WO2012093467A1 - Organic el display device and method for manufacturing same - Google Patents

Organic el display device and method for manufacturing same Download PDF

Info

Publication number
WO2012093467A1
WO2012093467A1 PCT/JP2011/007323 JP2011007323W WO2012093467A1 WO 2012093467 A1 WO2012093467 A1 WO 2012093467A1 JP 2011007323 W JP2011007323 W JP 2011007323W WO 2012093467 A1 WO2012093467 A1 WO 2012093467A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
protective layer
layer
display device
substrate
Prior art date
Application number
PCT/JP2011/007323
Other languages
French (fr)
Japanese (ja)
Inventor
剛 平瀬
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012093467A1 publication Critical patent/WO2012093467A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations

Definitions

  • the present invention relates to an organic EL display device including an organic electroluminescence element (organic electroluminescence element: hereinafter referred to as “organic EL element”) and a method for manufacturing the same.
  • organic electroluminescence element organic electroluminescence element: hereinafter referred to as “organic EL element”
  • organic EL display devices have attracted attention as next-generation flat panel display devices such as full-color displays.
  • This organic EL display device is a self-luminous display device, has excellent viewing angle characteristics, high visibility, low power consumption, and can be reduced in thickness, so that demand is increasing.
  • the organic EL display device includes a plurality of organic EL elements arranged in a predetermined arrangement, and each of the plurality of organic EL elements includes a first electrode (anode) formed on an insulating substrate, a first electrode An organic layer having a light emitting layer formed on one electrode and a second electrode (cathode) formed on the organic layer are provided.
  • an organic EL display device having a structure for protecting the organic EL element from these acids and alkalis has been proposed. More specifically, for example, an organic EL element in which an organic layer is sandwiched between a pair of opposing electrodes, and a polyparaxylylene or a derivative thereof (hereinafter referred to as parylene) provided on the organic EL element.
  • An organic EL display device including a protective layer formed by the above is disclosed. And by such a structure, since parylene has high solvent resistance and chemical resistance, it describes that an organic EL element can be protected (for example, refer patent document 1).
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide an organic EL display device capable of preventing deterioration of characteristics of an organic EL element due to an acid or an alkali, and a manufacturing method thereof.
  • an organic EL display device of the present invention includes a first substrate, a second substrate provided opposite to the first substrate, a first substrate, a first substrate, An organic EL element provided between the two substrates, a first protective layer formed on the first substrate and covering the surface of the organic EL element, and a second protective layer formed on the first protective layer
  • the first protective layer is made of parylene
  • the second protective layer is made of aluminum oxide.
  • the first protective layer made of parylene is provided so as to cover the organic EL element, and further, the second protective layer made of aluminum oxide is provided on the first protective layer. It is possible to reliably prevent the entry of acid and alkali contained in the outgas from the inside of the organic EL display device and the entry of acid and alkali from the outside of the organic EL display device to the element.
  • the thickness of the second protective layer may be 10 nm to 10 ⁇ m.
  • the acid resistance and alkali resistance of the organic EL element can be reliably ensured without increasing the thickness of the second protective layer.
  • the first protective layer may have a thickness of 500 nm to 5 ⁇ m.
  • a third protective layer made of silicon nitride may be formed on the second protective layer.
  • the third protective layer made of silicon nitride is provided on the second protective layer, it is possible to more reliably prevent acid and alkali from entering the organic EL element.
  • the thickness of the third protective layer may be 500 nm to 10 ⁇ m.
  • the acid resistance and alkali resistance of the organic EL element can be more reliably ensured without increasing the thickness of the third protective layer.
  • the method for producing an organic EL display device of the present invention includes an organic EL element forming step for forming an organic EL element on a substrate, and a first protective layer that is made of parylene and covers the organic EL element on the substrate. It is characterized by comprising at least a protective layer forming step and a second protective layer forming step of forming a second protective layer made of aluminum oxide on the first protective layer.
  • the first protective layer made of parylene is formed so as to cover the organic EL element, and further, the second protective layer made of aluminum oxide is formed on the first protective layer.
  • the first protective layer may be formed by a chemical vapor deposition method in the first protective layer forming step.
  • the second protective layer may be formed by an atomic layer deposition method (ALD method) in the second protective layer forming step.
  • ALD method atomic layer deposition method
  • the organic EL display device manufacturing method of the present invention further includes a third protective layer forming step of forming a third protective layer made of silicon nitride on the second protective layer after the second protective layer forming step. May be.
  • an organic EL display device that can more reliably prevent the entry of acid and alkali into the organic EL element. Can be provided.
  • the third protective layer may be formed by a sputtering method or a chemical vapor deposition method (CVD method).
  • an organic EL display device having a protective layer it is possible to prevent deterioration of the characteristics of the organic EL element due to the entry of acid or alkali.
  • FIG. 1 is a plan view of an organic EL display device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. It is sectional drawing for demonstrating the organic layer which comprises the organic EL element with which the organic EL display apparatus which concerns on the 1st Embodiment of this invention is provided. It is a figure for demonstrating the manufacturing method of the organic electroluminescence display which concerns on the 1st Embodiment of this invention. It is a figure for demonstrating the manufacturing method of the organic electroluminescence display which concerns on the 1st Embodiment of this invention. It is a figure for demonstrating the manufacturing method of the organic electroluminescence display which concerns on the 1st Embodiment of this invention. It is a figure for demonstrating the manufacturing method of the organic electroluminescence display which concerns on the 1st Embodiment of this invention.
  • FIG. 1 is a plan view of an organic EL display device according to the first embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is sectional drawing for demonstrating the organic layer which comprises the organic EL element with which the organic EL display apparatus which concerns on the 1st Embodiment of this invention is provided.
  • the organic EL display device 1 is formed on an element substrate 30 that is a first substrate, a sealing substrate 20 that is a second substrate facing the element substrate 30, and the element substrate 30.
  • an organic EL element 4 provided between the element substrate 30 and the sealing substrate 20 is provided.
  • the element substrate 30 has a display region D in which the organic EL elements 4 are arranged.
  • the organic EL elements 4 are formed in a matrix on the surface of the element substrate 30 facing the sealing substrate 20.
  • the element substrate 30 and the sealing substrate 20 are formed of an insulating material such as glass or plastic, for example.
  • the organic EL element 4 includes a first electrode 6 (anode) provided on the surface of the element substrate 30, an organic layer 7 provided on the surface of the first electrode 6, And a second electrode 8 (cathode) provided on the surface of the organic layer 7.
  • a plurality of first electrodes 6 are formed in a matrix at predetermined intervals on the surface of the element substrate 30, and each of the plurality of first electrodes 6 constitutes each pixel region of the organic EL display device 1. .
  • the first electrode 6 is formed of, for example, Au, Ni, Pt, ITO (indium-tin oxide), or a laminated film of ITO and Ag.
  • the organic layer 7 is formed on the surface of each first electrode 6 partitioned in a matrix. As shown in FIG. 3, the organic layer 7 is formed on the hole injection layer 9, the hole transport layer 10 formed on the surface of the hole injection layer 9, and the surface of the hole transport layer 10. , A light emitting layer 11 that emits one of red light, green light, and blue light, an electron transport layer 12 formed on the surface of the light emitting layer 11, and an electron injection layer formed on the surface of the electron transport layer 12 13.
  • the organic layer 7 is configured by sequentially stacking the hole injection layer 9, the hole transport layer 10, the light emitting layer 11, the electron transport layer 12, and the electron injection layer 13.
  • the hole injection layer 9 is for increasing the efficiency of hole injection into the light emitting layer 11.
  • Examples of the material for forming the hole injection layer 9 include benzine, styrylamine, triphenylamine, porphyrin, triazole, imidazole, oxadiazole, polyarylalkane, phenylenediamine, arylamine, oxazole, anthracene, fluorenone, Examples include hydrazone, stilbene, triphenylene, azatriphenylene, or derivatives thereof, or heterocyclic conjugated monomers, oligomers, or polymers such as polysilane compounds, vinylcarbazole compounds, thiophene compounds, or aniline compounds. .
  • the hole transport layer 10 is for increasing the efficiency of hole injection into the light emitting layer 11, as with the hole injection layer 9 described above.
  • the thing similar to the hole injection layer 9 can be used.
  • the light emitting layer 11 is a region in which holes and electrons are injected from each of the two electrodes when a voltage is applied by the first electrode 6 and the second electrode 8, and the holes and electrons are recombined.
  • the light emitting layer 11 is formed of a material having high luminous efficiency, and is formed of, for example, an organic material such as a low molecular fluorescent dye, a fluorescent polymer, or a metal complex.
  • tris (8-quinolinolato) aluminum complex, bis (benzoquinolinolato) beryllium complex, tri (dibenzoylmethyl) phenanthroline europium complex ditoluyl vinyl biphenyl are mentioned.
  • the electron transport layer 12 is for transporting electrons injected from the second electrode 8 to the light emitting layer 11.
  • Examples of the material forming the electron transport layer 12 include quinoline, perylene, phenanthroline, bisstyryl, pyrazine, triazole, oxazole, oxadiazole, fluorenone, and derivatives or metal complexes thereof.
  • examples include tris (8-hydroxyquinoline) aluminum, anthracene, naphthalene, phenanthrene, pyrene, anthracene, perylene, butadiene, coumarin, acridine, stilbene, 1,10-phenanthroline, or derivatives or metal complexes thereof. It is done.
  • the electron injection layer 13 is for transporting electrons injected from the second electrode 8 to the light emitting layer 11, similarly to the electron transport layer 12 described above, and the material for forming the electron injection layer 13 is described above.
  • the same material as the electron transport layer 12 can be used.
  • the second electrode 8 has a function of injecting electrons into the organic layer 7.
  • the second electrode 8 is made of, for example, a magnesium alloy (such as MgAg), an aluminum alloy (such as AlLi, AlCa, or AlMg), metallic calcium, or a metal having a small work function.
  • the organic EL display device 1 is provided with a protective layer 18 for protecting the organic EL element 4 from acid and alkali on the surface of the organic EL element 4.
  • the protective layer 18 includes a first protective layer 15 provided so as to cover the organic EL element 4 and a second protective layer 16 provided on the surface of the first protective layer 15.
  • the first protective layer 15 is made of parylene. As described above, this parylene has high solvent resistance and chemical resistance, and among organic materials, the gas permeability is particularly low. Therefore, the first protective layer 15 formed of parylene is used as the organic EL element. 4 so as to cover the organic EL element 4, deterioration of the organic layer 7 due to the entry of acid or alkali into the organic EL element 4 can be suppressed.
  • the first protective layer 15 can be formed by a chemical vapor deposition method (CVD method).
  • CVD method chemical vapor deposition method
  • a substrate serving as a reference for vapor deposition is disposed inside the vapor deposition unit, and the raw material vaporization unit is a raw material.
  • a gas dimer obtained by sublimating a solid dimer of diparaxylylene can be formed by thermally decomposing in a thermal decomposition part to generate diradical paraxylylene and adsorbing it to a substrate.
  • the second protective layer 16 is made of aluminum oxide (Al 2 O 3 ).
  • an organic EL display for the organic EL element 4 is provided by providing the second protective layer 16 formed of aluminum oxide on the surface of the first protective layer formed of parylene. The entry of acid or alkali contained in the outgas from the inside of the apparatus 1 or the entry of acid or alkali from the outside can be prevented.
  • the first protective layer 15 formed by the method described above is provided so as to cover the organic EL element 4, and the second protective layer 16 formed of aluminum oxide is further provided on the surface of the first protective layer 15. It is possible to reliably prevent acid and alkali from entering the element 4.
  • the second protective layer 16 can be formed by an atomic layer deposition method (ALD method).
  • ALD method for example, first, a reaction vessel in which a target substrate is placed is placed in a reduced pressure state (0.1 Torr or less), and the substrate is heated to a predetermined temperature (50 to 500 ° C.).
  • Si raw material gas which is a metal raw material gas for film formation
  • Si raw material gas is supplied to the reaction vessel, and while supplying an inert gas (nitrogen gas, etc.) to the reaction vessel, the Si raw material gas is exhausted to become an inert gas.
  • the ozone gas and water vapor, which are oxidant raw material gases, are simultaneously supplied to the reaction vessel.
  • the water vapor may be supplied to the reaction vessel after the ozone gas is supplied. Next, while supplying an inert gas (nitrogen gas or the like) to the reaction vessel, the ozone gas and water vapor are exhausted and replaced with the inert gas. A series of steps is taken as one cycle to form a one-atom layer metal oxide thin film, which is repeated a plurality of cycles to form a multi-atom layer metal oxide thin film.
  • an inert gas nitrogen gas or the like
  • pinholes and cracks may be formed in the second protective layer 16, but when the second protective layer 16 is formed by the atomic layer deposition method, Such pinholes are not formed.
  • the thickness of the first protective layer 15 is preferably 500 nm to 5 ⁇ m. Further, from the viewpoint of ensuring the acid resistance and alkali resistance of the organic EL element 4 without increasing the thickness of the second protective layer 16, the thickness of the second protective layer 16 is 10 nm to 10 ⁇ m. preferable.
  • the thickness of the protective layer 18 is preferably 5 ⁇ m to 25 ⁇ m.
  • an adhesive layer 17 is provided on the surface of the second protective layer 16, and faces the element substrate 30 via the adhesive layer 17.
  • the sealing substrate 20 is bonded.
  • the adhesive layer 17 functions as a resin sealing film.
  • 4 to 10 are views for explaining a method of manufacturing the organic EL display device according to the first embodiment of the present invention.
  • an ITO film is patterned by a sputtering method on an element substrate 30 such as a glass substrate having a substrate size of 300 ⁇ 400 mm and a thickness of 0.7 mm, and the first electrode 6 is formed.
  • the film thickness of the first electrode 6 is, for example, about 150 nm.
  • the organic layer 7 including the light emitting layer 11 and the second electrode 8 are formed on the first electrode 6 by vapor deposition using a metal mask.
  • the element substrate 30 provided with the first electrode 6 is placed in the chamber of the vapor deposition apparatus.
  • the inside of the chamber of the vapor deposition apparatus is maintained at a vacuum degree of 1 ⁇ 10 ⁇ 5 to 1 ⁇ 10 ⁇ 4 (Pa) by a vacuum pump.
  • the element substrate 30 provided with the first electrode 6 is installed in a state where two sides are fixed by a pair of substrate receivers attached in the chamber.
  • the vapor deposition materials of the hole injection layer 9, the hole transport layer 10, the light emitting layer 11, the electron transport layer 12, and the electron injection layer 13 are sequentially evaporated from the vapor deposition source, so that the hole injection layer 9, the hole
  • the organic layer 7 is formed on the first electrode 6 in the pixel region as shown in FIG. 5.
  • Element 4 is formed.
  • a crucible charged with each evaporation material can be used as the evaporation source.
  • the crucible is installed in the lower part of the chamber, and the crucible is equipped with a heater, and the crucible is heated by the heater.
  • the various vapor deposition materials charged in the crucible become evaporated molecules and jump out upward in the chamber.
  • m-MTDATA common to all RGB pixels
  • a hole injection layer 9 made of 4,4,4-tris (3-methylphenylphenylamino) triphenylamine) is formed with a film thickness of, for example, 25 nm through a mask.
  • a hole transport layer 10 made of ⁇ -NPD (4,4-bis (N-1-naphthyl-N-phenylamino) biphenyl) is common to all pixels of RGB.
  • the film is formed with a film thickness of 30 nm through the mask.
  • red light emitting layer 11 30 weight of 2,6-bis ((4'-methoxydiphenylamino) styryl) -1,5-dicyanonaphthalene (BSN) is added to di (2-naphthyl) anthracene (ADN).
  • BSN 2,6-bis ((4'-methoxydiphenylamino) styryl) -1,5-dicyanonaphthalene
  • ADN di (2-naphthyl) anthracene
  • a mixture of 5% by weight of coumarin 6 in ADN is formed on the hole transport layer 10 formed in the pixel region through a mask with a film thickness of, for example, 30 nm. .
  • the blue light-emitting layer 11 is prepared by mixing ADN with 2.5% by weight of 4,4′-bis (2- ⁇ 4- (N, N-diphenylamino) phenyl ⁇ vinyl) biphenyl (DPAVBi).
  • DPAVBi 4,4′-bis (2- ⁇ 4- (N, N-diphenylamino) phenyl ⁇ vinyl) biphenyl
  • a film having a thickness of 30 nm is formed on the hole transport layer 10 formed in the pixel region through the mask.
  • 8-hydroxyquinoline aluminum (Alq3) is formed as an electron transport layer 12 in a thickness of, for example, 20 nm through a mask in common to all the RGB pixels.
  • lithium fluoride (LiF) is formed as an electron injection layer 13 on the electron transport layer 12 with a film thickness of, for example, 0.3 nm through a mask.
  • a cathode made of magnesium silver (MgAg) is formed as the second electrode 8 with a film thickness of 10 nm, for example.
  • the first protective layer 15 is formed with a thickness of, for example, 1 ⁇ m on the element substrate 30 so as to cover the organic EL element 4 by the above-described chemical vapor deposition method.
  • the vaporization temperature when sublimating the solid dimer of diparaxylylene as a raw material is preferably 40 ° C. to 240 ° C.
  • the vaporization can be performed under a reduced pressure of 1 Torr (133 Pa) or less.
  • the thermal decomposition temperature of the vaporized dimer is preferably 600 ° C. to 680 ° C., and the thermal decomposition can usually be performed under a reduced pressure of 0.5 Torr (67 Pa) or less.
  • the generated diradical paraxylylene adsorbs on the film surface of the substrate and polymerizes with each other to form a high molecular weight polyparaxylylene film.
  • the polymerization reaction temperature is such that the release agent applied to the substrate From the viewpoint of preventing transpiration and decomposition and preventing deformation and damage of the thin film formed on the substrate, it is preferably performed at room temperature, for example, 20 ° C. to 35 ° C. is preferable.
  • the polymerization can usually be carried out under a reduced pressure of 0.1 Torr (13 Pa) or less.
  • Excess diradical paraxylylene can be recovered at a temperature of usually about -70 ° C. by providing a cooling cylinder in the downstream.
  • the second protective layer 16 is formed with a thickness of, for example, 100 nm on the surface of the first protective layer 15 by the atomic layer deposition method (ALD method) described above.
  • this atomic layer deposition method uses water (water vapor), but the first protective layer that covers the organic EL element 4 between the organic EL element 4 and the second protective layer 16 is used. 15 is formed, it is considered that there is no influence on the organic EL element 4 even when the second protective layer 16 is formed by the atomic phase deposition method.
  • an adhesive layer 17 made of, for example, an epoxy resin is formed on the second protective layer 16.
  • an adhesive agent which comprises the contact bonding layer 17 does not specifically limit as an adhesive agent which comprises the contact bonding layer 17.
  • various resin adhesives such as a butyral resin and an acrylic resin other than an epoxy resin, are used, for example. be able to.
  • a differential pressure in a vacuum atmosphere under predetermined conditions (for example, a pressure of 100 Pa or less, a dew point temperature of ⁇ 30 ° C. or less, preferably a dew point temperature of ⁇ 70 ° C. or less).
  • a pressure of 100 Pa or less for example, a pressure of 100 Pa or less, a dew point temperature of ⁇ 30 ° C. or less, preferably a dew point temperature of ⁇ 70 ° C. or less.
  • the ultraviolet ray to be irradiated is preferably 0.5 to 10 J, and more preferably 1 to 6 J.
  • heat treatment 70 ° C. or higher and 120 ° C. or lower, 10 minutes or longer and 2 hours or shorter is performed in the air in order to accelerate the curing of the resin.
  • the organic EL display device 1 shown in FIGS. 1 and 2 is manufactured.
  • the first protective layer 15 made of parylene and covering the surface of the organic EL element 4 is formed on the element substrate 30.
  • the second protective layer 16 made of aluminum oxide is formed on the first protective layer 15. Accordingly, it is possible to reliably prevent the entry of acid or alkali contained in the outgas from the inside of the organic EL display device 1 and the entry of acid or alkali from the outside of the organic EL display device 1 to the organic EL element 4. .
  • the thickness of the second protective layer 16 is set to 10 nm to 10 ⁇ m. Therefore, the acid resistance and alkali resistance of the organic EL element 4 can be reliably ensured without increasing the thickness of the second protective layer 16.
  • the thickness of the first protective layer 15 is set to 500 nm to 5 ⁇ m. Therefore, it becomes possible to ensure the moisture resistance of the organic EL element 4.
  • the second protective layer 16 is formed by an atomic layer deposition method (ALD method). Therefore, the second protective layer 16 can be formed without forming pinholes or cracks.
  • ALD method atomic layer deposition method
  • FIG. 11 is a cross-sectional view of an organic EL display device according to the second embodiment of the present invention.
  • the planar structure of the organic EL display device and the configuration of the organic layer constituting the organic EL element are the same as those in the first embodiment described above, and thus detailed description thereof is omitted here.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the organic EL display device 40 of the present embodiment is characterized in that the protective layer 18 further includes a third protective layer 19 provided on the surface of the second protective layer 16. is there.
  • the protective layer 18 includes a first protective layer 15 provided so as to cover the organic EL element 4, a second protective layer 16 provided on the surface of the first protective layer 15, It is characterized in that it includes a third protective layer 19 provided on the surface of the second protective layer 16.
  • the third protective layer 19 is made of silicon nitride (SiNx). Then, when the second protective layer 16 is formed by providing the third protective layer 19 formed of silicon nitride on the surface of the second protective layer 16 formed of aluminum oxide, the second protective layer 19 is temporarily provided. Even when pinholes due to sparks or dust are formed in the layer 16, it is possible to prevent the entry of acid or alkali, and as a result, the entry of acid or alkali to the organic EL element 4 is further increased. It becomes possible to prevent.
  • the third protective layer 19 can be formed by a sputtering method or a chemical vapor deposition method (CVD method).
  • the thickness of the third protective layer 19 is 500 nm to 10 ⁇ m. It is preferable.
  • the thickness of the protective layer 18 is 2 ⁇ m to 25 ⁇ m from the viewpoint of further ensuring the acid resistance and alkali resistance of the organic EL element 4 without increasing the thickness of the protective layer 18. It is preferable that
  • the organic EL display device 40 of the present embodiment When manufacturing the organic EL display device 40 of the present embodiment, first, the organic EL element forming step, the first protective layer forming step, and the second protective layer forming step described in the first embodiment are performed. Thereafter, the third protective layer 19 is formed with a thickness of, for example, 1 ⁇ m on the surface of the second protective layer 16 by a known method such as sputtering or chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • the organic EL display device 40 shown in FIG. 11 is manufactured by performing the adhesive layer forming step, the bonded body forming step, and the resin curing step described in the first embodiment.
  • the third protective layer 19 made of silicon nitride is formed on the second protective layer 16. Therefore, the entry of acid or alkali to the organic EL element 4 can be more reliably prevented.
  • the thickness of the third protective layer 19 is set to 500 nm to 10 ⁇ m. Therefore, the acid resistance and alkali resistance of the organic EL element 4 can be more reliably ensured without increasing the thickness of the third protective layer 19.
  • the organic layer 7 has a five-layer structure in which the hole injection layer 9, the hole transport layer 10, the light emitting layer 11, the electron transport layer 12, and the electron injection layer 13 are sequentially stacked.
  • a three-layer structure including a hole injection layer / hole transport layer, a light emitting layer, and an electron transport layer / electron injection layer may be used.
  • the laminated structure includes a first electrode 6 that is a cathode from below, an electron injection layer 13, an electron transport layer 12, a light emitting layer 11, a hole transport layer 10, a hole injection layer 9, and a second electrode that is an anode. Electrode 8 is formed. In this case, the materials used for the first electrode 6 and the second electrode 8 are also replaced.
  • the organic EL display device 1 of the present invention employs either a bottom emission structure that emits light from the element substrate 30 side or a top emission structure that emits light from the side opposite to the element substrate 30 side. can do.
  • thermosetting resin material is thermoset in a temperature range of 60 ° C. to 120 ° C.
  • the present invention is suitable for an organic EL display device including an organic EL element and a manufacturing method thereof.

