WO2012095006A1 - Led灯具配光模块的设计方法 - Google Patents

Led灯具配光模块的设计方法 Download PDF

Info

Publication number
WO2012095006A1
WO2012095006A1 PCT/CN2012/070248 CN2012070248W WO2012095006A1 WO 2012095006 A1 WO2012095006 A1 WO 2012095006A1 CN 2012070248 W CN2012070248 W CN 2012070248W WO 2012095006 A1 WO2012095006 A1 WO 2012095006A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
distribution module
light distribution
reflector
led
Prior art date
Application number
PCT/CN2012/070248
Other languages
English (en)
French (fr)
Inventor
刘伟奇
杨罡
靳宝玉
Original Assignee
珠海晟源同泰电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海晟源同泰电子有限公司 filed Critical 珠海晟源同泰电子有限公司
Publication of WO2012095006A1 publication Critical patent/WO2012095006A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/04Combinations of only two kinds of elements the elements being reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/10Outdoor lighting
    • F21W2131/103Outdoor lighting of streets or roads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to the field of LED illumination, in particular to a design method of a light distribution module for a high-power LED street lamp, a tunnel lamp, an industrial and mining lamp and the like.
  • the present invention is based on a Chinese patent application filed on Jan. 15, 2011, the entire disclosure of which is hereby incorporated by reference.
  • LED illumination source As a new type of illumination source, LED illumination source has the advantages of energy saving, environmental protection, long service life and low consumption. It has been widely used in home lighting, commercial lighting, highway lighting, industrial and mining lighting and other occasions.
  • the application of LED lighting source in highway lighting is mainly the application of LED street lamp or tunnel lamp.
  • the existing LED street lamp or tunnel lamp has a lamp post, and the lamp cap is installed at the upper end of the lamp post.
  • the lamp cap includes the lamp cover, the shell, etc., and the lampshade LED light distribution module is set inside.
  • a common LED light distribution module has a substrate on which one or more LED chips are packaged, and a lens is set in front of the LED chip, and the light emitted by the LED chip is refracted toward the road surface through the lens. If the secondary optical design is not used, the light emitted by the LED chip is rounded on the ground. There is always a part of the light shining on the landscape beside the shoulder, sidewalk or driveway, resulting in waste of light and light pollution.
  • the road surface also needs to be configured. More luminaires can illuminate the standard and cause energy loss.
  • the ideal spot is a rectangular spot with uniform illumination according to the shape of the road. The spot is distributed according to the road illumination requirement, and no excess light is irradiated on the sidewalk or roadside landscape, which meets the requirements of energy saving and on-demand light distribution.
  • the Chinese utility model patent with the publication number CN201348195Y discloses an invention called "LED street light lens device".
  • the structure of the lens device and the LED chip is as shown in FIG. 1 , which has a rectangular parallelepiped base 11 .
  • An LED chip 14 is packaged on the lower end surface of the substrate 15, and the light emitted from the LED chip 14 is directed through the elliptical cylinder 12 toward the road surface.
  • the light spot formed by the light passing through the lower end surface of the elliptical cylinder 12 is substantially rectangular, which can prevent light from being emitted to the shoulder and causing waste of light energy and light pollution. .
  • the illumination angle of the LED chip 14 is approximately 170°, part of the light will be emitted from the side wall of the elliptical cylinder 12, and this portion of the light is often directed away from the illuminated surface. Therefore, after the light emitted by the LED chip 14 passes through the lens device, part of the light is not fully utilized. At the same time, the illumination angle of the LED light source is greater than the glare angle, and glare is generated, which poses a safety hazard to pedestrians and vehicles, and the road illumination is insufficient. It is also necessary to increase the number of LED chips and increase the power of the lamps, resulting in waste of electrical energy.
  • the illuminance of the illuminated surface is required to be uniform. If the secondary light distribution design of the LED light source is not used, the light emitted by the LED chip will be illuminated on the road surface, and some areas are brighter and some areas are darker. It is not conducive to pedestrians and drivers to observe the road surface, resulting in safety hazards.
  • the LED lamp light distribution module includes a substrate, the LED chip is packaged on the substrate, and a uniform beam bunching reflector is disposed along the illumination direction of the LED chip.
  • a beam shaping beam expander made of a material having high transmittance is disposed in the light beam splitting direction of the light beam splitting reflector, and the beam shaping beam expander has an incident surface facing one side of the uniform beam bunching reflector and a side opposite to the incident surface.
  • the method includes determining the position of the LED chip and the convergence angle of the homogenizing bunching reflector according to the illumination requirement of the illuminated surface and the environmental requirement, and passing the light emitted by the LED chip through the homogenizing bunching reflector, etc.
  • the illuminance surface is divided into a plurality of grids of equal area, and the illuminated road surface is also divided into the same plurality of grids having the same area; the maximum of the light emitted by the LED chip after passing through the homogenizing bunching reflector is determined according to the light distribution and illumination requirements.
  • the light exit angle establishes a correspondence between the mesh of the illuminated surface and the pavement grid, and calculates the angle at which the light of the LED chip needs to be deflected according to the refractive index of the material of the beam shaping expander. Beam expander beam shaper in a first direction of the curve data and the maximum light distribution angle calculating light, then cylinder extending in a second direction perpendicular to the first direction, to give an incident surface and exit surface of the curved shape.
  • a preferred solution is to establish a luminous flux of the mesh of the illuminated surface and a illuminating surface of the illuminating surface of the light after the uniformizing of the beam concentrating reflector, and to illuminate the surface of the illuminating surface of the illuminating surface of the illuminating surface.
  • the luminous flux is equal.
  • a further solution is that, in the step of calculating the incident surface and the exit surface, in the first direction, the light emitted at the maximum exit angle is incident on the beam shaping expander and then exits from the exit surface to the edge of the pavement grid as the first The boundary of the direction is a condition.
  • the light emitted at the maximum exit angle is incident on the beam shaping beam expander and then exits from the exit surface to the edge of the second direction grid of the road surface as a condition of the boundary in the second direction.
  • the middle portion of the incident surface constitutes a cylindrical surface recessed toward the body of the beam shaping beam expander, and the emitting surface has a curved surface convex toward the light emitting direction, and the center line surface of the cylindrical surface overlaps with the center line surface of the curved surface.
  • the homogenizing bunching reflector can converge the light emitted by the LED chip in a small exit angle, and is controlled by the homogenizing bunching reflector during the design process.
  • the maximum exit angle of the light so that the light emitted by the LED chip is concentrated in front of the LED chip, and then is refracted by the beam shaping beam expander to form a rectangular spot, thereby meeting the requirements of the illuminated surface, preventing glare generation and reducing light. Waste.
  • the LED light distribution module designed according to the present invention can ensure that the light emitted by the LED chip is uniformly directed to the road surface, thereby ensuring uniform illumination of the illuminated road surface, avoiding the formation of spaced bright areas and dim areas on the road surface, and is advantageous for driving. Members and pedestrians can see the road surface.
  • FIG. 1 is a schematic structural view of a conventional light distribution lens for an LED lamp.
  • FIG. 2 is a structural diagram of a homogenizing bunching reflector and a beam shaping beam expander of an LED lamp light distribution module designed according to an embodiment of the invention.
  • FIG. 3 is a cross-sectional view of a beam shaping beam expander of an LED lamp light distribution module designed in accordance with an embodiment of the present invention.
  • FIG. 4 is a light path diagram of a light distribution module for an LED lamp designed according to an embodiment of the invention.
  • FIG. 5 is a schematic diagram of dividing an iso-illumination surface of a light passing through a homogenizing bunching reflector in a grid according to an embodiment of the present invention.
  • Fig. 6 is a schematic view showing a grid to be divided into a road surface according to an embodiment of the present invention.
  • the LED lamp light distribution module designed according to the invention is located at the upper end of the lamp post of the LED lamp and is sealed in the lamp cover.
  • the vertical distance between the LED lamp light distribution module and the road surface to be illuminated is 5-12 meters.
  • the LED lamp light distribution module has a substrate on which a plurality of LED chips are packaged, and each LED chip is disposed downward.
  • the LED chip is packaged on the substrate with a homogenizing beam splitting reflector, and a beam shaping beam expander is arranged below the homogenizing focusing beam reflector.
  • the structure of the homogenizing beam beam reflector and the beam shaping beam expander is as follows: Figure 2 shows.
  • the uniform beam condenser reflector 20 has a peripheral wall 21, and the upper end of the peripheral wall 21 is an entrance port 22, and the light entrance port 22 can be fixed on the substrate, and the LED chip is packaged in the light entrance port 22.
  • the end opposite to the light entrance 22 is the light exit port 23, and the light emitted from the LED chip is emitted outward through the light exit port 23.
  • a beam shaping beam expander 30 is provided below the homogenizing bunching reflector 20, that is, in the direction in which the LED chip emits light.
  • the beam shaping beam expander 30 is fixed in the lamp cover by a connecting structure and forms a seal, and its structure is as shown in FIG.
  • the beam shaping beam expander 30 has a body 31, the upper end face of which is an entrance face 32, that is, the entrance face 32 is disposed toward the homogenizing bunching reflector 20.
  • a central portion of the incident surface 32 is provided with an aspherical cylindrical surface 33 recessed into the body 31, and the non-spherical cylindrical surface 33 extends through a pair of side walls of the body 31.
  • the two surfaces of the non-spherical cylindrical surface 33 are the inclined surface 34 and the inclined surface 35, respectively, and the light reflected by the peripheral wall 21 of the uniformized beam dumping reflector 20 can be incident on the inclined surface 34 or the inclined surface 35, and incident.
  • the body 31 Inside the body 31.
  • the beam shaping beam expander 30 is a cylindrical body that is stretched in the y-axis direction along the projection of the xOz plane.
  • the non-spherical cylindrical surface 33 has a centerline surface 36 that passes through the ridge line of the non-spherical cylindrical surface 33 and is perpendicular to the planar portion of the incident surface 32.
  • the two inclined surfaces 34, 35 of the non-spherical cylindrical surface 33 are symmetrically disposed about the centerline surface 36.
  • the lower end surface of the body 31 is an exit surface 37, and the exit surface 37 is disposed opposite to the incident surface 32.
  • a curved surface 38 that is convex toward the light emission direction is provided in the middle of the exit surface 37.
  • the center line surface 39 overlaps the center line surface 36 of the non-spherical cylinder surface 33. Light emerging from the beam shaping beam expander 30 exits through the curved surface 38.
  • the LED chip 40 is located on the light entrance 22 of the uniform beam condenser 20, and the light emitted by the LED chip 40 is reflected by the peripheral wall 21, and then exits from the light exit port 23, and is incident on the two inclined surfaces 34 of the non-spherical cylindrical surface 33, 35, after being refracted by the beam shaping beam expander 30, is emitted from the exit surface 37 of the beam shaping beam expander 30 toward the road surface.
  • the axis of the homogenizing bunching reflector 20 is located on the centerline surface 36 of the non-spherical cylinder surface 33, and the LED chip 40 is also located on the centerline surface 36 of the non-spherical cylinder surface 33.
  • the homogenizing bunching reflector 20 collects the light that is directed toward the periphery of the LED chip 40 and emits light from the front of the LED chip 40, and the light emitted from the homogenizing bunching reflector 20 is incident on the beam shaping beam expander. 30, the illuminating angle is reduced, the glare is prevented from being generated, the waste of light energy is reduced, and electric energy is also saved.
  • a part of the exit surface 37 of the beam shaping beam expander 30 is designed as an aspherical arc surface 38, which reduces the incident angle when the light exits from the body 31 of the beam shaping beam expander 30 to another medium (air), avoiding The phenomenon of total reflection at this interface can also effectively avoid the waste of light energy and improve the utilization of light.
  • the beam shaping beam expander 30 projects in one direction is a one-dimensional aspherical surface, and the projection in the other direction is a straight line, as shown in FIG. 4, the light is uniformly distributed after passing through the beam shaping beam expander 30. On the illuminated road surface, the effect of a distinct uniform "rectangular" spot is formed.
  • the light distribution module When manufacturing LED lamps, it is necessary to manufacture a lamp post, a lamp cover, etc., and design an LED lamp light distribution module installed in the lamp cover.
  • the light distribution module firstly, according to the lighting conditions and lighting environment requirements, such as the lighting brightness requirements of the road surface, the length and width requirements of the light spot, the vertical distance between the LED light source and the road surface, etc., the LED chip and the uniform light bunching as the light source are determined.
  • the position of the reflector determines the maximum exit angle of the light emitted by the LED chip after passing through the homogenizing beam splitting reflector, thereby designing the homogenizing bunching reflector.
  • the design method of the homogenizing bunching reflector designed in this embodiment can be referred to the Chinese invention patent application published as CN101900296A. Of course, other design methods can also be used to design the retroreflective device.
  • the iso-illuminance surface of the LED chip is close to a hemispherical surface. After the reflection of the homogenizing bunched reflector, the iso-illumination surface is a converged curved surface.
  • the equal illumination surface after the light passes through the light exit port of the uniformized beam splitting reflector is divided into a plurality of equal-area grids, as shown in FIG. 5 .
  • the surface to be illuminated is also divided into the same plurality of grids of equal area.
  • the size and number of the grids can be determined according to the uniformity requirements of the road surface. The more grids, the more the illumination The better the uniformity. Then, a correspondence between the mesh of the iso-illuminance surface and the mesh of the illuminated surface is established. Among them, the luminous flux of the corresponding grid is equal, and when the grid is differentiated to a certain extent in the y direction, it becomes a line. The curve is then cylindrically extended in the y direction until another boundary in the y direction.
  • the angle of the beam emitted from the LED chip needs to be offset, that is, according to the refractive index of the beam shaping beam expander material, the incident light can be calculated at the beam shaping beam expander.
  • the surface shape of the face and the exit face is, according to the refractive index of the beam shaping beam expander material.
  • the incident surface and the exit surface it is also necessary to consider that the light that exits at the maximum exit angle after passing through the homogenizing bunched reflector enters the beam shaping beam expander, and when refraction occurs, reflection also occurs, and exits from the exit surface.
  • the light as far as possible, avoids the reflection of light from illuminating outside the intended road surface, thus avoiding the loss of light energy and glare.
  • the incident surface and the exit surface it is necessary to make the luminous flux of any grid on the illuminated road surface equal to the luminous flux of any of the equal illumination surfaces, which is to establish the luminous flux of the iso-illuminated surface and the integral of the luminous flux of the illuminated surface.
  • Implementation Further, in the step of calculating the curved shape of the incident surface and the exit surface, it is also required that the light emitted from the maximum beam exit angle is incident on the beam shaping beam expander and the light emitted from the exit surface is irradiated to the edge of the illuminated surface as a boundary condition. It is possible to change the curved shape of the incident surface and the exit surface.
  • the light emitted by the LED chip designed according to the method of the present invention can be effectively controlled within a small exit angle, and the light passes through the beam shaping beam expander and is directed onto the surface to be illuminated to form a rectangular spot.
  • the soft light is comfortable to the human eye, harmless to the human eye, and free from light pollution, and can form a rectangular spot in a low cost manner.
  • the above design method considers the actual illumination condition of the illuminated road surface, and divides the equal illumination surface at the light exit port of the homogenizing bunching reflector into a grid, and divides the illuminated road surface into a grid, and passes the corresponding grid.
  • the luminous flux is equal to ensure that the luminous flux at each grid on the road surface in the x-axis direction and the y-axis direction is equal, avoiding the formation of dark areas on the road surface, which is beneficial for the driver and the pedestrian to observe the road surface condition.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

