WO2012096007A1 - Method for manufacturing organic el elements - Google Patents

Method for manufacturing organic el elements Download PDF

Info

Publication number
WO2012096007A1
WO2012096007A1 PCT/JP2011/060907 JP2011060907W WO2012096007A1 WO 2012096007 A1 WO2012096007 A1 WO 2012096007A1 JP 2011060907 W JP2011060907 W JP 2011060907W WO 2012096007 A1 WO2012096007 A1 WO 2012096007A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
light emitting
organic
organic light
emitting layer
Prior art date
Application number
PCT/JP2011/060907
Other languages
French (fr)
Japanese (ja)
Inventor
柳 雄二
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2012096007A1 publication Critical patent/WO2012096007A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/86Series electrical configurations of multiple OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes

Definitions

  • the present invention relates to a method for manufacturing a large-area organic EL element suitable for illumination.
  • An organic light emitting element emits light from an organic light emitting layer sandwiched between a first electrode and a second electrode by applying a voltage between the first electrode and the second electrode.
  • an organic light emitting element an organic EL (electroluminescence) element has already been used for a flat panel display represented by a liquid crystal display. Since a flat panel display has a large number of pixels, one pixel is fine. Similarly, a display using an organic EL element has fine pixels, and the organic EL element is patterned using a fine vapor deposition mask. In recent years, organic EL elements are being used for solid-state lighting.
  • Solid-state lighting is a product that requires higher brightness than a display.
  • the luminance required for the display is about 1,000 cd / m 2
  • the solid state lighting requires a luminance of about 3,000 cd / m 2 to 5,000 cd / m 2 . Therefore, it is necessary to flow a large current value per unit area to each electrode.
  • the size of one light emitting element is less than 1 mm square.
  • solid state illumination using organic EL elements requires a larger luminous flux than the display, and therefore one light emitting element is required to have a size of 100 mm square or more.
  • a transparent conductive film is required for either the first electrode or the second electrode in order to extract light.
  • the first electrode is a transparent conductive film.
  • ITO indium tin oxide
  • ITO has the smallest volume resistivity among the materials of the transparent conductive film, but the volume resistivity of ITO is significantly higher than that of metal.
  • Patent Document 1 to Patent Document 1). 7 a method of reducing the current flowing through each electrode by dividing the light emitting element into small light emitting elements inside a large element panel and connecting the divided elements in series has been studied (Patent Document 1 to Patent Document 1). 7). By doing so, since the voltage of the whole panel can be increased, the resistance of the transparent conductive film can be reduced and the voltage drop can be reduced. Therefore, even in a large light-emitting panel, the internal luminance distribution can be reduced.
  • Patent Documents 1 to 7 there are a method for forming a plurality of light emitting elements by patterning using photolithography and a method for forming a plurality of light emitting elements by forming separation grooves in each layer of the light emitting elements by laser processing. It is disclosed.
  • Patent Document 1 discloses an organic EL element in which a light emitting element is formed by photolithography.
  • FIG. 4 is a schematic cross-sectional view showing the configuration of the organic EL element described in Patent Document 1.
  • light emitting elements composed of a first electrode 2 / organic light emitting layer 3 / second electrode 4 are arranged side by side on a substrate 1, and each first electrode 2 of adjacent light emitting elements is electrically insulated by an insulating film 5.
  • Adjacent light emitting elements form organic EL elements that are electrically connected in series by bringing the first electrode 2 of one light emitting element into contact with the second electrode 4 of the other light emitting element.
  • the first electrode is formed on a substrate by patterning by photolithography or the like.
  • an organic light emitting layer is formed by vacuum evaporation using the vapor deposition mask which has an opening part.
  • a second electrode is formed on the organic light emitting layer by vacuum deposition using a deposition mask having another opening.
  • the first electrode formed by the patterning process has a steep cross section at the end, so that a step is generated between the first electrode and the substrate.
  • the organic light emitting layer is laminated on the stepped portion around the patterning, the organic light emitting layer overlapping the stepped portion is thinned, and defects are likely to occur. As a result, problems such as leakage current and short circuit are likely to occur.
  • an insulating film is formed by photolithography at the stepped portion around the patterning.
  • a photoresist is applied to the entire surface of a substrate on which the first electrode is patterned, and the photoresist is dried. Thereafter, a pattern to be processed is subjected to an exposure mask and irradiated with ultraviolet rays, and a high-precision insulating film is patterned by pre-baking, etching, cleaning, and post-baking.
  • Photolithography is a high-precision processing technique generally used in semiconductors and flat panel displays, but requires large-scale and expensive manufacturing equipment. Furthermore, the cost for the consumable member of the photoresist, the etching solution and the cleaning solution and the large running cost for the waste solution treatment are required. Further, vacuum deposition using a deposition mask can be directly patterned on a substrate. However, when the substrate becomes large, the accuracy of the high-definition deposition mask cannot be maintained, so that it is not suitable as a method for inexpensively manufacturing with a large substrate such as illumination.
  • Patent Document 2 in order to perform electrode separation and series connection, a conductive protrusion-shaped connection terminal, an insulating film using photolithography, and a separation partition wall by reverse taper are formed. A method of making a connection is disclosed. However, the method described in Patent Document 2 requires a patterning process using photolithography because the formation process is complicated and a fine structure is required. Patent Documents 5 to 7 disclose organic EL elements in which a plurality of light emitting elements are connected in series by laser processing.
  • the organic light emitting layer is usually an organic multilayer film in which a hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer are laminated.
  • a hole transporting material is included on the first electrode side of the organic light emitting layer, and an electron transporting material having a property opposite to that of the hole transporting material is included on the second electrode side.
  • the organic EL element is manufactured by vacuum consistent film formation of a first electrode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / second electrode.
  • the interface between the first electrode and the hole injection layer and the interface between the electron injection layer and the second electrode are very sensitive to the surface state and the environment, and the state of the interface greatly affects the device characteristics. .
  • the organic light emitting layer / second electrode When the organic light emitting layer / second electrode is irradiated with a laser in a vacuum or an inert gas environment, the organic light emitting layer / second electrode is removed by vaporization by thermal evaporation or ablation. At that time, evaporated or vaporized organic light emitting layer / second electrode fine particles are scattered and adhere to the side surface of the organic light emitting layer. Since the organic light emitting layer is very thin, if the fine particles of the second electrode adhere to the side surface of the organic light emitting layer, it causes a leak current or a short circuit with the first electrode.
  • the present invention has been made in view of the above problems, and an organic EL element manufacturing method for manufacturing an organic EL element suitable for illumination that is unlikely to cause a leakage current or a short circuit by laser processing without using expensive photolithography.
  • the purpose is to provide.
  • the present invention includes a plurality of light-emitting elements each including a first electrode, an organic light-emitting layer, and a second electrode on a substrate.
  • the organic light emitting layer laminated on the first electrode corresponding to the portion in contact with the second electrode of the adjacent light emitting element is removed by laser processing, Forming a first dividing groove for dividing the organic light emitting layer into a plurality of organic light emitting layers; C), and after the step (C), the step (D) of filling the first dividing groove and forming the second electrode so as to cover the plurality of organic light emitting layers, and the step (D) Thereafter, the organic light emitting layer / second electrode laminated on the insulating film is removed by laser processing, and the organic light emitting layer / second electrode is divided into a plurality of organic light emitting layers / second electrodes, And a step (E) of forming a second divided groove to be an insulating film.
  • the first divided groove serves as a groove for electrically connecting adjacent light emitting elements in series
  • the second divided groove serves as a groove for electrically separating adjacent power generating elements. Since the bottom surface of the second dividing groove is an insulating film, the substance contained in the second electrode removed in the step (E) is attached to the very thin organic light emitting layer at the end surface of the laser processed portion or the laser processed portion. Even if it exists, generation
  • the said process (B) arrange
  • the said 1st electrode is formed in the predetermined part of the board
  • the method includes a step of intermittently discharging the insulating material toward the surface, and a step of relatively moving the substrate or the single nozzle to form a continuous insulating film on the predetermined portion.
  • an insulating film can be formed without requiring expensive manufacturing equipment. Even if the element size is changed, the setup can be changed instantaneously.
  • the step (C) may be performed in a container whose inside is in a vacuum or an inert gas environment while exhausting the inside of the container.
  • the step (E) may be performed in a container whose inside is in a vacuum or an inert gas environment while exhausting the inside of the container.
  • the second electrode includes a conductive metal
  • the laser processing may be performed in a vacuum or an inert gas environment in which oxygen gas is mixed.
  • the metal fine particles of the second electrode scattered by the laser processing can be oxidized to form an insulator.
  • the laser beam passage path may be surrounded by a cylindrical member, a suction path may be connected to the laser beam outlet side of the cylindrical member, and laser processing may be performed while suctioning through the suction path. .
  • a suction path may be connected to the laser beam outlet side of the cylindrical member, and laser processing may be performed while suctioning through the suction path.
  • the second divided grooves are formed on the insulating film formed on the first electrode by laser processing, so that the fine particles derived from the second electrode are thin at the end surfaces of the laser processed portion and the laser processed portions. It can prevent adhering to the side surface of the organic light emitting layer. Accordingly, an organic EL element suitable for illumination that can prevent the occurrence of leakage current and short circuit without using expensive photolithography can be manufactured.
  • FIG. 1 the schematic plan view of the organic EL element manufactured with the manufacturing method which concerns on this embodiment is shown.
  • the organic EL element manufactured by the method for manufacturing an organic EL element according to this embodiment includes a light emitting element in which a first electrode 2, an organic light emitting layer 3, and a second electrode 4 are sequentially stacked on a substrate 1.
  • a plurality of light emitting elements are arranged side by side on the substrate 1, and the adjacent light emitting elements are electrically connected to each other when the first electrode 2 of one light emitting element and the second electrode 4 of the other light emitting element are in contact with each other. They are connected in series.
  • An insulating film 5 is provided on the edge of the first electrode 2 of each light emitting element, and the adjacent first electrodes 2 are electrically separated from each other.
  • the insulating film 5 is formed on the first electrode so that the first electrode 2 of one light-emitting element when the organic EL element is used is adjacent to a portion where the second electrode 4 of another light-emitting element located adjacent to the first electrode 2 contacts.