Abstract

An organic EL display device (1) comprises: an element substrate (30); a sealing substrate (20) provided facing the element substrate (30); an organic EL element (4) formed on the element substrate (30) and provided between the element substrate (30) and the sealing substrate (20); a first protective layer (15) for covering the surface of the organic EL element (4), the first protective layer being formed on the element substrate (30); and a second protective layer (16) formed on the first protective layer (15). The first protective layer (15) is composed of parylene, and the second protective layer (16) is composed of aluminum oxide.

Description

有機EL表示装置およびその製造方法Organic EL display device and manufacturing method thereof
 本発明は、有機電界発光素子(有機エレクトロルミネッセンス素子:以下、「有機EL素子」と記載する)を備えた有機EL表示装置およびその製造方法に関する。 The present invention relates to an organic EL display device including an organic electroluminescence element (organic electroluminescence element: hereinafter referred to as “organic EL element”) and a method for manufacturing the same.
 近年、フルカラーディスプレイ等の次世代フラットパネル表示装置として有機EL表示装置が注目されている。この有機EL表示装置は、自己発光型の表示装置であり、視野角特性に優れ、視認性が高く、低消費電力であり、かつ薄型化が可能であるため、需要が高まってきている。 In recent years, organic EL display devices have attracted attention as next-generation flat panel display devices such as full-color displays. This organic EL display device is a self-luminous display device, has excellent viewing angle characteristics, high visibility, low power consumption, and can be reduced in thickness, so that demand is increasing.
 この有機EL表示装置は、所定の配列で配列された複数の有機EL素子を有し、複数の有機EL素子の各々は、絶縁性の基板上に形成された第1電極(陽極)と、第1電極上に形成された発光層を有する有機層と、有機層上に形成された第2電極(陰極)とを備えている。 The organic EL display device includes a plurality of organic EL elements arranged in a predetermined arrangement, and each of the plurality of organic EL elements includes a first electrode (anode) formed on an insulating substrate, a first electrode An organic layer having a light emitting layer formed on one electrode and a second electrode (cathode) formed on the organic layer are provided.
 ここで、有機EL素子は、一般に、一定期間駆動すると、発光輝度や発光の均一性等の発光特性が初期の場合に比し著しく低下してしまう。このような発光特性の劣化の原因としては、有機EL表示装置の内部からのアウトガスに含まれる酸やアルカリ、及び外部から進入する酸やアルカリに起因する有機EL表示素子の劣化が挙げられる。 Here, in general, when an organic EL element is driven for a certain period, light emission characteristics such as light emission luminance and light emission uniformity are significantly reduced as compared with the initial case. As a cause of such deterioration of the light emitting characteristics, there are acid and alkali contained in the outgas from the inside of the organic EL display device, and deterioration of the organic EL display element due to the acid and alkali entering from the outside.
 そこで、これらの酸やアルカリから有機EL素子を保護するための構造を備えた有機EL表示装置が提案されている。より具体的には、例えば、対向する一対の電極間に有機層が狭持された有機EL素子と、有機EL素子上に設けられ、ポリパラキシリレン又はその誘導体(以下、パリレンと称する。)により形成された保護層とを備えた有機EL表示装置が開示されている。そして、このような構成により、パリレンは、高い耐溶剤性、及び耐化学性を有するため、有機EL素子を保護することができると記載されている(例えば、特許文献1参照)。 Therefore, an organic EL display device having a structure for protecting the organic EL element from these acids and alkalis has been proposed. More specifically, for example, an organic EL element in which an organic layer is sandwiched between a pair of opposing electrodes, and a polyparaxylylene or a derivative thereof (hereinafter referred to as parylene) provided on the organic EL element. An organic EL display device including a protective layer formed by the above is disclosed. And by such a structure, since parylene has high solvent resistance and chemical resistance, it describes that an organic EL element can be protected (for example, refer patent document 1).
特開2006-12785号公報JP 2006-12785 A
 しかし、上記特許文献1に記載の有機EL表示素子では、有機EL表示装置の幅方向からの酸やアルカリの進入による有機EL素子の劣化を防止することはできるものの、パリレンは、ポリマー分子の成長において、有機EL表示装置の厚み方向に成長するため、有機EL表示装置の厚み方向からの酸やアルカリを完全には防止することができない。従って、酸やアルカリによる有機EL表示素子の劣化を十分に防止することができないという問題があった。 However, in the organic EL display element described in Patent Document 1, although the deterioration of the organic EL element due to the entry of acid or alkali from the width direction of the organic EL display device can be prevented, parylene grows polymer molecules. However, since it grows in the thickness direction of the organic EL display device, acid and alkali from the thickness direction of the organic EL display device cannot be completely prevented. Therefore, there has been a problem that deterioration of the organic EL display element due to acid or alkali cannot be sufficiently prevented.
 そこで、本発明は、上述の問題に鑑みてなされたものであり、酸やアルカリに起因する有機EL素子の特性劣化を防止することができる有機EL表示装置およびその製造方法を提供することを目的とする。 Therefore, the present invention has been made in view of the above-described problems, and an object thereof is to provide an organic EL display device capable of preventing deterioration of characteristics of an organic EL element due to an acid or an alkali, and a manufacturing method thereof. And
 上記目的を達成するために、本発明の有機EL表示装置は、第1基板と、第1基板に対向して設けられた第2基板と、第1基板上に形成され、第1基板と第2基板との間に設けられた有機EL素子と、第1基板上に形成され、有機EL素子の表面を覆う第1保護層と、第1保護層上に形成された第2保護層とを備え、第1保護層は、パリレンからなり、第2保護層は、酸化アルミニウムからなることを特徴とする。 In order to achieve the above object, an organic EL display device of the present invention includes a first substrate, a second substrate provided opposite to the first substrate, a first substrate, a first substrate, An organic EL element provided between the two substrates, a first protective layer formed on the first substrate and covering the surface of the organic EL element, and a second protective layer formed on the first protective layer And the first protective layer is made of parylene, and the second protective layer is made of aluminum oxide.
 同構成によれば、パリレンからなる第1保護層が有機EL素子を覆うように設けられ、更に、第1保護層上に、酸化アルミニウムからなる第2保護層が設けられているため、有機EL素子に対する、有機EL表示装置の内部からのアウトガスに含まれる酸やアルカリの進入、及び有機EL表示装置の外部からの酸やアルカリの進入を確実に防止することができる。 According to this configuration, the first protective layer made of parylene is provided so as to cover the organic EL element, and further, the second protective layer made of aluminum oxide is provided on the first protective layer. It is possible to reliably prevent the entry of acid and alkali contained in the outgas from the inside of the organic EL display device and the entry of acid and alkali from the outside of the organic EL display device to the element.
 本発明の有機EL表示装置においては、第2保護層の厚みが、10nm~10μmであってもよい。 In the organic EL display device of the present invention, the thickness of the second protective layer may be 10 nm to 10 μm.
 同構成によれば、第2保護層の厚みを大きくすることなく、有機EL素子の耐酸性及び耐アルカリ性を確実に確保することができる。 According to this configuration, the acid resistance and alkali resistance of the organic EL element can be reliably ensured without increasing the thickness of the second protective layer.
 本発明の有機EL表示装置においては、第1保護層の厚みが、500nm~5μmであってもよい。 In the organic EL display device of the present invention, the first protective layer may have a thickness of 500 nm to 5 μm.
 同構成によれば、有機EL素子の防湿性を確保することが可能になる。 According to this configuration, it becomes possible to ensure the moisture resistance of the organic EL element.
 本発明の有機EL表示装置においては、第2保護層上に、窒化シリコンからなる第3保護層が形成されていてもよい。 In the organic EL display device of the present invention, a third protective layer made of silicon nitride may be formed on the second protective layer.
 同構成によれば、第2保護層上に、窒化シリコンからなる第3保護層が設けられているため、有機EL素子に対する酸やアルカリの進入を、より一層確実に防止することができる。 According to this configuration, since the third protective layer made of silicon nitride is provided on the second protective layer, it is possible to more reliably prevent acid and alkali from entering the organic EL element.
 本発明の有機EL表示装置においては、第3保護層の厚みが、500nm~10μmであってもよい。 In the organic EL display device of the present invention, the thickness of the third protective layer may be 500 nm to 10 μm.
 同構成によれば、第3保護層の厚みを大きくすることなく、有機EL素子の耐酸性及び耐アルカリ性をより一層確実に確保することができる。 According to this configuration, the acid resistance and alkali resistance of the organic EL element can be more reliably ensured without increasing the thickness of the third protective layer.
 本発明の有機EL表示装置の製造方法は、基板上に有機EL素子を形成する有機EL素子形成工程と、基板上に、パリレンからなり、有機EL素子を覆う第1保護層を形成する第1保護層形成工程と、第1保護層上に、酸化アルミニウムからなる第2保護層を形成する第2保護層形成工程とを少なくとも備えることを特徴とする。 The method for producing an organic EL display device of the present invention includes an organic EL element forming step for forming an organic EL element on a substrate, and a first protective layer that is made of parylene and covers the organic EL element on the substrate. It is characterized by comprising at least a protective layer forming step and a second protective layer forming step of forming a second protective layer made of aluminum oxide on the first protective layer.
 同構成によれば、パリレンからなる第1保護層を有機EL素子を覆うように形成し、更に、第1保護層上に、酸化アルミニウムからなる第2保護層を形成するため、有機EL素子に対する、有機EL表示装置の内部からのアウトガスに含まれる酸やアルカリの進入、及び有機EL表示装置の外部からの酸やアルカリの進入を確実に防止することができる有機EL表示装置を提供することができる。 According to this configuration, the first protective layer made of parylene is formed so as to cover the organic EL element, and further, the second protective layer made of aluminum oxide is formed on the first protective layer. To provide an organic EL display device capable of reliably preventing the entry of acid or alkali contained in the outgas from the inside of the organic EL display device and the entry of acid or alkali from the outside of the organic EL display device. it can.
 本発明の有機EL表示装置の製造方法においては、第1保護層形成工程において、第1保護層を、化学気相蒸着法により形成してもよい。 In the method for manufacturing an organic EL display device of the present invention, the first protective layer may be formed by a chemical vapor deposition method in the first protective layer forming step.
 本発明の有機EL表示装置の製造方法においては、第2保護層形成工程において、第2保護層を、原子層堆積法(ALD法)により形成してもよい。 In the method for manufacturing an organic EL display device of the present invention, the second protective layer may be formed by an atomic layer deposition method (ALD method) in the second protective layer forming step.
 本発明の有機EL表示装置の製造方法においては、第2保護層形成工程の後、第2保護層上に、窒化シリコンからなる第3保護層を形成する第3保護層形成工程を更に備えていてもよい。 The organic EL display device manufacturing method of the present invention further includes a third protective layer forming step of forming a third protective layer made of silicon nitride on the second protective layer after the second protective layer forming step. May be.
 同構成によれば、第2保護層上に、窒化シリコンからなる第3保護層を形成するため、有機EL素子に対する酸やアルカリの進入をより一層確実に防止することができる有機EL表示装置を提供することができる。 According to this configuration, since the third protective layer made of silicon nitride is formed on the second protective layer, an organic EL display device that can more reliably prevent the entry of acid and alkali into the organic EL element. Can be provided.
 本発明の有機EL表示装置の製造方法においては、第3保護層形成工程において、第3保護層を、スパッタリング法、または化学気相成長法(CVD法)により形成してもよい。 In the method for manufacturing an organic EL display device of the present invention, in the third protective layer forming step, the third protective layer may be formed by a sputtering method or a chemical vapor deposition method (CVD method).
 本発明によれば、保護層を備える有機EL表示装置において、酸やアルカリの進入に起因する有機EL素子の特性劣化を防止することが可能になる。 According to the present invention, in an organic EL display device having a protective layer, it is possible to prevent deterioration of the characteristics of the organic EL element due to the entry of acid or alkali.
本発明の第1の実施形態に係る有機EL表示装置の平面図である。1 is a plan view of an organic EL display device according to a first embodiment of the present invention. 図1のA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 本発明の第1の実施形態に係る有機EL表示装置が備える有機EL素子を構成する有機層を説明するための断面図である。It is sectional drawing for demonstrating the organic layer which comprises the organic EL element with which the organic EL display apparatus which concerns on the 1st Embodiment of this invention is provided. 本発明の第1の実施形態に係る有機EL表示装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the organic electroluminescence display which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る有機EL表示装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the organic electroluminescence display which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る有機EL表示装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the organic electroluminescence display which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る有機EL表示装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the organic electroluminescence display which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る有機EL表示装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the organic electroluminescence display which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る有機EL表示装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the organic electroluminescence display which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る有機EL表示装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the organic electroluminescence display which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る有機EL表示装置の断面図である。It is sectional drawing of the organic electroluminescence display which concerns on the 2nd Embodiment of this invention.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、本発明は、以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following embodiment.
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係る有機EL表示装置の平面図であり、図2は、図1のA-A断面図である。また、図3は、本発明の第1の実施形態に係る有機EL表示装置が備える有機EL素子を構成する有機層を説明するための断面図である。
(First embodiment)
FIG. 1 is a plan view of an organic EL display device according to the first embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line AA in FIG. Moreover, FIG. 3 is sectional drawing for demonstrating the organic layer which comprises the organic EL element with which the organic EL display apparatus which concerns on the 1st Embodiment of this invention is provided.
 図1、図2に示す様に、有機EL表示装置1は、第1基板である素子基板30と、素子基板30に対向する第2基板である封止基板20と、素子基板30上に形成されるとともに、素子基板30及び封止基板20の間に設けられた有機EL素子4とを備えている。 As shown in FIGS. 1 and 2, the organic EL display device 1 is formed on an element substrate 30 that is a first substrate, a sealing substrate 20 that is a second substrate facing the element substrate 30, and the element substrate 30. In addition, an organic EL element 4 provided between the element substrate 30 and the sealing substrate 20 is provided.
 また、図1、図2に示すように、素子基板30は、有機EL素子4が配列された表示領域Dを有する。この表示領域Dには、封止基板20と対向する素子基板30側の面において、有機EL素子4がマトリックス状に配置されて形成されている。 Further, as shown in FIGS. 1 and 2, the element substrate 30 has a display region D in which the organic EL elements 4 are arranged. In the display area D, the organic EL elements 4 are formed in a matrix on the surface of the element substrate 30 facing the sealing substrate 20.
 素子基板30及び封止基板20は、例えば、ガラス、またはプラスチック等の絶縁性材料により形成されている。 The element substrate 30 and the sealing substrate 20 are formed of an insulating material such as glass or plastic, for example.
 また、図2に示すように、有機EL素子4は、素子基板30の表面上に設けられた第1電極6(陽極)と、第1電極6の表面上に設けられた有機層7と、有機層7の表面上に設けられた第2電極8(陰極)とを備えている。 As shown in FIG. 2, the organic EL element 4 includes a first electrode 6 (anode) provided on the surface of the element substrate 30, an organic layer 7 provided on the surface of the first electrode 6, And a second electrode 8 (cathode) provided on the surface of the organic layer 7.
 第1電極6は、素子基板30の表面上に所定の間隔でマトリクス状に複数形成されており、複数の第1電極6の各々が、有機EL表示装置1の各画素領域を構成している。なお、第1電極6は、例えば、Au、Ni、Pt、ITO(インジウム-スズ酸化物)、またはITOとAgの積層膜等により形成されている。 A plurality of first electrodes 6 are formed in a matrix at predetermined intervals on the surface of the element substrate 30, and each of the plurality of first electrodes 6 constitutes each pixel region of the organic EL display device 1. . The first electrode 6 is formed of, for example, Au, Ni, Pt, ITO (indium-tin oxide), or a laminated film of ITO and Ag.
 有機層7は、マトリクス状に区画された各第1電極6の表面上に形成されている。この有機層7は、図3に示すように、正孔注入層9と、正孔注入層9の表面上に形成された正孔輸送層10と、正孔輸送層10の表面上に形成され、赤色光、緑色光、および青色光のいずれかを発する発光層11と、発光層11の表面上に形成された電子輸送層12と、電子輸送層12の表面上に形成された電子注入層13とを備えている。 The organic layer 7 is formed on the surface of each first electrode 6 partitioned in a matrix. As shown in FIG. 3, the organic layer 7 is formed on the hole injection layer 9, the hole transport layer 10 formed on the surface of the hole injection layer 9, and the surface of the hole transport layer 10. , A light emitting layer 11 that emits one of red light, green light, and blue light, an electron transport layer 12 formed on the surface of the light emitting layer 11, and an electron injection layer formed on the surface of the electron transport layer 12 13.
 そして、これらの正孔注入層9、正孔輸送層10、発光層11、電子輸送層12、および電子注入層13が順次積層されることにより、有機層7が構成されている。 The organic layer 7 is configured by sequentially stacking the hole injection layer 9, the hole transport layer 10, the light emitting layer 11, the electron transport layer 12, and the electron injection layer 13.
 正孔注入層9は、発光層11への正孔注入効率を高めるためのものである。この正孔注入層9を形成する材料としては、例えば、ベンジン、スチリルアミン、トリフェニルアミン、ポルフィリン、トリアゾール、イミダゾール、オキサジアゾール、ポリアリールアルカン、フェニレンジアミン、アリールアミン、オキザゾール、アントラセン、フルオレノン、ヒドラゾン、スチルベン、トリフェニレン、アザトリフェニレン、あるいはこれらの誘導体、または、ポリシラン系化合物、ビニルカルバゾール系化合物、チオフェン系化合物あるいはアニリン系化合物等の複素環式共役系のモノマー、オリゴマーあるいはポリマーを挙げることができる。 The hole injection layer 9 is for increasing the efficiency of hole injection into the light emitting layer 11. Examples of the material for forming the hole injection layer 9 include benzine, styrylamine, triphenylamine, porphyrin, triazole, imidazole, oxadiazole, polyarylalkane, phenylenediamine, arylamine, oxazole, anthracene, fluorenone, Examples include hydrazone, stilbene, triphenylene, azatriphenylene, or derivatives thereof, or heterocyclic conjugated monomers, oligomers, or polymers such as polysilane compounds, vinylcarbazole compounds, thiophene compounds, or aniline compounds. .
 正孔輸送層10は、上述の正孔注入層9と同様に、発光層11への正孔注入効率を高めるためのものであり、正孔輸送層10を形成する材料としては、上述の正孔注入層9と同様のものが使用できる。 The hole transport layer 10 is for increasing the efficiency of hole injection into the light emitting layer 11, as with the hole injection layer 9 described above. The thing similar to the hole injection layer 9 can be used.
 発光層11は、第1電極6、及び第2電極8による電圧印加の際に、両電極の各々から正孔および電子が注入されるとともに、正孔と電子が再結合する領域である。この発光層11は、発光効率が高い材料により形成され、例えば、低分子蛍光色素、蛍光性の高分子、金属錯体等の有機材料により形成されている。 The light emitting layer 11 is a region in which holes and electrons are injected from each of the two electrodes when a voltage is applied by the first electrode 6 and the second electrode 8, and the holes and electrons are recombined. The light emitting layer 11 is formed of a material having high luminous efficiency, and is formed of, for example, an organic material such as a low molecular fluorescent dye, a fluorescent polymer, or a metal complex.
 より具体的には、例えば、アントラセン、ナフタレン、インデン、フェナントレン、ピレン、ナフタセン、トリフェニレン、アントラセン、ペリレン、ピセン、フルオランテン、アセフェナントリレン、ペンタフェン、ペンタセン、コロネン、ブタジエン、クマリン、アクリジン、スチルベン、あるいはこれらの誘導体、トリス(8-キノリノラト)アルミニウム錯体、ビス(ベンゾキノリノラト)ベリリウム錯体、トリ(ジベンゾイルメチル)フェナントロリンユーロピウム錯体ジトルイルビニルビフェニルが挙げられる。 More specifically, for example, anthracene, naphthalene, indene, phenanthrene, pyrene, naphthacene, triphenylene, anthracene, perylene, picene, fluoranthene, acephenanthrylene, pentaphene, pentacene, coronene, butadiene, coumarin, acridine, stilbene, or These derivatives, tris (8-quinolinolato) aluminum complex, bis (benzoquinolinolato) beryllium complex, tri (dibenzoylmethyl) phenanthroline europium complex ditoluyl vinyl biphenyl are mentioned.
 電子輸送層12は、第2電極8から注入される電子を発光層11に輸送するためのものである。この電子輸送層12を形成する材料としては、例えば、キノリン、ペリレン、フェナントロリン、ビススチリル、ピラジン、トリアゾール、オキサゾール、オキサジアゾール、フルオレノン、またはこれらの誘導体や金属錯体が挙げられる。 The electron transport layer 12 is for transporting electrons injected from the second electrode 8 to the light emitting layer 11. Examples of the material forming the electron transport layer 12 include quinoline, perylene, phenanthroline, bisstyryl, pyrazine, triazole, oxazole, oxadiazole, fluorenone, and derivatives or metal complexes thereof.
 より具体的には、トリス(8-ヒドロキシキノリン)アルミニウム、アントラセン、ナフタレン、フェナントレン、ピレン、アントラセン、ペリレン、ブタジエン、クマリン、アクリジン、スチルベン、1,10-フェナントロリン、またはこれらの誘導体や金属錯体が挙げられる。 More specifically, examples include tris (8-hydroxyquinoline) aluminum, anthracene, naphthalene, phenanthrene, pyrene, anthracene, perylene, butadiene, coumarin, acridine, stilbene, 1,10-phenanthroline, or derivatives or metal complexes thereof. It is done.
 電子注入層13は、上述の電子輸送層12と同様に、第2電極8から注入される電子を発光層11に輸送するためのものであり、電子注入層13を形成する材料としては、上述の電子輸送層12と同様のものが使用できる。 The electron injection layer 13 is for transporting electrons injected from the second electrode 8 to the light emitting layer 11, similarly to the electron transport layer 12 described above, and the material for forming the electron injection layer 13 is described above. The same material as the electron transport layer 12 can be used.
 第2電極8は、有機層7に電子を注入する機能を有するものである。この第2電極8は、例えば、マグネシウム合金(MgAg等)、アルミニウム合金(AlLi、AlCa、AlMg等)、金属カルシウム、または仕事関数の小さい金属等により形成されている。 The second electrode 8 has a function of injecting electrons into the organic layer 7. The second electrode 8 is made of, for example, a magnesium alloy (such as MgAg), an aluminum alloy (such as AlLi, AlCa, or AlMg), metallic calcium, or a metal having a small work function.
 また、有機EL表示装置1は、図2に示すように、有機EL素子4の表面上に、有機EL素子4を酸やアルカリから保護するための保護層18が設けられている。 Further, as shown in FIG. 2, the organic EL display device 1 is provided with a protective layer 18 for protecting the organic EL element 4 from acid and alkali on the surface of the organic EL element 4.
 この保護層18は、有機EL素子4を覆うように設けられた第1保護層15と、第1保護層15の表面上に設けられた第2保護層16とにより構成されている。 The protective layer 18 includes a first protective layer 15 provided so as to cover the organic EL element 4 and a second protective layer 16 provided on the surface of the first protective layer 15.
 この第1保護層15は、パリレンにより形成されている。このパリレンは、上述のごとく、高い耐溶剤性、及び耐化学性を有するとともに、有機材料の中では、特に、ガス透過率が低いため、パリレンにより形成された第1保護層15を有機EL素子4を覆うように設けることにより、有機EL素子4に対する酸やアルカリの進入に起因する有機層7の劣化を抑制することができる。 The first protective layer 15 is made of parylene. As described above, this parylene has high solvent resistance and chemical resistance, and among organic materials, the gas permeability is particularly low. Therefore, the first protective layer 15 formed of parylene is used as the organic EL element. 4 so as to cover the organic EL element 4, deterioration of the organic layer 7 due to the entry of acid or alkali into the organic EL element 4 can be suppressed.
 また、第1保護層15は、化学気相蒸着法(CVD法)により形成することができる。この方法は、例えば、原料気化部、熱分解部、及び蒸着部をこの順に備えた蒸着装置において、蒸着の対照となる基板を蒸着部の内部に配設し、原料気化部において、原料であるジパラキシリレン類の固体ダイマーを昇華することにより得られた気体ダイマーを、熱分解部において熱分解することによりジラジカルパラキシリレンを生成させ、それを基材へ吸着させることで形成することができる。 Further, the first protective layer 15 can be formed by a chemical vapor deposition method (CVD method). In this method, for example, in a vapor deposition apparatus including a raw material vaporization unit, a thermal decomposition unit, and a vapor deposition unit in this order, a substrate serving as a reference for vapor deposition is disposed inside the vapor deposition unit, and the raw material vaporization unit is a raw material. A gas dimer obtained by sublimating a solid dimer of diparaxylylene can be formed by thermally decomposing in a thermal decomposition part to generate diradical paraxylylene and adsorbing it to a substrate.
 また、本実施形態においては、第2保護層16は、酸化アルミニウム(Al)により形成されている。 In the present embodiment, the second protective layer 16 is made of aluminum oxide (Al 2 O 3 ).
 この酸化アルミニウムは、透湿性が低いため、酸化アルミニウムにより形成された第2保護層16を、パリレンにより形成された第1保護層の表面上に設けることにより、有機EL素子4に対する、有機EL表示装置1の内部からのアウトガスに含まれる酸やアルカリの進入や、外部からの酸やアルカリの進入を防止することができる。 Since this aluminum oxide has low moisture permeability, an organic EL display for the organic EL element 4 is provided by providing the second protective layer 16 formed of aluminum oxide on the surface of the first protective layer formed of parylene. The entry of acid or alkali contained in the outgas from the inside of the apparatus 1 or the entry of acid or alkali from the outside can be prevented.
 即ち、上述のごとく、有機EL素子上に、パリレンにより形成された保護層を設けるだけでは、酸やアルカリによる有機EL素子の劣化を十分に防止することができないが、本実施形態のごとく、パリレンにより形成された第1保護層15を有機EL素子4を覆うように設け、更に、第1保護層15の表面上に、酸化アルミニウムにより形成された第2保護層16を設けることにより、有機EL素子4に対する酸やアルカリの進入を確実に防止することができる。 That is, as described above, it is not possible to sufficiently prevent the deterioration of the organic EL element due to acid or alkali simply by providing a protective layer formed of parylene on the organic EL element. The first protective layer 15 formed by the method described above is provided so as to cover the organic EL element 4, and the second protective layer 16 formed of aluminum oxide is further provided on the surface of the first protective layer 15. It is possible to reliably prevent acid and alkali from entering the element 4.
 また、第2保護層16は、原子層堆積法(ALD法)により形成することができる。この方法は、例えば、まず、対象となる基板を内部に入れた反応容器を、減圧状態(0.1Torr以下)とし、基板を所定温度(50~500℃)に昇温する。 The second protective layer 16 can be formed by an atomic layer deposition method (ALD method). In this method, for example, first, a reaction vessel in which a target substrate is placed is placed in a reduced pressure state (0.1 Torr or less), and the substrate is heated to a predetermined temperature (50 to 500 ° C.).
 次いで、この反応容器に、膜形成用の金属原料ガスであるSi原料ガスを供給し、反応容器へ不活性ガス(窒素ガス等)を供給しつつ、Si原料ガスを排気して不活性ガスに置き換え、反応容器へ酸化剤原料ガスであるオゾンガスと水蒸気を同時に供給する。 Next, Si raw material gas, which is a metal raw material gas for film formation, is supplied to the reaction vessel, and while supplying an inert gas (nitrogen gas, etc.) to the reaction vessel, the Si raw material gas is exhausted to become an inert gas. The ozone gas and water vapor, which are oxidant raw material gases, are simultaneously supplied to the reaction vessel.
 なお、水蒸気は、オゾンガスの供給後に反応容器へ供給してもよい。次いで、反応容器へ不活性ガス(窒素ガス等)を供給しつつ、オゾンガス及び水蒸気を排気して不活性ガスに置き換える。この一連の工程を1サイクルとして1原子層の金属酸化物薄膜を形成し、これを複数サイクル繰り返して多原子層の金属酸化物薄膜を形成する。 Note that the water vapor may be supplied to the reaction vessel after the ozone gas is supplied. Next, while supplying an inert gas (nitrogen gas or the like) to the reaction vessel, the ozone gas and water vapor are exhausted and replaced with the inert gas. A series of steps is taken as one cycle to form a one-atom layer metal oxide thin film, which is repeated a plurality of cycles to form a multi-atom layer metal oxide thin film.
 また、スパッタ法により第2保護層16を形成した場合、第2保護層16にピンホールやクラックが形成される場合があるが、原子層堆積法により第2保護層16を形成した場合は、このようなピンホール等が形成されることはない。 Further, when the second protective layer 16 is formed by the sputtering method, pinholes and cracks may be formed in the second protective layer 16, but when the second protective layer 16 is formed by the atomic layer deposition method, Such pinholes are not formed.
 また、防湿性を確保するとの観点から、第1保護層15の厚みは、500nm~5μmであることが好ましい。また、第2保護層16の厚みを大きくすることなく、有機EL素子4の耐酸性及び耐アルカリ性を確実に確保するとの観点から、第2保護層16の厚みは、10nm~10μmであることが好ましい。 In addition, from the viewpoint of ensuring moisture resistance, the thickness of the first protective layer 15 is preferably 500 nm to 5 μm. Further, from the viewpoint of ensuring the acid resistance and alkali resistance of the organic EL element 4 without increasing the thickness of the second protective layer 16, the thickness of the second protective layer 16 is 10 nm to 10 μm. preferable.
 また、保護層18の厚みを大きくすることなく、有機EL素子4の耐酸性及び耐アルカリ性を確実に確保するとの観点から、保護層18の厚みは、5μm~25μmであることが好ましい。 Further, from the viewpoint of ensuring the acid resistance and alkali resistance of the organic EL element 4 without increasing the thickness of the protective layer 18, the thickness of the protective layer 18 is preferably 5 μm to 25 μm.
 また、有機EL表示装置1においては、図2に示すように、第2保護層16の表面上に、接着層17が設けられており、当該接着層17を介して、素子基板30に対向する封止基板20が貼り合わされる構成となっている。なお、本実施形態においては、この接着層17が、樹脂封止膜として機能する。 In the organic EL display device 1, as shown in FIG. 2, an adhesive layer 17 is provided on the surface of the second protective layer 16, and faces the element substrate 30 via the adhesive layer 17. The sealing substrate 20 is bonded. In the present embodiment, the adhesive layer 17 functions as a resin sealing film.
 次に、本実施形態の有機EL表示装置の製造方法の一例について説明する。図4~図10は、本発明の第1の実施形態に係る有機EL表示装置の製造方法を説明するための図である。 Next, an example of a method for manufacturing the organic EL display device of this embodiment will be described. 4 to 10 are views for explaining a method of manufacturing the organic EL display device according to the first embodiment of the present invention.
 <有機EL素子形成工程>
 まず、図4に示すように、基板サイズが300×400mmで、厚さが0.7mmのガラス基板等の素子基板30上に、スパッタ法によりITO膜をパターン形成して、第1電極6を形成する。この際、第1電極6の膜厚は、例えば、150nm程度に形成する。
<Organic EL element formation process>
First, as shown in FIG. 4, an ITO film is patterned by a sputtering method on an element substrate 30 such as a glass substrate having a substrate size of 300 × 400 mm and a thickness of 0.7 mm, and the first electrode 6 is formed. Form. At this time, the film thickness of the first electrode 6 is, for example, about 150 nm.
 次に、第1電極6上に、発光層11を含む有機層7、及び第2電極8を金属製のマスクを使用して、蒸着法により形成する。 Next, the organic layer 7 including the light emitting layer 11 and the second electrode 8 are formed on the first electrode 6 by vapor deposition using a metal mask.
 より具体的には、まず、第1電極6を備えた素子基板30を蒸着装置のチャンバー内に設置する。なお、蒸着装置のチャンバー内は、真空ポンプにより、1×10-5~1×10-4(Pa)の真空度に保たれている。また、第1電極6を備えた素子基板30は、チャンバー内に取り付けられた一対の基板受けによって2辺を固定した状態で設置する。 More specifically, first, the element substrate 30 provided with the first electrode 6 is placed in the chamber of the vapor deposition apparatus. Note that the inside of the chamber of the vapor deposition apparatus is maintained at a vacuum degree of 1 × 10 −5 to 1 × 10 −4 (Pa) by a vacuum pump. The element substrate 30 provided with the first electrode 6 is installed in a state where two sides are fixed by a pair of substrate receivers attached in the chamber.
 そして、蒸着源から、正孔注入層9、正孔輸送層10、発光層11、電子輸送層12、および電子注入層13の各蒸着材料を順次蒸発させて、正孔注入層9、正孔輸送層10、発光層11、電子輸送層12、および電子注入層13を積層することにより、図5に示すように、画素領域であって第1電極6上にに有機層7を形成する。 Then, the vapor deposition materials of the hole injection layer 9, the hole transport layer 10, the light emitting layer 11, the electron transport layer 12, and the electron injection layer 13 are sequentially evaporated from the vapor deposition source, so that the hole injection layer 9, the hole By stacking the transport layer 10, the light emitting layer 11, the electron transport layer 12, and the electron injection layer 13, the organic layer 7 is formed on the first electrode 6 in the pixel region as shown in FIG. 5.
 そして、図6に示すように、有機層7上に、第2電極8を形成することにより、素子基板30上に、第1電極6、有機層7、及び第2電極8を備えた有機EL素子4を形成する。 Then, as shown in FIG. 6, an organic EL including the first electrode 6, the organic layer 7, and the second electrode 8 on the element substrate 30 by forming the second electrode 8 on the organic layer 7. Element 4 is formed.
 なお、蒸発源としては、例えば、各蒸発材料が仕込まれた坩堝を使用することができる。坩堝は、チャンバー内の下部に設置されるとともに、坩堝にはヒーターが備え付けられており、このヒーターにより、坩堝は加熱される。 As the evaporation source, for example, a crucible charged with each evaporation material can be used. The crucible is installed in the lower part of the chamber, and the crucible is equipped with a heater, and the crucible is heated by the heater.
 そして、ヒーターによる加熱により、坩堝の内部温度が各種蒸着材料の蒸発温度に到達することで、坩堝内に仕込まれた各種蒸着材料が蒸発分子となってチャンバー内の上方向へ飛び出す。 Then, when the internal temperature of the crucible reaches the evaporation temperature of the various vapor deposition materials by heating with the heater, the various vapor deposition materials charged in the crucible become evaporated molecules and jump out upward in the chamber.
 また、有機層7、及び第2電極8の形成方法の具体例としては、まず、素子基板30上にパターニングされた第1電極6上に、RGB全ての画素に共通して、m-MTDATA(4,4,4-tris(3-methylphenylphenylamino)triphenylamine)からなる正孔注入層9を、マスクを介して、例えば、25nmの膜厚で形成する。 As a specific example of the method for forming the organic layer 7 and the second electrode 8, first, m-MTDATA (common to all RGB pixels) is formed on the first electrode 6 patterned on the element substrate 30. A hole injection layer 9 made of 4,4,4-tris (3-methylphenylphenylamino) triphenylamine) is formed with a film thickness of, for example, 25 nm through a mask.
 次いで、正孔注入層9上に、RGB全ての画素に共通して、α-NPD(4,4-bis(N-1-naphthyl-N-phenylamino)biphenyl)からなる正孔輸送層10を、マスクを介して、例えば、30nmの膜厚で形成する。 Next, on the hole injection layer 9, a hole transport layer 10 made of α-NPD (4,4-bis (N-1-naphthyl-N-phenylamino) biphenyl) is common to all pixels of RGB. For example, the film is formed with a film thickness of 30 nm through the mask.
 次に、赤色の発光層11として、ジ(2-ナフチル)アントラセン(ADN)に2,6-ビス((4’-メトキシジフェニルアミノ)スチリル)-1,5-ジシアノナフタレン(BSN)を30重量%混合したものを、マスクを介して、画素領域に形成された正孔輸送層10上に、例えば、30nmの膜厚で形成する。 Next, as red light emitting layer 11, 30 weight of 2,6-bis ((4'-methoxydiphenylamino) styryl) -1,5-dicyanonaphthalene (BSN) is added to di (2-naphthyl) anthracene (ADN). % Mixed material is formed with a film thickness of, for example, 30 nm on the hole transport layer 10 formed in the pixel region through a mask.
 次いで、緑色の発光層11として、ADNにクマリン6を5重量%混合したものを、マスクを介して、画素領域に形成された正孔輸送層10上に、例えば、30nmの膜厚で形成する。 Next, as the green light-emitting layer 11, a mixture of 5% by weight of coumarin 6 in ADN is formed on the hole transport layer 10 formed in the pixel region through a mask with a film thickness of, for example, 30 nm. .
 次に、青色の発光層11として、ADNに4,4’-ビス(2-{4-(N,N-ジフェニルアミノ)フェニル}ビニル)ビフェニル(DPAVBi)を2.5重量%混合したものを、マスクを介して、画素領域に形成された正孔輸送層10上に、例えば、30nmの膜厚で形成する。 Next, the blue light-emitting layer 11 is prepared by mixing ADN with 2.5% by weight of 4,4′-bis (2- {4- (N, N-diphenylamino) phenyl} vinyl) biphenyl (DPAVBi). For example, a film having a thickness of 30 nm is formed on the hole transport layer 10 formed in the pixel region through the mask.
 次いで、各発光層11上に、RGB全ての画素に共通して、8-ヒドロキシキノリンアルミニウム(Alq3)を電子輸送層12として、マスクを介して、例えば、20nmの膜厚で形成する。 Next, on each light-emitting layer 11, 8-hydroxyquinoline aluminum (Alq3) is formed as an electron transport layer 12 in a thickness of, for example, 20 nm through a mask in common to all the RGB pixels.
 次いで、電子輸送層12上に、フッ化リチウム(LiF)を電子注入層13として、マスクを介して、例えば、0.3nmの膜厚で形成する。そして、第2電極8として、マグネシウム銀(MgAg)からなる陰極を、例えば、10nmの膜厚で形成する。 Next, lithium fluoride (LiF) is formed as an electron injection layer 13 on the electron transport layer 12 with a film thickness of, for example, 0.3 nm through a mask. Then, a cathode made of magnesium silver (MgAg) is formed as the second electrode 8 with a film thickness of 10 nm, for example.
 <第1保護層形成工程>
 まず、図7に示すように、上述の化学気相蒸着法により、素子基板30上に、有機EL素子4を覆うように第1保護層15を、例えば、1μmの厚みで形成する。
<First protective layer forming step>
First, as shown in FIG. 7, the first protective layer 15 is formed with a thickness of, for example, 1 μm on the element substrate 30 so as to cover the organic EL element 4 by the above-described chemical vapor deposition method.
 なお、原料であるジパラキシリレン類の固体ダイマーを昇華させる際の気化温度としては、40℃~240℃が好ましい。また、気化は、1トール(133Pa)以下の減圧下にて行うことができる。 Note that the vaporization temperature when sublimating the solid dimer of diparaxylylene as a raw material is preferably 40 ° C. to 240 ° C. The vaporization can be performed under a reduced pressure of 1 Torr (133 Pa) or less.
 また、気化ダイマーの熱分解温度としては、600℃~680℃が好ましく、熱分解は通常、0.5トール(67Pa)以下の減圧下にて行うことができる。 Further, the thermal decomposition temperature of the vaporized dimer is preferably 600 ° C. to 680 ° C., and the thermal decomposition can usually be performed under a reduced pressure of 0.5 Torr (67 Pa) or less.
 また、生成したジラジカルパラキシリレンは、基板の膜表面に吸着するとともに相互に重合し、高分子量のポリパラキシリレン膜を形成するが、重合反応温度としては、基板に塗布された剥離剤の蒸散や分解を防ぎ、かつ基板に形成された薄膜の変形やダメージを防止するとの観点から、常温で行うことが好ましく、例えば、20℃~35℃が好ましい。重合は通常、0.1トール(13Pa)以下の減圧下にて行うことができる。 In addition, the generated diradical paraxylylene adsorbs on the film surface of the substrate and polymerizes with each other to form a high molecular weight polyparaxylylene film. The polymerization reaction temperature is such that the release agent applied to the substrate From the viewpoint of preventing transpiration and decomposition and preventing deformation and damage of the thin film formed on the substrate, it is preferably performed at room temperature, for example, 20 ° C. to 35 ° C. is preferable. The polymerization can usually be carried out under a reduced pressure of 0.1 Torr (13 Pa) or less.
 なお、余剰のジラジカルパラキシリレンは、後流に冷却筒を設け、通常-70℃程度の温度にて回収することができる。 Excess diradical paraxylylene can be recovered at a temperature of usually about -70 ° C. by providing a cooling cylinder in the downstream.
 <第2保護層形成工程>
 次いで、図8に示すように、上述の原子層堆積法(ALD法)により、第1保護層15の表面上に第2保護層16を、例えば、100nmの厚みで形成する。
<Second protective layer forming step>
Next, as shown in FIG. 8, the second protective layer 16 is formed with a thickness of, for example, 100 nm on the surface of the first protective layer 15 by the atomic layer deposition method (ALD method) described above.
 なお、この原子層堆積法は、上述のごとく、水(水蒸気)を使用する方法ではあるが、有機EL素子4と第2保護層16との間に、有機EL素子4を覆う第1保護層15が形成されているため、原子相堆積法により、第2保護層16を形成した場合であっても、有機EL素子4への影響はないものと考えられる。 As described above, this atomic layer deposition method uses water (water vapor), but the first protective layer that covers the organic EL element 4 between the organic EL element 4 and the second protective layer 16 is used. 15 is formed, it is considered that there is no influence on the organic EL element 4 even when the second protective layer 16 is formed by the atomic phase deposition method.
 <接着層形成工程>
 次に、図9に示すように、第2保護層16上に、例えば、エポキシ樹脂からなる接着層17を形成する。
<Adhesive layer forming step>
Next, as shown in FIG. 9, an adhesive layer 17 made of, for example, an epoxy resin is formed on the second protective layer 16.
 なお、接着層17を構成する接着剤としては、特に限定されず、かかる接着剤としては、例えば、エポキシ樹脂の他に、ブチラール樹脂、アクリル樹脂等の、各種の樹脂系の接着剤を使用することができる。 In addition, it does not specifically limit as an adhesive agent which comprises the contact bonding layer 17, As this adhesive agent, various resin adhesives, such as a butyral resin and an acrylic resin other than an epoxy resin, are used, for example. be able to.
 <貼合体形成工程>
 次いで、真空雰囲気で、封止基板20と、有機EL素子4が形成された素子基板30とを、接着層17を介して重ね合わせて、図10に示すように、素子基板30上に封止基板20を載置させる。
<Bonding body formation process>
Next, in a vacuum atmosphere, the sealing substrate 20 and the element substrate 30 on which the organic EL element 4 is formed are overlapped via the adhesive layer 17 and sealed on the element substrate 30 as shown in FIG. The substrate 20 is placed.
 次いで、真空雰囲気で、所定の条件下(例えば、100Pa以下の圧力、-30℃以下の露点温度、好ましくは、-70℃以下の露点温度)において、大気圧までパージを行って差圧で加圧処理を行うことにより、接着層17を介して、素子基板30と封止基板20とを貼り合わせ、素子基板30と封止基板20とが貼り合わされた貼合体を形成する。 Subsequently, purging to atmospheric pressure and applying a differential pressure in a vacuum atmosphere under predetermined conditions (for example, a pressure of 100 Pa or less, a dew point temperature of −30 ° C. or less, preferably a dew point temperature of −70 ° C. or less). By performing the pressure treatment, the element substrate 30 and the sealing substrate 20 are bonded to each other through the adhesive layer 17 to form a bonded body in which the element substrate 30 and the sealing substrate 20 are bonded.
 なお、素子基板30と封止基板20を貼り合わせる際に、接着層17を形成する樹脂材料が均一に拡散するように加圧処理を行う。 Note that when the element substrate 30 and the sealing substrate 20 are bonded together, a pressure treatment is performed so that the resin material forming the adhesive layer 17 is uniformly diffused.
 <樹脂硬化工程>
 次いで、図10に示すように、封止基板20側から紫外線(図10における矢印)を照射して、均一に拡散した樹脂材料を硬化させる。
<Resin curing process>
Next, as shown in FIG. 10, ultraviolet rays (arrows in FIG. 10) are irradiated from the sealing substrate 20 side to cure the uniformly diffused resin material.
 なお、照射する紫外線は、0.5~10Jが好ましく、1~6Jがより好ましい。また、紫外線照射後、樹脂の硬化を促進させるために、大気中にて加熱処理(70℃以上120℃以下、10分以上2時間以下)を行う。 The ultraviolet ray to be irradiated is preferably 0.5 to 10 J, and more preferably 1 to 6 J. In addition, after ultraviolet irradiation, heat treatment (70 ° C. or higher and 120 ° C. or lower, 10 minutes or longer and 2 hours or shorter) is performed in the air in order to accelerate the curing of the resin.
 以上のようにして、図1、図2に示す有機EL表示装置1が作製される。 As described above, the organic EL display device 1 shown in FIGS. 1 and 2 is manufactured.
 以上に説明した本実施形態においては、以下の効果を得ることができる。 In the present embodiment described above, the following effects can be obtained.
 (1)本実施形態においては、パリレンからなり、有機EL素子4の表面を覆う第1保護層15を素子基板30上に形成する構成としている。また、酸化アルミニウムからなる第2保護層16を第1保護層15上に形成する構成としている。従って、有機EL素子4に対する、有機EL表示装置1の内部からのアウトガスに含まれる酸やアルカリの進入、及び有機EL表示装置1の外部からの酸やアルカリの進入を確実に防止することができる。 (1) In the present embodiment, the first protective layer 15 made of parylene and covering the surface of the organic EL element 4 is formed on the element substrate 30. The second protective layer 16 made of aluminum oxide is formed on the first protective layer 15. Accordingly, it is possible to reliably prevent the entry of acid or alkali contained in the outgas from the inside of the organic EL display device 1 and the entry of acid or alkali from the outside of the organic EL display device 1 to the organic EL element 4. .
 (2)本実施形態においては、第2保護層16の厚みを、10nm~10μmに設定する構成としている。従って、第2保護層16の厚みを大きくすることなく、有機EL素子4の耐酸性及び耐アルカリ性を確実に確保することができる。 (2) In the present embodiment, the thickness of the second protective layer 16 is set to 10 nm to 10 μm. Therefore, the acid resistance and alkali resistance of the organic EL element 4 can be reliably ensured without increasing the thickness of the second protective layer 16.
 (3)本実施形態においては、第1保護層15の厚みを、500nm~5μmに設定する構成としている。従って、有機EL素子4の防湿性を確保することが可能になる。 (3) In the present embodiment, the thickness of the first protective layer 15 is set to 500 nm to 5 μm. Therefore, it becomes possible to ensure the moisture resistance of the organic EL element 4.
 (4)本実施形態においては、第2保護層16を、原子層堆積法(ALD法)により形成する構成としている。従って、ピンホールやクラックを形成することなく、第2保護層16を形成することができる。 (4) In this embodiment, the second protective layer 16 is formed by an atomic layer deposition method (ALD method). Therefore, the second protective layer 16 can be formed without forming pinholes or cracks.
 (第2の実施形態)
 次に、本発明の第2の実施形態について説明する。図11は、本発明の第2の実施形態に係る有機EL表示装置の断面図である。なお、有機EL表示装置の平面構造、及び有機EL素子を構成する有機層の構成は、上述の第1の実施形態と同様であるため、ここでは詳しい説明を省略する。また、上記第1の実施形態と同様の構成部分については同一の符号を付してその説明を省略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. FIG. 11 is a cross-sectional view of an organic EL display device according to the second embodiment of the present invention. The planar structure of the organic EL display device and the configuration of the organic layer constituting the organic EL element are the same as those in the first embodiment described above, and thus detailed description thereof is omitted here. The same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 図11に示すように、本実施形態の有機EL表示装置40においては、保護層18が、第2保護層16の表面上に設けられた第3保護層19を更に備えている点に特徴がある。 As shown in FIG. 11, the organic EL display device 40 of the present embodiment is characterized in that the protective layer 18 further includes a third protective layer 19 provided on the surface of the second protective layer 16. is there.
 即ち、本実施形態においては、保護層18が、有機EL素子4を覆うように設けられた第1保護層15と、第1保護層15の表面上に設けられた第2保護層16と、第2保護層16の表面上に設けられた第3保護層19とを備えている点に特徴がある。 That is, in the present embodiment, the protective layer 18 includes a first protective layer 15 provided so as to cover the organic EL element 4, a second protective layer 16 provided on the surface of the first protective layer 15, It is characterized in that it includes a third protective layer 19 provided on the surface of the second protective layer 16.
 この第3保護層19は、窒化シリコン(SiNx)により形成されている。そして、窒化シリコンにより形成された第3保護層19を、酸化アルミニウムにより形成された第2保護層16の表面上に設けることにより、第2保護層16を形成する際に、仮に、第2保護層16にスパークやダストに起因するピンホールが形成された場合であっても、酸やアルカリの進入を防止することができるため、結果として、有機EL素子4に対する酸やアルカリの進入をより一層防止することが可能になる。 The third protective layer 19 is made of silicon nitride (SiNx). Then, when the second protective layer 16 is formed by providing the third protective layer 19 formed of silicon nitride on the surface of the second protective layer 16 formed of aluminum oxide, the second protective layer 19 is temporarily provided. Even when pinholes due to sparks or dust are formed in the layer 16, it is possible to prevent the entry of acid or alkali, and as a result, the entry of acid or alkali to the organic EL element 4 is further increased. It becomes possible to prevent.
 なお、第3保護層19は、スパッタリング法、または化学気相成長法(CVD法)により形成することができる。 The third protective layer 19 can be formed by a sputtering method or a chemical vapor deposition method (CVD method).
 また、第3保護層19の厚みを大きくすることなく、有機EL素子4の耐酸性及び耐アルカリ性をより一層確実に確保するとの観点から、第3保護層19の厚みは、500nm~10μmであることが好ましい。 In addition, from the viewpoint of ensuring the acid resistance and alkali resistance of the organic EL element 4 without increasing the thickness of the third protective layer 19, the thickness of the third protective layer 19 is 500 nm to 10 μm. It is preferable.
 また、本実施形態においては、保護層18の厚みを大きくすることなく、有機EL素子4の耐酸性及び耐アルカリ性をより一層確実に確保するとの観点から、保護層18の厚みは、2μm~25μmであることが好ましい。 In the present embodiment, the thickness of the protective layer 18 is 2 μm to 25 μm from the viewpoint of further ensuring the acid resistance and alkali resistance of the organic EL element 4 without increasing the thickness of the protective layer 18. It is preferable that
 本実施形態の有機EL表示装置40を製造する際には、まず、上述の第1の実施形態において説明した有機EL素子形成工程、第1保護層形成工程、及び第2保護層形成工程を行った後、公知のスパッタリング法や化学気相成長法(CVD法)等の方法により、第2保護層16の表面上に第3保護層19を、例えば、1μmの厚みで形成する。 When manufacturing the organic EL display device 40 of the present embodiment, first, the organic EL element forming step, the first protective layer forming step, and the second protective layer forming step described in the first embodiment are performed. Thereafter, the third protective layer 19 is formed with a thickness of, for example, 1 μm on the surface of the second protective layer 16 by a known method such as sputtering or chemical vapor deposition (CVD).
 次いで、上述の第1の実施形態において説明した接着層形成工程、貼合体形成工程、及び、樹脂硬化工程を行うことにより、図11に示す有機EL表示装置40が作製される。 Next, the organic EL display device 40 shown in FIG. 11 is manufactured by performing the adhesive layer forming step, the bonded body forming step, and the resin curing step described in the first embodiment.
 以上に説明した本実施形態においては、上述の(1)~(4)の効果に加えて、以下の効果を得ることができる。 In the present embodiment described above, the following effects can be obtained in addition to the effects (1) to (4) described above.
 (5)本実施形態においては、第2保護層16上に、窒化シリコンからなる第3保護層19を形成する構成としている。従って、有機EL素子4に対する酸やアルカリの進入を、より一層確実に防止することができる。 (5) In the present embodiment, the third protective layer 19 made of silicon nitride is formed on the second protective layer 16. Therefore, the entry of acid or alkali to the organic EL element 4 can be more reliably prevented.
 (6)本実施形態においては、第3保護層19の厚みを、500nm~10μmに設定する構成としている。従って、第3保護層19の厚みを大きくすることなく、有機EL素子4の耐酸性及び耐アルカリ性をより一層確実に確保することができる。 (6) In the present embodiment, the thickness of the third protective layer 19 is set to 500 nm to 10 μm. Therefore, the acid resistance and alkali resistance of the organic EL element 4 can be more reliably ensured without increasing the thickness of the third protective layer 19.
 なお、上記実施形態は以下のように変更しても良い。 Note that the above embodiment may be modified as follows.
 上記実施形態においては、有機層7を、正孔注入層9、正孔輸送層10、発光層11、電子輸送層12、および電子注入層13が順次積層された5層積層構造としたが、当該5層積層構造に限られず、例えば、正孔注入層兼正孔輸送層、発光層、及び電子輸送層兼電子注入層の3層構造であってもよい。 In the above embodiment, the organic layer 7 has a five-layer structure in which the hole injection layer 9, the hole transport layer 10, the light emitting layer 11, the electron transport layer 12, and the electron injection layer 13 are sequentially stacked. For example, a three-layer structure including a hole injection layer / hole transport layer, a light emitting layer, and an electron transport layer / electron injection layer may be used.
 また、積層構造を反転させ、第1電極6を陰極、第2電極8を陽極とすることもできる。この場合、積層構造としては、下方より陰極である第1電極6、電子注入層13、電子輸送層12、発光層11、正孔輸送層10、正孔注入層9、及び陽極である第2電極8となる。また、この場合、第1電極6および第2電極8に用いられる材料も入れ替わることになる。 It is also possible to reverse the laminated structure so that the first electrode 6 is a cathode and the second electrode 8 is an anode. In this case, the laminated structure includes a first electrode 6 that is a cathode from below, an electron injection layer 13, an electron transport layer 12, a light emitting layer 11, a hole transport layer 10, a hole injection layer 9, and a second electrode that is an anode. Electrode 8 is formed. In this case, the materials used for the first electrode 6 and the second electrode 8 are also replaced.
 また、本発明の有機EL表示装置1は、素子基板30側から光を外部放出するボトムエミッション構造、素子基板30側とは反対側から光を外部放出するトップエミッション構造のどちらかの構造を採用することができる。 The organic EL display device 1 of the present invention employs either a bottom emission structure that emits light from the element substrate 30 side or a top emission structure that emits light from the side opposite to the element substrate 30 side. can do.
 また、上記実施形態においては、接着層17を形成する樹脂材料として、紫外線硬化型の樹脂材料を使用したが、熱硬化型の樹脂材料を使用する構成としてもよい。この場合、60℃~120℃の温度範囲で、熱硬化型の樹脂材料を熱硬化させる。 In the above embodiment, an ultraviolet curable resin material is used as the resin material for forming the adhesive layer 17, but a thermosetting resin material may be used. In this case, the thermosetting resin material is thermoset in a temperature range of 60 ° C. to 120 ° C.
 以上説明したように、本発明は、有機EL素子を備えた有機EL表示装置およびその製造方法に適している。 As described above, the present invention is suitable for an organic EL display device including an organic EL element and a manufacturing method thereof.
 1  有機EL表示装置
 4  有機EL素子
 5  シール材
 6  第1電極
 7  有機層
 8  第2電極
 9  正孔注入層
 10  正孔輸送層
 11  発光層
 12  電子輸送層
 13  電子注入層
 15  第1保護層
 16  第2保護層
 17  接着層
 18  保護層
 19  第3保護層
 20  封止基板(第2基板)
 30  素子基板(第1基板)
 40  有機EL表示装置
DESCRIPTION OF SYMBOLS 1 Organic EL display device 4 Organic EL element 5 Sealing material 6 1st electrode 7 Organic layer 8 2nd electrode 9 Hole injection layer 10 Hole transport layer 11 Light emitting layer 12 Electron transport layer 13 Electron injection layer 15 1st protective layer 16 Second protective layer 17 Adhesive layer 18 Protective layer 19 Third protective layer 20 Sealing substrate (second substrate)
30 Element substrate (first substrate)
40 Organic EL display device

Claims (10)

  1.  第1基板と、
     前記第1基板に対向して設けられた第2基板と、
     前記第1基板上に形成され、前記第1基板と前記第2基板との間に設けられた有機EL素子と、
     前記第1基板上に形成され、前記有機EL素子の表面を覆う第1保護層と、
     前記第1保護層上に形成された第2保護層と
     を備え、
     前記第1保護層は、パリレンからなり、前記第2保護層は、酸化アルミニウムからなることを特徴とする有機EL表示装置。
    A first substrate;
    A second substrate provided facing the first substrate;
    An organic EL element formed on the first substrate and provided between the first substrate and the second substrate;
    A first protective layer formed on the first substrate and covering a surface of the organic EL element;
    A second protective layer formed on the first protective layer,
    The organic EL display device, wherein the first protective layer is made of parylene, and the second protective layer is made of aluminum oxide.
  2.  前記第2保護層の厚みが、10nm~10μmであることを特徴とする請求項1に記載の有機EL表示装置。 2. The organic EL display device according to claim 1, wherein the thickness of the second protective layer is 10 nm to 10 μm.
  3.  前記第1保護層の厚みが、500nm~5μmであることを特徴とする請求項1または請求項2に記載の有機EL表示装置。 3. The organic EL display device according to claim 1, wherein the first protective layer has a thickness of 500 nm to 5 μm.
  4.  前記第2保護層上に、窒化シリコンからなる第3保護層が形成されていることを特徴とする請求項1~請求項3のいずれか1項に記載の有機EL表示装置。 The organic EL display device according to any one of claims 1 to 3, wherein a third protective layer made of silicon nitride is formed on the second protective layer.
  5.  前記第3保護層の厚みが、500nm~10μmであることを特徴とする請求項4に記載の有機EL表示装置。 5. The organic EL display device according to claim 4, wherein the thickness of the third protective layer is 500 nm to 10 μm.
  6.  基板上に有機EL素子を形成する有機EL素子形成工程と、
     前記基板上に、パリレンからなり、前記有機EL素子を覆う第1保護層を形成する第1保護層形成工程と、
     前記第1保護層上に、酸化アルミニウムからなる第2保護層を形成する第2保護層形成工程と
     を少なくとも備えることを特徴とする有機EL表示装置の製造方法。
    An organic EL element forming step of forming an organic EL element on the substrate;
    A first protective layer forming step of forming a first protective layer made of parylene on the substrate and covering the organic EL element;
    A method for producing an organic EL display device comprising: a second protective layer forming step of forming a second protective layer made of aluminum oxide on the first protective layer.
  7.  前記第1保護層形成工程において、前記第1保護層は、化学気相蒸着法により形成されることを特徴とする請求項6に記載の有機EL表示装置の製造方法。 The method for manufacturing an organic EL display device according to claim 6, wherein in the first protective layer forming step, the first protective layer is formed by a chemical vapor deposition method.
  8.  前記第2保護層形成工程において、前記第2保護層は、原子層堆積法(ALD法)により形成されることを特徴とする請求項6または請求項7に記載の有機EL表示装置の製造方法。 8. The method of manufacturing an organic EL display device according to claim 6, wherein, in the second protective layer forming step, the second protective layer is formed by an atomic layer deposition method (ALD method). .
  9.  前記第2保護層形成工程の後、前記第2保護層上に、窒化シリコンからなる第3保護層を形成する第3保護層形成工程を更に備えることを特徴とする請求項6~請求項8のいずれか1項に記載の有機EL表示装置の製造方法。 The third protective layer forming step of forming a third protective layer made of silicon nitride on the second protective layer after the second protective layer forming step. The manufacturing method of the organic electroluminescent display apparatus of any one of these.
  10.  前記第3保護層形成工程において、前記第3保護層は、スパッタリング法、または化学気相成長法(CVD法)により形成されることを特徴とする請求項9に記載の有機EL表示装置の製造方法。 10. The organic EL display device according to claim 9, wherein in the third protective layer forming step, the third protective layer is formed by a sputtering method or a chemical vapor deposition method (CVD method). Method.
PCT/JP2011/007323 2011-01-06 2011-12-27 Organic el display device and method for manufacturing same WO2012093467A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011001360 2011-01-06
JP2011-001360 2011-01-06

Publications (1)

Publication Number Publication Date
WO2012093467A1 true WO2012093467A1 (en) 2012-07-12

Family

ID=46457335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/007323 WO2012093467A1 (en) 2011-01-06 2011-12-27 Organic el display device and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2012093467A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014056658A (en) * 2012-09-11 2014-03-27 Denso Corp Organic el display device and method for manufacturing the same
EP3082172A1 (en) * 2015-04-16 2016-10-19 Saint-Gobain Glass France Layered structure for an oled and a method for producing such a structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010052752A1 (en) * 2000-04-25 2001-12-20 Ghosh Amalkumar P. Thin film encapsulation of organic light emitting diode devices
JP2005085705A (en) * 2003-09-10 2005-03-31 Seiko Epson Corp Electric device, its manufacturing method, electronic apparatus
US6926572B2 (en) * 2002-01-25 2005-08-09 Electronics And Telecommunications Research Institute Flat panel display device and method of forming passivation film in the flat panel display device
JP2006013456A (en) * 2004-05-14 2006-01-12 Konarka Technologies Inc Apparatus and method for manufacturing electronic component having at least one active organic layer
JP2006104132A (en) * 2004-10-06 2006-04-20 Toppan Printing Co Ltd Organic metal complex, and luminous material, and luminous element
JP2007053041A (en) * 2005-08-19 2007-03-01 Sony Corp Organic light emitting element
WO2009110965A1 (en) * 2008-02-29 2009-09-11 Eastman Kodak Company Oled device with short reduction layer
JP2010030295A (en) * 2008-07-04 2010-02-12 Fujifilm Corp Barrier laminated body, gas barrier film, device, and optical member

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010052752A1 (en) * 2000-04-25 2001-12-20 Ghosh Amalkumar P. Thin film encapsulation of organic light emitting diode devices
US6926572B2 (en) * 2002-01-25 2005-08-09 Electronics And Telecommunications Research Institute Flat panel display device and method of forming passivation film in the flat panel display device
JP2005085705A (en) * 2003-09-10 2005-03-31 Seiko Epson Corp Electric device, its manufacturing method, electronic apparatus
JP2006013456A (en) * 2004-05-14 2006-01-12 Konarka Technologies Inc Apparatus and method for manufacturing electronic component having at least one active organic layer
JP2006104132A (en) * 2004-10-06 2006-04-20 Toppan Printing Co Ltd Organic metal complex, and luminous material, and luminous element
JP2007053041A (en) * 2005-08-19 2007-03-01 Sony Corp Organic light emitting element
WO2009110965A1 (en) * 2008-02-29 2009-09-11 Eastman Kodak Company Oled device with short reduction layer
JP2010030295A (en) * 2008-07-04 2010-02-12 Fujifilm Corp Barrier laminated body, gas barrier film, device, and optical member

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014056658A (en) * 2012-09-11 2014-03-27 Denso Corp Organic el display device and method for manufacturing the same
EP3082172A1 (en) * 2015-04-16 2016-10-19 Saint-Gobain Glass France Layered structure for an oled and a method for producing such a structure
WO2016165921A1 (en) * 2015-04-16 2016-10-20 Saint-Gobain Glass France Layered structure for an oled and a method for producing such a structure
CN107431144A (en) * 2015-04-16 2017-12-01 法国圣戈班玻璃厂 Method for structure as OLED hierarchy and manufacture
US20180114910A1 (en) * 2015-04-16 2018-04-26 Saint-Gobain Glass France Layered structure for an oled and a method for producing such a structure
US10367142B2 (en) 2015-04-16 2019-07-30 Saint-Gobain Glass France Layered structure for an OLED and a method for producing such a structure

Similar Documents

Publication Publication Date Title
US8710492B2 (en) Organic EL display device and method for manufacturing the same
US20120068169A1 (en) Organic el display device and method for manufacturing the same
JP5362689B2 (en) Manufacturing method of organic light emitting device
US20120025182A1 (en) Donor substrate, process for production of transfer film, and process for production of organic electroluminescent element
WO2013171966A1 (en) Organic el display apparatus
JP2005235765A (en) Organic electroluminescence display device, manufacturing method thereof, and film formation device
KR101913437B1 (en) Split electrode for organic devices
JP2013187019A (en) Organic el display device and method for manufacturing the same
JP2013251191A (en) Organic electroluminescent element
WO2012063445A1 (en) Organic el display device and production method for same
US9153794B2 (en) Thin film encapsulation of organic light emitting diodes
TWI673860B (en) Method of manufacturing organic light-emitting display apparatus
KR102120896B1 (en) Organic light emitting device display apparatus by using the facing targets sputtering apparatus and method for manufacturing the organic light emitting device display apparatus
WO2012093467A1 (en) Organic el display device and method for manufacturing same
JP2003217845A (en) Manufacturing method for light emitting device
JPH11242994A (en) Light emitting element and its manufacture
WO2013150713A1 (en) Organic el display device and manufacturing method therefor
US9209401B2 (en) Method for manufacturing organic EL element, organic EL element, organic EL display panel, organic EL display apparatus, and organic EL light-emitting apparatus
KR102077345B1 (en) Oled fabrication using laser transfer
WO2012114685A1 (en) Method for manufacturing organic electroluminescent display device, and organic electroluminescent display device manufactured by method
KR20100124009A (en) How to waterproof from the oled
JP2001203075A (en) Organic electroluminescent element and its manufacturing method
KR102285887B1 (en) Method of manufacturing Organic Light Emitting Device and Organic Light Emitting Display Device
JP2005336219A (en) Resin composition for sealing and organic electroluminescent element using the same
JP2008186778A (en) Lighting system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP