WO2012093463A1 - Nitride semiconductor light emitting device and production method therefor - Google Patents

Nitride semiconductor light emitting device and production method therefor Download PDF

Info

Publication number
WO2012093463A1
WO2012093463A1 PCT/JP2011/007274 JP2011007274W WO2012093463A1 WO 2012093463 A1 WO2012093463 A1 WO 2012093463A1 JP 2011007274 W JP2011007274 W JP 2011007274W WO 2012093463 A1 WO2012093463 A1 WO 2012093463A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
layer
nitride semiconductor
semiconductor light
concentration
Prior art date
Application number
PCT/JP2011/007274
Other languages
French (fr)
Japanese (ja)
Inventor
竜 海原
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN2011800642370A priority Critical patent/CN103299439A/en
Publication of WO2012093463A1 publication Critical patent/WO2012093463A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the present invention relates to a nitride semiconductor light-emitting device such as a nitride-based compound semiconductor light-emitting device in the green, blue and ultraviolet regions, and a method for manufacturing the same.
  • nitride-based compound semiconductor light-emitting devices have been widely used as light-emitting devices in the green, blue, and ultraviolet regions. These characteristics still have room for improvement.
  • the electrostatic withstand voltage is much lower than that of gallium / arsenic semiconductor light emitting devices and indium / phosphorus semiconductor light emitting devices, and a significant improvement in electrostatic withstand voltage is expected.
  • Patent Documents 1 to 4 In order to improve the electrostatic withstand voltage of the conventional nitride semiconductor light emitting device, proposals have been made in the following Patent Documents 1 to 4.
  • FIG. 4 is a longitudinal sectional view of a conventional nitride-based compound semiconductor light-emitting device disclosed in Patent Document 1.
  • a conventional nitride-based compound semiconductor light emitting device 100 includes a well layer made of non-doped In 0.2 Ga 0.8 N having a thickness of 3 nm and a barrier layer made of non-doped GaN having a thickness of 20 nm.
  • a layer made of non-doped In 0.03 Ga 0.97 N with a thickness of 3 nm and a layer made of non-doped GaN with a thickness of 20 nm are formed.
  • a multi-layer (electrostatic withstand voltage improving layer) 103 in which 5 pairs are stacked is formed.
  • the multi-layer (electrostatic withstand voltage improving layer) 103 reduces the resistance in the lateral direction, and the applied voltage during the ESD stress relaxes the current concentration on the light emitting layer 101, so that the current path A extends over a wide range of the light emitting layer 101.
  • the ESD resistance can be improved without spreading or destroying the light emission characteristics.
  • the conventional nitride semiconductor light emitting device disclosed in Patent Document 2 has an active layer made of a nitride semiconductor between a p-side layer and an n-side layer each made of a plurality of nitride semiconductor layers,
  • the p-side layer includes a p-type contact layer as a layer forming an ohmic electrode, and the p-type contact layer is formed by alternately stacking p-type nitride semiconductor layers and n-type nitride semiconductor layers.
  • the electrostatic breakdown voltage electrostatic withstand voltage
  • the current can be reduced.
  • the P electrode and the n electrode are short-circuited by a resistor having a predetermined resistance value, and the P electrode and the n electrode at the time of ESD withstand voltage. It is intended to protect the light emitting layer between the electrodes by short-circuiting the electrodes.
  • a step of forming a well layer made of a nitride semiconductor layer, and 2% or more of nitrogen and the total carrier gas flow rate on the well layer And a step of forming an MQW active layer including a step of forming a barrier layer using a carrier gas containing a proportion of hydrogen.
  • the barrier layer in the MQW active layer is crystal-grown using nitrogen and a carrier gas containing hydrogen at a ratio of 2 percent or more with respect to the total carrier gas flow rate.
  • the ESD withstand voltage can be improved by improving the crystallinity of the light emitting layer, which is the MQW active layer, and preventing the current at the time of the ESD withstand voltage from being concentrated on the portion with poor crystallinity.
  • the electrostatic withstand voltage of the semiconductor light emitting element is not sufficient, and the electrostatic withstand voltage is in a trade-off relationship with the light emission intensity and the driving voltage.
  • the ESD withstand voltage deteriorates because the reverse current varies depending on the substrate defect (through potential) such as the defect density of the substrate and the defect level.
  • Patent Document 3 the P electrode and the n electrode are wired with a resistor having a predetermined resistance value.
  • the resistor It is difficult to stably manufacture the device at a predetermined resistance value, and even if it is a tunnel junction structure, the current flows in the forward direction, so the light emission efficiency is lowered, and only the current in the reverse direction is good at the time of ESD withstand voltage.
  • it is difficult to make a short circuit between the P electrode and the n electrode and there is a manufacturing problem such as disconnection of wiring by connecting a large step between the P electrode and the n electrode with a resistor having a predetermined resistance value.
  • Patent Document 4 when the barrier layer in the MQW active layer is crystal-grown using nitrogen and a carrier gas containing hydrogen at a ratio of 2 percent or more with respect to the total carrier gas flow rate, it is actually ideal. It is difficult to obtain a crystal, and if the amount of hydrogen is increased, there is a possibility that etching will occur and the crystal will not grow by acting in the direction of decreasing the film rather than the film formation.
  • the present invention solves the above-described conventional problems, and an object thereof is to provide a nitride semiconductor light-emitting element capable of improving electrostatic withstand voltage without deteriorating light emission intensity and driving voltage, and a method for manufacturing the same. .
  • the nitride semiconductor light-emitting device of the present invention is a nitride semiconductor light-emitting device in which a light-emitting layer having a multiple quantum well structure is formed on a single crystalline substrate, and the In x Ga 1-x N is formed on the n-electrode side of the light-emitting layer.
  • the first layer of the multi-layer has one conductivity type impurity concentration of 5 ⁇ 10 16 cm ⁇ 3 to 1 ⁇ 10
  • the electrostatic breakdown energy (mJ / cm 2 ) received by the light emitting layer is 20 or more and 40 or less, whereby the above object is achieved.
  • the electrostatic breakdown energy (mJ / cm 2 ) received by the light-emitting layer and the one-type impurities of the multi-layer are measured using the reverse electrical characteristics of the predetermined items in the nitride semiconductor light-emitting device of the present invention as parameters.
  • the concentration of the one conductivity type impurity is set to the minimum value of the electrostatic breakdown energy (mJ / cm 2 ).
  • the reverse electrical characteristic in the nitride semiconductor light emitting device of the present invention is a reverse current value flowing from the n electrode to the single crystal substrate side.
  • the reverse electrical characteristic in the nitride semiconductor light emitting device of the present invention is a capacitance value when a reverse voltage is applied.
  • the electrostatic breakdown energy (mJ / cm 2 ) received by the light emitting layer in the nitride semiconductor light emitting device of the present invention is 20 or more and 35 or less.
  • the reverse electrical characteristic in the nitride semiconductor light emitting device of the present invention is a defect level measured by transient capacitance spectroscopy or isothermal transient capacitance method.
  • one conductivity type impurity in the nitride semiconductor light emitting device of the present invention is added in the range of 1 ⁇ 10 17 cm ⁇ 3 to 1 ⁇ 10 18 cm ⁇ 3 .
  • the one conductivity type impurity in the nitride semiconductor light emitting device of the present invention is n conductivity type impurity Si.
  • the method for manufacturing a nitride semiconductor light emitting device includes a first step of forming a nitride semiconductor light emitting device structure on a single crystal substrate by metal organic chemical vapor deposition, and the nitride semiconductor light emitting device structure.
  • the second step of forming the p-electrode and the n-electrode and the third step of measuring the reverse electric characteristic, and using the reverse electric characteristic in the first step from the next time The electrostatic breakdown energy (mJ / cm 2 ) received by the light emitting layer is applied to at least the first layer of the multiple layer provided on the n-electrode side of the light emitting layer having a multiple quantum well structure formed on the single crystal substrate.
  • the one-conductivity type impurity is added so that the concentration of the one-conductivity type impurity is in the range of 5 ⁇ 10 16 cm ⁇ 3 to 1 ⁇ 10 18 cm ⁇ 3 so as to be 20 or more and 40 or less.
  • the objective is achieved.
  • the electrostatic breakdown energy (mJ / cm 2 ) received by the light emitting layer and one of the multiple layers using the reverse electrical characteristics of a predetermined item as a parameter is obtained in advance, and in the characteristic curve using the reverse direction electric characteristic obtained in the third step as a parameter, at least one conductivity of at least the first layer of the multi-layer.
  • the concentration of the type impurity is controlled to the concentration of the one conductivity type impurity of the multilayer corresponding to the minimum value of the electrostatic breakdown energy (mJ / cm 2 ).
  • the concentration of the one conductivity type impurity in the method for manufacturing a nitride semiconductor light emitting device of the present invention is controlled by controlling the flow rate of SiH 4 gas or SiH (CH 3 ) 3 gas.
  • the reverse electrical characteristic in the method for manufacturing a nitride semiconductor light emitting device of the present invention is a reverse current value flowing from the n electrode to the single crystal substrate side.
  • the reverse electrical characteristic in the method for manufacturing a nitride semiconductor light emitting device of the present invention is a capacitance value when a reverse AC voltage is applied.
  • the reverse electrical characteristic in the method for manufacturing a nitride semiconductor light emitting device of the present invention is a defect level measured by transient capacitance spectroscopy or isothermal transient capacitance method.
  • one conductivity type impurity is present in at least the first layer of the multiple layer provided on the n-electrode side of the light emitting layer of the multiple quantum well structure formed on the single crystal substrate.
  • the concentration is added in the range of 5 ⁇ 10 16 cm ⁇ 3 to 1 ⁇ 10 18 cm ⁇ 3 , and the electrostatic breakdown energy (mJ / cm 2 ) received by the light emitting layer is 20 or more and 40 or less.
  • the concentration of one conductivity type impurity is set to the minimum value of the electric breakdown energy (mJ / cm 2 ).
  • the multi-layered structure in which the first layer made of In x Ga 1-x N (0 ⁇ x ⁇ 0.3) and the second layer made of GaN are alternately stacked on the n-electrode side of the light emitting layer.
  • An impurity is added to at least the first layer so that the impurity concentration is in the range of 5 ⁇ 10 16 cm ⁇ 3 to 1 ⁇ 10 18 cm ⁇ 3 , and the electrostatic breakdown energy (mJ / cm 2) received by the light emitting layer.
  • the impurity concentration of the multilayer is such that the impedance is such that no energy is applied to the light emitting layer when a high-voltage charge that causes electrostatic breakdown is applied to the light emitting layer. Therefore, the electrostatic withstand voltage can be improved without deteriorating the light emission intensity and the driving voltage.
  • the electrostatic breakdown energy received by the light emitting layer by adding impurities to the multilayer so that the impurity concentration is in the range of 5 ⁇ 10 16 cm ⁇ 3 to 1 ⁇ 10 18 cm ⁇ 3.
  • the impedance is such that energy when a high voltage charge causing electrostatic breakdown is applied to the light emitting layer is not applied to the light emitting layer. Since the multi-layer impurity concentration is controlled, the electrostatic withstand voltage can be improved without deteriorating the light emission intensity and the driving voltage.
  • FIG. 1 is a longitudinal cross-sectional view illustrating an exemplary configuration of a main part of a nitride semiconductor light emitting element in Embodiment 1 of the present invention. It is a diagram showing the relationship between the characteristic curve of the electrostatic breakdown energy emission layer receives in FIG 1 (mJ / cm 2) and Si density of multiple layers of FIG. 1 (cm 3). 2 is a flowchart showing each manufacturing process in the method for manufacturing the nitride semiconductor light emitting device 1 of FIG. 1.
  • 1 is a longitudinal sectional view of a conventional nitride-based compound semiconductor light-emitting device disclosed in Patent Document 1.
  • FIG. 1 is a longitudinal sectional view showing an example of a configuration of a main part of a nitride semiconductor light emitting element in Embodiment 1 of the present invention.
  • the nitride semiconductor light emitting device 1 of Embodiment 1 has a film thickness of about 15 nm made of aluminum nitride (AlN) on, for example, a sapphire substrate 2 as a substrate of about 300 ⁇ m thickness with irregularities formed on the surface.
  • a buffer layer 3 is formed, and a non-doped GaN layer 4 having a thickness of about 500 nm made of non-doped GaN is formed thereon.
  • These sapphire substrate 2, buffer layer 3 and non-doped GaN layer 4 constitute a single crystal substrate.
  • the n-type contact layer 5 (about 5 ⁇ m thick) made of GaN doped with silicon (Si) at 1 ⁇ 10 18 / cm 3 on the single crystal substrate ( High carrier concentration n + layer) is formed.
  • a multilayer 6 is formed on the n-type contact layer 5, and a light emitting layer 7 having a multiple quantum well structure is formed on the multilayer 6.
  • the multi-layer 6 is formed by alternately stacking a plurality of first layers made of In x Ga 1-x N (0 ⁇ x ⁇ 0.3) and second layers made of GaN.
  • this multilayer 6 for example, five pairs of a first layer made of In 0.03 Ga 0.97 N with a thickness of 3 nm and a second layer made of GaN with a thickness of 20 nm are stacked.
  • the first layer of the multi-layer 6 has a concentration of Si as one conductivity type impurity of 5 ⁇ 10 16 cm ⁇ 3 to 1 ⁇ 10 18 cm ⁇ 3 (more preferably 1 ⁇ 10 17 cm ⁇ ).
  • the electrostatic breakdown energy (mJ / cm 2 ) received by the light emitting layer 7 is 20 to 40 (more preferably 20 to 35).
  • the relationship between the electrostatic breakdown energy (mJ / cm 2 ) received by the light emitting layer 7 and the Si concentration in the first layer of the multi-layer 6 using the reverse electrical characteristics (reverse current) of a predetermined item as a parameter. Is set to a Si concentration corresponding to the minimum value of electrostatic breakdown energy (mJ / cm 2 ).
  • the well layer of the light emitting layer 7 having a multiple quantum well structure is made of In y Ga 1-y N (0 ⁇ y ⁇ 0.3) containing at least In.
  • the light emitting layer 7 having a multiple quantum well structure includes, for example, three pairs of a well layer made of In 0.2 Ga 0.8 N having a thickness of 3 nm and a barrier layer made of GaN having a thickness of 20 nm. Laminated.
  • the light emitting layer 7 is made of p-type Al 0.15 Ga 0.85 N having a thickness of 25 nm doped with 2 ⁇ 10 19 / cm 3 of Mg.
  • An electron block layer 8 which is a p-type layer is formed, and a p-type contact layer 9 made of 100-nm-thick p-type GaN doped with 8 ⁇ 10 19 Mg is formed on the electron block layer 8.
  • a light-transmitting thin film electrode 10 (ITO) is formed by metal vapor deposition, and a p-electrode 11 is formed on a part of the light-transmitting thin film electrode 10, while the n-type contact layer An n-electrode 12 is formed on the end of 5.
  • a protective film 13 made of a SiO 2 film is formed on the top.
  • the p-electrode 11 is made of a first layer made of cobalt (Co) having a thickness of about 1.5 nm that is directly bonded to the translucent thin film electrode 10 and gold (Au) having a thickness of about 6 nm bonded to the cobalt film. It consists of a second layer.
  • the multiple quantum well structure constituting the light emitting layer 7 includes a well layer made of a group III nitride compound semiconductor In x Ga 1-x N (0 ⁇ x ⁇ 0.3) containing at least indium (In).
  • the structure of the light emitting layer 7 includes, for example, a well layer made of doped or undoped In y Ga 1-x N (0 ⁇ x ⁇ 0.3) and an arbitrary composition having a larger band gap than the well layer.
