WO2012096156A1 - Image encoding method, image decoding method, image encoding device, and image decoding device - Google Patents

Image encoding method, image decoding method, image encoding device, and image decoding device Download PDF

Info

Publication number
WO2012096156A1
WO2012096156A1 PCT/JP2012/000095 JP2012000095W WO2012096156A1 WO 2012096156 A1 WO2012096156 A1 WO 2012096156A1 JP 2012000095 W JP2012000095 W JP 2012000095W WO 2012096156 A1 WO2012096156 A1 WO 2012096156A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantization matrix
decoding
unit
encoding
quantization
Prior art date
Application number
PCT/JP2012/000095
Other languages
French (fr)
Japanese (ja)
Inventor
寿郎 笹井
西 孝啓
陽司 柴原
敏康 杉尾
チョンスン リム
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012096156A1 publication Critical patent/WO2012096156A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/112Selection of coding mode or of prediction mode according to a given display mode, e.g. for interlaced or progressive display mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process

Definitions

  • the present invention relates to an image encoding method, an image decoding method, an image encoding device, and an image decoding device, and in particular, an image encoding method, an image decoding method, and an image code that perform quantization or inverse quantization using a quantization matrix.
  • the present invention relates to an encoding device and an image decoding device.
  • a conventional image coding system represented by the ITU-T standard called 26x and the ISO / IEC standard called MPEG-x
  • the picture to be coded is divided into predetermined units. Encoding is performed in the division unit.
  • H.M. In the H.264 / MPEG-4 AVC standard (see, for example, Non-Patent Document 1), an encoding target picture is encoded in units of 16 horizontal pixels and 16 vertical pixels called macroblocks.
  • the encoding target picture is encoded by performing frequency conversion, quantization, and entropy encoding for each macroblock.
  • the coefficient values (pixel values) of the quantized macroblock are coded in a predetermined scan order.
  • subjective image quality is improved by changing a quantization step (quantization width) between a high frequency component and a low frequency component using a quantization matrix.
  • an encoding target block to be quantized is quantized using appropriate quantization control parameters according to various conditions such as a transform size and a prediction method.
  • the quantization matrix is switched in accordance with the transform size, the prediction method, and the like, but it is required to select a more appropriate quantization control parameter for the encoding target block.
  • the present invention has been made to solve the above-described conventional problems, and is an image encoding method, an image decoding method, and an image that can prevent deterioration in image quality and sufficiently improve encoding efficiency.
  • An object is to provide an encoding device and an image decoding device.
  • an image encoding method is an image encoding method for encoding image data, in which an encoding target block included in the image data is progressively scanned.
  • the first quantization matrix is used in the case of data
  • the second quantization matrix different from the first quantization matrix is used in the case where the encoding target block is field scanned image data.
  • the target block is quantized and the quantized encoding target block is encoded to generate an encoded stream, and at least one of the first quantization matrix and the second quantization matrix is converted into the encoded stream. insert.
  • the quantization matrix to be used is switched depending on whether the encoding target block is progressively scanned image data or field scanned image data, so that an appropriate quantization matrix is changed to the encoding target block. It can be used for quantization.
  • an appropriate quantization matrix can be used since two types of quantization matrices, ie, a progressive quantization matrix and a field scan quantization matrix are managed, an appropriate quantization matrix can be used. Therefore, it is possible to prevent deterioration in image quality and sufficiently improve the encoding efficiency.
  • the flag is also used as at least one process other than the quantization, and whether the encoding target block is progressively scanned image data or field scanned image data. May be inserted into the encoded stream.
  • the first quantization matrix and the second quantization matrix may be inserted.
  • the encoded stream can be correctly decoded on the decoding side.
  • the first quantization matrix is further corrected, a difference between the corrected first quantization matrix and the second quantization matrix is calculated, and the calculated difference is inserted into the encoded stream. May be.
  • the encoding efficiency can be improved. This is because the amount of code required to encode the difference is less than the amount of code required to encode the second quantization matrix as it is.
  • a part of the matrix obtained by doubling the first quantization matrix in the vertical direction may be generated as the corrected first quantization matrix.
  • a corrected matrix similar to the second quantization matrix for field scan can be easily generated from the first quantization matrix for progressive, and the difference can be reduced. Can be improved.
  • the encoding target block is obtained by using a matrix obtained by correcting the first quantization matrix as the second quantization matrix. May be quantized.
  • An image decoding method is an image decoding method for decoding an encoded stream, the first quantization matrix being different from the first quantization matrix and the first quantization matrix.
  • the decoding target block is progressively scanned image data
  • the decoding target block is inversely quantized using the second quantization matrix.
  • the quantization matrix to be used is switched depending on whether the decoding target block is progressively scanned image data or field scanned image data, so that an appropriate quantization matrix is quantized to the decoding target block.
  • an appropriate quantization matrix can be used. Therefore, it is possible to prevent deterioration in image quality and sufficiently improve the encoding efficiency.
  • the flag is also used as at least one process other than the inverse quantization, and whether the decoding target block is progressively scanned image data or field scanned image data. May be extracted from the encoded stream.
  • a flag used for other processing can be used even if a dedicated flag is not inserted into the encoded stream, thereby improving encoding efficiency. be able to.
  • the first quantization matrix and the second quantization matrix may be extracted from the encoded stream.
  • the encoded stream can be correctly decoded.
  • a difference for restoring the second quantization matrix is further extracted from the encoded stream, the first quantization matrix is corrected, and the corrected first quantization matrix and the corrected The second quantization matrix may be restored by adding the difference.
  • the second quantization matrix can be restored using the difference and the first quantization matrix, and the encoded stream can be correctly encoded. Can be restored.
  • a part of the matrix obtained by doubling the first quantization matrix in the vertical direction may be generated as the corrected first quantization matrix.
  • a corrected matrix similar to the second quantization matrix for field scan can be easily generated from the first quantization matrix for progressive, and the difference can be reduced. Can be improved.
  • the decoding target block is field-scanned image data
  • a matrix obtained by correcting the first quantization matrix is used as the second quantization matrix, and the decoding target block is Inverse quantization may be performed.
  • the encoded stream can be correctly decoded.
  • the present invention can be realized not only as an image encoding method and an image decoding method, but also as an apparatus including a processing unit that performs steps included in the image encoding method and the image decoding method. Moreover, you may implement
  • a communication network such as the Internet.
  • a part or all of the processing units that perform the steps included in each of the image encoding methods and image decoding methods described above may be configured by one system LSI (Large Scale Integration).
  • the system LSI is an ultra-multifunctional LSI manufactured by integrating a plurality of components on a single chip, and specifically includes a microprocessor, ROM, RAM (Random Access Memory), and the like.
  • Computer system is an ultra-multifunctional LSI manufactured by integrating a plurality of components on a single chip, and specifically includes a microprocessor, ROM, RAM (Random Access Memory), and the like.
  • FIG. 1 is a block diagram showing an example of a configuration of an image encoding device according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing an example of the configuration of the coding control unit according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing an example of the quantization matrix according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram showing an example of an encoded stream according to Embodiment 1 of the present invention.
  • FIG. 5 is a diagram for explaining an example of encoding of a field scan quantization matrix according to Embodiment 1 of the present invention.
  • FIG. 6 is a flowchart showing an example of the operation of the image coding apparatus according to Embodiment 1 of the present invention.
  • FIG. 1 is a block diagram showing an example of a configuration of an image encoding device according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing an example of the configuration of the
  • FIG. 7 is a flowchart showing an example of quantization according to Embodiment 1 of the present invention.
  • FIG. 8 is a flowchart showing an example of quantization matrix coding according to Embodiment 1 of the present invention.
  • FIG. 9 is a flowchart showing an example of calculation of a difference matrix according to Embodiment 1 of the present invention.
  • FIG. 10 is a block diagram showing an example of the configuration of the image decoding apparatus according to Embodiment 1 of the present invention.
  • FIG. 11 is a block diagram showing an example of the configuration of the decoding control unit according to Embodiment 1 of the present invention.
  • FIG. 12 is a diagram for explaining an example of restoration of a quantization matrix for field scan according to Embodiment 1 of the present invention.
  • FIG. 13 is a flowchart showing an example of the operation of the image decoding apparatus according to Embodiment 1 of the present invention.
  • FIG. 14 is a flowchart showing an example of quantization matrix decoding according to Embodiment 1 of the present invention.
  • FIG. 15 is a flowchart showing an example of restoration of a quantization matrix for field scan according to Embodiment 1 of the present invention.
  • FIG. 16 is a flowchart showing an example of inverse quantization according to Embodiment 1 of the present invention.
  • FIG. 17 is a block diagram showing an example of a configuration of an encoding control unit according to a modification of the first embodiment of the present invention.
  • FIG. 18 is a schematic diagram illustrating an example of an encoded stream according to a modification of the first embodiment of the present invention.
  • FIG. 19 is a flowchart showing an example of quantization matrix coding according to a modification of the first embodiment of the present invention.
  • FIG. 20 is a block diagram showing an example of a configuration of a decoding control unit according to a modification of the first embodiment of the present invention.
  • FIG. 21 is a flowchart illustrating an example of quantization matrix decoding according to the modification of the first embodiment of the present invention.
  • FIG. 22 is an explanatory diagram for explaining a multi-layer block structure according to the embodiment of the present invention.
  • FIG. 23 is an overall configuration diagram of a content supply system that implements a content distribution service.
  • FIG. 24 is an overall configuration diagram of a digital broadcasting system.
  • FIG. 25 is a block diagram illustrating a configuration example of a television.
  • FIG. 25 is a block diagram illustrating a configuration example of a television.
  • FIG. 26 is a block diagram illustrating a configuration example of an information reproducing / recording unit that reads and writes information from and on a recording medium that is an optical disk.
  • FIG. 27 is a diagram illustrating a structure example of a recording medium that is an optical disk.
  • FIG. 28A shows an example of a mobile phone.
  • FIG. 28B is a block diagram illustrating a configuration example of a mobile phone.
  • FIG. 29 is a diagram showing a structure of multiplexed data.
  • FIG. 30 is a diagram schematically showing how each stream is multiplexed in the multiplexed data.
  • FIG. 31 is a diagram showing in more detail how the video stream is stored in the PES packet sequence.
  • FIG. 32 is a diagram showing the structure of TS packets and source packets in multiplexed data.
  • FIG. 33 shows the data structure of the PMT.
  • FIG. 34 shows the internal structure of multiplexed data information.
  • FIG. 35 shows the internal structure of stream attribute information.
  • FIG. 36 is a diagram showing steps for identifying video data.
  • FIG. 37 is a block diagram illustrating a configuration example of an integrated circuit that realizes the moving picture coding method and the moving picture decoding method according to each embodiment.
  • FIG. 38 is a diagram showing a configuration for switching the drive frequency.
  • FIG. 39 is a diagram illustrating steps for identifying video data and switching between driving frequencies.
  • FIG. 40 is a diagram illustrating an example of a look-up table in which video data standards are associated with drive frequencies.
  • FIG. 41A is a diagram illustrating an example of a configuration for sharing a module of the signal processing unit.
  • FIG. 41B is a diagram illustrating another example of a configuration for sharing a module of the signal processing unit.
  • the first quantization matrix is used when the encoding target block included in the image data is image data subjected to progressive scanning, and the encoding target block is subjected to field scanning.
  • the encoding target block is quantized using the second quantization matrix.
  • an encoded stream is generated by encoding the quantized block to be encoded, and at least one of the first quantization matrix and the second quantization matrix is inserted into the encoded stream.
  • the first quantization matrix is corrected, a difference (difference matrix) between the corrected matrix and the second quantization matrix is calculated, and the first quantization matrix and the difference matrix are calculated. Is inserted into the encoded stream.
  • the image decoding method according to Embodiment 1 of the present invention is quantized by extracting at least one of the first quantization matrix and the second quantization matrix from the encoded stream and decoding the encoded stream.
  • the decoding target block including the obtained coefficient is acquired.
  • the first quantization matrix is used, and when the decoding target block is field scanned image data, the second quantization matrix is used.
  • a difference matrix for restoring the second quantization matrix is extracted from the encoded stream, the first quantization matrix is corrected, the corrected quantization matrix and the difference matrix are Is added to restore the second quantization matrix.
  • FIG. 1 is a block diagram showing an example of the configuration of an image coding apparatus 1000 according to Embodiment 1 of the present invention.
  • the image encoding apparatus 1000 includes an encoding processing unit 1100 and an encoding control unit 1200.
  • the encoding processing unit 1100 generates an encoded stream by encoding a moving image for each block.
  • Such an encoding processing unit 1100 includes a subtractor 1101, an orthogonal transform unit 1102, a quantization unit 1103, an entropy encoding unit 1104, an inverse quantization unit 1105, an inverse orthogonal transform unit 1106, and an adder. 1107, a deblocking filter 1108, a memory 1109, an in-plane prediction unit 1110, a motion compensation unit 1111, a motion detection unit 1112, and a switch 1113.
  • the subtractor 1101 acquires a moving image and acquires a predicted image from the switch 1113. Then, the subtracter 1101 generates a difference image by subtracting the predicted image from the encoding target block included in the moving image.
  • the orthogonal transform unit 1102 performs orthogonal transform such as discrete cosine transform on the difference image generated by the subtractor 1101, thereby transforming the difference image into a coefficient block including a plurality of frequency coefficients.
  • the quantization unit 1103 generates a quantized coefficient block by quantizing each frequency coefficient included in the coefficient block.
  • the entropy encoding unit 1104 generates an encoded stream by entropy encoding (variable length encoding) the coefficient block quantized by the quantization unit 1103 and the motion vector detected by the motion detection unit 1112. .
  • the inverse quantization unit 1105 performs inverse quantization on the coefficient block quantized by the quantization unit 1103.
  • the inverse orthogonal transform unit 1106 generates a decoded difference image by performing inverse orthogonal transform such as inverse discrete cosine transform on each frequency coefficient included in the inverse quantized coefficient block.
  • the adder 1107 acquires a predicted image from the switch 1113, and generates a local decoded image by adding the predicted image and the decoded difference image generated by the inverse orthogonal transform unit 1106.
  • the deblocking filter 1108 removes block distortion of the local decoded image generated by the adder 1107 and stores the local decoded image in the memory 1109.
  • a memory 1109 is a memory for storing a locally decoded image as a reference image in motion compensation.
  • the in-plane prediction unit 1110 generates a prediction image (intra prediction image) by performing in-plane prediction on the current block using the local decoded image generated by the adder 1107.
  • the motion detection unit 1112 detects a motion vector for the encoding target block included in the moving image, and outputs the detected motion vector to the motion compensation unit 1111 and the entropy encoding unit 1104.
  • the motion compensation unit 1111 refers to the image stored in the memory 1109 as a reference image, and performs motion compensation on the coding target block by using the motion vector detected by the motion detection unit 1112.
  • the motion compensation unit 1111 performs such motion compensation to generate a prediction image (inter prediction image) of the encoding target block.
  • the switch 1113 outputs the prediction image (intra prediction image) generated by the intra prediction unit 1110 to the subtractor 1101 and the adder 1107 when the encoding target block is subjected to intra prediction encoding.
  • the switch 1113 outputs the prediction image (inter prediction image) generated by the motion compensation unit 1111 to the subtractor 1101 and the adder 1107 when the encoding target block is subjected to inter-frame prediction encoding.
  • the encoding control unit 1200 controls the encoding processing unit 1100. For example, the encoding control unit 1200 determines a quantization control parameter used by the quantization unit 1103. Also, the encoding control unit 1200 determines whether the encoding target block is progressively scanned image data or field scanned image data. A specific configuration of the encoding control unit 1200 will be described with reference to FIG.
  • FIG. 2 is a block diagram showing an example of the configuration of the encoding control unit 1200 according to Embodiment 1 of the present invention.
  • the encoding control unit 1200 includes a determination unit 110, a memory 120, a quantization matrix encoding unit 130, a quantization matrix correction unit 140, and a difference calculation unit 150.
  • the determination unit 110 determines the scan method of the encoding target block. That is, the determination unit 110 determines whether the encoding target block is progressively scanned image data (progressive image) or field-scanned image data (interlaced image).
  • moving image data input to the image encoding apparatus 1000 includes scan method information indicating whether the moving image data is progressively scanned image data or field scanned image data.
  • the determination unit 110 determines the scan method of the encoding target block by acquiring the scan method information from the moving image data.
  • the determination unit 110 may determine a scan method for the encoding target block based on an instruction from a user or the like.
  • progressive scan is a scan method for encoding one input image (one screen) as one frame, and is also referred to as frame encoding.
  • Field scan is a scan method in which one input image (one screen) is encoded by being divided into a top field including only odd lines and a bottom field including only even lines. Describe.
  • the memory 120 is a memory for storing at least one quantization matrix.
  • the memory 120 stores a first quantization matrix for progressively scanned image data and a second quantization matrix for field scanned image data.
  • the memory 120 may store a plurality of first quantization matrices different from each other as a quantization matrix for progressively scanned image data. Similarly, the memory 120 may store a plurality of second quantization matrices different from each other as a quantization matrix for field-scanned image data.
  • the memory 120 outputs the quantization matrix to the quantization unit 1103 based on the determination result by the determination unit 110. Specifically, the memory 120 outputs a first quantization matrix to the quantization unit 1103 when the encoding target block is progressively scanned image data. Further, the memory 120 outputs the second quantization matrix to the quantization unit 1103 when the encoding target block is field-scanned image data.
  • the quantization matrix encoding unit 130 is an example of an insertion unit, and inserts a progressive quantization matrix into the encoded stream generated by the entropy encoding unit 1104. Also, the quantization matrix encoding unit 130 inserts the difference (difference matrix) calculated by the difference calculation unit 150 into the encoded stream. As will be described later, the difference matrix is a difference between a matrix obtained by correcting a progressive quantization matrix and a field scan quantization matrix.
  • the quantization matrix is multiplied by N in the vertical direction, for example, by multiplying the coefficients included in the m-row ⁇ n-column quantization matrix by N in the vertical direction, so that (m ⁇ N) rows ⁇ n columns.
  • a matrix is generated and a part of the generated matrix is extracted.
  • the extracted matrix is a corrected quantization matrix.
  • the corrected quantization matrix is an upper m row ⁇ n column matrix among the above (m ⁇ N) row ⁇ n column matrix.
  • the difference calculation unit 150 calculates a difference (difference matrix) between the corrected matrix generated by the quantization matrix correction unit 140 and the field scan quantization matrix stored in the memory 120.
  • the difference matrix is output to the quantization matrix encoding unit 130, and is inserted into the encoded stream by the quantization matrix encoding unit 130.
  • FIG. 3 is a diagram showing an example of the quantization matrix according to Embodiment 1 of the present invention.
  • the encoding control unit 1200 manages at least two types of quantization matrices, ie, a progressive first quantization matrix and a field scan second quantization matrix. That is, the memory 120 stores two types of quantization matrices for progressive and field scan. Therefore, the quantization unit 1103 quantizes the encoding target block using a quantization matrix selected according to the encoding target block from at least two types of quantization matrices.
  • the coefficient value is determined so that the coefficient value increases from the low-frequency component at the upper left to the high-frequency component at the lower right.
  • the coefficients of the progressive quantization matrix are preferably arranged symmetrically with respect to the diagonal line connecting the upper left to the lower right.
  • the upper right coefficient from the diagonal line connecting the upper left to the lower right of the quantization matrix is equal to the lower left coefficient in line symmetry with the upper right coefficient about the diagonal line connecting the upper left to the lower right.
  • the upper right coefficient and the lower left coefficient are not necessarily equal.
  • the coefficient value is determined so that the coefficient value increases from the low frequency component at the upper left to the high frequency component at the lower right.
  • the coefficients of the quantization matrix for field scan are not arranged in line symmetry.
  • the coefficients of the quantization matrix for field scan have a correlation in the vertical direction.
  • a quantization matrix for field scan includes a portion where coefficients having the same value are adjacent in the vertical direction (“6”, “13”, etc. in FIG. 3).
  • the field scan quantization matrix may be the same or similar to a part of a matrix obtained by multiplying the progressive quantization matrix N times in the vertical direction.
  • an 8 ⁇ 4 matrix is generated by doubling a progressive 4 ⁇ 4 quantization matrix in the vertical direction.
  • the upper half 4 ⁇ 4 matrix of this 8 ⁇ 4 matrix can be used as a quantization matrix for field scanning.
  • the first quantization matrix dedicated to the quantization of the progressively scanned image data and the quantization of the field scanned image data are dedicated.
  • the second quantization matrix is managed.
  • the field-scanned image data is data that includes only odd-numbered or even-numbered rows of image data, and contains more high-frequency components in the vertical direction than image data that has been progressively scanned. Accordingly, the coefficient value of the high frequency component in the vertical direction of the second quantization matrix for field scan is made smaller than that of the first quantization matrix for progressive so that the high frequency component in the vertical direction is not lost by quantization. Can be.
  • a quantization matrix corresponding to the scan method such as a progressive quantization matrix and a field scan quantization matrix
  • an appropriate quantization according to the scan method of the encoding target block The matrix can be used for quantization.
  • FIG. 3 shows an example of a 4 ⁇ 4 quantization matrix
  • the example of the quantization matrix is not limited to this.
  • the encoding control unit 1200 may manage a quantization matrix such as 8 ⁇ 8, 16 ⁇ 16, and 32 ⁇ 32. Further, the encoding control unit 1200 may manage a quantization matrix used when the encoding target block is a luminance block and a quantization matrix used when the encoding target block is a color difference block. Also, the encoding control unit 1200 may manage a quantization matrix used when the encoding target block is an intra-predicted block and a quantization matrix used when the encoding target block is an inter-predicted block.
  • FIG. 4 is a schematic diagram showing an example of an encoded stream according to Embodiment 1 of the present invention.
  • the image encoding apparatus 1000 generates an encoded stream by encoding a moving image.
  • the encoded stream includes header portions such as SPS (Sequence Parameter Set) and PPS (Picture Parameter Set), and picture data that is encoded image data.
  • SPS Sequence Parameter Set
  • PPS Picture Parameter Set
  • the picture data further includes a slice header (SH) and slice data.
  • the slice data includes encoded image data included in the slice.
  • a slice is an example of a processing unit when a picture is encoded, and corresponds to a plurality of areas into which a picture is divided. Note that the slice can be further divided into smaller processing units such as macroblocks.
  • the header part includes control information used when decoding picture data. Specifically, as shown in FIG. 4, the SPS includes a scan method determination flag. That is, the encoding control unit 1200 inserts a scan method determination flag into the encoded stream.
  • the scan method determination flag is a flag indicating whether the target data is progressive scanned image data or field scanned image data.
  • the scan method determination flag is a flag that is used in combination with quantization of the encoding target block and at least one process other than quantization.
  • the scan method determination flag is used for processing such as determination of a quantization matrix, determination of a scan method at the time of coefficient encoding, determination of a prediction mode, and determination of a deblocking filter and a denoising filter.
  • the scan method determination flag includes, for example, frame_mbs_only_flag.
  • the frame_mbs_only_flag is a flag indicating that the corresponding picture includes only the macroblock of the frame, that is, only the progressively scanned image data.
  • the scan method determination flag may further include mb_adaptive_frame_field_flag.
  • the mb_adaptive_frame_field_flag is a flag indicating whether switching between field scan and progressive scan is possible in units of blocks.
  • FIG. 4 shows an example in which the SPS includes a scan method determination flag
  • the PPS may include a scan method determination flag
  • the slice header (SH) may include a scan method determination flag.
  • the slice header includes field_pic_flag as a scan method determination flag.
  • the field_pic_flag is a flag indicating whether the entire slice is field-encoded (field scan) or frame-encoded (progressive scan).
  • a scan method determination flag may be included in the header of the macroblock data included in the slice data.
  • the header of the macroblock data includes mb_field_decoding_flag as a scan method determination flag.
  • mb_field_decoding_flag is a flag indicating whether the block is a progressive scan or a field scan.
  • the SPS includes a progressive quantization matrix and a difference matrix.
  • the difference matrix is a difference between a matrix obtained by correcting a progressive quantization matrix and a field scan quantization matrix.
  • the quantization matrix for field scanning can be restored by using the progressive quantization matrix and the difference matrix.
  • the difference matrix can be encoded with a smaller amount of code than the field scan quantization matrix, the encoding efficiency can be improved.
  • FIG. 4 shows an example in which the SPS includes a progressive quantization matrix and a difference matrix
  • the PPS may include a progressive quantization matrix and a difference matrix.
  • the SPS may include a progressive quantization matrix
  • the PPS may include a difference matrix.
  • the slice header or the header of the macro block may include a quantization matrix.
  • FIG. 5 is a diagram for explaining an example of encoding of a quantization matrix for field scan according to Embodiment 1 of the present invention.
  • the quantization matrix correction unit 140 corrects the progressive quantization matrix.
  • the quantization matrix correction unit 140 doubles the progressive quantization matrix in the vertical direction. Specifically, as illustrated in FIG. 5, the quantization matrix correction unit 140 generates an 8 ⁇ 4 matrix by doubling a 4 ⁇ 4 progressive quantization matrix in the vertical direction. The upper half 4 ⁇ 4 matrix is generated as a corrected quantization matrix. The quantization matrix correction unit 140 doubles the 2 ⁇ 4 matrix in the upper half of the 4 ⁇ 4 progressive quantization matrix in the vertical direction to obtain the 4 ⁇ 4 corrected quantization matrix. It may be generated.
  • the difference calculation unit 150 generates a difference matrix by calculating a difference between the corrected quantization matrix and the field scan quantization matrix, as shown in FIG.
  • the generated difference matrix has more zero coefficients and smaller coefficient values for non-zero coefficients than the quantization matrix for field scan. Therefore, it is possible to improve the encoding efficiency when the difference matrix is inserted into the encoded stream as compared with the case where the field scan quantization matrix is directly inserted into the encoded stream.
  • the quantization matrix correction unit 140 corrects the progressive quantization matrix, but may correct the field scan quantization matrix. Then, the difference calculation unit 150 may calculate a difference (difference matrix) between the corrected quantization matrix and the progressive quantization matrix. Further, the quantization matrix encoding unit 130 inserts the field scan quantization matrix and the difference matrix into the encoded stream. Even in this case, encoding efficiency can be improved.
  • the difference calculation unit 150 may calculate the difference between the progressive quantization matrix and the field scan quantization matrix.
  • FIG. 6 is a flowchart showing an example of the operation of the image coding apparatus 1000 according to Embodiment 1 of the present invention.
  • the quantization unit 1103 quantizes the encoding target block using the quantization matrix (S110). Specifically, the orthogonal transform unit 1102 generates transform coefficients by orthogonally transforming the encoding target block, and the quantization unit 1103 quantizes the generated transform coefficients using a quantization matrix. Specific processing of quantization will be described later with reference to FIG.
  • the encoding target block to be quantized is a difference image between the encoding target block included in the input moving image and the predicted image.
  • the encoding target block to be quantized may be the encoding target block itself included in the input moving image. That is, prediction coding may not be performed in the image coding apparatus 1000 according to Embodiment 1 of the present invention.
  • the entropy encoding unit 1104 generates an encoded stream by encoding the quantized block to be encoded (S120).
  • the encoding control unit 1200 inserts the quantization matrix into the encoded stream (S130). At this time, the encoding control unit 1200 inserts a scan method determination flag into the encoded stream. A specific process of inserting the quantization matrix will be described later with reference to FIG.
  • FIG. 7 is a flowchart showing an example of quantization (S110 in FIG. 6) according to Embodiment 1 of the present invention.
  • the determination unit 110 determines whether the encoding target block is field-scanned image data or progressive-scanned image data (S111). Specifically, the determination unit 110 determines the scan method of the encoding target block using the scan method information.
  • the determination unit 110 selects a second quantization matrix for field scanning (S112). Then, the determination unit 110 outputs the selected second quantization matrix from the memory 120 to the quantization unit 1103.
  • the determination unit 110 selects a progressive first quantization matrix (S113). Then, the determination unit 110 causes the memory 120 to output the selected first quantization matrix to the quantization unit 1103.
  • the quantization unit 1103 quantizes the transform coefficient (encoding target block) using the input quantization matrix (S114). In this way, the quantization unit 1103 uses the first quantization matrix when the encoding target block is progressively scanned image data, and uses the first quantization matrix when the encoding target block is field scanned image data. The encoding target block is quantized using the two quantization matrix.
  • the quantization unit 1103 uses a matrix obtained by correcting the first quantization matrix (default quantization matrix) as the second quantization matrix when the encoding target block is field-scanned image data.
  • the encoding target block can be quantized. In this case, since it is not necessary to encode the second quantization matrix and the difference matrix, the encoding efficiency can be improved.
  • FIG. 8 is a flowchart showing an example of quantization matrix coding (S130 in FIG. 6) according to Embodiment 1 of the present invention.
  • the determination unit 110 determines whether or not the quantization matrix used for quantization of the encoding target block is the second quantization matrix for field scanning (S131). This determination process is the same as the determination of the scan method for the encoding target block shown in FIG. 7 (S111). That is, the determination result of the scanning method shown in FIG. 7 can be used.
  • the encoding control unit 1200 calculates a difference matrix (S132). A specific example of calculating the difference matrix will be described later with reference to FIG.
  • the quantization matrix encoding unit 130 encodes the difference matrix (S134). That is, the quantization matrix encoding unit 130 inserts the difference matrix into the encoded stream. For example, the quantization matrix encoding unit 130 inserts a difference matrix into SPS, PPS, or both SPS and PPS.
  • the quantization matrix encoding unit 130 encodes the progressive first quantization matrix (S135). ). That is, the quantization matrix encoding unit 130 inserts the progressive first quantization matrix into the encoded stream. For example, the quantization matrix encoding unit 130 inserts the first quantization matrix into SPS, PPS, or both SPS and PPS.
  • FIG. 9 is a flowchart showing an example of the difference matrix calculation (S132 in FIG. 8) according to Embodiment 1 of the present invention.
  • the quantization matrix correction unit 140 corrects the progressive quantization matrix (S1311). Then, the difference calculation unit 150 calculates the difference between the corrected quantization matrix and the field scan quantization matrix (S1312).
  • the image coding apparatus 1000 uses the first quantization matrix when the encoding target block included in the image data is the progressively scanned image data.
  • the encoding target block is quantized using the second quantization matrix.
  • an encoded stream is generated by encoding the quantized block to be encoded, and at least one of the first quantization matrix and the second quantization matrix is inserted into the encoded stream.
  • the image coding apparatus 1000 according to Embodiment 1 of the present invention includes a first quantization matrix dedicated to quantization of progressively scanned image data and a first quantization matrix dedicated to quantization of field scanned image data. It manages 2 quantization matrices.
  • an appropriate quantization matrix can be used for quantization according to the scan method of the block to be encoded.
  • the image coding apparatus 1000 corrects the first quantization matrix, calculates a difference (difference matrix) between the corrected matrix and the second quantization matrix, and first The quantization matrix and the difference matrix are inserted into the encoded stream.
  • the difference matrix can be encoded with a smaller code amount than the second quantization matrix, the encoding efficiency is higher than when encoding the first quantization matrix and the second quantization matrix, respectively. Can be improved.
  • FIG. 10 is a block diagram showing an example of the configuration of the image decoding apparatus 2000 according to Embodiment 1 of the present invention.
  • the image decoding apparatus 2000 includes a decoding processing unit 2100 and a decoding control unit 2200.
  • the decoding processing unit 2100 generates a decoded image by decoding the encoded stream for each block.
  • a decoding processing unit 2100 includes an entropy decoding unit 2101, an inverse quantization unit 2102, an inverse orthogonal transform unit 2103, an adder 2104, a deblocking filter 2105, a memory 2106, and an in-plane prediction unit 2107.
  • the entropy decoding unit 2101 acquires an encoded stream and performs entropy decoding (variable length decoding) on the encoded stream.
  • the inverse quantization unit 2102 inversely quantizes the quantized coefficient block generated by entropy decoding by the entropy decoding unit 2101.
  • the inverse orthogonal transform unit 2103 generates a decoded difference image by performing inverse orthogonal transform such as inverse discrete cosine transform on each frequency coefficient included in the inverse quantized coefficient block.
  • the adder 2104 obtains a predicted image from the switch 2109, and generates a decoded image by adding the predicted image and the decoded difference image generated by the inverse orthogonal transform unit 2103.
  • the deblocking filter 2105 removes block distortion of the decoded image generated by the adder 2104, stores the decoded image in the memory 2106, and outputs the decoded image.
  • the intra prediction unit 2107 generates a prediction image (intra prediction image) by performing intra prediction on the decoding target block using the decoded image generated by the adder 2104.
  • the motion compensation unit 2108 refers to the image stored in the memory 2106 as a reference image, and performs motion compensation on the decoding target block by using a motion vector generated by entropy decoding by the entropy decoding unit 2101. .
  • the motion compensation unit 2108 generates a prediction image (inter prediction image) for the decoding target block through such motion compensation.
  • the switch 2109 outputs the prediction image (intra prediction image) generated by the intra prediction unit 2107 to the adder 2104 when the decoding target block is subjected to intra prediction encoding.
  • the switch 2109 outputs the prediction image (inter prediction image) generated by the motion compensation unit 2108 to the adder 2104 when the decoding target block is subjected to inter-frame prediction encoding.
  • the decoding control unit 2200 controls the decoding processing unit 2100. Specifically, the decoding control unit 2200 determines a parameter for quantization control used by the inverse quantization unit 2102. In addition, the decoding control unit 2200 determines whether the decoding target block is progressively scanned image data or field scanned image data. A specific configuration of the decoding control unit 2200 will be described later with reference to FIG.
  • FIG. 11 is a block diagram showing an example of the configuration of the decoding control unit 2200 according to Embodiment 2 of the present invention.
  • the decoding control unit 2200 includes a determination unit 210, a memory 220, a quantization matrix decoding unit 230, a quantization matrix correction unit 240, and an addition unit 250.
  • the determination unit 210 determines the scan method of the decoding target block. That is, the determination unit 210 determines whether the decoding target block is progressively scanned image data (progressive image) or field-scanned image data (interlaced image).
  • the determination unit 210 extracts a scan method determination flag (see FIG. 4) from the encoded stream input to the image decoding device 2000. Specifically, the entropy decoding unit 2101 acquires a scan method determination flag by variable-length decoding the encoded stream, and outputs the scan method determination flag to the determination unit 210.
  • the memory 220 is a memory for storing at least one quantization matrix.
  • the memory 220 stores a first quantization matrix for progressively scanned image data and a second quantization matrix for field scanned image data. These quantization matrices are extracted from the encoded stream by the quantization matrix decoding unit 230 and stored in the memory 220.
  • the memory 220 may store a plurality of first quantization matrices different from each other as a quantization matrix for progressively scanned image data. Similarly, the memory 220 may store a plurality of second quantization matrices different from each other as a quantization matrix for field-scanned image data.
  • the memory 220 outputs the quantization matrix to the inverse quantization unit 2102 based on the determination result by the determination unit 210. Specifically, the memory 220 outputs the first quantization matrix to the inverse quantization unit 2102 when the decoding target block is image data subjected to progressive scan. In addition, when the decoding target block is field-scanned image data, the memory 220 outputs the second quantization matrix to the inverse quantization unit 2102.
  • the memory 220 preferably stores at least one default quantization matrix.
  • the at least one default quantization matrix may include a progressive quantization matrix and a field scan quantization matrix.
  • the default quantization matrix may be a matrix obtained by correcting the progressive quantization matrix extracted from the encoded stream.
  • the quantization matrix decoding unit 230 is an example of an extraction unit, and extracts a progressive quantization matrix from an encoded stream.
  • the quantization matrix decoding unit 230 also extracts a difference (difference matrix) for restoring the quantization matrix for field scan from the encoded stream.
  • the difference matrix is a difference between the matrix obtained by correcting the progressive quantization matrix and the field scan quantization matrix.
  • the quantization matrix correction unit 240 corrects the progressive quantization matrix. Since the specific processing is the same as that of the quantization matrix correction unit 140, description thereof is omitted.
  • the adding unit 250 adds the corrected matrix generated by the quantization matrix correcting unit 240 and the difference (difference matrix) extracted by the quantization matrix decoding unit 230 to thereby add a quantization matrix for field scanning. To restore.
  • the restored field scan quantization matrix is stored in the memory 220.
  • FIG. 12 is a diagram for explaining an example of restoration of a quantization matrix for field scan according to Embodiment 1 of the present invention.
  • the quantization matrix correction unit 240 corrects the progressive quantization matrix. This correction is the same as the operation of the quantization matrix correction unit 140 shown in FIG. Specifically, as illustrated in FIG. 12, the quantization matrix correction unit 240 generates an 8 ⁇ 4 matrix by doubling a 4 ⁇ 4 progressive quantization matrix in the vertical direction. The upper half 4 ⁇ 4 matrix is generated as a corrected quantization matrix.
  • the addition unit 250 restores the quantization matrix for field scan by adding the corrected quantization matrix and the difference matrix.
  • the difference matrix is extracted from the encoded stream by the quantization matrix decoding unit 230.
  • the quantization matrix correction unit 240 corrects the progressive quantization matrix, but may correct the field scan quantization matrix. Then, the adding unit 250 may restore the progressive quantization matrix by adding the corrected quantization matrix and the difference matrix. At this time, the quantization matrix decoding unit 230 extracts a field scan quantization matrix and a difference matrix from the encoded stream. Even in this case, encoding efficiency can be improved.
  • FIG. 13 is a flowchart showing an example of the operation of the image decoding apparatus 2000 according to Embodiment 1 of the present invention.
  • the decoding control unit 2200 extracts a quantization matrix from the encoded stream (S210). At this time, the decoding control unit 2200 extracts a scan method determination flag from the encoded stream. Specific processing for extracting the quantization matrix will be described later with reference to FIG.
  • the entropy decoding unit 2101 generates a decoding target block including quantized coefficients by decoding the encoded stream (S220).
  • the decoding target block corresponds to the quantization target block after quantization generated by the quantization unit 1103 shown in FIG.
  • the inverse quantization unit 2102 inversely quantizes the decoding target block using the quantization matrix (S230). That is, the inverse quantization unit 2102 inversely quantizes the decoded block to be decoded using the quantization matrix used in the quantization at the time of encoding.
  • the coefficient block generated by the inverse quantization is subjected to inverse orthogonal transform by the inverse orthogonal transform unit 2103 and converted into a decoded difference image. Specific processing of inverse quantization will be described later with reference to FIG.
  • the inverse orthogonal transform unit 2103 when predictive encoding is not performed at the time of encoding, the inverse orthogonal transform unit 2103 generates a decoded image by performing inverse orthogonal transform on the coefficient block. That is, the image decoding apparatus 2000 according to Embodiment 1 of the present invention may not perform predictive decoding.
  • FIG. 14 is a flowchart showing an example of quantization matrix decoding (S210 in FIG. 13) according to Embodiment 1 of the present invention.
  • the determination unit 210 determines whether or not the quantization matrix used for inverse quantization of the decoding target block is the second quantization matrix for field scanning (S211). In other words, the determination unit 210 determines whether the decoding target block is field-scanned image data or progressive-scanned image data. Specifically, the determination unit 210 determines the scan method of the block to be encoded using a scan method determination flag that is also used as at least one process other than inverse quantization.
  • the quantization matrix decoding unit 230 determines whether or not the encoded stream includes a difference matrix. (S212). When the difference matrix is not included (No in S212), the quantization matrix decoding unit 230 causes the inverse quantization unit 2102 to output the default quantization matrix stored in the memory 220 (S213). For example, the memory 220 may output a matrix obtained by correcting the progressive quantization matrix as the default quantization matrix.
  • the quantization matrix decoding unit 230 decodes the difference matrix (S214). Specifically, the quantization matrix decoding unit 230 extracts a difference (difference matrix) for restoring the second quantization matrix for field scan from the encoded stream.
  • the decoding control unit 2200 restores the second quantization matrix for field scanning using the difference matrix and the first quantization matrix for progressive (S215).
  • S215 A specific example of the restoration of the second quantization matrix will be described later with reference to FIG.
  • the quantization matrix decoding unit 230 decodes the progressive first quantization matrix (S216). Specifically, the quantization matrix decoding unit 230 extracts a first quantization matrix for progressive from the encoded stream.
  • FIG. 15 is a flowchart showing an example of the reconstruction of the quantization matrix for field scan (S215 in FIG. 14) according to Embodiment 1 of the present invention.
  • the quantization matrix correction unit 240 corrects the progressive quantization matrix (S2151). Then, the adding unit 250 restores the second quantization matrix for field scan by adding the corrected quantization matrix and the difference matrix (S2152).
  • FIG. 16 is a flowchart showing an example of inverse quantization (S230) according to Embodiment 1 of the present invention.
  • the determination unit 210 determines whether the decoding target block is field-scanned image data or progressive-scanned image data (S231). This determination process is the same as the determination of the quantization matrix used for the inverse quantization of the decoding target block shown in FIG. 14 (S211). That is, the determination result of the quantization matrix shown in FIG. 14 can be used.
  • the determination unit 210 selects a second quantization matrix for field scanning (S232). Then, the determination unit 210 causes the selected second quantization matrix to be output from the memory 220 to the inverse quantization unit 2102.
  • the determination unit 210 determines the default quantization matrix (see S213). ) Is output to the inverse quantization unit 2102.
  • the default quantization matrix is, for example, a progressive first quantization matrix or a matrix obtained by correcting the first quantization matrix.
  • the determination unit 210 selects a progressive first quantization matrix (S233). Then, the determination unit 210 causes the selected first quantization matrix to be output from the memory 220 to the inverse quantization unit 2102.
  • the inverse quantization unit 2102 uses the input quantization matrix to inversely quantize the decoding target block including the quantized coefficients (S234). In this way, the inverse quantization unit 2102 uses the first quantization matrix when the decoding target block is progressively scanned image data, and the second quantization unit when the decoding target block is field scanned image data. The block to be decoded is inversely quantized using the quantization matrix. Further, when the decoding target block is field-scanned image data, the inverse quantization unit 2102 uses a matrix obtained by correcting the first quantization matrix (default quantization matrix) as the second quantization matrix. The decoding target block can be inversely quantized.
  • the image decoding apparatus 2000 extracts at least one of the first quantization matrix and the second quantization matrix from the encoded stream, and decodes the encoded stream. Then, a decoding target block including the quantized coefficient is obtained. Then, when the decoding target block is progressively scanned image data, the first quantization matrix is used, and when the decoding target block is field scanned image data, the second quantization matrix is used. Is dequantized.
  • the image decoding apparatus 2000 according to Embodiment 1 of the present invention includes a first quantization matrix dedicated to inverse quantization of progressive scanned image data and a dedicated dedicated to inverse quantization of field scanned image data. The second quantization matrix is managed.
  • an appropriate quantization matrix can be used for inverse quantization according to the scan method of the decoding target block.
  • the image decoding apparatus 2000 extracts a difference matrix for restoring the second quantization matrix from the encoded stream, corrects the first quantization matrix, and corrects the corrected quantum.
  • the second quantization matrix is restored by adding the quantization matrix and the difference matrix.
  • the difference matrix can be encoded with a smaller code amount than the second quantization matrix, the encoding efficiency is higher than when encoding the first quantization matrix and the second quantization matrix, respectively. Can be improved.
  • the image encoding apparatus inserts the progressive first quantization matrix and the field scan second quantization matrix into the encoded stream as they are. That is, the amount of code increases as compared to the case of encoding the difference matrix as in the first embodiment, but the amount of processing required to calculate the difference matrix can be reduced.
  • the configuration of the image coding apparatus according to the modification of the first embodiment of the present invention is substantially the same as that of the image coding apparatus 1000 of FIG. The difference will be mainly described.
  • the image coding apparatus according to the modification of the first embodiment of the present invention is different from the image coding apparatus 1000 according to the first embodiment in that the coding control illustrated in FIG. 17 is used instead of the coding control unit 1200.
  • the difference is that the unit 300 is provided.
  • FIG. 17 is a block diagram showing an example of the configuration of the encoding control unit 300 according to the modification of the first embodiment of the present invention.
  • the encoding control unit 300 includes a determination unit 110, a memory 120, and a quantization matrix encoding unit 330.
  • the determination unit 110 and the memory 120 are the same as those in the first embodiment, and thus the description thereof will be omitted below.
  • the quantization matrix encoding unit 330 is an example of an insertion unit, and inserts a progressive quantization matrix and a field scan quantization matrix into an encoded stream generated by the entropy encoding unit 1104.
  • FIG. 18 is a schematic diagram showing an example of an encoded stream according to a modification of the first embodiment of the present invention.
  • the SPS includes a field scan quantization matrix instead of the difference matrix.
  • the PPS may include a progressive quantization matrix and a field scan quantization matrix.
  • the slice header or the header of the macro block may include a quantization matrix.
  • the operation of the image coding apparatus according to the modification of the first embodiment of the present invention is substantially the same as the operation of the image coding apparatus 1000 according to the first embodiment, as shown in the flowchart of FIG.
  • the operation of the image coding apparatus according to the modification of the first embodiment of the present invention is different from the operation of the image coding apparatus 1000 according to the first embodiment in the coding of the quantization matrix (S130 in FIG. 6). Yes.
  • FIG. 19 is a flowchart showing an example of quantization matrix coding (S130 in FIG. 6) according to a modification of the first embodiment of the present invention.
  • the determination unit 110 determines whether or not the quantization matrix used for quantization of the encoding target block is the first quantization matrix for field scanning (S331). This determination process is the same as the determination of the scan method for the encoding target block shown in FIG. 7 (S111). That is, the determination result of the scanning method shown in FIG. 7 can be used.
  • the quantization matrix encoding unit 330 encodes the second quantization matrix for field scan ( S332). That is, the quantization matrix encoding unit 330 inserts the second quantization matrix for field scanning into the encoded stream generated by the entropy encoding unit 1104.
  • the quantization matrix encoding unit 330 encodes the progressive first quantization matrix (S333). . That is, the quantization matrix encoding unit 330 inserts the first quantization matrix for progressive use into the encoded stream generated by the entropy encoding unit 1104.
  • the image coding apparatus inserts the progressive first quantization matrix and the field scan second quantization matrix into the coded stream as they are. To do. That is, the amount of code increases as compared to the case of encoding the difference matrix as in the first embodiment, but the amount of processing required to calculate the difference matrix can be reduced.
  • the image decoding apparatus extracts the first quantization matrix for progressive and the second quantization matrix for field scan from the encoded stream.
  • the configuration of the image decoding apparatus according to the modification of the first embodiment of the present invention is substantially the same as that of the image decoding apparatus 2000 of FIG. The explanation will be focused on.
  • the image decoding apparatus according to the modification of the first embodiment of the present invention includes a decoding control unit 400 illustrated in FIG. 20 instead of the decoding control unit 2200. The point is different.
  • FIG. 20 is a block diagram showing an example of the configuration of the decoding control unit 400 according to the modification of the first embodiment of the present invention.
  • the decoding control unit 400 includes a determination unit 210, a memory 220, and a quantization matrix decoding unit 430.
  • the determination unit 210 and the memory 220 are the same as those in the first embodiment, and thus the description thereof will be omitted below.
  • the quantization matrix decoding unit 430 is an example of an extraction unit, and extracts a progressive quantization matrix and a field scan quantization matrix from the encoded stream.
  • the operation of the image decoding apparatus according to the modification of the first embodiment of the present invention is substantially the same as that of the image decoding apparatus 2000 according to the first embodiment, as shown in the flowchart of FIG.
  • the operation of the image decoding apparatus according to the modification of the first embodiment of the present invention is different from the operation of the image decoding apparatus 2000 according to the first embodiment in the decoding of the quantization matrix (S210 in FIG. 13).
  • FIG. 21 is a flowchart showing an example of quantization matrix decoding (S210 in FIG. 13) according to a modification of the first embodiment of the present invention.
  • the determination unit 210 determines whether or not the quantization matrix used for inverse quantization of the decoding target block is the second quantization matrix for field scanning (S411). In other words, the determination unit 210 determines whether the decoding target block is field-scanned image data or progressive-scanned image data. Specifically, the determination unit 210 determines the scan method of the decoding target block using the scan method determination flag.
  • the quantization matrix decoding unit 430 determines whether or not the coefficient value of the matrix is included in the encoded stream. Is determined (S412). If the matrix coefficient value is not included (No in S412), the quantization matrix decoding unit 430 causes the inverse quantization unit 2102 to output the default quantization matrix stored in the memory 220 (S413). For example, the memory 220 may output a matrix obtained by correcting the progressive quantization matrix as the default quantization matrix.
  • the quantization matrix decoding unit 430 decodes the quantization matrix for field scan (S414). Specifically, the quantization matrix decoding unit 430 extracts a second quantization matrix for field scan from the encoded stream.
  • the quantization matrix decoding unit 430 decodes the progressive first quantization matrix (S415). Specifically, the quantization matrix decoding unit 430 extracts a first quantization matrix for progressive from the encoded stream.
  • the image decoding apparatus is an encoded stream in which the first quantization matrix for progressive and the second quantization matrix for field scan are inserted as they are. Is decrypted. That is, the amount of code increases as compared to the case of encoding the difference matrix as in the first embodiment, but the amount of processing required to calculate the difference matrix can be reduced.
  • the image encoding device, the image decoding device, the image encoding method, and the image decoding method according to the present invention have been described based on the embodiments.
  • the present invention is limited to the embodiments described above and below. It is not a thing. Unless it deviates from the meaning of this invention, the form which carried out the various deformation
  • quantization matrices are managed according to the scanning method, such as a progressive quantization matrix and a field scan quantization matrix. Parameters may be managed according to the scanning method.
  • Other quantization control parameters include, for example, a quantization offset, a quantization parameter, and a quantization matrix index.
  • the memory 120 stores a first quantization offset for progressive and a second quantization offset for field scan. Then, the determination unit 110 determines whether the encoding target block is progressively scanned image data or field scanned image data based on the scan method information, and based on the determination result, the memory 120 Any one of the first quantization offset and the second quantization offset may be output to the quantization unit 1103.
  • the image encoding device and the image decoding device may correct the quantization offset in the same manner as the quantization matrix. As a result, the amount of code required for encoding the quantization offset can be reduced, so that the encoding efficiency can be further improved.
  • the image encoding device and the image decoding device may manage a plurality of different first quantization matrices as quantization matrices for progressively scanned image data.
  • a plurality of different second quantization matrices may be stored as a quantization matrix for field-scanned image data.
  • the image encoding device and the image decoding device according to the embodiment of the present invention each have a field scan index (for example, 0, 1, 2) corresponding to each of the plurality of second quantization matrices for field scan. Manage.
  • the image encoding device and the image decoding device according to the embodiment of the present invention manage progressive indexes (for example, 3, 4, 5) corresponding to each of a plurality of progressive first quantization matrices. To do. When the image encoding device inserts these indexes into the encoded stream, the image decoding device can correctly decode the encoded stream.
  • the encoding target block (decoding target block) is field-scanned image data
  • a progressive index may be used. That is, the first quantization matrix according to the embodiment of the present invention may not be dedicated to progressively scanned image data. Similarly, the second quantization matrix according to the embodiment of the present invention may not be dedicated to field scanned image data.
  • the second quantization matrix may be given priority over the first quantization matrix. Specifically, a value smaller than the index of the first quantization matrix is assigned to the index of the second quantization matrix. For example, 0, 1, and 2 may be assigned as indexes corresponding to the second quantization matrix for field scan, and 3, 4, and 5 may be assigned as indexes corresponding to the first quantization matrix for progressive. Thereby, since the index of the 2nd quantization matrix used frequently is a small value, encoding efficiency can be improved.
  • the first quantization matrix may be given priority over the second quantization matrix. Specifically, a value smaller than the index of the second quantization matrix is assigned to the index of the first quantization matrix. For example, 0, 1, and 2 may be assigned as indexes corresponding to the first quantization matrix for progressive, and 3, 4, and 5 may be assigned as indexes corresponding to the second quantization matrix for field scan. Thereby, since the index of the 1st quantization matrix used frequently is a small value, encoding efficiency can be improved.
  • the index allocation method may be changed depending on whether the encoding target block is progressively scanned image data or field scanned image data.
  • the encoding target block (decoding target block) may be hierarchized as shown in FIG.
  • FIG. 22 is an explanatory diagram for explaining a hierarchized processing unit (multi-hierarchical block structure).
  • the encoding processing unit 1100 encodes a moving image for each processing unit, and the decoding processing unit 2100 decodes the encoded stream for each processing unit.
  • This processing unit is divided into a plurality of small processing units, and the small processing unit is further hierarchized so as to be further divided into a plurality of smaller processing units. Note that the smaller the processing unit is, the deeper the hierarchy in which the processing unit is and the lower the value, and the larger the value indicating the hierarchy. Conversely, the larger the processing unit is, the shallower the hierarchy in which the processing unit is, the higher the hierarchy, and the smaller the value indicating the hierarchy.
  • the processing unit includes a coding unit (CU), a prediction unit (PU), and a transform unit (TU).
  • a CU is a block composed of a maximum of 128 ⁇ 128 pixels, and is a unit corresponding to a conventional macroblock.
  • PU is a basic unit of inter-screen prediction.
  • the TU is a basic unit of orthogonal transformation, and the size of the TU is the same as the PU or a size smaller than the PU.
  • the CU is divided into, for example, four sub CUs, and one of the sub CUs includes a PU and a TU having the same size as the sub CU (in this case, the PU and the TU overlap each other).
  • the PU is further divided into four sub-PUs
  • the TU is further divided into four sub-TUs.
  • a picture is divided into a plurality of slices.
  • One slice is a sequence of a maximum coding unit (LCU: Large Coding Unit).
  • LCU Large Coding Unit
  • the position of the LCU is specified by the maximum coding unit address “lcuAddr”.
  • Each CU is recursively divided into four CUs. That is, the CU is a quadtree partition of the LCU.
  • the position of the CU is specified by a coding unit index “cuIdx” that indicates a relative positional relationship with the pixel located at the upper left of the LCU.
  • the size of the PU is the same as the size of the CU that is not allowed to be further divided.
  • the position of the PU is specified by the prediction unit index “puIdx” indicating the relative positional relationship with the pixel located at the upper left of the LCU, similarly to the CU.
  • -A PU may have a plurality of partitions. This partition can be of any shape.
  • the position of the partition is specified by a prediction unit partition index “puPartIdx” indicating a relative positional relationship with a pixel located at the upper left of the PU.
  • the PU may have multiple TUs.
  • the size of the TU is the same size as the PU, or a size smaller than the PU.
  • the position of the TU is specified by a conversion unit index “tuIdx” indicating a relative positional relationship with the pixel located at the upper left of the PU.
  • each processing unit is as follows.
  • Coding tree block (CTB: Coding Tree Block): A basic unit for defining quadtree partitioning of a given rectangular area.
  • the CTB can have a rectangular shape of various sizes.
  • LCTB Largest coding tree block
  • SCTB Smallest coding tree block
  • Prediction unit A basic unit for defining prediction processing.
  • the size of the PU is the same as the size of the CU that is not allowed to be further divided.
  • the PU can be divided into a plurality of partitions. While the CU is divided into four rectangular shapes, the partition can have any shape.
  • Transformation unit Basic unit for defining transformation and quantization processing.
  • Coding unit Same as coding tree block.
  • LCU Large Coding Unit
  • SCU Smallest Coding Unit
  • Quantization matrices may be associated with each of such hierarchized processing units (blocks).
  • the embodiments described above and below will be configured using hardware and / or software, but the configuration using hardware can also be configured using software, and the configuration using software is hardware. It can also be configured using hardware.
  • the storage medium may be any medium that can record a program, such as a magnetic disk, an optical disk, a magneto-optical disk, an IC card, and a semiconductor memory.
  • the system has an image encoding / decoding device including an image encoding device using an image encoding method and an image decoding device using an image decoding method.
  • image encoding / decoding device including an image encoding device using an image encoding method and an image decoding device using an image decoding method.
  • Other configurations in the system can be appropriately changed according to circumstances.
  • FIG. 23 is a diagram showing an overall configuration of a content supply system ex100 that realizes a content distribution service.
  • a communication service providing area is divided into desired sizes, and base stations ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations, are installed in each cell.
  • This content supply system ex100 includes a computer ex111, a PDA (Personal Digital Assistant) ex112, a camera ex113, a mobile phone ex114, a game machine ex115 via the Internet ex101, the Internet service provider ex102, the telephone network ex104, and the base stations ex106 to ex110. Etc. are connected.
  • PDA Personal Digital Assistant
  • each device may be directly connected to the telephone network ex104 without going from the base station ex106, which is a fixed wireless station, to ex110.
  • the devices may be directly connected to each other via short-range wireless or the like.
  • the camera ex113 is a device that can shoot moving images such as a digital video camera
  • the camera ex116 is a device that can shoot still images and movies such as a digital camera.
  • the mobile phone ex114 is a GSM (registered trademark) (Global System for Mobile Communications) system, a CDMA (Code Division Multiple Access) system, a W-CDMA (Wideband-Code Division Multiple Access) system, or an LTE (Long Term Evolution). It is possible to use any of the above-mentioned systems, HSPA (High Speed Packet Access) mobile phone, PHS (Personal Handyphone System), or the like.
  • the camera ex113 and the like are connected to the streaming server ex103 through the base station ex109 and the telephone network ex104, thereby enabling live distribution and the like.
  • live distribution the content (for example, music live video) captured by the user using the camera ex113 is encoded as described in the above embodiments (that is, the image encoding of the present invention).
  • Function as a device Function as a device) and transmit to the streaming server ex103.
  • the streaming server ex103 stream-distributes the content data transmitted to the requested client. Examples of the client include a computer ex111, a PDA ex112, a camera ex113, a mobile phone ex114, and a game machine ex115 that can decode the encoded data.
  • Each device that receives the distributed data decodes the received data and reproduces it (that is, functions as the image decoding device of the present invention).
  • the captured data may be encoded by the camera ex113, the streaming server ex103 that performs data transmission processing, or may be shared with each other.
  • the decryption processing of the distributed data may be performed by the client, the streaming server ex103, or may be performed in common with each other.
  • still images and / or moving image data captured by the camera ex116 may be transmitted to the streaming server ex103 via the computer ex111.
  • the encoding process in this case may be performed by any of the camera ex116, the computer ex111, and the streaming server ex103, or may be performed in a shared manner.
  • these encoding / decoding processes are generally performed in the computer ex111 and the LSI ex500 included in each device.
  • the LSI ex500 may be configured as a single chip or a plurality of chips.
  • moving image encoding / decoding software is incorporated into some recording medium (CD-ROM, flexible disk, hard disk, etc.) that can be read by the computer ex111, etc., and encoding / decoding processing is performed using the software. May be.
  • moving image data acquired by the camera may be transmitted.
  • the moving image data at this time is data encoded by the LSI ex500 included in the mobile phone ex114.
  • the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, and distribute data in a distributed manner.
  • the encoded data can be received and reproduced by the client.
  • the information transmitted by the user can be received, decrypted and reproduced by the client in real time, and personal broadcasting can be realized even for a user who does not have special rights or facilities.
  • the digital broadcasting system ex200 also includes at least the moving image encoding device (image encoding device) or the moving image decoding according to each of the above embodiments. Any of the devices (image decoding devices) can be incorporated.
  • the broadcast station ex201 multiplexed data obtained by multiplexing music data and the like on video data is transmitted to a communication or satellite ex202 via radio waves.
  • This video data is data encoded by the moving image encoding method described in the above embodiments (that is, data encoded by the image encoding apparatus of the present invention).
  • the broadcasting satellite ex202 transmits a radio wave for broadcasting, and this radio wave is received by a home antenna ex204 capable of receiving satellite broadcasting.
  • the received multiplexed data is decoded and reproduced by an apparatus such as the television (receiver) ex300 or the set top box (STB) ex217 (that is, functions as the image decoding apparatus of the present invention).
  • a reader / recorder ex218 that reads and decodes multiplexed data recorded on a recording medium ex215 such as a DVD or a BD, or encodes a video signal on the recording medium ex215 and, in some cases, multiplexes and writes it with a music signal. It is possible to mount the moving picture decoding apparatus or moving picture encoding apparatus described in the above embodiments. In this case, the reproduced video signal is displayed on the monitor ex219, and the video signal can be reproduced in another device or system using the recording medium ex215 on which the multiplexed data is recorded.
  • a moving picture decoding apparatus may be mounted in a set-top box ex217 connected to a cable ex203 for cable television or an antenna ex204 for satellite / terrestrial broadcasting and displayed on the monitor ex219 of the television.
  • the moving picture decoding apparatus may be incorporated in the television instead of the set top box.
  • FIG. 25 is a diagram illustrating a television (receiver) ex300 that uses the video decoding method and the video encoding method described in each of the above embodiments.
  • the television ex300 obtains or outputs multiplexed data in which audio data is multiplexed with video data via the antenna ex204 or the cable ex203 that receives the broadcast, and demodulates the received multiplexed data.
  • the modulation / demodulation unit ex302 that modulates multiplexed data to be transmitted to the outside, and the demodulated multiplexed data is separated into video data and audio data, or the video data and audio data encoded by the signal processing unit ex306 Is provided with a multiplexing / demultiplexing unit ex303.
  • the television ex300 decodes each of the audio data and the video data, or encodes the respective information, the audio signal processing unit ex304, the video signal processing unit ex305 (function as the image encoding device or the image decoding device of the present invention). ), A speaker ex307 for outputting the decoded audio signal, and an output unit ex309 having a display unit ex308 such as a display for displaying the decoded video signal.
  • the television ex300 includes an interface unit ex317 including an operation input unit ex312 that receives an input of a user operation.
  • the television ex300 includes a control unit ex310 that performs overall control of each unit, and a power supply circuit unit ex311 that supplies power to each unit.
  • the interface unit ex317 includes a bridge unit ex313 connected to an external device such as a reader / recorder ex218, a recording unit ex216 such as an SD card, and an external recording unit such as a hard disk.
  • a driver ex315 for connecting to a medium, a modem ex316 for connecting to a telephone network, and the like may be included.
  • the recording medium ex216 is capable of electrically recording information by using a nonvolatile / volatile semiconductor memory element to be stored.
  • Each part of the television ex300 is connected to each other via a synchronous bus.
  • the television ex300 receives a user operation from the remote controller ex220 or the like, and demultiplexes the multiplexed data demodulated by the modulation / demodulation unit ex302 by the multiplexing / demultiplexing unit ex303 based on the control of the control unit ex310 having a CPU or the like. Furthermore, in the television ex300, the separated audio data is decoded by the audio signal processing unit ex304, and the separated video data is decoded by the video signal processing unit ex305 using the decoding method described in each of the above embodiments.
  • the decoded audio signal and video signal are output from the output unit ex309 to the outside. At the time of output, these signals may be temporarily stored in the buffers ex318, ex319, etc. so that the audio signal and the video signal are reproduced in synchronization. Also, the television ex300 may read multiplexed data from recording media ex215 and ex216 such as a magnetic / optical disk and an SD card, not from broadcasting. Next, a configuration in which the television ex300 encodes an audio signal or a video signal and transmits the signal to the outside or to a recording medium will be described.
  • the television ex300 receives a user operation from the remote controller ex220 and the like, encodes an audio signal with the audio signal processing unit ex304, and converts the video signal with the video signal processing unit ex305 based on the control of the control unit ex310. Encoding is performed using the encoding method described in (1).
  • the encoded audio signal and video signal are multiplexed by the multiplexing / demultiplexing unit ex303 and output to the outside. When multiplexing, these signals may be temporarily stored in the buffers ex320, ex321, etc. so that the audio signal and the video signal are synchronized.
  • a plurality of buffers ex318, ex319, ex320, and ex321 may be provided as illustrated, or one or more buffers may be shared. Further, in addition to the illustrated example, data may be stored in the buffer as a buffer material that prevents system overflow and underflow, for example, between the modulation / demodulation unit ex302 and the multiplexing / demultiplexing unit ex303.
  • the television ex300 has a configuration for receiving AV input of a microphone and a camera, and performs encoding processing on the data acquired from them. Also good.
  • the television ex300 has been described as a configuration capable of the above-described encoding processing, multiplexing, and external output, but these processing cannot be performed, and only the above-described reception, decoding processing, and external output are possible. It may be a configuration.
  • the decoding process or the encoding process may be performed by either the television ex300 or the reader / recorder ex218,
  • the reader / recorder ex218 may share with each other.
  • FIG. 26 shows a configuration of the information reproducing / recording unit ex400 when data is read from or written to an optical disk.
  • the information reproducing / recording unit ex400 includes elements ex401, ex402, ex403, ex404, ex405, ex406, and ex407 described below.
  • the optical head ex401 irradiates a laser spot on the recording surface of the recording medium ex215 that is an optical disk to write information, and detects reflected light from the recording surface of the recording medium ex215 to read the information.
  • the modulation recording unit ex402 electrically drives a semiconductor laser built in the optical head ex401 and modulates the laser beam according to the recording data.
  • the reproduction demodulator ex403 amplifies the reproduction signal obtained by electrically detecting the reflected light from the recording surface by the photodetector built in the optical head ex401, separates and demodulates the signal component recorded on the recording medium ex215, and is necessary To play back information.
  • the buffer ex404 temporarily holds information to be recorded on the recording medium ex215 and information reproduced from the recording medium ex215.
  • the disk motor ex405 rotates the recording medium ex215.
  • the servo controller ex406 moves the optical head ex401 to a predetermined information track while controlling the rotational drive of the disk motor ex405, and performs a laser spot tracking process.
  • the system control unit ex407 controls the entire information reproduction / recording unit ex400.
  • the system control unit ex407 uses various kinds of information held in the buffer ex404, and generates and adds new information as necessary, and the modulation recording unit ex402, the reproduction demodulation unit This is realized by recording / reproducing information through the optical head ex401 while operating the ex403 and the servo control unit ex406 in a coordinated manner.
  • the system control unit ex407 is composed of, for example, a microprocessor, and executes these processes by executing a read / write program.
  • the optical head ex401 has been described as irradiating a laser spot.
  • a configuration in which higher-density recording is performed using near-field light may be used.
  • FIG. 27 shows a schematic diagram of a recording medium ex215 that is an optical disk.
  • Guide grooves grooves
  • address information indicating the absolute position on the disc is recorded in advance on the information track ex230 by changing the shape of the groove.
  • This address information includes information for specifying the position of the recording block ex231 that is a unit for recording data, and the recording block is specified by reproducing the information track ex230 and reading the address information in a recording or reproducing apparatus.
  • the recording medium ex215 includes a data recording area ex233, an inner peripheral area ex232, and an outer peripheral area ex234.
  • the area used for recording user data is the data recording area ex233, and the inner circumference area ex232 and the outer circumference area ex234 arranged on the inner or outer circumference of the data recording area ex233 are used for specific purposes other than user data recording. Used.
  • the information reproducing / recording unit ex400 reads / writes encoded audio data, video data, or multiplexed data obtained by multiplexing these data with respect to the data recording area ex233 of the recording medium ex215.
  • an optical disk such as a single-layer DVD or BD has been described as an example.
  • the present invention is not limited to these, and an optical disk having a multilayer structure and capable of recording other than the surface may be used.
  • an optical disc with a multi-dimensional recording / reproducing structure such as recording information using light of different wavelengths in the same place on the disc, or recording different layers of information from various angles. It may be.
  • the car ex210 having the antenna ex205 can receive data from the satellite ex202 and the like, and the moving image can be reproduced on a display device such as the car navigation ex211 that the car ex210 has.
  • the configuration of the car navigation ex211 may be, for example, a configuration in which a GPS receiving unit is added in the configuration illustrated in FIG. 25, and the same may be considered for the computer ex111, the mobile phone ex114, and the like.
  • FIG. 28 (a) is a diagram showing the mobile phone ex114 using the moving picture decoding method and the moving picture encoding method described in the above embodiment.
  • the mobile phone ex114 includes an antenna ex350 for transmitting and receiving radio waves to and from the base station ex110, a camera unit ex365 capable of capturing video and still images, a video captured by the camera unit ex365, a video received by the antenna ex350, and the like Is provided with a display unit ex358 such as a liquid crystal display for displaying the decrypted data.
  • the mobile phone ex114 further includes a main body unit having an operation key unit ex366, an audio output unit ex357 such as a speaker for outputting audio, an audio input unit ex356 such as a microphone for inputting audio, a captured video,
  • an audio input unit ex356 such as a microphone for inputting audio
  • a captured video In the memory unit ex367 for storing encoded data or decoded data such as still images, recorded audio, received video, still images, mails, or the like, or an interface unit with a recording medium for storing data
  • a slot ex364 is provided.
  • the mobile phone ex114 has a power supply circuit part ex361, an operation input control part ex362, and a video signal processing part ex355 with respect to a main control part ex360 that comprehensively controls each part of the main body including the display part ex358 and the operation key part ex366.
  • a camera interface unit ex363, an LCD (Liquid Crystal Display) control unit ex359, a modulation / demodulation unit ex352, a multiplexing / demultiplexing unit ex353, an audio signal processing unit ex354, a slot unit ex364, and a memory unit ex367 are connected to each other via a bus ex370. ing.
  • the power supply circuit unit ex361 starts up the mobile phone ex114 in an operable state by supplying power from the battery pack to each unit.
  • the cellular phone ex114 converts the audio signal collected by the audio input unit ex356 in the voice call mode into a digital audio signal by the audio signal processing unit ex354 based on the control of the main control unit ex360 having a CPU, a ROM, a RAM, and the like. Then, this is subjected to spectrum spread processing by the modulation / demodulation unit ex352, digital-analog conversion processing and frequency conversion processing are performed by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
  • the mobile phone ex114 also amplifies the received data received via the antenna ex350 in the voice call mode, performs frequency conversion processing and analog-digital conversion processing, performs spectrum despreading processing by the modulation / demodulation unit ex352, and performs voice signal processing unit After being converted into an analog audio signal by ex354, this is output from the audio output unit ex357.
  • the text data of the e-mail input by operating the operation key unit ex366 of the main unit is sent to the main control unit ex360 via the operation input control unit ex362.
  • the main control unit ex360 performs spread spectrum processing on the text data in the modulation / demodulation unit ex352, performs digital analog conversion processing and frequency conversion processing in the transmission / reception unit ex351, and then transmits the text data to the base station ex110 via the antenna ex350.
  • almost the reverse process is performed on the received data and output to the display unit ex358.
  • the video signal processing unit ex355 compresses the video signal supplied from the camera unit ex365 by the moving image encoding method described in the above embodiments. Encode (that is, function as the image encoding apparatus of the present invention), and send the encoded video data to the multiplexing / demultiplexing unit ex353.
  • the audio signal processing unit ex354 encodes the audio signal picked up by the audio input unit ex356 while the camera unit ex365 images a video, a still image, etc., and sends the encoded audio data to the multiplexing / separating unit ex353. To do.
  • the multiplexing / demultiplexing unit ex353 multiplexes the encoded video data supplied from the video signal processing unit ex355 and the encoded audio data supplied from the audio signal processing unit ex354 by a predetermined method, and is obtained as a result.
  • the multiplexed data is subjected to spread spectrum processing by the modulation / demodulation unit (modulation / demodulation circuit unit) ex352, digital-analog conversion processing and frequency conversion processing by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
  • the multiplexing / separating unit ex353 separates the multiplexed data into a video data bit stream and an audio data bit stream, and performs video signal processing on the video data encoded via the synchronization bus ex370.
  • the encoded audio data is supplied to the audio signal processing unit ex354 while being supplied to the unit ex355.
  • the video signal processing unit ex355 decodes the video signal by decoding using the video decoding method corresponding to the video encoding method shown in each of the above embodiments (that is, functions as the image decoding device of the present invention).
  • video and still images included in the moving image file linked to the home page are displayed from the display unit ex358 via the LCD control unit ex359.
  • the audio signal processing unit ex354 decodes the audio signal, and the audio is output from the audio output unit ex357.
  • the terminal such as the mobile phone ex114 is referred to as a transmission terminal having only an encoder and a receiving terminal having only a decoder.
  • a transmission terminal having only an encoder
  • a receiving terminal having only a decoder.
  • multiplexed data in which music data or the like is multiplexed with video data is received and transmitted, but data in which character data or the like related to video is multiplexed in addition to audio data It may be video data itself instead of multiplexed data.
  • the moving picture encoding method or the moving picture decoding method shown in each of the above embodiments can be used in any of the above-described devices / systems. The described effect can be obtained.
  • multiplexed data obtained by multiplexing audio data or the like with video data is configured to include identification information indicating which standard the video data conforms to.
  • identification information indicating which standard the video data conforms to.
  • FIG. 29 is a diagram showing a structure of multiplexed data.
  • multiplexed data is obtained by multiplexing one or more of a video stream, an audio stream, a presentation graphics stream (PG), and an interactive graphics stream.
  • the video stream indicates the main video and sub-video of the movie
  • the audio stream (IG) indicates the main audio portion of the movie and the sub-audio mixed with the main audio
  • the presentation graphics stream indicates the subtitles of the movie.
  • the main video indicates a normal video displayed on the screen
  • the sub-video is a video displayed on a small screen in the main video.
  • the interactive graphics stream indicates an interactive screen created by arranging GUI components on the screen.
  • the video stream is encoded by the moving image encoding method or apparatus shown in the above embodiments, or the moving image encoding method or apparatus conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1. ing.
  • the audio stream is encoded by a method such as Dolby AC-3, Dolby Digital Plus, MLP, DTS, DTS-HD, or linear PCM.
  • Each stream included in the multiplexed data is identified by PID. For example, 0x1011 for video streams used for movie images, 0x1100 to 0x111F for audio streams, 0x1200 to 0x121F for presentation graphics, 0x1400 to 0x141F for interactive graphics streams, 0x1B00 to 0x1B1F are assigned to video streams used for sub-pictures, and 0x1A00 to 0x1A1F are assigned to audio streams used for sub-audio mixed with the main audio.
  • FIG. 30 is a diagram schematically showing how multiplexed data is multiplexed.
  • a video stream ex235 composed of a plurality of video frames and an audio stream ex238 composed of a plurality of audio frames are converted into PES packet sequences ex236 and ex239, respectively, and converted into TS packets ex237 and ex240.
  • the data of the presentation graphics stream ex241 and interactive graphics ex244 are converted into PES packet sequences ex242 and ex245, respectively, and further converted into TS packets ex243 and ex246.
  • the multiplexed data ex247 is configured by multiplexing these TS packets into one stream.
  • FIG. 31 shows in more detail how the video stream is stored in the PES packet sequence.
  • the first row in FIG. 31 shows a video frame sequence of the video stream.
  • the second level shows a PES packet sequence.
  • a plurality of Video Presentation Units in the video stream are divided into pictures, B pictures, and P pictures and stored in the payload of the PES packet.
  • Each PES packet has a PES header, and a PTS (Presentation Time-Stamp) that is a display time of a picture and a DTS (Decoding Time-Stamp) that is a decoding time of a picture are stored in the PES header.
  • PTS Presentation Time-Stamp
  • DTS Decoding Time-Stamp
  • FIG. 32 shows the format of TS packets that are finally written in the multiplexed data.
  • the TS packet is a 188-byte fixed-length packet composed of a 4-byte TS header having information such as a PID for identifying a stream and a 184-byte TS payload for storing data.
  • the PES packet is divided and stored in the TS payload.
  • a 4-byte TP_Extra_Header is added to a TS packet, forms a 192-byte source packet, and is written in multiplexed data.
  • TP_Extra_Header information such as ATS (Arrival_Time_Stamp) is described.
  • ATS indicates the transfer start time of the TS packet to the PID filter of the decoder.
  • Source packets are arranged in the multiplexed data as shown in the lower part of FIG. 32, and the number incremented from the head of the multiplexed data is called SPN (source packet number).
  • TS packets included in the multiplexed data include PAT (Program Association Table), PMT (Program Map Table), PCR (Program Clock Reference), and the like in addition to each stream such as video / audio / caption.
  • PAT indicates what the PID of the PMT used in the multiplexed data is, and the PID of the PAT itself is registered as 0.
  • the PMT has the PID of each stream such as video / audio / subtitles included in the multiplexed data and the attribute information of the stream corresponding to each PID, and has various descriptors related to the multiplexed data.
  • the descriptor includes copy control information for instructing permission / non-permission of copying of multiplexed data.
  • the PCR corresponds to the ATS in which the PCR packet is transferred to the decoder. Contains STC time information.
  • FIG. 33 is a diagram for explaining the data structure of the PMT in detail.
  • a PMT header describing the length of data included in the PMT is arranged at the head of the PMT.
  • a plurality of descriptors related to multiplexed data are arranged.
  • the copy control information and the like are described as descriptors.
  • a plurality of pieces of stream information regarding each stream included in the multiplexed data are arranged.
  • the stream information includes a stream descriptor in which a stream type, a stream PID, and stream attribute information (frame rate, aspect ratio, etc.) are described to identify a compression codec of the stream.
  • the multiplexed data is recorded together with the multiplexed data information file.
  • the multiplexed data information file is management information of multiplexed data, has a one-to-one correspondence with the multiplexed data, and includes multiplexed data information, stream attribute information, and an entry map.
  • the multiplexed data information is composed of a system rate, a reproduction start time, and a reproduction end time.
  • the system rate indicates a maximum transfer rate of multiplexed data to a PID filter of a system target decoder described later.
  • the ATS interval included in the multiplexed data is set to be equal to or less than the system rate.
  • the playback start time is the PTS of the first video frame of the multiplexed data
  • the playback end time is set by adding the playback interval for one frame to the PTS of the video frame at the end of the multiplexed data.
  • attribute information about each stream included in the multiplexed data is registered for each PID.
  • the attribute information has different information for each video stream, audio stream, presentation graphics stream, and interactive graphics stream.
  • the video stream attribute information includes the compression codec used to compress the video stream, the resolution of the individual picture data constituting the video stream, the aspect ratio, and the frame rate. It has information such as how much it is.
  • the audio stream attribute information includes the compression codec used to compress the audio stream, the number of channels included in the audio stream, the language supported, and the sampling frequency. With information. These pieces of information are used for initialization of the decoder before the player reproduces it.
  • the stream type included in the PMT is used.
  • video stream attribute information included in the multiplexed data information is used.
  • the video encoding shown in each of the above embodiments for the stream type or video stream attribute information included in the PMT.
  • FIG. 36 shows the steps of the moving picture decoding method according to the present embodiment.
  • step exS100 the stream type included in the PMT or the video stream attribute information included in the multiplexed data information is acquired from the multiplexed data.
  • step exS101 it is determined whether or not the stream type or the video stream attribute information indicates multiplexed data generated by the moving picture encoding method or apparatus described in the above embodiments. To do.
  • step exS102 the above embodiments are performed. Decoding is performed by the moving picture decoding method shown in the form.
  • the conventional information Decoding is performed by a moving image decoding method compliant with the standard.
  • FIG. 37 shows a configuration of the LSI ex500 that is made into one chip.
  • the LSI ex500 includes elements ex501, ex502, ex503, ex504, ex505, ex506, ex507, ex508, and ex509 described below, and each element is connected via a bus ex510.
  • the power supply circuit unit ex505 is activated to an operable state by supplying power to each unit when the power supply is on.
  • the LSI ex500 when performing the encoding process, performs the microphone ex117 and the camera ex113 by the AV I / O ex509 based on the control of the control unit ex501 including the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like.
  • the AV signal is input from the above.
  • the input AV signal is temporarily stored in an external memory ex511 such as SDRAM.
  • the accumulated data is divided into a plurality of times as appropriate according to the processing amount and the processing speed and sent to the signal processing unit ex507, and the signal processing unit ex507 encodes an audio signal and / or video. Signal encoding is performed.
  • the encoding process of the video signal is the encoding process described in the above embodiments.
  • the signal processing unit ex507 further performs processing such as multiplexing the encoded audio data and the encoded video data according to circumstances, and outputs the result from the stream I / Oex 506 to the outside.
  • the output multiplexed data is transmitted to the base station ex107 or written to the recording medium ex215. It should be noted that data should be temporarily stored in the buffer ex508 so as to be synchronized when multiplexing.
  • the memory ex511 is described as an external configuration of the LSI ex500.
  • a configuration included in the LSI ex500 may be used.
  • the number of buffers ex508 is not limited to one, and a plurality of buffers may be provided.
  • the LSI ex500 may be made into one chip or a plurality of chips.
  • control unit ex501 includes the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like, but the configuration of the control unit ex501 is not limited to this configuration.
  • the signal processing unit ex507 may further include a CPU.
  • the CPU ex502 may be configured to include a signal processing unit ex507 or, for example, an audio signal processing unit that is a part of the signal processing unit ex507.
  • the control unit ex501 is configured to include a signal processing unit ex507 or a CPU ex502 having a part thereof.
  • LSI LSI
  • IC system LSI
  • super LSI ultra LSI depending on the degree of integration
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • FIG. 38 shows a configuration ex800 in the present embodiment.
  • the drive frequency switching unit ex803 sets the drive frequency high when the video data is generated by the moving image encoding method or apparatus described in the above embodiments.
  • the decoding processing unit ex801 that executes the moving picture decoding method described in each of the above embodiments is instructed to decode the video data.
  • the video data is video data compliant with the conventional standard, compared to the case where the video data is generated by the moving picture encoding method or apparatus shown in the above embodiments, Set the drive frequency low. Then, it instructs the decoding processing unit ex802 compliant with the conventional standard to decode the video data.
  • the drive frequency switching unit ex803 includes the CPU ex502 and the drive frequency control unit ex512 in FIG.
  • the decoding processing unit ex801 that executes the moving picture decoding method described in each of the above embodiments and the decoding processing unit ex802 that conforms to the conventional standard correspond to the signal processing unit ex507 in FIG.
  • the CPU ex502 identifies which standard the video data conforms to. Then, based on the signal from the CPU ex502, the drive frequency control unit ex512 sets the drive frequency. Further, based on the signal from the CPU ex502, the signal processing unit ex507 decodes the video data.
  • the identification of the video data for example, it is conceivable to use the identification information described in the third embodiment.
  • the identification information is not limited to that described in Embodiment 3, and any information that can identify which standard the video data conforms to may be used. For example, it is possible to identify which standard the video data conforms to based on an external signal that identifies whether the video data is used for a television or a disk. In some cases, identification may be performed based on such an external signal. In addition, the selection of the driving frequency in the CPU ex502 may be performed based on, for example, a lookup table in which video data standards and driving frequencies are associated with each other as shown in FIG. The look-up table is stored in the buffer ex508 or the internal memory of the LSI, and the CPU ex502 can select the drive frequency by referring to the look-up table.
  • FIG. 39 shows steps for executing the method of the present embodiment.
  • the signal processing unit ex507 acquires identification information from the multiplexed data.
  • the CPU ex502 identifies whether the video data is generated by the encoding method or apparatus described in each of the above embodiments based on the identification information.
  • the CPU ex502 sends a signal for setting the drive frequency high to the drive frequency control unit ex512. Then, the drive frequency control unit ex512 sets a high drive frequency.
  • step exS203 the CPU ex502 drives the signal for setting the drive frequency low. This is sent to the frequency control unit ex512. Then, in the drive frequency control unit ex512, the drive frequency is set to be lower than that in the case where the video data is generated by the encoding method or apparatus described in the above embodiments.
  • the power saving effect can be further enhanced by changing the voltage applied to the LSI ex500 or the device including the LSI ex500 in conjunction with the switching of the driving frequency. For example, when the drive frequency is set low, it is conceivable that the voltage applied to the LSI ex500 or the device including the LSI ex500 is set low as compared with the case where the drive frequency is set high.
  • the setting method of the driving frequency may be set to a high driving frequency when the processing amount at the time of decoding is large, and to a low driving frequency when the processing amount at the time of decoding is small. It is not limited to the method.
  • the amount of processing for decoding video data compliant with the MPEG4-AVC standard is larger than the amount of processing for decoding video data generated by the moving picture encoding method or apparatus described in the above embodiments. It is conceivable that the setting of the driving frequency is reversed to that in the case described above.
  • the method for setting the drive frequency is not limited to the configuration in which the drive frequency is lowered.
  • the voltage applied to the LSIex500 or the apparatus including the LSIex500 is set high.
  • the driving of the CPU ex502 is stopped.
  • the CPU ex502 is temporarily stopped because there is room in processing. Is also possible. Even when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in each of the above embodiments, if there is a margin for processing, the CPU ex502 is temporarily driven. It can also be stopped. In this case, it is conceivable to set the stop time shorter than in the case where the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1.
  • a plurality of video data that conforms to different standards may be input to the above-described devices and systems such as a television and a mobile phone.
  • the signal processing unit ex507 of the LSI ex500 needs to support a plurality of standards in order to be able to decode even when a plurality of video data complying with different standards is input.
  • the signal processing unit ex507 corresponding to each standard is used individually, there is a problem that the circuit scale of the LSI ex500 increases and the cost increases.
  • a decoding processing unit for executing the moving picture decoding method shown in each of the above embodiments and a decoding conforming to a standard such as MPEG-2, MPEG4-AVC, or VC-1
  • the processing unit is partly shared.
  • An example of this configuration is shown as ex900 in FIG.
  • the moving picture decoding method shown in each of the above embodiments and the moving picture decoding method compliant with the MPEG4-AVC standard are processed in processes such as entropy coding, inverse quantization, deblocking filter, and motion compensation. Some contents are common.
  • the decoding processing unit ex902 corresponding to the MPEG4-AVC standard is shared, and for the other processing content unique to the present invention not corresponding to the MPEG4-AVC standard, the dedicated decoding processing unit ex901 is used.
  • Configuration is conceivable.
  • a dedicated decoding processing unit ex901 is used for management of parameters used for inverse quantization, and other entropy codes are used. It is conceivable to share a decoding processing unit for any of the processing, deblocking filter, motion compensation, or all processing.
  • the decoding processing unit for executing the moving picture decoding method described in each of the above embodiments is shared, and the processing content specific to the MPEG4-AVC standard As for, a configuration using a dedicated decoding processing unit may be used.
  • ex1000 in FIG. 41B shows another example in which processing is partially shared.
  • a dedicated decoding processing unit ex1001 corresponding to processing content unique to the present invention
  • a dedicated decoding processing unit ex1002 corresponding to processing content specific to other conventional standards
  • a moving picture decoding method of the present invention A common decoding processing unit ex1003 corresponding to processing contents common to other conventional video decoding methods is used.
  • the dedicated decoding processing units ex1001 and ex1002 are not necessarily specialized in the processing content specific to the present invention or other conventional standards, and may be capable of executing other general-purpose processing.
  • the configuration of the present embodiment can be implemented by LSI ex500.
  • the circuit scale of the LSI is reduced, and the cost is reduced. It is possible to reduce.
  • the present invention has the effect of preventing image quality deterioration and sufficiently improving the encoding efficiency, and can be used for various purposes such as storage, transmission, and communication.
  • the present invention can be used for high-resolution information display devices and imaging devices such as televisions, digital video recorders, car navigation systems, mobile phones, digital cameras, and digital video cameras, and has high utility value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

An image encoding method that encodes image data and whereby: blocks to be encoded are quantized (S110) using a first quantization matrix when the blocks to be encoded contained in the image data are progressively scanned image data and using a second quantization matrix differing from the first quantization matrix when the blocks to be encoded are image data that has been field scanned; an encoded stream is generated (S120) by encoding the quantized encoding blocks; and at least one of either the first quantization matrix and the second quantization matrix are inserted into the encoded stream (S130).

Description

画像符号化方法、画像復号方法、画像符号化装置及び画像復号装置Image encoding method, image decoding method, image encoding device, and image decoding device
 本発明は、画像符号化方法、画像復号方法、画像符号化装置及び画像復号装置に関し、特に、量子化マトリクスを用いた量子化又は逆量子化を行う画像符号化方法、画像復号方法、画像符号化装置及び画像復号装置に関する。 The present invention relates to an image encoding method, an image decoding method, an image encoding device, and an image decoding device, and in particular, an image encoding method, an image decoding method, and an image code that perform quantization or inverse quantization using a quantization matrix. The present invention relates to an encoding device and an image decoding device.
 H.26xと称されるITU-T規格、及び、MPEG-xと称されるISO/IEC規格などに代表される従来の画像符号化方式においては、符号化対象ピクチャを予め定められた単位に分割し、その分割単位で符号化を行う。例えば、H.264/MPEG-4 AVC規格(例えば、非特許文献1参照)においては、符号化対象ピクチャを、マクロブロックと呼ばれる水平16画素、垂直16画素の単位で符号化する。 H. In a conventional image coding system represented by the ITU-T standard called 26x and the ISO / IEC standard called MPEG-x, the picture to be coded is divided into predetermined units. Encoding is performed in the division unit. For example, H.M. In the H.264 / MPEG-4 AVC standard (see, for example, Non-Patent Document 1), an encoding target picture is encoded in units of 16 horizontal pixels and 16 vertical pixels called macroblocks.
 具体的には、H.264/MPEG-4 AVC規格では、マクロブロック毎に、周波数変換、量子化、及び、エントロピー符号化を行うことで、符号化対象ピクチャを符号化する。このとき、エントロピー符号化では、量子化後のマクロブロックの係数値(画素値)を予め定められたスキャン順で符号化する。また、量子化では、量子化マトリクスを用いて高周波成分と低周波成分とで量子化ステップ(量子化幅)を変更することで、主観的な画質を向上させている。 Specifically, H. In the H.264 / MPEG-4 AVC standard, the encoding target picture is encoded by performing frequency conversion, quantization, and entropy encoding for each macroblock. At this time, in entropy coding, the coefficient values (pixel values) of the quantized macroblock are coded in a predetermined scan order. In the quantization, subjective image quality is improved by changing a quantization step (quantization width) between a high frequency component and a low frequency component using a quantization matrix.
 しかしながら、上記従来技術においては、画質の劣化の防止と符号化効率の十分な向上とを両立することができないという課題がある。 However, the above-described prior art has a problem that it is impossible to achieve both prevention of image quality deterioration and sufficient improvement in encoding efficiency.
 量子化の対象となる符号化対象ブロックは、変換サイズ、予測方法などの様々な条件に応じて適切な量子化制御用のパラメータを用いて量子化されることが好ましい。従来、変換サイズ、予測方法などに応じて量子化マトリクスを切り替えることは行われているが、符号化対象ブロックにとって、より適切な量子化制御用のパラメータを選択することが求められている。 It is preferable that an encoding target block to be quantized is quantized using appropriate quantization control parameters according to various conditions such as a transform size and a prediction method. Conventionally, the quantization matrix is switched in accordance with the transform size, the prediction method, and the like, but it is required to select a more appropriate quantization control parameter for the encoding target block.
 そこで、本発明は、上記従来の課題を解決するためになされたものであり、画質の劣化を防止するとともに、符号化効率を十分に向上させることができる画像符号化方法、画像復号方法、画像符号化装置及び画像復号装置を提供することを目的とする。 Accordingly, the present invention has been made to solve the above-described conventional problems, and is an image encoding method, an image decoding method, and an image that can prevent deterioration in image quality and sufficiently improve encoding efficiency. An object is to provide an encoding device and an image decoding device.
 上記課題を解決するため、本発明の一態様に係る画像符号化方法は、画像データを符号化する画像符号化方法であって、前記画像データに含まれる符号化対象ブロックがプログレッシブスキャンされた画像データである場合に第1量子化マトリクスを用い、前記符号化対象ブロックがフィールドスキャンされた画像データである場合に前記第1量子化マトリクスとは異なる第2量子化マトリクスを用いて、前記符号化対象ブロックを量子化し、量子化された符号化対象ブロックを符号化することで、符号化ストリームを生成し、前記第1量子化マトリクス及び前記第2量子化マトリクスの少なくとも一方を前記符号化ストリームに挿入する。 In order to solve the above problems, an image encoding method according to an aspect of the present invention is an image encoding method for encoding image data, in which an encoding target block included in the image data is progressively scanned. The first quantization matrix is used in the case of data, and the second quantization matrix different from the first quantization matrix is used in the case where the encoding target block is field scanned image data. The target block is quantized and the quantized encoding target block is encoded to generate an encoded stream, and at least one of the first quantization matrix and the second quantization matrix is converted into the encoded stream. insert.
 これにより、符号化対象ブロックがプログレッシブスキャンされた画像データであるかフィールドスキャンされた画像データであるかに応じて、利用する量子化マトリクスを切り替えるので、適切な量子化マトリクスを符号化対象ブロックの量子化に用いることができる。要するに、プログレッシブ用の量子化マトリクスとフィールドスキャン用の量子化マトリクスとの2種類の量子化マトリクスを管理しているので、適切な量子化マトリクスを用いることができる。したがって、画質の劣化を防止するとともに、符号化効率を十分に向上させることができる。 As a result, the quantization matrix to be used is switched depending on whether the encoding target block is progressively scanned image data or field scanned image data, so that an appropriate quantization matrix is changed to the encoding target block. It can be used for quantization. In short, since two types of quantization matrices, ie, a progressive quantization matrix and a field scan quantization matrix are managed, an appropriate quantization matrix can be used. Therefore, it is possible to prevent deterioration in image quality and sufficiently improve the encoding efficiency.
 また、前記挿入では、さらに、前記量子化以外の少なくとも1つの処理と兼用されるフラグであって、前記符号化対象ブロックがプログレッシブスキャンされた画像データであるかフィールドスキャンされた画像データであるかを示すフラグを前記符号化ストリームに挿入してもよい。 In the insertion, the flag is also used as at least one process other than the quantization, and whether the encoding target block is progressively scanned image data or field scanned image data. May be inserted into the encoded stream.
 これにより、量子化マトリクスを選択するために、別途専用のフラグを符号化ストリームに挿入する必要がないので、符号化効率を向上させることができる。 Thereby, it is not necessary to insert a dedicated flag separately into the encoded stream in order to select the quantization matrix, so that the encoding efficiency can be improved.
 また、前記挿入では、前記第1量子化マトリクスと前記第2量子化マトリクスとを挿入してもよい。 In the insertion, the first quantization matrix and the second quantization matrix may be inserted.
 これにより、符号化対象ブロックのスキャン方式に応じた複数種類の量子化マトリクスを符号化ストリームに挿入するので、復号側で正しく符号化ストリームを復号することができる。 Thereby, since a plurality of types of quantization matrices corresponding to the scan method of the encoding target block are inserted into the encoded stream, the encoded stream can be correctly decoded on the decoding side.
 また、前記挿入では、さらに、前記第1量子化マトリクスを補正し、補正後の第1量子化マトリクスと前記第2量子化マトリクスとの差分を算出し、算出した差分を前記符号化ストリームに挿入してもよい。 In the insertion, the first quantization matrix is further corrected, a difference between the corrected first quantization matrix and the second quantization matrix is calculated, and the calculated difference is inserted into the encoded stream. May be.
 これにより、第2量子化マトリクスではなく、差分を符号化ストリームに挿入するので、符号化効率を向上させることができる。これは、差分を符号化するのに要する符号量は、第2量子化マトリクスをそのまま符号化するのに要する符号量より少ないためである。 Thereby, since the difference is inserted into the encoded stream instead of the second quantization matrix, the encoding efficiency can be improved. This is because the amount of code required to encode the difference is less than the amount of code required to encode the second quantization matrix as it is.
 また、前記補正では、前記第1量子化マトリクスを垂直方向に2倍したマトリクスの一部を、前記補正後の第1量子化マトリクスとして生成してもよい。 In the correction, a part of the matrix obtained by doubling the first quantization matrix in the vertical direction may be generated as the corrected first quantization matrix.
 これにより、プログレッシブ用の第1量子化マトリクスから簡単にフィールドスキャン用の第2量子化マトリクスに類似する補正後のマトリクスを生成することができ、差分を小さくすることができるので、符号化効率を向上させることができる。 Thereby, a corrected matrix similar to the second quantization matrix for field scan can be easily generated from the first quantization matrix for progressive, and the difference can be reduced. Can be improved.
 また、前記量子化では、前記符号化対象ブロックがフィールドスキャンされた画像データである場合、前記第1量子化マトリクスを補正したマトリクスを、前記第2量子化マトリクスとして用いて、前記符号化対象ブロックを量子化してもよい。 In addition, in the quantization, when the encoding target block is field-scanned image data, the encoding target block is obtained by using a matrix obtained by correcting the first quantization matrix as the second quantization matrix. May be quantized.
 これにより、フィールドスキャン用の第2量子化マトリクスを符号化しなくてもよいので、符号化効率を向上させることができる。 Thereby, it is not necessary to encode the second quantization matrix for field scan, so that the encoding efficiency can be improved.
 また、本発明の一態様に係る画像復号方法は、符号化ストリームを復号する画像復号方法であって、前記符号化ストリームから第1量子化マトリクス、及び、当該第1量子化マトリクスとは異なる第2量子化マトリクスの少なくとも一方を抽出し、前記符号化ストリームを復号することで、量子化された係数を含む復号対象ブロックを取得し、前記復号対象ブロックがプログレッシブスキャンされた画像データである場合に前記第1量子化マトリクスを用い、前記復号対象ブロックがフィールドスキャンされた画像データである場合に前記第2量子化マトリクスを用いて、前記復号対象ブロックを逆量子化する。 An image decoding method according to an aspect of the present invention is an image decoding method for decoding an encoded stream, the first quantization matrix being different from the first quantization matrix and the first quantization matrix. When at least one of the two quantization matrices is extracted and the encoded stream is decoded to obtain a decoding target block including quantized coefficients, and the decoding target block is progressively scanned image data When the first quantization matrix is used and the decoding target block is field scanned image data, the decoding target block is inversely quantized using the second quantization matrix.
 これにより、復号対象ブロックがプログレッシブスキャンされた画像データであるかフィールドスキャンされた画像データであるかに応じて、利用する量子化マトリクスを切り替えるので、適切な量子化マトリクスを復号対象ブロックの量子化に用いることができる。要するに、プログレッシブ用の量子化マトリクスとフィールドスキャン用の量子化マトリクスとの2種類の量子化マトリクスを管理しているので、適切な量子化マトリクスを用いることができる。したがって、画質の劣化を防止するとともに、符号化効率を十分に向上させることができる。 As a result, the quantization matrix to be used is switched depending on whether the decoding target block is progressively scanned image data or field scanned image data, so that an appropriate quantization matrix is quantized to the decoding target block. Can be used. In short, since two types of quantization matrices, ie, a progressive quantization matrix and a field scan quantization matrix are managed, an appropriate quantization matrix can be used. Therefore, it is possible to prevent deterioration in image quality and sufficiently improve the encoding efficiency.
 また、前記抽出では、さらに、前記逆量子化以外の少なくとも1つの処理と兼用されるフラグであって、前記復号対象ブロックがプログレッシブスキャンされた画像データであるかフィールドスキャンされた画像データであるかを示すフラグを前記符号化ストリームから抽出してもよい。 In the extraction, the flag is also used as at least one process other than the inverse quantization, and whether the decoding target block is progressively scanned image data or field scanned image data. May be extracted from the encoded stream.
 これにより、量子化マトリクスを選択するために、別途専用のフラグを符号化ストリームに挿入されていなくても、他の処理に利用されるフラグを利用することができるので、符号化効率を向上させることができる。 As a result, in order to select a quantization matrix, a flag used for other processing can be used even if a dedicated flag is not inserted into the encoded stream, thereby improving encoding efficiency. be able to.
 また、前記抽出では、前記符号化ストリームから前記第1量子化マトリクスと前記第2量子化マトリクスとを抽出してもよい。 In the extraction, the first quantization matrix and the second quantization matrix may be extracted from the encoded stream.
 これにより、復号対象ブロックのスキャン方式に応じた複数種類の量子化マトリクスが符号化ストリームに挿入されているので、正しく符号化ストリームを復号することができる。 Thereby, since a plurality of types of quantization matrices corresponding to the scanning method of the decoding target block are inserted into the encoded stream, the encoded stream can be correctly decoded.
 また、前記抽出では、さらに、前記符号化ストリームから、前記第2量子化マトリクスを復元するための差分を抽出し、前記第1量子化マトリクスを補正し、補正後の第1量子化マトリクスと前記差分とを加算することで、前記第2量子化マトリクスを復元してもよい。 Further, in the extraction, a difference for restoring the second quantization matrix is further extracted from the encoded stream, the first quantization matrix is corrected, and the corrected first quantization matrix and the corrected The second quantization matrix may be restored by adding the difference.
 これにより、第2量子化マトリクスではなく、差分が符号化ストリームに挿入されているので、差分と第1量子化マトリクスとを用いて第2量子化マトリクスを復元することができ、正しく符号化ストリームを復元することができる。 Thereby, since the difference is inserted into the encoded stream instead of the second quantization matrix, the second quantization matrix can be restored using the difference and the first quantization matrix, and the encoded stream can be correctly encoded. Can be restored.
 また、前記補正では、前記第1量子化マトリクスを垂直方向に2倍したマトリクスの一部を、前記補正後の第1量子化マトリクスとして生成してもよい。 In the correction, a part of the matrix obtained by doubling the first quantization matrix in the vertical direction may be generated as the corrected first quantization matrix.
 これにより、プログレッシブ用の第1量子化マトリクスから簡単にフィールドスキャン用の第2量子化マトリクスに類似する補正後のマトリクスを生成することができ、差分を小さくすることができるので、符号化効率を向上させることができる。 Thereby, a corrected matrix similar to the second quantization matrix for field scan can be easily generated from the first quantization matrix for progressive, and the difference can be reduced. Can be improved.
 また、前記逆量子化では、前記復号対象ブロックがフィールドスキャンされた画像データである場合、前記第1量子化マトリクスを補正したマトリクスを、前記第2量子化マトリクスとして用いて、前記復号対象ブロックを逆量子化してもよい。 In the inverse quantization, when the decoding target block is field-scanned image data, a matrix obtained by correcting the first quantization matrix is used as the second quantization matrix, and the decoding target block is Inverse quantization may be performed.
 これにより、フィールドスキャン用の第2量子化マトリクスが符号化されていなくても、正しく符号化ストリームを復号することができる。 Thereby, even if the second quantization matrix for field scan is not encoded, the encoded stream can be correctly decoded.
 なお、本発明は、画像符号化方法及び画像復号方法として実現できるだけではなく、当該画像符号化方法及び画像復号方法に含まれるステップを行う処理部を備える装置として実現することもできる。また、これらステップをコンピュータに実行させるプログラムとして実現してもよい。さらに、当該プログラムを記録したコンピュータ読み取り可能なCD-ROM(Compact Disc-Read Only Memory)などの記録媒体、並びに、当該プログラムを示す情報、データ又は信号として実現してもよい。そして、それらプログラム、情報、データ及び信号は、インターネットなどの通信ネットワークを介して配信してもよい。 Note that the present invention can be realized not only as an image encoding method and an image decoding method, but also as an apparatus including a processing unit that performs steps included in the image encoding method and the image decoding method. Moreover, you may implement | achieve as a program which makes a computer perform these steps. Furthermore, it may be realized as a recording medium such as a computer-readable CD-ROM (Compact Disc-Read Only Memory) in which the program is recorded, and information, data, or a signal indicating the program. These programs, information, data, and signals may be distributed via a communication network such as the Internet.
 また、上記の各画像符号化方法及び画像復号方法に含まれるステップを行う処理部の一部又は全部は、1個のシステムLSI(Large Scale Integration:大規模集積回路)から構成されていてもよい。システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM及びRAM(Random Access Memory)などを含んで構成されるコンピュータシステムである。 A part or all of the processing units that perform the steps included in each of the image encoding methods and image decoding methods described above may be configured by one system LSI (Large Scale Integration). . The system LSI is an ultra-multifunctional LSI manufactured by integrating a plurality of components on a single chip, and specifically includes a microprocessor, ROM, RAM (Random Access Memory), and the like. Computer system.
 本発明によれば、画質の劣化を防止するとともに、符号化効率を向上させることができる。 According to the present invention, it is possible to prevent deterioration of image quality and improve encoding efficiency.
図1は、本発明の実施の形態1に係る画像符号化装置の構成の一例を示すブロック図である。FIG. 1 is a block diagram showing an example of a configuration of an image encoding device according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1に係る符号化制御部の構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of the configuration of the coding control unit according to Embodiment 1 of the present invention. 図3は、本発明の実施の形態1に係る量子化マトリクスの一例を示す図である。FIG. 3 is a diagram showing an example of the quantization matrix according to Embodiment 1 of the present invention. 図4は、本発明の実施の形態1に係る符号化ストリームの一例を示す模式図である。FIG. 4 is a schematic diagram showing an example of an encoded stream according to Embodiment 1 of the present invention. 図5は、本発明の実施の形態1に係るフィールドスキャン用の量子化マトリクスの符号化の一例を説明するための図である。FIG. 5 is a diagram for explaining an example of encoding of a field scan quantization matrix according to Embodiment 1 of the present invention. 図6は、本発明の実施の形態1に係る画像符号化装置の動作の一例を示すフローチャートである。FIG. 6 is a flowchart showing an example of the operation of the image coding apparatus according to Embodiment 1 of the present invention. 図7は、本発明の実施の形態1に係る量子化の一例を示すフローチャートである。FIG. 7 is a flowchart showing an example of quantization according to Embodiment 1 of the present invention. 図8は、本発明の実施の形態1に係る量子化マトリクスの符号化の一例を示すフローチャートである。FIG. 8 is a flowchart showing an example of quantization matrix coding according to Embodiment 1 of the present invention. 図9は、本発明の実施の形態1に係る差分マトリクスの算出の一例を示すフローチャートである。FIG. 9 is a flowchart showing an example of calculation of a difference matrix according to Embodiment 1 of the present invention. 図10は、本発明の実施の形態1に係る画像復号装置の構成の一例を示すブロック図である。FIG. 10 is a block diagram showing an example of the configuration of the image decoding apparatus according to Embodiment 1 of the present invention. 図11は、本発明の実施の形態1に係る復号制御部の構成の一例を示すブロック図である。FIG. 11 is a block diagram showing an example of the configuration of the decoding control unit according to Embodiment 1 of the present invention. 図12は、本発明の実施の形態1に係るフィールドスキャン用の量子化マトリクスの復元の一例を説明するための図である。FIG. 12 is a diagram for explaining an example of restoration of a quantization matrix for field scan according to Embodiment 1 of the present invention. 図13は、本発明の実施の形態1に係る画像復号装置の動作の一例を示すフローチャートである。FIG. 13 is a flowchart showing an example of the operation of the image decoding apparatus according to Embodiment 1 of the present invention. 図14は、本発明の実施の形態1に係る量子化マトリクスの復号の一例を示すフローチャートである。FIG. 14 is a flowchart showing an example of quantization matrix decoding according to Embodiment 1 of the present invention. 図15は、本発明の実施の形態1に係るフィールドスキャン用の量子化マトリクスの復元の一例を示すフローチャートである。FIG. 15 is a flowchart showing an example of restoration of a quantization matrix for field scan according to Embodiment 1 of the present invention. 図16は、本発明の実施の形態1に係る逆量子化の一例を示すフローチャートである。FIG. 16 is a flowchart showing an example of inverse quantization according to Embodiment 1 of the present invention. 図17は、本発明の実施の形態1の変形例に係る符号化制御部の構成の一例を示すブロック図である。FIG. 17 is a block diagram showing an example of a configuration of an encoding control unit according to a modification of the first embodiment of the present invention. 図18は、本発明の実施の形態1の変形例に係る符号化ストリームの一例を示す模式図である。FIG. 18 is a schematic diagram illustrating an example of an encoded stream according to a modification of the first embodiment of the present invention. 図19は、本発明の実施の形態1の変形例に係る量子化マトリクスの符号化の一例を示すフローチャートである。FIG. 19 is a flowchart showing an example of quantization matrix coding according to a modification of the first embodiment of the present invention. 図20は、本発明の実施の形態1の変形例に係る復号制御部の構成の一例を示すブロック図である。FIG. 20 is a block diagram showing an example of a configuration of a decoding control unit according to a modification of the first embodiment of the present invention. 図21は、本発明の実施の形態1の変形例に係る量子化マトリクスの復号の一例を示すフローチャートである。FIG. 21 is a flowchart illustrating an example of quantization matrix decoding according to the modification of the first embodiment of the present invention. 図22は、本発明の実施の形態に係る多階層ブロック構造を説明するための説明図である。FIG. 22 is an explanatory diagram for explaining a multi-layer block structure according to the embodiment of the present invention. 図23は、コンテンツ配信サービスを実現するコンテンツ供給システムの全体構成図である。FIG. 23 is an overall configuration diagram of a content supply system that implements a content distribution service. 図24は、デジタル放送用システムの全体構成図である。FIG. 24 is an overall configuration diagram of a digital broadcasting system. 図25は、テレビの構成例を示すブロック図である。FIG. 25 is a block diagram illustrating a configuration example of a television. 図26は、光ディスクである記録メディアに情報の読み書きを行う情報再生/記録部の構成例を示すブロック図である。FIG. 26 is a block diagram illustrating a configuration example of an information reproducing / recording unit that reads and writes information from and on a recording medium that is an optical disk. 図27は、光ディスクである記録メディアの構造例を示す図である。FIG. 27 is a diagram illustrating a structure example of a recording medium that is an optical disk. 図28の(a)は、携帯電話の一例を示す図である。図28の(b)は、携帯電話の構成例を示すブロック図である。FIG. 28A shows an example of a mobile phone. FIG. 28B is a block diagram illustrating a configuration example of a mobile phone. 図29は、多重化データの構成を示す図である。FIG. 29 is a diagram showing a structure of multiplexed data. 図30は、各ストリームが多重化データにおいてどのように多重化されているかを模式的に示す図である。FIG. 30 is a diagram schematically showing how each stream is multiplexed in the multiplexed data. 図31は、PESパケット列に、ビデオストリームがどのように格納されるかをさらに詳しく示した図である。FIG. 31 is a diagram showing in more detail how the video stream is stored in the PES packet sequence. 図32は、多重化データにおけるTSパケットとソースパケットの構造を示す図である。FIG. 32 is a diagram showing the structure of TS packets and source packets in multiplexed data. 図33は、PMTのデータ構成を示す図である。FIG. 33 shows the data structure of the PMT. 図34は、多重化データ情報の内部構成を示す図である。FIG. 34 shows the internal structure of multiplexed data information. 図35は、ストリーム属性情報の内部構成を示す図である。FIG. 35 shows the internal structure of stream attribute information. 図36は、映像データを識別するステップを示す図である。FIG. 36 is a diagram showing steps for identifying video data. 図37は、各実施の形態の動画像符号化方法及び動画像復号化方法を実現する集積回路の構成例を示すブロック図である。FIG. 37 is a block diagram illustrating a configuration example of an integrated circuit that realizes the moving picture coding method and the moving picture decoding method according to each embodiment. 図38は、駆動周波数を切り替える構成を示す図である。FIG. 38 is a diagram showing a configuration for switching the drive frequency. 図39は、映像データを識別し、駆動周波数を切り替えるステップを示す図である。FIG. 39 is a diagram illustrating steps for identifying video data and switching between driving frequencies. 図40は、映像データの規格と駆動周波数を対応づけたルックアップテーブルの一例を示す図である。FIG. 40 is a diagram illustrating an example of a look-up table in which video data standards are associated with drive frequencies. 図41の(a)は、信号処理部のモジュールを共有化する構成の一例を示す図である。図41の(b)は、信号処理部のモジュールを共有化する構成の他の一例を示す図である。FIG. 41A is a diagram illustrating an example of a configuration for sharing a module of the signal processing unit. FIG. 41B is a diagram illustrating another example of a configuration for sharing a module of the signal processing unit.
 以下、本発明の実施の形態に係る画像符号化方法、画像復号方法、画像符号化装置及び画像復号装置について、図面を参照しながら説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示す。つまり、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態、ステップ、ステップの順序などは、本発明の一例であり、本発明を限定する主旨ではない。本発明は、請求の範囲の記載に基づいて特定される。したがって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素は、本発明の課題を達成するために必ずしも必要ではないが、より好ましい形態を構成する構成要素として説明される。 Hereinafter, an image encoding method, an image decoding method, an image encoding device, and an image decoding device according to embodiments of the present invention will be described with reference to the drawings. Note that each of the embodiments described below shows a preferred specific example of the present invention. That is, the numerical values, shapes, materials, constituent elements, arrangement and connection forms of constituent elements, steps, order of steps, and the like shown in the following embodiments are examples of the present invention and are not intended to limit the present invention. . The present invention is specified based on the description of the scope of claims. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept of the present invention are not necessarily required to achieve the object of the present invention, but are more preferable. It is described as a component constituting the form.
 (実施の形態1)
 本発明の実施の形態1に係る画像符号化方法では、画像データに含まれる符号化対象ブロックがプログレッシブスキャンされた画像データである場合に第1量子化マトリクスを用い、符号化対象ブロックがフィールドスキャンされた画像データである場合に第2量子化マトリクスを用いて、符号化対象ブロックを量子化する。そして、量子化された符号化対象ブロックを符号化することで、符号化ストリームを生成し、第1量子化マトリクス及び第2量子化マトリクスの少なくとも一方を符号化ストリームに挿入することを特徴とする。具体的には、本実施の形態では、第1量子化マトリクスを補正し、補正後のマトリクスと第2量子化マトリクスとの差分(差分マトリクス)を算出し、第1量子化マトリクスと差分マトリクスとを符号化ストリームに挿入する。
(Embodiment 1)
In the image coding method according to Embodiment 1 of the present invention, the first quantization matrix is used when the encoding target block included in the image data is image data subjected to progressive scanning, and the encoding target block is subjected to field scanning. In the case of the image data, the encoding target block is quantized using the second quantization matrix. Then, an encoded stream is generated by encoding the quantized block to be encoded, and at least one of the first quantization matrix and the second quantization matrix is inserted into the encoded stream. . Specifically, in the present embodiment, the first quantization matrix is corrected, a difference (difference matrix) between the corrected matrix and the second quantization matrix is calculated, and the first quantization matrix and the difference matrix are calculated. Is inserted into the encoded stream.
 また、本発明の実施の形態1に係る画像復号方法は、符号化ストリームから第1量子化マトリクス及び第2量子化マトリクスの少なくとも一方を抽出し、符号化ストリームを復号することで、量子化された係数を含む復号対象ブロックを取得する。そして、復号対象ブロックがプログレッシブスキャンされた画像データである場合に第1量子化マトリクスを用い、復号対象ブロックがフィールドスキャンされた画像データである場合に第2量子化マトリクスを用いて、復号対象ブロックを逆量子化することを特徴とする。具体的には、本実施の形態では、符号化ストリームから第2量子化マトリクスを復元するための差分マトリクスを抽出し、第1量子化マトリクスを補正し、補正後の量子化マトリクスと差分マトリクスとを加算することで、第2量子化マトリクスを復元する。 In addition, the image decoding method according to Embodiment 1 of the present invention is quantized by extracting at least one of the first quantization matrix and the second quantization matrix from the encoded stream and decoding the encoded stream. The decoding target block including the obtained coefficient is acquired. Then, when the decoding target block is progressively scanned image data, the first quantization matrix is used, and when the decoding target block is field scanned image data, the second quantization matrix is used. Is characterized by inverse quantization. Specifically, in the present embodiment, a difference matrix for restoring the second quantization matrix is extracted from the encoded stream, the first quantization matrix is corrected, the corrected quantization matrix and the difference matrix are Is added to restore the second quantization matrix.
 以下では、まず、本発明の実施の形態1に係る画像符号化方法を実行する画像符号化装置の構成の一例について説明する。 Hereinafter, first, an example of the configuration of an image encoding device that executes the image encoding method according to Embodiment 1 of the present invention will be described.
 図1は、本発明の実施の形態1に係る画像符号化装置1000の構成の一例を示すブロック図である。 FIG. 1 is a block diagram showing an example of the configuration of an image coding apparatus 1000 according to Embodiment 1 of the present invention.
 画像符号化装置1000は、符号化処理部1100と、符号化制御部1200とを備える。 The image encoding apparatus 1000 includes an encoding processing unit 1100 and an encoding control unit 1200.
 符号化処理部1100は、動画像をブロック毎に符号化することによって符号化ストリームを生成する。このような符号化処理部1100は、減算器1101と、直交変換部1102と、量子化部1103と、エントロピー符号化部1104と、逆量子化部1105と、逆直交変換部1106と、加算器1107と、デブロッキングフィルタ1108と、メモリ1109と、面内予測部1110と、動き補償部1111と、動き検出部1112と、スイッチ1113とを備える。 The encoding processing unit 1100 generates an encoded stream by encoding a moving image for each block. Such an encoding processing unit 1100 includes a subtractor 1101, an orthogonal transform unit 1102, a quantization unit 1103, an entropy encoding unit 1104, an inverse quantization unit 1105, an inverse orthogonal transform unit 1106, and an adder. 1107, a deblocking filter 1108, a memory 1109, an in-plane prediction unit 1110, a motion compensation unit 1111, a motion detection unit 1112, and a switch 1113.
 減算器1101は、動画像を取得するとともに、スイッチ1113から予測画像を取得する。そして、減算器1101は、その動画像に含まれる符号化対象ブロックから予測画像を減算することによって差分画像を生成する。 The subtractor 1101 acquires a moving image and acquires a predicted image from the switch 1113. Then, the subtracter 1101 generates a difference image by subtracting the predicted image from the encoding target block included in the moving image.
 直交変換部1102は、減算器1101によって生成された差分画像に対して、例えば離散コサイン変換などの直交変換を行うことによって、その差分画像を複数の周波数係数からなる係数ブロックに変換する。量子化部1103は、その係数ブロックに含まれる各周波数係数を量子化することによって、量子化された係数ブロックを生成する。 The orthogonal transform unit 1102 performs orthogonal transform such as discrete cosine transform on the difference image generated by the subtractor 1101, thereby transforming the difference image into a coefficient block including a plurality of frequency coefficients. The quantization unit 1103 generates a quantized coefficient block by quantizing each frequency coefficient included in the coefficient block.
 エントロピー符号化部1104は、量子化部1103によって量子化された係数ブロックと、動き検出部1112によって検出された動きベクトルとをエントロピー符号化(可変長符号化)することによって符号化ストリームを生成する。 The entropy encoding unit 1104 generates an encoded stream by entropy encoding (variable length encoding) the coefficient block quantized by the quantization unit 1103 and the motion vector detected by the motion detection unit 1112. .
 逆量子化部1105は、量子化部1103によって量子化された係数ブロックを逆量子化する。逆直交変換部1106は、その逆量子化された係数ブロックに含まれる各周波数係数に対して逆離散コサイン変換などの逆直交変換を行うことによって、復号差分画像を生成する。 The inverse quantization unit 1105 performs inverse quantization on the coefficient block quantized by the quantization unit 1103. The inverse orthogonal transform unit 1106 generates a decoded difference image by performing inverse orthogonal transform such as inverse discrete cosine transform on each frequency coefficient included in the inverse quantized coefficient block.
 加算器1107は、スイッチ1113から予測画像を取得し、その予測画像と、逆直交変換部1106によって生成された復号差分画像とを加算することによって局所復号画像を生成する。 The adder 1107 acquires a predicted image from the switch 1113, and generates a local decoded image by adding the predicted image and the decoded difference image generated by the inverse orthogonal transform unit 1106.
 デブロッキングフィルタ1108は、加算器1107によって生成された局所復号画像のブロック歪みを除去し、その局所復号画像をメモリ1109に格納する。メモリ1109は、動き補償の際の参照画像として、局所復号画像を格納するためのメモリである。 The deblocking filter 1108 removes block distortion of the local decoded image generated by the adder 1107 and stores the local decoded image in the memory 1109. A memory 1109 is a memory for storing a locally decoded image as a reference image in motion compensation.
 面内予測部1110は、加算器1107によって生成された局所復号画像を用いて、符号化対象ブロックに対して面内予測を行うことによって予測画像(イントラ予測画像)を生成する。 The in-plane prediction unit 1110 generates a prediction image (intra prediction image) by performing in-plane prediction on the current block using the local decoded image generated by the adder 1107.
 動き検出部1112は、動画像に含まれる符号化対象ブロックに対して動きベクトルを検出し、その検出された動きベクトルを動き補償部1111とエントロピー符号化部1104とに出力する。 The motion detection unit 1112 detects a motion vector for the encoding target block included in the moving image, and outputs the detected motion vector to the motion compensation unit 1111 and the entropy encoding unit 1104.
 動き補償部1111は、メモリ1109に格納されている画像を参照画像として参照するとともに、動き検出部1112によって検出された動きベクトルを用いることによって、符号化対象ブロックに対して動き補償を行う。動き補償部1111は、このような動き補償を行うことで、符号化対象ブロックの予測画像(インター予測画像)を生成する。 The motion compensation unit 1111 refers to the image stored in the memory 1109 as a reference image, and performs motion compensation on the coding target block by using the motion vector detected by the motion detection unit 1112. The motion compensation unit 1111 performs such motion compensation to generate a prediction image (inter prediction image) of the encoding target block.
 スイッチ1113は、符号化対象ブロックが面内予測符号化される場合には、面内予測部1110によって生成された予測画像(イントラ予測画像)を減算器1101及び加算器1107に出力する。一方、スイッチ1113は、符号化対象ブロックが画面間予測符号化される場合には、動き補償部1111によって生成された予測画像(インター予測画像)を減算器1101及び加算器1107に出力する。 The switch 1113 outputs the prediction image (intra prediction image) generated by the intra prediction unit 1110 to the subtractor 1101 and the adder 1107 when the encoding target block is subjected to intra prediction encoding. On the other hand, the switch 1113 outputs the prediction image (inter prediction image) generated by the motion compensation unit 1111 to the subtractor 1101 and the adder 1107 when the encoding target block is subjected to inter-frame prediction encoding.
 符号化制御部1200は、符号化処理部1100を制御する。例えば、符号化制御部1200は、量子化部1103が用いる量子化制御用のパラメータを決定する。また、符号化制御部1200は、符号化対象ブロックがプログレッシブスキャンされた画像データであるかフィールドスキャンされた画像データであるかを判定する。符号化制御部1200の具体的な構成については、図2を用いて説明する。 The encoding control unit 1200 controls the encoding processing unit 1100. For example, the encoding control unit 1200 determines a quantization control parameter used by the quantization unit 1103. Also, the encoding control unit 1200 determines whether the encoding target block is progressively scanned image data or field scanned image data. A specific configuration of the encoding control unit 1200 will be described with reference to FIG.
 図2は、本発明の実施の形態1に係る符号化制御部1200の構成の一例を示すブロック図である。 FIG. 2 is a block diagram showing an example of the configuration of the encoding control unit 1200 according to Embodiment 1 of the present invention.
 符号化制御部1200は、判定部110と、メモリ120と、量子化マトリクス符号化部130と、量子化マトリクス補正部140と、差分算出部150とを備える。 The encoding control unit 1200 includes a determination unit 110, a memory 120, a quantization matrix encoding unit 130, a quantization matrix correction unit 140, and a difference calculation unit 150.
 判定部110は、符号化対象ブロックのスキャン方式を判定する。すなわち、判定部110は、符号化対象ブロックがプログレッシブスキャンされた画像データ(プログレッシブ画像)であるかフィールドスキャンされた画像データ(インターレース画像)であるかを判定する。 The determination unit 110 determines the scan method of the encoding target block. That is, the determination unit 110 determines whether the encoding target block is progressively scanned image data (progressive image) or field-scanned image data (interlaced image).
 例えば、画像符号化装置1000に入力される動画像データは、当該動画像データがプログレッシブスキャンされた画像データであるかフィールドスキャンされた画像データであるかを示すスキャン方式情報を含んでいる。判定部110は、スキャン方式情報を動画像データから取得することで、符号化対象ブロックのスキャン方式を判定する。 For example, moving image data input to the image encoding apparatus 1000 includes scan method information indicating whether the moving image data is progressively scanned image data or field scanned image data. The determination unit 110 determines the scan method of the encoding target block by acquiring the scan method information from the moving image data.
 あるいは、判定部110は、ユーザなどの指示に基づいて、符号化対象ブロックのスキャン方式を決定してもよい。 Alternatively, the determination unit 110 may determine a scan method for the encoding target block based on an instruction from a user or the like.
 なお、プログレッシブスキャンは、1枚の入力画像(1枚の画面)を1フレームとして符号化する場合のスキャン方式であり、フレーム符号化とも記載する。フィールドスキャンは、1枚の入力画像(1枚の画面)を、奇数行のみを含むトップフィールドと偶数行のみを含むボトムフィールドとに分けて符号化する場合のスキャン方式であり、フィールド符号化とも記載する。 Note that progressive scan is a scan method for encoding one input image (one screen) as one frame, and is also referred to as frame encoding. Field scan is a scan method in which one input image (one screen) is encoded by being divided into a top field including only odd lines and a bottom field including only even lines. Describe.
 メモリ120は、少なくとも1つの量子化マトリクスを記憶するためのメモリである。例えば、メモリ120は、プログレッシブスキャンされた画像データ用の第1量子化マトリクスと、フィールドスキャンされた画像データ用の第2量子化マトリクスとを記憶している。 The memory 120 is a memory for storing at least one quantization matrix. For example, the memory 120 stores a first quantization matrix for progressively scanned image data and a second quantization matrix for field scanned image data.
 なお、メモリ120は、プログレッシブスキャンされた画像データ用の量子化マトリクスとして、互いに異なる複数の第1量子化マトリクスを記憶していてもよい。同様に、メモリ120は、フィールドスキャンされた画像データ用の量子化マトリクスとして、互いに異なる複数の第2量子化マトリクスを記憶していてもよい。 Note that the memory 120 may store a plurality of first quantization matrices different from each other as a quantization matrix for progressively scanned image data. Similarly, the memory 120 may store a plurality of second quantization matrices different from each other as a quantization matrix for field-scanned image data.
 メモリ120は、判定部110による判定結果に基づいて、量子化マトリクスを量子化部1103に出力する。具体的には、メモリ120は、符号化対象ブロックがプログレッシブスキャンされた画像データである場合、第1量子化マトリクスを量子化部1103に出力する。また、メモリ120は、符号化対象ブロックがフィールドスキャンされた画像データである場合、第2量子化マトリクスを量子化部1103に出力する。 The memory 120 outputs the quantization matrix to the quantization unit 1103 based on the determination result by the determination unit 110. Specifically, the memory 120 outputs a first quantization matrix to the quantization unit 1103 when the encoding target block is progressively scanned image data. Further, the memory 120 outputs the second quantization matrix to the quantization unit 1103 when the encoding target block is field-scanned image data.
 量子化マトリクス符号化部130は、挿入部の一例であり、プログレッシブ用の量子化マトリクスを、エントロピー符号化部1104によって生成される符号化ストリームに挿入する。また、量子化マトリクス符号化部130は、差分算出部150によって算出される差分(差分マトリクス)も符号化ストリームに挿入する。差分マトリクスは、後述するように、プログレッシブ用の量子化マトリクスを補正したマトリクスと、フィールドスキャン用の量子化マトリクスとの差分である。 The quantization matrix encoding unit 130 is an example of an insertion unit, and inserts a progressive quantization matrix into the encoded stream generated by the entropy encoding unit 1104. Also, the quantization matrix encoding unit 130 inserts the difference (difference matrix) calculated by the difference calculation unit 150 into the encoded stream. As will be described later, the difference matrix is a difference between a matrix obtained by correcting a progressive quantization matrix and a field scan quantization matrix.
 量子化マトリクス補正部140は、プログレッシブ用の量子化マトリクスを補正する。例えば、量子化マトリクス補正部140は、プログレッシブ用の量子化マトリクスを垂直方向にN倍する。なお、Nは、2以上の整数であり、例えば、N=2である。 The quantization matrix correction unit 140 corrects the progressive quantization matrix. For example, the quantization matrix correction unit 140 multiplies the progressive quantization matrix N times in the vertical direction. N is an integer equal to or greater than 2, for example, N = 2.
 量子化マトリクスを垂直方向にN倍するとは、例えば、m行×n列の量子化マトリクスに含まれる係数をそれぞれ垂直方向にN個ずつ連続させることで、(m×N)行×n列のマトリクスを生成し、生成したマトリクスの一部を抽出することである。抽出されたマトリクスが、補正後の量子化マトリクスである。例えば、補正後の量子化マトリクスは、上記の(m×N)行×n列のマトリクスのうち、上部のm行×n列のマトリクスである。 The quantization matrix is multiplied by N in the vertical direction, for example, by multiplying the coefficients included in the m-row × n-column quantization matrix by N in the vertical direction, so that (m × N) rows × n columns. A matrix is generated and a part of the generated matrix is extracted. The extracted matrix is a corrected quantization matrix. For example, the corrected quantization matrix is an upper m row × n column matrix among the above (m × N) row × n column matrix.