LED灯具配光模块的设计方法 技术领域
本发明涉及LED照明领域,尤其是涉及一种大功率LED路灯、隧道灯、工矿灯等灯具配光模块的设计方法。本发明基于申请日为2011年1月15日、申请号为201110008383.3的中国发明专利申请,该申请的内容作为参考引入本文。
背景技术
LED照明光源作为新型的照明光源,其具有节能、环保、使用寿命长、低耗等优点,已经广泛应用于家庭照明、商业照明、公路照明、工矿照明等场合。
LED照明光源在公路照明的应用主要是LED路灯或隧道灯的应用,现有的LED路灯或隧道灯具有一根灯柱,在灯柱上端安装有灯头,灯头包括灯罩、壳体等,并在灯罩内设置LED配光模块。常见的LED配光模块具有一块基板,基板上封装有一颗或多颗LED芯片,并且在LED芯片前套装有透镜,LED芯片发出的光通过透镜后折射向路面。如果没经过二次光学设计,LED芯片发出的光线在地面上投影的光斑呈圆形,总有一部分光线照射在路肩、人行道或者车道旁边的景观上,导致光的浪费和光污染,路面也需要配置更多的灯具才能使照度符合标准,造成能源的损耗。目前,比较理想的光斑是根据道路的形状设定的照度均匀的矩形光斑,光斑按路面照度要求分布,无多余光照射人行道或路边景观,符合节能和按需分配光的要求。
公告号为CN201348195Y的中国实用新型专利公开了一种名为“LED路灯透镜装置”的发明创造,该透镜装置与LED芯片的结构图如图1所示,其具有一个长方体的基座11,基座11的下方设有向下延伸的椭圆柱体12,椭圆柱体12顶面的中部设有向下凹陷的中空部13,基板15封装在中空部13内。在基板15的下端面封装有一颗LED芯片14,LED芯片14发出的光线穿过椭圆柱体12射向路面。由于椭圆柱体12的一对侧面是平面,且下端面大致呈矩形,因此光线穿过椭圆柱体12下端面后形成的光斑大致成矩形,可避免光线射向路肩而造成光能浪费和光污染。
技术问题
由于LED芯片14的发光角大致为170°,因此部分光线将从椭圆柱体12的侧壁射出,这部分光线往往射向距离被照面较远的地方。因此,LED芯片14发出的光线穿过该透镜装置后仍有部分光线未能得到充分利用,同时,LED光源发光角大于眩光角后会产生眩光,对行人和行车造成安全隐患,路面照度不足,还需要增加LED芯片的数量并提高灯具的功率,导致电能的浪费。
并且,道路照明中要求被照面的照度均匀,如果没有对LED光源进行二次配光设计,就会导致LED芯片发出的光线照射在路面上时,出现部分区域较亮,部分区域较暗的情况,不利于行人以及驾驶员观察路面情况,造成安全隐患。
技术解决方案
本发明的目的是提供一种可以低损地形成矩形光斑的LED灯具配光模块的设计方法。
为此,本发明提供的LED灯具配光模块的设计方法中,该LED灯具配光模块包括基板,基板上封装有LED芯片、沿LED芯片的照射方向上设置匀光聚束反光器,在匀光聚束反光器出光方向上设置有用高透光率材料制成的光束整形扩束器,光束整形扩束器具有朝向匀光聚束反光器的一面设有入射面以及与入射面相对一面设有出射面,该方法包括根据被照面的照度要求和和环境要求确定LED芯片的位置以及匀光聚束反光器的收敛角度,并将LED芯片发出的光经过匀光聚束反光器后的等照度面划分成多个面积相等的网格,将被照路面也划分成同样多个面积相等的网格;根据光分布及照明要求确定LED芯片发出的光线经过匀光聚束反光器后的最大出光角,建立被照面的网格与路面网格之间的对应关系,并根据光束整形扩束器材料的折射率计算LED芯片的光需要偏转的角度,根据光分布情况以及最大出光角计算光束整形扩束器的在第一方向的曲线,再在与第一方向垂直的第二方向上进行柱面延伸,得到入射面及出射面的曲面形状。
一个优选的方案是,建立被照面的网格与通过匀光聚束反光器后光等照度面的网格关系的步骤中,以被照面上任一等照度面网格的光通量与被照面网格的光通量相等为条件。
进一步的方案是,通过计算入射面及出射面的步骤中,在第一方向上,以最大出光角出射的光线入射至光束整形扩束器后从出射面出射到路面网格的边缘为第一方向的边界为条件,在第二方向,以最大出光角出射的光线入射至光束整形扩束器后从出射面出射到路面第二方向网格的边缘为第二方向的边界为条件。
再进一步的方案是,入射面的中部构成向光束整形扩束器的本体凹陷的柱面,出射面具有向光出射方向凸起的弧面,柱面的中线面与弧面的中线面重叠。
有益效果
根据本发明的方法设计的LED灯具配光模块中,匀光聚束反光器能将LED芯片发出的光线收敛在一个较小的出光角内,并且,设计过程中通过匀光聚束反光器控制光线出射的最大出光角,这样LED芯片发出的光线聚集在LED芯片的正前方射出,再通过光束整形扩束器的折射形成矩形的光斑,从而符合被照面的要求,防止眩光的产生和减少光的浪费。
此外,根据本发明设计的LED灯具配光模块,能确保LED芯片发出的光线均匀的射向路面,从而确保被照路面受光均匀,避免在路面上形成间隔的光亮区域与暗淡区域,有利于驾驶员以及行人看清楚路面情况。
附图说明
图1是现有一种LED灯具配光透镜的结构示意图。
图2是根据本发明实施例所设计的LED灯具配光模块的匀光聚束反光器与光束整形扩束器的结构图。
图3是根据本发明实施例所设计的LED灯具配光模块的光束整形扩束器的剖视图。
图4是根据本发明实施例所设计的LED灯具配光模块的光路图。
图5是本发明实施例中将经过匀光聚束反光器光线的等照度面划分网格的示意图。
图6是本发明实施例中将被照路面划分网格的示意图。
以下结合附图及实施例对本发明作进一步说明。
本发明的实施方式
根据本发明设计的LED灯具配光模块位于LED灯具的灯柱上端,且密封在灯罩内,通常LED灯具配光模块与被照路面之间的垂直距离有5-12米。
LED灯具配光模块具有一块基板,基板上封装有多颗LED芯片,每一颗LED芯片都朝下设置。在基板上封装有LED芯片位置设置有匀光聚束反光器,在匀光聚束反光器的下方还设有光束整形扩束器,匀光聚束反光器与光束整形扩束器的结构如图2所示。
匀光聚束反光器20具有周壁21,周壁21的上端为入光口22,入光口22可固定在基板上,且LED芯片封装在入光口22内。与入光口22相对的一端为出光口23,LED芯片发出的光线经出光口23向外射出。
在匀光聚束反光器20的下方,也就是LED芯片发出光线的照射方向上设有光束整形扩束器30。光束整形扩束器30通过连接结构固定在灯罩内并形成密封,其结构如图3所示。
光束整形扩束器30具有本体31,本体31的上端面为入射面32,也就是入射面32朝向匀光聚束反光器20设置。入射面32的中部设有向本体31内凹陷的非球状柱面33,非球状柱面33贯穿本体31的一对侧壁。由图3与图4可见,非球状柱面33的两个表面分别是斜面34与斜面35,经匀光聚束反光器20周壁21反射的光线可入射至斜面34或斜面35上,并入射至本体31内。
图3所示是光束整形扩束器30在xOz面上的剖视图,光束整形扩束器30是沿xOz面的投影在y轴方向上拉伸而成的柱面体。
非球状柱面33有一个中线面36,其过非球状柱面33的脊线且与入射面32的平面部分垂直,非球状柱面33的两个斜面34、35关于中线面36对称设置。
本体31的下端面为出射面37,出射面37与入射面32相对设置。在出射面37的中部设有向光出射方向凸起的弧面38。中线面39与非球状柱面33的中线面36重叠。从光束整形扩束器30出射的光线经弧面38出射。
LED芯片40位于匀光聚束反光器20的入光口22上,LED芯片40发出的光线经过周壁21的反射后从出光口23出射,并入射至非球状柱面33的两个斜面34、35上,再经过光束整形扩束器30的折射后,从光束整形扩束器30的出射面37射向路面。本实施例中,匀光聚束反光器20的轴线位于非球状柱面33的中线面36上,且LED芯片40也位于非球状柱面33的中线面36上。
LED芯片40发出的光线经过匀光聚束反光器20的反射后,出光角被收敛在一个较小的角度内,被反射的光线能以较小的入射角入射至非球状柱面33的两个斜面34、35上,在入射至光束整形扩束器30的本体31后发生折射。这样,匀光聚束反光器20将射向LED芯片40四周的光线收集并使光线从LED芯片40的前方射出,且从匀光聚束反光器20出射的光线均入射至光束整形扩束器30,减小了发光角,防止眩光产生,减少光能的浪费,也节省电能。
同时,将光束整形扩束器30出射面37的一部分设计成非球面状的弧面38,减少光线从光束整形扩束器30的本体31出射向另一介质(空气)时的入射角,避免了在这一界面发生全反射的现象,也能有效地避免光能的浪费,提高光的利用率。
并且,由于光束整形扩束器30在一个方向上投影是一维是非球面,在另一方向上的投影是直线,如图4所示的,光线经过光束整形扩束器30后,光均匀的分布在被照路面上,形成明显的均匀的“矩形”光斑的效果。
制造LED灯具时,需要制造灯柱、灯罩等,并设计安装在灯罩内的LED灯具配光模块。设计配光模块时,首先根据照明条件与照明环境要求,如路面的照明亮度要求、光斑的长度与宽度要求、LED光源与路面垂直距离的要求等,确定作为光源的LED芯片与匀光聚束反光器的位置,确定LED芯片发出的光线经过匀光聚束反光器后的最大出光角,以此设计匀光聚束反光器。本实施例所设计的匀光聚束反光器,其设计方法可参考公开号为CN101900296A的中国发明专利申请。当然,也可以使用其他的设计方法设计反光器件。
由于LED芯片发出的光在与LED芯片距离相等的球面上是照度相等的,因此LED芯片的等照度面接近于一个半球面。通过匀光聚束反光器的反射后,等照度面为一个收敛后的曲面。
设计配光模块时,将光线通过匀光聚束反光器出光口后的等照度面划分成多个面积相等网格,如图5所示。同时,将被照面也划分成同样多个面积相等的网格,如图6所示,划分网格时可根据路面的均匀度要求确定划分的网格大小及数量,网格越多,照度的均匀度越好。然后,建立等照度面的网格与被照面的网格对应关系。其中,对应网格的光通量相等,当网格在y方向微分到一定程度后,便成了一条线。然后,在y方向对该曲线进行柱面延伸,直到在y方向上的另一边界为止。
根据路面网格与等照度面网格的关系,可以得出从LED芯片发出光束的需要偏移的角度,即根据光束整形扩束器材料的折射率,可以算出光在光束整形扩束器入射面与出射面的曲面形状。
当然,设计入射面与出射面时,还需要考虑经过匀光聚束反光器后以最大出光角出射的光线进入光束整形扩束器后,在发生折射时,也会发生反射,从出射面出射的光,尽量避免光发生的反射照射到了预定路面之外,这样能避免光能量的损耗和产生眩光。
此外,设计入射面以及出射面时,需要以被照路面上任一网格的光通量与等照度面任一网格光通量相等为条件,这通过建立等照度面的光通量与被照路面光通量的积分等式实现。并且,计算入射面及出射面的曲面形状的步骤中,还需要以最大出光角出射的光线入射至光束整形扩束器后从出射面出射的光线照射到被照面的边缘为边界条件,这通过改变入射面与出射面的曲面形状可实现。
当然,上述实施例仅是本发明的优选方案,实际应用时还有其他的变化,例如,使用聚光透镜替代匀光聚束反光器作为收敛的聚光器件,这样,LED芯片需要设置在聚光透镜的光轴上,且光束整形扩束器的非球状柱面的中线面也经过聚光透镜的光轴,这样的改变也能实现本发明的目的。
最后需要强调的是,本发明不限于上述实施方式,如矩形光斑的尺寸的改变、匀光聚束反光器收敛角度的改变、LED光源的类型等设计方法的改变也应该包括在本发明权利要求的保护范围内。
工业实用性
根据本发明的方法设计的LED芯片发出的光线能有效地被控制在一个较小的出光角内,且光线穿过光束整形扩束器并射向需要照亮的路面上,形成矩形光斑,同时光线柔和对人眼舒适,对人眼无害,无光污染,可以以低成本的方式形成矩形光斑。并且,上述的设计方法考虑了被照路面的实际照明情况,通过将匀光聚束反光器出光口处的等照度面划分成网格,并将被照路面划分成网格,通过对应网格的光通量相等来确保在x轴方向上与y轴方向上被照路面上每一网格处光通量相等,避免在路面上形成暗区,有利于驾驶人与行人观察路面情况。

Claims (10)

  1. LED灯具配光模块的设计方法,该LED灯具配光模块包括基板,所述基板上封装有LED芯片、沿所述LED芯片的照射方向上设置的匀光聚束反光器、在匀光聚束反光器出光方向上设置有光束整形扩束器,所述光束整形扩束器具有朝向所述匀光聚束反光器的一面设有入射面以及与所述入射面相对的另一面设有出射面,该方法包括
    根据被照面和环境要求,确定所述LED芯片及所述匀光聚束反光器的位置,并将所述LED芯片发出的光线经过所述匀光聚束反光器后的等照度面划分成多个面积相等的网格,将被照路面也划分成多个面积相等的网格;
    根据被照面的光分布及照明要求确定所述LED芯片发出的光线经过所述匀光聚束反光器后的最大出光角,建立所述被照面网格与所述等照度面网格的对应关系,并根据光束整形扩束器材料的折射率计算光需要偏转的角度,并根据所述光分布情况以及所述最大出光角计算所述光束整形扩束器的所述入射面及所述出射面的曲面形状。
  2. 根据权利要求1所述的LED灯具发配光模块设计方法,其特征在于:
    建立所述被照面与所述等照度面的对应关系的步骤中,以所述被照路面上任一网格的光通量与所述等照度面任一网格光通量相等为条件。
  3. 根据权利要求1所述的LED灯具配光模块的设计方法,其特征在于:
    计算所述入射面及所述出射面的曲面形状的步骤中,以所述最大出光角出射的光线入射至所述光束整形扩束器后从所述出射面出射的光线照射到所述被照面的边缘为边界条件。
  4. 根据 权利要求1至3任一项所述的LED灯具配光模块的设计方法,其特征在于:
    所述入射面的中部构成向所述光束整形扩束器的本体凹陷的柱面。
  5. 根据 权利要求4所述的LED灯具配光模块的设计方法,其特征在于:
    所述柱面为非球状柱面。
  6. 根据 权利要求4或5所述的LED灯具配光模块的设计方法,其特征在于:
    所述出射面具有向光出射方向凸起的弧面,所述弧面的中线面与所述柱面的中线面重叠。
  7. 根据 权利要求6所述的LED灯具配光模块的设计方法,其特征在于:
    所述LED芯片位于所述柱面的中线面上。
  8. 根据 权利要求6所述的LED灯具配光模块的设计方法,其特征在于:
    所述匀光聚束反光器的轴线位于所述柱面的中线面上。
  9. 根据权利要求1至3任一项所述的LED灯具配光模块的设计方法,其特征在于:
    所述匀光聚束反光器具有一朝向所述光束整形扩束器的出光口以及与所述出光口相对的入光口,所述LED芯片设在入光口的中心。
  10. 根据权利要求1至3任一项所述的LED灯具配光模块的设计方法,其特征在于:
    所述等照度面上的网格数量与所述被照路面上的网格数量相等。
PCT/CN2012/070248 2011-01-15 2012-01-12 Led灯具配光模块的设计方法 WO2012095006A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011100083833A CN102121678B (zh) 2011-01-15 2011-01-15 Led灯具配光模块的设计方法
CN201110008383.3 2011-01-15