  • a barrier layer made of ⁇ 0.2 Preferable examples include barrier layers made of undoped In y Ga 1-x N (0 ⁇ x ⁇ 0.3) and In y Ga 1-y N (0 ⁇ y ⁇ 0.1).
  • the multilayer 6 provided on the n-electrode 12 side of the light emitting layer 7 is a group III nitride compound semiconductor In x Ga 1-x N (0 ⁇ y ⁇ 1, containing at least indium (In) forming the light emitting layer 7.
  • the composition x of indium (In) in the layer made of InxGa1-xN (0 ⁇ x ⁇ 1) forming the multilayer 6 is 0.02 or more and 0.07 or less, more preferably 0.03 or more and 0. .05 or less is preferable.
  • the thickness of the layer made of In x Ga 1-x N (0 ⁇ x ⁇ 1) of the multilayer 6 provided on the n-electrode 12 side of the light emitting layer 7 is preferably 0.5 nm or more and 6 nm or less. More preferably, it is 5 nm or more and 4 nm or less.
  • the light emission characteristics will be described below. It has been found that when the film thickness of the layer made of In x Ga 1-x N (0 ⁇ x ⁇ 1) exceeds 6 nm, the drive voltage Vf increases significantly. If the thickness is less than 0.5 nm, it is difficult to adjust the film thickness and should be avoided.
  • the ratio of the thickness of the multilayer 6 composed of In x Ga 1-x N (0 ⁇ x ⁇ 1) to the thickness of the well layer of the light emitting layer is preferably 0.1 or more and 2 or less. More preferably, the thickness of the layer made of In x Ga 1-x N (0 ⁇ x ⁇ 1) of the multilayer 6 is adjusted to be equal to or less than the thickness of the well layer of the light emitting layer 7. On the other hand, the ratio of the thickness of the multilayer 6 made of GaN to the thickness of the barrier layer of the light emitting layer is preferably 0.5 or more and 4 or less. More preferably, it is desirable to adjust the thickness of the layer made of GaN of the multilayer 6 more than the thickness of the barrier layer of the light emitting layer 7.
  • the number of layers of In x Ga 1-x N (0 ⁇ x ⁇ 1) in the multi-layer 6 provided on the n-electrode 12 side of the light emitting layer 7 is desirably 1 or more and 7 or less, more preferably 1 It is good to be 5 or less.
  • the nitride semiconductor light emitting device 1 such as a group III nitride compound semiconductor light emitting device can have any configuration other than the limitation related to the main configuration of the present invention.
  • the light emitting element may be a light emitting diode (LED), a laser diode (LD), a photocoupler, or any other light emitting element.
  • any manufacturing method can be used as a method for manufacturing the nitride semiconductor light emitting device 1 such as a group III nitride compound semiconductor light emitting device according to the present invention.
  • a group III nitride compound single crystal or the like can be used as a substrate for crystal growth.
  • the method for crystal growth of the group III nitride compound semiconductor layer include molecular beam vapor phase epitaxy (MBE), metalorganic vapor phase epitaxy (MOCVD), halide vapor phase epitaxy (HDVPE), and liquid phase epitaxy. Is effective.
  • a group III nitride semiconductor layer such as an electrode formation layer is represented by at least Al x Ga y In 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1) 2
  • a group III nitride compound semiconductor composed of a ternary, ternary or quaternary semiconductor can be used.
  • the multilayer 6 includes a first layer made of In x Ga 1-x N (0 ⁇ x ⁇ 0.3) and GaN.
  • the second layer is alternately stacked, and Si as one conductivity type impurity is contained in the first layer of the multi-layer 6 at a concentration of 5 ⁇ 10 16 cm ⁇ 3 to 1 ⁇ 10 18 cm ⁇ 3 (and further Preferably, the electrostatic breakdown energy (mJ / cm 2 ) applied to the light emitting layer 7 is 20 or more and 40 or less (more preferably) when added in the range of 1 ⁇ 10 17 cm ⁇ 3 to 1 ⁇ 10 18 cm ⁇ 3. 20 to 35).
  • the characteristic configuration of the nitride semiconductor light emitting device 1 of Embodiment 1 will be described in more detail below.
  • FIG. 2 is a graph showing the relationship between the electrostatic breakdown energy (mJ / cm 2 ) received by the light emitting layer 7 of FIG. 1 and the Si density (cm 3 ) of the multilayer 6 of FIG. 1 as a characteristic curve.
  • the Si concentration is 1 ⁇ 10 16 in the state of the undoped material in the GaN layer.
  • the electrostatic breakdown energy (mJ / cm 2 ) is high in the undoped direction (left direction of the horizontal axis), and the probability that the light emitting layer 7 is broken is high.
  • the Si concentration is further increased from the bottom point (minimum value) where the electrostatic breakdown energy (mJ / cm 2 ) is lowest, the electrostatic breakdown energy (mJ / cm 2 ) increases and the light emitting layer 7 is destroyed. The probability of doing will increase. Thereafter, when the Si concentration is further increased, there is a peak point (maximum value) with the highest electrostatic breakdown energy (mJ / cm 2 ). When this highest peak point (maximum value) is exceeded, the electrostatic breakdown energy (mJ / cm 2 ) decreases and the light emitting layer 7 moves in a direction that is not easily destroyed. However, when the Si concentration exceeds 1 ⁇ 10 18 cm ⁇ 3 , the leakage current increases and the light output falls into a region where the light emission efficiency is greatly reduced.
  • the light emitting element has good light emission efficiency due to leakage current and high withstand voltage. In this case, as shown in the characteristic curve C of FIG.
  • electrostatic breakdown energy emitting layer 7 is 20 or more and 40 or less (more preferably, 20 or more 35 or less) is set to.
  • the reverse current indicating the leakage current flowing through the substrate 2 via the GaN layer 4 is changed to the reverse direction of a predetermined item. It is necessary to set the silicon doping amount (Si concentration) as a parameter of electrical characteristics.
  • the Si concentration of the multilayer 6 where the electrostatic breakdown energy (mJ / cm 2 ) becomes the minimum value is 3 ⁇ 10 17 cm. ⁇ 3 or 9 ⁇ 10 17 cm ⁇ 3 .
  • the Si concentration of the multilayer 6 where the electrostatic breakdown energy (mJ / cm 2 ) becomes a minimum value is 6 ⁇ 10 17 cm. -3 .
  • the Si concentration of the multilayer 6 where the electrostatic breakdown energy (mJ / cm 2 ) becomes the minimum value is 2 ⁇ 10 17 cm ⁇ . 3 .
  • the electrostatic breakdown energy (mJ / cm 2 ) at which these minimum values are obtained is 20 or more and 40 or less (more preferably, 20 or more and 35 or less).
  • the reverse current flowing out to the substrate side is measured as a parameter of reverse electrical characteristics of a predetermined item, and the electrostatic breakdown energy obtained in advance using the measured reverse current as a parameter.
  • the multi-layer 6 is silicon-doped so that the electrostatic breakdown energy in the / Si density curve becomes the minimum Si concentration (Si density), the electrostatic breakdown is hardly caused without deteriorating the light emission intensity and the driving voltage.
  • the electrostatic withstand voltage can be improved.
  • the electrostatic breakdown energy from FIG. 2 may be a degree 20 mJ / cm 2 or more 40 mJ / cm 2 or less. More preferably, the electrostatic breakdown energy as long 20 mJ / cm 2 or more 35 mJ / cm 2 or less.
  • FIG. 3 is a flowchart showing each manufacturing process in the method for manufacturing the nitride semiconductor light emitting device 1 of FIG.
  • the sapphire substrate 2 is received in a predetermined position in step S1, and the sapphire substrate 2 is received in step S2.
  • a sapphire surface unevenness forming step for forming unevenness on the surface, a buffer layer 3, a non-doped GaN layer 4, an n-type contact layer 5 on the surface unevenness processed surface of the sapphire substrate 2 in step S3 by MOCVD in step S3,
  • a MOCVD process for sequentially forming the multilayer 6, the light emitting layer 7, the electron blocking layer 8, and the p-type contact layer 9 in this order, and the translucent thin film electrode 10 on the p-type contact layer 9 in step S4.
  • n electrode that exposes an end of the contact layer 5 forms an n electrode 12 on the surface of the end of the n-type contact layer 5, and forms a p electrode 11 on a partial surface of the translucent thin film electrode 10
  • a protective layer 13 is formed for moisture resistance and the like on the exposed surfaces of the translucent thin-film electrode 10, the p-electrode 11, the n-electrode 12 and the n-type contact layer 5, and further on the etching removal side surface
  • the reverse current value peculiar to the substrate or lot obtained in the measurement / inspection process in step S8 is fed back when the multilayer 6 is formed in the MOCVD process in step S3.
  • the multilayer 6 is formed in the MOCVD process in step S3,
  • the characteristic curve with the reverse current value fed back as a parameter the multilayer 6 is made of silicon so that the electrostatic breakdown energy in the electrostatic breakdown energy / Si density characteristic curve becomes a minimum Si concentration (Si density). Doping.
  • the reverse current value is fed back when the multilayer 6 is formed, and the doping amount of silicon (Si) with respect to the multilayer 6 is varied to the Si concentration with the lowest electrostatic breakdown energy (mJ / cm 2 ).
  • the method for manufacturing the nitride semiconductor light emitting device 1 of Embodiment 1 includes the first step of forming the nitride semiconductor light emitting device structure on the sapphire substrate 2 by metal organic chemical vapor deposition, In the manufacturing process of the nitride semiconductor light emitting device 1 having the second step of forming the n-electrode 12 and the third step of measuring the reverse current value as the reverse electric characteristic, the Si concentration of the n-conductivity type impurity is set.
  • the above characteristic curve whose reverse current value of the measurement result is a parameter is selected, and this Based on the selected characteristic curve, the Si concentration of the n-conductivity type impurity in the first step is controlled to a Si concentration at which electrostatic breakdown energy is minimized.
  • the Si concentration of the n-conductivity type impurity is controlled by controlling the SiH 4 gas flow rate or the SiH (CH 3 ) 3 gas flow rate.
  • the energy at the time when a high voltage charge causing electrostatic breakdown is applied to the light emitting element is set to an n-type impurity concentration that does not apply to the light emitting element.
  • the In x Ga is disposed on the light emitting layer 7 on the n electrode 12 side.
  • the well layer is made of In y Ga 1-y N (0 ⁇ y ⁇ 0.3) containing at least In, and the n-type impurity is added to the first layer of the multi-layer 6 at a concentration of 5 ⁇ 10 16 cm.
  • the electrostatic breakdown energy (mJ / cm 2 ) that is added in the range of ⁇ 3 to 1 ⁇ 10 18 cm ⁇ 3 and received by the light emitting layer 7 is 20 or more and 40 or less.
  • the measurement result Based on the above characteristic curve whose reverse current value is a parameter the electrostatic breakdown energy is By ion-implanting n-conductivity type impurity Si into the first layer of the multi-layer 6 at a minimum Si concentration, the electrostatic withstand voltage can be further improved without deteriorating the light output.
  • an n-conductivity type impurity is added to the first layer of the multilayer 6 in the range of 5 ⁇ 10 16 cm ⁇ 3 to 1 ⁇ 10 18 cm ⁇ 3 to form the light emitting layer.
  • the electrostatic breakdown energy (mJ / cm 2 ) received by 7 is 20 or more and 40 or less, for example, based on the above characteristic curve in which the reverse current value of the measurement result in the measurement inspection process is a parameter.
  • ions of n-conductivity type impurities are ionized into the first layer of the multilayer 6 with a Si concentration within a predetermined range before and after the electrostatic breakdown energy is minimized. It may be injected.
  • an n-type impurity is added to the first layer of the multi-layer 6 in a concentration range of 5 ⁇ 10 16 cm ⁇ 3 to 1 ⁇ 10 18 cm ⁇ 3 to cause the electrostatic breakdown that the light emitting layer 7 undergoes.
  • the energy (mJ / cm 2 ) may be 20 or more and 40 or less.
  • the Si concentration of the first layer of the multilayer 6 is controlled.
  • the present invention is not limited to this, and the respective Si concentrations of the first layer and the second layer of the multilayer 6 are controlled. May be. In short, the Si concentration of the first layer of the multilayer 6 may be controlled.
  • the reverse electric characteristic value is not limited to the reverse current value, and the reverse direction It may be a capacitance value when an AC voltage is applied.
  • the electrostatic breakdown energy (mJ / cm 2 ) received by the light emitting layer 7 and the Si concentration of the multi-layer 6 using the capacitance value when the reverse AC voltage is applied as the reverse direction electrical characteristics of the predetermined item as parameters Is obtained in advance, and based on the characteristic curve using the capacitance value at the time of reverse AC voltage application obtained in the measurement / inspection process as a parameter, at least the first layer of the multilayer 6 is Si.
  • the concentration is controlled to be the Si concentration of the multilayer 6 corresponding to the minimum value of electrostatic breakdown energy (mJ / cm 2 ) or the value before and after the minimum value.
  • the characteristic curve using the capacitance value when reverse AC voltage is applied as the reverse direction electrical characteristic of the predetermined item as a parameter is also a characteristic curve using the reverse current value as the reverse direction electrical characteristic of the predetermined item shown in FIG. Similar to the curve, the characteristic curve has a minimum value and a maximum value.
  • the present invention can also be applied to a characteristic curve using the capacitance value when a reverse AC voltage is applied as a parameter. That is, the relationship between the electrostatic breakdown energy (mJ / cm 2 ) and the Si concentration of the multilayer 6 for each difference in capacitance value when the reverse AC voltage is applied indicates that the Si of the multilayer 6 for each reverse current value. It exists in the same way that there exists a relationship of electrostatic breakdown energy (mJ / cm 2 ) to concentration.
  • the reverse electric characteristic value is not limited to the reverse current value, and the reverse electric characteristic value may be a defect level measured by transient capacitance spectroscopy (DLTS) or isothermal transient capacitance method (ICTS).
  • a defect is detected by transient capacitance spectroscopy (DLTS) and isothermal transient capacitance method (ICTS) in the process after the chip formation process.
  • the level is measured, fed back to the MOCVD process in step S3 of FIG. 3, and the characteristic curve showing the relationship of the electrostatic breakdown energy (mJ / cm 2 ) to the Si concentration of the multilayer 6 using the measured defect level as a parameter.
  • the Si concentration of at least the first layer of the multi-layer 6 is set to a minimum value of electrostatic breakdown energy (mJ / cm 2 ) or a value before and after that (the electrostatic breakdown energy received by the light emitting layer is 20 to 40).
  • the Si concentration of the multilayer 6 corresponding to the following value is controlled.
  • the characteristic curve using the defect level as the reverse electrical characteristic of the predetermined item as a parameter is also the same as the characteristic curve using the reverse current value as the reverse electrical characteristic of the predetermined item shown in FIG. Similar characteristic curves with values.
  • a characteristic curve having the defect level as a parameter can also be applied to the present invention. That is, the relationship between the electrostatic breakdown energy (mJ / cm 2 ) and the Si concentration of the multilayer 6 for each defect level is as shown in FIG. Exists as well as the relationship of electrostatic breakdown energy (mJ / cm 2 ) to.
  • the present invention provides an In x Ga 1-x N (0 An impurity concentration of 5 ⁇ 10 16 cm ⁇ 3 to 1 ⁇ is applied to at least the first layer of the multilayer in which first layers made of ⁇ x ⁇ 0.3) and second layers made of GaN are alternately laminated. Impurities are caused by adding an impurity to the multilayer so as to be in the range of 10 18 cm ⁇ 3 so that the electrostatic breakdown energy (mJ / cm 2 ) received by the light emitting layer is 20 or more and 40 or less.
  • electrostatic energy can be output without deteriorating the light emission intensity and driving voltage.
  • Improve pressure resistance Can In order to control the energy when the high voltage charge is applied to the light emitting layer to the impurity concentration of the multilayer so that the impedance is not applied to the light emitting layer, electrostatic energy can be output without deteriorating the light emission intensity and driving voltage. Improve pressure resistance Can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