  • the second electrode 4 a is an extraction electrode for extracting electricity from the first electrode 2. When the first electrode 2 of the light emitting element located on the outermost side of the plurality of light emitting elements arranged side by side is used as the extraction electrode, the second electrode 4a may be omitted.
  • the substrate 1 is a translucent substrate.
  • a glass substrate of 300 mm ⁇ 300 mm ⁇ thickness 0.7 mm is used.
  • the first electrode 2 is a transparent film having conductivity.
  • a metal oxide film such as indium tin oxide (ITO), tin oxide (SnO 2 ), or zinc oxide (ZnO) can be used.
  • the thickness of the first electrode 2 is about 100 nm to 500 nm.
  • the organic light emitting layer 3 is an organic multilayer film made of an organic light emitting material.
  • the structure of the organic multilayer film is a hole injection layer / a hole transport layer / a light emitting layer / an electron transport layer / an electron injection layer.
  • the total thickness of the organic light emitting layer 3 is about 100 nm to 300 nm.
  • the second electrode 4 is made of a conductive film.
  • the second electrode 4 is a metal film such as aluminum (Al) or silver (Ag).
  • the thickness of the second electrode 4 is not less than 10 nm and not more than 500 nm.
  • the material of the second electrode 4 may be a mixture or lamination with an alkali metal such as lithium (Li) or magnesium (Mg), or other oxides.
  • the insulating film 5 is an electrically insulating film.
  • a positive resist, a negative resist, or other curable resin can be used.
  • the thickness of the insulating film 5 is sufficient if it has a withstand voltage against the applied voltage between the first electrode 2 and the second electrode 4, but the thickness of the first electrode 2 or more is desirable, and the range of 100 nm to 10 ⁇ m is desirable. good.
  • the width of the insulating film 5 is required to be very narrow in the case of a display, but is not required for organic EL lighting of 100 mm square size or more, and accuracy is not required. preferable.
  • FIG. 2 is a cross-sectional view for explaining an example of the method for manufacturing the organic EL element according to this embodiment.
  • FIG. 2 (a) The first electrode 2 is patterned on the substrate 1.
  • FIG. 2 (b) The surface of the substrate 1 on which the first electrode 2 is formed is cleaned. Thereafter, an insulating material is applied to a predetermined portion on the substrate 1 on which the first electrode 2 is formed and cured.
  • the predetermined portion is an edge portion where the first electrodes formed by division face each other and the vicinity thereof.
  • the predetermined portion is a position adjacent to the portion where the second electrode 4 of one light emitting element contacts the first electrode 2 of the other adjacent light emitting element on the inner side in the surface direction of the first electrode when an organic EL element is used. It is said.
  • ⁇ ⁇ Insulating material is applied in a non-contact manner.
  • a dot discharge type dispenser is optimal.
  • JET MASTER registered trademark 2 manufactured by Asymtec Corporation can be used.
  • the insulating material is applied by using a single nozzle 6 for one light emitting element.
  • the size of the discharge port of the nozzle 6 is appropriately set according to the type of insulating material to be used and the size of the target light emitting element.
  • the tip of the single nozzle 6 is directed toward the substrate 1 on which the first electrode 2 is formed, and the single nozzle 6 is spaced so that the tip does not contact the first electrode 2.
  • the single nozzle 6 may be disposed at an interval of 0.1 mm to 1.0 mm from the surface of the first electrode 2 with respect to the edge portion (patterning step portion) of the first electrode 2.
  • the insulating material is intermittently discharged from the single nozzle 6 toward a predetermined portion on the substrate 1 on which the first electrode 2 is formed. Further, while discharging the insulating material, the substrate 1 or the single nozzle 6 is relatively moved to form a linear insulating film 5 continuous in a predetermined portion.
  • the discharge amount of the insulating material and the moving speed of the substrate 1 or the single nozzle 6 are determined so that the insulating film 5 has a desired thickness and width in consideration of the wettability of the surface to be coated, the type and viscosity of the insulating material. Set as appropriate.
  • the discharge particles are applied on the substrate at intervals of 0.5 mm.
  • the applied insulating material After the applied insulating material has landed on the base material, it becomes the insulating film 5 having a thickness of 5 ⁇ m and a width of 2.0 mm. This width is sufficiently acceptable for an organic EL element for illumination of 100 mm square or more, but it is easy to change the width by changing the discharge amount and the interval.
  • the curing method for the applied insulating material is appropriately selected according to the insulating material used.
  • the insulating material is preferably an organic material, and when a positive resist is used as the insulating material, it can be cured only by heating (post-baking) after coating. Since the insulating material is applied only to a predetermined portion, the pre-baking, exposure, and development steps necessary for forming an insulating film by conventional photolithography are not required. Therefore, it is possible to reduce the amount of the insulating material used as compared with the photolithography technique conventionally used for forming the insulating film, and only use a conventional baking furnace and no new equipment is required.
  • substrate 1 formed to the insulating film 5 above is carried in in a vacuum evaporation system.
  • the film-forming surface of the substrate faces downward, but is described upward for easy understanding of the explanation.
  • An organic vapor deposition mask 7 having an opening is disposed on the substrate 1, and an organic material is laminated and deposited to form the organic light emitting layer 3.
  • a hole injection layer / hole transport layer / light emission layer / electron transport layer / electron injection layer having a thickness of 120 nm is formed as the organic light emitting layer 3 on the substrate 1 on which ITO is formed as the first electrode with a thickness of 120 nm.
  • Other vapor deposition conditions for the organic material are arbitrary.
  • the laser processing conditions are appropriately set according to the material and thickness of the organic light emitting layer 3. For example, a femtosecond laser is used as the laser and is processed under the conditions of a wavelength of 810 nm, a pulse width of 150 fs, a laser output of 100 mJ / cm 2 , a repetition frequency of 200 kHz, and a laser beam diameter of 20 ⁇ m.
  • the first dividing groove 8 is preferably formed so as to be adjacent to the insulating film 5 between the insulating film 5 provided on the first electrode 2 and the edge portion.
  • a second electrode deposition mask 10 having an opening is disposed on the substrate 1 (on the side where the organic light emitting layer 3 is formed), and a second electrode 4 is formed by laminating and depositing a conductive material.
  • the second electrode vapor deposition mask 10 is disposed so that the opening overlaps the first electrode 2 and the organic light emitting layer 3 formed earlier.
  • the second electrode 4 is formed so as to fill the first dividing groove 8. For example, aluminum is deposited as the second electrode 4 with a thickness of 100 nm.
  • the other deposition conditions for the conductive material are arbitrary.
  • the laser beam 9 is irradiated from the 4 side, and a part of the organic light emitting layer 3 / second electrode 4 is removed by laser processing to form the second divided groove 11.
  • the laser processing conditions are appropriately set according to the material and thickness of the organic light emitting layer 3 and the second electrode 4.
  • the laser is a femtosecond laser as described above, and is processed under the conditions of a wavelength of 1045 nm, a pulse width of 500 fs, a laser output of 200 mJ / cm 2 , a repetition frequency of 200 kHz, and a laser beam diameter of 20 ⁇ m.
  • a sealing member is appropriately formed (not shown).
  • the 2nd electrode 4 was formed into a film by vacuum evaporation, it is not limited to this, You may form into a film by sputtering method.
  • Laser processing for forming the first divided grooves 8 and the second divided grooves 11 may be performed in a vacuum or an inert gas environment.
  • laser processing may be performed in a container that can be in a vacuum or an inert gas environment.
  • laser processing is performed in a container that can be an inert gas environment.
  • FIG. 3 shows a configuration diagram of laser processing according to the present embodiment.
  • the container 20 includes a gas introduction port 21, a laser beam introduction window 22, and a drive stage (not shown).
  • the drive stage can hold the workpiece 23 and can move in the horizontal direction (arrow X and arrow Y directions).
  • the container 20 preferably includes a cylindrical member 24 surrounding the laser beam path inside the container of the laser beam introduction window 22.
  • the cylindrical member 24 is connected to a suction path 25 communicating with the inside of the cylindrical member 24 near the exit side of the laser beam 9.
  • the other end of the suction path 25 is disposed outside the container 20.
  • the workpiece 23 to be laser-processed is carried into the container 20 and placed on the drive stage with the workpiece surface facing the laser beam introduction window 22 and held. Thereafter, a high-purity inert gas having a low moisture concentration is introduced into the container 20 from the gas inlet 21 to fill the container 20 with the inert gas.
  • Nitrogen gas or argon gas is suitable as the inert gas.
  • the purity of the inert gas is desirably 99.99% or more, and the moisture concentration of the inert gas is desirably 1 ppm or less.
  • suction is performed through the suction path 25, and the gas in the vicinity of the exit of the laser beam of the cylindrical member 24 is discharged out of the container 20.
  • a high-purity inert gas is introduced from the gas inlet 21 to keep the pressure in the container 20 constant.
  • the workpiece 23 is irradiated with the laser beam 9 through the laser beam introduction window 22.
  • the driving stage is appropriately moved horizontally to form a division groove in a predetermined portion.
  • the organic light emitting layer 3 or the second electrode 4 When the organic light emitting layer 3 or the second electrode 4 is irradiated with a laser, substances contained in the organic light emitting layer 3 are vaporized by evaporation due to heat and decomposition due to ablation, and diffused and disappeared.
  • the substance removed by the laser processing is discharged out of the container while maintaining the inside of the container 20 at a constant pressure. Therefore, contamination of the organic light emitting layer 3 with the removed substance can be suppressed. As a result, the light emission characteristics can be stabilized.
  • oxygen may be mixed with an inert gas and introduced into the container 20.
  • the oxygen concentration is preferably 0.1% by volume or more and 20% by volume or less (oxygen partial pressure in the atmosphere or less).
  • the material removed by laser processing may include those that are not complete gases. For this reason, the vaporized substance, not a complete gas, may be scattered near the processing part irradiated with the laser and reattached. This is generally called debris and causes contamination of the processing peripheral portion.
  • oxygen is mixed with an inert gas and introduced into the container, the metal fine particles derived from the second electrode contained in the substance that is not a complete gas are oxidized to form an insulator. Thereby, even when the material scattered by the laser processing is reattached to the laser processing end face or the processed portion, it is possible to prevent the occurrence of leakage current.
  • the method of mixing oxygen is particularly effective when aluminum is used as the second electrode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The purpose of the present invention is to provide a method for manufacturing organic EL elements whereby organic EL elements, which are suitable for lighting that is resistant to leakage current and short circuiting, are manufactured by laser processing without using expensive photolithography. This method for manufacturing organic EL elements is provided with: a step for forming a first electrode (2) in a divided manner on a substrate (1); a step for forming an insulation film (5) so as to be adjacent to the first electrode (2), which corresponds to an area that is in contact with a second electrode (4) of an adjacent light-emitting element; a step for forming a first dividing groove (8) by removing an organic light-emitting layer (3) laminated above the first electrode (2), which corresponds to an area that is in contact with a second electrode (4) of an adjacent light-emitting element, by laser processing; a step for forming the second electrode (4) so as to fill the first dividing groove (8) and cover a plurality of the organic light-emitting layers (3); and a step for forming a second dividing groove (11), the bottom surface of which is the insulation film (5), by removing the organic light-emitting layer (3) and the second electrode (4) laminated above the insulation film (5), by laser processing.