Publications (1)

Publication Number Publication Date
WO2012095006A1 true WO2012095006A1 (zh) 2012-07-19

Family

ID=44250292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070248 WO2012095006A1 (zh) 2011-01-15 2012-01-12 Led灯具配光模块的设计方法

Country Status (2)

Country Link
CN (1) CN102121678B (zh)
WO (1) WO2012095006A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102121678B (zh) * 2011-01-15 2012-12-12 珠海晟源同泰电子有限公司 Led灯具配光模块的设计方法
WO2013192420A1 (en) * 2012-06-20 2013-12-27 Honeywell International Inc. Focusing lens optical modules and led industrial lamps
CN103020386B (zh) * 2012-12-28 2015-05-20 东莞勤上光电股份有限公司 一种新型led光学设计反馈优化方法
CN103343941B (zh) * 2013-07-26 2016-07-06 中节能晶和照明有限公司 一种等亮度照明led路灯透镜及其设计方法
CN104062694B (zh) * 2014-07-16 2016-03-16 常州工学院 一种防眩光照明透镜
WO2018234086A1 (en) * 2017-06-19 2018-12-27 Philips Lighting Holding B.V. LED OUTPUT LENSES AND METHOD OF FORMING AN OUTPUT LENS
CN108826231A (zh) * 2018-07-23 2018-11-16 深圳星标科技股份有限公司 发光二极管透镜及照明装置
CN109474789B (zh) * 2018-10-30 2020-09-08 维沃移动通信(杭州)有限公司 补光灯的视场角调整方法和移动终端