Electrostatic withstand voltage is enhanced without exacerbating the emission intensity and drive voltage. On an n electrode (12) side of a luminous layer (7), an n conductivity-type impurity is added in a range of 5×10 16 cm-3 to 1×1018cm-3 as the concentration in the first layer of a multilayer (6) that is made by alternately laminating the first layer composed of InxGa1-xN(0 < x < 0.3) and the second layer composed of GaN. The impurity concentration of the multilayer is controlled so as to have the impedance with which the energy, when the high-voltage charge that causes electrostatic destruction is applied to a light-emitting layer, can not be applied to the light-emitting layer by having the electrostatic destruction energy (mJ/cm2) received with the luminous layer (7) of 20 to 40.

Description

窒化物半導体発光素子およびその製造方法Nitride semiconductor light emitting device and manufacturing method thereof
 本発明は、緑、青および紫外領域の窒化物系化合物半導体発光素子などの窒化物半導体発光素子およびその製造方法に関する。 The present invention relates to a nitride semiconductor light-emitting device such as a nitride-based compound semiconductor light-emitting device in the green, blue and ultraviolet regions, and a method for manufacturing the same.
従来、この種の従来の窒化物半導体発光素子において、緑、青および紫外領域の発光素子として、窒化物系化合物半導体発光素子が汎用されているが、発光強度以外の窒化物系化合物半導体発光素子の諸特性は尚改善の余地がある。特に、静電耐圧については、ガリウム・ヒ素系の半導体発光素子やインジウム・リン系の半導体発光素子に比較して格段に低く、大幅な静電耐圧の向上が期待されている。 Conventionally, in this type of conventional nitride semiconductor light-emitting device, nitride-based compound semiconductor light-emitting devices have been widely used as light-emitting devices in the green, blue, and ultraviolet regions. These characteristics still have room for improvement. In particular, the electrostatic withstand voltage is much lower than that of gallium / arsenic semiconductor light emitting devices and indium / phosphorus semiconductor light emitting devices, and a significant improvement in electrostatic withstand voltage is expected.
 ここで、従来の窒化物半導体発光素子の静電耐圧の向上のために、下記の特許文献1~4に各提案が為されている。 Here, in order to improve the electrostatic withstand voltage of the conventional nitride semiconductor light emitting device, proposals have been made in the following Patent Documents 1 to 4.
 図4は、特許文献1に開示されている従来の窒化物系化合物半導体発光素子の縦断面図である。 FIG. 4 is a longitudinal sectional view of a conventional nitride-based compound semiconductor light-emitting device disclosed in Patent Document 1.
 図4に示すように、従来の窒化物系化合物半導体発光素子100は、膜厚3nmのノンドープIn0.2Ga0.8Nからなる井戸層と膜厚20nmのノンドープGaNからなる障壁層とを3ペア積層した多重量子井戸構造の発光層101の負のn電極102側に、膜厚3nmのノンドープIn0.03Ga0.97Nからなる層と膜厚20nmのノンドープGaNからなる層とを5ペア積層した多重層(静電耐圧向上層)103を形成している。多重層(静電耐圧向上層)103により、横方向の抵抗を低減させてESDストレス時の印加電圧が発光層101への電流集中を緩和し、発光層101の広い範囲に電流経路Aのように広げて発光特性を破壊または低下させることなく、ESD耐性を向上させることができる。 As shown in FIG. 4, a conventional nitride-based compound semiconductor light emitting device 100 includes a well layer made of non-doped In 0.2 Ga 0.8 N having a thickness of 3 nm and a barrier layer made of non-doped GaN having a thickness of 20 nm. On the negative n-electrode 102 side of the light emitting layer 101 having a three-layer stacked multi-quantum well structure, a layer made of non-doped In 0.03 Ga 0.97 N with a thickness of 3 nm and a layer made of non-doped GaN with a thickness of 20 nm are formed. A multi-layer (electrostatic withstand voltage improving layer) 103 in which 5 pairs are stacked is formed. The multi-layer (electrostatic withstand voltage improving layer) 103 reduces the resistance in the lateral direction, and the applied voltage during the ESD stress relaxes the current concentration on the light emitting layer 101, so that the current path A extends over a wide range of the light emitting layer 101. The ESD resistance can be improved without spreading or destroying the light emission characteristics.
 次に、特許文献2に開示されている従来の窒化物半導体発光素子では、それぞれ複数の窒化物半導体層からなるp側層とn側層の間に窒化物半導体からなる活性層を有し、p側層はオーミック電極を形成する層としてp型コンタクト層を含み、そのp型コンタクト層はp型窒化物半導体層とn型窒化物半導体層とが交互に積層されている。このように、p型コンタクト層内にpn接合が形成されているので、正の逆方向に電圧が印加された場合における静電破壊電圧(静電耐圧)を高くすることができ、かつ、リーク電流を小さくすることができる。 Next, the conventional nitride semiconductor light emitting device disclosed in Patent Document 2 has an active layer made of a nitride semiconductor between a p-side layer and an n-side layer each made of a plurality of nitride semiconductor layers, The p-side layer includes a p-type contact layer as a layer forming an ohmic electrode, and the p-type contact layer is formed by alternately stacking p-type nitride semiconductor layers and n-type nitride semiconductor layers. As described above, since the pn junction is formed in the p-type contact layer, the electrostatic breakdown voltage (electrostatic withstand voltage) when a voltage is applied in the positive and reverse directions can be increased, and leakage can be caused. The current can be reduced.
 次に、特許文献3に開示されている従来の窒化ガリウム系半導体発光素子では、P電極とn電極とを所定の抵抗値を持った抵抗体でショートさせておき、ESD耐圧時にP電極とn電極間をショートさせてその間の発光層を保護しようとするものである。 Next, in the conventional gallium nitride based semiconductor light emitting device disclosed in Patent Document 3, the P electrode and the n electrode are short-circuited by a resistor having a predetermined resistance value, and the P electrode and the n electrode at the time of ESD withstand voltage. It is intended to protect the light emitting layer between the electrodes by short-circuiting the electrodes.
 次に、特許文献4に開示されている従来の発光素子の製造方法では、窒化物半導体層からなる井戸層を形成する工程と、井戸層上に窒素および全キャリアガス流量に対して2パーセント以上の割合の水素を含有するキャリアガスを用いてバリア層を形成する工程とを含むMQW活性層を形成する工程を有している。このように、MQW活性層内のバリア層を窒素および全キャリアガス流量に対して2パーセント以上の割合の水素を含有するキャリアガスを用いて結晶成長させている。このようにして、MQW活性層である発光層の結晶性を向上させてESD耐圧時の電流を、結晶性の悪い部分への電流集中を防ぐことにより、ESD耐圧を向上させることができる。 Next, in the conventional method for manufacturing a light emitting device disclosed in Patent Document 4, a step of forming a well layer made of a nitride semiconductor layer, and 2% or more of nitrogen and the total carrier gas flow rate on the well layer And a step of forming an MQW active layer including a step of forming a barrier layer using a carrier gas containing a proportion of hydrogen. As described above, the barrier layer in the MQW active layer is crystal-grown using nitrogen and a carrier gas containing hydrogen at a ratio of 2 percent or more with respect to the total carrier gas flow rate. In this way, the ESD withstand voltage can be improved by improving the crystallinity of the light emitting layer, which is the MQW active layer, and preventing the current at the time of the ESD withstand voltage from being concentrated on the portion with poor crystallinity.
特開2004-356442号公報JP 2004-356442 A 特開2004-112002号公報JP 2004-112002 A 特開2006-203160号公報JP 2006-203160 A 特開2009-231591号公報JP 2009-231591 A
 上記従来のいずれの構成においてもなお、半導体発光素子の静電耐圧は十分ではなく、また、発光強度や駆動電圧に対して、静電耐圧はトレードオフの関係にある。特に、基板の欠陥密度の大小や欠陥準位など、基板の欠陥(貫通電位)によって逆方向電流にばらつきがあるため、ESD耐圧が劣化するという問題があった。 In any of the above conventional configurations, the electrostatic withstand voltage of the semiconductor light emitting element is not sufficient, and the electrostatic withstand voltage is in a trade-off relationship with the light emission intensity and the driving voltage. In particular, there is a problem that the ESD withstand voltage deteriorates because the reverse current varies depending on the substrate defect (through potential) such as the defect density of the substrate and the defect level.
 一方、特許文献3では、P電極とn電極間を所定の抵抗値を持った抵抗体で配線しているものの、P電極とn電極とを完全にショートさせてしまうと光らなくなるし、抵抗体を所定の抵抗値に安定的に製造するのが困難であって、トンネル接合構造と言っても正方向にも電流が流れるので発光効率が低下するし、ESD耐圧時に逆方向の電流だけを良好にショートさせるのも困難であり、さらに、P電極とn電極間の大きい段差を、所定の抵抗値を持った抵抗体で配線して接続するのも、段切れなど製造上の問題もある。 On the other hand, in Patent Document 3, the P electrode and the n electrode are wired with a resistor having a predetermined resistance value. However, if the P electrode and the n electrode are completely short-circuited, the light is lost, and the resistor It is difficult to stably manufacture the device at a predetermined resistance value, and even if it is a tunnel junction structure, the current flows in the forward direction, so the light emission efficiency is lowered, and only the current in the reverse direction is good at the time of ESD withstand voltage. In addition, it is difficult to make a short circuit between the P electrode and the n electrode, and there is a manufacturing problem such as disconnection of wiring by connecting a large step between the P electrode and the n electrode with a resistor having a predetermined resistance value.
 また、特許文献4では、MQW活性層内のバリア層を窒素および全キャリアガス流量に対して2パーセント以上の割合の水素を含有するキャリアガスを用いて結晶成長させる場合に、実際、理想的な結晶を得るのは困難であり、水素の量を多くすると、エッチングが起こって成膜ではなく膜が減る方向に作用して結晶成長が行われない虞がある。 In Patent Document 4, when the barrier layer in the MQW active layer is crystal-grown using nitrogen and a carrier gas containing hydrogen at a ratio of 2 percent or more with respect to the total carrier gas flow rate, it is actually ideal. It is difficult to obtain a crystal, and if the amount of hydrogen is increased, there is a possibility that etching will occur and the crystal will not grow by acting in the direction of decreasing the film rather than the film formation.
 本発明は、上記従来の問題を解決するもので、発光強度や駆動電圧を悪化させることなく静電耐圧を向上させることができる窒化物半導体発光素子およびその製造方法を提供することを目的とする。 The present invention solves the above-described conventional problems, and an object thereof is to provide a nitride semiconductor light-emitting element capable of improving electrostatic withstand voltage without deteriorating light emission intensity and driving voltage, and a method for manufacturing the same. .
 本発明の窒化物半導体発光素子は、単結晶性基板上に多重量子井戸構造の発光層が形成された窒化物半導体発光素子において、該発光層のn電極側に、InGa1-xN(0<x<0.3)からなる第1の層とGaNからなる第2の層とを交互に積層した多重層を有し、該多重量子井戸構造の発光層の井戸層は少なくともInを含むInGa1-yN(0≦y<0.3)からなり、該多重層の少なくとも第1の層に、一導電型不純物がその濃度として5×1016cm-3~1×1018cm-3の範囲で添加されて、該発光層が受ける静電破壊エネルギ(mJ/cm)が20以上40以下とされているものであり、そのことにより上記目的が達成される。 The nitride semiconductor light-emitting device of the present invention is a nitride semiconductor light-emitting device in which a light-emitting layer having a multiple quantum well structure is formed on a single crystalline substrate, and the In x Ga 1-x N is formed on the n-electrode side of the light-emitting layer. A multi-layer in which first layers made of (0 <x <0.3) and second layers made of GaN are alternately stacked, and the well layer of the light-emitting layer having the multi-quantum well structure has at least In. In y Ga 1-y N (0 ≦ y <0.3), and at least the first layer of the multi-layer has one conductivity type impurity concentration of 5 × 10 16 cm −3 to 1 × 10 When added in the range of 18 cm −3, the electrostatic breakdown energy (mJ / cm 2 ) received by the light emitting layer is 20 or more and 40 or less, whereby the above object is achieved.
 また、好ましくは、本発明の窒化物半導体発光素子における所定項目の逆方向電気特性をパラメータとして、前記発光層が受ける静電破壊エネルギ(mJ/cm)と前記多重層の一導電型不純物の濃度との関係を示す特性曲線において、該静電破壊エネルギ(mJ/cm)の極小値に該一導電型不純物の濃度が設定されている。 Preferably, the electrostatic breakdown energy (mJ / cm 2 ) received by the light-emitting layer and the one-type impurities of the multi-layer are measured using the reverse electrical characteristics of the predetermined items in the nitride semiconductor light-emitting device of the present invention as parameters. In the characteristic curve showing the relationship with the concentration, the concentration of the one conductivity type impurity is set to the minimum value of the electrostatic breakdown energy (mJ / cm 2 ).
 さらに、好ましくは、本発明の窒化物半導体発光素子における逆方向電気特性は、前記n電極から前記単結晶性基板側に流れる逆方向電流値である。 Further preferably, the reverse electrical characteristic in the nitride semiconductor light emitting device of the present invention is a reverse current value flowing from the n electrode to the single crystal substrate side.
 さらに、好ましくは、本発明の窒化物半導体発光素子における逆方向電気特性は、逆方向電圧印加時の静電容量値である。 Further preferably, the reverse electrical characteristic in the nitride semiconductor light emitting device of the present invention is a capacitance value when a reverse voltage is applied.
 さらに、好ましくは、本発明の窒化物半導体発光素子における発光層が受ける静電破壊エネルギ(mJ/cm)が20以上35以下とされている。 Further, preferably, the electrostatic breakdown energy (mJ / cm 2 ) received by the light emitting layer in the nitride semiconductor light emitting device of the present invention is 20 or more and 35 or less.
 さらに、好ましくは、本発明の窒化物半導体発光素子における逆方向電気特性は、過渡容量分光法または等温過渡容量法によって測定された欠陥準位である。 Further preferably, the reverse electrical characteristic in the nitride semiconductor light emitting device of the present invention is a defect level measured by transient capacitance spectroscopy or isothermal transient capacitance method.
 さらに、好ましくは、本発明の窒化物半導体発光素子における一導電型不純物がその濃度として1×1017cm-3~1×1018cm-3の範囲で添加されている。 More preferably, one conductivity type impurity in the nitride semiconductor light emitting device of the present invention is added in the range of 1 × 10 17 cm −3 to 1 × 10 18 cm −3 .
 さらに、好ましくは、本発明の窒化物半導体発光素子における一導電型不純物は、n導電型不純物のSiである。 More preferably, the one conductivity type impurity in the nitride semiconductor light emitting device of the present invention is n conductivity type impurity Si.
 本発明の窒化物半導体発光素子の製造方法は、窒化物半導体発光素子構造を有機金属化学気相成長法により単結晶性基板上に形成する第1の工程と、該窒化物半導体発光素子構造に対してp電極およびn電極を形成する第2の工程と、逆方向電気特性を測定する第3の工程とを有し、該逆方向電気特性を用いて次回からの該第1の工程において、該単結晶性基板上に形成された多重量子井戸構造の発光層のn電極側に設けた多重層の少なくとも第1の層に、該発光層が受ける静電破壊エネルギ(mJ/cm)を20以上40以下になるように、一導電型不純物の濃度が5×1016cm-3~1×1018cm-3の範囲で該一導電型不純物を添加するものであり、そのことにより上記目的が達成される。 The method for manufacturing a nitride semiconductor light emitting device according to the present invention includes a first step of forming a nitride semiconductor light emitting device structure on a single crystal substrate by metal organic chemical vapor deposition, and the nitride semiconductor light emitting device structure. On the other hand, the second step of forming the p-electrode and the n-electrode and the third step of measuring the reverse electric characteristic, and using the reverse electric characteristic in the first step from the next time, The electrostatic breakdown energy (mJ / cm 2 ) received by the light emitting layer is applied to at least the first layer of the multiple layer provided on the n-electrode side of the light emitting layer having a multiple quantum well structure formed on the single crystal substrate. The one-conductivity type impurity is added so that the concentration of the one-conductivity type impurity is in the range of 5 × 10 16 cm −3 to 1 × 10 18 cm −3 so as to be 20 or more and 40 or less. The objective is achieved.
 また、好ましくは、本発明の窒化物半導体発光素子の製造方法において、所定項目の逆方向電気特性をパラメータとして、前記発光層が受ける静電破壊エネルギ(mJ/cm)と前記多重層の一導電型不純物の濃度との関係を示す特性曲線を予め求めておき、前記第3の工程で求めた逆方向電気特性をパラメータとする特性曲線において、前記多重層の少なくとも第1の層の一導電型不純物の濃度を、該静電破壊エネルギ(mJ/cm)の極小値に対応する該多重層の一導電型不純物の濃度に制御する。 Preferably, in the method for manufacturing a nitride semiconductor light emitting device according to the present invention, the electrostatic breakdown energy (mJ / cm 2 ) received by the light emitting layer and one of the multiple layers using the reverse electrical characteristics of a predetermined item as a parameter. A characteristic curve showing a relationship with the concentration of the conductive impurity is obtained in advance, and in the characteristic curve using the reverse direction electric characteristic obtained in the third step as a parameter, at least one conductivity of at least the first layer of the multi-layer. The concentration of the type impurity is controlled to the concentration of the one conductivity type impurity of the multilayer corresponding to the minimum value of the electrostatic breakdown energy (mJ / cm 2 ).
 さらに、好ましくは、本発明の窒化物半導体発光素子の製造方法における一導電型不純物の濃度の制御は、SiHガス流量またはSiH(CHガス流量を制御することにより行う。 More preferably, the concentration of the one conductivity type impurity in the method for manufacturing a nitride semiconductor light emitting device of the present invention is controlled by controlling the flow rate of SiH 4 gas or SiH (CH 3 ) 3 gas.
 さらに、好ましくは、本発明の窒化物半導体発光素子の製造方法における逆方向電気特性は、前記n電極から前記単結晶性基板側に流れる逆方向電流値である。 Further preferably, the reverse electrical characteristic in the method for manufacturing a nitride semiconductor light emitting device of the present invention is a reverse current value flowing from the n electrode to the single crystal substrate side.
 さらに、好ましくは、本発明の窒化物半導体発光素子の製造方法における逆方向電気特性は、逆方向AC電圧印加時の静電容量値である。 Further preferably, the reverse electrical characteristic in the method for manufacturing a nitride semiconductor light emitting device of the present invention is a capacitance value when a reverse AC voltage is applied.
 さらに、好ましくは、本発明の窒化物半導体発光素子の製造方法における逆方向電気特性は、過渡容量分光法または等温過渡容量法によって測定された欠陥準位である。 Further preferably, the reverse electrical characteristic in the method for manufacturing a nitride semiconductor light emitting device of the present invention is a defect level measured by transient capacitance spectroscopy or isothermal transient capacitance method.
 上記構成により、以下、本発明の作用を説明する。 The operation of the present invention will be described below with the above configuration.
 本発明の窒化物半導体発光素子においては、単結晶性基板上に形成された多重量子井戸構造の発光層のn電極側に設けられた多重層の少なくとも第1の層に、一導電型不純物がその濃度として5×1016cm-3~1×1018cm-3の範囲で添加されて、発光層が受ける静電破壊エネルギ(mJ/cm)が20以上40以下とされている。具体的には、所定項目の逆方向電気特性をパラメータとして、発光層が受ける静電破壊エネルギ(mJ/cm)と多重層の一導電型不純物の濃度との関係を示す特性曲線において、静電破壊エネルギ(mJ/cm)の極小値に一導電型不純物の濃度が設定されている。 In the nitride semiconductor light emitting device of the present invention, one conductivity type impurity is present in at least the first layer of the multiple layer provided on the n-electrode side of the light emitting layer of the multiple quantum well structure formed on the single crystal substrate. The concentration is added in the range of 5 × 10 16 cm −3 to 1 × 10 18 cm −3 , and the electrostatic breakdown energy (mJ / cm 2 ) received by the light emitting layer is 20 or more and 40 or less. Specifically, in the characteristic curve showing the relationship between the electrostatic breakdown energy (mJ / cm 2 ) received by the light emitting layer and the concentration of one conductivity type impurity of the multilayer, using the reverse electrical characteristics of a predetermined item as a parameter, The concentration of one conductivity type impurity is set to the minimum value of the electric breakdown energy (mJ / cm 2 ).
 これによって、発光層のn電極側に、InGa1-xN(0<x<0.3)からなる第1の層とGaNからなる第2の層とを交互に積層した多重層の少なくとも第1の層に、不純物濃度が5×1016cm-3~1×1018cm-3の範囲になるように不純物を添加して、発光層が受ける静電破壊エネルギ(mJ/cm)が20以上40以下とすることにより、静電破壊の原因となる高電圧の電荷が発光層に印加されるときのエネルギを発光層に印加されないようなインピーダンスとなるような多重層の不純物濃度に制御するので、発光強度や駆動電圧を悪化させることなく静電耐圧を向上させることが可能となる。 As a result, the multi-layered structure in which the first layer made of In x Ga 1-x N (0 <x <0.3) and the second layer made of GaN are alternately stacked on the n-electrode side of the light emitting layer. An impurity is added to at least the first layer so that the impurity concentration is in the range of 5 × 10 16 cm −3 to 1 × 10 18 cm −3 , and the electrostatic breakdown energy (mJ / cm 2) received by the light emitting layer. ) Between 20 and 40, the impurity concentration of the multilayer is such that the impedance is such that no energy is applied to the light emitting layer when a high-voltage charge that causes electrostatic breakdown is applied to the light emitting layer. Therefore, the electrostatic withstand voltage can be improved without deteriorating the light emission intensity and the driving voltage.
 以上により、本発明によれば、不純物濃度が5×1016cm-3~1×1018cm-3の範囲になるように多重層に不純物を添加して、発光層が受ける静電破壊エネルギ(mJ/cm)が20以上40以下とすることにより、静電破壊の原因となる高電圧の電荷が発光層に印加されるときのエネルギを発光層に印加されないようなインピーダンスとなるような多重層の不純物濃度に制御するため、発光強度や駆動電圧を悪化させることなく静電耐圧を向上させることができる。 As described above, according to the present invention, the electrostatic breakdown energy received by the light emitting layer by adding impurities to the multilayer so that the impurity concentration is in the range of 5 × 10 16 cm −3 to 1 × 10 18 cm −3. By setting (mJ / cm 2 ) to 20 or more and 40 or less, the impedance is such that energy when a high voltage charge causing electrostatic breakdown is applied to the light emitting layer is not applied to the light emitting layer. Since the multi-layer impurity concentration is controlled, the electrostatic withstand voltage can be improved without deteriorating the light emission intensity and the driving voltage.
本発明の実施形態1における窒化物半導体発光素子の要部構成例を示す縦断面図である。1 is a longitudinal cross-sectional view illustrating an exemplary configuration of a main part of a nitride semiconductor light emitting element in Embodiment 1 of the present invention. 図1の発光層が受ける静電破壊エネルギ(mJ/cm)と図1の多重層のSi密度(cm)との関係を特性曲線として示す図である。It is a diagram showing the relationship between the characteristic curve of the electrostatic breakdown energy emission layer receives in FIG 1 (mJ / cm 2) and Si density of multiple layers of FIG. 1 (cm 3). 図1の窒化物半導体発光素子1の製造方法における各製造工程を示す流れ図である。2 is a flowchart showing each manufacturing process in the method for manufacturing the nitride semiconductor light emitting device 1 of FIG. 1. 特許文献1に開示されている従来の窒化物系化合物半導体発光素子の縦断面図である。1 is a longitudinal sectional view of a conventional nitride-based compound semiconductor light-emitting device disclosed in Patent Document 1. FIG.
 1 窒化物半導体発光素子
 2 サファイヤ基板
 3 バッファ層
 4 ノンドープGaN層
 5 n型コンタクト層
 6 多重層
 7 多重量子井戸構造の発光層
 8 電子ブロック層
 9 p型コンタクト層
 10 透光性薄膜電極
 12 n電極
 11 p電極
 13 保護膜
DESCRIPTION OF SYMBOLS 1 Nitride semiconductor light-emitting device 2 Sapphire substrate 3 Buffer layer 4 Non-doped GaN layer 5 N-type contact layer 6 Multi-layer 7 Multi-quantum well structure light-emitting layer 8 Electronic block layer 9 P-type contact layer 10 Translucent thin film electrode 12 N-electrode 11 p electrode 13 protective film
 以下に、本発明の窒化物半導体発光素子およびその製造方法の実施形態1について図面を参照しながら詳細に説明する。 Hereinafter, a first embodiment of the nitride semiconductor light emitting device and the manufacturing method thereof according to the present invention will be described in detail with reference to the drawings.
 (実施形態1)
 図1は、本発明の実施形態1における窒化物半導体発光素子の要部構成例を示す縦断面図である。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view showing an example of a configuration of a main part of a nitride semiconductor light emitting element in Embodiment 1 of the present invention.
 図1において、本実施形態1の窒化物半導体発光素子1は、表面に凹凸が形成された厚さ約300μmの基板として例えばサファイヤ基板2の上に、窒化アルミニウム(AlN)から成る膜厚約15nmのバッファ層3が成膜され、その上にノンドープのGaNから成る膜厚約500nmのノンドープGaN層4が成膜されている。これらのサファイヤ基板2、バッファ層3およびノンドープGaN層4が単結晶性基板を構成している。 In FIG. 1, the nitride semiconductor light emitting device 1 of Embodiment 1 has a film thickness of about 15 nm made of aluminum nitride (AlN) on, for example, a sapphire substrate 2 as a substrate of about 300 μm thickness with irregularities formed on the surface. A buffer layer 3 is formed, and a non-doped GaN layer 4 having a thickness of about 500 nm made of non-doped GaN is formed thereon. These sapphire substrate 2, buffer layer 3 and non-doped GaN layer 4 constitute a single crystal substrate.
 さらに、本実施形態1の窒化物半導体発光素子1において、この単結晶性基板上にシリコン(Si)を1×1018/cmドープしたGaNからなる膜厚約5μmのn型コンタクト層5(高キャリヤ濃度n層)が形成されている。このn型コンタクト層5上に多重層6が形成され、この多重層6上には多重量子井戸構造の発光層7が形成されている。 Further, in the nitride semiconductor light emitting device 1 of the first embodiment, the n-type contact layer 5 (about 5 μm thick) made of GaN doped with silicon (Si) at 1 × 10 18 / cm 3 on the single crystal substrate ( High carrier concentration n + layer) is formed. A multilayer 6 is formed on the n-type contact layer 5, and a light emitting layer 7 having a multiple quantum well structure is formed on the multilayer 6.
 この多重層6は、InGa1-xN(0<x<0.3)からなる第1の層とGaNからなる第2の層とを交互に複数積層されている。この多重層6は、ここでは例えば、膜厚3nmのIn0.03Ga0.97Nからなる第1の層と、膜厚20nmのGaNからなる第2の層とを5ペア積層している。この多重層6のうちの第1の層に、一導電型不純物としてSiがその濃度として、5×1016cm-3~1×1018cm-3(さらに好ましくは、1×1017cm-3~1×1018cm-3)の範囲で添加されて、発光層7が受ける静電破壊エネルギ(mJ/cm)が20以上40以下(さらに好ましくは、20以上35以下)とされている。具体的には、所定項目の逆方向電気特性(逆方向電流)をパラメータとして、発光層7が受ける静電破壊エネルギ(mJ/cm)と多重層6の第1層におけるSi濃度との関係を示す特性曲線(図2の曲線A~C)において、静電破壊エネルギ(mJ/cm)の極小値に対応するSiの濃度に設定されている。 The multi-layer 6 is formed by alternately stacking a plurality of first layers made of In x Ga 1-x N (0 <x <0.3) and second layers made of GaN. In this multilayer 6, for example, five pairs of a first layer made of In 0.03 Ga 0.97 N with a thickness of 3 nm and a second layer made of GaN with a thickness of 20 nm are stacked. . The first layer of the multi-layer 6 has a concentration of Si as one conductivity type impurity of 5 × 10 16 cm −3 to 1 × 10 18 cm −3 (more preferably 1 × 10 17 cm −). 3 to 1 × 10 18 cm −3 ), and the electrostatic breakdown energy (mJ / cm 2 ) received by the light emitting layer 7 is 20 to 40 (more preferably 20 to 35). Yes. Specifically, the relationship between the electrostatic breakdown energy (mJ / cm 2 ) received by the light emitting layer 7 and the Si concentration in the first layer of the multi-layer 6 using the reverse electrical characteristics (reverse current) of a predetermined item as a parameter. Is set to a Si concentration corresponding to the minimum value of electrostatic breakdown energy (mJ / cm 2 ).
 多重量子井戸構造の発光層7の井戸層は少なくともInを含むInGa1-yN(0≦y<0.3)からなっている。このように、多重量子井戸構造の発光層7は、ここでは例えば、膜厚3nmのIn0.2Ga0.8Nから成る井戸層と、膜厚20nmのGaNから成る障壁層とを3ペア積層している。 The well layer of the light emitting layer 7 having a multiple quantum well structure is made of In y Ga 1-y N (0 ≦ y <0.3) containing at least In. As described above, the light emitting layer 7 having a multiple quantum well structure includes, for example, three pairs of a well layer made of In 0.2 Ga 0.8 N having a thickness of 3 nm and a barrier layer made of GaN having a thickness of 20 nm. Laminated.
 さらに、本実施形態1の窒化物半導体発光素子1において、この発光層7上に、Mgを2×1019/cmドープした膜厚25nmのp型Al0.15Ga0.85Nからなるp型層である電子ブロック層8が形成され、この電子ブロック層8上に、Mgを8×1019ドープした膜厚100nmのp型GaNからなるp型コンタクト層9が形成されている。このp型コンタクト層9上には、金属蒸着による透光性薄膜電極10(ITO)が形成され、透光性薄膜電極10の一部上にp電極11が形成され、一方、n型コンタクト層5の端部上にはn電極12が形成されている。最上部には、SiO膜よりなる保護膜13が形成されている。p電極11は、透光性薄膜電極10に直接接合する膜厚約1.5nmのコバルト(Co)よりなる第1層と、このコバルト膜に接合する膜厚約6nmの金(Au)よりなる第2層とで構成されている。 Furthermore, in the nitride semiconductor light emitting device 1 of the first embodiment, the light emitting layer 7 is made of p-type Al 0.15 Ga 0.85 N having a thickness of 25 nm doped with 2 × 10 19 / cm 3 of Mg. An electron block layer 8 which is a p-type layer is formed, and a p-type contact layer 9 made of 100-nm-thick p-type GaN doped with 8 × 10 19 Mg is formed on the electron block layer 8. On the p-type contact layer 9, a light-transmitting thin film electrode 10 (ITO) is formed by metal vapor deposition, and a p-electrode 11 is formed on a part of the light-transmitting thin film electrode 10, while the n-type contact layer An n-electrode 12 is formed on the end of 5. A protective film 13 made of a SiO 2 film is formed on the top. The p-electrode 11 is made of a first layer made of cobalt (Co) having a thickness of about 1.5 nm that is directly bonded to the translucent thin film electrode 10 and gold (Au) having a thickness of about 6 nm bonded to the cobalt film. It consists of a second layer.
 発光層7を構成する多重量子井戸構造は、少なくともインジウム(In)を含むIII族窒化物系化合物半導体InGa1-xN(0<x<0.3)からなる井戸層を含むものである。発光層7の構成は、例えばドープされた、またはアンドープのInGa1-xN(0<x<0.3)からなる井戸層と、この井戸層よりもバンドギャップの大きい任意の組成のIII族窒化物系化合物半導体GaN,InGa1-yN(0<y<0.1)または、InAlGa1-y-zN(0<y<0.1,0<z<0.2)から成る障壁層が挙げられる。好ましい例としてはアンドープのInGa1-xN(0<x<0.3)、InGa1-yN(0<y<0.1)からなる障壁層が挙げられる。 The multiple quantum well structure constituting the light emitting layer 7 includes a well layer made of a group III nitride compound semiconductor In x Ga 1-x N (0 <x <0.3) containing at least indium (In). The structure of the light emitting layer 7 includes, for example, a well layer made of doped or undoped In y Ga 1-x N (0 <x <0.3) and an arbitrary composition having a larger band gap than the well layer. Group III nitride compound semiconductor GaN, In y Ga 1-y N (0 <y <0.1) or In y Al z Ga 1-yz N (0 <y <0.1, 0 <z And a barrier layer made of <0.2). Preferable examples include barrier layers made of undoped In y Ga 1-x N (0 <x <0.3) and In y Ga 1-y N (0 <y <0.1).
 発光層7のn電極12側に設けられる多重層6は、発光層7を形成する少なくともインジウム(In)を含むIII族窒化物系化合物半導体InGa1-xN(0<y<1,0<z<1)から成る井戸層のインジウム(In)の組成zよりも小さいインジウム(In)の組成xのInGa1-xN(0<x<1)から成る層とGaNから成る層により形成される。このとき、多重層6を形成するInxGa1-xN(0<x<1)から成る層のインジウム(In)の組成xは、0.02以上0.07以下、より好ましくは、0.03以上0.05以下が好ましい。 The multilayer 6 provided on the n-electrode 12 side of the light emitting layer 7 is a group III nitride compound semiconductor In x Ga 1-x N (0 <y <1, containing at least indium (In) forming the light emitting layer 7. A layer composed of In x Ga 1-x N (0 <x <1) having an indium (In) composition x smaller than the composition z of indium (In) in the well layer composed of 0 <z <1) and GaN Formed by layers. At this time, the composition x of indium (In) in the layer made of InxGa1-xN (0 <x <1) forming the multilayer 6 is 0.02 or more and 0.07 or less, more preferably 0.03 or more and 0. .05 or less is preferable.
 発光層7のn電極12側に設けられる多重層6のInGa1-xN(0<x<1)からなる層の膜厚は、0.5nm以上6nm以下であることが好ましく、0.5nm以上4nm以下であることがより好ましい。以下に発光特性を記すが、InGa1-xN(0<x<1)からなる層の膜厚が6nmを越えると、駆動電圧Vfが大幅に上昇することが判明している。0.5nm未満となると、その膜厚の調整が困難となるので、避けるべきである。一方、多重層6のGaNから成る層は、少なくとも10~40nmの範囲では素子特性に大きな変化を生じないことが判明している。多重層6のInGa1-xN(0<x<1)からなる層の厚さの発光層の井戸層の厚さに対する比は、0.1以上2以下とすることが望ましい。より望ましくは、発光層7の井戸層の厚さ以下に多重層6のInGa1-xN(0<x<1)からなる層の厚さを調節する。一方、多重層6のGaNからなる層の厚さの発光層の障壁層の厚さに対する比は、0.5以上4以下であることが望ましい。より望ましくは、発光層7の障壁層の厚さ以上に多重層6のGaNから成る層の厚さを調節することが望ましい。 The thickness of the layer made of In x Ga 1-x N (0 <x <1) of the multilayer 6 provided on the n-electrode 12 side of the light emitting layer 7 is preferably 0.5 nm or more and 6 nm or less. More preferably, it is 5 nm or more and 4 nm or less. The light emission characteristics will be described below. It has been found that when the film thickness of the layer made of In x Ga 1-x N (0 <x <1) exceeds 6 nm, the drive voltage Vf increases significantly. If the thickness is less than 0.5 nm, it is difficult to adjust the film thickness and should be avoided. On the other hand, it has been found that the GaN layer of the multilayer 6 does not cause a significant change in device characteristics in the range of at least 10 to 40 nm. The ratio of the thickness of the multilayer 6 composed of In x Ga 1-x N (0 <x <1) to the thickness of the well layer of the light emitting layer is preferably 0.1 or more and 2 or less. More preferably, the thickness of the layer made of In x Ga 1-x N (0 <x <1) of the multilayer 6 is adjusted to be equal to or less than the thickness of the well layer of the light emitting layer 7. On the other hand, the ratio of the thickness of the multilayer 6 made of GaN to the thickness of the barrier layer of the light emitting layer is preferably 0.5 or more and 4 or less. More preferably, it is desirable to adjust the thickness of the layer made of GaN of the multilayer 6 more than the thickness of the barrier layer of the light emitting layer 7.
 発光層7のn電極12側に設けられる多重層6のInGa1-xN(0<x<1)からなる層の数は1以上7以下とすることが望ましく、より好ましくは、1以上5以下とするとよい。 The number of layers of In x Ga 1-x N (0 <x <1) in the multi-layer 6 provided on the n-electrode 12 side of the light emitting layer 7 is desirably 1 or more and 7 or less, more preferably 1 It is good to be 5 or less.
 III族窒化物系化合物半導体発光素子などの窒化物半導体発光素子1は、上記の発明の主たる構成に係る限定の他は、任意の構成を取ることができる。また、発光素子は発光ダイオード(LED)、レーザダイオード(LD)、フォトカプラ、その他の任意の発光素子としてよい。特に、本発明に係るIII族窒化物系化合物半導体発光素子などの窒化物半導体発光素子1の製造方法としては任意の製造方法を用いることができる。 The nitride semiconductor light emitting device 1 such as a group III nitride compound semiconductor light emitting device can have any configuration other than the limitation related to the main configuration of the present invention. The light emitting element may be a light emitting diode (LED), a laser diode (LD), a photocoupler, or any other light emitting element. In particular, any manufacturing method can be used as a method for manufacturing the nitride semiconductor light emitting device 1 such as a group III nitride compound semiconductor light emitting device according to the present invention.
 具体的には、結晶成長させる基板としては、サファイヤ、スピネル、Si、SiC、ZnO、MgOまたは、III族窒化物系化合物単結晶などを用いることができる。III族窒化物系化合物半導体層を結晶成長させる方法としては、分子線気相成長法(MBE)、有機金属気相成長法(MOCVD)、ハライド気相成長法(HDVPE)、液相成長法等が有効である。 Specifically, sapphire, spinel, Si, SiC, ZnO, MgO, a group III nitride compound single crystal, or the like can be used as a substrate for crystal growth. Examples of the method for crystal growth of the group III nitride compound semiconductor layer include molecular beam vapor phase epitaxy (MBE), metalorganic vapor phase epitaxy (MOCVD), halide vapor phase epitaxy (HDVPE), and liquid phase epitaxy. Is effective.
 電極形成層などのIII族窒化物半導体層は、少なくともAlGaIn1-x-yN(0≦x≦1,0≦y≦1,0≦x+y≦1)にて表される2元系、3元系または4元系の半導体から成るIII族窒化物系化合物半導体で形成することができる。 A group III nitride semiconductor layer such as an electrode formation layer is represented by at least Al x Ga y In 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1) 2 A group III nitride compound semiconductor composed of a ternary, ternary or quaternary semiconductor can be used.
 ここで、本実施形態1の窒化物半導体発光素子1の特徴構成として、多重層6が、InGa1-xN(0<x<0.3)からなる第1の層とGaNからなる第2の層とを交互に積層し、この多重層6のうちの第1の層に、一導電型不純物としてのSiが濃度5×1016cm-3~1×1018cm-3(さらに好ましくは、1×1017cm-3~1×1018cm-3)の範囲で添加されて、発光層7が受ける静電破壊エネルギ(mJ/cm)が20以上40以下(さらに好ましくは、20以上35以下)とされている。この本実施形態1の窒化物半導体発光素子1の特徴構成について、以下に更に詳細に説明する。 Here, as a characteristic configuration of the nitride semiconductor light emitting device 1 of the first embodiment, the multilayer 6 includes a first layer made of In x Ga 1-x N (0 <x <0.3) and GaN. The second layer is alternately stacked, and Si as one conductivity type impurity is contained in the first layer of the multi-layer 6 at a concentration of 5 × 10 16 cm −3 to 1 × 10 18 cm −3 (and further Preferably, the electrostatic breakdown energy (mJ / cm 2 ) applied to the light emitting layer 7 is 20 or more and 40 or less (more preferably) when added in the range of 1 × 10 17 cm −3 to 1 × 10 18 cm −3. 20 to 35). The characteristic configuration of the nitride semiconductor light emitting device 1 of Embodiment 1 will be described in more detail below.
 図2は、図1の発光層7が受ける静電破壊エネルギ(mJ/cm)と図1の多重層6のSi密度(cm)との関係を特性曲線として示す図である。 2 is a graph showing the relationship between the electrostatic breakdown energy (mJ / cm 2 ) received by the light emitting layer 7 of FIG. 1 and the Si density (cm 3 ) of the multilayer 6 of FIG. 1 as a characteristic curve.
 図2に示すように、縦軸の静電破壊エネルギ(mJ/cm)が高いほど発光層7が破壊される確率が高く、横軸がSiのドーピング量を示すSi濃度(cm)である。この場合、GaN層でアンドープの材料の状態でSi濃度が1×1016である。静電破壊エネルギ(mJ/cm)はアンドープの方向(横軸の左方向)で高くなって、発光層7が破壊される確率が高くなっている。Si濃度をアンドープ状態(1×1016)から横軸の右方向に徐々に上げていくと、静電破壊エネルギ(mJ/cm)の最も低いボトムポイント(極小値)があり、ここで最も発光層7が破壊しにくくなる。これは、この静電破壊エネルギ(mJ/cm)の最も低いボトムポイント(極小値)では、トンネル接続現象が発光層7に生じて電流を逃がしてしまうことに起因している。多重層6のSi濃度をアンドープ状態(1×1016)では電流が流れないためにESD耐圧試験時に例えば1500Vが発光層7に直にかかってしまい発光層7が容易に破壊してしまう。また、静電破壊エネルギ(mJ/cm)が最も低いボトムポイント(極小値)からSi濃度を更に上げていくと、静電破壊エネルギ(mJ/cm)が上昇して発光層7が破壊する確率が高くなってくる。その後、Si濃度を更に上げると、静電破壊エネルギ(mJ/cm)が最も高いピークポイント(極大値)が存在する。この最も高いピークポイント(極大値)を超えると、静電破壊エネルギ(mJ/cm)が下がって発光層7が破壊されにくい方向に移る。ところが、Si濃度が1×1018cm-3を超えると、リーク電流が増加して発光効率が大幅に低下する光出力低下領域に入ってしまう。 As shown in FIG. 2, the higher the electrostatic breakdown energy (mJ / cm 2 ) on the vertical axis, the higher the probability that the light emitting layer 7 is destroyed, and the horizontal axis is the Si concentration (cm 3 ) indicating the Si doping amount. is there. In this case, the Si concentration is 1 × 10 16 in the state of the undoped material in the GaN layer. The electrostatic breakdown energy (mJ / cm 2 ) is high in the undoped direction (left direction of the horizontal axis), and the probability that the light emitting layer 7 is broken is high. When the Si concentration is gradually increased from the undoped state (1 × 10 16 ) in the right direction of the horizontal axis, there is the lowest bottom point (minimum value) of electrostatic breakdown energy (mJ / cm 2 ). The light emitting layer 7 becomes difficult to break. This is because the tunnel connection phenomenon occurs in the light emitting layer 7 at the bottom point (minimum value) of the lowest electrostatic breakdown energy (mJ / cm 2 ), and current is released. Since no current flows when the Si concentration of the multilayer 6 is undoped (1 × 10 16 ), for example, 1500 V is applied directly to the light emitting layer 7 during the ESD withstand voltage test, and the light emitting layer 7 is easily destroyed. Further, when the Si concentration is further increased from the bottom point (minimum value) where the electrostatic breakdown energy (mJ / cm 2 ) is lowest, the electrostatic breakdown energy (mJ / cm 2 ) increases and the light emitting layer 7 is destroyed. The probability of doing will increase. Thereafter, when the Si concentration is further increased, there is a peak point (maximum value) with the highest electrostatic breakdown energy (mJ / cm 2 ). When this highest peak point (maximum value) is exceeded, the electrostatic breakdown energy (mJ / cm 2 ) decreases and the light emitting layer 7 moves in a direction that is not easily destroyed. However, when the Si concentration exceeds 1 × 10 18 cm −3 , the leakage current increases and the light output falls into a region where the light emission efficiency is greatly reduced.
 したがって、多重層6のSi濃度をアンドープ状態(1×1016)から、静電破壊エネルギ(mJ/cm)が最も低いボトムポイント(極小値)、さらにピークポイント(極大値)になるまでの間の多重層6のSi密度(cm)、即ち、Si濃度5×1016cm-3~1×1018cm-3(さらに好ましくは、1×1017cm-3~1×1018cm-3)の範囲に設定すれば、リーク電流による発光効率も良好でかつ耐圧も高い発光素子となる。この場合に、図2の特性曲線Cのように、パラメータの逆方向電流値によっては、Si濃度が1×1017cm-3~1×1018cm-3の範囲内であっても、静電破壊エネルギ(mJ/cm)が高い場合があり得るので、発光層7が受ける静電破壊エネルギ(mJ/cm)が20以上40以下(さらに好ましくは、20以上35以下)としている。 Therefore, from the undoped state (1 × 10 16 ) of the Si concentration of the multilayer 6 to the lowest bottom point (minimum value) and further the peak point (maximum value) of electrostatic breakdown energy (mJ / cm 2 ). The Si density (cm 3 ) of the multilayer 6 between them, that is, the Si concentration 5 × 10 16 cm −3 to 1 × 10 18 cm −3 (more preferably 1 × 10 17 cm −3 to 1 × 10 18 cm -3 ), the light emitting element has good light emission efficiency due to leakage current and high withstand voltage. In this case, as shown in the characteristic curve C of FIG. 2, depending on the reverse current value of the parameter, even if the Si concentration is within the range of 1 × 10 17 cm −3 to 1 × 10 18 cm −3 , since breakdown energy (mJ / cm 2) may be higher, electrostatic breakdown energy emitting layer 7 is subjected (mJ / cm 2) is 20 or more and 40 or less (more preferably, 20 or more 35 or less) is set to.
 また、基板の種類や生産ロットによって、このシリコンドーピング量(Si濃度)の最適値が異なることから、GaN層4を介して基板2に流れるリーク電流を示す逆方向電流を、所定項目の逆方向電気特性のパラメータにして、シリコンドーピング量(Si濃度)の設定をする必要がある。 Further, since the optimum value of the silicon doping amount (Si concentration) varies depending on the type of substrate and the production lot, the reverse current indicating the leakage current flowing through the substrate 2 via the GaN layer 4 is changed to the reverse direction of a predetermined item. It is necessary to set the silicon doping amount (Si concentration) as a parameter of electrical characteristics.
 図2の曲線Aに示すように逆方向電流が0.7μA/cmのときに、静電破壊エネルギ(mJ/cm)が極小値となる多重層6のSi濃度は3×1017cm-3または9×1017cm-3である。また、図2の曲線Bに示すように逆方向電流が70μA/cmのときに、静電破壊エネルギ(mJ/cm)が極小値となる多重層6のSi濃度は6×1017cm-3である。さらに、図2の曲線Cに示すように逆方向電流が7mA/cmのときに静電破壊エネルギ(mJ/cm)が極小値となる多重層6のSi濃度は2×1017cm-3である。これらの極小値となる静電破壊エネルギ(mJ/cm)は、20以上40以下(さらに好ましくは、20以上35以下)である。 As shown by the curve A in FIG. 2, when the reverse current is 0.7 μA / cm 2 , the Si concentration of the multilayer 6 where the electrostatic breakdown energy (mJ / cm 2 ) becomes the minimum value is 3 × 10 17 cm. −3 or 9 × 10 17 cm −3 . Further, as shown by the curve B in FIG. 2, when the reverse current is 70 μA / cm 2 , the Si concentration of the multilayer 6 where the electrostatic breakdown energy (mJ / cm 2 ) becomes a minimum value is 6 × 10 17 cm. -3 . Further, as shown by the curve C in FIG. 2, when the reverse current is 7 mA / cm 2 , the Si concentration of the multilayer 6 where the electrostatic breakdown energy (mJ / cm 2 ) becomes the minimum value is 2 × 10 17 cm −. 3 . The electrostatic breakdown energy (mJ / cm 2 ) at which these minimum values are obtained is 20 or more and 40 or less (more preferably, 20 or more and 35 or less).
 したがって、基板の種類や生産ロット毎に、所定項目の逆方向電気特性のパラメータとして、基板側に抜ける逆方向電流を測定し、その測定した逆方向電流をパラメータとして予め求められた静電破壊エネルギ/Si密度の曲線における静電破壊エネルギが極小となるSi濃度(Si密度)となるように、多重層6をシリコンドーピングすれば、発光強度や駆動電圧を悪化させることなく最も静電破壊しにくく、静電耐圧を向上させることができる。この場合に、図2から静電破壊エネルギは20mJ/cm以上40mJ/cm以下程度であればよい。さらに好ましくは、静電破壊エネルギが20mJ/cm以上35mJ/cm以下であればよい。 Therefore, for each type of substrate or production lot, the reverse current flowing out to the substrate side is measured as a parameter of reverse electrical characteristics of a predetermined item, and the electrostatic breakdown energy obtained in advance using the measured reverse current as a parameter. If the multi-layer 6 is silicon-doped so that the electrostatic breakdown energy in the / Si density curve becomes the minimum Si concentration (Si density), the electrostatic breakdown is hardly caused without deteriorating the light emission intensity and the driving voltage. The electrostatic withstand voltage can be improved. In this case, the electrostatic breakdown energy from FIG. 2 may be a degree 20 mJ / cm 2 or more 40 mJ / cm 2 or less. More preferably, the electrostatic breakdown energy as long 20 mJ / cm 2 or more 35 mJ / cm 2 or less.
 上記構成の窒化物半導体発光素子1の製造方法について説明する。 A method for manufacturing the nitride semiconductor light emitting device 1 having the above configuration will be described.
 図3は、図1の窒化物半導体発光素子1の製造方法における各製造工程を示す流れ図である。 FIG. 3 is a flowchart showing each manufacturing process in the method for manufacturing the nitride semiconductor light emitting device 1 of FIG.
 図3に示すように、本実施形態1の窒化物半導体発光素子1の製造方法は、ステップS1でサファイヤ基板2を所定位置に受け入れるサファイヤ基板2の基板受け入れ工程と、ステップS2でサファイヤ基板2の表面に凹凸を形成するサファイヤ表面凹凸加工工程と、ステップS3でMOCVD法により、ステップS3で、サファイヤ基板2の表面凹凸加工面上に、バッファ層3、ノンドープGaN層4、n型コンタクト層5、多重層6、多重量子井戸構造の発光層7、電子ブロック層8およびp型コンタクト層9をこの順に順次形成するMOCVD工程と、ステップS4でp型コンタクト層9上に透光性薄膜電極10を形成する透明性電極形成工程と、ステップS5で、基板端部をn型コンタクト層5の途中までエッチング除去してn型コンタクト層5の端部を露出させ、n型コンタクト層5の端部表面上にn電極12を形成すると共に、透光性薄膜電極10の一部表面上にp電極11を形成するn電極およびp電極形成工程と、ステップS6で、透光性薄膜電極10、p電極11、n電極12およびn型コンタクト層5の露出表面、さらにエッチング除去側面に耐湿度用などに保護層13を形成する保護層形成工程と、ステップS7で、p電極11およびn電極12上の保護層13をそれぞれ開口する電極開口部工程と、ステップS8で、n電極12からノンドープGaN層4を介してサファイヤ基板2に電流が抜ける逆方向電流値を測定する測定検査工程とを有している。 As shown in FIG. 3, in the method for manufacturing the nitride semiconductor light emitting device 1 according to the first embodiment, the sapphire substrate 2 is received in a predetermined position in step S1, and the sapphire substrate 2 is received in step S2. A sapphire surface unevenness forming step for forming unevenness on the surface, a buffer layer 3, a non-doped GaN layer 4, an n-type contact layer 5 on the surface unevenness processed surface of the sapphire substrate 2 in step S3 by MOCVD in step S3, A MOCVD process for sequentially forming the multilayer 6, the light emitting layer 7, the electron blocking layer 8, and the p-type contact layer 9 in this order, and the translucent thin film electrode 10 on the p-type contact layer 9 in step S4. In the transparent electrode forming step to be formed, and in step S5, the substrate end is etched away to the middle of the n-type contact layer 5 to form the n-type An n electrode that exposes an end of the contact layer 5, forms an n electrode 12 on the surface of the end of the n-type contact layer 5, and forms a p electrode 11 on a partial surface of the translucent thin film electrode 10, In the p-electrode forming step, and in step S6, a protective layer 13 is formed for moisture resistance and the like on the exposed surfaces of the translucent thin-film electrode 10, the p-electrode 11, the n-electrode 12 and the n-type contact layer 5, and further on the etching removal side surface A sapphire substrate 2 through a protective layer forming step, an electrode opening step for opening the protective layer 13 on the p-electrode 11 and the n-electrode 12 in step S7, and a non-doped GaN layer 4 from the n-electrode 12 in step S8. And a measurement / inspection step for measuring a reverse current value from which a current is lost.
 このステップS8の測定検査工程で得た基板やロット特有の逆方向電流値をステップS3のMOCVD工程の多重層6の形成時にフィードバックし、ステップS3のMOCVD工程で、多重層6を形成時に、このフィードバックされた逆方向電流値をパラメータとした特性曲線において、静電破壊エネルギ/Si密度の特性曲線における静電破壊エネルギが極小となるSi濃度(Si密度)となるように、多重層6をシリコンドーピングする。要するに、多重層6を形成時に逆方向電流値をフィードバックし、多重層6に対してシリコン(Si)のドープ量を、静電破壊エネルギ(mJ/cm)が最も低いSi濃度に可変する。 The reverse current value peculiar to the substrate or lot obtained in the measurement / inspection process in step S8 is fed back when the multilayer 6 is formed in the MOCVD process in step S3. When the multilayer 6 is formed in the MOCVD process in step S3, In the characteristic curve with the reverse current value fed back as a parameter, the multilayer 6 is made of silicon so that the electrostatic breakdown energy in the electrostatic breakdown energy / Si density characteristic curve becomes a minimum Si concentration (Si density). Doping. In short, the reverse current value is fed back when the multilayer 6 is formed, and the doping amount of silicon (Si) with respect to the multilayer 6 is varied to the Si concentration with the lowest electrostatic breakdown energy (mJ / cm 2 ).
 要するに、本実施形態1の窒化物半導体発光素子1の製造方法は、窒化物半導体発光素子構造を有機金属化学気相成長法によりサファイア基板2上に形成する第1の工程と、p電極11およびn電極12を形成する第2の工程と、逆方向電気特性として逆方向電流値を測定する第3の工程とを有する窒化物半導体発光素子1の製造工程において、n導電型不純物のSi濃度を第3の工程で測定される窒化物半導体発光素子1の逆方向電気特性値である逆方向電流値を用いて、その測定結果の逆方向電流値がパラメータである上記特性曲線を選択し、この選択した特性曲線に基づいて、静電破壊エネルギが極小となるSi濃度に、第1の工程のn導電型不純物のSi濃度を制御する。 In short, the method for manufacturing the nitride semiconductor light emitting device 1 of Embodiment 1 includes the first step of forming the nitride semiconductor light emitting device structure on the sapphire substrate 2 by metal organic chemical vapor deposition, In the manufacturing process of the nitride semiconductor light emitting device 1 having the second step of forming the n-electrode 12 and the third step of measuring the reverse current value as the reverse electric characteristic, the Si concentration of the n-conductivity type impurity is set. Using the reverse current value that is the reverse electric characteristic value of the nitride semiconductor light emitting device 1 measured in the third step, the above characteristic curve whose reverse current value of the measurement result is a parameter is selected, and this Based on the selected characteristic curve, the Si concentration of the n-conductivity type impurity in the first step is controlled to a Si concentration at which electrostatic breakdown energy is minimized.
 この場合、n導電型不純物のSi濃度の制御は、SiHガス流量またはSiH(CHガス流量を制御することにより行う。静電破壊の原因となる高電圧の電荷が発光素子に印加されるときのエネルギを発光素子に印加されないようなインピーダンスとなるようなn型不純物濃度に有機金属化学気相成長装置のガス流量によりn導電型不純物の濃度を制御することにより、光出力を劣化させることなく、静電破壊耐性を向上させることができる。 In this case, the Si concentration of the n-conductivity type impurity is controlled by controlling the SiH 4 gas flow rate or the SiH (CH 3 ) 3 gas flow rate. Depending on the gas flow rate of the metal organic chemical vapor deposition apparatus, the energy at the time when a high voltage charge causing electrostatic breakdown is applied to the light emitting element is set to an n-type impurity concentration that does not apply to the light emitting element. By controlling the concentration of the n-conductivity type impurity, it is possible to improve the resistance to electrostatic breakdown without deteriorating the light output.
 以上により、本実施形態1によれば、単結晶性基板2上に、多重量子井戸構造の発光層7を有する窒化物半導体発光素子1において、発光層7のn電極12側に、InGa1-xN (0<x<0.3)からなる第1の層と、GaNからなる第2の層とを交互に複数積層した多重層6を有し、多重量子井戸構造の発光層7の井戸層は少なくともInを含むInGa1-yN(0≦y<0.3)からなり、多重層6の第1の層に、n導電型不純物がその濃度として5×1016cm-3~1×1018cm-3の範囲で添加されて、発光層7が受ける静電破壊エネルギ(mJ/cm)が20以上40以下とされていること、具体的には、測定結果の逆方向電流値がパラメータである上記特性曲線に基づいて、静電破壊エネルギが極小となるSi濃度で、多重層6の第1の層に、n導電型不純物のSiをイオン注入することにより、光出力を劣化させることなく、静電耐圧をより向上させることができる。 As described above, according to the first embodiment, in the nitride semiconductor light emitting device 1 having the light emitting layer 7 having the multiple quantum well structure on the single crystal substrate 2, the In x Ga is disposed on the light emitting layer 7 on the n electrode 12 side. A light emitting layer 7 having a multiple quantum well structure having a multiple layer 6 in which a plurality of first layers made of 1-x N (0 <x <0.3) and second layers made of GaN are alternately stacked. The well layer is made of In y Ga 1-y N (0 ≦ y <0.3) containing at least In, and the n-type impurity is added to the first layer of the multi-layer 6 at a concentration of 5 × 10 16 cm. The electrostatic breakdown energy (mJ / cm 2 ) that is added in the range of −3 to 1 × 10 18 cm −3 and received by the light emitting layer 7 is 20 or more and 40 or less. Specifically, the measurement result Based on the above characteristic curve whose reverse current value is a parameter, the electrostatic breakdown energy is By ion-implanting n-conductivity type impurity Si into the first layer of the multi-layer 6 at a minimum Si concentration, the electrostatic withstand voltage can be further improved without deteriorating the light output.
 なお、本実施形態1では、多重層6の第1の層に、n導電型不純物がその濃度として5×1016cm-3~1×1018cm-3の範囲で添加されて、発光層7が受ける静電破壊エネルギ(mJ/cm)が20以上40以下とされていること、その一例として、測定検査工程での測定結果の逆方向電流値がパラメータである上記特性曲線に基づいて、静電破壊エネルギが極小となるSi濃度で、多重層6の第1の層にn導電型不純物のSiをイオン注入する場合について説明したが、これに限らず、測定検査工程での測定結果の逆方向電流値がパラメータである上記特性曲線に基づいて、静電破壊エネルギが極小となる前後の所定範囲のSi濃度で、多重層6の第1の層にn導電型不純物のSiをイオン注入してもよい。要するに、多重層6の第1の層に、n導電型不純物がその濃度として5×1016cm-3~1×1018cm-3の範囲で添加されて、発光層7が受ける静電破壊エネルギ(mJ/cm)が20以上40以下とされていればよい。 In the first embodiment, an n-conductivity type impurity is added to the first layer of the multilayer 6 in the range of 5 × 10 16 cm −3 to 1 × 10 18 cm −3 to form the light emitting layer. The electrostatic breakdown energy (mJ / cm 2 ) received by 7 is 20 or more and 40 or less, for example, based on the above characteristic curve in which the reverse current value of the measurement result in the measurement inspection process is a parameter. In the above description, the case where ion implantation of Si of n-conductivity type impurities is performed on the first layer of the multilayer 6 at a Si concentration at which electrostatic breakdown energy is minimized has been described. On the basis of the above characteristic curve whose reverse current value is a parameter, ions of n-conductivity type impurities are ionized into the first layer of the multilayer 6 with a Si concentration within a predetermined range before and after the electrostatic breakdown energy is minimized. It may be injected. In short, an n-type impurity is added to the first layer of the multi-layer 6 in a concentration range of 5 × 10 16 cm −3 to 1 × 10 18 cm −3 to cause the electrostatic breakdown that the light emitting layer 7 undergoes. The energy (mJ / cm 2 ) may be 20 or more and 40 or less.
 この場合、本実施形態1では、多重層6の第1の層のSi濃度を制御したが、これに限らず、多重層6の第1の層および第2の層のそれぞれのSi濃度を制御してもよい。要するに、多重層6の第1の層のSi濃度を制御すればよい。 In this case, in the first embodiment, the Si concentration of the first layer of the multilayer 6 is controlled. However, the present invention is not limited to this, and the respective Si concentrations of the first layer and the second layer of the multilayer 6 are controlled. May be. In short, the Si concentration of the first layer of the multilayer 6 may be controlled.
 なお、本実施形態1では、所定項目の逆方向電気特性としての逆方向電流値をパラメータとして、発光層7が受ける静電破壊エネルギ(mJ/cm)と多重層6のSi濃度との関係を示す特性曲線を予め求めておき、測定検査工程で求めた逆方向電流値をパラメータとする特性曲線に基づいて、多重層6の少なくとも第1の層のSi濃度を、静電破壊エネルギ(mJ/cm)の極小値または、その前後の値に対応する多重層6のSi濃度に制御している場合について説明したが、逆方向電気特性値は上記逆方向電流値に限らず、逆方向AC電圧印加時の静電容量値であってもよい。 In the first embodiment, the relationship between the electrostatic breakdown energy (mJ / cm 2 ) received by the light emitting layer 7 and the Si concentration of the multilayer 6 using the reverse current value as the reverse electrical characteristic of a predetermined item as a parameter. Is obtained in advance, and the Si concentration of at least the first layer of the multilayer 6 is determined based on the electrostatic breakdown energy (mJ) based on the characteristic curve using the reverse current value obtained in the measurement and inspection process as a parameter. / Cm 2 ), or the case where the Si concentration of the multilayer 6 corresponding to the values before and after the minimum value has been described. However, the reverse electric characteristic value is not limited to the reverse current value, and the reverse direction It may be a capacitance value when an AC voltage is applied.
 この場合、所定項目の逆方向電気特性としての逆方向AC電圧印加時の静電容量値をパラメータとして、発光層7が受ける静電破壊エネルギ(mJ/cm)と多重層6のSi濃度との関係を示す特性曲線を予め求めておき、測定検査工程で求めた逆方向AC電圧印加時の静電容量値をパラメータとする特性曲線に基づいて、多重層6の少なくとも第1の層のSi濃度を、静電破壊エネルギ(mJ/cm)の極小値または、その前後の値に対応する多重層6のSi濃度に制御することになる。所定項目の逆方向電気特性としての逆方向AC電圧印加時の静電容量値をパラメータとする特性曲線も、図2に示す所定項目の逆方向電気特性としての逆方向電流値をパラメータとする特性曲線と同様に極小値や極大値を持つ同様の特性曲線となっている。要するに、逆方向AC電圧印加時の静電容量値をパラメータとする特性曲線についても、本発明に適用することができる。即ち、逆方向AC電圧印加時の静電容量値の違い毎に多重層6のSi濃度に対する静電破壊エネルギ(mJ/cm)の関係が、逆方向電流値毎に、多重層6のSi濃度に対する静電破壊エネルギ(mJ/cm)の関係が存在するのと同様に存在する。 In this case, the electrostatic breakdown energy (mJ / cm 2 ) received by the light emitting layer 7 and the Si concentration of the multi-layer 6 using the capacitance value when the reverse AC voltage is applied as the reverse direction electrical characteristics of the predetermined item as parameters. Is obtained in advance, and based on the characteristic curve using the capacitance value at the time of reverse AC voltage application obtained in the measurement / inspection process as a parameter, at least the first layer of the multilayer 6 is Si. The concentration is controlled to be the Si concentration of the multilayer 6 corresponding to the minimum value of electrostatic breakdown energy (mJ / cm 2 ) or the value before and after the minimum value. The characteristic curve using the capacitance value when reverse AC voltage is applied as the reverse direction electrical characteristic of the predetermined item as a parameter is also a characteristic curve using the reverse current value as the reverse direction electrical characteristic of the predetermined item shown in FIG. Similar to the curve, the characteristic curve has a minimum value and a maximum value. In short, the present invention can also be applied to a characteristic curve using the capacitance value when a reverse AC voltage is applied as a parameter. That is, the relationship between the electrostatic breakdown energy (mJ / cm 2 ) and the Si concentration of the multilayer 6 for each difference in capacitance value when the reverse AC voltage is applied indicates that the Si of the multilayer 6 for each reverse current value. It exists in the same way that there exists a relationship of electrostatic breakdown energy (mJ / cm 2 ) to concentration.
 なお、本実施形態1では、所定項目の逆方向電気特性としての逆方向電流値をパラメータとして、発光層7が受ける静電破壊エネルギ(mJ/cm)と多重層6のSi濃度との関係を示す特性曲線を予め求めておき、測定検査工程で求めた逆方向電流値をパラメータとする特性曲線に基づいて、多重層6の少なくとも第1の層のSi濃度を、静電破壊エネルギ(mJ/cm)の極小値または、その前後の値(発光層が受ける静電破壊エネルギが20以上40以下の値)に対応する多重層6のSi濃度に制御している場合について説明したが、逆方向電気特性値としては上記逆方向電流値に限らず、逆方向電気特性値は過渡容量分光法(DLTS)または等温過渡容量法(ICTS)によって測定された欠陥準位であってもよい。 In the first embodiment, the relationship between the electrostatic breakdown energy (mJ / cm 2 ) received by the light emitting layer 7 and the Si concentration of the multilayer 6 using the reverse current value as the reverse electrical characteristic of a predetermined item as a parameter. Is obtained in advance, and the Si concentration of at least the first layer of the multilayer 6 is determined based on the electrostatic breakdown energy (mJ) based on the characteristic curve using the reverse current value obtained in the measurement and inspection process as a parameter. / Cm 2 ), or the case where the Si concentration of the multilayer 6 corresponding to the minimum value before or after that (the electrostatic breakdown energy received by the light emitting layer is 20 or more and 40 or less) has been described. The reverse electric characteristic value is not limited to the reverse current value, and the reverse electric characteristic value may be a defect level measured by transient capacitance spectroscopy (DLTS) or isothermal transient capacitance method (ICTS).
 この場合、図3のステップS8の測定検査工程で逆方向電流値の測定を行う代わりに、チップ化工程の後の工程で、過渡容量分光法(DLTS)および等温過渡容量法(ICTS)によって欠陥準位を測定し、図3のステップS3のMOCVD工程にフィードバックし、測定した欠陥準位をパラメータとして、多重層6のSi濃度に対する静電破壊エネルギ(mJ/cm)の関係を示す特性曲線に基づいて、多重層6の少なくとも第1の層のSi濃度を、静電破壊エネルギ(mJ/cm)の極小値または、その前後の値(発光層が受ける静電破壊エネルギが20以上40以下の値)に対応する多重層6のSi濃度に制御する。所定項目の逆方向電気特性としての欠陥準位をパラメータとする特性曲線も、図2に示す所定項目の逆方向電気特性としての逆方向電流値をパラメータとする特性曲線と同様に極小値や極大値を持つ同様の特性曲線となっている。要するに、欠陥準位をパラメータとする特性曲線についても、本発明に適用することができる。即ち、欠陥準位の違い毎に多重層6のSi濃度に対する静電破壊エネルギ(mJ/cm)の関係が、図2に示すように、逆方向電流値毎に、多重層6のSi濃度に対する静電破壊エネルギ(mJ/cm)の関係が存在するのと同様に存在する。 In this case, instead of measuring the reverse current value in the measurement / inspection process in step S8 of FIG. 3, a defect is detected by transient capacitance spectroscopy (DLTS) and isothermal transient capacitance method (ICTS) in the process after the chip formation process. The level is measured, fed back to the MOCVD process in step S3 of FIG. 3, and the characteristic curve showing the relationship of the electrostatic breakdown energy (mJ / cm 2 ) to the Si concentration of the multilayer 6 using the measured defect level as a parameter. Based on the above, the Si concentration of at least the first layer of the multi-layer 6 is set to a minimum value of electrostatic breakdown energy (mJ / cm 2 ) or a value before and after that (the electrostatic breakdown energy received by the light emitting layer is 20 to 40). The Si concentration of the multilayer 6 corresponding to the following value is controlled. The characteristic curve using the defect level as the reverse electrical characteristic of the predetermined item as a parameter is also the same as the characteristic curve using the reverse current value as the reverse electrical characteristic of the predetermined item shown in FIG. Similar characteristic curves with values. In short, a characteristic curve having the defect level as a parameter can also be applied to the present invention. That is, the relationship between the electrostatic breakdown energy (mJ / cm 2 ) and the Si concentration of the multilayer 6 for each defect level is as shown in FIG. Exists as well as the relationship of electrostatic breakdown energy (mJ / cm 2 ) to.
 以上のように、本発明の好ましい実施形態1を用いて本発明を例示してきたが、本発明は、この実施形態1に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態1の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。 As described above, the present invention has been exemplified using the preferred embodiment 1 of the present invention, but the present invention should not be construed as being limited to the embodiment 1. It is understood that the scope of the present invention should be construed only by the claims. It is understood that those skilled in the art can implement an equivalent range from the description of the specific preferred embodiment 1 of the present invention based on the description of the present invention and the common general technical knowledge. Patents, patent applications, and documents cited herein should be incorporated by reference in their entirety, as if the contents themselves were specifically described herein. Understood.
 本発明は、緑、青および紫外領域の窒化物系化合物半導体発光素子などの窒化物半導体発光素子およびその製造方法の分野において、発光層のn電極側に、InGa1-xN(0<x<0.3)からなる第1の層とGaNからなる第2の層とを交互に積層した多重層の少なくとも第1の層に、不純物濃度が5×1016cm-3~1×1018cm-3の範囲になるように多重層に不純物を添加して、発光層が受ける静電破壊エネルギ(mJ/cm)が20以上40以下とすることにより、静電破壊の原因となる高電圧の電荷が発光層に印加されるときのエネルギを発光層に印加されないようなインピーダンスとなるような多重層の不純物濃度に制御するため、発光強度や駆動電圧を悪化させることなく静電耐圧を向上させることができる。 In the field of nitride semiconductor light-emitting devices such as nitride-based compound semiconductor light-emitting devices in the green, blue, and ultraviolet regions, and a method for manufacturing the same, the present invention provides an In x Ga 1-x N (0 An impurity concentration of 5 × 10 16 cm −3 to 1 × is applied to at least the first layer of the multilayer in which first layers made of <x <0.3) and second layers made of GaN are alternately laminated. Impurities are caused by adding an impurity to the multilayer so as to be in the range of 10 18 cm −3 so that the electrostatic breakdown energy (mJ / cm 2 ) received by the light emitting layer is 20 or more and 40 or less. In order to control the energy when the high voltage charge is applied to the light emitting layer to the impurity concentration of the multilayer so that the impedance is not applied to the light emitting layer, electrostatic energy can be output without deteriorating the light emission intensity and driving voltage. Improve pressure resistance Can.

Claims (14)

  1.  単結晶性基板上に多重量子井戸構造の発光層が形成された窒化物半導体発光素子において、
     該発光層のn電極側に、InGa1-xN(0<x<0.3)からなる第1の層とGaNからなる第2の層とを交互に積層した多重層を有し、該多重量子井戸構造の発光層の井戸層は少なくともInを含むInGa1-yN(0≦y<0.3)からなり、該多重層の少なくとも第1の層に、一導電型不純物がその濃度として5×1016cm-3~1×1018cm-3の範囲で添加されて、該発光層が受ける静電破壊エネルギ(mJ/cm)が20以上40以下とされている窒化物半導体発光素子。
    In a nitride semiconductor light emitting device in which a light emitting layer having a multiple quantum well structure is formed on a single crystal substrate,
    On the n-electrode side of the light emitting layer, there is a multiple layer in which first layers made of In x Ga 1-x N (0 <x <0.3) and second layers made of GaN are alternately laminated. The well layer of the light emitting layer having the multiple quantum well structure is made of In y Ga 1-y N (0 ≦ y <0.3) containing at least In, and at least the first layer of the multiple layer has one conductivity type. Impurities are added in the concentration range of 5 × 10 16 cm −3 to 1 × 10 18 cm −3 , and the electrostatic breakdown energy (mJ / cm 2 ) received by the light emitting layer is 20 or more and 40 or less. A nitride semiconductor light emitting device.
  2.  所定項目の逆方向電気特性をパラメータとして、前記発光層が受ける静電破壊エネルギ(mJ/cm)と前記多重層の一導電型不純物の濃度との関係を示す特性曲線において、該静電破壊エネルギ(mJ/cm)の極小値に該一導電型不純物の濃度が設定されている請求項1に記載の窒化物半導体発光素子。 In the characteristic curve showing the relationship between the electrostatic breakdown energy (mJ / cm 2 ) received by the light emitting layer and the concentration of one conductivity type impurity of the multi-layer using the reverse direction electrical characteristics of a predetermined item as a parameter, The nitride semiconductor light emitting element according to claim 1, wherein the concentration of the one conductivity type impurity is set to a minimum value of energy (mJ / cm 2 ).
  3.  前記逆方向電気特性は、前記n電極から前記単結晶性基板側に流れる逆方向電流値である請求項1に記載の窒化物半導体発光素子。 2. The nitride semiconductor light emitting device according to claim 1, wherein the reverse electric characteristic is a reverse current value flowing from the n electrode to the single crystalline substrate. 3.
  4.  前記逆方向電気特性は、逆方向電圧印加時の静電容量値である請求項1に記載の窒化物半導体発光素子。 2. The nitride semiconductor light emitting device according to claim 1, wherein the reverse electrical characteristic is a capacitance value when a reverse voltage is applied.
  5.  前記逆方向電気特性は、過渡容量分光法または等温過渡容量法によって測定された欠陥準位である請求項1に記載の窒化物半導体発光素子。 2. The nitride semiconductor light emitting device according to claim 1, wherein the reverse electrical characteristic is a defect level measured by transient capacitance spectroscopy or isothermal transient capacitance method.
  6.  前記発光層が受ける静電破壊エネルギ(mJ/cm)が20以上35以下とされている請求項1に記載の窒化物半導体発光素子。 The nitride semiconductor light emitting element according to claim 1, wherein electrostatic breakdown energy (mJ / cm 2 ) received by the light emitting layer is 20 or more and 35 or less.
  7.  前記一導電型不純物がその濃度として1×1017cm-3~1×1018cm-3の範囲で添加されている請求項1に記載の窒化物半導体発光素子。 The nitride semiconductor light-emitting element according to claim 1, wherein the one-conductivity type impurity is added in a concentration range of 1 × 10 17 cm −3 to 1 × 10 18 cm −3 .
  8.  前記一導電型不純物は、n導電型不純物のSiである請求項1に記載の窒化物半導体発光素子。 2. The nitride semiconductor light emitting device according to claim 1, wherein the one conductivity type impurity is Si of an n conductivity type impurity.
  9.  窒化物半導体発光素子構造を有機金属化学気相成長法により単結晶性基板上に形成する第1の工程と、該窒化物半導体発光素子構造に対してp電極およびn電極を形成する第2の工程と、逆方向電気特性を測定する第3の工程とを有し、
     該逆方向電気特性を用いて次回からの該第1の工程において、該単結晶性基板上に形成された多重量子井戸構造の発光層のn電極側に設けた多重層の少なくとも第1の層に、該発光層が受ける静電破壊エネルギ(mJ/cm)を20以上40以下になるように、一導電型不純物の濃度が5×1016cm-3~1×1018cm-3の範囲で該一導電型不純物を添加する窒化物半導体発光素子の製造方法。
    A first step of forming a nitride semiconductor light emitting device structure on a single crystal substrate by metal organic chemical vapor deposition, and a second step of forming a p-electrode and an n-electrode on the nitride semiconductor light-emitting device structure And a third step of measuring reverse electrical characteristics,
    At least the first layer of the multiple layer provided on the n-electrode side of the light emitting layer of the multiple quantum well structure formed on the single crystal substrate in the first step from the next time using the reverse electrical characteristics Further, the concentration of one conductivity type impurity is 5 × 10 16 cm −3 to 1 × 10 18 cm −3 so that the electrostatic breakdown energy (mJ / cm 2 ) received by the light emitting layer is 20 or more and 40 or less. A method for manufacturing a nitride semiconductor light emitting device, wherein the impurity of one conductivity type is added in a range.
  10.  所定項目の逆方向電気特性をパラメータとして、前記発光層が受ける静電破壊エネルギ(mJ/cm)と前記多重層の一導電型不純物の濃度との関係を示す特性曲線を予め求めておき、前記第3の工程で求めた逆方向電気特性をパラメータとする特性曲線において、前記多重層の少なくとも第1の層の一導電型不純物の濃度を、該静電破壊エネルギ(mJ/cm)の極小値に対応する該多重層の一導電型不純物の濃度に制御する請求項9に記載の窒化物半導体発光素子の製造方法。 Using a reverse electrical characteristic of a predetermined item as a parameter, a characteristic curve indicating a relationship between electrostatic breakdown energy (mJ / cm 2 ) received by the light emitting layer and the concentration of one conductivity type impurity of the multilayer is obtained in advance. In the characteristic curve using the reverse direction electric characteristic obtained in the third step as a parameter, the concentration of at least the first layer of one conductivity type impurity of the multi-layer is the electrostatic breakdown energy (mJ / cm 2 ). The method for manufacturing a nitride semiconductor light emitting element according to claim 9, wherein the concentration of the multi-layer corresponding to the minimum value is controlled to a concentration of one conductivity type impurity.
  11.  前記一導電型不純物の濃度の制御は、SiHガス流量またはSiH(CHガス流量を制御することにより行う請求項10に記載の窒化物半導体発光素子の製造方法。 The method of manufacturing a nitride semiconductor light emitting element according to claim 10, wherein the concentration of the one conductivity type impurity is controlled by controlling a SiH 4 gas flow rate or a SiH (CH 3 ) 3 gas flow rate.
  12.  前記逆方向電気特性は、前記n電極から前記単結晶性基板側に流れる逆方向電流値である請求項9に記載の窒化物半導体発光素子の製造方法。 10. The method for manufacturing a nitride semiconductor light emitting element according to claim 9, wherein the reverse electrical characteristic is a reverse current value flowing from the n electrode to the single crystal substrate side.
  13.  前記逆方向電気特性は、逆方向AC電圧印加時の静電容量値である請求項9に記載の窒化物半導体発光素子の製造方法 10. The method of manufacturing a nitride semiconductor light emitting device according to claim 9, wherein the reverse electrical characteristic is a capacitance value when a reverse AC voltage is applied.
  14.  前記逆方向電気特性は、過渡容量分光法または等温過渡容量法によって測定された欠陥準位である請求項9に記載の窒化物半導体発光素子の製造方法。 10. The method for manufacturing a nitride semiconductor light-emitting element according to claim 9, wherein the reverse electrical characteristic is a defect level measured by transient capacitance spectroscopy or isothermal transient capacitance.
PCT/JP2011/007274 2011-01-07 2011-12-26 Nitride semiconductor light emitting device and production method therefor WO2012093463A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011800642370A CN103299439A (en) 2011-01-07 2011-12-26 Nitride semiconductor light emitting device and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011002567A JP5480827B2 (en) 2011-01-07 2011-01-07 Nitride semiconductor light emitting device and manufacturing method thereof
JP2011-002567 2011-02-07

Publications (1)

Publication Number Publication Date
WO2012093463A1 true WO2012093463A1 (en) 2012-07-12

Family

ID=46457331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/007274 WO2012093463A1 (en) 2011-01-07 2011-12-26 Nitride semiconductor light emitting device and production method therefor

Country Status (3)

Country Link
JP (1) JP5480827B2 (en)
CN (1) CN103299439A (en)
WO (1) WO2012093463A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140367A (en) * 2015-09-29 2015-12-09 华南师范大学 GaN-based LED epitaxial structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6331572B2 (en) * 2014-03-28 2018-05-30 日亜化学工業株式会社 Method of manufacturing nitride semiconductor device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148507A (en) * 1999-03-29 2001-05-29 Nichia Chem Ind Ltd Nitride semiconductor device
JP2003004798A (en) * 2001-06-21 2003-01-08 Hyogo Prefecture Characteristics evaluation device for semiconductor wafer, and using method therefor
JP2005051170A (en) * 2003-07-31 2005-02-24 Toyoda Gosei Co Ltd Group iii nitride compound semiconductor light emitting element
JP2006186005A (en) * 2004-12-27 2006-07-13 Sumitomo Chemical Co Ltd Nitride compound semiconductor, its manufacturing method and use
JP2007305609A (en) * 2006-04-10 2007-11-22 Matsushita Electric Ind Co Ltd Semiconductor device
WO2007145279A1 (en) * 2006-06-15 2007-12-21 The Furukawa Electric Co., Ltd. Normally-off field effect transistor using iii nitride semiconductor and method for manufacturing such transistor
JP2008525298A (en) * 2004-12-22 2008-07-17 クリー インコーポレイテッド Process for producing silicon carbide crystals with increased minority carrier lifetime
JP2009076593A (en) * 2007-09-19 2009-04-09 Hitachi Cable Ltd Grooving processing method and optical measurement method
JP2010161354A (en) * 2008-12-08 2010-07-22 Showa Denko Kk Template substrate for semiconductor light emitting element, method for manufacturing the same, method for manufacturing semiconductor light emitting element and semiconductor light emitting element
JP2010225979A (en) * 2009-03-25 2010-10-07 Furukawa Electric Co Ltd:The GaN-BASED FIELD-EFFECT TRANSISTOR

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101645480B (en) * 2009-06-22 2012-05-30 华灿光电股份有限公司 Method for enhancing antistatic ability of GaN-based light-emitting diode

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148507A (en) * 1999-03-29 2001-05-29 Nichia Chem Ind Ltd Nitride semiconductor device
JP2003004798A (en) * 2001-06-21 2003-01-08 Hyogo Prefecture Characteristics evaluation device for semiconductor wafer, and using method therefor
JP2005051170A (en) * 2003-07-31 2005-02-24 Toyoda Gosei Co Ltd Group iii nitride compound semiconductor light emitting element
JP2008525298A (en) * 2004-12-22 2008-07-17 クリー インコーポレイテッド Process for producing silicon carbide crystals with increased minority carrier lifetime
JP2006186005A (en) * 2004-12-27 2006-07-13 Sumitomo Chemical Co Ltd Nitride compound semiconductor, its manufacturing method and use
JP2007305609A (en) * 2006-04-10 2007-11-22 Matsushita Electric Ind Co Ltd Semiconductor device
WO2007145279A1 (en) * 2006-06-15 2007-12-21 The Furukawa Electric Co., Ltd. Normally-off field effect transistor using iii nitride semiconductor and method for manufacturing such transistor
JP2009076593A (en) * 2007-09-19 2009-04-09 Hitachi Cable Ltd Grooving processing method and optical measurement method
JP2010161354A (en) * 2008-12-08 2010-07-22 Showa Denko Kk Template substrate for semiconductor light emitting element, method for manufacturing the same, method for manufacturing semiconductor light emitting element and semiconductor light emitting element
JP2010225979A (en) * 2009-03-25 2010-10-07 Furukawa Electric Co Ltd:The GaN-BASED FIELD-EFFECT TRANSISTOR

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140367A (en) * 2015-09-29 2015-12-09 华南师范大学 GaN-based LED epitaxial structure

Also Published As

Publication number Publication date
JP5480827B2 (en) 2014-04-23
JP2012146757A (en) 2012-08-02
CN103299439A (en) 2013-09-11

Similar Documents

Publication Publication Date Title
KR101164026B1 (en) Nitride semiconductor light emitting device and fabrication method thereof
CN102782883B (en) Light-emitting diode and manufacture method thereof
KR100835116B1 (en) Nitride semiconductor light emitting device
KR100631971B1 (en) Nitride semiconductor light emitting device
JP6173501B2 (en) Radiation emitting semiconductor chip incorporating ESD protection measures
CN111063777A (en) Semiconductor device with a plurality of semiconductor chips
WO2011033625A1 (en) Semiconductor light emitting element
KR101843513B1 (en) Gallium nitride-based light emitting diode
KR101199677B1 (en) Semiconductor light-emitting device and method for manufacturing same
WO2007091651A1 (en) Nitride semiconductor element
KR20090034163A (en) Iii-nitride semiconductor light emitting device
KR20150048337A (en) Near uv light emitting device
JP4292925B2 (en) Method for manufacturing group III nitride compound semiconductor light emitting device
JP5480827B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
TWI384657B (en) Nitirde semiconductor light emitting diode device
KR102131697B1 (en) Semiconductor device having enhanced esd characteristics and method of fabricating the same
JP2013122950A (en) Group iii nitride semiconductor light-emitting element
JP2005051170A (en) Group iii nitride compound semiconductor light emitting element
KR100661606B1 (en) Nitride semiconductor device
JP7481618B2 (en) Method for manufacturing nitride semiconductor device
KR101161409B1 (en) Nitride semiconductor light emitting device and fabrication method thereof
JP2019117950A (en) Electronic component
JP5862177B2 (en) Nitride semiconductor device
US20150243845A1 (en) Light-emitting device
JP2007201146A (en) Light emitting element and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854573

Country of ref document: EP

Kind code of ref document: A1