱硫される。 Gaseous fuel such as liquefied natural gas (LPG) and city gas supplied from the fuel introduction pipe 12 is separated from the fuel introduction port 5 by the flow path forming body 1 in the container 4 via the inlet connector 11. While flowing into the space 6 and entering the layer of the desulfurizing agent 10 filled close to the fuel introduction port 5, pressure loss occurs and the fuel flows downward while being dispersed in the peripheral portion while being decelerated. The fuel in contact with the desulfurizing agent 10 is desulfurized when the sulfur compound contained in the fuel is adsorbed on the desulfurizing agent 10.
 流入側空間6の下端部に達した燃料は、間隙L7から分散部3下方の分散空間7に進入する。そして、流出側空間8へ流動し、流出側空間8内の脱硫剤10層に進入しつつ脱硫されながら上方へ流動する。そして、燃料導出口9から、出口コネクタ13を介して燃料導出配管14を経て改質器に供給される。 The fuel that has reached the lower end of the inflow side space 6 enters the dispersion space 7 below the dispersion portion 3 from the gap L7. Then, it flows to the outflow side space 8 and flows upward while being desulfurized while entering the desulfurization agent 10 layer in the outflow side space 8. Then, the fuel is supplied from the fuel outlet 9 to the reformer via the outlet connector 13 and the fuel outlet pipe 14.
 気体燃料は燃料導入口5から燃料導出口9まで最短距離を進む傾向にある。仕切り部2を配設しただけで分散部3を配設しない場合は、図4に示すように、容器4内での燃料の流動方向は、流入側空間6においては燃料導入口5から仕切り部2下端と容器底壁内面との間隙までを結ぶ斜め方向となり、流出側空間8においては、前記仕切り部2下方の間隙から燃料導出口9までを結ぶ斜め方向となる。このように容器全体では流動中心線は、図4ので矢印yで示すようにV字状となるため、仕切り部2から離れた図に一点鎖線で示す角隅部A1,A2には、燃料が行き渡りにくく、あるいは、燃料が届いても該角隅部A1,A2に淀んで流動しにくく、脱硫剤10が有効利用されにくい。これは、特許文献1の供給室や排出室のように、パンチング板で燃料が折り返す流路断面を覆ったとしても同様の現象が生じる。 Gaseous fuel tends to travel the shortest distance from the fuel inlet 5 to the fuel outlet 9. In the case where only the partition portion 2 is disposed and the dispersion portion 3 is not disposed, as shown in FIG. 4, the flow direction of the fuel in the container 4 is such that the partition portion from the fuel inlet 5 in the inflow side space 6. 2 is an oblique direction connecting up to the gap between the lower end and the inner surface of the container bottom wall, and in the outflow side space 8 is an oblique direction connecting from the gap below the partition part 2 to the fuel outlet 9. In this way, the flow center line of the entire container is V-shaped as shown by the arrow y in FIG. 4, so that fuel is contained in the corners A1 and A2 shown by the alternate long and short dashed lines in the drawing away from the partition 2. It is difficult to spread, or even if fuel arrives, it does not flow easily in the corners A1 and A2, and the desulfurizing agent 10 is not effectively used. The same phenomenon occurs even when the cross section of the flow path where the fuel is folded back is covered with a punching plate as in the supply chamber and the discharge chamber of Patent Document 1.
 これに対し、分散部3を配設することにより、燃料の流動方向を仕切り部2から離すことができる。すなわち、燃料の流動方向は、図3で実線矢印x(太線矢印は流動中心線xc)に示すように、流入側空間6では、燃料導入口5から分散部3下方の分散空間7の入口まで略垂直下方に向かう方向となり、流出側空間8では、分散空間7の出口から燃料導出口9まで略垂直上方に向かう方向となる。 On the other hand, the flow direction of the fuel can be separated from the partition part 2 by disposing the dispersion part 3. That is, the flow direction of the fuel is as shown by a solid arrow x in FIG. 3 (thick line arrow is a flow center line xc), from the fuel inlet 5 to the inlet of the dispersion space 7 below the dispersion portion 3 in the inflow side space 6. In the outflow side space 8, the direction is substantially vertically upward from the outlet of the dispersion space 7 to the fuel outlet 9.
 これにより、容器4内で流動中心線(太線矢印)xcから最も離れた脱硫剤10までの距離を小さくすることができる。このため、脱硫剤10による圧力損失により図3で実線矢印xに示すように、脱硫剤10全体に満遍なく燃料を分散させることができ、該分散性の向上に伴って脱硫効率をさらに向上させることができる。 Thus, the distance from the flow center line (thick arrow) xc to the furthest desulfurizing agent 10 in the container 4 can be reduced. For this reason, as shown by the solid line arrow x in FIG. 3 due to the pressure loss due to the desulfurizing agent 10, the fuel can be evenly dispersed throughout the desulfurizing agent 10, and the desulfurization efficiency is further improved as the dispersibility is improved. Can do.
 図5に容器4の底部の流速分布図を示す。
 図5(a)、(b)及び(c)では、同じ大きさの容器4を用い、容器4の上面4aを対照に二分割する位置に仕切り部2が設置してある。
FIG. 5 shows a flow velocity distribution diagram at the bottom of the container 4.
5 (a), 5 (b) and 5 (c), the same size container 4 is used, and the partition part 2 is installed at a position where the upper surface 4a of the container 4 is divided into two parts for comparison.
 図5(a)は、第一の実施形態における流速分布図である。分散部は、流路の開口率[(L2×L4)/{(L1+L2)×L4}×100]が55%となるように分散部の寸法を決定した。 FIG. 5 (a) is a flow velocity distribution diagram in the first embodiment. The size of the dispersion portion was determined so that the aperture ratio [(L2 × L4) / {(L1 + L2) × L4} × 100] of the flow passage was 55%.
 図5(b)は、仕切り部のみで分散部を有しない、第一の従来技術における流速分布図である。仕切り部は、仕切り部の容器に接しない一辺と容器の下面4bとの距離L5が第一実施形態と等しくなるように寸法を定めて設置した。 FIG. 5 (b) is a flow velocity distribution diagram in the first prior art, which has only a partition portion and no dispersion portion. The partition portion was installed with a dimension determined such that a distance L5 between one side that does not contact the container of the partition portion and the lower surface 4b of the container is equal to that of the first embodiment.
 図5(c)は、分散部3に替えて、容器4の断面(L3×L4))と同じ形状のパンチング板を代用分散部として用いた第二の従来技術における流速分布図である。代用分散部は、複数の孔が均等に配列され、開口率[(L1+L2)×(L4の面積に含まれる孔部の総面積)/{(L1+L2)×L4}×100]が55%となるものを用い、代用分散部と容器の下面4bとの距離L5が第一実施形態と等しくなる位置に設置した。 FIG. 5 (c) is a flow velocity distribution diagram in the second prior art in which a punching plate having the same shape as the cross section of the container 4 (L3 × L4) is used as a substitute dispersion part instead of the dispersion part 3. In the substitute dispersion portion, a plurality of holes are evenly arranged, and the aperture ratio [(L1 + L2) × (total area of holes included in the area of L4) / {(L1 + L2) × L4} × 100] is 55%. Using a thing, it installed in the position where the distance L5 of the substitute dispersion | distribution part and the lower surface 4b of a container becomes equal to 1st embodiment.
 燃料の流速域は、図示のA>B>C>D>E>Fの順で大きくなっている。Fは、流速が略0の淀み部であり、実質的には、流速域Eが、燃料と脱硫剤とが十分長時間接触して良好な脱硫機能を確保しつつ流動できる良適な速度である。 The flow velocity range of the fuel increases in the order of A> B> C> D> E> F shown in the figure. F is a stagnation part where the flow velocity is substantially 0, and the flow velocity region E is substantially at a suitable speed at which the fuel and the desulfurizing agent can flow while ensuring a good desulfurization function by contacting the fuel and the desulfurization agent for a sufficiently long time. is there.
 したがって、流入側空間6及び流出側空間8において、脱硫効率が高い流速Eの領域をできるだけ燃料の折り返し部分に近いところまで及ばせることが望ましい。
 まず、図5(a)と図5(b)について、燃料の折り返しによる流速の変化を比較する。流入側空間6においては図5(b)のほうが上流で流速A~Dの領域が発生し、流出側空間8においても図5(b)の方が、より下流になるまで流速A~Dの領域が広がっていることがわかる。
Therefore, in the inflow side space 6 and the outflow side space 8, it is desirable to extend the region of the flow velocity E where the desulfurization efficiency is high as close as possible to the fuel return portion.
First, FIG. 5A and FIG. 5B are compared with respect to the change in flow velocity due to the return of fuel. In the inflow side space 6, a region of flow velocities A to D is generated upstream in FIG. 5B, and in the outflow side space 8, the flow velocities A to D are further increased in FIG. You can see that the area is expanding.
 一方、図5(a)は、半楕円上の流速A~Dの領域が二箇所で発生している。しかし、流入空間5及び流出空間6において、分散部3の端縁部3a及び3b付近における流速A~Dの領域は、縦方向及び横方向において図5(b)の半分程度である。流入側空間6において燃料の折り返し直前まで低流速を維持し、高流速で分散空間7を通過して折り返し、流出側空間8においても速やかに低流速まで減速できていることがわかる。端縁部3a及び3bが、半楕円上の流速A~Dの流速域が仕切り部2又は右側面若しくは左側面に及ばない位置に設けられているため、燃料ガスの横方向の流れが壁面に衝突して縦方向への流れに変わる現象が抑制されている。図5(a)から、端縁部3a及び3bは、開口率が30~70%になるように位置することが好ましいといえる。 On the other hand, in FIG. 5 (a), the regions of the flow velocities A to D on the semi-ellipse are generated in two places. However, in the inflow space 5 and the outflow space 6, the regions of the flow velocities A to D in the vicinity of the edge portions 3a and 3b of the dispersion portion 3 are about half of those in FIG. 5B in the vertical and horizontal directions. It can be seen that the low flow rate is maintained in the inflow side space 6 just before the return of the fuel, the high flow rate is passed through the dispersion space 7 to return, and the outflow side space 8 is rapidly decelerated to the low flow rate. Since the edge portions 3a and 3b are provided at positions where the flow velocity range of the flow velocity A to D on the semi-ellipse does not reach the partition portion 2 or the right side surface or the left side surface, the lateral flow of the fuel gas is applied to the wall surface. The phenomenon of collision and turning into a vertical flow is suppressed. From FIG. 5A, it can be said that the edge portions 3a and 3b are preferably positioned so that the aperture ratio is 30 to 70%.
 次に、流速が略0である流速Fの領域に着目すると、図5(b)は淀み部A1及びA2の二箇所であるが、図5(a)ではA1、A2に加えて、淀み部A3及びA4が生じていることがわかる。しかし、図5(a)の方が、高さ方向及び幅方向において図5(b)の半分程度である。つまり、実施形態1は、淀み部の発生箇所は増えるが、容器全体に占める流速Fの領域は小さく抑えられ、容器全体としては、淀み部が減少していることがわかる。 Next, paying attention to the region of the flow velocity F where the flow velocity is substantially 0, FIG. 5B shows two portions of the stagnation portions A1 and A2. In FIG. 5A, in addition to A1 and A2, the stagnation portion It can be seen that A3 and A4 occur. However, FIG. 5A is about half of FIG. 5B in the height direction and the width direction. That is, in the first embodiment, the number of occurrences of the stagnation portion is increased, but the region of the flow velocity F occupying the entire container is suppressed to be small, and it is understood that the stagnation portion is reduced as a whole container.
 なお、図5(c)における燃料の折り返しによる流速の変化は、図5(b)と同等の結果となった。つまり、孔を均等に配置したパンチング板で燃料が折り返す流路断面を覆っていても、仕切り部に最も近い孔に燃料が集中し、仕切り部2から離れて位置する孔には燃料が流れていないことがわかる。また、流速が略0の流速Fの領域については、図5(b)よりさらに増大する結果となった。 In addition, the change of the flow rate by the return | turnback of the fuel in FIG.5 (c) brought a result equivalent to FIG.5 (b). In other words, even if the cross-section of the flow path where the fuel is folded back is covered with the punching plate in which the holes are evenly arranged, the fuel is concentrated in the hole closest to the partition part, and the fuel is flowing in the hole located away from the partition part 2. I understand that there is no. In addition, in the region of the flow velocity F where the flow velocity is substantially 0, the result is further increased as compared with FIG.
 また、本願の構造は、製造の観点においても利点を有する。パンチング板を代用分散部として、容器4の下面4bから距離L5の位置で流路全体を覆う構成では、パンチング板全周を溶接する必要があるため溶接長が増大する。 Also, the structure of the present application has advantages from the viewpoint of manufacturing. In the configuration in which the punching plate is used as a substitute dispersion portion and the entire flow path is covered at a distance L5 from the lower surface 4b of the container 4, the entire length of the punching plate needs to be welded, so that the welding length increases.
 一方、本実施形態では分散板3の容器4に接しない向かい合う一組の辺は、溶接の必要がないため、その分溶接長を減少させることができる。
 また、容器4内において燃料の流れ方向の折り返しは1回のみであるため、折り返しが複数回である従来技術と比較して、脱硫触媒の充填も容易に行うことができる。
On the other hand, in the present embodiment, the pair of sides that do not contact the container 4 of the dispersion plate 3 do not need to be welded, so that the weld length can be reduced accordingly.
Further, since the fuel flow direction is folded only once in the container 4, the desulfurization catalyst can be easily filled as compared with the conventional technique in which the folding is performed a plurality of times.
 例えば、まず、上面4a、前側面4c、後側面4d、右側面4e及び左側面4fまで組み立てた容器4に流路形成体1を溶接する。次に、開口部から流入空間6及び流出空間9に脱硫触媒を充填しさらに分散空間7に脱硫触媒を充填する。最後に、下面4bの全周を溶接する。このように、開口部(L2×L4)を比較的大きく確保できる本願の構造を生かすことで、分散板を有しない従来の脱硫器と同じ工程数で脱硫触媒を充填することができる。 For example, first, the flow path forming body 1 is welded to the container 4 assembled up to the upper surface 4a, the front side surface 4c, the rear side surface 4d, the right side surface 4e and the left side surface 4f. Next, the inflow space 6 and the outflow space 9 are filled with the desulfurization catalyst from the opening, and the dispersion space 7 is filled with the desulfurization catalyst. Finally, the entire circumference of the lower surface 4b is welded. Thus, by utilizing the structure of the present application that can ensure a relatively large opening (L2 × L4), the desulfurization catalyst can be filled with the same number of steps as a conventional desulfurizer that does not have a dispersion plate.
 また、仕切り部2を容器4に溶接してから分散部3を溶接して流路形成体1を形成することによっても、容易に脱硫触媒の充填を行うことができる。まず、上面4a、前側面4c、後側面4d、右側面4e及び左側面4fまで組み立てた容器4に仕切り部2を溶接する。次に、流入側空間6及び流出側空間8に脱硫触媒を充填する。次に、分散部3を、仕切り部2の一辺及び容器の固定側面4cに溶接する。次に、分散空間7に脱硫触媒を充填する。最後に、容器の下面4bの全周を溶接する。 Also, the desulfurization catalyst can be filled easily by welding the partition part 2 to the container 4 and then welding the dispersion part 3 to form the flow path forming body 1. First, the partition part 2 is welded to the container 4 assembled to the upper surface 4a, the front side surface 4c, the rear side surface 4d, the right side surface 4e, and the left side surface 4f. Next, the inflow side space 6 and the outflow side space 8 are filled with a desulfurization catalyst. Next, the dispersion part 3 is welded to one side of the partition part 2 and the fixed side surface 4c of the container. Next, the dispersion space 7 is filled with a desulfurization catalyst. Finally, the entire circumference of the lower surface 4b of the container is welded.
 この場合、分散部を有しない従来の脱硫器と比較して溶接して充填する作業が1回多くなるが、パンチング板の全周を溶接する従来技術と同じ工程数で、より確実に隅々まで脱硫触媒を充填することができる。以上、本発明の実施形態について説明したが、本発明はこれに限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々の変形が可能である。 In this case, compared to a conventional desulfurizer having no dispersion portion, the work of filling by welding is increased once, but the number of steps is more reliably ensured by the same number of steps as in the conventional technique of welding the entire circumference of the punching plate. Up to desulfurization catalyst. The embodiment of the present invention has been described above, but the present invention is not limited to this, and various modifications can be made without departing from the gist of the present invention.
 また、本実施形態では、容器4の上面4aに燃料導入口5及び燃料導出口9を配設したものを示したが、図6のように、燃料導入口5及び燃料導出口9の少なくとも一方を容器4の前側面4c、後側面4d、右側面4e又は左側面4fに配設したものでもよい。あるいは、本実施形態の容器4の長手方向を水平にして設置する構成であってもよい。これらにより、脱硫器内における燃料の分散性を損なうことなく、燃料電池システムの筐体内におけるレイアウトの自由度を高めることができる。 In the present embodiment, the fuel inlet 5 and the fuel outlet 9 are disposed on the upper surface 4a of the container 4. However, as shown in FIG. 6, at least one of the fuel inlet 5 and the fuel outlet 9 is provided. May be disposed on the front side surface 4c, the rear side surface 4d, the right side surface 4e, or the left side surface 4f of the container 4. Alternatively, a configuration in which the longitudinal direction of the container 4 of the present embodiment is installed horizontally may be used. As a result, the degree of freedom of layout in the casing of the fuel cell system can be increased without impairing the dispersibility of the fuel in the desulfurizer.
 なお、上述の説明及び請求の範囲において、構造説明の便宜上、直方体状の容器4を構成する六つの面について、上面4a、下面4b、前側面4c、後側面4d、右側面4e、左側面4fと称したが、燃料電池システムの設置状態における上下左右前後を特定するものではない。 In the above description and claims, for convenience of explanation of the structure, the upper surface 4a, the lower surface 4b, the front side surface 4c, the rear side surface 4d, the right side surface 4e, and the left side surface 4f of the six surfaces constituting the rectangular parallelepiped container 4 are described. However, it does not specify the top, bottom, left, or right in the installed state of the fuel cell system.
  1…流路形成体
  2…仕切り部
  3…分散部
  4…容器
  4a…容器の上面
  4b…容器の下面
  4c…容器の前側面
  4d…容器の後側面
  4e…容器の右側面
  4f…容器の左側面
  5…燃料導入口
  6…流入側空間
  7…分散空間
  8…流出側空間
  9…燃料導出口
  10…脱硫剤
  11…入口コネクタ
  12…燃料導入配管
  13…出口コネクタ
  14…燃料導出配管
  100…脱硫器
DESCRIPTION OF SYMBOLS 1 ... Flow path formation body 2 ... Partition part 3 ... Dispersion part 4 ... Container 4a ... Container upper surface 4b ... Container lower surface 4c ... Container front side surface 4d ... Container rear side surface 4e ... Container right side surface 4f ... Container left side Surface 5 ... Fuel introduction port 6 ... Inflow side space 7 ... Dispersion space 8 ... Outflow side space 9 ... Fuel outlet 10 ... Desulfurization agent 11 ... Inlet connector 12 ... Fuel introduction pipe 13 ... Outlet connector 14 ... Fuel outlet pipe 100 ... Desulfurization vessel

Claims (6)

  1.  燃料導入口及び燃料導出口を有する直方体状の容器と、
     前記容器の内部に配置される流路形成体を備え、
      前記流路形成体は、長方形状の仕切り部と、長方形状の分散部と、を備え、
       前記仕切り部は、三辺が前記容器の上面、前側面及び後側面にそれぞれ直角に固定
      され、残る一辺は前記分散部に直角に固定され、
       前記分散部は、前記容器の内壁に接しない互いに平行な一組の辺を有し、他の一組
      の辺は、前記容器の下面から所定の間隔をあけて平行の位置で、前記容器の前側面及
      び後側面の内壁、並びに仕切り部の容器に接しない一辺にそれぞれ直角に固定され、
      前記燃料導入口及び前記燃料導出口は、前記分散部より容器上面方向に位置し、前記
     仕切り部により離隔されている
    ことを特徴とする脱硫器。
    A rectangular parallelepiped container having a fuel inlet and a fuel outlet;
    A flow path forming body disposed inside the container;
    The flow path forming body includes a rectangular partition part, and a rectangular dispersion part,
    The partition part has three sides fixed at right angles to the upper surface, front side surface and rear side surface of the container, and the remaining side is fixed to the dispersion part at right angles,
    The dispersing portion has a set of parallel sides that are not in contact with the inner wall of the container, and the other set of sides is parallel to the container at a predetermined distance from the lower surface of the container. It is fixed at right angles to the inner wall of the front side and rear side, and one side that does not contact the container of the partition,
    The desulfurizer, wherein the fuel inlet and the fuel outlet are located in a container upper surface direction from the dispersing portion and are separated by the partition portion.
  2.  前記分散部が、前記容器の下面に位置する高さにおける流路断面の開口率は、30~70%であることを特徴とする請求項1に記載の脱硫器。 2. The desulfurizer according to claim 1, wherein the opening ratio of the cross section of the flow path at a height at which the dispersion portion is located on the lower surface of the container is 30 to 70%.
  3.  前記仕切り部の一辺は、前記容器上面を対象に二等分する位置で、前記容器上面に固定されていることを特徴とする請求項1に記載の脱硫器。 The desulfurizer according to claim 1, wherein one side of the partition portion is fixed to the upper surface of the container at a position that bisects the upper surface of the container.
  4.  前記仕切り部の一辺は、前記分散部を対象に二等分する位置で、前記分散部に固定されていることを特徴とする請求項1に記載の脱硫器。 The desulfurizer according to claim 1, wherein one side of the partition part is fixed to the dispersion part at a position that bisects the dispersion part.
  5.  前記燃料導入口又は前記燃料導出口の少なくとも一方は、前記容器の上面に形成されることを特徴とする請求項1に記載の脱硫器。 2. The desulfurizer according to claim 1, wherein at least one of the fuel introduction port and the fuel outlet port is formed on an upper surface of the container.
  6.  前記燃料導入口又は前記燃料導出口の少なくとも一方は、前記容器の前側面、後側面、左側面又は右側面の少なくとも1つに形成されることを特徴とする請求項1に記載の脱硫器。 The desulfurizer according to claim 1, wherein at least one of the fuel introduction port and the fuel outlet port is formed on at least one of a front side surface, a rear side surface, a left side surface, and a right side surface of the container.
PCT/JP2012/050734 2011-01-17 2012-01-16 Desulfurizer WO2012099066A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-006816 2011-01-17
JP2011006816A JP5565705B2 (en) 2011-01-17 2011-01-17 Desulfurizer

Publications (1)

Publication Number Publication Date
WO2012099066A1 true WO2012099066A1 (en) 2012-07-26

Family

ID=46515691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050734 WO2012099066A1 (en) 2011-01-17 2012-01-16 Desulfurizer

Country Status (2)

Country Link
JP (1) JP5565705B2 (en)
WO (1) WO2012099066A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016200523B4 (en) * 2015-01-26 2020-02-13 Honda Motor Co., Ltd. Desulfurizers and fuel cell system containing them

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004051865A (en) * 2002-07-23 2004-02-19 Idemitsu Kosan Co Ltd Desulfurizer and desulfurization method
JP2010067353A (en) * 2008-09-08 2010-03-25 Honda Motor Co Ltd Desulfurizer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004051865A (en) * 2002-07-23 2004-02-19 Idemitsu Kosan Co Ltd Desulfurizer and desulfurization method
JP2010067353A (en) * 2008-09-08 2010-03-25 Honda Motor Co Ltd Desulfurizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016200523B4 (en) * 2015-01-26 2020-02-13 Honda Motor Co., Ltd. Desulfurizers and fuel cell system containing them

Also Published As

Publication number Publication date
JP2012149117A (en) 2012-08-09
JP5565705B2 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
CN103262325B (en) Fuel cell pack
JP4955230B2 (en) Evaporative mixer and fuel cell power generator
JP6163556B2 (en) Hollow fiber membrane module (HOLLOWFIBERMEMBRANEMODULE)
JP5085048B2 (en) Desulfurization apparatus and method of using the same
JP2015225709A (en) Separator for fuel cell and fuel cell
JP5565705B2 (en) Desulfurizer
JP5657403B2 (en) Desulfurizer
JP4410781B2 (en) Fuel cell separator and fuel cell
JP2016205770A (en) Heat exchanger, manufacturing method of heat exchanger and fuel cell system
JP5312279B2 (en) Fuel processor for fuel cell
US9550165B2 (en) Catalytic reactor
JP2016071961A (en) Solid oxide fuel cell device
JP5799085B2 (en) Desulfurizer
JP2018156810A (en) Solid oxide fuel cell device
JP5807742B2 (en) Solid oxide fuel cell device
JP2014205775A (en) Desulfurizer
JP5535973B2 (en) Desulfurizer
JP2012201782A (en) Desulfurizer
JP7458815B2 (en) catalyst container
JP2013196770A (en) Reformer for fuel cell
JP2017183138A (en) Solid oxide fuel cell device
JP2024021573A (en) Burner
JP2023164193A (en) reforming reactor
JP6100459B2 (en) Fuel cell heat exchanger
JP2008309135A (en) Pressure type reserve tank

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12737174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12737174

Country of ref document: EP

Kind code of ref document: A1