Description

有機EL素子の製造方法Manufacturing method of organic EL element
 本発明は、照明に適した大面積の有機EL素子の製造方法に関する。 The present invention relates to a method for manufacturing a large-area organic EL element suitable for illumination.
 有機発光素子は、第1電極と第2電極との間に電圧を印加することにより、第1電極と第2電極とに挟まれた有機発光層が発光するものである。有機発光素子として、既に、有機EL(エレクトロルミネセンス)素子が、液晶ディスプレイに代表されるフラットパネルディスプレイに用いられている。フラットパネルディスプレイは、画素数多いことから一つの画素が微細である。有機EL素子を用いたディスプレイも同様に画素が微細であり、微細な蒸着マスクを利用して有機EL素子をパターニングしている。また、近年、有機EL素子は、固体照明に用いられようとしている。 An organic light emitting element emits light from an organic light emitting layer sandwiched between a first electrode and a second electrode by applying a voltage between the first electrode and the second electrode. As an organic light emitting element, an organic EL (electroluminescence) element has already been used for a flat panel display represented by a liquid crystal display. Since a flat panel display has a large number of pixels, one pixel is fine. Similarly, a display using an organic EL element has fine pixels, and the organic EL element is patterned using a fine vapor deposition mask. In recent years, organic EL elements are being used for solid-state lighting.
 固体照明は、ディスプレイよりも高輝度が要求される製品である。例えば、ディスプレイで要求される輝度が1,000cd/m程度であるのに対し、固体照明では3,000cd/mから5,000cd/m程度の輝度が要求される。そのため、単位面積当たりの大きな電流値を各電極に流す必要がある。
 有機EL素子を用いたディスプレイにおいて、一つの発光素子の大きさは1mm角未満である。一方、有機EL素子を用いた固体照明では、ディスプレイよりも大きな光束が必要とされるため、一つの発光素子は100mm角以上の大きさが要求される。
Solid-state lighting is a product that requires higher brightness than a display. For example, the luminance required for the display is about 1,000 cd / m 2 , whereas the solid state lighting requires a luminance of about 3,000 cd / m 2 to 5,000 cd / m 2 . Therefore, it is necessary to flow a large current value per unit area to each electrode.
In a display using an organic EL element, the size of one light emitting element is less than 1 mm square. On the other hand, solid state illumination using organic EL elements requires a larger luminous flux than the display, and therefore one light emitting element is required to have a size of 100 mm square or more.
 有機EL素子では、光を取り出すために第1電極及び第2電極のいずれかに透明導電膜が必要となる。一般に、第1電極が透明導電膜とされる。透明導電膜の材料としては酸化インジウムスズ(ITO)などが用いられる。ITOは透明導電膜の材料の中で最も体積抵抗率が小さいとされるが、金属に比べるとITOの体積抵抗率は著しく高い。 In the organic EL element, a transparent conductive film is required for either the first electrode or the second electrode in order to extract light. Generally, the first electrode is a transparent conductive film. As a material for the transparent conductive film, indium tin oxide (ITO) or the like is used. ITO has the smallest volume resistivity among the materials of the transparent conductive film, but the volume resistivity of ITO is significantly higher than that of metal.
 透明導電膜を備えた有機EL素子を単一大面積に形成して大電流を流すと、素子周辺部が明るくなり、中央部が暗くなる現象(輝度ムラ)が生じる。これは、透明導電膜の抵抗値が高いことと、大電流により電圧降下が生じることに起因する。
 電圧降下を小さくして明るさを均一に改善するためには、透明導電膜の膜厚を100nmから500nm程度に厚くしてシート抵抗値を下げると良い。そうすることで、輝度ムラを抑制することができる。
When an organic EL element having a transparent conductive film is formed in a single large area and a large current is passed, a phenomenon (brightness unevenness) occurs in which the periphery of the element becomes bright and the central part becomes dark. This is because the resistance value of the transparent conductive film is high and a voltage drop occurs due to a large current.
In order to reduce the voltage drop and improve the brightness uniformly, it is preferable to reduce the sheet resistance value by increasing the thickness of the transparent conductive film from about 100 nm to about 500 nm. By doing so, luminance unevenness can be suppressed.
 しかしながら、透明導電膜の材料は高価であり、透明導電膜を厚くすると材料コストが高くなる問題が発生する。そのため、大きな素子パネルの内部で発光素子を小さな発光素子に分割し、分割した素子を直列に接続することにより、各電極に流れる電流を小さくする方法が検討されている(特許文献1乃至特許文献7参照)。そうすることで、パネル全体の電圧を高くできるため、透明導電膜の抵抗を低減し、電圧降下を低減することができる。よって、大きな発光パネルであっても、内部の輝度の分布を低減することが可能となる。特許文献1乃至特許文献7には、フォトリソグラフィを用いたパターニング加工により複数の発光素子を形成する方法やレーザ加工により発光素子の各層に分離溝を形成して複数の発光素子を形成する方法が開示されている。 However, the material of the transparent conductive film is expensive, and if the transparent conductive film is thick, there is a problem that the material cost increases. Therefore, a method of reducing the current flowing through each electrode by dividing the light emitting element into small light emitting elements inside a large element panel and connecting the divided elements in series has been studied (Patent Document 1 to Patent Document 1). 7). By doing so, since the voltage of the whole panel can be increased, the resistance of the transparent conductive film can be reduced and the voltage drop can be reduced. Therefore, even in a large light-emitting panel, the internal luminance distribution can be reduced. In Patent Documents 1 to 7, there are a method for forming a plurality of light emitting elements by patterning using photolithography and a method for forming a plurality of light emitting elements by forming separation grooves in each layer of the light emitting elements by laser processing. It is disclosed.
特開2000-29404号公報JP 2000-29404 A 特開2008-227326号公報JP 2008-227326 A 特表2010-510626号公報Special table 2010-510626 gazette 特開2010-21050号公報JP 2010-21050 A 特開平5-3076号公報Japanese Patent Laid-Open No. 5-3076 特開平8-222371号公報JP-A-8-222371 特開2007-157659号公報JP 2007-157659 A
 特許文献1に、フォトリソグラフィにより発光素子を形成した有機EL素子が開示されている。図4は、特許文献1に記載の有機EL素子の構成を示す概略断面図である。図4において、基板1上に第1電極2/有機発光層3/第2電極4から構成された発光素子が並べて配置され、隣り合う発光素子の各第1電極2は絶縁膜5により電気的に分離されている。また、隣り合う発光素子は、一方の発光素子の第1電極2を他方の発光素子の第2電極4に接触させることで電気的に直列接続された有機EL素子を形成している。 Patent Document 1 discloses an organic EL element in which a light emitting element is formed by photolithography. FIG. 4 is a schematic cross-sectional view showing the configuration of the organic EL element described in Patent Document 1. In FIG. 4, light emitting elements composed of a first electrode 2 / organic light emitting layer 3 / second electrode 4 are arranged side by side on a substrate 1, and each first electrode 2 of adjacent light emitting elements is electrically insulated by an insulating film 5. Have been separated. Adjacent light emitting elements form organic EL elements that are electrically connected in series by bringing the first electrode 2 of one light emitting element into contact with the second electrode 4 of the other light emitting element.
 特許文献1では、第1電極を、フォトリソグラフィによるパターニング加工などによって基板上に形成する。基板上に形成された第1電極の上には、開口部を有する蒸着マスクを用いて真空蒸着により有機発光層を形成する。有機発光層の上には、別の開口部を有する蒸着マスクを用いて真空蒸着により第2電極を形成する。 In Patent Document 1, the first electrode is formed on a substrate by patterning by photolithography or the like. On the 1st electrode formed on the board | substrate, an organic light emitting layer is formed by vacuum evaporation using the vapor deposition mask which has an opening part. A second electrode is formed on the organic light emitting layer by vacuum deposition using a deposition mask having another opening.
 パターニング加工により形成された第1電極は、端部が急峻な断面となるため、基板との間に段差が生じる。このパターニング周囲の段差部分上に有機発光層を積層すると、段差部分に重なる有機発光層が薄膜化され、欠陥が発生しやすくなる。それにより、リーク電流や短絡などの問題が生じやすくなる。 The first electrode formed by the patterning process has a steep cross section at the end, so that a step is generated between the first electrode and the substrate. When the organic light emitting layer is laminated on the stepped portion around the patterning, the organic light emitting layer overlapping the stepped portion is thinned, and defects are likely to occur. As a result, problems such as leakage current and short circuit are likely to occur.
 上記問題を防止するため、パターニング周囲の段差部分には、フォトリソグラフィにより絶縁膜を形成している。特許文献1では、第1電極がパターニング加工された基板上の全面に、フォトレジストを塗布し、フォトレジストを乾燥させる。その後、加工したいパターンに露光マスクをかけて紫外線を照射し、プリベーク、エッチング、洗浄、ポストベークを経て高精度な絶縁膜をパターニング加工している。 In order to prevent the above problem, an insulating film is formed by photolithography at the stepped portion around the patterning. In Patent Document 1, a photoresist is applied to the entire surface of a substrate on which the first electrode is patterned, and the photoresist is dried. Thereafter, a pattern to be processed is subjected to an exposure mask and irradiated with ultraviolet rays, and a high-precision insulating film is patterned by pre-baking, etching, cleaning, and post-baking.
 フォトリソグラフィは、半導体やフラットパネルディスプレイでは一般に用いられている高精度な加工技術であるが、大規模かつ高価な製造設備が必要である。更に、フォトレジスト、エッチング液及び洗浄液の消耗部材にかかるコストと廃液処理に大きなランニング経費とを必要とする。
 また、蒸着マスクを用いた真空蒸着は、基板上に直接パターニングすることができる。しかしながら、基板が大型になると、高精細な蒸着マスクの精度が維持できなくなるため、照明のような大型基板で安価に製造する方法としては不向きである。
Photolithography is a high-precision processing technique generally used in semiconductors and flat panel displays, but requires large-scale and expensive manufacturing equipment. Furthermore, the cost for the consumable member of the photoresist, the etching solution and the cleaning solution and the large running cost for the waste solution treatment are required.
Further, vacuum deposition using a deposition mask can be directly patterned on a substrate. However, when the substrate becomes large, the accuracy of the high-definition deposition mask cannot be maintained, so that it is not suitable as a method for inexpensively manufacturing with a large substrate such as illumination.
 特許文献2には、電極の分離と直列接続を行うために、導電性突起形状の接続端子の形成やフォトリソグラフィを用いた絶縁膜および逆テーパによる分離隔壁を形成し、電極成膜時に分離と接続を行う方法が開示されている。しかしながら、特許文献2に記載の方法は、形成工程が複雑であり微細構造が必要であるためにフォトリソグラフィを適用したパターニング加工をせざるを得ない。
 特許文献5乃至特許文献7には、レーザ加工によって複数の発光素子が直列接続された有機EL素子が開示されている。
In Patent Document 2, in order to perform electrode separation and series connection, a conductive protrusion-shaped connection terminal, an insulating film using photolithography, and a separation partition wall by reverse taper are formed. A method of making a connection is disclosed. However, the method described in Patent Document 2 requires a patterning process using photolithography because the formation process is complicated and a fine structure is required.
Patent Documents 5 to 7 disclose organic EL elements in which a plurality of light emitting elements are connected in series by laser processing.
 有機EL素子において有機発光層は、通常、正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層が積層された有機多層膜とされる。有機発光層の第1電極側には正孔輸送性材料が含まれており、第2電極側には正孔輸送性材料とは反対の性質を有する電子輸送性材料が含まれている。有機EL素子は、第1電極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/第2電極の真空一貫成膜で製造される。特に、第1電極と正孔注入層との界面、および電子注入層と第2電極との界面は表面状態および環境に非常に敏感であり、該界面の状態は素子特性に非常に大きく影響する。 In the organic EL element, the organic light emitting layer is usually an organic multilayer film in which a hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer are laminated. A hole transporting material is included on the first electrode side of the organic light emitting layer, and an electron transporting material having a property opposite to that of the hole transporting material is included on the second electrode side. The organic EL element is manufactured by vacuum consistent film formation of a first electrode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / second electrode. In particular, the interface between the first electrode and the hole injection layer and the interface between the electron injection layer and the second electrode are very sensitive to the surface state and the environment, and the state of the interface greatly affects the device characteristics. .
 真空または不活性気体環境において有機発光層/第2電極にレーザを照射すると、有機発光層/第2電極が熱的な蒸発またはアブレーションによる気化により除去される。その際、蒸発または気化された有機発光層/第2電極の微粒子が飛散し、有機発光層の側面に付着する。有機発光層は非常に薄いため、第2電極の微粒子が有機発光層の側面に付着すると、第1電極との間でリーク電流や短絡を発生する要因となる。 When the organic light emitting layer / second electrode is irradiated with a laser in a vacuum or an inert gas environment, the organic light emitting layer / second electrode is removed by vaporization by thermal evaporation or ablation. At that time, evaporated or vaporized organic light emitting layer / second electrode fine particles are scattered and adhere to the side surface of the organic light emitting layer. Since the organic light emitting layer is very thin, if the fine particles of the second electrode adhere to the side surface of the organic light emitting layer, it causes a leak current or a short circuit with the first electrode.
 本発明は上記課題に鑑みなされたもので、リーク電流や短絡を生じにくい照明用に適した有機EL素子を、高価なフォトリソグラフィを使用することなく、レーザ加工により製造する有機EL素子の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an organic EL element manufacturing method for manufacturing an organic EL element suitable for illumination that is unlikely to cause a leakage current or a short circuit by laser processing without using expensive photolithography. The purpose is to provide.
 上記課題を解決するために、本発明は、基板上に、第1電極と有機発光層と第2電極とから構成される発光素子を複数備え、隣り合う発光素子が、一方の発光素子の第1電極と他方の発光素子の第2電極とが接触することで電気的に直列接続された有機EL素子を製造する方法であって、基板上に、分割して第1電極を形成する工程(A)と、該工程(A)の後、少なくとも、前記第1電極の縁部、及び前記隣り合う発光素子の第2電極に接触する部分に対応する第1電極に隣接するよう絶縁膜を形成する工程(B)と、該工程(B)の後、前記隣り合う発光素子の第2電極に接触する部分に対応する第1電極上に積層された有機発光層をレーザ加工により除去し、前記有機発光層を複数の有機発光層に分割する第1分割溝を形成する工程(C)と、該工程(C)の後、前記第1分割溝を埋め、且つ、前記複数の有機発光層上を覆うよう第2電極を形成する工程(D)と、該工程(D)の後、前記絶縁膜の上に積層された有機発光層/第2電極をレーザ加工により除去し、前記有機発光層/第2電極を複数の有機発光層/第2電極に分割する、底面が前記絶縁膜となる第2分割溝を形成する工程(E)と、を備える有機EL素子の製造方法を提供する。 In order to solve the above-described problems, the present invention includes a plurality of light-emitting elements each including a first electrode, an organic light-emitting layer, and a second electrode on a substrate. A method of manufacturing an organic EL element that is electrically connected in series by contacting one electrode and a second electrode of the other light emitting element, wherein the first electrode is divided and formed on a substrate ( A) and after the step (A), an insulating film is formed adjacent to at least the first electrode corresponding to the edge of the first electrode and the portion in contact with the second electrode of the adjacent light emitting element. And after the step (B), the organic light emitting layer laminated on the first electrode corresponding to the portion in contact with the second electrode of the adjacent light emitting element is removed by laser processing, Forming a first dividing groove for dividing the organic light emitting layer into a plurality of organic light emitting layers; C), and after the step (C), the step (D) of filling the first dividing groove and forming the second electrode so as to cover the plurality of organic light emitting layers, and the step (D) Thereafter, the organic light emitting layer / second electrode laminated on the insulating film is removed by laser processing, and the organic light emitting layer / second electrode is divided into a plurality of organic light emitting layers / second electrodes, And a step (E) of forming a second divided groove to be an insulating film.
 上記発明によれば、第1分割溝は隣り合う発光素子間を電気的に直列接続するための溝となり、第2分割溝は隣り合う発電素子間を電気的に分離する溝となる。第2分割溝の底面は絶縁膜であるため、工程(E)で除去された第2電極に含まれる物質がレーザ加工部端面やレーザ加工済み箇所の非常に薄い有機発光層に付着した場合であっても、それによるリーク電流や短絡の発生を防止することができる。 According to the above invention, the first divided groove serves as a groove for electrically connecting adjacent light emitting elements in series, and the second divided groove serves as a groove for electrically separating adjacent power generating elements. Since the bottom surface of the second dividing groove is an insulating film, the substance contained in the second electrode removed in the step (E) is attached to the very thin organic light emitting layer at the end surface of the laser processed portion or the laser processed portion. Even if it exists, generation | occurrence | production of the leakage current and short circuit by it can be prevented.
 上記発明の一態様において、前記工程(B)が、単一ノズルを前記第1電極に対して間隔をあけて配置し、前記単一ノズルから前記第1電極が形成された基板の所定部分に向けて前記絶縁材料を断続的に吐出するステップと、前記基板または前記単一ノズルを相対的に移動させて、前記所定部分に連続した絶縁膜を形成するステップと、を含むことが好ましい。 1 aspect of the said invention WHEREIN: The said process (B) arrange | positions a single nozzle at intervals with respect to the said 1st electrode, The said 1st electrode is formed in the predetermined part of the board | substrate with which the said 1st electrode was formed. Preferably, the method includes a step of intermittently discharging the insulating material toward the surface, and a step of relatively moving the substrate or the single nozzle to form a continuous insulating film on the predetermined portion.
 上記発明の一態様によれば、高価な製造設備を必要とせずに絶縁膜を形成することができる。また、素子サイズが変更された場合であっても、瞬時に段取り変えをすることが可能となる。 According to one embodiment of the present invention, an insulating film can be formed without requiring expensive manufacturing equipment. Even if the element size is changed, the setup can be changed instantaneously.
 上記発明の一態様において、前記工程(C)を、内部が真空または不活性気体環境となる容器内で、該容器内を排気しながら行うと良い。
 そのようにすることで、レーザ加工により除去された物質が容器外へ排出されるため、有機発光層の汚染を抑制することができる。
In one embodiment of the above invention, the step (C) may be performed in a container whose inside is in a vacuum or an inert gas environment while exhausting the inside of the container.
By doing so, since the substance removed by the laser processing is discharged out of the container, contamination of the organic light emitting layer can be suppressed.
 上記発明の一態様において、前記工程(E)を、内部が真空または不活性気体環境となる容器内で、該容器内を排気しながら行うと良い。
 そのようにすることで、レーザ加工により除去された物質が容器外へ排出されるため、除去された第2電極の微粒子がレーザ加工部の薄い有機発光層断面に付着することを抑制できる。それによって、リーク電流や短絡の発生を抑制することが可能となる。
In one embodiment of the present invention, the step (E) may be performed in a container whose inside is in a vacuum or an inert gas environment while exhausting the inside of the container.
By doing so, since the substance removed by laser processing is discharged out of the container, it is possible to suppress the removed fine particles of the second electrode from adhering to the thin organic light emitting layer cross section of the laser processed part. Thereby, it is possible to suppress the occurrence of leakage current and short circuit.
 上記発明の一態様において、前記第2電極が導電性金属を含み、前記工程(E)において、前記レーザ加工を真空または不活性気体環境に酸素気体を混合した環境で行うと良い。
 酸素を含む環境でレーザ加工することで、レーザ加工により飛散した第2電極の金属微粒子を酸化させ、絶縁体とすることができる。それにより、飛散した第2電極の金属微粒子が有機発光層の側面などに付着した場合であっても、リーク電流や短絡の発生を防止することが可能となる。
In one embodiment of the present invention, the second electrode includes a conductive metal, and in the step (E), the laser processing may be performed in a vacuum or an inert gas environment in which oxygen gas is mixed.
By laser processing in an environment containing oxygen, the metal fine particles of the second electrode scattered by the laser processing can be oxidized to form an insulator. Thereby, even if the scattered metal fine particles of the second electrode adhere to the side surface of the organic light emitting layer, it is possible to prevent the occurrence of leakage current and short circuit.
 上記発明の一態様において、レーザビームの通過経路を筒状部材で囲い、該筒状部材のレーザビーム出口側に吸引経路を接続し、該吸引経路を介して吸引しながらレーザ加工を行うと良い。
 レーザビームの出口付近、すなわち、被レーザ照射位置の近傍で吸引することで、レーザ加工により除去された有機発光層や第2電極の微粒子が飛散し、加工部付近に再付着するなどの汚染を低減できる。これによって、リーク電流や短絡の発生を抑制することが可能となる。
In one embodiment of the above invention, the laser beam passage path may be surrounded by a cylindrical member, a suction path may be connected to the laser beam outlet side of the cylindrical member, and laser processing may be performed while suctioning through the suction path. .
By sucking in the vicinity of the laser beam exit, that is, in the vicinity of the laser irradiation position, the organic light emitting layer removed by the laser processing and the fine particles of the second electrode are scattered and reconstituted near the processing portion. Can be reduced. As a result, it is possible to suppress the occurrence of leakage current and short circuit.
 本発明によれば、第2分割溝を、第1電極上に形成した絶縁膜の上にレーザ加工により形成することで、第2電極由来の微粒子がレーザ加工部端面およびレーザ加工済み箇所の薄い有機発光層の側面に付着することを防止できる。それによって、高価なフォトリソグラフィを使用することなく、且つ、リーク電流や短絡の発生を防止できる照明に適した有機EL素子を製造することができる。 According to the present invention, the second divided grooves are formed on the insulating film formed on the first electrode by laser processing, so that the fine particles derived from the second electrode are thin at the end surfaces of the laser processed portion and the laser processed portions. It can prevent adhering to the side surface of the organic light emitting layer. Accordingly, an organic EL element suitable for illumination that can prevent the occurrence of leakage current and short circuit without using expensive photolithography can be manufactured.
本発明の一実施形態に係る有機EL素子の製造方法で製造した有機EL素子の概略平面図である。It is a schematic plan view of the organic EL element manufactured with the manufacturing method of the organic EL element which concerns on one Embodiment of this invention. 本発明の一実施形態に係る有機EL素子の製造方法の一例を説明する概略断面図である。It is a schematic sectional drawing explaining an example of the manufacturing method of the organic EL element which concerns on one Embodiment of this invention. 本発明の一実施形態に係るレーザ加工の構成図である。It is a block diagram of the laser processing which concerns on one Embodiment of this invention. 従来の有機EL素子の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the conventional organic EL element.
 以下に、本発明に係る有機EL素子の製造方法の一実施形態について、図面を参照して説明する。
 図1に、本実施形態に係る製造方法で製造した有機EL素子の概略平面図を示す。本実施形態に係る有機EL素子の製造方法で製造した有機EL素子は、基板1上に第1電極2、有機発光層3、及び第2電極4が順に積層された発光素子を備える。発光素子は基板1上に複数並べて配置されており、隣り合う発光素子同士は、一方の発光素子の第1電極2と他方の発光素子の第2電極4とが接触することで、電気的に直列接続されている。各発光素子の第1電極2の縁部には絶縁膜5が設けられ、隣り合う第1電極2同士を電気的に分離している。絶縁膜5は、有機EL素子としたときの一の発光素子の第1電極2に、隣に位置する他の発光素子の第2電極4が接触する部分に隣接するよう、第1電極上にも設けられている。第2電極4aは、第1電極2から電気を引き出すための引き出し電極である。並べて配置された複数の発光素子の最も外側に位置する発光素子の第1電極2を引き出し電極として用いる場合、第2電極4aは省略されて良い。
Below, one Embodiment of the manufacturing method of the organic EL element concerning this invention is described with reference to drawings.
In FIG. 1, the schematic plan view of the organic EL element manufactured with the manufacturing method which concerns on this embodiment is shown. The organic EL element manufactured by the method for manufacturing an organic EL element according to this embodiment includes a light emitting element in which a first electrode 2, an organic light emitting layer 3, and a second electrode 4 are sequentially stacked on a substrate 1. A plurality of light emitting elements are arranged side by side on the substrate 1, and the adjacent light emitting elements are electrically connected to each other when the first electrode 2 of one light emitting element and the second electrode 4 of the other light emitting element are in contact with each other. They are connected in series. An insulating film 5 is provided on the edge of the first electrode 2 of each light emitting element, and the adjacent first electrodes 2 are electrically separated from each other. The insulating film 5 is formed on the first electrode so that the first electrode 2 of one light-emitting element when the organic EL element is used is adjacent to a portion where the second electrode 4 of another light-emitting element located adjacent to the first electrode 2 contacts. Is also provided. The second electrode 4 a is an extraction electrode for extracting electricity from the first electrode 2. When the first electrode 2 of the light emitting element located on the outermost side of the plurality of light emitting elements arranged side by side is used as the extraction electrode, the second electrode 4a may be omitted.
 基板1は、透光性基板とされる。例えば、300mm×300mm×厚さ0.7mmのガラス基板などが用いられる。
 第1電極2は、導電性を有する透明な膜とされる。例えば、酸化インジウムスズ(ITO)、酸化錫(SnO)、酸化亜鉛(ZnO)などの金属酸化膜などを用いることができる。第1電極2の厚さは、100nmから500nm程度とされる。
 有機発光層3は、有機発光材料からなる有機多層膜とされる。例えば、有機多層膜の構成は、正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層などとされる。有機発光層3の総厚さは、100nmから300nm程度とされる。
The substrate 1 is a translucent substrate. For example, a glass substrate of 300 mm × 300 mm × thickness 0.7 mm is used.
The first electrode 2 is a transparent film having conductivity. For example, a metal oxide film such as indium tin oxide (ITO), tin oxide (SnO 2 ), or zinc oxide (ZnO) can be used. The thickness of the first electrode 2 is about 100 nm to 500 nm.
The organic light emitting layer 3 is an organic multilayer film made of an organic light emitting material. For example, the structure of the organic multilayer film is a hole injection layer / a hole transport layer / a light emitting layer / an electron transport layer / an electron injection layer. The total thickness of the organic light emitting layer 3 is about 100 nm to 300 nm.
 第2電極4は、導電性を有する膜からなる。例えば、第2電極4は、アルミニウム(Al)や銀(Ag)などの金属膜とされる。第2電極4の厚さは、10nm以上500nm以下とされる。また、第2電極4の材質はリチウム(Li)やマグネシウム(Mg)などのアルカリ系金属やその他酸化物との混合もしくは積層であっても良い。 The second electrode 4 is made of a conductive film. For example, the second electrode 4 is a metal film such as aluminum (Al) or silver (Ag). The thickness of the second electrode 4 is not less than 10 nm and not more than 500 nm. Further, the material of the second electrode 4 may be a mixture or lamination with an alkali metal such as lithium (Li) or magnesium (Mg), or other oxides.
 絶縁膜5は、電気的に絶縁な膜とされる。例えば、ポジ型レジスト、ネガ型レジスト、または他の硬化型樹脂などを用いることができる。絶縁膜5の厚さは、第1電極2と第2電極4との間の印加電圧に対する耐圧があれば十分であるが、第1電極2の厚さ以上が望ましく、100nmから10μmの範囲が良い。絶縁膜5の幅は、ディスプレイの場合は非常に狭い幅が要求されるが、100mm角サイズ以上の有機EL照明では幅狭は要求されず、精度も要求されないことから、0.05mmから2mmが好ましい。 The insulating film 5 is an electrically insulating film. For example, a positive resist, a negative resist, or other curable resin can be used. The thickness of the insulating film 5 is sufficient if it has a withstand voltage against the applied voltage between the first electrode 2 and the second electrode 4, but the thickness of the first electrode 2 or more is desirable, and the range of 100 nm to 10 μm is desirable. good. The width of the insulating film 5 is required to be very narrow in the case of a display, but is not required for organic EL lighting of 100 mm square size or more, and accuracy is not required. preferable.
 次に、本実施形態に係る有機EL素子の製造方法を説明する。図2に、本実施形態に係る有機EL素子の製造方法の一例を説明する断面図を示す。
(1)図2(a)
 基板1上に、第1電極2をパターニングする。
Next, a method for manufacturing the organic EL element according to this embodiment will be described. FIG. 2 is a cross-sectional view for explaining an example of the method for manufacturing the organic EL element according to this embodiment.
(1) FIG. 2 (a)
The first electrode 2 is patterned on the substrate 1.
(2)図2(b)
 第1電極2が形成された基板1の表面を洗浄する。その後、第1電極2が形成された基板1上の所定部分に絶縁材料を塗布し、硬化させる。所定部分は、分割して形成された第1電極同士が向かい合う縁部とその近傍とする。また、所定部分は、有機EL素子とした時に一の発光素子の第2電極4が他方の隣り合う発光素子の第1電極2に接触する部分に、第1電極の面方向内側で隣接する位置とされる。
(2) FIG. 2 (b)
The surface of the substrate 1 on which the first electrode 2 is formed is cleaned. Thereafter, an insulating material is applied to a predetermined portion on the substrate 1 on which the first electrode 2 is formed and cured. The predetermined portion is an edge portion where the first electrodes formed by division face each other and the vicinity thereof. The predetermined portion is a position adjacent to the portion where the second electrode 4 of one light emitting element contacts the first electrode 2 of the other adjacent light emitting element on the inner side in the surface direction of the first electrode when an organic EL element is used. It is said.
 絶縁材料は、非接触方式にて塗布する。非接触方式で絶縁膜5を塗布する方法としては、ドット吐出型のディスペンサーが最適である。ドット吐出型のディスペンサーとしては、例えば、アシムテック社製のJET MASTER(登録商標)2などを用いることができる。絶縁材料の塗布は、1つの発光素子に対して単一のノズル6を用いて行う。ノズル6の吐出口の大きさなどは、使用する絶縁材料の種類や、対象とする発光素子の大きさに応じて適宜設定される。 絶 縁 Insulating material is applied in a non-contact manner. As a method for applying the insulating film 5 in a non-contact manner, a dot discharge type dispenser is optimal. As a dot discharge type dispenser, for example, JET MASTER (registered trademark) 2 manufactured by Asymtec Corporation can be used. The insulating material is applied by using a single nozzle 6 for one light emitting element. The size of the discharge port of the nozzle 6 is appropriately set according to the type of insulating material to be used and the size of the target light emitting element.
 ドット吐出型のディスペンサーを用いる場合、まず、単一ノズル6の先端を第1電極2が形成された基板1上に向け、先端が第1電極2と接触しないよう間隔をあけて単一ノズル6を配置する。例えば、第1電極2の縁部(パターニング段差部分)に対し、第1電極2の表面から、0.1mmから1.0mmの間隔をあけて単一ノズル6を配置すると良い。
 次に、単一ノズル6から第1電極2が形成された基板1上の所定部分に向けて絶縁材料を断続的に吐出する。また、絶縁材料を吐出しながら、基板1または単一ノズル6を相対的に移動させて、所定部分に連続した線形の絶縁膜5を形成する。絶縁材料の吐出量や、基板1または単一ノズル6の移動速度などは、塗布対象表面の濡れ性、絶縁材料の種類及び粘度を考慮し、絶縁膜5が所望の厚さ及び幅となるよう適宜設定される。
When a dot discharge type dispenser is used, first, the tip of the single nozzle 6 is directed toward the substrate 1 on which the first electrode 2 is formed, and the single nozzle 6 is spaced so that the tip does not contact the first electrode 2. Place. For example, the single nozzle 6 may be disposed at an interval of 0.1 mm to 1.0 mm from the surface of the first electrode 2 with respect to the edge portion (patterning step portion) of the first electrode 2.
Next, the insulating material is intermittently discharged from the single nozzle 6 toward a predetermined portion on the substrate 1 on which the first electrode 2 is formed. Further, while discharging the insulating material, the substrate 1 or the single nozzle 6 is relatively moved to form a linear insulating film 5 continuous in a predetermined portion. The discharge amount of the insulating material and the moving speed of the substrate 1 or the single nozzle 6 are determined so that the insulating film 5 has a desired thickness and width in consideration of the wettability of the surface to be coated, the type and viscosity of the insulating material. Set as appropriate.
 例えば、吐出量5nL、吐出粒直径約0.2mm、吐出繰返し速度を200dot/sec、移動速度を100mm/secとした条件では、吐出粒子は0.5mm間隔で基板上に塗布される。塗布された絶縁材料は基材に着弾後、厚さ5μm、幅2.0mmの絶縁膜5となる。この幅は、100mm角以上の照明用有機EL素子では十分許容可能であるが、吐出量と間隔を変えることにより幅を変えることは容易である。 For example, under the conditions where the discharge amount is 5 nL, the discharge particle diameter is about 0.2 mm, the discharge repetition rate is 200 dots / sec, and the moving speed is 100 mm / sec, the discharge particles are applied on the substrate at intervals of 0.5 mm. After the applied insulating material has landed on the base material, it becomes the insulating film 5 having a thickness of 5 μm and a width of 2.0 mm. This width is sufficiently acceptable for an organic EL element for illumination of 100 mm square or more, but it is easy to change the width by changing the discharge amount and the interval.
 塗布した絶縁材料の硬化方法は、使用する絶縁材料に応じて適宜選択する。絶縁材料は有機材料が好ましく、絶縁材料としてポジ型レジストを用いた場合、塗布後に加熱する(ポストベーク)のみで硬化することができる。絶縁材料は所定部分にのみ塗布されているため、従来のフォトリソグラフィによる絶縁膜の形成で必要であったプリベーク、露光、及び現像の工程が不要となる。そのため、従来絶縁膜の形成に用いられていたフォトリソグラフィ技術と比較して、絶縁材料の使用量を低減することができる上、従来のベーク炉を使用するのみで新たな設備は必要としない。 The curing method for the applied insulating material is appropriately selected according to the insulating material used. The insulating material is preferably an organic material, and when a positive resist is used as the insulating material, it can be cured only by heating (post-baking) after coating. Since the insulating material is applied only to a predetermined portion, the pre-baking, exposure, and development steps necessary for forming an insulating film by conventional photolithography are not required. Therefore, it is possible to reduce the amount of the insulating material used as compared with the photolithography technique conventionally used for forming the insulating film, and only use a conventional baking furnace and no new equipment is required.
(3)図2(c):有機発光層形成工程
 上記で絶縁膜5まで形成した基板1を真空蒸着装置内に搬入する。実際の真空蒸着室内では、基板の製膜面は下向きになるが、説明を理解しやすくするために上向きの記載とする。
 基板1上に、開口部を有する有機用蒸着マスク7を配置し、有機材料を積層蒸着して有機発光層3を形成する。例えば、第1電極としてITOが120nmの厚さで形成された基板1上に、有機発光層3として正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層を120nmの厚さで積層蒸着する。有機材料の他の蒸着条件は、任意とする。
(3) FIG.2 (c): Organic light emitting layer formation process The board | substrate 1 formed to the insulating film 5 above is carried in in a vacuum evaporation system. In the actual vacuum deposition chamber, the film-forming surface of the substrate faces downward, but is described upward for easy understanding of the explanation.
An organic vapor deposition mask 7 having an opening is disposed on the substrate 1, and an organic material is laminated and deposited to form the organic light emitting layer 3. For example, a hole injection layer / hole transport layer / light emission layer / electron transport layer / electron injection layer having a thickness of 120 nm is formed as the organic light emitting layer 3 on the substrate 1 on which ITO is formed as the first electrode with a thickness of 120 nm. Now stack deposition. Other vapor deposition conditions for the organic material are arbitrary.
(4)図2(d):第1分割溝形成工程
 有機発光層3を形成した後、第1電極2上に積層された有機発光層3にレーザビーム9を照射して、有機発光層3の一部を除去し第1分割溝8を形成する。レーザ加工条件は、有機発光層3の材質や厚さなどに応じて適宜設定される。例えば、レーザはフェムト秒レーザを用い、波長810nm、パルス幅150fs、レーザ出力100mJ/cm、繰返し周波数200kHz、レーザビーム径20μmの条件で加工する。第1分割溝8は、上記第1電極2上に設けられた絶縁膜5と上記縁部との間に、絶縁膜5と隣接するよう形成すると良い。
(4) FIG. 2 (d): First division groove forming step After forming the organic light emitting layer 3, the organic light emitting layer 3 laminated on the first electrode 2 is irradiated with a laser beam 9, and the organic light emitting layer 3 A part of the first dividing groove 8 is formed by removing a part of the first dividing groove 8. The laser processing conditions are appropriately set according to the material and thickness of the organic light emitting layer 3. For example, a femtosecond laser is used as the laser and is processed under the conditions of a wavelength of 810 nm, a pulse width of 150 fs, a laser output of 100 mJ / cm 2 , a repetition frequency of 200 kHz, and a laser beam diameter of 20 μm. The first dividing groove 8 is preferably formed so as to be adjacent to the insulating film 5 between the insulating film 5 provided on the first electrode 2 and the edge portion.
(5)図2(e):第2電極形成工程
 第1分割溝8を形成した後、基板1を別の真空蒸着装置に搬入する。基板1上(有機発光層3が形成されている側)に、開口部を有する第2電極用蒸着マスク10を配置し、導電性材料を積層蒸着して第2電極4を形成する。第2電極用蒸着マスク10は、開口部が先に形成された第1電極2と有機発光層3に重なるように配置する。また、第2電極4は、第1分割溝8を埋めるよう形成する。例えば、第2電極4としてアルミニウムを100nmの厚さで蒸着する。導電性材料の他の蒸着条件は、任意とする。
(5) FIG. 2 (e): Second electrode forming step After forming the first divided grooves 8, the substrate 1 is carried into another vacuum deposition apparatus. A second electrode deposition mask 10 having an opening is disposed on the substrate 1 (on the side where the organic light emitting layer 3 is formed), and a second electrode 4 is formed by laminating and depositing a conductive material. The second electrode vapor deposition mask 10 is disposed so that the opening overlaps the first electrode 2 and the organic light emitting layer 3 formed earlier. The second electrode 4 is formed so as to fill the first dividing groove 8. For example, aluminum is deposited as the second electrode 4 with a thickness of 100 nm. The other deposition conditions for the conductive material are arbitrary.
(6)図2(f):第2分割溝形成工程
 第2電極4を形成した後、第1電極2/絶縁膜5上に積層された有機発光層3/第2電極4cに第2電極4側からレーザビーム9を照射し、有機発光層3/第2電極4の一部をレーザ加工により除去し第2分割溝11を形成する。レーザ加工条件は、有機発光層3、第2電極4の材質や厚さなどに応じて適宜設定される。例えば、レーザは上記と同様にフェムト秒レーザを用い、波長1045nm、パルス幅500fs、レーザ出力200mJ/cm、繰返し周波数200kHz、レーザビーム径20μmの条件で加工する。第2分割溝形成工程の後、適宜封止部材を形成する(不図示)。
(6) FIG. 2 (f): Second division groove forming step After forming the second electrode 4, the second electrode is formed on the organic light emitting layer 3 / second electrode 4 c laminated on the first electrode 2 / insulating film 5. The laser beam 9 is irradiated from the 4 side, and a part of the organic light emitting layer 3 / second electrode 4 is removed by laser processing to form the second divided groove 11. The laser processing conditions are appropriately set according to the material and thickness of the organic light emitting layer 3 and the second electrode 4. For example, the laser is a femtosecond laser as described above, and is processed under the conditions of a wavelength of 1045 nm, a pulse width of 500 fs, a laser output of 200 mJ / cm 2 , a repetition frequency of 200 kHz, and a laser beam diameter of 20 μm. After the second divided groove forming step, a sealing member is appropriately formed (not shown).
 なお、本実施形態において第2電極4を真空蒸着により製膜したが、これに限定されず、スパッタリング法によって製膜しても良い。 In addition, in this embodiment, although the 2nd electrode 4 was formed into a film by vacuum evaporation, it is not limited to this, You may form into a film by sputtering method.
 次にレーザ加工方法について説明する。
 第1分割溝8及び第2分割溝11を形成するためのレーザ加工は、真空または不活性気体環境で実施されると良い。例えば、レーザ加工は、内部を真空または不活性気体環境とできる容器内で実施されると良い。本実施形態では、不活性気体環境とできる容器でレーザ加工を行う。図3に、本実施形態に係るレーザ加工の構成図を示す。
Next, a laser processing method will be described.
Laser processing for forming the first divided grooves 8 and the second divided grooves 11 may be performed in a vacuum or an inert gas environment. For example, laser processing may be performed in a container that can be in a vacuum or an inert gas environment. In this embodiment, laser processing is performed in a container that can be an inert gas environment. FIG. 3 shows a configuration diagram of laser processing according to the present embodiment.
 容器20は、ガス導入口21、レーザビーム導入窓22及び駆動ステージ(不図示)を備えている。駆動ステージは、被加工対象物23を保持することができ、且つ、水平方向(矢印X及び矢印Y方向)に移動することもできる。
 容器20は、レーザビーム導入窓22の容器内側に、レーザビーム経路を囲う筒状部材24を備えていることが好ましい。筒状部材24は、レーザビーム9の出口側付近に筒状部材24の内部と連通した吸引経路25が接続されている。吸引経路25の他端部は容器20外に配置されている。
The container 20 includes a gas introduction port 21, a laser beam introduction window 22, and a drive stage (not shown). The drive stage can hold the workpiece 23 and can move in the horizontal direction (arrow X and arrow Y directions).
The container 20 preferably includes a cylindrical member 24 surrounding the laser beam path inside the container of the laser beam introduction window 22. The cylindrical member 24 is connected to a suction path 25 communicating with the inside of the cylindrical member 24 near the exit side of the laser beam 9. The other end of the suction path 25 is disposed outside the container 20.
 レーザ加工が施される被加工対象物23を、容器20内に搬入し、被加工面をレーザビーム導入窓22に向けて駆動ステージに載せ、保持させる。その後、ガス導入口21から容器20内に水分濃度の低い高純度の不活性気体を導入し、容器20内を不活性気体で満たす。不活性気体は、窒素ガスやアルゴンガスが適している。不活性気体の純度は99.99%以上が望ましく、不活性気体の水分残留濃度は1ppm以下が望ましい。 The workpiece 23 to be laser-processed is carried into the container 20 and placed on the drive stage with the workpiece surface facing the laser beam introduction window 22 and held. Thereafter, a high-purity inert gas having a low moisture concentration is introduced into the container 20 from the gas inlet 21 to fill the container 20 with the inert gas. Nitrogen gas or argon gas is suitable as the inert gas. The purity of the inert gas is desirably 99.99% or more, and the moisture concentration of the inert gas is desirably 1 ppm or less.
 次に、吸引経路25を介して吸引し、筒状部材24のレーザビームの出口付近の気体を容器20外へと排出する。吸引する際には、ガス導入口21から高純度の不活性気体を導入して容器20内の圧力を一定に保持する。レーザビーム導入窓22を介して被加工対象物23にレーザビーム9を照射する。駆動ステージを適宜水平移動させ、所定部分に分割溝を形成する。 Next, suction is performed through the suction path 25, and the gas in the vicinity of the exit of the laser beam of the cylindrical member 24 is discharged out of the container 20. When sucking, a high-purity inert gas is introduced from the gas inlet 21 to keep the pressure in the container 20 constant. The workpiece 23 is irradiated with the laser beam 9 through the laser beam introduction window 22. The driving stage is appropriately moved horizontally to form a division groove in a predetermined portion.
 有機発光層3や第2電極4にレーザを照射すると、それらに含まれる物質が熱による蒸発と、アブレーションによる分解により気化し、拡散消失する。
 本実施形態によれば、容器20内を排気しながら、容器20に不活性気体を導入することで、容器20内を一定圧力に保持しつつ、レーザ加工により除去された物質が容器外へ排出されるため、除去された物質による有機発光層3の汚染を抑制することができる。それによって、発光特性を安定化することが可能となる。
When the organic light emitting layer 3 or the second electrode 4 is irradiated with a laser, substances contained in the organic light emitting layer 3 are vaporized by evaporation due to heat and decomposition due to ablation, and diffused and disappeared.
According to the present embodiment, by introducing an inert gas into the container 20 while exhausting the inside of the container 20, the substance removed by the laser processing is discharged out of the container while maintaining the inside of the container 20 at a constant pressure. Therefore, contamination of the organic light emitting layer 3 with the removed substance can be suppressed. As a result, the light emission characteristics can be stabilized.
 また、第2分離溝11を形成する工程におけるレーザ加工では、不活性気体に酸素を混合して容器20内に導入しても良い。酸素濃度は、0.1体積%以上20体積%以下(大気中の酸素分圧以下)が望ましい。
 レーザ加工により除去された物質は、完全な気体でないものを含む場合がある。そのため、完全な気体でなく蒸発した物質は、レーザ照射された加工部近傍に飛散し、再付着する可能性がある。これは、一般にデブリとも呼ばれ、加工周辺部の汚染の原因となる。不活性気体に酸素を混合させて容器内に導入すると、完全な気体でない物質に含まれる第2電極由来の金属微粒子が酸化し、絶縁体とすることができる。これによって、レーザ加工によって飛散した物質が、レーザ加工端面や加工済み箇所へ再付着した場合であっても、リーク電流の発生防止することができる。上記酸素を混合する方法は、特に、第2電極としてアルミニウムを用いた場合に有効である。
Further, in the laser processing in the step of forming the second separation groove 11, oxygen may be mixed with an inert gas and introduced into the container 20. The oxygen concentration is preferably 0.1% by volume or more and 20% by volume or less (oxygen partial pressure in the atmosphere or less).
The material removed by laser processing may include those that are not complete gases. For this reason, the vaporized substance, not a complete gas, may be scattered near the processing part irradiated with the laser and reattached. This is generally called debris and causes contamination of the processing peripheral portion. When oxygen is mixed with an inert gas and introduced into the container, the metal fine particles derived from the second electrode contained in the substance that is not a complete gas are oxidized to form an insulator. Thereby, even when the material scattered by the laser processing is reattached to the laser processing end face or the processed portion, it is possible to prevent the occurrence of leakage current. The method of mixing oxygen is particularly effective when aluminum is used as the second electrode.
1 基板
2 第1電極
3 有機発光層
4 第2電極
4a 第2電極(引き出し用電極)
5 絶縁膜
6 ノズル
7 有機用蒸着マスク
8 第1分割溝
9 レーザビーム
10 第2電極用蒸着マスク
11 第2分割溝
20 容器
21 ガス導入口
22 レーザビーム導入窓
23 被加工対象物
24 筒状部材
25 吸引経路
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 1st electrode 3 Organic light emitting layer 4 2nd electrode 4a 2nd electrode (electrode for extraction)
5 Insulating Film 6 Nozzle 7 Organic Deposition Mask 8 First Divided Groove 9 Laser Beam 10 Second Electrode Deposition Mask 11 Second Divided Groove 20 Container 21 Gas Inlet 22 Laser Beam Introducing Window 23 Workpiece Object 24 Cylindrical Member 25 Suction route

Claims (6)

  1.  基板上に、第1電極と有機発光層と第2電極とから構成される発光素子を複数備え、
     隣り合う発光素子が、一方の発光素子の第1電極と他方の発光素子の第2電極とが接触することで電気的に直列接続された有機EL素子を製造する方法であって、
     基板上に、分割して第1電極を形成する工程(A)と、
     該工程(A)の後、少なくとも、前記第1電極の縁部、及び前記隣り合う発光素子の第2電極に接触する部分に対応する第1電極に隣接するよう絶縁膜を形成する工程(B)と、
     該工程(B)の後、前記隣り合う発光素子の第2電極に接触する部分に対応する第1電極上に積層された有機発光層をレーザ加工により除去し、前記有機発光層を複数の有機発光層に分割する第1分割溝を形成する工程(C)と、
     該工程(C)の後、前記第1分割溝を埋め、且つ、前記複数の有機発光層上を覆うよう第2電極を形成する工程(D)と、
     該工程(D)の後、前記絶縁膜の上に積層された有機発光層/第2電極をレーザ加工により除去し、前記有機発光層/第2電極を複数の有機発光層/第2電極に分割する、底面が前記絶縁膜となる第2分割溝を形成する工程(E)と、
    を備える有機EL素子の製造方法。
    A plurality of light emitting elements comprising a first electrode, an organic light emitting layer, and a second electrode are provided on a substrate,
    A method of manufacturing an organic EL element in which adjacent light emitting elements are electrically connected in series by contacting a first electrode of one light emitting element and a second electrode of the other light emitting element,
    A step (A) of dividing and forming a first electrode on a substrate;
    After the step (A), a step of forming an insulating film so as to be adjacent to at least the edge of the first electrode and the first electrode corresponding to the portion in contact with the second electrode of the adjacent light emitting element (B )When,
    After the step (B), the organic light emitting layer stacked on the first electrode corresponding to the portion in contact with the second electrode of the adjacent light emitting element is removed by laser processing, and the organic light emitting layer is removed from the plurality of organic light emitting layers. Forming a first dividing groove to be divided into the light emitting layer (C);
    After the step (C), a step (D) of forming a second electrode so as to fill the first dividing groove and cover the plurality of organic light emitting layers;
    After the step (D), the organic light emitting layer / second electrode laminated on the insulating film is removed by laser processing, and the organic light emitting layer / second electrode is converted into a plurality of organic light emitting layers / second electrodes. A step (E) of dividing and forming a second dividing groove whose bottom surface becomes the insulating film;
    The manufacturing method of an organic EL element provided with.
  2.  前記工程(B)が、
     単一ノズルを前記第1電極に対して間隔をあけて配置し、前記単一ノズルから前記第1電極が形成された基板の所定部分に向けて前記絶縁材料を断続的に吐出するステップと、
     前記基板または前記単一ノズルを相対的に移動させて、前記所定部分に連続した絶縁膜を形成するステップと、
    を含む請求項1に記載の有機EL素子の製造方法。
    The step (B)
    Disposing the single nozzle at an interval from the first electrode, and intermittently discharging the insulating material from the single nozzle toward a predetermined portion of the substrate on which the first electrode is formed;
    Relatively moving the substrate or the single nozzle to form a continuous insulating film on the predetermined portion;
    The manufacturing method of the organic EL element of Claim 1 containing this.
  3.  前記工程(C)を、内部が真空または不活性気体環境となる容器内で、該容器内を排気しながら行う請求項1または請求項2に記載の有機EL素子の製造方法。 The method for producing an organic EL element according to claim 1 or 2, wherein the step (C) is performed in a container having a vacuum or an inert gas environment while evacuating the container.
  4.  前記工程(E)を、内部が真空または不活性気体環境となる容器内で、該容器内を排気しながら行う請求項1乃至請求項3のいずれかに記載の有機EL素子の製造方法。 The method for producing an organic EL element according to any one of claims 1 to 3, wherein the step (E) is performed in a container having a vacuum or an inert gas environment while exhausting the inside of the container.
  5.  前記第2電極が導電性金属を含み、
     前記工程(E)において、前記レーザ加工を真空または不活性気体環境に酸素気体を混合した環境で行う請求項4に記載の有機EL素子の製造方法。
    The second electrode includes a conductive metal;
    5. The method of manufacturing an organic EL element according to claim 4, wherein in the step (E), the laser processing is performed in a vacuum or an environment in which an oxygen gas is mixed in an inert gas environment.
  6.  レーザビームの通過経路を筒状部材で囲い、該筒状部材のレーザビーム出口側に吸引経路を接続し、該吸引経路を介して吸引しながらレーザ加工を行う請求項3乃至請求項5のいずれかに記載の有機EL素子の製造方法。 6. The laser beam passing path is surrounded by a cylindrical member, a suction path is connected to the laser beam exit side of the cylindrical member, and laser processing is performed while suctioning through the suction path. The manufacturing method of the organic EL element of crab.
PCT/JP2011/060907 2011-01-14 2011-05-12 Method for manufacturing organic el elements WO2012096007A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011006028A JP5709540B2 (en) 2011-01-14 2011-01-14 Manufacturing method of organic EL element
JP2011-006028 2011-01-14

Publications (1)

Publication Number Publication Date
WO2012096007A1 true WO2012096007A1 (en) 2012-07-19

Family

ID=46506926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060907 WO2012096007A1 (en) 2011-01-14 2011-05-12 Method for manufacturing organic el elements

Country Status (3)

Country Link
JP (1) JP5709540B2 (en)
TW (1) TWI482326B (en)
WO (1) WO2012096007A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014049054A1 (en) * 2012-09-28 2014-04-03 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic assembly, and optoelectronic assembly

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054748A1 (en) * 2012-10-03 2014-04-10 日産化学工業株式会社 Application liquid capable of fine application, for forming inorganic oxide coating film, and method for manufacturing fine inorganic oxide coating film
JPWO2015064716A1 (en) * 2013-10-31 2017-03-09 コニカミノルタ株式会社 Organic thin film patterning apparatus, organic thin film manufacturing system, and organic thin film patterning method
JP6654913B2 (en) 2016-01-26 2020-02-26 住友化学株式会社 Method for manufacturing organic EL element and organic EL element
JP7125104B2 (en) * 2018-07-02 2022-08-24 株式会社Joled Display panel manufacturing equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000029404A (en) * 1998-07-10 2000-01-28 Toppan Printing Co Ltd Organic electroluminescence indicating element and its production
JP2006164904A (en) * 2004-12-10 2006-06-22 Dainippon Screen Mfg Co Ltd Removing apparatus for producing organic el display device
JP2006195216A (en) * 2005-01-14 2006-07-27 Seiko Epson Corp Electrooptical apparatus and electronic equipment using the same
JP2007059925A (en) * 2005-01-28 2007-03-08 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2007157659A (en) * 2005-12-08 2007-06-21 Tokki Corp Forming method of wiring pattern of organic el element and forming device of organic el element
JP2008535240A (en) * 2005-03-29 2008-08-28 ゼネラル・エレクトリック・カンパニイ Fully fault tolerant architecture for organic electronic devices
JP2009295601A (en) * 2009-09-25 2009-12-17 Casio Comput Co Ltd Sealing structure
JP2010510626A (en) * 2006-11-17 2010-04-02 ゼネラル・エレクトリック・カンパニイ Large area lighting system and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006171365A (en) * 2004-12-16 2006-06-29 Seiko Epson Corp Bank generation method, and methods of manufacturing color filter, liquid crystal panel, organic el device and display panel
FR2913146B1 (en) * 2007-02-23 2009-05-01 Saint Gobain DISCONTINUOUS ELECTRODE, ORGANIC ELECTROLUMINESCENCE DEVICE INCORPORATING THE SAME, AND THEIR MANUFACTURING
KR20110134444A (en) * 2009-03-05 2011-12-14 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Oleds connected in series

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000029404A (en) * 1998-07-10 2000-01-28 Toppan Printing Co Ltd Organic electroluminescence indicating element and its production
JP2006164904A (en) * 2004-12-10 2006-06-22 Dainippon Screen Mfg Co Ltd Removing apparatus for producing organic el display device
JP2006195216A (en) * 2005-01-14 2006-07-27 Seiko Epson Corp Electrooptical apparatus and electronic equipment using the same
JP2007059925A (en) * 2005-01-28 2007-03-08 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2008535240A (en) * 2005-03-29 2008-08-28 ゼネラル・エレクトリック・カンパニイ Fully fault tolerant architecture for organic electronic devices
JP2007157659A (en) * 2005-12-08 2007-06-21 Tokki Corp Forming method of wiring pattern of organic el element and forming device of organic el element
JP2010510626A (en) * 2006-11-17 2010-04-02 ゼネラル・エレクトリック・カンパニイ Large area lighting system and manufacturing method thereof
JP2009295601A (en) * 2009-09-25 2009-12-17 Casio Comput Co Ltd Sealing structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014049054A1 (en) * 2012-09-28 2014-04-03 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic assembly, and optoelectronic assembly
US9553133B2 (en) 2012-09-28 2017-01-24 Osram Oled Gmbh Method for producing an optoelectronic assembly, and optoelectronic assembly

Also Published As

Publication number Publication date
TWI482326B (en) 2015-04-21
TW201230435A (en) 2012-07-16
JP2012146608A (en) 2012-08-02
JP5709540B2 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
EP1970960A2 (en) Organic EL light emitting device and method for manufacturing the same
JP5709540B2 (en) Manufacturing method of organic EL element
JP2010161185A (en) Organic el display device and method of manufacturing the same
WO2015030125A1 (en) Top-emission organic electroluminescence display device and production method therefor
JP2009283396A (en) Method for manufacturing for organic el display
KR102152743B1 (en) Method for producing top-emission organic electroluminescence display device, and cover material for formation of top-emission organic electroluminescence display device
JP5656659B2 (en) Manufacturing method of organic EL element
JP2010040510A (en) Organic electroluminescent display device
WO2014049904A1 (en) Method for producing el display device and transfer substrate used in producing el display device
JP2010027210A (en) Manufacturing method of light-emitting element, and light-emitting element
WO2009157591A1 (en) Organic electroluminescence display apparatus and manufacturing method therefor
US10476019B2 (en) Organic optoelectronic device and method for manufacturing the same
JP5818441B2 (en) Manufacturing method of organic EL element for illumination
JP5967272B2 (en) Top emission type organic electroluminescence display device and manufacturing method thereof
KR20130018007A (en) Method of fabricating organic light emitting diodes
JP2008204767A (en) Manufacturing method of electronic device equipment, and manufacturing device of electronic device equipment
JP2008166232A (en) Manufacturing method of organic el display
CN111095593A (en) Method for maskless OLED deposition and fabrication
JP6102419B2 (en) Top emission type organic electroluminescence display device manufacturing method and top emission type organic electroluminescence display device
JP2018147813A (en) Method for manufacturing display device and display device
JP2007323889A (en) Organic led element, and its manufacturing method
KR100717332B1 (en) Organic Electro Luminescence Device And Fabricating Method Thereof
CN117396047A (en) Display panel manufacturing method, display panel and display device
JP2015049962A (en) Method for manufacturing top-emission type organic electroluminescent display device
WO2011016347A1 (en) Organic el device, electrode forming method for organic el device, organic el lighting device, and manufacturing method for organic el lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11855471

Country of ref document: EP

Kind code of ref document: A1