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2823777Y (zh) * 2005-09-21 2006-10-04 光磊科技股份有限公司 发光二极管矿灯的具有扩散片的光源投射结构
US20060268548A1 (en) * 2005-05-25 2006-11-30 Haoli Precision Industrial Co., Ltd. LED lighting device with light converging effect
US20080130309A1 (en) * 2005-04-20 2008-06-05 Dragonfish Technologies, Inc. Method and apparatus for creating optical images
CN101761866A (zh) * 2008-12-25 2010-06-30 创研光电股份有限公司 光学透镜及其发光二极管照明装置
CN201568890U (zh) * 2009-11-12 2010-09-01 上海彩煌光电科技有限公司 自由曲面的led光源的透镜
CN101922676A (zh) * 2009-06-09 2010-12-22 深圳市斯派克光电科技有限公司 Led路灯大角度二次配光透镜及其制造方法
CN101929651A (zh) * 2009-05-25 2010-12-29 Lg伊诺特有限公司 间隙构件、透镜以及具有间隙构件和透镜的照明装置
CN102121678A (zh) * 2011-01-15 2011-07-13 珠海晟源同泰电子有限公司 Led灯具配光模块的设计方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6827475B2 (en) * 2002-09-09 2004-12-07 Steven Robert Vetorino LED light collection and uniform transmission system
JP4294295B2 (ja) * 2002-11-06 2009-07-08 株式会社小糸製作所 車両用前照灯
CN101737710A (zh) * 2008-11-25 2010-06-16 富准精密工业(深圳)有限公司 发光二极管灯具
CN101482652B (zh) * 2009-02-12 2010-09-29 复旦大学 一种针对点光源配光透镜的设计方法
CN201496825U (zh) * 2009-09-04 2010-06-02 黄正 一种led灯具光学模组

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080130309A1 (en) * 2005-04-20 2008-06-05 Dragonfish Technologies, Inc. Method and apparatus for creating optical images
US20060268548A1 (en) * 2005-05-25 2006-11-30 Haoli Precision Industrial Co., Ltd. LED lighting device with light converging effect
CN2823777Y (zh) * 2005-09-21 2006-10-04 光磊科技股份有限公司 发光二极管矿灯的具有扩散片的光源投射结构
CN101761866A (zh) * 2008-12-25 2010-06-30 创研光电股份有限公司 光学透镜及其发光二极管照明装置
CN101929651A (zh) * 2009-05-25 2010-12-29 Lg伊诺特有限公司 间隙构件、透镜以及具有间隙构件和透镜的照明装置
CN101922676A (zh) * 2009-06-09 2010-12-22 深圳市斯派克光电科技有限公司 Led路灯大角度二次配光透镜及其制造方法
CN201568890U (zh) * 2009-11-12 2010-09-01 上海彩煌光电科技有限公司 自由曲面的led光源的透镜
CN102121678A (zh) * 2011-01-15 2011-07-13 珠海晟源同泰电子有限公司 Led灯具配光模块的设计方法

Also Published As

Publication number Publication date
CN102121678B (zh) 2012-12-12
CN102121678A (zh) 2011-07-13

Similar Documents

Publication Publication Date Title
WO2012095006A1 (zh) Led灯具配光模块的设计方法
KR101531390B1 (ko) 비대칭 형상의 렌즈 및 이를 포함하는 가로등
CN101476695B (zh) 路灯用led光源的透镜以及使用该透镜的路灯
CN202469873U (zh) Led双蝙蝠翼光学透镜及led灯
CN101545609B (zh) Led路灯多曲面反射器
CN103471033B (zh) 一种led透镜及其透镜模组
CN201335320Y (zh) 路灯用led光源的透镜以及使用该透镜的路灯
CN201858594U (zh) 一种反光杯及路灯装置
CN212961399U (zh) 透镜模组及路灯
CN105156990B (zh) Led路灯透镜单元、模组及具有该led路灯透镜模组的路灯
CN202993060U (zh) 一种用于机动车远光照明的led透镜
CN211040856U (zh) 一种防眩光led照明装置
CN101858558B (zh) 一种led路灯二次光学透镜
CN206755073U (zh) 一种基于led或vcsel光源生成矩形光斑的tir组合透镜
CN214840598U (zh) 一种光学模组及照明装置
CN204785672U (zh) 一种防眩照明模块
KR101621402B1 (ko) 엘이디 조명용 광학렌즈
CN113606506A (zh) 一种偏光透镜led灯
CN101109493A (zh) 格栅式led路灯反射器
KR101464277B1 (ko) 틸트 구조의 등기구용 복합 굴절 렌즈 및 이를 갖는 가로등 장치
CN109556029B (zh) 一种反光器以及照明装置
CN112747288A (zh) 一种光学模组及照明装置
KR101159184B1 (ko) 가로등 및 그의 도로 조명 방법
CN202392688U (zh) 一种led二次光学透镜
CN101749670B (zh) 一种配光led路灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12734356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/09/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 12734356

Country of ref document: EP

Kind code of ref document: A1