 差分算出部150は、量子化マトリクス補正部140によって生成された補正後のマトリクスと、メモリ120に記憶されているフィールドスキャン用の量子化マトリクスとの差分(差分マトリクス)を算出する。差分マトリクスは、量子化マトリクス符号化部130に出力され、量子化マトリクス符号化部130によって、符号化ストリームに挿入される。 The difference calculation unit 150 calculates a difference (difference matrix) between the corrected matrix generated by the quantization matrix correction unit 140 and the field scan quantization matrix stored in the memory 120. The difference matrix is output to the quantization matrix encoding unit 130, and is inserted into the encoded stream by the quantization matrix encoding unit 130.
 図3は、本発明の実施の形態1に係る量子化マトリクスの一例を示す図である。 FIG. 3 is a diagram showing an example of the quantization matrix according to Embodiment 1 of the present invention.
 本発明の実施の形態1に係る符号化制御部1200は、プログレッシブ用の第1量子化マトリクスとフィールドスキャン用の第2量子化マトリクスとの少なくとも2種類の量子化マトリクスを管理している。すなわち、メモリ120は、プログレッシブ用とフィールドスキャン用との2種類の量子化マトリクスを記憶している。したがって、量子化部1103は、少なくとも2種類の量子化マトリクスから、符号化対象ブロックに応じて選択された量子化マトリクスを用いて、符号化対象ブロックを量子化する。 The encoding control unit 1200 according to Embodiment 1 of the present invention manages at least two types of quantization matrices, ie, a progressive first quantization matrix and a field scan second quantization matrix. That is, the memory 120 stores two types of quantization matrices for progressive and field scan. Therefore, the quantization unit 1103 quantizes the encoding target block using a quantization matrix selected according to the encoding target block from at least two types of quantization matrices.
 プログレッシブ用の量子化マトリクスは、左上の低周波成分から右下の高周波成分にかけて係数値が大きくなるように、係数値が定められている。図3に示すように、左上から右下を結ぶ対角線を軸として、プログレッシブ用の量子化マトリクスの係数は、線対称に配置されていることが好ましい。言い換えると、量子化マトリクスの左上から右下を結ぶ対角線より右上の係数と、左上から右下を結ぶ対角線を軸として当該右上の係数と線対称の関係にある左下の係数とが等しいことが好ましい。なお、右上の係数と左下の係数とは、必ずしも等しくなくてもよい。 In the progressive quantization matrix, the coefficient value is determined so that the coefficient value increases from the low-frequency component at the upper left to the high-frequency component at the lower right. As shown in FIG. 3, the coefficients of the progressive quantization matrix are preferably arranged symmetrically with respect to the diagonal line connecting the upper left to the lower right. In other words, it is preferable that the upper right coefficient from the diagonal line connecting the upper left to the lower right of the quantization matrix is equal to the lower left coefficient in line symmetry with the upper right coefficient about the diagonal line connecting the upper left to the lower right. . Note that the upper right coefficient and the lower left coefficient are not necessarily equal.
 フィールドスキャン用の量子化マトリクスも同様に、左上の低周波成分から右下の高周波成分にかけて係数値が大きくなるように、係数値が定められている。図3に示すように、フィールドスキャン用の量子化マトリクスの係数は、線対称に配置されていない。フィールドスキャン用の量子化マトリクスの係数は、垂直方向に相関を有している。例えば、フィールドスキャン用の量子化マトリクスでは、同じ値の係数が垂直方向に隣接している部分を含んでいる(図3の“6”、“13”など)。 Similarly, in the quantization matrix for field scan, the coefficient value is determined so that the coefficient value increases from the low frequency component at the upper left to the high frequency component at the lower right. As shown in FIG. 3, the coefficients of the quantization matrix for field scan are not arranged in line symmetry. The coefficients of the quantization matrix for field scan have a correlation in the vertical direction. For example, a quantization matrix for field scan includes a portion where coefficients having the same value are adjacent in the vertical direction (“6”, “13”, etc. in FIG. 3).
 あるいは、フィールドスキャン用の量子化マトリクスは、プログレッシブ用の量子化マトリクスを垂直方向にN倍したマトリクスの一部に同一の又は類似するマトリクスでもよい。例えば、プログレッシブ用の4×4の量子化マトリクスを垂直方向に2倍にすることで、8×4のマトリクスが生成される。そして、この8×4のマトリクスの上半分の4×4のマトリクスを、フィールドスキャン用の量子化マトリクスとして用いることができる。 Alternatively, the field scan quantization matrix may be the same or similar to a part of a matrix obtained by multiplying the progressive quantization matrix N times in the vertical direction. For example, an 8 × 4 matrix is generated by doubling a progressive 4 × 4 quantization matrix in the vertical direction. The upper half 4 × 4 matrix of this 8 × 4 matrix can be used as a quantization matrix for field scanning.
 このように、本発明の実施の形態1に係る画像符号化装置1000では、プログレッシブスキャンされた画像データの量子化に専用の第1量子化マトリクスと、フィールドスキャンされた画像データの量子化に専用の第2量子化マトリクスとを管理している。 As described above, in the image coding apparatus 1000 according to Embodiment 1 of the present invention, the first quantization matrix dedicated to the quantization of the progressively scanned image data and the quantization of the field scanned image data are dedicated. The second quantization matrix is managed.
 フィールドスキャンされた画像データは、画像データの奇数行又は偶数行のみを含むデータであり、プログレッシブスキャンされた画像データに比べて、垂直方向の高周波成分を多く含んでいる。したがって、フィールドスキャン用の第2量子化マトリクスの垂直方向の高周波成分の係数値は、プログレッシブ用の第1量子化マトリクスよりも小さくすることで、量子化によって垂直方向の高周波成分が失われないようにすることができる。 The field-scanned image data is data that includes only odd-numbered or even-numbered rows of image data, and contains more high-frequency components in the vertical direction than image data that has been progressively scanned. Accordingly, the coefficient value of the high frequency component in the vertical direction of the second quantization matrix for field scan is made smaller than that of the first quantization matrix for progressive so that the high frequency component in the vertical direction is not lost by quantization. Can be.
 よって、プログレッシブ用の量子化マトリクスと、フィールドスキャン用の量子化マトリクスとのように、スキャン方式に応じた量子化マトリクスを用意することで、符号化対象ブロックのスキャン方式に応じて適切な量子化マトリクスを量子化に利用することができる。これにより、本発明の実施の形態1に係る画像符号化装置1000によれば、画質の劣化を防止するとともに、符号化効率を向上させることができる。 Therefore, by preparing a quantization matrix corresponding to the scan method, such as a progressive quantization matrix and a field scan quantization matrix, an appropriate quantization according to the scan method of the encoding target block The matrix can be used for quantization. Thereby, according to image coding apparatus 1000 according to Embodiment 1 of the present invention, it is possible to prevent deterioration of image quality and improve coding efficiency.
 また、図3では、4×4の量子化マトリクスの例について示したが、量子化マトリクスの例はこれに限られない。例えば、符号化制御部1200は、8×8、16×16、32×32などの量子化マトリクスを管理してもよい。さらに、符号化制御部1200は、符号化対象ブロックが輝度のブロックである場合に用いる量子化マトリクスと、色差のブロックである場合に用いる量子化マトリクスとを管理してもよい。また、符号化制御部1200は、符号化対象ブロックがイントラ予測されたブロックである場合に用いる量子化マトリクスと、インター予測されたブロックである場合に用いる量子化マトリクスとを管理してもよい。 Further, although FIG. 3 shows an example of a 4 × 4 quantization matrix, the example of the quantization matrix is not limited to this. For example, the encoding control unit 1200 may manage a quantization matrix such as 8 × 8, 16 × 16, and 32 × 32. Further, the encoding control unit 1200 may manage a quantization matrix used when the encoding target block is a luminance block and a quantization matrix used when the encoding target block is a color difference block. Also, the encoding control unit 1200 may manage a quantization matrix used when the encoding target block is an intra-predicted block and a quantization matrix used when the encoding target block is an inter-predicted block.
 図4は、本発明の実施の形態1に係る符号化ストリームの一例を示す模式図である。 FIG. 4 is a schematic diagram showing an example of an encoded stream according to Embodiment 1 of the present invention.
 本発明の実施の形態1に係る画像符号化装置1000は、動画像を符号化することで符号化ストリームを生成する。符号化ストリームは、図4に示すように、SPS(Sequence Parameter Set)及びPPS(Picture Parameter Set)などのヘッダ部分と、符号化された画像データであるピクチャデータとを含んでいる。 The image encoding apparatus 1000 according to Embodiment 1 of the present invention generates an encoded stream by encoding a moving image. As shown in FIG. 4, the encoded stream includes header portions such as SPS (Sequence Parameter Set) and PPS (Picture Parameter Set), and picture data that is encoded image data.
 ピクチャデータは、さらに、スライスヘッダ(SH)と、スライスデータとを含んでいる。スライスデータは、スライスに含まれる符号化された画像データを含んでいる。なお、スライスは、ピクチャを符号化する際の処理単位の一例であり、ピクチャが分割された複数の領域に相当する。なお、スライスは、さらに、マクロブロックなどのより細かい処理単位に分割することが可能である。 The picture data further includes a slice header (SH) and slice data. The slice data includes encoded image data included in the slice. Note that a slice is an example of a processing unit when a picture is encoded, and corresponds to a plurality of areas into which a picture is divided. Note that the slice can be further divided into smaller processing units such as macroblocks.
 ヘッダ部分は、ピクチャデータを復号する際に用いられる制御情報を含んでいる。具体的には、図4に示すように、SPSは、スキャン方式判定フラグを含んでいる。つまり、符号化制御部1200は、スキャン方式判定フラグを符号化ストリームに挿入する。 The header part includes control information used when decoding picture data. Specifically, as shown in FIG. 4, the SPS includes a scan method determination flag. That is, the encoding control unit 1200 inserts a scan method determination flag into the encoded stream.
 スキャン方式判定フラグは、対象データがプログレッシブスキャンされた画像データであるかフィールドスキャンされた画像データであるかを示すフラグである。スキャン方式判定フラグは、符号化対象ブロックの量子化と、量子化以外の少なくとも1つの処理と兼用されるフラグである。例えば、スキャン方式判定フラグは、量子化マトリクスの決定、係数符号化時のスキャン方式の決定、予測モードの決定、並びに、デブロッキングフィルタ及びデノイズフィルタの決定などの処理に利用される。 The scan method determination flag is a flag indicating whether the target data is progressive scanned image data or field scanned image data. The scan method determination flag is a flag that is used in combination with quantization of the encoding target block and at least one process other than quantization. For example, the scan method determination flag is used for processing such as determination of a quantization matrix, determination of a scan method at the time of coefficient encoding, determination of a prediction mode, and determination of a deblocking filter and a denoising filter.
 スキャン方式判定フラグは、例えば、frame_mbs_only_flagを含んでいる。frame_mbs_only_flagは、対応するピクチャには、フレームのマクロブロックのみ、すなわち、プログレッシブスキャンされた画像データのみが含まれていることを示すフラグである。 The scan method determination flag includes, for example, frame_mbs_only_flag. The frame_mbs_only_flag is a flag indicating that the corresponding picture includes only the macroblock of the frame, that is, only the progressively scanned image data.
 また、frame_mbs_only_flagによって、対応するピクチャがフィールドスキャンされた画像データであることを示す場合に、スキャン方式判定フラグは、さらに、mb_adaptive_frame_field_flagを含んでもよい。mb_adaptive_frame_field_flagは、ブロック単位でフィールドスキャンとプログレッシブスキャンとの切り替えが可能であるか否かを示すフラグである。 Further, when the frame_mbs_only_flag indicates that the corresponding picture is field-scanned image data, the scan method determination flag may further include mb_adaptive_frame_field_flag. The mb_adaptive_frame_field_flag is a flag indicating whether switching between field scan and progressive scan is possible in units of blocks.
 なお、図4では、SPSにスキャン方式判定フラグが含まれる例について示したが、PPSがスキャン方式判定フラグを含んでいてもよい。また、スライスヘッダ(SH)がスキャン方式判定フラグを含んでいてもよい。 Although FIG. 4 shows an example in which the SPS includes a scan method determination flag, the PPS may include a scan method determination flag. Further, the slice header (SH) may include a scan method determination flag.
 例えば、スライスヘッダには、スキャン方式判定フラグとして、field_pic_flagが含まれている。field_pic_flagは、スライス全体がフィールド符号化(フィールドスキャン)であるかフレーム符号化(プログレッシブスキャン)であるかを示すフラグである。 For example, the slice header includes field_pic_flag as a scan method determination flag. The field_pic_flag is a flag indicating whether the entire slice is field-encoded (field scan) or frame-encoded (progressive scan).
 さらに、スライスデータに含まれるマクロブロックデータのヘッダに、スキャン方式判定フラグが含まれていてもよい。例えば、マクロブロックデータのヘッダには、スキャン方式判定フラグとして、mb_field_decoding_flagが含まれている。mb_field_decoding_flagは、ブロックがプログレッシブスキャンであるかフィールドスキャンであるかを示すフラグである。 Furthermore, a scan method determination flag may be included in the header of the macroblock data included in the slice data. For example, the header of the macroblock data includes mb_field_decoding_flag as a scan method determination flag. mb_field_decoding_flag is a flag indicating whether the block is a progressive scan or a field scan.
 また、図4に示すように、SPSは、プログレッシブ用の量子化マトリクスと、差分マトリクスとを含んでいる。差分マトリクスは、プログレッシブ用の量子化マトリクスを補正したマトリクスと、フィールドスキャン用の量子化マトリクスとの差分である。 Further, as shown in FIG. 4, the SPS includes a progressive quantization matrix and a difference matrix. The difference matrix is a difference between a matrix obtained by correcting a progressive quantization matrix and a field scan quantization matrix.
 したがって、復号側では、プログレッシブ用の量子化マトリクスと、差分マトリクスとを用いて、フィールドスキャン用の量子化マトリクスを復元することができる。後述するように、差分マトリクスは、フィールドスキャン用の量子化マトリクスよりも少ない符号量で符号化できるので、符号化効率を向上させることができる。 Therefore, on the decoding side, the quantization matrix for field scanning can be restored by using the progressive quantization matrix and the difference matrix. As will be described later, since the difference matrix can be encoded with a smaller amount of code than the field scan quantization matrix, the encoding efficiency can be improved.
 なお、図4では、SPSがプログレッシブ用の量子化マトリクスと差分マトリクスとを含む例について示したが、PPSがプログレッシブ用の量子化マトリクスと差分マトリクスとを含んでいてもよい。また、SPSがプログレッシブ用の量子化マトリクスを含み、PPSが差分マトリクスを含んでいてもよい。また、スライスヘッダ又はマクロブロックのヘッダなどが、量子化マトリクスを含んでいてもよい。 Although FIG. 4 shows an example in which the SPS includes a progressive quantization matrix and a difference matrix, the PPS may include a progressive quantization matrix and a difference matrix. Further, the SPS may include a progressive quantization matrix, and the PPS may include a difference matrix. Further, the slice header or the header of the macro block may include a quantization matrix.
 図5は、本発明の実施の形態1に係るフィールドスキャン用の量子化マトリクスの符号化の一例を説明するための図である。 FIG. 5 is a diagram for explaining an example of encoding of a quantization matrix for field scan according to Embodiment 1 of the present invention.
 量子化マトリクス補正部140は、プログレッシブ用の量子化マトリクスを補正する。例えば、量子化マトリクス補正部140は、プログレッシブ用の量子化マトリクスを垂直方向に2倍する。具体的には、図5に示すように、量子化マトリクス補正部140は、4×4のプログレッシブ用の量子化マトリクスを垂直方向に2倍することで、8×4のマトリクスを生成し、その上半分の4×4のマトリクスを補正後の量子化マトリクスとして生成する。なお、量子化マトリクス補正部140は、4×4のプログレッシブ用の量子化マトリクスの上半分の2×4のマトリクスを垂直方向に2倍することで、4×4の補正後の量子化マトリクスを生成してもよい。 The quantization matrix correction unit 140 corrects the progressive quantization matrix. For example, the quantization matrix correction unit 140 doubles the progressive quantization matrix in the vertical direction. Specifically, as illustrated in FIG. 5, the quantization matrix correction unit 140 generates an 8 × 4 matrix by doubling a 4 × 4 progressive quantization matrix in the vertical direction. The upper half 4 × 4 matrix is generated as a corrected quantization matrix. The quantization matrix correction unit 140 doubles the 2 × 4 matrix in the upper half of the 4 × 4 progressive quantization matrix in the vertical direction to obtain the 4 × 4 corrected quantization matrix. It may be generated.
 差分算出部150は、図5に示すように、補正後の量子化マトリクスとフィールドスキャン用の量子化マトリクスとの差分を算出することで、差分マトリクスを生成する。 The difference calculation unit 150 generates a difference matrix by calculating a difference between the corrected quantization matrix and the field scan quantization matrix, as shown in FIG.
 生成された差分マトリクスは、フィールドスキャン用の量子化マトリクスに比べて、ゼロ係数が多く、また、非ゼロ係数の係数値は小さくなっている。したがって、フィールドスキャン用の量子化マトリクスをそのまま符号化ストリームに挿入する場合に比べて、差分マトリクスを符号化ストリームに挿入する方が、符号化効率を向上させることができる。 The generated difference matrix has more zero coefficients and smaller coefficient values for non-zero coefficients than the quantization matrix for field scan. Therefore, it is possible to improve the encoding efficiency when the difference matrix is inserted into the encoded stream as compared with the case where the field scan quantization matrix is directly inserted into the encoded stream.
 なお、量子化マトリクス補正部140は、プログレッシブ用の量子化マトリクスを補正したが、フィールドスキャン用の量子化マトリクスを補正してもよい。そして、差分算出部150は、補正後の量子化マトリクスとプログレッシブ用の量子化マトリクスとの差分(差分マトリクス)を算出してもよい。さらに、量子化マトリクス符号化部130は、フィールドスキャン用の量子化マトリクスと差分マトリクスとを符号化ストリームに挿入する。この場合でも、符号化効率を向上させることができる。 The quantization matrix correction unit 140 corrects the progressive quantization matrix, but may correct the field scan quantization matrix. Then, the difference calculation unit 150 may calculate a difference (difference matrix) between the corrected quantization matrix and the progressive quantization matrix. Further, the quantization matrix encoding unit 130 inserts the field scan quantization matrix and the difference matrix into the encoded stream. Even in this case, encoding efficiency can be improved.
 なお、プログレッシブ用の量子化マトリクスの補正は、行われなくてもよい。すなわち、差分算出部150は、プログレッシブ用の量子化マトリクスとフィールドスキャン用の量子化マトリクスとの差分を算出してもよい。 Note that the correction of the progressive quantization matrix may not be performed. That is, the difference calculation unit 150 may calculate the difference between the progressive quantization matrix and the field scan quantization matrix.
 続いて、本発明の実施の形態1に係る画像符号化装置1000の動作の一例について説明する。 Subsequently, an example of the operation of the image coding apparatus 1000 according to Embodiment 1 of the present invention will be described.
 図6は、本発明の実施の形態1に係る画像符号化装置1000の動作の一例を示すフローチャートである。 FIG. 6 is a flowchart showing an example of the operation of the image coding apparatus 1000 according to Embodiment 1 of the present invention.
 まず、量子化部1103は、量子化マトリクスを用いて符号化対象ブロックを量子化する(S110)。具体的には、直交変換部1102は、符号化対象ブロックを直交変換することで、変換係数を生成し、量子化部1103は、量子化マトリクスを用いて、生成した変換係数を量子化する。量子化の具体的な処理については、図7を用いて後で説明する。 First, the quantization unit 1103 quantizes the encoding target block using the quantization matrix (S110). Specifically, the orthogonal transform unit 1102 generates transform coefficients by orthogonally transforming the encoding target block, and the quantization unit 1103 quantizes the generated transform coefficients using a quantization matrix. Specific processing of quantization will be described later with reference to FIG.
 このとき、量子化の対象となる符号化対象ブロックは、入力された動画像に含まれる符号化対象ブロックと、予測画像との差分画像である。なお、量子化の対象となる符号化対象ブロックは、入力された動画像に含まれる符号化対象ブロックそのものでもよい。すなわち、本発明の実施の形態1に係る画像符号化装置1000では、予測符号化を行わなくてもよい。 At this time, the encoding target block to be quantized is a difference image between the encoding target block included in the input moving image and the predicted image. Note that the encoding target block to be quantized may be the encoding target block itself included in the input moving image. That is, prediction coding may not be performed in the image coding apparatus 1000 according to Embodiment 1 of the present invention.
 次に、エントロピー符号化部1104は、量子化された符号化対象ブロックを符号化することで、符号化ストリームを生成する(S120)。 Next, the entropy encoding unit 1104 generates an encoded stream by encoding the quantized block to be encoded (S120).
 そして、符号化制御部1200は、量子化マトリクスを符号化ストリームに挿入する(S130)。また、このとき、符号化制御部1200は、スキャン方式判定フラグを符号化ストリームに挿入する。量子化マトリクスの挿入の具体的な処理については、図8を用いて後で説明する。 Then, the encoding control unit 1200 inserts the quantization matrix into the encoded stream (S130). At this time, the encoding control unit 1200 inserts a scan method determination flag into the encoded stream. A specific process of inserting the quantization matrix will be described later with reference to FIG.
 図7は、本発明の実施の形態1に係る量子化(図6のS110)の一例を示すフローチャートである。 FIG. 7 is a flowchart showing an example of quantization (S110 in FIG. 6) according to Embodiment 1 of the present invention.
 まず、判定部110は、符号化対象ブロックがフィールドスキャンされた画像データであるかプログレッシブスキャンされた画像データであるかを判定する(S111)。具体的には、判定部110は、スキャン方式情報を用いて符号化対象ブロックのスキャン方式を判定する。 First, the determination unit 110 determines whether the encoding target block is field-scanned image data or progressive-scanned image data (S111). Specifically, the determination unit 110 determines the scan method of the encoding target block using the scan method information.
 符号化対象ブロックがフィールドスキャンされた画像データである場合(S111でYes)、判定部110は、フィールドスキャン用の第2量子化マトリクスを選択する(S112)。そして、判定部110は、選択した第2量子化マトリクスを、メモリ120から量子化部1103に出力させる。 When the encoding target block is field scanned image data (Yes in S111), the determination unit 110 selects a second quantization matrix for field scanning (S112). Then, the determination unit 110 outputs the selected second quantization matrix from the memory 120 to the quantization unit 1103.
 符号化対象ブロックがプログレッシブスキャンされた画像データである場合(S111でNo)、判定部110は、プログレッシブ用の第1量子化マトリクスを選択する(S113)。そして、判定部110は、選択した第1量子化マトリクスを、メモリ120から量子化部1103に出力させる。 When the encoding target block is progressively scanned image data (No in S111), the determination unit 110 selects a progressive first quantization matrix (S113). Then, the determination unit 110 causes the memory 120 to output the selected first quantization matrix to the quantization unit 1103.
 量子化部1103は、入力された量子化マトリクスを用いて、変換係数(符号化対象ブロック)を量子化する(S114)。このようにして、量子化部1103は、符号化対象ブロックがプログレッシブスキャンされた画像データである場合に第1量子化マトリクスを用い、符号化対象ブロックがフィールドスキャンされた画像データである場合に第2量子化マトリクスを用いて、符号化対象ブロックを量子化する。 The quantization unit 1103 quantizes the transform coefficient (encoding target block) using the input quantization matrix (S114). In this way, the quantization unit 1103 uses the first quantization matrix when the encoding target block is progressively scanned image data, and uses the first quantization matrix when the encoding target block is field scanned image data. The encoding target block is quantized using the two quantization matrix.
 なお、量子化部1103は、符号化対象ブロックがフィールドスキャンされた画像データである場合に、第1量子化マトリクスを補正したマトリクス(デフォルトの量子化マトリクス)を、第2量子化マトリクスとして用いて、符号化対象ブロックを量子化することもできる。この場合、第2量子化マトリクス及び差分マトリクスを符号化する必要がなくなるので、符号化効率を向上させることができる。 Note that the quantization unit 1103 uses a matrix obtained by correcting the first quantization matrix (default quantization matrix) as the second quantization matrix when the encoding target block is field-scanned image data. The encoding target block can be quantized. In this case, since it is not necessary to encode the second quantization matrix and the difference matrix, the encoding efficiency can be improved.
 図8は、本発明の実施の形態1に係る量子化マトリクスの符号化(図6のS130)の一例を示すフローチャートである。 FIG. 8 is a flowchart showing an example of quantization matrix coding (S130 in FIG. 6) according to Embodiment 1 of the present invention.
 まず、判定部110は、符号化対象ブロックの量子化に用いた量子化マトリクスがフィールドスキャン用の第2量子化マトリクスであるか否かを判定する(S131)。なお、この判定処理は、図7に示す符号化対象ブロックのスキャン方式の判定(S111)と同じである。つまり、図7に示すスキャン方式の判定結果を利用することができる。 First, the determination unit 110 determines whether or not the quantization matrix used for quantization of the encoding target block is the second quantization matrix for field scanning (S131). This determination process is the same as the determination of the scan method for the encoding target block shown in FIG. 7 (S111). That is, the determination result of the scanning method shown in FIG. 7 can be used.
 量子化に用いた量子化マトリクスがフィールドスキャン用の第2量子化マトリクスである場合(S131でYes)、符号化制御部1200は、差分マトリクスを算出する(S132)。差分マトリクスの算出の具体例については、図9を用いて後で説明する。 When the quantization matrix used for quantization is the second quantization matrix for field scan (Yes in S131), the encoding control unit 1200 calculates a difference matrix (S132). A specific example of calculating the difference matrix will be described later with reference to FIG.
 そして、差分マトリクスの全ての係数値が0ではない場合(S133でYes)、量子化マトリクス符号化部130は、差分マトリクスを符号化する(S134)。すなわち、量子化マトリクス符号化部130は、差分マトリクスを符号化ストリームに挿入する。例えば、量子化マトリクス符号化部130は、SPS、PPS、又は、SPS及びPPSの双方に差分マトリクスを挿入する。 If all the coefficient values of the difference matrix are not 0 (Yes in S133), the quantization matrix encoding unit 130 encodes the difference matrix (S134). That is, the quantization matrix encoding unit 130 inserts the difference matrix into the encoded stream. For example, the quantization matrix encoding unit 130 inserts a difference matrix into SPS, PPS, or both SPS and PPS.
 量子化に用いた量子化マトリクスがフィールドスキャン用の第2量子化マトリクスではない場合(S131でNo)、量子化マトリクス符号化部130は、プログレッシブ用の第1量子化マトリクスを符号化する(S135)。すなわち、量子化マトリクス符号化部130は、プログレッシブ用の第1量子化マトリクスを符号化ストリームに挿入する。例えば、量子化マトリクス符号化部130は、SPS、PPS、又は、SPS及びPPSの双方に第1量子化マトリクスを挿入する。 When the quantization matrix used for quantization is not the second quantization matrix for field scan (No in S131), the quantization matrix encoding unit 130 encodes the progressive first quantization matrix (S135). ). That is, the quantization matrix encoding unit 130 inserts the progressive first quantization matrix into the encoded stream. For example, the quantization matrix encoding unit 130 inserts the first quantization matrix into SPS, PPS, or both SPS and PPS.
 図9は、本発明の実施の形態1に係る差分マトリクスの算出(図8のS132)の一例を示すフローチャートである。 FIG. 9 is a flowchart showing an example of the difference matrix calculation (S132 in FIG. 8) according to Embodiment 1 of the present invention.
 量子化マトリクス補正部140は、プログレッシブ用の量子化マトリクスを補正する(S1311)。そして、差分算出部150は、補正後の量子化マトリクスとフィールドスキャン用の量子化マトリクスとの差分を算出する(S1312)。 The quantization matrix correction unit 140 corrects the progressive quantization matrix (S1311). Then, the difference calculation unit 150 calculates the difference between the corrected quantization matrix and the field scan quantization matrix (S1312).
 以上のように、本発明の実施の形態1に係る画像符号化装置1000は、画像データに含まれる符号化対象ブロックがプログレッシブスキャンされた画像データである場合に第1量子化マトリクスを用い、符号化対象ブロックがフィールドスキャンされた画像データである場合に第2量子化マトリクスを用いて、符号化対象ブロックを量子化する。そして、量子化された符号化対象ブロックを符号化することで、符号化ストリームを生成し、第1量子化マトリクス及び第2量子化マトリクスの少なくとも一方を符号化ストリームに挿入する。要するに、本発明の実施の形態1に係る画像符号化装置1000は、プログレッシブスキャンされた画像データの量子化に専用の第1量子化マトリクスと、フィールドスキャンされた画像データの量子化に専用の第2量子化マトリクスとを管理している。 As described above, the image coding apparatus 1000 according to Embodiment 1 of the present invention uses the first quantization matrix when the encoding target block included in the image data is the progressively scanned image data. When the encoding target block is field scanned image data, the encoding target block is quantized using the second quantization matrix. Then, an encoded stream is generated by encoding the quantized block to be encoded, and at least one of the first quantization matrix and the second quantization matrix is inserted into the encoded stream. In short, the image coding apparatus 1000 according to Embodiment 1 of the present invention includes a first quantization matrix dedicated to quantization of progressively scanned image data and a first quantization matrix dedicated to quantization of field scanned image data. It manages 2 quantization matrices.
 このように、スキャン方式に応じた量子化マトリクスを用意することで、符号化対象ブロックのスキャン方式に応じて適切な量子化マトリクスを量子化に利用することができる。これにより、本発明の実施の形態1に係る画像符号化装置1000によれば、画質の劣化を防止するとともに、符号化効率を向上させることができる。 Thus, by preparing a quantization matrix corresponding to the scan method, an appropriate quantization matrix can be used for quantization according to the scan method of the block to be encoded. Thereby, according to image coding apparatus 1000 according to Embodiment 1 of the present invention, it is possible to prevent deterioration of image quality and improve coding efficiency.
 また、本発明の実施の形態1に係る画像符号化装置1000は、第1量子化マトリクスを補正し、補正後のマトリクスと第2量子化マトリクスとの差分(差分マトリクス)を算出し、第1量子化マトリクスと差分マトリクスとを符号化ストリームに挿入する。 Also, the image coding apparatus 1000 according to Embodiment 1 of the present invention corrects the first quantization matrix, calculates a difference (difference matrix) between the corrected matrix and the second quantization matrix, and first The quantization matrix and the difference matrix are inserted into the encoded stream.
 これにより、差分マトリクスは、第2量子化マトリクスより小さい符号量で符号化することができるので、第1量子化マトリクスと第2量子化マトリクスとをそれぞれ符号化する場合に比べて、符号化効率を向上させることができる。 Thereby, since the difference matrix can be encoded with a smaller code amount than the second quantization matrix, the encoding efficiency is higher than when encoding the first quantization matrix and the second quantization matrix, respectively. Can be improved.
 続いて、本発明の実施の形態1に係る画像復号装置2000の構成の一例について説明する。 Subsequently, an example of the configuration of the image decoding apparatus 2000 according to Embodiment 1 of the present invention will be described.
 図10は、本発明の実施の形態1に係る画像復号装置2000の構成の一例を示すブロック図である。 FIG. 10 is a block diagram showing an example of the configuration of the image decoding apparatus 2000 according to Embodiment 1 of the present invention.
 画像復号装置2000は、復号処理部2100と、復号制御部2200とを備える。 The image decoding apparatus 2000 includes a decoding processing unit 2100 and a decoding control unit 2200.
 復号処理部2100は、符号化ストリームをブロック毎に復号することによって復号画像を生成する。このような復号処理部2100は、エントロピー復号部2101と、逆量子化部2102と、逆直交変換部2103と、加算器2104と、デブロッキングフィルタ2105と、メモリ2106と、面内予測部2107と、動き補償部2108と、スイッチ2109とを備える。 The decoding processing unit 2100 generates a decoded image by decoding the encoded stream for each block. Such a decoding processing unit 2100 includes an entropy decoding unit 2101, an inverse quantization unit 2102, an inverse orthogonal transform unit 2103, an adder 2104, a deblocking filter 2105, a memory 2106, and an in-plane prediction unit 2107. A motion compensation unit 2108 and a switch 2109.
 エントロピー復号部2101は、符号化ストリームを取得し、その符号化ストリームをエントロピー復号(可変長復号)する。 The entropy decoding unit 2101 acquires an encoded stream and performs entropy decoding (variable length decoding) on the encoded stream.
 逆量子化部2102は、エントロピー復号部2101によるエントロピー復号によって生成された、量子化された係数ブロックを逆量子化する。逆直交変換部2103は、その逆量子化された係数ブロックに含まれる各周波数係数に対して逆離散コサイン変換などの逆直交変換を行うことによって、復号差分画像を生成する。 The inverse quantization unit 2102 inversely quantizes the quantized coefficient block generated by entropy decoding by the entropy decoding unit 2101. The inverse orthogonal transform unit 2103 generates a decoded difference image by performing inverse orthogonal transform such as inverse discrete cosine transform on each frequency coefficient included in the inverse quantized coefficient block.
 加算器2104は、スイッチ2109から予測画像を取得し、その予測画像と、逆直交変換部2103によって生成された復号差分画像とを加算することによって復号画像を生成する。 The adder 2104 obtains a predicted image from the switch 2109, and generates a decoded image by adding the predicted image and the decoded difference image generated by the inverse orthogonal transform unit 2103.
 デブロッキングフィルタ2105は、加算器2104によって生成された復号画像のブロック歪みを除去し、その復号画像をメモリ2106に格納するとともに、その復号画像を出力する。 The deblocking filter 2105 removes block distortion of the decoded image generated by the adder 2104, stores the decoded image in the memory 2106, and outputs the decoded image.
 面内予測部2107は、加算器2104によって生成された復号画像を用いて復号対象ブロックに対して面内予測を行うことによって予測画像(イントラ予測画像)を生成する。 The intra prediction unit 2107 generates a prediction image (intra prediction image) by performing intra prediction on the decoding target block using the decoded image generated by the adder 2104.
 動き補償部2108は、メモリ2106に格納されている画像を参照画像として参照するとともに、エントロピー復号部2101によるエントロピー復号によって生成された動きベクトルを用いることによって、復号対象ブロックに対して動き補償を行う。動き補償部2108は、このような動き補償によって復号対象ブロックに対する予測画像(インター予測画像)を生成する。 The motion compensation unit 2108 refers to the image stored in the memory 2106 as a reference image, and performs motion compensation on the decoding target block by using a motion vector generated by entropy decoding by the entropy decoding unit 2101. . The motion compensation unit 2108 generates a prediction image (inter prediction image) for the decoding target block through such motion compensation.
 スイッチ2109は、復号対象ブロックが面内予測符号化されている場合には、面内予測部2107によって生成された予測画像(イントラ予測画像)を加算器2104に出力する。一方、スイッチ2109は、復号対象ブロックが画面間予測符号化されている場合には、動き補償部2108によって生成された予測画像(インター予測画像)を加算器2104に出力する。 The switch 2109 outputs the prediction image (intra prediction image) generated by the intra prediction unit 2107 to the adder 2104 when the decoding target block is subjected to intra prediction encoding. On the other hand, the switch 2109 outputs the prediction image (inter prediction image) generated by the motion compensation unit 2108 to the adder 2104 when the decoding target block is subjected to inter-frame prediction encoding.
 復号制御部2200は、復号処理部2100を制御する。具体的には、復号制御部2200は、逆量子化部2102が用いる量子化制御用のパラメータを決定する。また、復号制御部2200は、復号対象ブロックがプログレッシブスキャンされた画像データであるかフィールドスキャンされた画像データであるかを判定する。復号制御部2200の具体的な構成については、図11を用いて後述する。 The decoding control unit 2200 controls the decoding processing unit 2100. Specifically, the decoding control unit 2200 determines a parameter for quantization control used by the inverse quantization unit 2102. In addition, the decoding control unit 2200 determines whether the decoding target block is progressively scanned image data or field scanned image data. A specific configuration of the decoding control unit 2200 will be described later with reference to FIG.
 図11は、本発明の実施の形態2に係る復号制御部2200の構成の一例を示すブロック図である。 FIG. 11 is a block diagram showing an example of the configuration of the decoding control unit 2200 according to Embodiment 2 of the present invention.
 復号制御部2200は、判定部210と、メモリ220と、量子化マトリクス復号部230と、量子化マトリクス補正部240と、加算部250とを備える。 The decoding control unit 2200 includes a determination unit 210, a memory 220, a quantization matrix decoding unit 230, a quantization matrix correction unit 240, and an addition unit 250.
 判定部210は、復号対象ブロックのスキャン方式を判定する。すなわち、判定部210は、復号対象ブロックがプログレッシブスキャンされた画像データ(プログレッシブ画像)であるかフィールドスキャンされた画像データ(インターレース画像)であるかを判定する。 The determination unit 210 determines the scan method of the decoding target block. That is, the determination unit 210 determines whether the decoding target block is progressively scanned image data (progressive image) or field-scanned image data (interlaced image).
 例えば、判定部210は、画像復号装置2000に入力される符号化ストリームからスキャン方式判定フラグ(図4参照)を抽出する。具体的には、エントロピー復号部2101は、符号化ストリームを可変長復号することで、スキャン方式判定フラグを取得し、判定部210に出力する。 For example, the determination unit 210 extracts a scan method determination flag (see FIG. 4) from the encoded stream input to the image decoding device 2000. Specifically, the entropy decoding unit 2101 acquires a scan method determination flag by variable-length decoding the encoded stream, and outputs the scan method determination flag to the determination unit 210.
 メモリ220は、少なくとも1つの量子化マトリクスを記憶するためのメモリである。例えば、メモリ220は、プログレッシブスキャンされた画像データ用の第1量子化マトリクスと、フィールドスキャンされた画像データ用の第2量子化マトリクスとを記憶する。これらの量子化マトリクスは、量子化マトリクス復号部230によって符号化ストリームから抽出され、メモリ220に格納される。 The memory 220 is a memory for storing at least one quantization matrix. For example, the memory 220 stores a first quantization matrix for progressively scanned image data and a second quantization matrix for field scanned image data. These quantization matrices are extracted from the encoded stream by the quantization matrix decoding unit 230 and stored in the memory 220.
 なお、メモリ220は、プログレッシブスキャンされた画像データ用の量子化マトリクスとして、互いに異なる複数の第1量子化マトリクスを記憶してもよい。同様に、メモリ220は、フィールドスキャンされた画像データ用の量子化マトリクスとして、互いに異なる複数の第2量子化マトリクスを記憶してもよい。 Note that the memory 220 may store a plurality of first quantization matrices different from each other as a quantization matrix for progressively scanned image data. Similarly, the memory 220 may store a plurality of second quantization matrices different from each other as a quantization matrix for field-scanned image data.
 メモリ220は、判定部210による判定結果に基づいて、量子化マトリクスを逆量子化部2102に出力する。具体的には、メモリ220は、復号対象ブロックがプログレッシブスキャンされた画像データである場合、第1量子化マトリクスを逆量子化部2102に出力する。また、メモリ220は、復号対象ブロックがフィールドスキャンされた画像データである場合、第2量子化マトリクスを逆量子化部2102に出力する。 The memory 220 outputs the quantization matrix to the inverse quantization unit 2102 based on the determination result by the determination unit 210. Specifically, the memory 220 outputs the first quantization matrix to the inverse quantization unit 2102 when the decoding target block is image data subjected to progressive scan. In addition, when the decoding target block is field-scanned image data, the memory 220 outputs the second quantization matrix to the inverse quantization unit 2102.
 また、メモリ220は、少なくとも1つのデフォルトの量子化マトリクスを記憶していることが好ましい。少なくとも1つのデフォルトの量子化マトリクスは、プログレッシブ用の量子化マトリクスとフィールドスキャン用の量子化マトリクスとを含んでいてもよい。あるいは、デフォルトの量子化マトリクスは、符号化ストリームから抽出されたプログレッシブ用の量子化マトリクスを補正したマトリクスでもよい。 Also, the memory 220 preferably stores at least one default quantization matrix. The at least one default quantization matrix may include a progressive quantization matrix and a field scan quantization matrix. Alternatively, the default quantization matrix may be a matrix obtained by correcting the progressive quantization matrix extracted from the encoded stream.
 量子化マトリクス復号部230は、抽出部の一例であり、プログレッシブ用の量子化マトリクスを符号化ストリームから抽出する。また、量子化マトリクス復号部230は、フィールドスキャン用の量子化マトリクスを復元するための差分(差分マトリクス)も符号化ストリームから抽出する。差分マトリクスは、上述したように、プログレッシブ用の量子化マトリクスを補正したマトリクスと、フィールドスキャン用の量子化マトリクスとの差分である。 The quantization matrix decoding unit 230 is an example of an extraction unit, and extracts a progressive quantization matrix from an encoded stream. The quantization matrix decoding unit 230 also extracts a difference (difference matrix) for restoring the quantization matrix for field scan from the encoded stream. As described above, the difference matrix is a difference between the matrix obtained by correcting the progressive quantization matrix and the field scan quantization matrix.
 量子化マトリクス補正部240は、プログレッシブ用の量子化マトリクスを補正する。具体的な処理は、量子化マトリクス補正部140と同じであるので、説明を省略する。 The quantization matrix correction unit 240 corrects the progressive quantization matrix. Since the specific processing is the same as that of the quantization matrix correction unit 140, description thereof is omitted.
 加算部250は、量子化マトリクス補正部240によって生成された補正後のマトリクスと、量子化マトリクス復号部230によって抽出された差分(差分マトリクス)とを加算することで、フィールドスキャン用の量子化マトリクスを復元する。復元されたフィールドスキャン用の量子化マトリクスは、メモリ220に格納される。 The adding unit 250 adds the corrected matrix generated by the quantization matrix correcting unit 240 and the difference (difference matrix) extracted by the quantization matrix decoding unit 230 to thereby add a quantization matrix for field scanning. To restore. The restored field scan quantization matrix is stored in the memory 220.
 図12は、本発明の実施の形態1に係るフィールドスキャン用の量子化マトリクスの復元の一例を説明するための図である。 FIG. 12 is a diagram for explaining an example of restoration of a quantization matrix for field scan according to Embodiment 1 of the present invention.
 量子化マトリクス補正部240は、プログレッシブ用の量子化マトリクスを補正する。この補正は、図5に示す量子化マトリクス補正部140の動作と同じである。具体的には、図12に示すように、量子化マトリクス補正部240は、4×4のプログレッシブ用の量子化マトリクスを垂直方向に2倍することで、8×4のマトリクスを生成し、その上半分の4×4のマトリクスを補正後の量子化マトリクスとして生成する。 The quantization matrix correction unit 240 corrects the progressive quantization matrix. This correction is the same as the operation of the quantization matrix correction unit 140 shown in FIG. Specifically, as illustrated in FIG. 12, the quantization matrix correction unit 240 generates an 8 × 4 matrix by doubling a 4 × 4 progressive quantization matrix in the vertical direction. The upper half 4 × 4 matrix is generated as a corrected quantization matrix.
 加算部250は、図12に示すように、補正後の量子化マトリクスと差分マトリクスとを加算することで、フィールドスキャン用の量子化マトリクスを復元する。差分マトリクスは、量子化マトリクス復号部230によって符号化ストリームから抽出される。 As shown in FIG. 12, the addition unit 250 restores the quantization matrix for field scan by adding the corrected quantization matrix and the difference matrix. The difference matrix is extracted from the encoded stream by the quantization matrix decoding unit 230.
 なお、量子化マトリクス補正部240は、プログレッシブ用の量子化マトリクスを補正したが、フィールドスキャン用の量子化マトリクスを補正してもよい。そして、加算部250は、補正後の量子化マトリクスと差分マトリクスとを加算することで、プログレッシブ用の量子化マトリクスを復元してもよい。このとき、量子化マトリクス復号部230は、フィールドスキャン用の量子化マトリクスと差分マトリクスとを符号化ストリームから抽出する。この場合でも、符号化効率を向上させることができる。 The quantization matrix correction unit 240 corrects the progressive quantization matrix, but may correct the field scan quantization matrix. Then, the adding unit 250 may restore the progressive quantization matrix by adding the corrected quantization matrix and the difference matrix. At this time, the quantization matrix decoding unit 230 extracts a field scan quantization matrix and a difference matrix from the encoded stream. Even in this case, encoding efficiency can be improved.
 続いて、本発明の実施の形態1に係る画像復号装置2000の動作の一例について説明する。 Subsequently, an example of the operation of the image decoding apparatus 2000 according to Embodiment 1 of the present invention will be described.
 図13は、本発明の実施の形態1に係る画像復号装置2000の動作の一例を示すフローチャートである。 FIG. 13 is a flowchart showing an example of the operation of the image decoding apparatus 2000 according to Embodiment 1 of the present invention.
 まず、復号制御部2200は、符号化ストリームから量子化マトリクスを抽出する(S210)。また、このとき、復号制御部2200は、符号化ストリームからスキャン方式判定フラグを抽出する。量子化マトリクスの抽出の具体的な処理については、図14を用いて後で説明する。 First, the decoding control unit 2200 extracts a quantization matrix from the encoded stream (S210). At this time, the decoding control unit 2200 extracts a scan method determination flag from the encoded stream. Specific processing for extracting the quantization matrix will be described later with reference to FIG.
 次に、エントロピー復号部2101は、符号化ストリームを復号することで、量子化された係数を含む復号対象ブロックを生成する(S220)。復号対象ブロックは、図1に示す量子化部1103が生成した量子化後の符号化対象ブロックに相当する。 Next, the entropy decoding unit 2101 generates a decoding target block including quantized coefficients by decoding the encoded stream (S220). The decoding target block corresponds to the quantization target block after quantization generated by the quantization unit 1103 shown in FIG.
 次に、逆量子化部2102は、量子化マトリクスを用いて復号対象ブロックを逆量子化する(S230)。つまり、逆量子化部2102は、符号化時の量子化で用いた量子化マトリクスを用いて、復号された復号対象ブロックを逆量子化する。逆量子化により生成された係数ブロックは、逆直交変換部2103によって逆直交変換され、復号差分画像に変換される。逆量子化の具体的な処理については、図16を用いて後で説明する。 Next, the inverse quantization unit 2102 inversely quantizes the decoding target block using the quantization matrix (S230). That is, the inverse quantization unit 2102 inversely quantizes the decoded block to be decoded using the quantization matrix used in the quantization at the time of encoding. The coefficient block generated by the inverse quantization is subjected to inverse orthogonal transform by the inverse orthogonal transform unit 2103 and converted into a decoded difference image. Specific processing of inverse quantization will be described later with reference to FIG.
 なお、符号化時に予測符号化が行われていない場合、逆直交変換部2103は、係数ブロックを逆直交変換することで、復号画像を生成する。すなわち、本発明の実施の形態1に係る画像復号装置2000は、予測復号を行わなくてもよい。 In addition, when predictive encoding is not performed at the time of encoding, the inverse orthogonal transform unit 2103 generates a decoded image by performing inverse orthogonal transform on the coefficient block. That is, the image decoding apparatus 2000 according to Embodiment 1 of the present invention may not perform predictive decoding.
 図14は、本発明の実施の形態1に係る量子化マトリクスの復号(図13のS210)の一例を示すフローチャートである。 FIG. 14 is a flowchart showing an example of quantization matrix decoding (S210 in FIG. 13) according to Embodiment 1 of the present invention.
 まず、判定部210は、復号対象ブロックの逆量子化に用いる量子化マトリクスがフィールドスキャン用の第2量子化マトリクスであるか否かを判定する(S211)。言い換えると、判定部210は、復号対象ブロックがフィールドスキャンされた画像データであるかプログレッシブスキャンされた画像データであるかを判定する。具体的には、判定部210は、逆量子化以外の少なくとも1つの処理と兼用されるスキャン方式判定フラグを用いて、符号化対象ブロックのスキャン方式を判定する。 First, the determination unit 210 determines whether or not the quantization matrix used for inverse quantization of the decoding target block is the second quantization matrix for field scanning (S211). In other words, the determination unit 210 determines whether the decoding target block is field-scanned image data or progressive-scanned image data. Specifically, the determination unit 210 determines the scan method of the block to be encoded using a scan method determination flag that is also used as at least one process other than inverse quantization.
 逆量子化に用いる量子化マトリクスがフィールドスキャン用の第2量子化マトリクスである場合(S211でYes)、量子化マトリクス復号部230は、符号化ストリームに差分マトリクスが含まれているか否かを判定する(S212)。差分マトリクスが含まれていない場合(S212でNo)、量子化マトリクス復号部230は、メモリ220に格納されているデフォルトの量子化マトリクスを逆量子化部2102に出力させる(S213)。例えば、メモリ220は、デフォルトの量子化マトリクスとして、プログレッシブ用の量子化マトリクスを補正したマトリクスを出力してもよい。 When the quantization matrix used for the inverse quantization is the second quantization matrix for field scan (Yes in S211), the quantization matrix decoding unit 230 determines whether or not the encoded stream includes a difference matrix. (S212). When the difference matrix is not included (No in S212), the quantization matrix decoding unit 230 causes the inverse quantization unit 2102 to output the default quantization matrix stored in the memory 220 (S213). For example, the memory 220 may output a matrix obtained by correcting the progressive quantization matrix as the default quantization matrix.
 差分マトリクスが含まれている場合(S212でYes)、量子化マトリクス復号部230は、差分マトリクスを復号する(S214)。具体的には、量子化マトリクス復号部230は、符号化ストリームから、フィールドスキャン用の第2量子化マトリクスを復元するための差分(差分マトリクス)を抽出する。 If the difference matrix is included (Yes in S212), the quantization matrix decoding unit 230 decodes the difference matrix (S214). Specifically, the quantization matrix decoding unit 230 extracts a difference (difference matrix) for restoring the second quantization matrix for field scan from the encoded stream.
 そして、復号制御部2200は、差分マトリクスとプログレッシブ用の第1量子化マトリクスとを用いて、フィールドスキャン用の第2量子化マトリクスを復元する(S215)。第2量子化マトリクスの復元の具体例については、図15を用いて後で説明する。 Then, the decoding control unit 2200 restores the second quantization matrix for field scanning using the difference matrix and the first quantization matrix for progressive (S215). A specific example of the restoration of the second quantization matrix will be described later with reference to FIG.
 逆量子化に用いる量子化マトリクスがフィールドスキャン用の第2量子化マトリクスではない場合(S211でNo)、量子化マトリクス復号部230は、プログレッシブ用の第1量子化マトリクスを復号する(S216)。具体的には、量子化マトリクス復号部230は、符号化ストリームからプログレッシブ用の第1量子化マトリクスを抽出する。 When the quantization matrix used for inverse quantization is not the second quantization matrix for field scanning (No in S211), the quantization matrix decoding unit 230 decodes the progressive first quantization matrix (S216). Specifically, the quantization matrix decoding unit 230 extracts a first quantization matrix for progressive from the encoded stream.
 図15は、本発明の実施の形態1に係るフィールドスキャン用の量子化マトリクスの復元(図14のS215)の一例を示すフローチャートである。 FIG. 15 is a flowchart showing an example of the reconstruction of the quantization matrix for field scan (S215 in FIG. 14) according to Embodiment 1 of the present invention.
 量子化マトリクス補正部240は、プログレッシブ用の量子化マトリクスを補正する(S2151)。そして、加算部250は、補正後の量子化マトリクスと差分マトリクスとを加算することで、フィールドスキャン用の第2量子化マトリクスを復元する(S2152)。 The quantization matrix correction unit 240 corrects the progressive quantization matrix (S2151). Then, the adding unit 250 restores the second quantization matrix for field scan by adding the corrected quantization matrix and the difference matrix (S2152).
 図16は、本発明の実施の形態1に係る逆量子化(S230)の一例を示すフローチャートである。 FIG. 16 is a flowchart showing an example of inverse quantization (S230) according to Embodiment 1 of the present invention.
 まず、判定部210は、復号対象ブロックがフィールドスキャンされた画像データであるかプログレッシブスキャンされた画像データであるかを判定する(S231)。なお、この判定処理は、図14に示す復号対象ブロックの逆量子化に用いる量子化マトリクスの判定(S211)と同じである。つまり、図14に示す量子化マトリクスの判定結果を利用することができる。 First, the determination unit 210 determines whether the decoding target block is field-scanned image data or progressive-scanned image data (S231). This determination process is the same as the determination of the quantization matrix used for the inverse quantization of the decoding target block shown in FIG. 14 (S211). That is, the determination result of the quantization matrix shown in FIG. 14 can be used.
 復号対象ブロックがフィールドスキャンされた画像データである場合(S231でYes)、判定部210は、フィールドスキャン用の第2量子化マトリクスを選択する(S232)。そして、判定部210は、選択した第2量子化マトリクスを、メモリ220から逆量子化部2102に出力させる。 When the decoding target block is field scanned image data (Yes in S231), the determination unit 210 selects a second quantization matrix for field scanning (S232). Then, the determination unit 210 causes the selected second quantization matrix to be output from the memory 220 to the inverse quantization unit 2102.
 なお、このとき、フィールドスキャン用の第2量子化マトリクスを復元できていない場合、すなわち、符号化ストリームに差分マトリクスが含まれていなかった場合、判定部210は、デフォルトの量子化マトリクス(S213参照)を逆量子化部2102に出力させる。デフォルトの量子化マトリクスは、例えば、プログレッシブ用の第1量子化マトリクス、又は、第1量子化マトリクスを補正したマトリクスである。 At this time, when the second quantization matrix for field scan cannot be restored, that is, when the difference stream is not included in the encoded stream, the determination unit 210 determines the default quantization matrix (see S213). ) Is output to the inverse quantization unit 2102. The default quantization matrix is, for example, a progressive first quantization matrix or a matrix obtained by correcting the first quantization matrix.
 復号対象ブロックがプログレッシブスキャンされた画像データである場合(S231でNo)、判定部210は、プログレッシブ用の第1量子化マトリクスを選択する(S233)。そして、判定部210は、選択した第1量子化マトリクスを、メモリ220から逆量子化部2102に出力させる。 When the decoding target block is progressively scanned image data (No in S231), the determination unit 210 selects a progressive first quantization matrix (S233). Then, the determination unit 210 causes the selected first quantization matrix to be output from the memory 220 to the inverse quantization unit 2102.
 逆量子化部2102は、入力された量子化マトリクスを用いて、量子化された係数を含む復号対象ブロックを逆量子化する(S234)。このようにして、逆量子化部2102は、復号対象ブロックがプログレッシブスキャンされた画像データである場合に第1量子化マトリクスを用い、復号対象ブロックがフィールドスキャンされた画像データである場合に第2量子化マトリクスを用いて、復号対象ブロックを逆量子化する。また、逆量子化部2102は、復号対象ブロックがフィールドスキャンされた画像データである場合に、第1量子化マトリクスを補正したマトリクス(デフォルトの量子化マトリクス)を、第2量子化マトリクスとして用いて、復号対象ブロックを逆量子化することもできる。 The inverse quantization unit 2102 uses the input quantization matrix to inversely quantize the decoding target block including the quantized coefficients (S234). In this way, the inverse quantization unit 2102 uses the first quantization matrix when the decoding target block is progressively scanned image data, and the second quantization unit when the decoding target block is field scanned image data. The block to be decoded is inversely quantized using the quantization matrix. Further, when the decoding target block is field-scanned image data, the inverse quantization unit 2102 uses a matrix obtained by correcting the first quantization matrix (default quantization matrix) as the second quantization matrix. The decoding target block can be inversely quantized.
 以上のように、本発明の実施の形態1に係る画像復号装置2000は、符号化ストリームから第1量子化マトリクス及び第2量子化マトリクスの少なくとも一方を抽出し、符号化ストリームを復号することで、量子化された係数を含む復号対象ブロックを取得する。そして、復号対象ブロックがプログレッシブスキャンされた画像データである場合に第1量子化マトリクスを用い、復号対象ブロックがフィールドスキャンされた画像データである場合に第2量子化マトリクスを用いて、復号対象ブロックを逆量子化する。要するに、本発明の実施の形態1に係る画像復号装置2000は、プログレッシブスキャンされた画像データの逆量子化に専用の第1量子化マトリクスと、フィールドスキャンされた画像データの逆量子化に専用の第2量子化マトリクスとを管理している。 As described above, the image decoding apparatus 2000 according to Embodiment 1 of the present invention extracts at least one of the first quantization matrix and the second quantization matrix from the encoded stream, and decodes the encoded stream. Then, a decoding target block including the quantized coefficient is obtained. Then, when the decoding target block is progressively scanned image data, the first quantization matrix is used, and when the decoding target block is field scanned image data, the second quantization matrix is used. Is dequantized. In short, the image decoding apparatus 2000 according to Embodiment 1 of the present invention includes a first quantization matrix dedicated to inverse quantization of progressive scanned image data and a dedicated dedicated to inverse quantization of field scanned image data. The second quantization matrix is managed.
 このように、スキャン方式に応じた量子化マトリクスを用意することで、復号対象ブロックのスキャン方式に応じて適切な量子化マトリクスを逆量子化に利用することができる。これにより、本発明の実施の形態1に係る画像復号装置2000によれば、スキャン方式に応じて適応的に選択された量子化マトリクスを用いて符号化された符号化ストリームを正しく復号することができる。よって、画質の劣化を防止するとともに、符号化効率を向上させることができる。 Thus, by preparing a quantization matrix corresponding to the scan method, an appropriate quantization matrix can be used for inverse quantization according to the scan method of the decoding target block. Thereby, according to the image decoding apparatus 2000 which concerns on Embodiment 1 of this invention, the encoding stream encoded using the quantization matrix adaptively selected according to the scanning system can be decoded correctly. it can. Therefore, it is possible to prevent deterioration in image quality and improve encoding efficiency.
 また、本発明の実施の形態2に係る画像復号装置2000は、符号化ストリームから第2量子化マトリクスを復元するための差分マトリクスを抽出し、第1量子化マトリクスを補正し、補正後の量子化マトリクスと差分マトリクスとを加算することで、第2量子化マトリクスを復元する。 In addition, the image decoding apparatus 2000 according to Embodiment 2 of the present invention extracts a difference matrix for restoring the second quantization matrix from the encoded stream, corrects the first quantization matrix, and corrects the corrected quantum. The second quantization matrix is restored by adding the quantization matrix and the difference matrix.
 これにより、差分マトリクスは、第2量子化マトリクスより小さい符号量で符号化することができるので、第1量子化マトリクスと第2量子化マトリクスとをそれぞれ符号化する場合に比べて、符号化効率を向上させることができる。 Thereby, since the difference matrix can be encoded with a smaller code amount than the second quantization matrix, the encoding efficiency is higher than when encoding the first quantization matrix and the second quantization matrix, respectively. Can be improved.
 続いて、本発明の実施の形態1の変形例について説明する。 Subsequently, a modification of the first embodiment of the present invention will be described.
 本発明の実施の形態1の変形例に係る画像符号化装置は、プログレッシブ用の第1量子化マトリクスと、フィールドスキャン用の第2量子化マトリクスとをそのまま符号化ストリームに挿入する。つまり、実施の形態1のように差分マトリクスを符号化する場合に比べて符号量は増加するが、差分マトリクスの算出に要する処理量を削減することができる。 The image encoding apparatus according to the modification of the first embodiment of the present invention inserts the progressive first quantization matrix and the field scan second quantization matrix into the encoded stream as they are. That is, the amount of code increases as compared to the case of encoding the difference matrix as in the first embodiment, but the amount of processing required to calculate the difference matrix can be reduced.
 本発明の実施の形態1の変形例に係る画像符号化装置の構成は、実施の形態1に係る図1の画像符号化装置1000とほぼ同様であるので、同じ点については説明を省略し、異なる点を中心に説明する。本発明の実施の形態1の変形例に係る画像符号化装置は、実施の形態1に係る画像符号化装置1000と比較して、符号化制御部1200の代わりに、図17に示す符号化制御部300を備える点が異なっている。 The configuration of the image coding apparatus according to the modification of the first embodiment of the present invention is substantially the same as that of the image coding apparatus 1000 of FIG. The difference will be mainly described. The image coding apparatus according to the modification of the first embodiment of the present invention is different from the image coding apparatus 1000 according to the first embodiment in that the coding control illustrated in FIG. 17 is used instead of the coding control unit 1200. The difference is that the unit 300 is provided.
 図17は、本発明の実施の形態1の変形例に係る符号化制御部300の構成の一例を示すブロック図である。図17に示すように、符号化制御部300は、判定部110と、メモリ120と、量子化マトリクス符号化部330とを備える。なお、判定部110及びメモリ120は、実施の形態1と同様であるので、以下では説明を省略する。 FIG. 17 is a block diagram showing an example of the configuration of the encoding control unit 300 according to the modification of the first embodiment of the present invention. As illustrated in FIG. 17, the encoding control unit 300 includes a determination unit 110, a memory 120, and a quantization matrix encoding unit 330. The determination unit 110 and the memory 120 are the same as those in the first embodiment, and thus the description thereof will be omitted below.
 量子化マトリクス符号化部330は、挿入部の一例であり、プログレッシブ用の量子化マトリクスと、フィールドスキャン用の量子化マトリクスとを、エントロピー符号化部1104によって生成される符号化ストリームに挿入する。 The quantization matrix encoding unit 330 is an example of an insertion unit, and inserts a progressive quantization matrix and a field scan quantization matrix into an encoded stream generated by the entropy encoding unit 1104.
 図18は、本発明の実施の形態1の変形例に係る符号化ストリームの一例を示す模式図である。図4に示す符号化ストリームと比較して、SPSには、差分マトリクスの代わりに、フィールドスキャン用の量子化マトリクスが含まれている。 FIG. 18 is a schematic diagram showing an example of an encoded stream according to a modification of the first embodiment of the present invention. Compared to the encoded stream shown in FIG. 4, the SPS includes a field scan quantization matrix instead of the difference matrix.
 なお、実施の形態1と同様に、PPSがプログレッシブ用の量子化マトリクスとフィールドスキャン用の量子化マトリクスとを含んでいてもよい。また、スライスヘッダ又はマクロブロックのヘッダなどが、量子化マトリクスを含んでいてもよい。 As in the first embodiment, the PPS may include a progressive quantization matrix and a field scan quantization matrix. Further, the slice header or the header of the macro block may include a quantization matrix.
 続いて、本発明の実施の形態1の変形例に係る画像符号化装置の動作の一例について説明する。本発明の実施の形態1の変形例に係る画像符号化装置の動作は、実施の形態1に係る画像符号化装置1000の動作とほぼ同様であり、図6のフローチャートに示す通りである。本発明の実施の形態1の変形例に係る画像符号化装置の動作は、量子化マトリクスの符号化(図6のS130)が、実施の形態1に係る画像符号化装置1000の動作と異なっている。 Subsequently, an example of the operation of the image coding apparatus according to the modification of the first embodiment of the present invention will be described. The operation of the image coding apparatus according to the modification of the first embodiment of the present invention is substantially the same as the operation of the image coding apparatus 1000 according to the first embodiment, as shown in the flowchart of FIG. The operation of the image coding apparatus according to the modification of the first embodiment of the present invention is different from the operation of the image coding apparatus 1000 according to the first embodiment in the coding of the quantization matrix (S130 in FIG. 6). Yes.
 図19は、本発明の実施の形態1の変形例に係る量子化マトリクスの符号化(図6のS130)の一例を示すフローチャートである。 FIG. 19 is a flowchart showing an example of quantization matrix coding (S130 in FIG. 6) according to a modification of the first embodiment of the present invention.
 まず、判定部110は、符号化対象ブロックの量子化に用いた量子化マトリクスがフィールドスキャン用の第1量子化マトリクスであるか否かを判定する(S331)。なお、この判定処理は、図7に示す符号化対象ブロックのスキャン方式の判定(S111)と同じである。つまり、図7に示すスキャン方式の判定結果を利用することができる。 First, the determination unit 110 determines whether or not the quantization matrix used for quantization of the encoding target block is the first quantization matrix for field scanning (S331). This determination process is the same as the determination of the scan method for the encoding target block shown in FIG. 7 (S111). That is, the determination result of the scanning method shown in FIG. 7 can be used.
 量子化に用いた量子化マトリクスがフィールドスキャン用の第2量子化マトリクスである場合(S331でYes)、量子化マトリクス符号化部330は、フィールドスキャン用の第2量子化マトリクスを符号化する(S332)。すなわち、量子化マトリクス符号化部330は、フィールドスキャン用の第2量子化マトリクスを、エントロピー符号化部1104によって生成された符号化ストリームに挿入する。 When the quantization matrix used for quantization is the second quantization matrix for field scan (Yes in S331), the quantization matrix encoding unit 330 encodes the second quantization matrix for field scan ( S332). That is, the quantization matrix encoding unit 330 inserts the second quantization matrix for field scanning into the encoded stream generated by the entropy encoding unit 1104.
 量子化に用いた量子化マトリクスがプログレッシブ用の第1量子化マトリクスである場合(S331でNo)、量子化マトリクス符号化部330は、プログレッシブ用の第1量子化マトリクスを符号化する(S333)。すなわち、量子化マトリクス符号化部330は、プログレッシブ用の第1量子化マトリクスを、エントロピー符号化部1104によって生成された符号化ストリームに挿入する。 When the quantization matrix used for the quantization is the progressive first quantization matrix (No in S331), the quantization matrix encoding unit 330 encodes the progressive first quantization matrix (S333). . That is, the quantization matrix encoding unit 330 inserts the first quantization matrix for progressive use into the encoded stream generated by the entropy encoding unit 1104.
 以上のように、本発明の実施の形態1の変形例に係る画像符号化装置は、プログレッシブ用の第1量子化マトリクスと、フィールドスキャン用の第2量子化マトリクスとをそのまま符号化ストリームに挿入する。つまり、実施の形態1のように差分マトリクスを符号化する場合に比べて符号量は増加するが、差分マトリクスの算出に要する処理量を削減することができる。 As described above, the image coding apparatus according to the modification of Embodiment 1 of the present invention inserts the progressive first quantization matrix and the field scan second quantization matrix into the coded stream as they are. To do. That is, the amount of code increases as compared to the case of encoding the difference matrix as in the first embodiment, but the amount of processing required to calculate the difference matrix can be reduced.
 本発明の実施の形態1の変形例に係る画像復号装置は、符号化ストリームから、プログレッシブ用の第1量子化マトリクスと、フィールドスキャン用の第2量子化マトリクスとを抽出する。 The image decoding apparatus according to the modification of the first embodiment of the present invention extracts the first quantization matrix for progressive and the second quantization matrix for field scan from the encoded stream.
 本発明の実施の形態1の変形例に係る画像復号装置の構成は、実施の形態1に係る図10の画像復号装置2000とほぼ同様であるので、同じ点については説明を省略し、異なる点を中心に説明する。本発明の実施の形態1の変形例に係る画像復号装置は、実施の形態1に係る画像復号装置2000と比較して、復号制御部2200の代わりに、図20に示す復号制御部400を備える点が異なっている。 The configuration of the image decoding apparatus according to the modification of the first embodiment of the present invention is substantially the same as that of the image decoding apparatus 2000 of FIG. The explanation will be focused on. Compared with the image decoding apparatus 2000 according to the first embodiment, the image decoding apparatus according to the modification of the first embodiment of the present invention includes a decoding control unit 400 illustrated in FIG. 20 instead of the decoding control unit 2200. The point is different.
 図20は、本発明の実施の形態1の変形例に係る復号制御部400の構成の一例を示すブロック図である。図20に示すように、復号制御部400は、判定部210と、メモリ220と、量子化マトリクス復号部430とを備える。なお、判定部210及びメモリ220は、実施の形態1と同様であるので、以下では説明を省略する。 FIG. 20 is a block diagram showing an example of the configuration of the decoding control unit 400 according to the modification of the first embodiment of the present invention. As illustrated in FIG. 20, the decoding control unit 400 includes a determination unit 210, a memory 220, and a quantization matrix decoding unit 430. The determination unit 210 and the memory 220 are the same as those in the first embodiment, and thus the description thereof will be omitted below.
 量子化マトリクス復号部430は、抽出部の一例であり、符号化ストリームからプログレッシブ用の量子化マトリクスと、フィールドスキャン用の量子化マトリクスとを抽出する。 The quantization matrix decoding unit 430 is an example of an extraction unit, and extracts a progressive quantization matrix and a field scan quantization matrix from the encoded stream.
 続いて、本発明の実施の形態1の変形例に係る画像復号装置の動作の一例について説明する。本発明の実施の形態1の変形例に係る画像復号装置の動作は、実施の形態1に係る画像復号装置2000とほぼ同様であり、図13のフローチャートに示す通りである。本発明の実施の形態1の変形例に係る画像復号装置の動作は、量子化マトリクスの復号(図13のS210)が、実施の形態1に係る画像復号装置2000の動作と異なっている。 Subsequently, an example of the operation of the image decoding apparatus according to the modification of the first embodiment of the present invention will be described. The operation of the image decoding apparatus according to the modification of the first embodiment of the present invention is substantially the same as that of the image decoding apparatus 2000 according to the first embodiment, as shown in the flowchart of FIG. The operation of the image decoding apparatus according to the modification of the first embodiment of the present invention is different from the operation of the image decoding apparatus 2000 according to the first embodiment in the decoding of the quantization matrix (S210 in FIG. 13).
 図21は、本発明の実施の形態1の変形例に係る量子化マトリクスの復号(図13のS210)の一例を示すフローチャートである。 FIG. 21 is a flowchart showing an example of quantization matrix decoding (S210 in FIG. 13) according to a modification of the first embodiment of the present invention.
 まず、判定部210は、復号対象ブロックの逆量子化に用いる量子化マトリクスがフィールドスキャン用の第2量子化マトリクスであるか否かを判定する(S411)。言い換えると、判定部210は、復号対象ブロックがフィールドスキャンされた画像データであるかプログレッシブスキャンされた画像データであるかを判定する。具体的には、判定部210は、スキャン方式判定フラグを用いて、復号対象ブロックのスキャン方式を判定する。 First, the determination unit 210 determines whether or not the quantization matrix used for inverse quantization of the decoding target block is the second quantization matrix for field scanning (S411). In other words, the determination unit 210 determines whether the decoding target block is field-scanned image data or progressive-scanned image data. Specifically, the determination unit 210 determines the scan method of the decoding target block using the scan method determination flag.
 逆量子化に用いる量子化マトリクスがフィールドスキャン用の第2量子化マトリクスである場合(S411でYes)、量子化マトリクス復号部430は、符号化ストリームにマトリクスの係数値が含まれているか否かを判定する(S412)。マトリクスの係数値が含まれていない場合(S412でNo)、量子化マトリクス復号部430は、メモリ220に格納されているデフォルトの量子化マトリクスを逆量子化部2102に出力させる(S413)。例えば、メモリ220は、デフォルトの量子化マトリクスとして、プログレッシブ用の量子化マトリクスを補正したマトリクスを出力してもよい。 When the quantization matrix used for inverse quantization is the second quantization matrix for field scan (Yes in S411), the quantization matrix decoding unit 430 determines whether or not the coefficient value of the matrix is included in the encoded stream. Is determined (S412). If the matrix coefficient value is not included (No in S412), the quantization matrix decoding unit 430 causes the inverse quantization unit 2102 to output the default quantization matrix stored in the memory 220 (S413). For example, the memory 220 may output a matrix obtained by correcting the progressive quantization matrix as the default quantization matrix.
 マトリクスの係数値が含まれている場合(S412でYes)、量子化マトリクス復号部430は、フィールドスキャン用の量子化マトリクスを復号する(S414)。具体的には、量子化マトリクス復号部430は、符号化ストリームから、フィールドスキャン用の第2量子化マトリクスを抽出する。 When the matrix coefficient value is included (Yes in S412), the quantization matrix decoding unit 430 decodes the quantization matrix for field scan (S414). Specifically, the quantization matrix decoding unit 430 extracts a second quantization matrix for field scan from the encoded stream.
 逆量子化に用いる量子化マトリクスがフィールドスキャン用の第2量子化マトリクスではない場合(S411でNo)、量子化マトリクス復号部430は、プログレッシブ用の第1量子化マトリクスを復号する(S415)。具体的には、量子化マトリクス復号部430は、符号化ストリームからプログレッシブ用の第1量子化マトリクスを抽出する。 When the quantization matrix used for inverse quantization is not the second quantization matrix for field scan (No in S411), the quantization matrix decoding unit 430 decodes the progressive first quantization matrix (S415). Specifically, the quantization matrix decoding unit 430 extracts a first quantization matrix for progressive from the encoded stream.
 以上のように、本発明の実施の形態1の変形例に係る画像復号装置は、プログレッシブ用の第1量子化マトリクスと、フィールドスキャン用の第2量子化マトリクスとがそのまま挿入された符号化ストリームを復号する。つまり、実施の形態1のように差分マトリクスを符号化する場合に比べて符号量は増加するが、差分マトリクスの算出に要する処理量を削減することができる。 As described above, the image decoding apparatus according to the modification of the first embodiment of the present invention is an encoded stream in which the first quantization matrix for progressive and the second quantization matrix for field scan are inserted as they are. Is decrypted. That is, the amount of code increases as compared to the case of encoding the difference matrix as in the first embodiment, but the amount of processing required to calculate the difference matrix can be reduced.
 以上、本発明に係る画像符号化装置、画像復号装置、画像符号化方法及び画像復号方法について、実施の形態に基づいて説明したが、本発明は、上記及び後述する実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を当該実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。 As described above, the image encoding device, the image decoding device, the image encoding method, and the image decoding method according to the present invention have been described based on the embodiments. However, the present invention is limited to the embodiments described above and below. It is not a thing. Unless it deviates from the meaning of this invention, the form which carried out the various deformation | transformation which those skilled in the art can think to the said embodiment, and the form constructed | assembled combining the component in a different embodiment is also contained in the scope of the present invention. .
 例えば、上記の各実施の形態では、プログレッシブ用の量子化マトリクスとフィールドスキャン用の量子化マトリクスとのように、スキャン方式に応じて2種類の量子化マトリクスを管理したが、他の量子化制御用のパラメータをスキャン方式に応じて管理してもよい。他の量子化制御用のパラメータには、例えば、量子化オフセット、量子化パラメータ、及び、量子化マトリクスインデックスがある。 For example, in each of the above-described embodiments, two types of quantization matrices are managed according to the scanning method, such as a progressive quantization matrix and a field scan quantization matrix. Parameters may be managed according to the scanning method. Other quantization control parameters include, for example, a quantization offset, a quantization parameter, and a quantization matrix index.
 具体的には、メモリ120は、プログレッシブ用の第1量子化オフセットと、フィールドスキャン用の第2量子化オフセットとを記憶している。そして、判定部110は、スキャン方式情報に基づいて、符号化対象ブロックがプログレッシブスキャンされた画像データであるかフィールドスキャンされた画像データであるかを判定し、判定結果に基づいて、メモリ120は、第1量子化オフセット及び第2量子化オフセットのいずれかを量子化部1103に出力すればよい。 Specifically, the memory 120 stores a first quantization offset for progressive and a second quantization offset for field scan. Then, the determination unit 110 determines whether the encoding target block is progressively scanned image data or field scanned image data based on the scan method information, and based on the determination result, the memory 120 Any one of the first quantization offset and the second quantization offset may be output to the quantization unit 1103.
 また、本発明の実施の形態に係る画像符号化装置及び画像復号装置は、量子化オフセットを符号化する際に、量子化マトリクスと同様に補正してもよい。これにより、量子化オフセットの符号化に必要な符号量を少なくすることができるので、符号化効率をさらに向上させることができる。 Further, the image encoding device and the image decoding device according to the embodiment of the present invention may correct the quantization offset in the same manner as the quantization matrix. As a result, the amount of code required for encoding the quantization offset can be reduced, so that the encoding efficiency can be further improved.
 また、本発明の実施の形態に係る画像符号化装置及び画像復号装置は、プログレッシブスキャンされた画像データ用の量子化マトリクスとして、互いに異なる複数の第1量子化マトリクスを管理していてもよい。同様に、フィールドスキャンされた画像データ用の量子化マトリクスとして、互いに異なる複数の第2量子化マトリクスを記憶していてもよい。 Also, the image encoding device and the image decoding device according to the embodiment of the present invention may manage a plurality of different first quantization matrices as quantization matrices for progressively scanned image data. Similarly, a plurality of different second quantization matrices may be stored as a quantization matrix for field-scanned image data.
 この場合、本発明の実施の形態に係る画像符号化装置及び画像復号装置は、フィールドスキャン用の複数の第2量子化マトリクスのそれぞれに対応するフィールドスキャン用インデックス(例えば、0、1、2)を管理する。同様に、本発明の実施の形態に係る画像符号化装置及び画像復号装置は、プログレッシブ用の複数の第1量子化マトリクスのそれぞれに対応するプログレッシブ用インデックス(例えば、3、4、5)を管理する。画像符号化装置がこれらのインデックスを符号化ストリームに挿入することで、画像復号装置は、正しく符号化ストリームを復号することができる。 In this case, the image encoding device and the image decoding device according to the embodiment of the present invention each have a field scan index (for example, 0, 1, 2) corresponding to each of the plurality of second quantization matrices for field scan. Manage. Similarly, the image encoding device and the image decoding device according to the embodiment of the present invention manage progressive indexes (for example, 3, 4, 5) corresponding to each of a plurality of progressive first quantization matrices. To do. When the image encoding device inserts these indexes into the encoded stream, the image decoding device can correctly decode the encoded stream.
 さらに、符号化対象ブロック(復号対象ブロック)がフィールドスキャンされた画像データである場合に、プログレッシブ用のインデックスを利用してもよい。つまり、本発明の実施の形態に係る第1量子化マトリクスは、プログレッシブスキャンされた画像データに専用でなくてもよい。同様に、本発明の実施の形態に係る第2量子化マトリクスは、フィールドスキャンされた画像データに専用でなくてもよい。 Furthermore, when the encoding target block (decoding target block) is field-scanned image data, a progressive index may be used. That is, the first quantization matrix according to the embodiment of the present invention may not be dedicated to progressively scanned image data. Similarly, the second quantization matrix according to the embodiment of the present invention may not be dedicated to field scanned image data.
 言い換えると、符号化対象ブロック(復号対象ブロック)がフィールドスキャンされた画像データである場合、第2量子化マトリクスが第1量子化マトリクスより優先させてもよい。具体的には、第2量子化マトリクスのインデックスを第1量子化マトリクスのインデックスより小さな値を割り当てる。例えば、フィールドスキャン用の第2量子化マトリクスに対応するインデックスとして、0、1、2を割り当て、プログレッシブ用の第1量子化マトリクスに対応するインデックスとして、3、4、5を割り当ててもよい。これにより、頻繁に用いられる第2量子化マトリクスのインデックスが小さい値であるので、符号化効率を向上させることができる。 In other words, when the encoding target block (decoding target block) is field-scanned image data, the second quantization matrix may be given priority over the first quantization matrix. Specifically, a value smaller than the index of the first quantization matrix is assigned to the index of the second quantization matrix. For example, 0, 1, and 2 may be assigned as indexes corresponding to the second quantization matrix for field scan, and 3, 4, and 5 may be assigned as indexes corresponding to the first quantization matrix for progressive. Thereby, since the index of the 2nd quantization matrix used frequently is a small value, encoding efficiency can be improved.
 同様に、符号化対象ブロック(復号対象ブロック)がプログレッシブスキャンされた画像データである場合、第1量子化マトリクスが第2量子化マトリクスより優先させてもよい。具体的には、第1量子化マトリクスのインデックスを第2量子化マトリクスのインデックスより小さな値を割り当てる。例えば、プログレッシブ用の第1量子化マトリクスに対応するインデックスとして、0、1、2を割り当て、フィールドスキャン用の第2量子化マトリクスに対応するインデックスとして、3、4、5を割り当ててもよい。これにより、頻繁に用いられる第1量子化マトリクスのインデックスが小さい値であるので、符号化効率を向上させることができる。 Similarly, when the encoding target block (decoding target block) is progressively scanned image data, the first quantization matrix may be given priority over the second quantization matrix. Specifically, a value smaller than the index of the second quantization matrix is assigned to the index of the first quantization matrix. For example, 0, 1, and 2 may be assigned as indexes corresponding to the first quantization matrix for progressive, and 3, 4, and 5 may be assigned as indexes corresponding to the second quantization matrix for field scan. Thereby, since the index of the 1st quantization matrix used frequently is a small value, encoding efficiency can be improved.
 このように、符号化対象ブロックがプログレッシブスキャンされた画像データであるかフィールドスキャンされた画像データであるかに応じて、インデックスの割り当て方式を変更してもよい。 As described above, the index allocation method may be changed depending on whether the encoding target block is progressively scanned image data or field scanned image data.
 また、符号化対象ブロック(復号対象ブロック)は、図22に示すように階層化されていてもよい。図22は、階層化された処理単位(多階層ブロック構造)を説明するための説明図である。 Further, the encoding target block (decoding target block) may be hierarchized as shown in FIG. FIG. 22 is an explanatory diagram for explaining a hierarchized processing unit (multi-hierarchical block structure).
 符号化処理部1100は、動画像を処理単位毎に符号化し、復号処理部2100は、符号化ストリームを処理単位毎に復号する。この処理単位は、複数の小さな処理単位に分割され、その小さな処理単位がさらに複数のより小さな処理単位に分割されるように、階層化されている。なお、処理単位が小さいほど、その処理単位がある階層は深く、下位にあり、その階層を示す値は大きい。逆に、処理単位が大きいほど、その処理単位がある階層は浅く、上位にあり、その階層を示す値は小さい。 The encoding processing unit 1100 encodes a moving image for each processing unit, and the decoding processing unit 2100 decodes the encoded stream for each processing unit. This processing unit is divided into a plurality of small processing units, and the small processing unit is further hierarchized so as to be further divided into a plurality of smaller processing units. Note that the smaller the processing unit is, the deeper the hierarchy in which the processing unit is and the lower the value, and the larger the value indicating the hierarchy. Conversely, the larger the processing unit is, the shallower the hierarchy in which the processing unit is, the higher the hierarchy, and the smaller the value indicating the hierarchy.
 処理単位には、符号化単位(CU)と予測単位(PU)と変換単位(TU)とがある。CUは、最大128×128画素からなるブロックであり、従来のマクロブロックに相当する単位である。PUは、画面間予測の基本単位である。TUは、直交変換の基本単位であり、そのTUのサイズはPUと同じか、PUよりも一階層小さいサイズである。CUは、例えば4つのサブCUに分割され、そのうちの1つのサブCUは、そのサブCUと同じサイズのPU及びTUを含む(この場合、PUとTUは互いに重なった状態にある)。例えば、そのPUはさらに4つのサブPUに分割され、TUもさらに4つのサブTUに分割される。 The processing unit includes a coding unit (CU), a prediction unit (PU), and a transform unit (TU). A CU is a block composed of a maximum of 128 × 128 pixels, and is a unit corresponding to a conventional macroblock. PU is a basic unit of inter-screen prediction. The TU is a basic unit of orthogonal transformation, and the size of the TU is the same as the PU or a size smaller than the PU. The CU is divided into, for example, four sub CUs, and one of the sub CUs includes a PU and a TU having the same size as the sub CU (in this case, the PU and the TU overlap each other). For example, the PU is further divided into four sub-PUs, and the TU is further divided into four sub-TUs.
 具体的には、以下のとおりである。 Specifically, it is as follows.
 ピクチャは、複数のスライスに分割される。1つのスライスは、最大符号化単位(LCU:Largest Coding Unit)のシーケンスである。LCUの位置は、最大符号化単位アドレス「lcuAddr」によって特定される。 A picture is divided into a plurality of slices. One slice is a sequence of a maximum coding unit (LCU: Large Coding Unit). The position of the LCU is specified by the maximum coding unit address “lcuAddr”.
 各CUは、4つのCUに再帰的に分割される。つまり、CUは、LCUの四分木分割となる。CUの位置は、LCUの左上に位置する画素との相対的な位置関係を示す符号化単位インデックス「cuIdx」によって特定される。 Each CU is recursively divided into four CUs. That is, the CU is a quadtree partition of the LCU. The position of the CU is specified by a coding unit index “cuIdx” that indicates a relative positional relationship with the pixel located at the upper left of the LCU.
 PUのサイズは、これ以上分割することが許されないCUのサイズと同一である。PUの位置は、CUと同様に、LCUの左上に位置する画素との相対的な位置関係を示す予測単位インデックス「puIdx」によって特定される。 * The size of the PU is the same as the size of the CU that is not allowed to be further divided. The position of the PU is specified by the prediction unit index “puIdx” indicating the relative positional relationship with the pixel located at the upper left of the LCU, similarly to the CU.
 PUは、複数のパーティションを有してもよい。このパーティションは、任意の形状とすることができる。パーティションの位置は、PUの左上に位置する画素との相対的な位置関係を示す予測単位パーティションインデックス「puPartIdx」によって特定される。 -A PU may have a plurality of partitions. This partition can be of any shape. The position of the partition is specified by a prediction unit partition index “puPartIdx” indicating a relative positional relationship with a pixel located at the upper left of the PU.
 PUは、複数のTUを有してもよい。TUのサイズは、PUと同じサイズ、またはPUよりも一階層小さいサイズである。TUの位置は、PUの左上に位置する画素との相対的な位置関係を示す変換単位インデックス「tuIdx」によって特定される。 PU may have multiple TUs. The size of the TU is the same size as the PU, or a size smaller than the PU. The position of the TU is specified by a conversion unit index “tuIdx” indicating a relative positional relationship with the pixel located at the upper left of the PU.
 ここで、各処理単位の定義は以下のとおりである。 Here, the definition of each processing unit is as follows.
 符号化ツリーブロック(CTB:Coding Tree Block):与えられた矩形領域の四分木分割を規定するための基本単位。CTBは、様々なサイズの矩形状を有することができる。 Coding tree block (CTB: Coding Tree Block): A basic unit for defining quadtree partitioning of a given rectangular area. The CTB can have a rectangular shape of various sizes.
 最大符号化ツリーブロック(LCTB:Largest Coding Tree Block):スライスにおいて許される最も大きなサイズの符号化ツリーブロック。スライスは、互いに重複しない複数のLCTBからなる。 Largest coding tree block (LCTB): The largest coding tree block allowed in a slice. A slice is composed of a plurality of LCTBs that do not overlap each other.
 最小符号化ツリーブロック(SCTB:Smallest Coding Tree Block):スライスにおいて許される最も小さなサイズの符号化ツリーブロック。SCTBは、さらに小さなCTBに分割することが許されない。 Smallest coding tree block (SCTB): The smallest sized coding tree block allowed in a slice. SCTB is not allowed to be split into smaller CTBs.
 予測単位(PU:Prediction Unit):予測処理を規定するための基本単位。PUのサイズは、これ以上分割することが許されないCUのサイズと同一である。PUは、複数のパーティションに分割されうる。CUが4つの矩形状に分割されるのに対して、パーティションは任意の形状が許される。 Prediction unit (PU): A basic unit for defining prediction processing. The size of the PU is the same as the size of the CU that is not allowed to be further divided. The PU can be divided into a plurality of partitions. While the CU is divided into four rectangular shapes, the partition can have any shape.
 変換単位(TU:Transform Unit):変換および量子化処理を規定するための基本単位。 Transformation unit (TU): Basic unit for defining transformation and quantization processing.
 符号化単位(CU:Coding Unit):符号化ツリーブロックと同じ。 Coding unit (CU): Same as coding tree block.
 最大符号化単位(LCU:Largest Coding Unit):最大符号化ツリーブロックと同じ。 Maximum coding unit (LCU: Large Coding Unit): Same as maximum coding tree block.
 最小符号化単位(SCU:Smallest Coding Unit):最小符号化ツリーブロックと同じ。 Minimum coding unit (SCU: Smallest Coding Unit): Same as the minimum coding tree block.
 このような階層化された処理単位(ブロック)毎に量子化マトリクスが対応付けられていてもよい。 Quantization matrices may be associated with each of such hierarchized processing units (blocks).
 なお、上記の及び後述する実施の形態で用いた数字は、全て本発明を具体的に説明するために例示するものであり、本発明は例示された数字に制限されない。また、構成要素間の接続関係は、本発明を具体的に説明するために例示するものであり、本発明の機能を実現する接続関係はこれに限定されない。 It should be noted that all the numbers used in the embodiments described above and below will be described in order to specifically describe the present invention, and the present invention is not limited to the illustrated numbers. In addition, the connection relationship between the components is exemplified for specifically explaining the present invention, and the connection relationship for realizing the function of the present invention is not limited to this.
 さらに、上記の及び後述する実施の形態は、ハードウェア及び/又はソフトウェアを用いて構成されるが、ハードウェアを用いる構成は、ソフトウェアを用いても構成可能であり、ソフトウェアを用いる構成は、ハードウェアを用いても構成可能である。 Further, the embodiments described above and below will be configured using hardware and / or software, but the configuration using hardware can also be configured using software, and the configuration using software is hardware. It can also be configured using hardware.
 (実施の形態2)
 上記各実施の形態で示した動画像符号化方法(画像符号化方法)または動画像復号化方法(画像復号方法)の構成を実現するためのプログラムを記憶メディアに記録することにより、上記各実施の形態で示した処理を独立したコンピュータシステムにおいて簡単に実施することが可能となる。記憶メディアは、磁気ディスク、光ディスク、光磁気ディスク、ICカード、半導体メモリ等、プログラムを記録できるものであればよい。
(Embodiment 2)
By recording a program for realizing the configuration of the moving image encoding method (image encoding method) or the moving image decoding method (image decoding method) shown in each of the above embodiments on a storage medium, each of the above embodiments It is possible to easily execute the processing shown in the form in the independent computer system. The storage medium may be any medium that can record a program, such as a magnetic disk, an optical disk, a magneto-optical disk, an IC card, and a semiconductor memory.
 さらにここで、上記各実施の形態で示した動画像符号化方法(画像符号化方法)や動画像復号化方法(画像復号方法)の応用例とそれを用いたシステムを説明する。当該システムは、画像符号化方法を用いた画像符号化装置、及び画像復号方法を用いた画像復号装置からなる画像符号化復号装置を有することを特徴とする。システムにおける他の構成について、場合に応じて適切に変更することができる。 Furthermore, application examples of the moving picture coding method (picture coding method) and the moving picture decoding method (picture decoding method) shown in the above embodiments and a system using the same will be described. The system has an image encoding / decoding device including an image encoding device using an image encoding method and an image decoding device using an image decoding method. Other configurations in the system can be appropriately changed according to circumstances.
 図23は、コンテンツ配信サービスを実現するコンテンツ供給システムex100の全体構成を示す図である。通信サービスの提供エリアを所望の大きさに分割し、各セル内にそれぞれ固定無線局である基地局ex106、ex107、ex108、ex109、ex110が設置されている。 FIG. 23 is a diagram showing an overall configuration of a content supply system ex100 that realizes a content distribution service. A communication service providing area is divided into desired sizes, and base stations ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations, are installed in each cell.
 このコンテンツ供給システムex100は、インターネットex101にインターネットサービスプロバイダex102および電話網ex104、および基地局ex106からex110を介して、コンピュータex111、PDA(Personal Digital Assistant)ex112、カメラex113、携帯電話ex114、ゲーム機ex115などの各機器が接続される。 This content supply system ex100 includes a computer ex111, a PDA (Personal Digital Assistant) ex112, a camera ex113, a mobile phone ex114, a game machine ex115 via the Internet ex101, the Internet service provider ex102, the telephone network ex104, and the base stations ex106 to ex110. Etc. are connected.
 しかし、コンテンツ供給システムex100は図23のような構成に限定されず、いずれかの要素を組合せて接続するようにしてもよい。また、固定無線局である基地局ex106からex110を介さずに、各機器が電話網ex104に直接接続されてもよい。また、各機器が近距離無線等を介して直接相互に接続されていてもよい。 However, the content supply system ex100 is not limited to the configuration as shown in FIG. 23, and any element may be combined and connected. In addition, each device may be directly connected to the telephone network ex104 without going from the base station ex106, which is a fixed wireless station, to ex110. In addition, the devices may be directly connected to each other via short-range wireless or the like.
 カメラex113はデジタルビデオカメラ等の動画撮影が可能な機器であり、カメラex116はデジタルカメラ等の静止画撮影、動画撮影が可能な機器である。また、携帯電話ex114は、GSM(登録商標)(Global System for Mobile Communications)方式、CDMA(Code Division Multiple Access)方式、W-CDMA(Wideband-Code Division Multiple Access)方式、若しくはLTE(Long Term Evolution)方式、HSPA(High Speed Packet Access)の携帯電話機、またはPHS(Personal Handyphone System)等であり、いずれでも構わない。 The camera ex113 is a device that can shoot moving images such as a digital video camera, and the camera ex116 is a device that can shoot still images and movies such as a digital camera. The mobile phone ex114 is a GSM (registered trademark) (Global System for Mobile Communications) system, a CDMA (Code Division Multiple Access) system, a W-CDMA (Wideband-Code Division Multiple Access) system, or an LTE (Long Term Evolution). It is possible to use any of the above-mentioned systems, HSPA (High Speed Packet Access) mobile phone, PHS (Personal Handyphone System), or the like.
 コンテンツ供給システムex100では、カメラex113等が基地局ex109、電話網ex104を通じてストリーミングサーバex103に接続されることで、ライブ配信等が可能になる。ライブ配信では、ユーザがカメラex113を用いて撮影するコンテンツ(例えば、音楽ライブの映像等)に対して上記各実施の形態で説明したように符号化処理を行い(即ち、本発明の画像符号化装置として機能する)、ストリーミングサーバex103に送信する。一方、ストリーミングサーバex103は要求のあったクライアントに対して送信されたコンテンツデータをストリーム配信する。クライアントとしては、上記符号化処理されたデータを復号化することが可能な、コンピュータex111、PDAex112、カメラex113、携帯電話ex114、ゲーム機ex115等がある。配信されたデータを受信した各機器では、受信したデータを復号化処理して再生する(即ち、本発明の画像復号装置として機能する)。 In the content supply system ex100, the camera ex113 and the like are connected to the streaming server ex103 through the base station ex109 and the telephone network ex104, thereby enabling live distribution and the like. In live distribution, the content (for example, music live video) captured by the user using the camera ex113 is encoded as described in the above embodiments (that is, the image encoding of the present invention). Function as a device) and transmit to the streaming server ex103. On the other hand, the streaming server ex103 stream-distributes the content data transmitted to the requested client. Examples of the client include a computer ex111, a PDA ex112, a camera ex113, a mobile phone ex114, and a game machine ex115 that can decode the encoded data. Each device that receives the distributed data decodes the received data and reproduces it (that is, functions as the image decoding device of the present invention).
 なお、撮影したデータの符号化処理はカメラex113で行っても、データの送信処理をするストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。同様に配信されたデータの復号化処理はクライアントで行っても、ストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。また、カメラex113に限らず、カメラex116で撮影した静止画像および/または動画像データを、コンピュータex111を介してストリーミングサーバex103に送信してもよい。この場合の符号化処理はカメラex116、コンピュータex111、ストリーミングサーバex103のいずれで行ってもよいし、互いに分担して行ってもよい。 Note that the captured data may be encoded by the camera ex113, the streaming server ex103 that performs data transmission processing, or may be shared with each other. Similarly, the decryption processing of the distributed data may be performed by the client, the streaming server ex103, or may be performed in common with each other. In addition to the camera ex113, still images and / or moving image data captured by the camera ex116 may be transmitted to the streaming server ex103 via the computer ex111. The encoding process in this case may be performed by any of the camera ex116, the computer ex111, and the streaming server ex103, or may be performed in a shared manner.
 また、これら符号化・復号化処理は、一般的にコンピュータex111や各機器が有するLSIex500において処理する。LSIex500は、ワンチップであっても複数チップからなる構成であってもよい。なお、動画像符号化・復号化用のソフトウェアをコンピュータex111等で読み取り可能な何らかの記録メディア(CD-ROM、フレキシブルディスク、ハードディスクなど)に組み込み、そのソフトウェアを用いて符号化・復号化処理を行ってもよい。さらに、携帯電話ex114がカメラ付きである場合には、そのカメラで取得した動画データを送信してもよい。このときの動画データは携帯電話ex114が有するLSIex500で符号化処理されたデータである。 Further, these encoding / decoding processes are generally performed in the computer ex111 and the LSI ex500 included in each device. The LSI ex500 may be configured as a single chip or a plurality of chips. It should be noted that moving image encoding / decoding software is incorporated into some recording medium (CD-ROM, flexible disk, hard disk, etc.) that can be read by the computer ex111, etc., and encoding / decoding processing is performed using the software. May be. Furthermore, when the mobile phone ex114 is equipped with a camera, moving image data acquired by the camera may be transmitted. The moving image data at this time is data encoded by the LSI ex500 included in the mobile phone ex114.
 また、ストリーミングサーバex103は複数のサーバや複数のコンピュータであって、データを分散して処理したり記録したり配信するものであってもよい。 Further, the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, and distribute data in a distributed manner.
 以上のようにして、コンテンツ供給システムex100では、符号化されたデータをクライアントが受信して再生することができる。このようにコンテンツ供給システムex100では、ユーザが送信した情報をリアルタイムでクライアントが受信して復号化し、再生することができ、特別な権利や設備を有さないユーザでも個人放送を実現できる。 As described above, in the content supply system ex100, the encoded data can be received and reproduced by the client. Thus, in the content supply system ex100, the information transmitted by the user can be received, decrypted and reproduced by the client in real time, and personal broadcasting can be realized even for a user who does not have special rights or facilities.
 なお、コンテンツ供給システムex100の例に限らず、図24に示すように、デジタル放送用システムex200にも、上記各実施の形態の少なくとも動画像符号化装置(画像符号化装置)または動画像復号化装置(画像復号装置)のいずれかを組み込むことができる。具体的には、放送局ex201では映像データに音楽データなどが多重化された多重化データが電波を介して通信または衛星ex202に伝送される。この映像データは上記各実施の形態で説明した動画像符号化方法により符号化されたデータである(即ち、本発明の画像符号化装置によって符号化されたデータである)。これを受けた放送衛星ex202は、放送用の電波を発信し、この電波を衛星放送の受信が可能な家庭のアンテナex204が受信する。受信した多重化データを、テレビ(受信機)ex300またはセットトップボックス(STB)ex217等の装置が復号化して再生する(即ち、本発明の画像復号装置として機能する)。 In addition to the example of the content supply system ex100, as shown in FIG. 24, the digital broadcasting system ex200 also includes at least the moving image encoding device (image encoding device) or the moving image decoding according to each of the above embodiments. Any of the devices (image decoding devices) can be incorporated. Specifically, in the broadcast station ex201, multiplexed data obtained by multiplexing music data and the like on video data is transmitted to a communication or satellite ex202 via radio waves. This video data is data encoded by the moving image encoding method described in the above embodiments (that is, data encoded by the image encoding apparatus of the present invention). Receiving this, the broadcasting satellite ex202 transmits a radio wave for broadcasting, and this radio wave is received by a home antenna ex204 capable of receiving satellite broadcasting. The received multiplexed data is decoded and reproduced by an apparatus such as the television (receiver) ex300 or the set top box (STB) ex217 (that is, functions as the image decoding apparatus of the present invention).
 また、DVD、BD等の記録メディアex215に記録した多重化データを読み取り復号化する、または記録メディアex215に映像信号を符号化し、さらに場合によっては音楽信号と多重化して書き込むリーダ/レコーダex218にも上記各実施の形態で示した動画像復号化装置または動画像符号化装置を実装することが可能である。この場合、再生された映像信号はモニタex219に表示され、多重化データが記録された記録メディアex215により他の装置やシステムにおいて映像信号を再生することができる。また、ケーブルテレビ用のケーブルex203または衛星/地上波放送のアンテナex204に接続されたセットトップボックスex217内に動画像復号化装置を実装し、これをテレビのモニタex219で表示してもよい。このときセットトップボックスではなく、テレビ内に動画像復号化装置を組み込んでもよい。 Also, a reader / recorder ex218 that reads and decodes multiplexed data recorded on a recording medium ex215 such as a DVD or a BD, or encodes a video signal on the recording medium ex215 and, in some cases, multiplexes and writes it with a music signal. It is possible to mount the moving picture decoding apparatus or moving picture encoding apparatus described in the above embodiments. In this case, the reproduced video signal is displayed on the monitor ex219, and the video signal can be reproduced in another device or system using the recording medium ex215 on which the multiplexed data is recorded. Alternatively, a moving picture decoding apparatus may be mounted in a set-top box ex217 connected to a cable ex203 for cable television or an antenna ex204 for satellite / terrestrial broadcasting and displayed on the monitor ex219 of the television. At this time, the moving picture decoding apparatus may be incorporated in the television instead of the set top box.
 図25は、上記各実施の形態で説明した動画像復号化方法および動画像符号化方法を用いたテレビ(受信機)ex300を示す図である。テレビex300は、上記放送を受信するアンテナex204またはケーブルex203等を介して映像データに音声データが多重化された多重化データを取得、または出力するチューナex301と、受信した多重化データを復調する、または外部に送信する多重化データに変調する変調/復調部ex302と、復調した多重化データを映像データと、音声データとに分離する、または信号処理部ex306で符号化された映像データ、音声データを多重化する多重/分離部ex303を備える。 FIG. 25 is a diagram illustrating a television (receiver) ex300 that uses the video decoding method and the video encoding method described in each of the above embodiments. The television ex300 obtains or outputs multiplexed data in which audio data is multiplexed with video data via the antenna ex204 or the cable ex203 that receives the broadcast, and demodulates the received multiplexed data. Alternatively, the modulation / demodulation unit ex302 that modulates multiplexed data to be transmitted to the outside, and the demodulated multiplexed data is separated into video data and audio data, or the video data and audio data encoded by the signal processing unit ex306 Is provided with a multiplexing / demultiplexing unit ex303.
 また、テレビex300は、音声データ、映像データそれぞれを復号化する、またはそれぞれの情報を符号化する音声信号処理部ex304、映像信号処理部ex305(本発明の画像符号化装置または画像復号装置として機能する)を有する信号処理部ex306と、復号化した音声信号を出力するスピーカex307、復号化した映像信号を表示するディスプレイ等の表示部ex308を有する出力部ex309とを有する。さらに、テレビex300は、ユーザ操作の入力を受け付ける操作入力部ex312等を有するインタフェース部ex317を有する。さらに、テレビex300は、各部を統括的に制御する制御部ex310、各部に電力を供給する電源回路部ex311を有する。インタフェース部ex317は、操作入力部ex312以外に、リーダ/レコーダex218等の外部機器と接続されるブリッジex313、SDカード等の記録メディアex216を装着可能とするためのスロット部ex314、ハードディスク等の外部記録メディアと接続するためのドライバex315、電話網と接続するモデムex316等を有していてもよい。なお記録メディアex216は、格納する不揮発性/揮発性の半導体メモリ素子により電気的に情報の記録を可能としたものである。テレビex300の各部は同期バスを介して互いに接続されている。 Further, the television ex300 decodes each of the audio data and the video data, or encodes the respective information, the audio signal processing unit ex304, the video signal processing unit ex305 (function as the image encoding device or the image decoding device of the present invention). ), A speaker ex307 for outputting the decoded audio signal, and an output unit ex309 having a display unit ex308 such as a display for displaying the decoded video signal. Furthermore, the television ex300 includes an interface unit ex317 including an operation input unit ex312 that receives an input of a user operation. Furthermore, the television ex300 includes a control unit ex310 that performs overall control of each unit, and a power supply circuit unit ex311 that supplies power to each unit. In addition to the operation input unit ex312, the interface unit ex317 includes a bridge unit ex313 connected to an external device such as a reader / recorder ex218, a recording unit ex216 such as an SD card, and an external recording unit such as a hard disk. A driver ex315 for connecting to a medium, a modem ex316 for connecting to a telephone network, and the like may be included. Note that the recording medium ex216 is capable of electrically recording information by using a nonvolatile / volatile semiconductor memory element to be stored. Each part of the television ex300 is connected to each other via a synchronous bus.
 まず、テレビex300がアンテナex204等により外部から取得した多重化データを復号化し、再生する構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、CPU等を有する制御部ex310の制御に基づいて、変調/復調部ex302で復調した多重化データを多重/分離部ex303で分離する。さらにテレビex300は、分離した音声データを音声信号処理部ex304で復号化し、分離した映像データを映像信号処理部ex305で上記各実施の形態で説明した復号化方法を用いて復号化する。復号化した音声信号、映像信号は、それぞれ出力部ex309から外部に向けて出力される。出力する際には、音声信号と映像信号が同期して再生するよう、バッファex318、ex319等に一旦これらの信号を蓄積するとよい。また、テレビex300は、放送等からではなく、磁気/光ディスク、SDカード等の記録メディアex215、ex216から多重化データを読み出してもよい。次に、テレビex300が音声信号や映像信号を符号化し、外部に送信または記録メディア等に書き込む構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、制御部ex310の制御に基づいて、音声信号処理部ex304で音声信号を符号化し、映像信号処理部ex305で映像信号を上記各実施の形態で説明した符号化方法を用いて符号化する。符号化した音声信号、映像信号は多重/分離部ex303で多重化され外部に出力される。多重化する際には、音声信号と映像信号が同期するように、バッファex320、ex321等に一旦これらの信号を蓄積するとよい。なお、バッファex318、ex319、ex320、ex321は図示しているように複数備えていてもよいし、1つ以上のバッファを共有する構成であってもよい。さらに、図示している以外に、例えば変調/復調部ex302や多重/分離部ex303の間等でもシステムのオーバフロー、アンダーフローを避ける緩衝材としてバッファにデータを蓄積することとしてもよい。 First, a configuration in which the television ex300 decodes and reproduces multiplexed data acquired from the outside by the antenna ex204 and the like will be described. The television ex300 receives a user operation from the remote controller ex220 or the like, and demultiplexes the multiplexed data demodulated by the modulation / demodulation unit ex302 by the multiplexing / demultiplexing unit ex303 based on the control of the control unit ex310 having a CPU or the like. Furthermore, in the television ex300, the separated audio data is decoded by the audio signal processing unit ex304, and the separated video data is decoded by the video signal processing unit ex305 using the decoding method described in each of the above embodiments. The decoded audio signal and video signal are output from the output unit ex309 to the outside. At the time of output, these signals may be temporarily stored in the buffers ex318, ex319, etc. so that the audio signal and the video signal are reproduced in synchronization. Also, the television ex300 may read multiplexed data from recording media ex215 and ex216 such as a magnetic / optical disk and an SD card, not from broadcasting. Next, a configuration in which the television ex300 encodes an audio signal or a video signal and transmits the signal to the outside or to a recording medium will be described. The television ex300 receives a user operation from the remote controller ex220 and the like, encodes an audio signal with the audio signal processing unit ex304, and converts the video signal with the video signal processing unit ex305 based on the control of the control unit ex310. Encoding is performed using the encoding method described in (1). The encoded audio signal and video signal are multiplexed by the multiplexing / demultiplexing unit ex303 and output to the outside. When multiplexing, these signals may be temporarily stored in the buffers ex320, ex321, etc. so that the audio signal and the video signal are synchronized. Note that a plurality of buffers ex318, ex319, ex320, and ex321 may be provided as illustrated, or one or more buffers may be shared. Further, in addition to the illustrated example, data may be stored in the buffer as a buffer material that prevents system overflow and underflow, for example, between the modulation / demodulation unit ex302 and the multiplexing / demultiplexing unit ex303.
 また、テレビex300は、放送等や記録メディア等から音声データ、映像データを取得する以外に、マイクやカメラのAV入力を受け付ける構成を備え、それらから取得したデータに対して符号化処理を行ってもよい。なお、ここではテレビex300は上記の符号化処理、多重化、および外部出力ができる構成として説明したが、これらの処理を行うことはできず、上記受信、復号化処理、外部出力のみが可能な構成であってもよい。 In addition to acquiring audio data and video data from broadcasts, recording media, and the like, the television ex300 has a configuration for receiving AV input of a microphone and a camera, and performs encoding processing on the data acquired from them. Also good. Here, the television ex300 has been described as a configuration capable of the above-described encoding processing, multiplexing, and external output, but these processing cannot be performed, and only the above-described reception, decoding processing, and external output are possible. It may be a configuration.
 また、リーダ/レコーダex218で記録メディアから多重化データを読み出す、または書き込む場合には、上記復号化処理または符号化処理はテレビex300、リーダ/レコーダex218のいずれで行ってもよいし、テレビex300とリーダ/レコーダex218が互いに分担して行ってもよい。 In addition, when reading or writing multiplexed data from a recording medium by the reader / recorder ex218, the decoding process or the encoding process may be performed by either the television ex300 or the reader / recorder ex218, The reader / recorder ex218 may share with each other.
 一例として、光ディスクからデータの読み込みまたは書き込みをする場合の情報再生/記録部ex400の構成を図26に示す。情報再生/記録部ex400は、以下に説明する要素ex401、ex402、ex403、ex404、ex405、ex406、ex407を備える。光ヘッドex401は、光ディスクである記録メディアex215の記録面にレーザスポットを照射して情報を書き込み、記録メディアex215の記録面からの反射光を検出して情報を読み込む。変調記録部ex402は、光ヘッドex401に内蔵された半導体レーザを電気的に駆動し記録データに応じてレーザ光の変調を行う。再生復調部ex403は、光ヘッドex401に内蔵されたフォトディテクタにより記録面からの反射光を電気的に検出した再生信号を増幅し、記録メディアex215に記録された信号成分を分離して復調し、必要な情報を再生する。バッファex404は、記録メディアex215に記録するための情報および記録メディアex215から再生した情報を一時的に保持する。ディスクモータex405は記録メディアex215を回転させる。サーボ制御部ex406は、ディスクモータex405の回転駆動を制御しながら光ヘッドex401を所定の情報トラックに移動させ、レーザスポットの追従処理を行う。システム制御部ex407は、情報再生/記録部ex400全体の制御を行う。上記の読み出しや書き込みの処理はシステム制御部ex407が、バッファex404に保持された各種情報を利用し、また必要に応じて新たな情報の生成・追加を行うと共に、変調記録部ex402、再生復調部ex403、サーボ制御部ex406を協調動作させながら、光ヘッドex401を通して、情報の記録再生を行うことにより実現される。システム制御部ex407は例えばマイクロプロセッサで構成され、読み出し書き込みのプログラムを実行することでそれらの処理を実行する。 As an example, FIG. 26 shows a configuration of the information reproducing / recording unit ex400 when data is read from or written to an optical disk. The information reproducing / recording unit ex400 includes elements ex401, ex402, ex403, ex404, ex405, ex406, and ex407 described below. The optical head ex401 irradiates a laser spot on the recording surface of the recording medium ex215 that is an optical disk to write information, and detects reflected light from the recording surface of the recording medium ex215 to read the information. The modulation recording unit ex402 electrically drives a semiconductor laser built in the optical head ex401 and modulates the laser beam according to the recording data. The reproduction demodulator ex403 amplifies the reproduction signal obtained by electrically detecting the reflected light from the recording surface by the photodetector built in the optical head ex401, separates and demodulates the signal component recorded on the recording medium ex215, and is necessary To play back information. The buffer ex404 temporarily holds information to be recorded on the recording medium ex215 and information reproduced from the recording medium ex215. The disk motor ex405 rotates the recording medium ex215. The servo controller ex406 moves the optical head ex401 to a predetermined information track while controlling the rotational drive of the disk motor ex405, and performs a laser spot tracking process. The system control unit ex407 controls the entire information reproduction / recording unit ex400. In the reading and writing processes described above, the system control unit ex407 uses various kinds of information held in the buffer ex404, and generates and adds new information as necessary, and the modulation recording unit ex402, the reproduction demodulation unit This is realized by recording / reproducing information through the optical head ex401 while operating the ex403 and the servo control unit ex406 in a coordinated manner. The system control unit ex407 is composed of, for example, a microprocessor, and executes these processes by executing a read / write program.
 以上では、光ヘッドex401はレーザスポットを照射するとして説明したが、近接場光を用いてより高密度な記録を行う構成であってもよい。 In the above, the optical head ex401 has been described as irradiating a laser spot. However, a configuration in which higher-density recording is performed using near-field light may be used.
 図27に光ディスクである記録メディアex215の模式図を示す。記録メディアex215の記録面には案内溝(グルーブ)がスパイラル状に形成され、情報トラックex230には、予めグルーブの形状の変化によってディスク上の絶対位置を示す番地情報が記録されている。この番地情報はデータを記録する単位である記録ブロックex231の位置を特定するための情報を含み、記録や再生を行う装置において情報トラックex230を再生し番地情報を読み取ることで記録ブロックを特定することができる。また、記録メディアex215は、データ記録領域ex233、内周領域ex232、外周領域ex234を含んでいる。ユーザデータを記録するために用いる領域がデータ記録領域ex233であり、データ記録領域ex233より内周または外周に配置されている内周領域ex232と外周領域ex234は、ユーザデータの記録以外の特定用途に用いられる。情報再生/記録部ex400は、このような記録メディアex215のデータ記録領域ex233に対して、符号化された音声データ、映像データまたはそれらのデータを多重化した多重化データの読み書きを行う。 FIG. 27 shows a schematic diagram of a recording medium ex215 that is an optical disk. Guide grooves (grooves) are formed in a spiral shape on the recording surface of the recording medium ex215, and address information indicating the absolute position on the disc is recorded in advance on the information track ex230 by changing the shape of the groove. This address information includes information for specifying the position of the recording block ex231 that is a unit for recording data, and the recording block is specified by reproducing the information track ex230 and reading the address information in a recording or reproducing apparatus. Can do. Further, the recording medium ex215 includes a data recording area ex233, an inner peripheral area ex232, and an outer peripheral area ex234. The area used for recording user data is the data recording area ex233, and the inner circumference area ex232 and the outer circumference area ex234 arranged on the inner or outer circumference of the data recording area ex233 are used for specific purposes other than user data recording. Used. The information reproducing / recording unit ex400 reads / writes encoded audio data, video data, or multiplexed data obtained by multiplexing these data with respect to the data recording area ex233 of the recording medium ex215.
 以上では、1層のDVD、BD等の光ディスクを例に挙げ説明したが、これらに限ったものではなく、多層構造であって表面以外にも記録可能な光ディスクであってもよい。また、ディスクの同じ場所にさまざまな異なる波長の色の光を用いて情報を記録したり、さまざまな角度から異なる情報の層を記録したりなど、多次元的な記録/再生を行う構造の光ディスクであってもよい。 In the above description, an optical disk such as a single-layer DVD or BD has been described as an example. However, the present invention is not limited to these, and an optical disk having a multilayer structure and capable of recording other than the surface may be used. Also, an optical disc with a multi-dimensional recording / reproducing structure, such as recording information using light of different wavelengths in the same place on the disc, or recording different layers of information from various angles. It may be.
 また、デジタル放送用システムex200において、アンテナex205を有する車ex210で衛星ex202等からデータを受信し、車ex210が有するカーナビゲーションex211等の表示装置に動画を再生することも可能である。なお、カーナビゲーションex211の構成は例えば図25に示す構成のうち、GPS受信部を加えた構成が考えられ、同様なことがコンピュータex111や携帯電話ex114等でも考えられる。 Also, in the digital broadcasting system ex200, the car ex210 having the antenna ex205 can receive data from the satellite ex202 and the like, and the moving image can be reproduced on a display device such as the car navigation ex211 that the car ex210 has. Note that the configuration of the car navigation ex211 may be, for example, a configuration in which a GPS receiving unit is added in the configuration illustrated in FIG. 25, and the same may be considered for the computer ex111, the mobile phone ex114, and the like.
 図28(a)は、上記実施の形態で説明した動画像復号化方法および動画像符号化方法を用いた携帯電話ex114を示す図である。携帯電話ex114は、基地局ex110との間で電波を送受信するためのアンテナex350、映像、静止画を撮ることが可能なカメラ部ex365、カメラ部ex365で撮像した映像、アンテナex350で受信した映像等が復号化されたデータを表示する液晶ディスプレイ等の表示部ex358を備える。携帯電話ex114は、さらに、操作キー部ex366を有する本体部、音声を出力するためのスピーカ等である音声出力部ex357、音声を入力するためのマイク等である音声入力部ex356、撮影した映像、静止画、録音した音声、または受信した映像、静止画、メール等の符号化されたデータもしくは復号化されたデータを保存するメモリ部ex367、又は同様にデータを保存する記録メディアとのインタフェース部であるスロット部ex364を備える。 FIG. 28 (a) is a diagram showing the mobile phone ex114 using the moving picture decoding method and the moving picture encoding method described in the above embodiment. The mobile phone ex114 includes an antenna ex350 for transmitting and receiving radio waves to and from the base station ex110, a camera unit ex365 capable of capturing video and still images, a video captured by the camera unit ex365, a video received by the antenna ex350, and the like Is provided with a display unit ex358 such as a liquid crystal display for displaying the decrypted data. The mobile phone ex114 further includes a main body unit having an operation key unit ex366, an audio output unit ex357 such as a speaker for outputting audio, an audio input unit ex356 such as a microphone for inputting audio, a captured video, In the memory unit ex367 for storing encoded data or decoded data such as still images, recorded audio, received video, still images, mails, or the like, or an interface unit with a recording medium for storing data A slot ex364 is provided.
 さらに、携帯電話ex114の構成例について、図28(b)を用いて説明する。携帯電話ex114は、表示部ex358及び操作キー部ex366を備えた本体部の各部を統括的に制御する主制御部ex360に対して、電源回路部ex361、操作入力制御部ex362、映像信号処理部ex355、カメラインタフェース部ex363、LCD(Liquid Crystal Display)制御部ex359、変調/復調部ex352、多重/分離部ex353、音声信号処理部ex354、スロット部ex364、メモリ部ex367がバスex370を介して互いに接続されている。 Furthermore, a configuration example of the mobile phone ex114 will be described with reference to FIG. The mobile phone ex114 has a power supply circuit part ex361, an operation input control part ex362, and a video signal processing part ex355 with respect to a main control part ex360 that comprehensively controls each part of the main body including the display part ex358 and the operation key part ex366. , A camera interface unit ex363, an LCD (Liquid Crystal Display) control unit ex359, a modulation / demodulation unit ex352, a multiplexing / demultiplexing unit ex353, an audio signal processing unit ex354, a slot unit ex364, and a memory unit ex367 are connected to each other via a bus ex370. ing.
 電源回路部ex361は、ユーザの操作により終話及び電源キーがオン状態にされると、バッテリパックから各部に対して電力を供給することにより携帯電話ex114を動作可能な状態に起動する。 When the end of call and the power key are turned on by a user operation, the power supply circuit unit ex361 starts up the mobile phone ex114 in an operable state by supplying power from the battery pack to each unit.
 携帯電話ex114は、CPU、ROM、RAM等を有する主制御部ex360の制御に基づいて、音声通話モード時に音声入力部ex356で収音した音声信号を音声信号処理部ex354でデジタル音声信号に変換し、これを変調/復調部ex352でスペクトラム拡散処理し、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して送信する。また携帯電話ex114は、音声通話モード時にアンテナex350を介して受信した受信データを増幅して周波数変換処理およびアナログデジタル変換処理を施し、変調/復調部ex352でスペクトラム逆拡散処理し、音声信号処理部ex354でアナログ音声信号に変換した後、これを音声出力部ex357から出力する。 The cellular phone ex114 converts the audio signal collected by the audio input unit ex356 in the voice call mode into a digital audio signal by the audio signal processing unit ex354 based on the control of the main control unit ex360 having a CPU, a ROM, a RAM, and the like. Then, this is subjected to spectrum spread processing by the modulation / demodulation unit ex352, digital-analog conversion processing and frequency conversion processing are performed by the transmission / reception unit ex351, and then transmitted via the antenna ex350. The mobile phone ex114 also amplifies the received data received via the antenna ex350 in the voice call mode, performs frequency conversion processing and analog-digital conversion processing, performs spectrum despreading processing by the modulation / demodulation unit ex352, and performs voice signal processing unit After being converted into an analog audio signal by ex354, this is output from the audio output unit ex357.
 さらにデータ通信モード時に電子メールを送信する場合、本体部の操作キー部ex366等の操作によって入力された電子メールのテキストデータは操作入力制御部ex362を介して主制御部ex360に送出される。主制御部ex360は、テキストデータを変調/復調部ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して基地局ex110へ送信する。電子メールを受信する場合は、受信したデータに対してこのほぼ逆の処理が行われ、表示部ex358に出力される。 Further, when an e-mail is transmitted in the data communication mode, the text data of the e-mail input by operating the operation key unit ex366 of the main unit is sent to the main control unit ex360 via the operation input control unit ex362. The main control unit ex360 performs spread spectrum processing on the text data in the modulation / demodulation unit ex352, performs digital analog conversion processing and frequency conversion processing in the transmission / reception unit ex351, and then transmits the text data to the base station ex110 via the antenna ex350. . In the case of receiving an e-mail, almost the reverse process is performed on the received data and output to the display unit ex358.
 データ通信モード時に映像、静止画、または映像と音声を送信する場合、映像信号処理部ex355は、カメラ部ex365から供給された映像信号を上記各実施の形態で示した動画像符号化方法によって圧縮符号化し(即ち、本発明の画像符号化装置として機能する)、符号化された映像データを多重/分離部ex353に送出する。また、音声信号処理部ex354は、映像、静止画等をカメラ部ex365で撮像中に音声入力部ex356で収音した音声信号を符号化し、符号化された音声データを多重/分離部ex353に送出する。 When transmitting video, still images, or video and audio in the data communication mode, the video signal processing unit ex355 compresses the video signal supplied from the camera unit ex365 by the moving image encoding method described in the above embodiments. Encode (that is, function as the image encoding apparatus of the present invention), and send the encoded video data to the multiplexing / demultiplexing unit ex353. The audio signal processing unit ex354 encodes the audio signal picked up by the audio input unit ex356 while the camera unit ex365 images a video, a still image, etc., and sends the encoded audio data to the multiplexing / separating unit ex353. To do.
 多重/分離部ex353は、映像信号処理部ex355から供給された符号化された映像データと音声信号処理部ex354から供給された符号化された音声データを所定の方式で多重化し、その結果得られる多重化データを変調/復調部(変調/復調回路部)ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理及び周波数変換処理を施した後にアンテナex350を介して送信する。 The multiplexing / demultiplexing unit ex353 multiplexes the encoded video data supplied from the video signal processing unit ex355 and the encoded audio data supplied from the audio signal processing unit ex354 by a predetermined method, and is obtained as a result. The multiplexed data is subjected to spread spectrum processing by the modulation / demodulation unit (modulation / demodulation circuit unit) ex352, digital-analog conversion processing and frequency conversion processing by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
 データ通信モード時にホームページ等にリンクされた動画像ファイルのデータを受信する場合、または映像およびもしくは音声が添付された電子メールを受信する場合、アンテナex350を介して受信された多重化データを復号化するために、多重/分離部ex353は、多重化データを分離することにより映像データのビットストリームと音声データのビットストリームとに分け、同期バスex370を介して符号化された映像データを映像信号処理部ex355に供給するとともに、符号化された音声データを音声信号処理部ex354に供給する。映像信号処理部ex355は、上記各実施の形態で示した動画像符号化方法に対応した動画像復号化方法によって復号化することにより映像信号を復号し(即ち、本発明の画像復号装置として機能する)、LCD制御部ex359を介して表示部ex358から、例えばホームページにリンクされた動画像ファイルに含まれる映像、静止画が表示される。また音声信号処理部ex354は、音声信号を復号し、音声出力部ex357から音声が出力される。 Decode multiplexed data received via antenna ex350 when receiving video file data linked to a homepage, etc. in data communication mode, or when receiving e-mail with video and / or audio attached Therefore, the multiplexing / separating unit ex353 separates the multiplexed data into a video data bit stream and an audio data bit stream, and performs video signal processing on the video data encoded via the synchronization bus ex370. The encoded audio data is supplied to the audio signal processing unit ex354 while being supplied to the unit ex355. The video signal processing unit ex355 decodes the video signal by decoding using the video decoding method corresponding to the video encoding method shown in each of the above embodiments (that is, functions as the image decoding device of the present invention). For example, video and still images included in the moving image file linked to the home page are displayed from the display unit ex358 via the LCD control unit ex359. The audio signal processing unit ex354 decodes the audio signal, and the audio is output from the audio output unit ex357.
 また、上記携帯電話ex114等の端末は、テレビex300と同様に、符号化器・復号化器を両方持つ送受信型端末の他に、符号化器のみの送信端末、復号化器のみの受信端末という3通りの実装形式が考えられる。さらに、デジタル放送用システムex200において、映像データに音楽データなどが多重化された多重化データを受信、送信するとして説明したが、音声データ以外に映像に関連する文字データなどが多重化されたデータであってもよいし、多重化データではなく映像データ自体であってもよい。 In addition to the transmission / reception type terminal having both the encoder and the decoder, the terminal such as the mobile phone ex114 is referred to as a transmission terminal having only an encoder and a receiving terminal having only a decoder. There are three possible mounting formats. Furthermore, in the digital broadcasting system ex200, it has been described that multiplexed data in which music data or the like is multiplexed with video data is received and transmitted, but data in which character data or the like related to video is multiplexed in addition to audio data It may be video data itself instead of multiplexed data.
 このように、上記各実施の形態で示した動画像符号化方法あるいは動画像復号化方法を上述したいずれの機器・システムに用いることは可能であり、そうすることで、上記各実施の形態で説明した効果を得ることができる。 As described above, the moving picture encoding method or the moving picture decoding method shown in each of the above embodiments can be used in any of the above-described devices / systems. The described effect can be obtained.
 また、本発明はかかる上記実施の形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形または修正が可能である。 Further, the present invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the scope of the present invention.
 (実施の形態3)
 上記各実施の形態で示した動画像符号化方法または装置と、MPEG-2、MPEG4-AVC、VC-1など異なる規格に準拠した動画像符号化方法または装置とを、必要に応じて適宜切替えることにより、映像データを生成することも可能である。
(Embodiment 3)
The moving picture coding method or apparatus shown in the above embodiments and the moving picture coding method or apparatus compliant with different standards such as MPEG-2, MPEG4-AVC, and VC-1 are appropriately switched as necessary. Thus, it is also possible to generate video data.
 ここで、それぞれ異なる規格に準拠する複数の映像データを生成した場合、復号する際に、それぞれの規格に対応した復号方法を選択する必要がある。しかしながら、復号する映像データが、どの規格に準拠するものであるか識別できないため、適切な復号方法を選択することができないという課題を生じる。 Here, when a plurality of pieces of video data conforming to different standards are generated, it is necessary to select a decoding method corresponding to each standard when decoding. However, since it is impossible to identify which standard the video data to be decoded complies with, there arises a problem that an appropriate decoding method cannot be selected.
 この課題を解決するために、映像データに音声データなどを多重化した多重化データは、映像データがどの規格に準拠するものであるかを示す識別情報を含む構成とする。上記各実施の形態で示す動画像符号化方法または装置によって生成された映像データを含む多重化データの具体的な構成を以下説明する。多重化データは、MPEG-2トランスポートストリーム形式のデジタルストリームである。 In order to solve this problem, multiplexed data obtained by multiplexing audio data or the like with video data is configured to include identification information indicating which standard the video data conforms to. A specific configuration of multiplexed data including video data generated by the moving picture encoding method or apparatus shown in the above embodiments will be described below. The multiplexed data is a digital stream in the MPEG-2 transport stream format.
 図29は、多重化データの構成を示す図である。図29に示すように多重化データは、ビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム(PG)、インタラクティブグラフィックスストリームのうち、1つ以上を多重化することで得られる。ビデオストリームは映画の主映像および副映像を、オーディオストリーム(IG)は映画の主音声部分とその主音声とミキシングする副音声を、プレゼンテーショングラフィックスストリームは、映画の字幕をそれぞれ示している。ここで主映像とは画面に表示される通常の映像を示し、副映像とは主映像の中に小さな画面で表示する映像のことである。また、インタラクティブグラフィックスストリームは、画面上にGUI部品を配置することにより作成される対話画面を示している。ビデオストリームは、上記各実施の形態で示した動画像符号化方法または装置、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠した動画像符号化方法または装置によって符号化されている。オーディオストリームは、ドルビーAC-3、Dolby Digital Plus、MLP、DTS、DTS-HD、または、リニアPCMのなどの方式で符号化されている。 FIG. 29 is a diagram showing a structure of multiplexed data. As shown in FIG. 29, multiplexed data is obtained by multiplexing one or more of a video stream, an audio stream, a presentation graphics stream (PG), and an interactive graphics stream. The video stream indicates the main video and sub-video of the movie, the audio stream (IG) indicates the main audio portion of the movie and the sub-audio mixed with the main audio, and the presentation graphics stream indicates the subtitles of the movie. Here, the main video indicates a normal video displayed on the screen, and the sub-video is a video displayed on a small screen in the main video. The interactive graphics stream indicates an interactive screen created by arranging GUI components on the screen. The video stream is encoded by the moving image encoding method or apparatus shown in the above embodiments, or the moving image encoding method or apparatus conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1. ing. The audio stream is encoded by a method such as Dolby AC-3, Dolby Digital Plus, MLP, DTS, DTS-HD, or linear PCM.
 多重化データに含まれる各ストリームはPIDによって識別される。例えば、映画の映像に利用するビデオストリームには0x1011が、オーディオストリームには0x1100から0x111Fまでが、プレゼンテーショングラフィックスには0x1200から0x121Fまでが、インタラクティブグラフィックスストリームには0x1400から0x141Fまでが、映画の副映像に利用するビデオストリームには0x1B00から0x1B1Fまで、主音声とミキシングする副音声に利用するオーディオストリームには0x1A00から0x1A1Fが、それぞれ割り当てられている。 Each stream included in the multiplexed data is identified by PID. For example, 0x1011 for video streams used for movie images, 0x1100 to 0x111F for audio streams, 0x1200 to 0x121F for presentation graphics, 0x1400 to 0x141F for interactive graphics streams, 0x1B00 to 0x1B1F are assigned to video streams used for sub-pictures, and 0x1A00 to 0x1A1F are assigned to audio streams used for sub-audio mixed with the main audio.
 図30は、多重化データがどのように多重化されるかを模式的に示す図である。まず、複数のビデオフレームからなるビデオストリームex235、複数のオーディオフレームからなるオーディオストリームex238を、それぞれPESパケット列ex236およびex239に変換し、TSパケットex237およびex240に変換する。同じくプレゼンテーショングラフィックスストリームex241およびインタラクティブグラフィックスex244のデータをそれぞれPESパケット列ex242およびex245に変換し、さらにTSパケットex243およびex246に変換する。多重化データex247はこれらのTSパケットを1本のストリームに多重化することで構成される。 FIG. 30 is a diagram schematically showing how multiplexed data is multiplexed. First, a video stream ex235 composed of a plurality of video frames and an audio stream ex238 composed of a plurality of audio frames are converted into PES packet sequences ex236 and ex239, respectively, and converted into TS packets ex237 and ex240. Similarly, the data of the presentation graphics stream ex241 and interactive graphics ex244 are converted into PES packet sequences ex242 and ex245, respectively, and further converted into TS packets ex243 and ex246. The multiplexed data ex247 is configured by multiplexing these TS packets into one stream.
 図31は、PESパケット列に、ビデオストリームがどのように格納されるかをさらに詳しく示している。図31における第1段目はビデオストリームのビデオフレーム列を示す。第2段目は、PESパケット列を示す。図31の矢印yy1,yy2, yy3, yy4に示すように、ビデオストリームにおける複数のVideo Presentation UnitであるIピクチャ、Bピクチャ、Pピクチャは、ピクチャ毎に分割され、PESパケットのペイロードに格納される。各PESパケットはPESヘッダを持ち、PESヘッダには、ピクチャの表示時刻であるPTS(Presentation Time-Stamp)やピクチャの復号時刻であるDTS(Decoding Time-Stamp)が格納される。 FIG. 31 shows in more detail how the video stream is stored in the PES packet sequence. The first row in FIG. 31 shows a video frame sequence of the video stream. The second level shows a PES packet sequence. As shown by arrows yy1, yy2, yy3, and yy4 in FIG. 31, a plurality of Video Presentation Units in the video stream are divided into pictures, B pictures, and P pictures and stored in the payload of the PES packet. . Each PES packet has a PES header, and a PTS (Presentation Time-Stamp) that is a display time of a picture and a DTS (Decoding Time-Stamp) that is a decoding time of a picture are stored in the PES header.
 図32は、多重化データに最終的に書き込まれるTSパケットの形式を示している。TSパケットは、ストリームを識別するPIDなどの情報を持つ4ByteのTSヘッダとデータを格納する184ByteのTSペイロードから構成される188Byte固定長のパケットであり、上記PESパケットは分割されTSペイロードに格納される。BD-ROMの場合、TSパケットには、4ByteのTP_Extra_Headerが付与され、192Byteのソースパケットを構成し、多重化データに書き込まれる。TP_Extra_HeaderにはATS(Arrival_Time_Stamp)などの情報が記載される。ATSは当該TSパケットのデコーダのPIDフィルタへの転送開始時刻を示す。多重化データには図32下段に示すようにソースパケットが並ぶこととなり、多重化データの先頭からインクリメントする番号はSPN(ソースパケットナンバー)と呼ばれる。 FIG. 32 shows the format of TS packets that are finally written in the multiplexed data. The TS packet is a 188-byte fixed-length packet composed of a 4-byte TS header having information such as a PID for identifying a stream and a 184-byte TS payload for storing data. The PES packet is divided and stored in the TS payload. The In the case of a BD-ROM, a 4-byte TP_Extra_Header is added to a TS packet, forms a 192-byte source packet, and is written in multiplexed data. In TP_Extra_Header, information such as ATS (Arrival_Time_Stamp) is described. ATS indicates the transfer start time of the TS packet to the PID filter of the decoder. Source packets are arranged in the multiplexed data as shown in the lower part of FIG. 32, and the number incremented from the head of the multiplexed data is called SPN (source packet number).
 また、多重化データに含まれるTSパケットには、映像・音声・字幕などの各ストリーム以外にもPAT(Program Association Table)、PMT(Program Map Table)、PCR(Program Clock Reference)などがある。PATは多重化データ中に利用されるPMTのPIDが何であるかを示し、PAT自身のPIDは0で登録される。PMTは、多重化データ中に含まれる映像・音声・字幕などの各ストリームのPIDと各PIDに対応するストリームの属性情報を持ち、また多重化データに関する各種ディスクリプタを持つ。ディスクリプタには多重化データのコピーを許可・不許可を指示するコピーコントロール情報などがある。PCRは、ATSの時間軸であるATC(Arrival Time Clock)とPTS・DTSの時間軸であるSTC(System Time Clock)の同期を取るために、そのPCRパケットがデコーダに転送されるATSに対応するSTC時間の情報を持つ。 In addition, TS packets included in the multiplexed data include PAT (Program Association Table), PMT (Program Map Table), PCR (Program Clock Reference), and the like in addition to each stream such as video / audio / caption. PAT indicates what the PID of the PMT used in the multiplexed data is, and the PID of the PAT itself is registered as 0. The PMT has the PID of each stream such as video / audio / subtitles included in the multiplexed data and the attribute information of the stream corresponding to each PID, and has various descriptors related to the multiplexed data. The descriptor includes copy control information for instructing permission / non-permission of copying of multiplexed data. In order to synchronize the ATC (Arrival Time Clock), which is the ATS time axis, and the STC (System Time Clock), which is the PTS / DTS time axis, the PCR corresponds to the ATS in which the PCR packet is transferred to the decoder. Contains STC time information.
 図33はPMTのデータ構造を詳しく説明する図である。PMTの先頭には、そのPMTに含まれるデータの長さなどを記したPMTヘッダが配置される。その後ろには、多重化データに関するディスクリプタが複数配置される。上記コピーコントロール情報などが、ディスクリプタとして記載される。ディスクリプタの後には、多重化データに含まれる各ストリームに関するストリーム情報が複数配置される。ストリーム情報は、ストリームの圧縮コーデックなどを識別するためストリームタイプ、ストリームのPID、ストリームの属性情報(フレームレート、アスペクト比など)が記載されたストリームディスクリプタから構成される。ストリームディスクリプタは多重化データに存在するストリームの数だけ存在する。 FIG. 33 is a diagram for explaining the data structure of the PMT in detail. A PMT header describing the length of data included in the PMT is arranged at the head of the PMT. After that, a plurality of descriptors related to multiplexed data are arranged. The copy control information and the like are described as descriptors. After the descriptor, a plurality of pieces of stream information regarding each stream included in the multiplexed data are arranged. The stream information includes a stream descriptor in which a stream type, a stream PID, and stream attribute information (frame rate, aspect ratio, etc.) are described to identify a compression codec of the stream. There are as many stream descriptors as the number of streams existing in the multiplexed data.
 記録媒体などに記録する場合には、上記多重化データは、多重化データ情報ファイルと共に記録される。 When recording on a recording medium or the like, the multiplexed data is recorded together with the multiplexed data information file.
 多重化データ情報ファイルは、図34に示すように多重化データの管理情報であり、多重化データと1対1に対応し、多重化データ情報、ストリーム属性情報とエントリマップから構成される。 As shown in FIG. 34, the multiplexed data information file is management information of multiplexed data, has a one-to-one correspondence with the multiplexed data, and includes multiplexed data information, stream attribute information, and an entry map.
 多重化データ情報は図34に示すようにシステムレート、再生開始時刻、再生終了時刻から構成されている。システムレートは多重化データの、後述するシステムターゲットデコーダのPIDフィルタへの最大転送レートを示す。多重化データ中に含まれるATSの間隔はシステムレート以下になるように設定されている。再生開始時刻は多重化データの先頭のビデオフレームのPTSであり、再生終了時刻は多重化データの終端のビデオフレームのPTSに1フレーム分の再生間隔を足したものが設定される。 As shown in FIG. 34, the multiplexed data information is composed of a system rate, a reproduction start time, and a reproduction end time. The system rate indicates a maximum transfer rate of multiplexed data to a PID filter of a system target decoder described later. The ATS interval included in the multiplexed data is set to be equal to or less than the system rate. The playback start time is the PTS of the first video frame of the multiplexed data, and the playback end time is set by adding the playback interval for one frame to the PTS of the video frame at the end of the multiplexed data.
 ストリーム属性情報は図35に示すように、多重化データに含まれる各ストリームについての属性情報が、PID毎に登録される。属性情報はビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム、インタラクティブグラフィックスストリーム毎に異なる情報を持つ。ビデオストリーム属性情報は、そのビデオストリームがどのような圧縮コーデックで圧縮されたか、ビデオストリームを構成する個々のピクチャデータの解像度がどれだけであるか、アスペクト比はどれだけであるか、フレームレートはどれだけであるかなどの情報を持つ。オーディオストリーム属性情報は、そのオーディオストリームがどのような圧縮コーデックで圧縮されたか、そのオーディオストリームに含まれるチャンネル数は何であるか、何の言語に対応するか、サンプリング周波数がどれだけであるかなどの情報を持つ。これらの情報は、プレーヤが再生する前のデコーダの初期化などに利用される。 In the stream attribute information, as shown in FIG. 35, attribute information about each stream included in the multiplexed data is registered for each PID. The attribute information has different information for each video stream, audio stream, presentation graphics stream, and interactive graphics stream. The video stream attribute information includes the compression codec used to compress the video stream, the resolution of the individual picture data constituting the video stream, the aspect ratio, and the frame rate. It has information such as how much it is. The audio stream attribute information includes the compression codec used to compress the audio stream, the number of channels included in the audio stream, the language supported, and the sampling frequency. With information. These pieces of information are used for initialization of the decoder before the player reproduces it.
 本実施の形態においては、上記多重化データのうち、PMTに含まれるストリームタイプを利用する。また、記録媒体に多重化データが記録されている場合には、多重化データ情報に含まれる、ビデオストリーム属性情報を利用する。具体的には、上記各実施の形態で示した動画像符号化方法または装置において、PMTに含まれるストリームタイプ、または、ビデオストリーム属性情報に対し、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示す固有の情報を設定するステップまたは手段を設ける。この構成により、上記各実施の形態で示した動画像符号化方法または装置によって生成した映像データと、他の規格に準拠する映像データとを識別することが可能になる。 In this embodiment, among the multiplexed data, the stream type included in the PMT is used. Also, when multiplexed data is recorded on the recording medium, video stream attribute information included in the multiplexed data information is used. Specifically, in the video encoding method or apparatus shown in each of the above embodiments, the video encoding shown in each of the above embodiments for the stream type or video stream attribute information included in the PMT. There is provided a step or means for setting unique information indicating that the video data is generated by the method or apparatus. With this configuration, it is possible to discriminate between video data generated by the moving picture encoding method or apparatus described in the above embodiments and video data compliant with other standards.
 また、本実施の形態における動画像復号化方法のステップを図36に示す。ステップexS100において、多重化データからPMTに含まれるストリームタイプ、または、多重化データ情報に含まれるビデオストリーム属性情報を取得する。次に、ステップexS101において、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成された多重化データであることを示しているか否かを判断する。そして、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成されたものであると判断された場合には、ステップexS102において、上記各実施の形態で示した動画像復号方法により復号を行う。また、ストリームタイプ、または、ビデオストリーム属性情報が、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠するものであることを示している場合には、ステップexS103において、従来の規格に準拠した動画像復号方法により復号を行う。 FIG. 36 shows the steps of the moving picture decoding method according to the present embodiment. In step exS100, the stream type included in the PMT or the video stream attribute information included in the multiplexed data information is acquired from the multiplexed data. Next, in step exS101, it is determined whether or not the stream type or the video stream attribute information indicates multiplexed data generated by the moving picture encoding method or apparatus described in the above embodiments. To do. When it is determined that the stream type or the video stream attribute information is generated by the moving image encoding method or apparatus described in the above embodiments, in step exS102, the above embodiments are performed. Decoding is performed by the moving picture decoding method shown in the form. If the stream type or video stream attribute information indicates that it conforms to a standard such as conventional MPEG-2, MPEG4-AVC, or VC-1, in step exS103, the conventional information Decoding is performed by a moving image decoding method compliant with the standard.
 このように、ストリームタイプ、または、ビデオストリーム属性情報に新たな固有値を設定することにより、復号する際に、上記各実施の形態で示した動画像復号化方法または装置で復号可能であるかを判断することができる。従って、異なる規格に準拠する多重化データが入力された場合であっても、適切な復号化方法または装置を選択することができるため、エラーを生じることなく復号することが可能となる。また、本実施の形態で示した動画像符号化方法または装置、または、動画像復号方法または装置を、上述したいずれの機器・システムに用いることも可能である。 In this way, by setting a new unique value in the stream type or video stream attribute information, whether or not decoding is possible with the moving picture decoding method or apparatus described in each of the above embodiments is performed. Judgment can be made. Therefore, even when multiplexed data conforming to different standards is input, an appropriate decoding method or apparatus can be selected, and therefore decoding can be performed without causing an error. In addition, the moving picture encoding method or apparatus or the moving picture decoding method or apparatus described in this embodiment can be used in any of the above-described devices and systems.
 (実施の形態4)
 上記各実施の形態で示した動画像符号化方法および装置、動画像復号化方法および装置は、典型的には集積回路であるLSIで実現される。一例として、図37に1チップ化されたLSIex500の構成を示す。LSIex500は、以下に説明する要素ex501、ex502、ex503、ex504、ex505、ex506、ex507、ex508、ex509を備え、各要素はバスex510を介して接続している。電源回路部ex505は電源がオン状態の場合に各部に対して電力を供給することで動作可能な状態に起動する。
(Embodiment 4)
The moving picture encoding method and apparatus and moving picture decoding method and apparatus described in the above embodiments are typically realized by an LSI that is an integrated circuit. As an example, FIG. 37 shows a configuration of the LSI ex500 that is made into one chip. The LSI ex500 includes elements ex501, ex502, ex503, ex504, ex505, ex506, ex507, ex508, and ex509 described below, and each element is connected via a bus ex510. The power supply circuit unit ex505 is activated to an operable state by supplying power to each unit when the power supply is on.
 例えば符号化処理を行う場合には、LSIex500は、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有する制御部ex501の制御に基づいて、AV I/Oex509によりマイクex117やカメラex113等からAV信号を入力する。入力されたAV信号は、一旦SDRAM等の外部のメモリex511に蓄積される。制御部ex501の制御に基づいて、蓄積したデータは処理量や処理速度に応じて適宜複数回に分けるなどされ信号処理部ex507に送られ、信号処理部ex507において音声信号の符号化および/または映像信号の符号化が行われる。ここで映像信号の符号化処理は上記各実施の形態で説明した符号化処理である。信号処理部ex507ではさらに、場合により符号化された音声データと符号化された映像データを多重化するなどの処理を行い、ストリームI/Oex506から外部に出力する。この出力された多重化データは、基地局ex107に向けて送信されたり、または記録メディアex215に書き込まれたりする。なお、多重化する際には同期するよう、一旦バッファex508にデータを蓄積するとよい。 For example, when performing the encoding process, the LSI ex500 performs the microphone ex117 and the camera ex113 by the AV I / O ex509 based on the control of the control unit ex501 including the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like. The AV signal is input from the above. The input AV signal is temporarily stored in an external memory ex511 such as SDRAM. Based on the control of the control unit ex501, the accumulated data is divided into a plurality of times as appropriate according to the processing amount and the processing speed and sent to the signal processing unit ex507, and the signal processing unit ex507 encodes an audio signal and / or video. Signal encoding is performed. Here, the encoding process of the video signal is the encoding process described in the above embodiments. The signal processing unit ex507 further performs processing such as multiplexing the encoded audio data and the encoded video data according to circumstances, and outputs the result from the stream I / Oex 506 to the outside. The output multiplexed data is transmitted to the base station ex107 or written to the recording medium ex215. It should be noted that data should be temporarily stored in the buffer ex508 so as to be synchronized when multiplexing.
 なお、上記では、メモリex511がLSIex500の外部の構成として説明したが、LSIex500の内部に含まれる構成であってもよい。バッファex508も1つに限ったものではなく、複数のバッファを備えていてもよい。また、LSIex500は1チップ化されてもよいし、複数チップ化されてもよい。 In the above description, the memory ex511 is described as an external configuration of the LSI ex500. However, a configuration included in the LSI ex500 may be used. The number of buffers ex508 is not limited to one, and a plurality of buffers may be provided. The LSI ex500 may be made into one chip or a plurality of chips.
 また、上記では、制御部ex501が、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有するとしているが、制御部ex501の構成は、この構成に限らない。例えば、信号処理部ex507がさらにCPUを備える構成であってもよい。信号処理部ex507の内部にもCPUを設けることにより、処理速度をより向上させることが可能になる。また、他の例として、CPUex502が信号処理部ex507、または信号処理部ex507の一部である例えば音声信号処理部を備える構成であってもよい。このような場合には、制御部ex501は、信号処理部ex507、またはその一部を有するCPUex502を備える構成となる。 In the above description, the control unit ex501 includes the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like, but the configuration of the control unit ex501 is not limited to this configuration. For example, the signal processing unit ex507 may further include a CPU. By providing a CPU also in the signal processing unit ex507, the processing speed can be further improved. As another example, the CPU ex502 may be configured to include a signal processing unit ex507 or, for example, an audio signal processing unit that is a part of the signal processing unit ex507. In such a case, the control unit ex501 is configured to include a signal processing unit ex507 or a CPU ex502 having a part thereof.
 なお、ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 In addition, although it was set as LSI here, it may be called IC, system LSI, super LSI, and ultra LSI depending on the degree of integration.
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Further, the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適応等が可能性としてありえる。 Furthermore, if integrated circuit technology that replaces LSI emerges as a result of progress in semiconductor technology or other derived technology, it is naturally possible to integrate functional blocks using this technology. Biotechnology can be applied.
 (実施の形態5)
 上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データを復号する場合、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データを復号する場合に比べ、処理量が増加することが考えられる。そのため、LSIex500において、従来の規格に準拠する映像データを復号する際のCPUex502の駆動周波数よりも高い駆動周波数に設定する必要がある。しかし、駆動周波数を高くすると、消費電力が高くなるという課題が生じる。
(Embodiment 5)
When decoding the video data generated by the moving picture encoding method or apparatus shown in the above embodiments, the video data conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1 is decoded. It is conceivable that the amount of processing increases compared to the case. Therefore, in LSI ex500, it is necessary to set a driving frequency higher than the driving frequency of CPU ex502 when decoding video data compliant with the conventional standard. However, when the drive frequency is increased, there is a problem that power consumption increases.
 この課題を解決するために、テレビex300、LSIex500などの動画像復号化装置は、映像データがどの規格に準拠するものであるかを識別し、規格に応じて駆動周波数を切替える構成とする。図38は、本実施の形態における構成ex800を示している。駆動周波数切替え部ex803は、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合には、駆動周波数を高く設定する。そして、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801に対し、映像データを復号するよう指示する。一方、映像データが、従来の規格に準拠する映像データである場合には、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合に比べ、駆動周波数を低く設定する。そして、従来の規格に準拠する復号処理部ex802に対し、映像データを復号するよう指示する。 In order to solve this problem, moving picture decoding devices such as the television ex300 and LSI ex500 are configured to identify which standard the video data conforms to and switch the driving frequency in accordance with the standard. FIG. 38 shows a configuration ex800 in the present embodiment. The drive frequency switching unit ex803 sets the drive frequency high when the video data is generated by the moving image encoding method or apparatus described in the above embodiments. Then, the decoding processing unit ex801 that executes the moving picture decoding method described in each of the above embodiments is instructed to decode the video data. On the other hand, when the video data is video data compliant with the conventional standard, compared to the case where the video data is generated by the moving picture encoding method or apparatus shown in the above embodiments, Set the drive frequency low. Then, it instructs the decoding processing unit ex802 compliant with the conventional standard to decode the video data.
 より具体的には、駆動周波数切替え部ex803は、図37のCPUex502と駆動周波数制御部ex512から構成される。また、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801、および、従来の規格に準拠する復号処理部ex802は、図37の信号処理部ex507に該当する。CPUex502は、映像データがどの規格に準拠するものであるかを識別する。そして、CPUex502からの信号に基づいて、駆動周波数制御部ex512は、駆動周波数を設定する。また、CPUex502からの信号に基づいて、信号処理部ex507は、映像データの復号を行う。ここで、映像データの識別には、例えば、実施の形態3で記載した識別情報を利用することが考えられる。識別情報に関しては、実施の形態3で記載したものに限られず、映像データがどの規格に準拠するか識別できる情報であればよい。例えば、映像データがテレビに利用されるものであるか、ディスクに利用されるものであるかなどを識別する外部信号に基づいて、映像データがどの規格に準拠するものであるか識別可能である場合には、このような外部信号に基づいて識別してもよい。また、CPUex502における駆動周波数の選択は、例えば、図40のような映像データの規格と、駆動周波数とを対応付けたルックアップテーブルに基づいて行うことが考えられる。ルックアップテーブルを、バッファex508や、LSIの内部メモリに格納しておき、CPUex502がこのルックアップテーブルを参照することにより、駆動周波数を選択することが可能である。 More specifically, the drive frequency switching unit ex803 includes the CPU ex502 and the drive frequency control unit ex512 in FIG. Also, the decoding processing unit ex801 that executes the moving picture decoding method described in each of the above embodiments and the decoding processing unit ex802 that conforms to the conventional standard correspond to the signal processing unit ex507 in FIG. The CPU ex502 identifies which standard the video data conforms to. Then, based on the signal from the CPU ex502, the drive frequency control unit ex512 sets the drive frequency. Further, based on the signal from the CPU ex502, the signal processing unit ex507 decodes the video data. Here, for the identification of the video data, for example, it is conceivable to use the identification information described in the third embodiment. The identification information is not limited to that described in Embodiment 3, and any information that can identify which standard the video data conforms to may be used. For example, it is possible to identify which standard the video data conforms to based on an external signal that identifies whether the video data is used for a television or a disk. In some cases, identification may be performed based on such an external signal. In addition, the selection of the driving frequency in the CPU ex502 may be performed based on, for example, a lookup table in which video data standards and driving frequencies are associated with each other as shown in FIG. The look-up table is stored in the buffer ex508 or the internal memory of the LSI, and the CPU ex502 can select the drive frequency by referring to the look-up table.
 図39は、本実施の形態の方法を実施するステップを示している。まず、ステップexS200では、信号処理部ex507において、多重化データから識別情報を取得する。次に、ステップexS201では、CPUex502において、識別情報に基づいて映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものであるか否かを識別する。映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合には、ステップexS202において、駆動周波数を高く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、高い駆動周波数に設定される。一方、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、ステップexS203において、駆動周波数を低く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合に比べ、低い駆動周波数に設定される。 FIG. 39 shows steps for executing the method of the present embodiment. First, in step exS200, the signal processing unit ex507 acquires identification information from the multiplexed data. Next, in step exS201, the CPU ex502 identifies whether the video data is generated by the encoding method or apparatus described in each of the above embodiments based on the identification information. When the video data is generated by the encoding method or apparatus shown in the above embodiments, in step exS202, the CPU ex502 sends a signal for setting the drive frequency high to the drive frequency control unit ex512. Then, the drive frequency control unit ex512 sets a high drive frequency. On the other hand, if it indicates that the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1, in step exS203, the CPU ex502 drives the signal for setting the drive frequency low. This is sent to the frequency control unit ex512. Then, in the drive frequency control unit ex512, the drive frequency is set to be lower than that in the case where the video data is generated by the encoding method or apparatus described in the above embodiments.
 さらに、駆動周波数の切替えに連動して、LSIex500またはLSIex500を含む装置に与える電圧を変更することにより、省電力効果をより高めることが可能である。例えば、駆動周波数を低く設定する場合には、これに伴い、駆動周波数を高く設定している場合に比べ、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することが考えられる。 Furthermore, the power saving effect can be further enhanced by changing the voltage applied to the LSI ex500 or the device including the LSI ex500 in conjunction with the switching of the driving frequency. For example, when the drive frequency is set low, it is conceivable that the voltage applied to the LSI ex500 or the device including the LSI ex500 is set low as compared with the case where the drive frequency is set high.
 また、駆動周波数の設定方法は、復号する際の処理量が大きい場合に、駆動周波数を高く設定し、復号する際の処理量が小さい場合に、駆動周波数を低く設定すればよく、上述した設定方法に限らない。例えば、MPEG4-AVC規格に準拠する映像データを復号する処理量の方が、上記各実施の形態で示した動画像符号化方法または装置により生成された映像データを復号する処理量よりも大きい場合には、駆動周波数の設定を上述した場合の逆にすることが考えられる。 In addition, the setting method of the driving frequency may be set to a high driving frequency when the processing amount at the time of decoding is large, and to a low driving frequency when the processing amount at the time of decoding is small. It is not limited to the method. For example, the amount of processing for decoding video data compliant with the MPEG4-AVC standard is larger than the amount of processing for decoding video data generated by the moving picture encoding method or apparatus described in the above embodiments. It is conceivable that the setting of the driving frequency is reversed to that in the case described above.
 さらに、駆動周波数の設定方法は、駆動周波数を低くする構成に限らない。例えば、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を高く設定し、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することも考えられる。また、他の例としては、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、CPUex502の駆動を停止させることなく、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、処理に余裕があるため、CPUex502の駆動を一時停止させることも考えられる。識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合であっても、処理に余裕があれば、CPUex502の駆動を一時停止させることも考えられる。この場合は、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合に比べて、停止時間を短く設定することが考えられる。 Furthermore, the method for setting the drive frequency is not limited to the configuration in which the drive frequency is lowered. For example, when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in the above embodiments, the voltage applied to the LSIex500 or the apparatus including the LSIex500 is set high. However, when it is shown that the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, VC-1, etc., it is also possible to set the voltage applied to the LSIex500 or the device including the LSIex500 low. It is done. As another example, when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in the above embodiments, the driving of the CPU ex502 is stopped. If the video data conforms to the standards such as MPEG-2, MPEG4-AVC, VC-1, etc., the CPU ex502 is temporarily stopped because there is room in processing. Is also possible. Even when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in each of the above embodiments, if there is a margin for processing, the CPU ex502 is temporarily driven. It can also be stopped. In this case, it is conceivable to set the stop time shorter than in the case where the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1.
 このように、映像データが準拠する規格に応じて、駆動周波数を切替えることにより、省電力化を図ることが可能になる。また、電池を用いてLSIex500またはLSIex500を含む装置を駆動している場合には、省電力化に伴い、電池の寿命を長くすることが可能である。 Thus, it is possible to save power by switching the drive frequency according to the standard to which the video data conforms. In addition, when the battery is used to drive the LSI ex500 or the device including the LSI ex500, it is possible to extend the life of the battery with power saving.
 (実施の形態6)
 テレビや、携帯電話など、上述した機器・システムには、異なる規格に準拠する複数の映像データが入力される場合がある。このように、異なる規格に準拠する複数の映像データが入力された場合にも復号できるようにするために、LSIex500の信号処理部ex507が複数の規格に対応している必要がある。しかし、それぞれの規格に対応する信号処理部ex507を個別に用いると、LSIex500の回路規模が大きくなり、また、コストが増加するという課題が生じる。
(Embodiment 6)
A plurality of video data that conforms to different standards may be input to the above-described devices and systems such as a television and a mobile phone. As described above, the signal processing unit ex507 of the LSI ex500 needs to support a plurality of standards in order to be able to decode even when a plurality of video data complying with different standards is input. However, when the signal processing unit ex507 corresponding to each standard is used individually, there is a problem that the circuit scale of the LSI ex500 increases and the cost increases.
 この課題を解決するために、上記各実施の形態で示した動画像復号方法を実行するための復号処理部と、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する復号処理部とを一部共有化する構成とする。この構成例を図41(a)のex900に示す。例えば、上記各実施の形態で示した動画像復号方法と、MPEG4-AVC規格に準拠する動画像復号方法とは、エントロピー符号化、逆量子化、デブロッキング・フィルタ、動き補償などの処理において処理内容が一部共通する。共通する処理内容については、MPEG4-AVC規格に対応する復号処理部ex902を共有し、MPEG4-AVC規格に対応しない、本発明特有の他の処理内容については、専用の復号処理部ex901を用いるという構成が考えられる。特に、本発明は、逆量子化に用いるパラメータの管理に特徴を有していることから、例えば、逆量子化に用いるパラメータの管理については専用の復号処理部ex901を用い、それ以外のエントロピー符号化、デブロッキング・フィルタ、動き補償のいずれか、または、全ての処理については、復号処理部を共有することが考えられる。復号処理部の共有化に関しては、共通する処理内容については、上記各実施の形態で示した動画像復号化方法を実行するための復号処理部を共有し、MPEG4-AVC規格に特有の処理内容については、専用の復号処理部を用いる構成であってもよい。 In order to solve this problem, a decoding processing unit for executing the moving picture decoding method shown in each of the above embodiments and a decoding conforming to a standard such as MPEG-2, MPEG4-AVC, or VC-1 The processing unit is partly shared. An example of this configuration is shown as ex900 in FIG. For example, the moving picture decoding method shown in each of the above embodiments and the moving picture decoding method compliant with the MPEG4-AVC standard are processed in processes such as entropy coding, inverse quantization, deblocking filter, and motion compensation. Some contents are common. For the common processing content, the decoding processing unit ex902 corresponding to the MPEG4-AVC standard is shared, and for the other processing content unique to the present invention not corresponding to the MPEG4-AVC standard, the dedicated decoding processing unit ex901 is used. Configuration is conceivable. In particular, since the present invention is characterized by management of parameters used for inverse quantization, for example, a dedicated decoding processing unit ex901 is used for management of parameters used for inverse quantization, and other entropy codes are used. It is conceivable to share a decoding processing unit for any of the processing, deblocking filter, motion compensation, or all processing. Regarding the sharing of the decoding processing unit, regarding the common processing content, the decoding processing unit for executing the moving picture decoding method described in each of the above embodiments is shared, and the processing content specific to the MPEG4-AVC standard As for, a configuration using a dedicated decoding processing unit may be used.
 また、処理を一部共有化する他の例を図41(b)のex1000に示す。この例では、本発明に特有の処理内容に対応した専用の復号処理部ex1001と、他の従来規格に特有の処理内容に対応した専用の復号処理部ex1002と、本発明の動画像復号方法と他の従来規格の動画像復号方法とに共通する処理内容に対応した共用の復号処理部ex1003とを用いる構成としている。ここで、専用の復号処理部ex1001、ex1002は、必ずしも本発明、または、他の従来規格に特有の処理内容に特化したものではなく、他の汎用処理を実行できるものであってもよい。また、本実施の形態の構成を、LSIex500で実装することも可能である。 Further, ex1000 in FIG. 41B shows another example in which processing is partially shared. In this example, a dedicated decoding processing unit ex1001 corresponding to processing content unique to the present invention, a dedicated decoding processing unit ex1002 corresponding to processing content specific to other conventional standards, and a moving picture decoding method of the present invention A common decoding processing unit ex1003 corresponding to processing contents common to other conventional video decoding methods is used. Here, the dedicated decoding processing units ex1001 and ex1002 are not necessarily specialized in the processing content specific to the present invention or other conventional standards, and may be capable of executing other general-purpose processing. Also, the configuration of the present embodiment can be implemented by LSI ex500.
 このように、本発明の動画像復号方法と、従来の規格の動画像復号方法とで共通する処理内容について、復号処理部を共有することにより、LSIの回路規模を小さくし、かつ、コストを低減することが可能である。 As described above, by sharing the decoding processing unit with respect to the processing contents common to the moving picture decoding method of the present invention and the moving picture decoding method of the conventional standard, the circuit scale of the LSI is reduced, and the cost is reduced. It is possible to reduce.
 本発明は、画質の劣化を防止するとともに、符号化効率を十分に向上させることができるという効果を奏し、例えば、蓄積、伝送、通信など様々な用途に利用可能である。例えば、本発明は、テレビ、デジタルビデオレコーダー、カーナビゲーション、携帯電話、デジタルカメラ、デジタルビデオカメラ等の高解像度の情報表示機器や撮像機器に利用可能であり、利用価値が高い。 The present invention has the effect of preventing image quality deterioration and sufficiently improving the encoding efficiency, and can be used for various purposes such as storage, transmission, and communication. For example, the present invention can be used for high-resolution information display devices and imaging devices such as televisions, digital video recorders, car navigation systems, mobile phones, digital cameras, and digital video cameras, and has high utility value.
110、210 判定部
120、220、1109、2106 メモリ
130、330 量子化マトリクス符号化部
140、240 量子化マトリクス補正部
150 差分算出部
230、430 量子化マトリクス復号部
250 加算部
300、1200 符号化制御部
400、2200 復号制御部
1000 画像符号化装置
1101 減算器
1102 直交変換部
1103 量子化部
1104 エントロピー符号化部
1105、2102 逆量子化部
1106、2103 逆直交変換部
1107、2104 加算器
1108、2105 デブロッキングフィルタ
1110、2107 面内予測部
1111、2108 動き補償部
1112 動き検出部
1113、2109 スイッチ
2000 画像復号装置
2100 復号処理部
2101 エントロピー復号部
110, 210 Determination unit 120, 220, 1109, 2106 Memory 130, 330 Quantization matrix coding unit 140, 240 Quantization matrix correction unit 150 Difference calculation unit 230, 430 Quantization matrix decoding unit 250 Addition unit 300, 1200 Encoding Control unit 400, 2200 Decoding control unit 1000 Image coding device 1101 Subtractor 1102 Orthogonal transformation unit 1103 Quantization unit 1104 Entropy coding unit 1105, 2102 Inverse quantization unit 1106, 2103 Inverse orthogonal transformation unit 1107, 2104 Adder 1108, 2105 Deblocking filters 1110 and 2107 In- plane prediction units 1111 and 2108 Motion compensation units 1112 Motion detection units 1113 and 2109 Switch 2000 Image decoding device 2100 Decoding processing unit 2101 Entropy decoding unit

Claims (14)

  1.  画像データを符号化する画像符号化方法であって、
     前記画像データに含まれる符号化対象ブロックがプログレッシブスキャンされた画像データである場合に第1量子化マトリクスを用い、前記符号化対象ブロックがフィールドスキャンされた画像データである場合に前記第1量子化マトリクスとは異なる第2量子化マトリクスを用いて、前記符号化対象ブロックを量子化し、
     量子化された符号化対象ブロックを符号化することで、符号化ストリームを生成し、
     前記第1量子化マトリクス及び前記第2量子化マトリクスの少なくとも一方を前記符号化ストリームに挿入する
     画像符号化方法。
    An image encoding method for encoding image data, comprising:
    The first quantization matrix is used when the encoding target block included in the image data is progressive scanned image data, and the first quantization matrix is used when the encoding target block is field scanned image data. A second quantization matrix different from the matrix is used to quantize the encoding target block;
    An encoded stream is generated by encoding the quantized block to be encoded,
    An image encoding method for inserting at least one of the first quantization matrix and the second quantization matrix into the encoded stream.
  2.  前記挿入では、さらに、前記量子化以外の少なくとも1つの処理と兼用されるフラグであって、前記符号化対象ブロックがプログレッシブスキャンされた画像データであるかフィールドスキャンされた画像データであるかを示すフラグを前記符号化ストリームに挿入する
     請求項1記載の画像符号化方法。
    In the insertion, the flag is also used as at least one process other than the quantization, and indicates whether the block to be encoded is progressively scanned image data or field scanned image data. The image encoding method according to claim 1, wherein a flag is inserted into the encoded stream.
  3.  前記挿入では、前記第1量子化マトリクスと前記第2量子化マトリクスとを挿入する
     請求項1記載の画像符号化方法。
    The image coding method according to claim 1, wherein in the insertion, the first quantization matrix and the second quantization matrix are inserted.
  4.  前記挿入では、さらに、
     前記第1量子化マトリクスを補正し、
     補正後の第1量子化マトリクスと前記第2量子化マトリクスとの差分を算出し、
     算出した差分を前記符号化ストリームに挿入する
     請求項1記載の画像符号化方法。
    In the insertion, further
    Correcting the first quantization matrix;
    Calculating a difference between the corrected first quantization matrix and the second quantization matrix;
    The image encoding method according to claim 1, wherein the calculated difference is inserted into the encoded stream.
  5.  前記補正では、前記第1量子化マトリクスを垂直方向に2倍したマトリクスの一部を、前記補正後の第1量子化マトリクスとして生成する
     請求項4記載の画像符号化方法。
    The image encoding method according to claim 4, wherein in the correction, a part of a matrix obtained by doubling the first quantization matrix in the vertical direction is generated as the corrected first quantization matrix.
  6.  前記量子化では、前記符号化対象ブロックがフィールドスキャンされた画像データである場合、前記第1量子化マトリクスを補正したマトリクスを、前記第2量子化マトリクスとして用いて、前記符号化対象ブロックを量子化する
     請求項1記載の画像符号化方法。
    In the quantization, when the encoding target block is field-scanned image data, a matrix obtained by correcting the first quantization matrix is used as the second quantization matrix, and the encoding target block is quantized. The image encoding method according to claim 1.
  7.  符号化ストリームを復号する画像復号方法であって、
     前記符号化ストリームから第1量子化マトリクス、及び、当該第1量子化マトリクスとは異なる第2量子化マトリクスの少なくとも一方を抽出し、
     前記符号化ストリームを復号することで、量子化された係数を含む復号対象ブロックを取得し、
     前記復号対象ブロックがプログレッシブスキャンされた画像データである場合に前記第1量子化マトリクスを用い、前記復号対象ブロックがフィールドスキャンされた画像データである場合に前記第2量子化マトリクスを用いて、前記復号対象ブロックを逆量子化する
     画像復号方法。
    An image decoding method for decoding an encoded stream,
    Extracting at least one of a first quantization matrix and a second quantization matrix different from the first quantization matrix from the encoded stream;
    By decoding the encoded stream, a decoding target block including quantized coefficients is obtained,
    When the decoding target block is progressively scanned image data, the first quantization matrix is used. When the decoding target block is field scanned image data, the second quantization matrix is used. An image decoding method for inversely quantizing a decoding target block.
  8.  前記抽出では、さらに、前記逆量子化以外の少なくとも1つの処理と兼用されるフラグであって、前記復号対象ブロックがプログレッシブスキャンされた画像データであるかフィールドスキャンされた画像データであるかを示すフラグを前記符号化ストリームから抽出する
     請求項7記載の画像復号方法。
    In the extraction, the flag is also used as at least one process other than the inverse quantization, and indicates whether the decoding target block is progressively scanned image data or field scanned image data. The image decoding method according to claim 7, wherein a flag is extracted from the encoded stream.
  9.  前記抽出では、前記符号化ストリームから前記第1量子化マトリクスと前記第2量子化マトリクスとを抽出する
     請求項7記載の画像復号方法。
    The image decoding method according to claim 7, wherein in the extraction, the first quantization matrix and the second quantization matrix are extracted from the encoded stream.
  10.  前記抽出では、さらに、
     前記符号化ストリームから、前記第2量子化マトリクスを復元するための差分を抽出し、
     前記第1量子化マトリクスを補正し、
     補正後の第1量子化マトリクスと前記差分とを加算することで、前記第2量子化マトリクスを復元する
     請求項7記載の画像復号方法。
    In the extraction, further
    Extracting a difference for restoring the second quantization matrix from the encoded stream;
    Correcting the first quantization matrix;
    The image decoding method according to claim 7, wherein the second quantization matrix is restored by adding the corrected first quantization matrix and the difference.
  11.  前記補正では、前記第1量子化マトリクスを垂直方向に2倍したマトリクスの一部を、前記補正後の第1量子化マトリクスとして生成する
     請求項10記載の画像復号方法。
    The image decoding method according to claim 10, wherein in the correction, a part of a matrix obtained by doubling the first quantization matrix in the vertical direction is generated as the corrected first quantization matrix.
  12.  前記逆量子化では、前記復号対象ブロックがフィールドスキャンされた画像データである場合、前記第1量子化マトリクスを補正したマトリクスを、前記第2量子化マトリクスとして用いて、前記復号対象ブロックを逆量子化する
     請求項7記載の画像復号方法。
    In the inverse quantization, when the decoding target block is field-scanned image data, a matrix obtained by correcting the first quantization matrix is used as the second quantization matrix, and the decoding target block is inversely quantized. The image decoding method according to claim 7.
  13.  画像データを符号化する画像符号化装置であって、
     前記画像データに含まれる符号化対象ブロックがプログレッシブスキャンされた画像データである場合に第1量子化マトリクスを用い、前記符号化対象ブロックがフィールドスキャンされた画像データである場合に前記第1量子化マトリクスとは異なる第2量子化マトリクスを用いて、前記符号化対象ブロックを量子化する量子化部と、
     量子化された符号化対象ブロックを符号化することで、符号化ストリームを生成する符号化部と、
     前記第1量子化マトリクス及び前記第2量子化マトリクスの少なくとも一方を前記符号化ストリームに挿入する挿入部とを備える
     画像符号化装置。
    An image encoding device for encoding image data,
    The first quantization matrix is used when the encoding target block included in the image data is progressive scanned image data, and the first quantization matrix is used when the encoding target block is field scanned image data. A quantization unit that quantizes the encoding target block using a second quantization matrix different from the matrix;
    An encoding unit that generates an encoded stream by encoding the quantized encoding target block;
    An image encoding device comprising: an insertion unit that inserts at least one of the first quantization matrix and the second quantization matrix into the encoded stream.
  14.  符号化ストリームを復号する画像復号装置であって、
     前記符号化ストリームから第1量子化マトリクス、及び、当該第1量子化マトリクスとは異なる第2量子化マトリクスの少なくとも一方を抽出する抽出部と、
     前記符号化ストリームを復号することで、量子化された係数を含む復号対象ブロックを取得する復号部と、
     前記復号対象ブロックがプログレッシブスキャンされた画像データである場合に前記第1量子化マトリクスを用い、前記復号対象ブロックがフィールドスキャンされた画像データである場合に前記第1量子化マトリクスとは異なる第2量子化マトリクスを用いて、前記復号対象ブロックを逆量子化する逆量子化部とを備える
     画像復号装置。
    An image decoding device for decoding an encoded stream,
    An extraction unit that extracts at least one of a first quantization matrix and a second quantization matrix different from the first quantization matrix from the encoded stream;
    A decoding unit that obtains a decoding target block including quantized coefficients by decoding the encoded stream;
    The first quantization matrix is used when the decoding target block is progressively scanned image data, and the second quantization matrix is different from the first quantization matrix when the decoding target block is field scanned image data. An image decoding apparatus comprising: an inverse quantization unit that inversely quantizes the decoding target block using a quantization matrix.
PCT/JP2012/000095 2011-01-12 2012-01-10 Image encoding method, image decoding method, image encoding device, and image decoding device WO2012096156A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161431872P 2011-01-12 2011-01-12
US61/431,872 2011-01-12

Publications (1)

Publication Number Publication Date
WO2012096156A1 true WO2012096156A1 (en) 2012-07-19

Family

ID=46507065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000095 WO2012096156A1 (en) 2011-01-12 2012-01-10 Image encoding method, image decoding method, image encoding device, and image decoding device

Country Status (1)

Country Link
WO (1) WO2012096156A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016507991A (en) * 2013-01-22 2016-03-10 マイクロソフト テクノロジー ライセンシング,エルエルシー Side information-based vertical saturation filtering after deinterlacing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0496474A (en) * 1990-08-10 1992-03-27 Ricoh Co Ltd Picture data compressing system
JP2007520948A (en) * 2004-01-20 2007-07-26 松下電器産業株式会社 Image encoding method, image decoding method, image encoding device, image decoding device, and program
JP2010213063A (en) * 2009-03-11 2010-09-24 Mitsubishi Electric Corp Moving image encoding apparatus and moving image decoding apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0496474A (en) * 1990-08-10 1992-03-27 Ricoh Co Ltd Picture data compressing system
JP2007520948A (en) * 2004-01-20 2007-07-26 松下電器産業株式会社 Image encoding method, image decoding method, image encoding device, image decoding device, and program
JP2010213063A (en) * 2009-03-11 2010-09-24 Mitsubishi Electric Corp Moving image encoding apparatus and moving image decoding apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016507991A (en) * 2013-01-22 2016-03-10 マイクロソフト テクノロジー ライセンシング,エルエルシー Side information-based vertical saturation filtering after deinterlacing

Similar Documents

Publication Publication Date Title
JP6620995B2 (en) Decoding method and decoding apparatus
JP6473982B2 (en) Image decoding method and image decoding apparatus
JP6222589B2 (en) Decoding method and decoding apparatus
JP5855570B2 (en) Image decoding method, image encoding method, image decoding device, image encoding device, program, and integrated circuit
JP6145820B2 (en) Image encoding method, image encoding device, image decoding method, and image decoding device
JP5707412B2 (en) Image decoding method, image encoding method, image decoding device, image encoding device, program, and integrated circuit
JP5937020B2 (en) Moving picture encoding method, moving picture decoding method, moving picture encoding apparatus, moving picture decoding apparatus, and moving picture encoding / decoding apparatus
JP6327435B2 (en) Image encoding method, image decoding method, image encoding device, and image decoding device
WO2013094199A1 (en) Method for encoding image, image-encoding device, method for decoding image, image-decoding device, and image encoding/decoding device
JP6210375B2 (en) Image encoding method, image decoding method, image encoding device, image decoding device, and image encoding / decoding device
JP6004375B2 (en) Image encoding method and image decoding method
JP5936939B2 (en) Image encoding method and image decoding method
JP6489337B2 (en) Arithmetic decoding method and arithmetic coding method
WO2012090504A1 (en) Methods and apparatuses for coding and decoding video stream
WO2013118485A1 (en) Image-encoding method, image-decoding method, image-encoding device, image-decoding device, and image-encoding-decoding device
JP6483028B2 (en) Image encoding method and image encoding apparatus
WO2011132400A1 (en) Image coding method and image decoding method
WO2013014884A1 (en) Moving image encoding method, moving image encoding device, moving image decoding method, and moving image decoding device
WO2012096156A1 (en) Image encoding method, image decoding method, image encoding device, and image decoding device
WO2012095930A1 (en) Image encoding method, image decoding method, image encoding device, and image decoding device
WO2012077349A1 (en) Image encoding method and image decoding method
WO2013069258A1 (en) Image decoding method, image encoding method, image decoding device, image encoding device, and image encoding and decoding device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12734276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12734276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP