WO2012092892A2 - 时间同步方法和设备及*** - Google Patents

时间同步方法和设备及*** Download PDF

Info

Publication number
WO2012092892A2
WO2012092892A2 PCT/CN2012/070814 CN2012070814W WO2012092892A2 WO 2012092892 A2 WO2012092892 A2 WO 2012092892A2 CN 2012070814 W CN2012070814 W CN 2012070814W WO 2012092892 A2 WO2012092892 A2 WO 2012092892A2
Authority
WO
WIPO (PCT)
Prior art keywords
delay
time
fiber transmission
transmission delay
rtd
Prior art date
Application number
PCT/CN2012/070814
Other languages
English (en)
French (fr)
Other versions
WO2012092892A3 (zh
Inventor
殷锦蓉
杨素林
刘守文
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12732198.2A priority Critical patent/EP2555465A4/en
Priority to PCT/CN2012/070814 priority patent/WO2012092892A2/zh
Priority to CN2012800001060A priority patent/CN102742190A/zh
Publication of WO2012092892A2 publication Critical patent/WO2012092892A2/zh
Priority to TW101140696A priority patent/TW201334437A/zh
Priority to ARP120105017 priority patent/AR089495A1/es
Publication of WO2012092892A3 publication Critical patent/WO2012092892A3/zh
Priority to US13/739,783 priority patent/US9143311B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0075Arrangements for synchronising receiver with transmitter with photonic or optical means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0667Bidirectional timestamps, e.g. NTP or PTP for compensation of clock drift and for compensation of propagation delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a time synchronization method, device, and system. Background technique
  • the precision clock protocol IEEE 1588v2 defines a time synchronization technology based on packet transmission.
  • the technology uses a time stamp mechanism and a master-slave clock scheme to encode and transmit time while utilizing the symmetry and delay measurement techniques of the network link. Synchronize the master-slave clock frequency and time.
  • IEEE 1588v2 requires that the transceiver fiber be strictly symmetrical, that is, the fiber transmission delay dl from the master device to the slave device, and the fiber transmission delay d2 from the device to the master device need to be equal. If dl and d2 are not equal, an error will be introduced.
  • the time synchronization compensation operation is manually performed when the start, the acceptance, and the network structure change, including: using a delay measurement device such as an optical time domain.
  • a delay measurement device such as an optical time domain.
  • An Optical Time Domain Reflectometer (OTDR) or an Optical Frequency Domain Reflectometer (OFDR) manually measures the transmission delay of each pair of optical fibers one by one, and then manually inputs the measured transmission delay data into the time. Synchronize the device to achieve time synchronization compensation.
  • Embodiments of the present invention provide a time synchronization method, device, and system to solve the technical problem that the existing time synchronization technology requires manual time synchronization compensation.
  • a time synchronization method including:
  • the local clock is adjusted according to the modified time offset offset2, and time synchronization is completed.
  • a time synchronization device including: a delay acquisition module, configured to acquire a first fiber transmission delay dl of the master device to the slave device, and a second fiber transmission delay d2 of the slave device to the master device;
  • a transceiver module configured to exchange an optical signal with the master device, the optical signal includes a time synchronization signal, a time synchronization module, configured to calculate an initial time offset offset1, using the first optical fiber transmission delay dl and a second optical fiber transmission delay D2 adjusts the initial time deviation offset1 to obtain a correction time deviation offset2; adjusts the local clock according to the correction time deviation offset2 to complete time synchronization.
  • a time synchronization system including:
  • the slave device is configured to exchange a fiber transmission delay measurement signal and a time synchronization signal with the master device, acquire a first fiber transmission delay dl of the master device to the slave device, and acquire a second fiber transmission delay from the device to the master device.
  • D2 calculating an initial time offset offset1; adjusting the initial time offset offset1 by using the first optical fiber transmission delay dl and the second optical fiber transmission delay d2 to obtain a corrected time offset offset2; adjusting the local clock according to the modified time offset offset2 , complete time synchronization;
  • the master device is configured to interact with the slave device to transmit a time delay measurement signal and a time synchronization signal.
  • the slave device can obtain the first optical fiber transmission delay dl and the second optical fiber transmission delay d2 between the master and the slave device, thereby correcting the time deviation, adjusting the local clock, and completing the time synchronization, thereby Online time synchronization compensation is realized during the time synchronization process, and it is no longer necessary to perform time synchronization compensation operation manually.
  • FIG. 1 is a flowchart of a time synchronization method according to Embodiment 1 of the present invention.
  • FIG. 2 is a flow chart of the time synchronization signal of the slave device and the master device according to the IEEE 1588v2;
  • FIG. 3 is a schematic flowchart of the time synchronization method provided by the second embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a time synchronization method according to Embodiment 3 of the present invention.
  • FIG. 5 is a schematic flowchart of another time synchronization method according to Embodiment 3 of the present invention
  • FIG. 6 is a schematic flowchart of a time synchronization method according to Embodiment 4 of the present invention.
  • FIG. 7 is a schematic flow chart of another time synchronization method according to Embodiment 4 of the present invention
  • FIG. 8a-8d are logical structural diagrams of multiple time synchronization devices according to an embodiment of the present invention
  • FIGS. 9a-9i are embodiments of the present invention
  • a logical structure diagram of a variety of time synchronization systems is provided. detailed description
  • the embodiment of the invention provides a time synchronization method.
  • the slave device can obtain the first optical fiber transmission delay dl and the second optical fiber transmission delay d2 between the master and the slave device, thereby correcting the time deviation and adjusting the local clock.
  • Time synchronization is completed, so that time synchronization compensation can be implemented in the time synchronization process, and subsequently, it is no longer necessary to perform time synchronization compensation operation manually.
  • Embodiments of the present invention also provide corresponding time synchronization devices and systems. The details are described below separately. Embodiment 1
  • an embodiment of the present invention provides a time synchronization method, including:
  • the first optical fiber transmission delay dl of the master device to the slave device is obtained, and the second fiber transmission delay d2 of the slave device to the master device is obtained.
  • the optical fiber transmission delay measurement module may be set in the master device or the slave device, so that the master device or the slave device has the optical fiber transmission delay measurement function.
  • the optical fiber transmission delay measurement function can be integrated in both the primary and secondary devices, and the primary device measures the first optical fiber transmission delay dl from the primary device to the secondary device, and the secondary device measures the secondary device to the secondary device.
  • the optical fiber transmission delay d2, and the master device transmits the measured first optical fiber transmission delay dl to the slave device.
  • the optical fiber transmission delay measurement function may be integrated only in the primary device, and the primary device measures the first optical fiber transmission delay dl from the primary device to the secondary device, and the measured first optical fiber transmission delay dl Send to the slave device.
  • the slave device can utilize the Round Trip Delay (RTD) measurement function to combine the obtained first fiber transmission delay dl according to the loop delay measurement data.
  • RTD Round Trip Delay
  • the calculation obtains the slave device.
  • the slave device may also calculate and obtain the first fiber transmission delay dl according to the interaction signal between the master and slave devices in the time synchronization process, such as the transmission and arrival time of the delay response message.
  • the fiber transmission delay measurement function may be integrated only in the slave device, and the second fiber transmission delay d2 of the slave device to the master device is measured by the slave device.
  • the slave device can utilize the Round Trip Delay (RTD) measurement function, and combine the obtained second fiber transmission delay d2 according to the loop delay measurement data.
  • the calculation obtains the slave device.
  • the slave device can also calculate and obtain the second fiber transmission delay d2 according to the interaction signal between the master and slave devices in the time synchronization process, such as the transmission and arrival time of the delay response message.
  • the optical fiber transmission delay measurement function is activated to obtain the operation of the first optical fiber transmission delay dl and the second optical fiber transmission delay d2, which can be started synchronously when the time synchronization system is started, or can be started according to the input command, or triggered according to an event.
  • the embodiment of the present invention does not limit the start timing of the optical fiber transmission delay measurement function.
  • the slave device and the master device exchange time synchronization signals according to the technology defined in IEEE 1588v2.
  • the process is as shown in FIG. 2, including:
  • the master device sends a time synchronization message to the slave device at time t1, where the time synchronization message carries a time synchronization message transmission time tl;
  • the slave device receives a time synchronization message sent by the master device, records a time synchronization message arrival time t2, and extracts a synchronization message transmission time tl from the time synchronization message;
  • the slave device sends a delay request message to the master device, and records a delay request message sending time t3.
  • the master device receives a delay request message sent by the slave device, and records a delay request message arrival time t4.
  • the master device sends the delay request message arrival time t4 to the slave device in the delay response message, and the slave device receives the delay response message, and extracts the delay request message arrival time t4.
  • the existing IEEE 1588v2 requires the transmission and reception fiber symmetry.
  • the calculation of the time offset offset does not consider the influence of the fiber transmission delay d, that is, it is assumed that the first fiber transmission delay dl is equal to the second fiber transmission delay d2.
  • the initial time deviation which is recorded as offset1.
  • the slave device can send the time t1 according to the obtained time synchronization message, the time synchronization message arrival time t2, and the delay request message.
  • the transmission time t3 and the delay request message arrive at the time t4, and the initial time deviation offset1 is calculated.
  • the initial time deviation offset1 can be adjusted by using the first optical fiber transmission delay dl and the second optical fiber transmission delay d2 to obtain the corrected time deviation offset2.
  • the local clock can be adjusted according to the modified time offset offset2, and the time synchronization can be completed, which can be performed according to IEEE 1588v2.
  • the start of the optical fiber transmission delay measurement function in the foregoing 110 may be preceded by a time synchronization message sent by the primary device in 120, or a delay response message sent by the primary device later than 120, that is, the optical fiber transmission delay measurement function and
  • the interaction of the time synchronization signals can be performed independently, in random order.
  • the embodiment of the present invention discloses a time synchronization method, by which the slave device can obtain the first optical fiber transmission delay dl and the second optical fiber transmission delay d2 between the master and the slave device, thereby correcting the time deviation and adjusting Local clock, complete time synchronization.
  • the method of the embodiment Compared with the manual time synchronization compensation operation in the prior art, the method of the embodiment has high measurement accuracy, accurate rate draft, short cycle, low cost, and low manpower and material resources. It solved the engineering implementation problem of IEEE 1588V2 deployment and realized the scale engineering deployment capability.
  • Embodiment 2
  • the optical fiber transmission delay measurement function is integrated in both the primary and secondary devices, and the primary device measures the first optical fiber transmission delay dl from the primary device to the secondary device, and the secondary device measures the secondary optical fiber from the device to the primary device.
  • the transmission delay d2 and the master device transmits the measured first optical fiber transmission delay dl to the slave device.
  • the master device starts its own integrated fiber transmission delay measurement module to perform measurement, and obtains a first optical fiber transmission delay dl from the primary device to the secondary device.
  • the master device sends a fiber transmission delay message to the slave device, and sends the first fiber transmission delay dl to the slave device in the fiber transmission delay message.
  • the slave device receives the fiber transmission delay message sent by the master device, and extracts the first fiber transmission delay dl carried in the message.
  • the slave device starts its own integrated fiber transmission delay module to perform measurement, and obtains a second fiber transmission delay d2 from the device to the master device.
  • the master device sends a time synchronization message to the slave device at time t1, where the time synchronization message carries a time synchronization message transmission time tl.
  • the slave device receives a time synchronization message sent by the master device, records a time synchronization message arrival time t2, and extracts a synchronization message transmission time tl from the time synchronization message.
  • the slave device sends a delay request message to the master device, and records a delay request message sending time t3.
  • the master device receives a delay request message sent by the slave device, and records a time delay request message arrival time t4.
  • the master device sends the delay request message arrival time t4 to the slave device in the delay response message, and the slave device receives the delay response message, and extracts the delay request message arrival time t4.
  • the slave device can calculate the correction time offset offset2 according to the obtained fiber transmission delays dl and d2, and the times t1, t2, t3, and t4.
  • Offset 2 offset l-(di-d2)/2
  • the master device may carry the measured first fiber transmission delay dl in the time synchronization message, and send the same to the time synchronization message sending time tl to the slave device; the master device may also transmit the measured first fiber transmission.
  • the delay dl is carried in the delay response message, and is sent together with the delay request message arrival time t4. Send to the slave device.
  • the operation of starting the fiber transmission delay measurement function of the master device or the slave device may be started synchronously when the time synchronization system is started, or may be started according to the input command, or triggered according to an event, or periodically started, or periodically. start up.
  • the start of the optical fiber transmission delay measurement function may be performed before the time synchronization message or the delay response message, that is, the interaction between the optical fiber transmission delay measurement function and the time synchronization signal may be performed independently, and the sequence is arbitrary.
  • the master device can start the fiber transmission delay measurement function before the slave device, or start the fiber transmission delay measurement function later than the slave device, and can also start the fiber transmission delay measurement function simultaneously with the slave device, that is, the master device and the slave device.
  • the fiber transmission delay measurement function can be independently activated, and the two do not affect each other.
  • the optical fiber transmission delay measurement function is integrated only in the primary device, and the primary device measures the first optical fiber transmission delay dl from the primary device to the secondary device, and sends the measured first optical fiber transmission delay dl to From the device.
  • the second fiber transmission delay d2 from the device to the master device is obtained by the slave device by other means.
  • the slave device can initiate a loop delay (RTD) measurement function, and obtain a second fiber transmission delay d2 according to the loop delay measurement data combined with the obtained first fiber transmission delay dl.
  • RTD loop delay
  • the master device starts its own integrated fiber transmission delay measurement module to perform measurement, and obtains a first fiber transmission delay dl from the master device to the slave device.
  • the master device sends a fiber transmission delay message to the slave device, and sends the first fiber transmission delay dl to the slave device in the fiber transmission delay message.
  • the slave device receives the fiber transmission delay message sent by the master device, and extracts the first fiber transmission delay dl carried in the message.
  • the slave device sends a loop delay (RTD) measurement request message to the master device, and records an RTD measurement request message sending time t-rtd-s;
  • RTD loop delay
  • the master device After receiving the RTD measurement request message, the master device returns an RTD measurement response message to the slave device.
  • the slave device receives the RTD measurement response message replied by the master device, and records the RTD measurement response message arrival time t-rtd-r.
  • the master device sends a time synchronization message to the slave device at time t1, where the time synchronization message carries The time synchronization message is sent at time t1.
  • the slave device receives a time synchronization message sent by the master device, records a time synchronization message arrival time t2, and extracts a synchronization message transmission time tl from the time synchronization message.
  • the slave device sends a delay request message to the master device, and records a delay request message sending time t3. 408.
  • the master device receives a delay request message sent by the slave device, and records a time delay request message arrival time t4.
  • the master device sends the delay request message arrival time t4 to the slave device in the delay response message, and the slave device receives the delay response message, and extracts the delay request message arrival time t4.
  • the slave device calculates a second fiber transmission delay d2 according to the first fiber transmission delay dl, the RTD measurement request message sending time t-rtd-s, and the RTD measurement response message arrival time t-rtd-r.
  • the correction time offset offset2 is calculated.
  • Offset 2 offset l-(di-d2)/2
  • the master device may carry the measured first fiber transmission delay dl in the time synchronization message, and send the same to the time synchronization message sending time tl to the slave device; the master device may also transmit the measured first fiber transmission.
  • the delay dl is carried in the delay response message and sent to the slave device along with the delay request message arrival time t4.
  • the operation of the main device to start the optical fiber transmission delay measurement function can be started synchronously when the time synchronization system is started, or can be started according to the input command, or triggered according to an event, or started periodically, or periodically.
  • the start of the optical fiber transmission delay measurement function may be performed before the time synchronization message or the delay response message, that is, the interaction between the optical fiber transmission delay measurement function and the time synchronization signal may be performed independently, and the sequence is arbitrary.
  • the master device starts the fiber transmission delay measurement function before the slave device starts the RTD measurement function, or the slave device starts the RTD measurement function, and can also perform the measurement function simultaneously with the slave device RTD, that is, the master device starts the fiber.
  • Transmission delay measurement function and RTD measurement function from device Yes they can operate independently and without affecting each other.
  • the transmission and arrival time of the delay response message, combined with the obtained first optical fiber transmission delay dl is calculated to obtain the second optical fiber transmission delay d2. That is, the RTD measurement is combined with the delay measurement.
  • Figure 5 for the specific process, including:
  • the master device starts its own integrated fiber transmission delay measurement module to perform measurement, and obtains a first optical fiber transmission delay dl from the primary device to the secondary device.
  • the master device sends a fiber transmission delay message to the slave device, and sends the first fiber transmission delay dl to the slave device in the fiber transmission delay message.
  • the slave device receives the fiber transmission delay message sent by the master device, and extracts the first fiber transmission delay dl carried in the message.
  • the master device sends a time synchronization message to the slave device at time t1, where the time synchronization message carries a time synchronization message sending time tl.
  • the slave device receives a time synchronization message sent by the master device, records a time synchronization message arrival time t2, and extracts a synchronization message sending time from the time synchronization message.
  • the slave device sends a delay request message to the master device, and records a delay request message sending time t3.
  • the master device receives a delay request message sent by the slave device, and records a time delay request message arrival time t4.
  • the master device sends a delay response message to the slave device, where the delay response message carries the delay request message arrival time t4, and further carries the delay response message sending time t5.
  • Receive a delay response message from the device record a delay response message arrival time t6, and extract a delay request message arrival time t4 and a delay response message sending time t5.
  • the slave device calculates a second fiber transmission delay d2 according to the first fiber transmission delay dl and the times t3, t4, t5, and t6.
  • the correction time offset offset2 is calculated.
  • Offset 2 offset l-(di-d2)/2
  • the master device may carry the measured first fiber transmission delay di in the time synchronization message, and send the same to the time synchronization message sending time ti to the slave device; the master device may also transmit the measured first fiber transmission.
  • the delay dl is carried in the delay response message, and is sent to the slave device in response to the delay request message arrival time t4 and the delay response message transmission time t5.
  • the operation of the main device to start the optical fiber transmission delay measurement function can be started synchronously when the time synchronization system is started, or can be started according to the input command, or triggered according to an event, or started periodically, or periodically.
  • the start of the optical fiber transmission delay measurement function may be performed before the time synchronization message or the delay response message, that is, the interaction between the optical fiber transmission delay measurement function and the time synchronization signal may be performed independently, and the sequence is arbitrary.
  • the optical fiber transmission delay measurement function is integrated only in the slave device, and the second optical fiber transmission delay d2 is measured by the slave device to the master device.
  • the first fiber to the slave device's first fiber transmission delay dl, the slave device is obtained by other means.
  • the slave device can initiate a loop delay (RTD) measurement function, and obtain a first fiber transmission delay dl according to the loop delay measurement data combined with the obtained second fiber transmission delay d2.
  • RTD loop delay
  • the slave device starts its own integrated fiber transmission delay module to perform measurement, and obtains a second fiber transmission delay d2 from the device to the master device.
  • the slave device sends a loop delay (RTD) measurement request message to the master device, and records an RTD measurement request message sending time t-rtd-s;
  • RTD loop delay
  • the master device After receiving the RTD measurement request message, the master device returns an RTD measurement response message to the slave device.
  • the slave device receives the RTD measurement response message replied by the master device, and records the RTD measurement response message arrival time t-rtd-r.
  • the master device sends a time synchronization message to the slave device at time t1, where the time synchronization message carries a time synchronization message sending time tl.
  • the slave device receives a time synchronization message sent by the master device, records a time synchronization message arrival time t2, and extracts a synchronization message sending time t1 from the time synchronization message. 606.
  • the slave device sends a delay request message to the master device, and records a delay request message sending time t3.
  • the master device receives a delay request message sent by the slave device, and records a time delay request message arrival time t4.
  • the slave device calculates a first optical fiber transmission delay dl according to the second optical fiber transmission delay d2, and the RTD measurement request message sending time t-rtd-s, and the RTD measurement response message arrival time t-rtd-r.
  • the correction time offset offset2 is calculated.
  • Offset 2 offset l-(di-d2)/2
  • the operation of starting the fiber transmission delay measurement function from the device may be started synchronously when the time synchronization system is started, or may be started according to the input command, or triggered according to an event, or started periodically, or periodically.
  • the start of the optical fiber transmission delay measurement function may be performed before the time synchronization message or the delay response message, that is, the interaction between the optical fiber transmission delay measurement function and the time synchronization signal may be performed independently, and the sequence is arbitrary.
  • Start the fiber transmission delay measurement function which can be started before the RTD measurement function or later.
  • the transmission and arrival time of the delay response message, combined with the obtained second optical fiber transmission delay d2 is calculated to obtain the first optical fiber transmission delay dl. That is, the RTD measurement is combined with the delay measurement.
  • Figure 7 for the specific process, including:
  • the slave device starts its own integrated fiber transmission delay module to perform measurement, and obtains a second fiber transmission delay d2 from the device to the master device.
  • the master device sends a time synchronization message to the slave device at time t1, where the time synchronization message carries a time synchronization message sending time tl.
  • the slave device receives a time synchronization message sent by the master device, records a time synchronization message arrival time t2, and extracts a synchronization message sending time from the time synchronization message.
  • the slave device sends a delay request message to the master device, and records a time delay request message sending time t3. 705.
  • the master device receives a delay request message sent by the slave device, and records the delay request message to arrive at time t4.
  • the master device sends a delay response message to the slave device, where the delay response message carries the delay request message arrival time t4, and further carries the delay response message sending time t5.
  • the slave device receives the delay response message, records the delay response message arrival time t6, and extracts the delay request message arrival time t4 and the delay response message sending time t5.
  • the slave device calculates a first fiber transmission delay dl according to the second fiber transmission delay d2 and the times t3, t4, t5, and t6.
  • the correction time offset offset2 is calculated.
  • Offset 2 offset l-(di-d2)/2
  • the operation of starting the fiber transmission delay measurement function from the device may be started synchronously when the time synchronization system is started, or may be started according to the input command, or triggered according to an event, or started periodically, or periodically.
  • the start of the optical fiber transmission delay measurement function may be performed before the time synchronization message or the delay response message, that is, the interaction between the optical fiber transmission delay measurement function and the time synchronization signal may be performed independently, and the sequence is arbitrary.
  • an embodiment of the present invention provides a time synchronization device, including:
  • a delay acquisition module 810 configured to acquire a first optical fiber transmission delay dl of the master device to the secondary device, and a second optical fiber transmission delay d2 from the device to the primary device;
  • the transceiver module 820 is configured to exchange an optical signal with the master device, where the optical signal includes a time synchronization signal, and a time synchronization module 830, configured to calculate an initial time offset offset1, using the first optical fiber transmission delay dl and the second optical fiber transmission
  • the delay d2 adjusts the initial time deviation offset1 to obtain a corrected time deviation offset2; adjusts the local clock according to the corrected time deviation offset2 to complete time synchronization.
  • the transceiver module 820 is specifically configured to receive a time synchronization message sent by the master device, where the time synchronization message carries a time synchronization message sending time t1, and send a delay request message to the master device, and receive a time delay response message returned by the master device.
  • the delay response message carries a delay request message arrival time t4;
  • the time synchronization module 830 may be specifically configured to: record a time synchronization message arrival time t2, and extract a time synchronization message transmission time t1 carried in the time synchronization message; record a delay request message transmission time t3; and extract the delay response message.
  • the carrying delay request message arrives at time t4; and calculates an initial time offset offset1 according to the time synchronization message transmission time t1, the time synchronization message arrival time t2, the delay request message transmission time t3, and the delay request message arrival time t4.
  • the transceiver module 820 may specifically include:
  • the receiving module 8201 is configured to receive, by the master device, an optical signal, for example, receive a time synchronization message and a delay response message;
  • the sending module 8202 is configured to send an optical signal to the primary device, for example, send a delay request message. Please refer to FIG. 8b, in an embodiment,
  • the transceiver module 820 is further configured to receive a fiber transmission delay message sent by the master device, where the fiber transmission delay message carries the first fiber transmission delay measured by the master device by using its own fiber transmission delay measurement function. ;
  • the delay acquisition module 810 may specifically include: a fiber transmission delay measurement module 8101, configured to measure a second optical fiber transmission delay d2 from the device to the primary device.
  • the optical fiber transmission delay measurement module may be a module for optical fiber transmission delay measurement by using an optical time domain reflectometer (OTDR) or an optical frequency domain reflectometer (OFDR) principle, which can transmit a test signal, monitor a reflected signal, and according to the test signal and reflection. The time difference of the signal obtains the fiber transmission delay between the master and the slave.
  • OTDR optical time domain reflectometer
  • OFDR optical frequency domain reflectometer
  • the transceiver module 820 may be further configured to receive a fiber transmission delay message sent by the master device, where the fiber transmission delay message carries the first fiber transmission time measured by the master device using its own fiber transmission delay measurement function. Extend dl;
  • the delay acquisition module 810 may specifically include: a loop delay RTD measurement module 8102, configured to send a loop delay RTD measurement request message to the primary device by using the transceiver module, and record the RTD measurement request cancellation.
  • the time t-rtd-s and the RTD measurement response message arrive at the time t-rtd-r, and the second fiber transmission delay d2 is calculated.
  • the transceiver module 820 may be further configured to receive a fiber transmission delay message sent by the master device, where the fiber transmission delay message carries the first fiber transmission time measured by the master device using its own fiber transmission delay measurement function. Extend dl;
  • the delay obtaining module 810 may specifically include: a loop delay RTD measuring module 8102, configured to obtain a delay response message sending time t5 carried in the delay response message, and a delay response message arrival time t6;
  • the first optical fiber transmission delay d1, the delay request message transmission time t3, the delay request message arrival time t4, the delay response message transmission time t5, and the delay response message arrival time t6 calculate the second optical fiber transmission delay d2.
  • the delay acquisition module 810 may specifically include: a fiber transmission delay measurement module 8101, configured to measure a second optical fiber transmission delay d2 from the device to the primary device;
  • the loop delay RTD measurement module 8102 is configured to send a loop delay RTD measurement request message to the primary device by using the transceiver module, and record an RTD measurement request message sending time t-rtd-s; receive the RTD measurement of the primary device reply by the transceiver module. Responding to the message, recording the RTD measurement response message arrival time t-rtd-r; according to the second fiber transmission delay d2 and the RTD measurement request message transmission time t-rtd-s and the RTD measurement response message arrival time t-rtd-r Calculate the first fiber transmission delay dl.
  • the delay acquisition module 810 may specifically include: a fiber transmission delay measurement module 8101, configured to measure a second optical fiber transmission delay d2 from the device to the primary device;
  • the loop delay RTD measurement module 8102 is configured to obtain a delay response message sending time t5 carried in the delay response message, and a delay response message arrival time t6; and according to the second optical fiber transmission delay d2, a delay request
  • the first transmission delay dl is calculated at the message transmission time t3, the delay request message arrival time t4, the delay response message transmission time t5, and the delay response message arrival time t6.
  • the embodiment of the present invention discloses a time synchronization device, which can acquire the master-slave by itself.
  • Embodiment 6 Compared with the manual time synchronization compensation operation in the prior art, the technical solution of the embodiment has high measurement accuracy, accurate rate draft, short cycle, low cost, and low manpower and material resources. It solved the engineering implementation problem of IEEE 1588V2 deployment and realized the scale engineering deployment capability. Embodiment 6
  • an embodiment of the present invention provides a time synchronization system, including: a master device 910 and a slave device 920 connected by an optical fiber.
  • the slave device 920 is configured to exchange a fiber transmission delay measurement signal and a time synchronization signal with the master device 910, acquire a first fiber transmission delay dl of the master device to the slave device, and acquire a second fiber transmission from the device to the master device. Delaying d2; calculating an initial time offset offset1; adjusting the initial time offset offset1 by using the first optical fiber transmission delay dl and the second optical fiber transmission delay d2 to obtain a corrected time offset offset2; adjusting according to the modified time offset offset2 Local clock, complete time synchronization.
  • the master device 910 is configured to interact with the slave device 920 to transmit a fiber delay measurement signal and a time synchronization signal.
  • the time delay acquisition module 810 is specifically configured to include one or both of a fiber transmission delay measurement module 8101 and an RTD measurement module 8102.
  • a fiber transmission delay measurement module 8101 is provided in both the master and the slave device, as shown in Figure 9b:
  • the master device includes: a first fiber transmission delay measurement module, a first transceiver module, and a first time synchronization module; and the slave device includes: a second fiber transmission delay measurement module, a second transceiver module, and a second time synchronization module.
  • the first transceiver module and the second transceiver module are connected by an optical fiber.
  • the first transceiver module may include a first receiving module and a first sending module
  • the second transceiver module may include a second receiving module and a second sending module.
  • the first receiving module and the second sending module are connected by an optical fiber
  • the first sending module and the second receiving module are connected by an optical fiber.
  • the first sending module and the second sending module implement a data sending function, respectively receiving electrical signals from the first time synchronization module and the second time synchronization module or other peripheral modules (not shown) and converting them into optical fibers for transmission. An optical signal that is sent to the connected fiber.
  • the first receiving module and the second receiving module implement a data receiving function, receive optical signals from the optical fibers connected thereto and convert them into electrical signals, and output to the first time synchronization module and the second time synchronization module or other peripheral modules respectively (in the figure) Not shown).
  • the first fiber transmission delay measurement module performs fiber transmission delay measurement of the master device to the slave device
  • the second fiber transmission delay measurement module performs fiber transmission delay measurement from the device to the master device.
  • the optical fiber transmission delay measurement module can complete the optical fiber transmission delay measurement by using an optical time domain reflectometer (OTDR) or an optical frequency domain reflectometer (OFDR) principle, that is, transmitting a test signal, monitoring a reflected signal, and according to the test signal and the reflected signal.
  • the time difference obtains the fiber transmission delay from the master device to the slave device or from the device to the master device.
  • the first optical fiber transmission delay measurement module outputs the measured first optical fiber transmission delay dl to the first time synchronization module
  • the second optical fiber transmission delay measurement module outputs the measured second optical fiber transmission delay d2 to the second Time synchronization module.
  • the optical fiber transmission delay measurement module may be composed of a delay measurement transmission module, a delay measurement receiving module, and a delay measurement processing module.
  • the delay measurement transmitting module sends a delay measurement signal under the trigger of the delay measurement processing module, and the delay measurement signal may be a single pulse signal or pseudo random noise (Pseudo-random noise,
  • the PN sequence can also be a Goray code. Since the optical fiber transmission delay measurement module and the transmission module share one optical fiber, the two can be distinguished by the wavelength of the optical signal.
  • the transmission module uses a transmission data signal with a wavelength of 1490 nm, and the delay measurement transmission module can use a transmission delay measurement signal of 1625 nm or 1650 nm.
  • the fiber transmission delay measurement module and the transmission module can be multiplexed by a wavelength division multiplexer such as WDM.
  • the delay measurement receiving module is configured to receive a fiber-to-delay measurement signal reflection signal, perform photoelectric conversion (0/E conversion), perform response filtering processing, analog/digital conversion (A/D conversion), and generate a digital signal. , output to the delay measurement processing module.
  • the delay measurement transmitter module and the receiver module can be multiplexed by a splitting device such as an optical splitter.
  • the delay measurement processing module processes and analyzes the signal outputted by the delay measurement receiving module, determines the transmission delay of the optical fiber according to the time difference between the arrival time of the reflected signal and the transmitted signal, and analyzes the obtained optical fiber.
  • the transmission delay is output to the time synchronization module.
  • the delay measurement transmitting module can be shared with the transmitting module, as shown by 9f.
  • the data transmission module (delay measurement transmission module) transmits only the delay measurement signal. It is also possible to superimpose the data signal and the delay measurement signal to the optical fiber without stopping other data transmission functions.
  • the delay measurement receiving module can be shared with the receiving module, as shown by 9g.
  • the time synchronization module of the local device can transmit a delay measurement indication message to the peer device (such as the slave device) through the sending module, instructing the peer end to stop transmitting data, and then the local end stops receiving.
  • Other data signals only receive the reflected signal of the delay measurement signal reflected by the optical fiber.
  • the time synchronization module transmits a delay measurement indication message to the peer device through the sending module, indicating that the peer end can retransmit the data.
  • the optical fiber transmission delay measurement module is provided in both the master and the slave devices. At this time, the system works as follows:
  • the first time synchronization module of the master device transmits the first fiber transmission delay dl of the master device to the slave device to the optical fiber connected thereto through the first transmitting module.
  • the second time synchronization module of the slave device receives the first fiber transmission delay dl from the master device through the second receiving module for storage.
  • the first time synchronization module sends a time synchronization message to the slave device through the first sending module, and sends the time synchronization message sending time to the slave device.
  • the second time synchronization module receives the time synchronization message from the master device through the second receiving module, and records the time synchronization message arrival time.
  • the second time synchronization module sends a delay request message to the master device through the second sending module, and simultaneously records the time delay request message sending time.
  • the first time synchronization module receives the delay request message from the slave device through the first receiving module, and records the arrival time of the delay request message.
  • the first time synchronization module sends the recorded delay request message arrival time to the optical fiber connected thereto through the first sending module.
  • the second time synchronization module receives the delay response message from the primary device by using the second receiving module, and delays the delay of the request message arrival time.
  • the second optical fiber transmission delay measurement module performs optical fiber transmission delay measurement from the device to the primary device, and outputs the measured second optical fiber transmission delay d2 from the device to the primary device to the second time synchronization module.
  • the second time synchronization module combines the obtained first device-to-slave first fiber transmission delay, the second fiber transmission delay from the device to the master device, the time synchronization message transmission time, the time synchronization message arrival time, and the delay request message transmission.
  • Time, delay request At the time of message reception, the time deviation between the slave device time and the master device is calculated, and the slave device clock is adjusted to complete the time synchronization.
  • the specific calculation method is the same as the foregoing embodiment, and details are not described herein again.
  • this embodiment provides another time synchronization system.
  • the time synchronization system provided in this embodiment is different from the time synchronization system shown in FIG. 9b in that there is no optical fiber transmission delay measurement module in the slave device, and only the first optical fiber transmission delay measurement module is set on the primary device, and the secondary device is configured. There is a second RTD measurement module, and a corresponding first RTD measurement module is also provided in the main device.
  • the second transceiver module 820b may be further configured to receive a fiber transmission delay message sent by the master device, where the fiber transmission delay message carries the first fiber transmission time measured by the master device by using its own fiber transmission delay measurement function. Extend dl;
  • the second RTD measurement module may be configured to send a loop delay RTD measurement request message to the primary device by using the second sending module, record an RTD measurement request message sending time t-rtd-s; receive the primary device by using the second receiving module module
  • the replied RTD measurement response message records the RTD measurement response message arrival time t-rtd-r; according to the first optical fiber transmission delay dl, and the RTD measurement request message transmission time t-rtd-s and the RTD measurement response message arrival time t- Rtd-r, calculates the second fiber transmission delay d2.
  • the second RTD measurement module may be configured to obtain a delay response message transmission time t5 carried in the delay response message, and a delay response message arrival time t6; according to the first optical fiber transmission delay dl, a delay request message
  • the transmission time t3, the delay request message arrival time t4, the delay response message transmission time t5, and the delay response message arrival time t6 calculate the second optical fiber transmission delay d2.
  • the second time synchronization module may be configured to calculate an initial time offset offset1, and adjust the initial time offset offset1 by using the first optical fiber transmission delay dl and the second optical fiber transmission delay d2 to obtain a modified time deviation offset2; Correct the time offset offset2 to adjust the local clock and complete the time synchronization.
  • the first time synchronization module measures the first fiber transmission delay dl of the master device to the slave device; the first transceiver module sends The optical fiber transmission delay message carrying the first optical fiber transmission delay dl is sent to the slave device, and the loop delay RTD measurement request message sent by the slave device is received, and the RTD measurement response message generated by the first RTD measurement module is returned to the slave device.
  • the first time synchronization module measures the first fiber transmission delay dl of the master device to the slave device
  • the first transceiver module sends The optical fiber transmission delay message carrying the first optical fiber transmission delay dl is sent to the slave device, and the loop delay RTD measurement request message sent by the slave device is received, and the RTD measurement response message generated by the first RTD measurement module is returned to the slave device.
  • FIG. 9i another embodiment of the present invention provides a time synchronization system.
  • the time synchronization system provided in this embodiment is different from the time synchronization system shown in FIG. 9b in that a second optical fiber transmission delay measurement module and a second RTD measurement module are disposed in the slave device, and the main device is provided with a corresponding There is a first RTD measurement module, and no fiber transmission delay measurement module.
  • a second optical fiber transmission delay measurement module configured to measure a second optical fiber transmission delay d2 from the device to the primary device
  • the second RTD measurement module is configured to send a loop delay RTD measurement request message to the master device by using the transceiver module, record an RTD measurement request message sending time t-rtd-s; and receive, by the transceiver module, an RTD measurement response message replied by the master device. Recording an RTD measurement response message arrival time t-rtd-r; calculating according to the second optical fiber transmission delay d2 and the RTD measurement request message transmission time t-rtd-s and the RTD measurement response message arrival time t-rtd-r A fiber transmission delay dl.
  • a second RTD measurement module or used to obtain a delay response message transmission time t5 carried in the delay response message, and a delay response message arrival time t6; according to the second optical fiber transmission delay d2, a delay request message
  • the time t3, the delay request message arrival time t4, the delay response message transmission time t5, and the delay response message arrival time t6 calculate the first optical fiber transmission delay dl.
  • a second time synchronization module configured to calculate an initial time offset offset1, adjusting the initial time offset offset1 by using the first optical fiber transmission delay dl and the second optical fiber transmission delay d2, to obtain a modified time deviation offset2;
  • the time offset offset2 adjusts the local clock to complete the time synchronization.
  • the apparatus for interacting with the slave device to transmit the time delay measurement signal and the time synchronization signal includes: the first transceiver module receives the loop delay RTD measurement request message sent by the slave device, and the first RTD measurement module The generated RTD measurement response message is replied to the slave device.
  • the embodiment of the present invention discloses a time synchronization system, in which the slave device in the system can obtain the first fiber transmission delay dl and the second fiber transmission delay d2 between the master and the slave device, thereby correcting the time deviation and adjusting the locality. Clock, complete time synchronization.
  • the storage medium may include: a read only memory, a random read memory, a magnetic disk or an optical disk, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Optical Communication System (AREA)
  • Electric Clocks (AREA)

Abstract

本发明公开了一种时间同步方法,包括:从设备获取主设备至从设备的第一光纤传输时延d1,和从设备至主设备的第二光纤传输时延d2;与主设备交互时间同步信号,计算初始时间偏差offset1;采用所述第一光纤传输时延d1和第二光纤传输时延d2调整所述初始时间偏差offset1,得到修正时间偏差offset2;根据所述修正时间偏差offset2调整本地时钟,完成时间同步。本发明实施例还提供相应的设备和***。本发明实施例技术方案中,从设备可以在时间同步过程中实现在线时间同步补偿,不必由人工进行时间同步补偿操作。

Description

时间同步方法和设备及*** 技术领域
本发明涉及通信技术领域, 具体涉及一种时间同步方法和设备及***。 背景技术
精密时钟协议 IEEE 1588v2定义了一种基于数据包传送的时间同步技术, 该技术采用时戳机制和主从时钟方案, 对时间进行编码传送, 同时利用网络链 路的对称性和时延测量技术, 实现主从时钟频率和时间的同步。
IEEE 1588v2要求收发光纤严格对称, 即, 从主设备至从设备的光纤传输 时延 dl , 和从设备至主设备的光纤传输时延 d2, 需要相等。 如果 dl和 d2不 相等, 将引入误差。
现有技术中, 为了提高不对称网络的时间同步精度, 通常采用的做法是, 在开局、 验收和网络结构发生变化时, 人工进行时间同步补偿操作, 包括: 利 用时延测量设备例如光时域反射仪 (Optical Time Domain Reflectometer , OTDR )或光频域反射仪 (Optical Frequency Domain Reflectometer, OFDR), 人 工逐一测量每一对光纤的传输时延, 然后,将测得的传输时延数据手工输入时 间同步设备, 实现时间同步补偿。
发明内容
本发明实施例提供一种时间同步方法和设备及***,以解决现有的时间同 步技术需要人工进行时间同步补偿的技术问题。
一种时间同步方法, 包括:
从设备获取主设备至从设备的第一光纤传输时延 dl ,和从设备至主设备的 第二光纤传输时延 d2;
与主设备交互时间同步信号;
计算初始时间偏差 offsetl , 采用所述第一光纤传输时延 dl和第二光纤传输 时延 d2调整所述初始时间偏差 offsetl , 得到修正时间偏差 offset2;
根据所述修正时间偏差 offset2调整本地时钟, 完成时间同步。
一种时间同步设备, 包括: 时延获取模块, 用于获取主设备至从设备的第一光纤传输时延 dl , 和从设 备至主设备的第二光纤传输时延 d2;
收发模块, 用于与主设备交互光信号, 所述光信号包括时间同步信号; 时间同步模块, 用于计算初始时间偏差 offsetl , 采用所述第一光纤传输时 延 dl和第二光纤传输时延 d2调整所述初始时间偏差 offsetl , 得到修正时间偏差 offset2; 根据所述修正时间偏差 offset2调整本地时钟, 完成时间同步。
一种时间同步***, 包括:
通过光纤连接的主设备和从设备;
所述从设备, 用于与主设备交互光纤传输时延测量信号和时间同步信号, 获取主设备至从设备的第一光纤传输时延 dl ,和从设备至主设备的第二光纤传 输时延 d2; 计算初始时间偏差 offsetl ; 采用所述第一光纤传输时延 dl和第二光 纤传输时延 d2调整所述初始时间偏差 offsetl , 得到修正时间偏差 offset2; 根据 所述修正时间偏差 offset2调整本地时钟, 完成时间同步;
所述主设备, 用于与从设备交互光纤传输时延测量信号和时间同步信号。 本发明实施例技术方案中,从设备可以自行获取主从设备间的第一光纤传 输时延 dl和第二光纤传输时延 d2, 进而修正时间偏差, 调整本地时钟, 完成 时间同步, 从而, 可以在时间同步过程中实现在线时间同步补偿, 不必再由人 工进行时间同步补偿操作。
附图说明
图 1是本发明实施例一提供的时间同步方法的流程图;
图 2是从设备与主设备按照 IEEE 1588v2交互时间同步信号的流程图; 图 3是本发明实施例二提供的时间同步方法的流程示意图;
图 4是本发明实施例三提供的一种时间同步方法的流程示意图;
图 5是本发明实施例三提供的另一种时间同步方法的流程示意图; 图 6是本发明实施例四提供的一种时间同步方法的流程示意图;
图 7是本发明实施例四提供的另一种时间同步方法的流程示意图; 图 8a-8d是本发明实施例提供的多种时间同步设备的逻辑结构图; 图 9a-9i是本发明实施例提供的多种时间同步***的逻辑结构图。 具体实施方式
本发明实施例提供一种时间同步方法, 采用该方法,从设备可以自行获取 主从设备间的第一光纤传输时延 dl和第二光纤传输时延 d2, 进而修正时间偏 差, 调整本地时钟, 完成时间同步, 从而, 可以在时间同步过程中实现时间同 步补偿, 后续, 不必再由人工进行时间同步补偿操作。 本发明实施例还提供相 应的时间同步设备及***。 以下分別进行详细说明。 实施例一、
请参考图 1 , 本发明实施例提供一种时间同步方法, 包括:
110、 从设备获取主设备至从设备的第一光纤传输时延 dl , 和从设备至主 设备的第二光纤传输时延 d2。
本实施例中, 可以在主设备或从设备中设置光纤传输时延测量模块,使主 设备或从设备具备光纤传输时延测量功能。
一种方式中, 可以在主、 从设备中均集成光纤传输时延测量功能, 由主设 备测量主设备至从设备的第一光纤传输时延 dl ,从设备测量从设备至主设备的 第二光纤传输时延 d2, 且主设备将测得的第一光纤传输时延 dl发送给从设备。
另一种方式中, 可以仅在主设备中集成光纤传输时延测量功能, 由主设备 测量主设备至从设备的第一光纤传输时延 dl ,并将测得的第一光纤传输时延 dl 发送给从设备。对于从设备至主设备的第二光纤传输时延 d2: 从设备可以利用 环路时延(Round Trip Delay, RTD )测量功能, 根据环路时延测量数据结合 获得的第一光纤传输时延 dl , 计算获得; 从设备也可以根据时间同步过程中主 从设备间的交互信号例如时延响应消息的发送及到达时间,结合获得的第一光 纤传输时延 dl , 计算获得。
又一种方式中, 可以仅在从设备中集成光纤传输时延测量功能, 由从设备 测量从设备至主设备的第二光纤传输时延 d2。对于主设备至从设备的第一光纤 传输时延 dl: 从设备可以利用环路时延(Round Trip Delay, RTD )测量功能, 根据环路时延测量数据结合获得的第二光纤传输时延 d2, 计算获得; 从设备也 可以根据时间同步过程中主从设备间的交互信号例如时延响应消息的发送及 到达时间, 结合获得的第二光纤传输时延 d2, 计算获得。 启动光纤传输时延测量功能,获取第一光纤传输时延 dl和第二光纤传输时 延 d2的操作, 可以在时间同步***启动时同步启动,也可以根据输入的命令启 动, 或者根据事件触发启动, 或者定期启动, 或者周期性启动, 本发明实施例 对于光纤传输时延测量功能的启动时机不做限制。
120、 与主设备交互时间同步信号。
从设备与主设备按照 IEEE 1588v2定义的技术, 交互时间同步信号, 流程 如图 2所示, 包括:
1201、 主设备在 tl时刻向从设备发送时间同步消息, 该时间同步消 息携带时间同步消息发送时刻 tl;
1202、 从设备接收主设备发送的时间同步消息, 记录时间同步消 息到达时刻 t2, 并从时间同步消息中提取同步消息发送时刻 tl ;
1203、 从设备向主设备发送时延请求消息, 记录时延请求消息发 送时刻 t3;
1204、 主设备接收从设备发送的时延请求消息, 记录时延请求消 息到达时刻 t4;
1205、主设备将时延请求消息到达时刻 t4携带在时延响应消息中发 送给从设备, 从设备接收时延响应消息, 提取时延请求消息到达时刻 t4。
130、 计算初始时间偏差 offsetl , 采用所述第一光纤传输时延 dl和第二光 纤传输时延 d2调整所述初始时间偏差 offsetl , 得到修正时间偏差 offset2。
现有的 IEEE 1588v2要求收发光纤对称, 计算时间偏差 offset时不考虑光纤 传输时延 d的影响, 即, 假定第一光纤传输时延 dl等于第二光纤传输时延 d2。 本文中, 将假定 dl=d2情况下得到的时间偏差 offset, 称为初始时间偏差, 记为 offsetl„ 从设备可以根据得到的时间同步消息发送时刻 tl、 时间同步消息到达 时刻 t2、 时延请求消息发送时刻 t3、 时延请求消息到达时刻 t4, 计算得到初始 时间偏差 offsetl。 然后, 可以采用第一光纤传输时延 dl和第二光纤传输时延 d2 调整初始时间偏差 offsetl , 得到修正时间偏差 offset2。
具体的, 计算时间偏差 offset的公式如下: t2_t\ = d\+ offset (1)
t4-t3 = d2- offset (2) 将公式(1 )减去公式(2 ), 可得:
(t2-t\) -(t4-t3) =2^offseHd\-d2) (3) 于是, 可得:
offse [(/2-/1) -(/4-/3) -( l- 2)]/2. .(4) 假定 dl=d2 , 可以得到初始时间偏差 offsetl , 有:
ojfsetl = [{tl― t\)― (ί4 - 13)] 12 (5)
考虑 dl和 d2影响情况下得到的时间偏差 offset , 为修正时间偏差, 记为 offset2。 根据公式(4 )和(5 ), 可以得到:
ojfsetl = offsetl - {d\ - dl) l 2 (6)
140、 根据所述修正时间偏差 offset2调整本地时钟, 完成时间同步。
在得到修正时间偏差 offset2之后, 就可以根据修正时间偏差 offset2来调整 本地时钟, 完成时间同步, 具体可以依照 IEEE 1588v2进行。
上述 110中的光纤传输时延测量功能的启动,可以先于 120中主设备发送的 时间同步消息, 也可以晚于 120中主设备发送的时延响应消息, 即, 光纤传输 时延测量功能与时间同步信号的交互可以分別独立进行, 先后顺序随意。
以上, 本发明实施例公开了一种时间同步方法, 采用该方法, 从设备可以 自行获取主从设备间的第一光纤传输时延 dl和第二光纤传输时延 d2 ,进而修正 时间偏差, 调整本地时钟, 完成时间同步。 从而:
可以有效消除网络不对称,具体是光纤收发不对称,带来的时间同步误差; 可以在时间同步过程中实现在线时间同步补偿,在开局、 网络验收和网络 结构发生变化时, 不必再由人工对逐个站点进行时间同步补偿操作。
相对于现有技术中人工进行时间同步补偿操作, 本实施例方法测量精度 高, 准确率稿, 周期短, 成本低, 消耗人力物力少。 解决了 IEEE 1588V2部署 的工程实施难题, 实现了规模工程部署能力。 实施例二、
本实施例中, 在主、 从设备中均集成光纤传输时延测量功能, 由主设备测 量主设备至从设备的第一光纤传输时延 dl ,从设备测量从设备至主设备的第二 光纤传输时延 d2, 且主设备将测得的第一光纤传输时延 dl发送给从设备。
具体流程请参考图 3 , 包括:
301、 主设备启动自身集成的光纤传输时延测量模块进行测量, 获得主设 备至从设备的第一光纤传输时延 dl。
302、 主设备向从设备发送光纤传输时延消息, 将第一光纤传输时延 dl携 带在光纤传输时延消息中发送给从设备。从设备接收主设备发送的光纤传输时 延消息, 提取消息中携带的第一光纤传输时延 dl。
303、 从设备启动自身集成的光纤传输时延模块进行测量, 获得从设备至 主设备的第二光纤传输时延 d2。
304、 主设备在 tl时刻向从设备发送时间同步消息, 该时间同步消息携带 时间同步消息发送时刻 tl。
305、 从设备接收主设备发送的时间同步消息, 记录时间同步消息到达时 刻 t2 , 并从时间同步消息中提取同步消息发送时刻 tl。
306、 从设备向主设备发送时延请求消息, 记录时延请求消息发送时刻 t3。
307、 主设备接收从设备发送的时延请求消息, 记录时延请求消息到达时 刻 t4。
308、 主设备将时延请求消息到达时刻 t4携带在时延响应消息中发送给从 设备, 从设备接收时延响应消息, 提取时延请求消息到达时刻 t4。
309、 从设备可以根据得到的光纤传输时延 dl和 d2, 以及时刻 tl、 t2、 t3、 t4, 计算修正时间偏差 offset2。
offset 2= offset l-(di-d2)/2
=[(/2-/l) -(/4-/3)-( l- 2)]/2. .(7)
可选的, 主设备可以将测得的第一光纤传输时延 dl携带在时间同步消息 中, 与时间同步消息发送时刻 tl一起发送给从设备; 主设备也可以将测得的第 一光纤传输时延 dl携带在时延响应消息中, 与时延请求消息到达时刻 t4一起发 送给从设备。
上述流程中, 主设备或从设备启动光纤传输时延测量功能的操作, 可以在 时间同步***启动时同步启动,也可以根据输入的命令启动, 或者根据事件触 发启动, 或者定期启动, 或者周期性启动。
光纤传输时延测量功能的启动, 可以先于时间同步消息进行,也可以时延 响应消息进行, 即, 光纤传输时延测量功能与时间同步信号的交互可以分別独 立进行, 先后顺序随意。
主设备可以先于从设备启动光纤传输时延测量功能,也可以晚于从设备启 动光纤传输时延测量功能, 还可以与从设备同时启动光纤传输时延测量功能, 即, 主设备和从设备均可以独立启动光纤传输时延测量功能, 两者互不影响。 实施例三、
本实施例中,仅在主设备中集成光纤传输时延测量功能, 由主设备测量主 设备至从设备的第一光纤传输时延 dl ,并将测得的第一光纤传输时延 dl发送给 从设备。从设备至主设备的第二光纤传输时延 d2,由从设备通过其它方式获得。
一种方式中, 从设备可以启动环路时延(RTD )测量功能, 根据环路时延 测量数据结合获得的第一光纤传输时延 dl ,计算获得第二光纤传输时延 d2。具 体流程请参考图 4, 包括:
401、 主设备启动自身集成的光纤传输时延测量模块进行测量, 获得主设 备至从设备的第一光纤传输时延 dl。
402、 主设备向从设备发送光纤传输时延消息, 将第一光纤传输时延 dl携 带在光纤传输时延消息中发送给从设备。从设备接收主设备发送的光纤传输时 延消息, 提取消息中携带的第一光纤传输时延 dl。
403、 从设备向主设备发送环路时延(RTD ) 测量请求消息, 记录 RTD测 量请求消息发送时刻 t-rtd-s;
404、 主设备接收到 RTD测量请求消息后, 回复 RTD测量响应消息给从设 备; 从设备接收主设备回复的 RTD测量响应消息, 记录 RTD测量响应消息到达 时刻 t-rtd-r。
405、 主设备在 tl时刻向从设备发送时间同步消息, 该时间同步消息携带 时间同步消息发送时刻 tl。
406、 从设备接收主设备发送的时间同步消息, 记录时间同步消息到达时 刻 t2 , 并从时间同步消息中提取同步消息发送时刻 tl。
407、 从设备向主设备发送时延请求消息, 记录时延请求消息发送时刻 t3。 408、 主设备接收从设备发送的时延请求消息, 记录时延请求消息到达时 刻 t4。
409、 主设备将时延请求消息到达时刻 t4携带在时延响应消息中发送给从 设备, 从设备接收时延响应消息, 提取时延请求消息到达时刻 t4。
410、 从设备根据第一光纤传输时延 dl , 以及 RTD测量请求消息发送时刻 t-rtd-s, 和 RTD测量响应消息到达时刻 t-rtd-r, 计算第二光纤传输时延 d2。
d2=t—rtd—r—t—rtd—s—dl (8)
然后, 根据得到的光纤传输时延 dl、 d2, 以及时刻 tl、 t2、 t3、 t4, 计算修 正时间偏差 offset2。
offset 2= offset l-(di-d2)/2
=[(t2-tl) -(/4-/3)-( l- 2)]/2. .(7)
可选的, 主设备可以将测得的第一光纤传输时延 dl携带在时间同步消息 中, 与时间同步消息发送时刻 tl一起发送给从设备; 主设备也可以将测得的第 一光纤传输时延 dl携带在时延响应消息中, 与时延请求消息到达时刻 t4一起发 送给从设备。
上述流程中, 主设备启动光纤传输时延测量功能的操作, 可以在时间同步 ***启动时同步启动, 也可以根据输入的命令启动, 或者根据事件触发启动, 或者定期启动, 或者周期性启动。
光纤传输时延测量功能的启动, 可以先于时间同步消息进行,也可以时延 响应消息进行, 即, 光纤传输时延测量功能与时间同步信号的交互可以分別独 立进行, 先后顺序随意。
主设备启动光纤传输时延测量功能可以先于从设备启动 RTD测量功能进 行, 也可以晚于从设备启动 RTD测量功能进行, 还可以与从设备 RTD延测量功 能同时进行, 即, 主设备启动光纤传输时延测量功能和从设备启动 RTD测量功 能, 可以独立运作, 互不影响。 例如时延响应消息的发送及到达时间, 结合获得的第一光纤传输时延 dl ,计算 获得第二光纤传输时延 d2。 即, 将 RTD测量与时延测量合并进行。 具体流程请 参考图 5, 包括:
501、 主设备启动自身集成的光纤传输时延测量模块进行测量, 获得主设 备至从设备的第一光纤传输时延 dl。
502、 主设备向从设备发送光纤传输时延消息, 将第一光纤传输时延 dl携 带在光纤传输时延消息中发送给从设备。从设备接收主设备发送的光纤传输时 延消息, 提取消息中携带的第一光纤传输时延 dl。
503、 主设备在 tl时刻向从设备发送时间同步消息, 该时间同步消息携带 时间同步消息发送时刻 tl。
504、 从设备接收主设备发送的时间同步消息, 记录时间同步消息到达时 刻 t2 , 并从时间同步消息中提取同步消息发送时刻 tl
505、 从设备向主设备发送时延请求消息, 记录时延请求消息发送时刻 t3。
506、 主设备接收从设备发送的时延请求消息, 记录时延请求消息到达时 刻 t4。
507、 主设备发送时延响应消息给从设备, 该时延响应消息中携带时延请 求消息到达时刻 t4, 还携带时延响应消息发送时刻 t5。
508、 从设备接收时延响应消息, 记录时延响应消息到达时刻 t6, 并提取 时延请求消息到达时刻 t4和时延响应消息发送时刻 t5。
509、 从设备根据第一光纤传输时延 dl , 以及时刻 t3、 t4、 t5、 t6, 计算第 二光纤传输时延 d2。
d2=(t6-t3)-(t5-t4)-dl
然后, 根据得到的光纤传输时延 dl、 d2, 以及时刻 tl、 t2、 t3、 t4, 计算修 正时间偏差 offset2。
offset 2= offset l-(di-d2)/2
=[(/2-/l) -(/4-/3)-( l- 2)]/2. .(7) 可选的, 主设备可以将测得的第一光纤传输时延 di携带在时间同步消息 中, 与时间同步消息发送时刻 ti一起发送给从设备; 主设备也可以将测得的第 一光纤传输时延 dl携带在时延响应消息中, 与时延请求消息到达时刻 t4、 时延 响应消息发送时刻 t5—起发送给从设备。
上述流程中, 主设备启动光纤传输时延测量功能的操作, 可以在时间同步 ***启动时同步启动, 也可以根据输入的命令启动, 或者根据事件触发启动, 或者定期启动, 或者周期性启动。
光纤传输时延测量功能的启动, 可以先于时间同步消息进行,也可以时延 响应消息进行, 即, 光纤传输时延测量功能与时间同步信号的交互可以分別独 立进行, 先后顺序随意。 实施例四、
本实施例中,仅在从设备中集成光纤传输时延测量功能, 由从设备测量从 设备至主设备的第二光纤传输时延 d2。 主设备至从设备的第一光纤传输时延 dl , 从设备通过其它方式获得。
一种方式中, 从设备可以启动环路时延(RTD )测量功能, 根据环路时延 测量数据结合获得的第二光纤传输时延 d2,计算获得第一光纤传输时延 dl。 具 体流程请参考图 6, 包括:
601、 从设备启动自身集成的光纤传输时延模块进行测量, 获得从设备至 主设备的第二光纤传输时延 d2。
602、 从设备向主设备发送环路时延(RTD ) 测量请求消息, 记录 RTD测 量请求消息发送时刻 t-rtd-s;
603、 主设备接收到 RTD测量请求消息后, 回复 RTD测量响应消息给从设 备; 从设备接收主设备回复的 RTD测量响应消息, 记录 RTD测量响应消息到达 时刻 t-rtd-r。
604、 主设备在 tl时刻向从设备发送时间同步消息, 该时间同步消息携带 时间同步消息发送时刻 tl。
605、 从设备接收主设备发送的时间同步消息, 记录时间同步消息到达时 刻 t2 , 并从时间同步消息中提取同步消息发送时刻 tl。 606、 从设备向主设备发送时延请求消息, 记录时延请求消息发送时刻 t3。
607、 主设备接收从设备发送的时延请求消息, 记录时延请求消息到达时 刻 t4。
608、 从设备根据第二光纤传输时延 d2, 以及 RTD测量请求消息发送时刻 t-rtd-s, 和 RTD测量响应消息到达时刻 t-rtd-r, 计算第一光纤传输时延 dl。
dl=t_rtd_r-t_rtd_s-dl. (10)
然后, 根据得到的光纤传输时延 dl、 d2, 以及时刻 tl、 t2、 t3、 t4, 计算修 正时间偏差 offset2。
offset 2= offset l-(di-d2)/2
=[(/2-/l) -(/4-/3)-( l- 2)]/2. .(7)
上述流程中,从设备启动光纤传输时延测量功能的操作, 可以在时间同步 ***启动时同步启动, 也可以根据输入的命令启动, 或者根据事件触发启动, 或者定期启动, 或者周期性启动。
光纤传输时延测量功能的启动, 可以先于时间同步消息进行,也可以时延 响应消息进行, 即, 光纤传输时延测量功能与时间同步信号的交互可以分別独 立进行, 先后顺序随意。 启动光纤传输时延测量功能, 可以先于启动 RTD测量 功能, 也可以晚于启动 RTD测量功能。 例如时延响应消息的发送及到达时间, 结合获得的第二光纤传输时延 d2,计算 获得第一光纤传输时延 dl。 即, 将 RTD测量与时延测量合并进行。 具体流程请 参考图 7, 包括:
701、 从设备启动自身集成的光纤传输时延模块进行测量, 获得从设备至 主设备的第二光纤传输时延 d2。
702、 主设备在 tl时刻向从设备发送时间同步消息, 该时间同步消息携带 时间同步消息发送时刻 tl。
703、 从设备接收主设备发送的时间同步消息, 记录时间同步消息到达时 刻 t2 , 并从时间同步消息中提取同步消息发送时刻 tl
704、 从设备向主设备发送时延请求消息, 记录时延请求消息发送时刻 t3。 705、 主设备接收从设备发送的时延请求消息, 记录时延请求消息到达时 刻 t4。
706、 主设备发送时延响应消息给从设备, 该时延响应消息中携带时延请 求消息到达时刻 t4 , 还携带时延响应消息发送时刻 t5。
707、 从设备接收时延响应消息, 记录时延响应消息到达时刻 t6, 并提取 时延请求消息到达时刻 t4和时延响应消息发送时刻 t5。
708、 从设备根据第二光纤传输时延 d2, 以及时刻 t3、 t4、 t5、 t6, 计算第 一光纤传输时延 dl。
dl=(t6-t3)-(t5-t4)-dl (L ί>
然后, 根据得到的光纤传输时延 dl、 d2, 以及时刻 tl、 t2、 t3、 t4, 计算修 正时间偏差 offset2。
offset 2= offset l-(di-d2)/2
=[(/2-/l) -(/4-/3)-( l- 2)]/2. .(7)
上述流程中,从设备启动光纤传输时延测量功能的操作, 可以在时间同步 ***启动时同步启动, 也可以根据输入的命令启动, 或者根据事件触发启动, 或者定期启动, 或者周期性启动。
光纤传输时延测量功能的启动, 可以先于时间同步消息进行,也可以时延 响应消息进行, 即, 光纤传输时延测量功能与时间同步信号的交互可以分別独 立进行, 先后顺序随意。 实施例五、
请参考图 8a, 本发明实施例提供一种时间同步设备, 包括:
时延获取模块 810, 用于获取主设备至从设备的第一光纤传输时延 dl , 和 从设备至主设备的第二光纤传输时延 d2;
收发模块 820, 用于与主设备交互光信号, 所述光信号包括时间同步信号; 时间同步模块 830, 用于计算初始时间偏差 offsetl , 采用所述第一光纤传 输时延 dl和第二光纤传输时延 d2调整所述初始时间偏差 offsetl , 得到修正时间 偏差 offset2; 根据所述修正时间偏差 offset2调整本地时钟, 完成时间同步。
进一步的, 所述收发模块 820, 具体可以用于接收主设备发送的时间同步消息, 所述 时间同步消息携带时间同步消息发送时刻 tl; 向主设备发送时延请求消息; 接 收主设备返回的时延响应消息 ,所述时延响应消息携带时延请求消息到达时刻 t4;
所述时间同步模块 830, 具体可以用于记录时间同步消息到达时刻 t2, 提 取所述时间同步消息携带的时间同步消息发送时刻 tl; 记录时延请求消息发送 时刻 t3; 提取所述时延响应消息携带时延请求消息到达时刻 t4; 根据所述时间 同步消息发送时刻 tl、 时间同步消息到达时刻 t2、 时延请求消息发送时刻 t3、 时延请求消息到达时刻 t4计算初始时间偏差 offsetl。
其中, 所述收发模块 820可以具体包括:
接收模块 8201 , 用于接收主设备发送光信号, 例如, 接收时间同步消息和 时延响应消息;
发送模块 8202, 用于向主设备发送光信号, 例如, 发送时延请求消息。 请参考图 8b, —种实施方式中,
所述收发模块 820,可以进一步用于接收主设备发送的光纤传输时延消息, 所述光纤传输时延消息携带主设备利用自身的光纤传输时延测量功能测得的 第一光纤传输时延 dl ;
所述时延获取模块 810具体可以包括: 光纤传输时延测量模块 8101 , 用于 测得从设备至主设备的第二光纤传输时延 d2。
光纤传输时延测量模块可以是采用光时域反射仪( OTDR )或光频域反射 仪 (OFDR)原理实现光纤传输时延测量的模块, 可以发射测试信号, 监控反射 信号, 根据测试信号和反射信号的时间差获得主、 从设备间的光纤传输时延。
请参考图 8c, —种实施方式中,
所述收发模块 820,可以进一步用于接收主设备发送的光纤传输时延消息, 所述光纤传输时延消息携带主设备利用自身的光纤传输时延测量功能测得的 所述第一光纤传输时延 dl;
所述时延获取模块 810具体可以包括: 环路时延 RTD测量模块 8102, 用于 通过收发模块向主设备发送环路时延 RTD测量请求消息,记录 RTD测量请求消 息发送时刻 t-rtd-s; 通过收发模块接收主设备回复的 RTD测量响应消息, 记录 RTD测量响应消息到达时刻 t-rtd-r; 根据第一光纤传输时延 dl , 以及 RTD测量 请求消息发送时刻 t-rtd-s和 RTD测量响应消息到达时刻 t-rtd-r, 计算第二光纤传 输时延 d2。
请参考图 8c, —种实施方式中,
所述收发模块 820,可以进一步用于接收主设备发送的光纤传输时延消息, 所述光纤传输时延消息携带主设备利用自身的光纤传输时延测量功能测得的 所述第一光纤传输时延 dl;
所述时延获取模块 810具体可以包括: 环路时延 RTD测量模块 8102, 用于 获取时延响应消息中携带的时延响应消息发送时刻 t5 , 以及时延响应消息到达 时刻 t6; 根据所述第一光纤传输时延 dl、 时延请求消息发送时刻 t3、 时延请求 消息到达时刻 t4、 时延响应消息发送时刻 t5、 时延响应消息到达时刻 t6计算第 二光纤传输时延 d2。
请参考图 8d, —种实施方式中, 所述时延获取模块 810具体可以包括: 光纤传输时延测量模块 8101 ,用于测得从设备至主设备的第二光纤传输时 延 d2;
环路时延 RTD测量模块 8102, 用于通过收发模块向主设备发送环路时延 RTD测量请求消息, 记录 RTD测量请求消息发送时刻 t-rtd-s; 通过收发模块接 收主设备回复的 RTD测量响应消息, 记录 RTD测量响应消息到达时刻 t-rtd-r; 根据所述第二光纤传输时延 d2以及 RTD测量请求消息发送时刻 t-rtd-s和 RTD测 量响应消息到达时刻 t-rtd-r计算第一光纤传输时延 dl。
请参考图 8d, —种实施方式中, 所述时延获取模块 810具体可以包括: 光纤传输时延测量模块 8101 ,用于测得从设备至主设备的第二光纤传输时 延 d2;
环路时延 RTD测量模块 8102,用于获取时延响应消息中携带的时延响应消 息发送时刻 t5, 以及时延响应消息到达时刻 t6;根据所述第二光纤传输时延 d2、 时延请求消息发送时刻 t3、 时延请求消息到达时刻 t4、 时延响应消息发送时刻 t5和时延响应消息到达时刻 t6计算第一光纤传输时延 dl。
以上, 本发明实施例公开了一种时间同步设备, 该设备可以自行获取主从 设备间的第一光纤传输时延 dl和第二光纤传输时延 d2, 进而修正时间偏差,调 整本地时钟, 完成时间同步。 从而:
可以有效消除网络不对称,具体是光纤收发不对称,带来的时间同步误差; 可以在时间同步过程中实现在线时间同步补偿,在开局、 网络验收和网络 结构发生变化时, 不必再由人工对逐个站点进行时间同步补偿操作。
相对于现有技术中人工进行时间同步补偿操作,本实施例技术方案测量精 度高, 准确率稿, 周期短, 成本低, 消耗人力物力少。 解决了 IEEE 1588V2部 署的工程实施难题, 实现了规模工程部署能力。 实施例六、
请参考图 9a, 本发明实施例提供一种时间同步***, 包括: 通过光纤连接 的主设备 910和从设备 920。所述从设备 920, 用于与主设备 910交互光纤传输时 延测量信号和时间同步信号, 获取主设备至从设备的第一光纤传输时延 dl , 和 从设备至主设备的第二光纤传输时延 d2; 计算初始时间偏差 offsetl ; 采用所述 第一光纤传输时延 dl和第二光纤传输时延 d2调整所述初始时间偏差 offsetl , 得 到修正时间偏差 offset2; 根据所述修正时间偏差 offset2调整本地时钟, 完成时 间同步。所述主设备 910, 用于与从设备 920交互光纤传输时延测量信号和时间 同步信号。
所述主设备或从设备中设置有时延获取模块 810 ,该时延获取模块 810具体 可以包括光纤传输时延测量模块 8101和 RTD测量模块 8102中的一个或两个。
一种方式中, 主、 从设备中均设置光纤传输时延测量模块 8101 , 如图 9b 所示:
主设备包括: 第一光纤传输时延测量模块, 第一收发模块, 第一时间同步 模块; 从设备包括: 第二光纤传输时延测量模块, 第二收发模块, 第二时间同 步模块。 第一收发模块和第二收发模块通过光纤连接。
如图 9c或 9d所示, 具体实现中, 第一收发模块可以包括第一接收模块和第 一发送模块, 第二收发模块可以包括第二接收模块和第二发送模块。 第一接收 模块和第二发送模块通过光纤连接,第一发送模块和第二接收模块通过光纤连 接。 第一发送模块和第二发送模块实现数据发送功能,分別从第一时间同步模 块和第二时间同步模块或其他***模块(图中未画出)接收电信号并转换成可 在光纤上传输的光信号, 其发送至与相连的光纤上。 第一接收模块和第二接收 模块实现数据接收功能,从与其相连的光纤上接收光信号并转换为电信号, 分 別输出至第一时间同步模块和第二时间同步模块或其他***模块(图中未画 出)。
第一光纤传输时延测量模块进行主设备至从设备的光纤传输时延测量,第 二光纤传输时延测量模块进行从设备至主设备的光纤传输时延测量。光纤传输 时延测量模块可采用光时域反射仪(OTDR )或光频域反射仪(OFDR )原理 完成光纤传输时延测量, 即, 发射测试信号, 监控反射信号, 根据测试信号和 反射信号的时间差获得主设备至从设备或者从设备至主设备的光纤传输时延。 第一光纤传输时延测量模块将测量获得的第一光纤传输时延 dl输出至第一时 间同步模块, 第二光纤传输时延测量模块将测量获得的第二光纤传输时延 d2 输出至第二时间同步模块。
进一步地,如图 9e所示,光纤传输时延测量模块可以由时延测量发射模块、 时延测量接收模块和时延测量处理模块组成。
其中时延测量发射模块在时延测量处理模块的触发下发送时延测量信号, 所述时延测量信号可为单脉沖信号,也可为伪随机噪声(Pseudo-random Noise,
PN )序列, 还可为 Goray码。 由于光纤传输时延测量模块和发送模块共用一条 光纤, 两者可通过光信号波长进行区分, 例如发送模块采用波长 1490nm发射 数据信号, 时延测量发射模块可采用 1625nm或 1650nm发射时延测量信号。 光 纤传输时延测量模块和发送模块可通过波分复用器(如 WDM )进行复用。
时延测量接收模块用于接收光纤对时延测量信号反射信号,对其进行光电 转换(0/E转换), 并进行响应的滤波处理、 模拟 /数字转换( A/D转换), 生成 数字信号,输出至时延测量处理模块。 时延测量发射模块和接收模块可通过分 光器件 (如光分路器)进行复用。
时延测量处理模块对时延测量接收模块输出的信号进行处理分析,根据反 射信号到达时间与发射信号的时间差确定光纤的传输时延,将分析获得的光纤 传输时延输出至时间同步模块。
更进一步地, 时延测量发射模块可与发送模块共用, 即如 9f所示。
此种情况下, 可停止其它数据发送功能, 数据发射模块(时延测量发射模 块)只发送时延测量信号。 也可以不停止其它数据发送功能, 采用重调制方式 将数据信号和时延测量信号叠加在一起发送至光纤。
再进一步地, 时延测量接收模块可与接收模块共用, 即如 9g所示。
此种情况下, 本端设备 (如主设备)的时间同步模块可通过发送模块发射时 延测量指示消息至对端设备 (如从设备), 指示对端停止发射数据, 然后, 本端 停止接收其它数据信号, 只接收时延测量信号经光纤反射后的反射信号。 时延 测量完成后, 时间同步模块通过发送模块发射时延测量指示消息至对端设备, 指示对端可重新发射数据。
本方式提供的时间同步***中, 主、从设备中均设置有光纤传输时延测量 模块, 此时, ***工作原理如下:
主设备的第一时间同步模块将主设备至从设备的第一光纤传输时延 dl通 过第一发送模块发送至与其相连的光纤。从设备的第二时间同步模块通过第二 接收模块接收来自主设备的第一光纤传输时延 dl , 进行存储。 第一时间同步模 块通过第一发送模块向从设备发送时间同步消息,将时间同步消息发送时刻发 送至从设备。第二时间同步模块通过第二接收模块接收来自主设备的时间同步 消息,记录时间同步消息到达时刻。 第二时间同步模块通过第二发送模块向主 设备发送时延请求消息, 同时记录时延请求消息发送时刻。 第一时间同步模块 通过第一接收模块接收来自从设备的时延请求消息,记录时延请求消息到达时 刻。第一时间同步模块将记录的时延请求消息到达时刻通过第一发送模块发送 至与其相连的光纤。第二时间同步模块通过第二接收模块接收来自主设备的时 延响应消息,提取时延时延请求消息到达时刻。 第二光纤传输时延测量模块进 行从设备至主设备的光纤传输时延测量,将测量获得的从设备至主设备的第二 光纤传输时延 d2输出至第二时间同步模块。二时间同步模块结合获得的主设备 至从设备的第一光纤传输时延、从设备至主设备的第二光纤传输时延、 时间同 步消息发送时刻、 时间同步消息到达时刻、 时延请求消息发送时刻、 时延请求 消息接收时刻, 计算从设备时间与主设备的时间偏差, 并调整从设备时钟, 完 成时间同步。 具体计算方法同前述实施例, 在此不再赘述。
请参考图 9h, 本实施例提供另一种时间同步***。
本实施例提供的时间同步***, 与图 9b所示时间同步***的不同之处在 于,从设备中没有光纤传输时延测量模块,仅在主设备设置第一光纤传输时延 测量模块, 从设备中则设有第二 RTD测量模块, 主设备中相应的也设有第一 RTD测量模块。
此时, 所述从设备中的
第二收发模块 820b, 可以进一步用于接收主设备发送的光纤传输时延消 息,所述光纤传输时延消息携带主设备利用自身的光纤传输时延测量功能测得 的所述第一光纤传输时延 dl;
第二 RTD测量模块,或者可以用于通过第二发送模块向主设备发送环路时 延 RTD测量请求消息, 记录 RTD测量请求消息发送时刻 t-rtd-s; 通过第二接收 模块模块接收主设备回复的 RTD测量响应消息,记录 RTD测量响应消息到达时 刻 t-rtd-r; 根据第一光纤传输时延 dl , 以及 RTD测量请求消息发送时刻 t-rtd-s和 RTD测量响应消息到达时刻 t-rtd-r, 计算第二光纤传输时延 d2。
第二 RTD测量模块,或者可以用于获取时延响应消息中携带的时延响应消 息发送时刻 t5, 以及时延响应消息到达时刻 t6;根据所述第一光纤传输时延 dl、 时延请求消息发送时刻 t3、 时延请求消息到达时刻 t4、 时延响应消息发送时刻 t5、 时延响应消息到达时刻 t6计算第二光纤传输时延 d2。
第二时间同步模块, 可以用于计算初始时间偏差 offsetl , 采用所述第一光 纤传输时延 dl和第二光纤传输时延 d2调整所述初始时间偏差 offsetl , 得到修正 时间偏差 offset2;根据所述修正时间偏差 offset2调整本地时钟, 完成时间同步。
所述主设备中用于与从设备交互光纤传输时延测量信号和时间同步信号, 例如包括: 第一时间同步模块测量主设备至从设备的第一光纤传输时延 dl; 第 一收发模块发送携带第一光纤传输时延 dl的光纤传输时延消息给从设备,接收 从设备发送的环路时延 RTD测量请求消息, 并将第一 RTD测量模块生成的 RTD 测量响应消息回复给从设备。 请参考图 9i, 本发明实施例提供又一种时间同步***。
本实施例提供的时间同步***, 与图 9b所示时间同步***的不同之处在 于, 在从设备中设置第二光纤传输时延测量模块, 和第二 RTD测量模块, 主设 备中设有相应的设有第一 RTD测量模块, 而没有光纤传输时延测量模块。
此时, 所述从设备中的
第二光纤传输时延测量模块,用于测得从设备至主设备的第二光纤传输时 延 d2;
第二 RTD测量模块,或者用于通过收发模块向主设备发送环路时延 RTD测 量请求消息, 记录 RTD测量请求消息发送时刻 t-rtd-s; 通过收发模块接收主设 备回复的 RTD测量响应消息, 记录 RTD测量响应消息到达时刻 t-rtd-r; 根据所 述第二光纤传输时延 d2以及 RTD测量请求消息发送时刻 t-rtd-s和 RTD测量响应 消息到达时刻 t-rtd-r计算第一光纤传输时延 dl。
第二 RTD测量模块,或者用于获取时延响应消息中携带的时延响应消息发 送时刻 t5, 以及时延响应消息到达时刻 t6; 根据所述第二光纤传输时延 d2、 时 延请求消息发送时刻 t3、 时延请求消息到达时刻 t4、 时延响应消息发送时刻 t5 和时延响应消息到达时刻 t6计算第一光纤传输时延 dl。
第二时间同步模块, 用于计算初始时间偏差 offsetl , 采用所述第一光纤传 输时延 dl和第二光纤传输时延 d2调整所述初始时间偏差 offsetl , 得到修正时间 偏差 offset2; 根据所述修正时间偏差 offset2调整本地时钟, 完成时间同步。
所述主设备中用于与从设备交互光纤传输时延测量信号和时间同步信号, 例如包括: 第一收发模块接收从设备发送的环路时延 RTD测量请求消息, 并将 第一 RTD测量模块生成的 RTD测量响应消息回复给从设备。
以上, 本发明实施例公开了一种时间同步***, ***中的从设备可以自行 获取主从设备间的第一光纤传输时延 dl和第二光纤传输时延 d2,进而修正时间 偏差, 调整本地时钟, 完成时间同步。 从而:
可以有效消除网络不对称,具体是光纤收发不对称,带来的时间同步误差; 可以在时间同步过程中实现在线时间同步补偿,在开局、 网络验收和网络 结构发生变化时, 不必再由人工对逐个站点进行时间同步补偿操作。 相对于现有技术中人工进行时间同步补偿操作,本实施例技术方案测量精 度高, 准确率稿, 周期短, 成本低, 消耗人力物力少。 解决了 IEEE 1588V2部 署的工程实施难题, 实现了规模工程部署能力。 本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步 骤可以通过硬件来完成,也可以通过程序指令相关的硬件来完成, 该程序可以 存储于一计算机可读存储介质中, 存储介质可以包括: 只读存储器、 随机读取 存储器、 磁盘或光盘等。 介绍,但以上实施例的说明只是用于帮助理解本发明的方法及其核心思想, 不 应理解为对本发明的限制。 本技术领域的技术人员在本发明揭露的技术范围 内, 可轻易想到的变化或替换, 都应涵盖在本发明的保护范围之内。

Claims

权 利 要 求
1、 一种时间同步方法, 其特征在于, 包括:
从设备获取主设备至从设备的第一光纤传输时延 dl ,和从设备至主设备的 第二光纤传输时延 d2;
与主设备交互时间同步信号;
计算初始时间偏差 offsetl , 采用所述第一光纤传输时延 dl和第二光纤传输 时延 d2调整所述初始时间偏差 offsetl , 得到修正时间偏差 offset2;
根据所述修正时间偏差 offset2调整本地时钟, 完成时间同步。
2、 根据权利要求 1所述的方法, 其特征在于,
所述与主设备交互时间同步信号包括:
接收主设备发送的时间同步消息, 记录时间同步消息到达时刻 t2, 所述时 间同步消息携带时间同步消息发送时刻 tl;
向主设备发送时延请求消息, 记录时延请求消息发送时刻 t3;
接收主设备返回的时延响应消息,所述时延响应消息携带时延请求消息到 达时刻 t4;
所述计算初始时间偏差 offsetl包括:
根据所述时间同步消息发送时刻 tl、 时间同步消息到达时刻 t2、 时延请求 消息发送时刻 t3、 时延请求消息到达时刻 t4计算初始时间偏差 offsetl。
3、根据权利要求 2所述的方法, 其特征在于, 所述从设备获取主设备至从 设备的第一光纤传输时延 dl , 和从设备至主设备的第二光纤传输时延 d2包括: 从设备接收主设备发送的光纤传输时延消息,所述光纤传输时延消息携带 主设备利用自身的光纤传输时延测量功能测得的所述第一光纤传输时延 dl ; 从设备启动自身的光纤传输时延测量功能,测得从设备至主设备的第二光 纤传输时延 d2。
4、 根据权利要求 2所述的方法, 其特征在于, 所述从设备获取主设备至从 设备的第一光纤传输时延 dl , 和从设备至主设备的第二光纤传输时延 d2包括: 从设备接收主设备发送的光纤传输时延消息,所述光纤传输时延消息携带 主设备利用自身的光纤传输时延测量功能测得的所述第一光纤传输时延 dl ; 从设备向主设备发送环路时延 RTD测量请求消息,记录 RTD测量请求消息 发送时刻 t-rtd-s; 接收主设备回复的 RTD测量响应消息, 记录 RTD测量响应消 息到达时刻 t-rtd-r;
从设备根据第一光纤传输时延 dl , 以及 RTD测量请求消息发送时刻 t-rtd-s 和 RTD测量响应消息到达时刻 t-rtd-r , 计算第二光纤传输时延 d2。
5、根据权利要求 2所述的方法, 其特征在于, 所述从设备获取主设备至从 设备的第一光纤传输时延 dl , 和从设备至主设备的第二光纤传输时延 d2包括: 从设备接收主设备发送的光纤传输时延消息,所述光纤传输时延消息携带 主设备利用自身的光纤传输时延测量功能测得的所述第一光纤传输时延 dl; 从设备获取所述时延响应消息中携带的时延响应消息发送时刻 t5 , 记录所 述时延响应消息到达时刻 t6;
根据所述第一光纤传输时延 dl、 时延请求消息发送时刻 t3、 时延请求消息 到达时刻 t4、 时延响应消息发送时刻 t5、 时延响应消息到达时刻 t6计算第二光 纤传输时延 d2。
6、根据权利要求 2所述的方法, 其特征在于, 所述从设备获取主设备至从 设备的第一光纤传输时延 dl , 和从设备至主设备的第二光纤传输时延 d2包括: 从设备启动自身的光纤传输时延测量功能,测得从设备至主设备的第二光 纤传输时延 d2;
从设备向主设备发送环路时延 RTD测量请求消息,记录 RTD测量请求消息 发送时刻 t-rtd-s; 接收主设备回复的 RTD测量响应消息, 记录 RTD测量响应消 息到达时刻 t-rtd-r;
从设备根据所述第二光纤传输时延 d2以及 RTD测量请求消息发送时刻 t-rtd-s和 RTD测量响应消息到达时刻 t-rtd-r计算第一光纤传输时延 dl。
7、根据权利要求 2所述的方法, 其特征在于, 所述从设备获取主设备至从 设备的第一光纤传输时延 dl , 和从设备至主设备的第二光纤传输时延 d2包括: 从设备启动自身的光纤传输时延测量功能,测得从设备至主设备的第二光 纤传输时延 d2;
从设备获取所述时延响应消息中携带的时延响应消息发送时刻 t5 , 记录所 述时延响应消息到达时刻 t6;
从设备根据所述第二光纤传输时延 d2、 时延请求消息发送时刻 t3、 时延请 求消息到达时刻 t4、 时延响应消息发送时刻 t5和时延响应消息到达时刻 t6计算 第一光纤传输时延 dl。
8、 根据权利要求 2至 7中任一项所述的方法, 其特征在于:
offset 2 = offsetl— (U 2) / 2。
9、 根据权利要求 8所述的方法, 其特征在于:
offsetl = [{tl― tl)― (t4― t3)] 1 2。
10、 一种时间同步设备, 其特征在于, 包括:
时延获取模块, 用于获取主设备至从设备的第一光纤传输时延 dl , 和从设 备至主设备的第二光纤传输时延 d2;
收发模块, 用于与主设备交互光信号, 所述光信号包括时间同步信号; 时间同步模块, 用于计算初始时间偏差 offsetl , 采用所述第一光纤传输时 延 dl和第二光纤传输时延 d2调整所述初始时间偏差 offsetl , 得到修正时间偏差 offset2; 根据所述修正时间偏差 offset2调整本地时钟, 完成时间同步。
11、 根据权利要求 10所述的设备, 其特征在于:
所述收发模块, 具体用于接收主设备发送的时间同步消息, 所述时间同步 消息携带时间同步消息发送时刻 tl ; 向主设备发送时延请求消息; 接收主设备 返回的时延响应消息, 所述时延响应消息携带时延请求消息到达时刻 t4; 所述时间同步模块, 具体用于记录时间同步消息到达时刻 t2, 提取所述时 间同步消息携带的时间同步消息发送时刻 tl; 记录时延请求消息发送时刻 t3; 提取所述时延响应消息携带时延请求消息到达时刻 t4; 根据所述时间同步消息 发送时刻 tl、 时间同步消息到达时刻 t2、 时延请求消息发送时刻 t3、 时延请求 消息到达时刻 t4计算初始时间偏差 offsetl。
12、 根据权利要求 11所述的设备, 其特征在于:
所述收发模块, 进一步用于接收主设备发送的光纤传输时延消息, 所述光 纤传输时延消息携带主设备利用自身的光纤传输时延测量功能测得的第一光 纤传输时延 dl ; 所述时延获取模块包括: 光纤传输时延测量模块, 用于测得从设备至主设 备的第二光纤传输时延 d2。
13、 根据权利要求 11所述的设备, 其特征在于:
所述收发模块, 进一步用于接收主设备发送的光纤传输时延消息, 所述光 纤传输时延消息携带主设备利用自身的光纤传输时延测量功能测得的所述第 一光纤传输时延 dl;
所述时延获取模块包括: 环路时延 RTD测量模块, 用于通过收发模块向主 设备发送环路时延 RTD测量请求消息,记录 RTD测量请求消息发送时刻 t-rtd-s; 通过收发模块接收主设备回复的 RTD测量响应消息,记录 RTD测量响应消息到 达时刻 t-rtd-r; 根据第一光纤传输时延 dl , 以及 RTD测量请求消息发送时刻 t-rtd-s和 RTD测量响应消息到达时刻 t-rtd-r, 计算第二光纤传输时延 d2。
14、 根据权利要求 11所述的设备, 其特征在于:
所述收发模块, 进一步用于接收主设备发送的光纤传输时延消息, 所述光 纤传输时延消息携带主设备利用自身的光纤传输时延测量功能测得的所述第 一光纤传输时延 dl;
所述时延获取模块包括: 环路时延 RTD测量模块, 用于获取时延响应消息 中携带的时延响应消息发送时刻 t5, 以及时延响应消息到达时刻 t6; 根据所述 第一光纤传输时延 dl、 时延请求消息发送时刻 t3、 时延请求消息到达时刻 t4、 时延响应消息发送时刻 t5、时延响应消息到达时刻 t6计算第二光纤传输时延 d2。
15、 根据权利要求 11所述的设备, 其特征在于, 所述时延获取模块包括: 光纤传输时延测量模块, 用于测得从设备至主设备的第二光纤传输时延 d2;
环路时延 RTD测量模块,用于通过收发模块向主设备发送环路时延 RTD测 量请求消息, 记录 RTD测量请求消息发送时刻 t-rtd-s; 通过收发模块接收主设 备回复的 RTD测量响应消息, 记录 RTD测量响应消息到达时刻 t-rtd-r; 根据所 述第二光纤传输时延 d2以及 RTD测量请求消息发送时刻 t-rtd-s和 RTD测量响应 消息到达时刻 t-rtd-r计算第一光纤传输时延 dl。
16、 根据权利要求 11所述的设备, 其特征在于, 所述时延获取模块包括: 光纤传输时延测量模块, 用于测得从设备至主设备的第二光纤传输时延 d2;
环路时延 RTD测量模块,用于获取时延响应消息中携带的时延响应消息发 送时刻 t5 , 以及时延响应消息到达时刻 t6; 根据所述第二光纤传输时延 d2、 时 延请求消息发送时刻 t3、 时延请求消息到达时刻 t4、 时延响应消息发送时刻 t5 和时延响应消息到达时刻 t6计算第一光纤传输时延 dl。
17、 一种时间同步***, 其特征在于, 包括:
通过光纤连接的主设备和从设备;
所述从设备, 用于与主设备交互光纤传输时延测量信号和时间同步信号, 获取主设备至从设备的第一光纤传输时延 dl ,和从设备至主设备的第二光纤传 输时延 d2; 计算初始时间偏差 offsetl ; 采用所述第一光纤传输时延 dl和第二光 纤传输时延 d2调整所述初始时间偏差 offsetl , 得到修正时间偏差 offset2; 根据 所述修正时间偏差 offset2调整本地时钟, 完成时间同步;
所述主设备, 用于与从设备交互光纤传输时延测量信号和时间同步信号。
PCT/CN2012/070814 2012-02-01 2012-02-01 时间同步方法和设备及*** WO2012092892A2 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12732198.2A EP2555465A4 (en) 2012-02-01 2012-02-01 METHOD, DEVICE AND SYSTEM FOR SYNCHRONIZATION
PCT/CN2012/070814 WO2012092892A2 (zh) 2012-02-01 2012-02-01 时间同步方法和设备及***
CN2012800001060A CN102742190A (zh) 2012-02-01 2012-02-01 时间同步方法和设备及***
TW101140696A TW201334437A (zh) 2012-02-01 2012-11-02 時間同步方法、設備及系統
ARP120105017 AR089495A1 (es) 2012-02-01 2012-12-27 Metodo, dispositivo y sistema de sincronizacion temporal
US13/739,783 US9143311B2 (en) 2012-02-01 2013-01-11 Time synchronization method, device, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/070814 WO2012092892A2 (zh) 2012-02-01 2012-02-01 时间同步方法和设备及***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/739,783 Continuation US9143311B2 (en) 2012-02-01 2013-01-11 Time synchronization method, device, and system

Publications (2)

Publication Number Publication Date
WO2012092892A2 true WO2012092892A2 (zh) 2012-07-12
WO2012092892A3 WO2012092892A3 (zh) 2013-01-10

Family

ID=46457751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070814 WO2012092892A2 (zh) 2012-02-01 2012-02-01 时间同步方法和设备及***

Country Status (6)

Country Link
US (1) US9143311B2 (zh)
EP (1) EP2555465A4 (zh)
CN (1) CN102742190A (zh)
AR (1) AR089495A1 (zh)
TW (1) TW201334437A (zh)
WO (1) WO2012092892A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2884679A4 (en) * 2012-11-23 2015-09-30 Zte Corp TIME SYNCHRONIZATION METHOD AND APPARATUS FOR DETECTING THE ASYMMETRY OF AN OPTICAL FIBER

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9680567B2 (en) * 2011-03-03 2017-06-13 Acacia Communications, Inc. Fault localization and fiber security in optical transponders
EP2508839B1 (de) * 2011-04-07 2014-07-09 Carl Mahr Holding GmbH Messeinrichtung mit Sendeschaltung zur drahtlosen Übertragung eines Messwertsendesignals
CN103840902B (zh) * 2012-11-20 2017-06-27 中兴通讯股份有限公司 检测光纤非对称性的同步***、方法及主从光模块设备
CN103441795A (zh) * 2013-08-29 2013-12-11 成都泰富通信有限公司 一种光通信网络中光纤传输时延的在线监测方法
CN104467928B (zh) * 2013-09-18 2018-08-14 华为技术有限公司 一种终端设备之间协作的方法和设备
CN104168077B (zh) * 2014-07-04 2017-02-08 上海交通大学 高精度光纤双向时间比对方法与***
KR20160014157A (ko) * 2014-07-28 2016-02-11 주식회사 오이솔루션 광 트랜시버
US9843405B2 (en) * 2014-12-11 2017-12-12 Khalifa University of Science, Technology, and Research Method and devices for clock synchronization over links with asymmetric transmission rates
JP6461718B2 (ja) * 2015-06-05 2019-01-30 株式会社東芝 管理装置、システム及び方法
JP6261822B2 (ja) * 2015-06-08 2018-01-17 三菱電機株式会社 時刻同期装置及び時刻同期システム及び時刻同期方法
US10148412B1 (en) * 2015-06-25 2018-12-04 Marvell International Ltd. Methods and apparatus for clock drift mitigation
CN105187275B (zh) * 2015-08-28 2018-05-29 四川泰富地面北斗科技股份有限公司 一种测量光纤传输链路非对称时延的方法及装置
CN107769878A (zh) * 2016-08-16 2018-03-06 南京中兴新软件有限责任公司 基于光传送网链路的时间同步方法及装置
US10341083B2 (en) * 2016-09-09 2019-07-02 Huawei Technologies Co., Ltd. System and methods for network synchronization
US10439712B2 (en) * 2016-09-09 2019-10-08 Huawei Technologies Co., Ltd. System and methods for determining propagation delay
WO2018218511A1 (zh) * 2017-05-31 2018-12-06 华为技术有限公司 时延测量方法及站点
SG11202000761VA (en) * 2017-07-26 2020-02-27 Aviat Networks Inc Airframe timestamping technique for point-to-point radio links
CN107360060B (zh) * 2017-08-07 2020-04-10 瑞斯康达科技发展股份有限公司 一种时延测量方法及装置
EP3664375A4 (en) * 2017-08-23 2020-08-12 Huawei Technologies Co., Ltd. PACKAGE PROCESSING METHOD AND NETWORKING DEVICE
CN115913442A (zh) * 2019-01-22 2023-04-04 华为技术有限公司 通信方法和光模块
WO2020188703A1 (ja) * 2019-03-18 2020-09-24 三菱電機株式会社 時刻同期装置、通信システム、時刻同期方法および時刻同期プログラム
CN112104413B (zh) * 2019-06-17 2021-07-16 上海华为技术有限公司 一种测量时延的无线中心设备、无线设备及无线通信***
CN110290434B (zh) * 2019-07-05 2022-03-04 北京电子工程总体研究所 基于光纤传输延迟实时补偿的非周期信号同步方法及***
CN110752890A (zh) * 2019-10-29 2020-02-04 浙江吉利汽车研究院有限公司 一种时间同步方法、时间同步***及车辆
US10986426B1 (en) * 2020-01-02 2021-04-20 Cisco Technology, Inc. Measuring fiber asymmetry
US11156705B2 (en) 2020-03-10 2021-10-26 Raytheon Company System and method for mitigating platform motion in a communications system
US11196497B2 (en) 2020-03-11 2021-12-07 Raytheon Company System and method for mitigating platform motion in a communications system
EP4258575A4 (en) * 2020-12-28 2024-01-24 Huawei Technologies Co., Ltd. DATA TRANSMISSION METHOD AND APPARATUS AND ASSOCIATED DEVICE
CN114221731B (zh) * 2021-12-09 2024-04-16 北京罗克维尔斯科技有限公司 时间同步精度确定方法、***及电子设备
WO2024067960A1 (en) * 2022-09-28 2024-04-04 Telefonaktiebolaget Lm Ericsson (Publ) Calibration over asymmetric links

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5778016A (en) 1994-04-01 1998-07-07 Imra America, Inc. Scanning temporal ultrafast delay methods and apparatuses therefor
US7126800B2 (en) * 2003-07-11 2006-10-24 General Electric Company Method and system for communications channel delay asymmetry compensation using global positioning systems
WO2005064827A1 (en) 2003-12-29 2005-07-14 Telefonaktiebolaget Lm Ericsson (Publ). Temperature compensation for transmission between nodes coupled by a unidirectional fiber ring
US7355998B2 (en) 2004-09-01 2008-04-08 Interdigital Technology Corporation Support for multiple access point switched beam antennas
JP4555124B2 (ja) * 2005-03-04 2010-09-29 日本電気通信システム株式会社 光アクセスネットワークにおける同期方法、光スイッチ装置、センタ装置、リモート装置、光アクセスシステム、光アクセスネットワーク、プログラム、及び記録媒体
US8494009B2 (en) * 2006-09-25 2013-07-23 Futurewei Technologies, Inc. Network clock synchronization timestamp
DE602007010225D1 (de) * 2006-10-18 2010-12-16 Tellabs Oy Synchronisationsverfahren und -anordnung
US20080175275A1 (en) * 2007-01-22 2008-07-24 Samsung Electronics Co., Ltd. Time synchronization method between nodes in network and apparatus for implementing the same
CN101577600B (zh) * 2008-05-09 2013-04-24 华为技术有限公司 无源光网络***时间同步方法、***及光网络设备
JP2009290626A (ja) * 2008-05-30 2009-12-10 Kddi Corp 光伝送システム及び時刻基準パルス同期方法
CN101621713B (zh) * 2008-06-30 2012-05-23 华为技术有限公司 无源光网络同步时间的计算方法、***及光网络设备
CN101707505B (zh) * 2008-08-13 2013-08-28 华为技术有限公司 一种在无源光网络中时间同步的方法、装置及无源光网络
CN101662702B (zh) * 2008-08-27 2013-06-26 华为技术有限公司 无源光网络中的时延控制方法、光线路终端和无源光网络
US8363681B2 (en) * 2008-10-16 2013-01-29 Entropic Communications, Inc. Method and apparatus for using ranging measurements in a multimedia home network
CN101729180A (zh) * 2008-10-21 2010-06-09 华为技术有限公司 精准时钟同步方法及***、精准时钟频率/时间同步装置
CN101783779B (zh) * 2009-01-16 2014-07-16 华为技术有限公司 一种xDSL时间同步方法、装置和***
CN101795423A (zh) * 2009-02-04 2010-08-04 中兴通讯股份有限公司 无源光网络***的时间同步方法及其同步***
CN102035639B (zh) * 2009-09-30 2014-09-17 华为技术有限公司 时间同步方法、装置和***
TWI421667B (zh) * 2009-10-07 2014-01-01 Univ Nat Cheng Kung 時鐘同步之方法及應用該方法之網路系統
TWI411277B (zh) * 2009-12-23 2013-10-01 Ind Tech Res Inst 網路從節點與網路系統精確時間同步之方法
CN102244603B (zh) * 2010-05-11 2014-09-03 华为技术有限公司 传输承载时间的报文的方法、设备及***
CN102142891B (zh) * 2010-06-24 2015-01-21 华为技术有限公司 光纤长度测量的方法、时间同步的方法、相应装置及***
WO2011085585A1 (zh) * 2010-07-23 2011-07-21 华为技术有限公司 时间同步的方法和设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2555465A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2884679A4 (en) * 2012-11-23 2015-09-30 Zte Corp TIME SYNCHRONIZATION METHOD AND APPARATUS FOR DETECTING THE ASYMMETRY OF AN OPTICAL FIBER
US9762318B2 (en) 2012-11-23 2017-09-12 Zte Corporation Time synchronization apparatus and method for automatically detecting the asymmetry of an optical fiber

Also Published As

Publication number Publication date
AR089495A1 (es) 2014-08-27
TWI456920B (zh) 2014-10-11
US9143311B2 (en) 2015-09-22
CN102742190A (zh) 2012-10-17
EP2555465A4 (en) 2013-12-18
EP2555465A2 (en) 2013-02-06
US20130195443A1 (en) 2013-08-01
TW201334437A (zh) 2013-08-16
WO2012092892A3 (zh) 2013-01-10

Similar Documents

Publication Publication Date Title
WO2012092892A2 (zh) 时间同步方法和设备及***
EP2884679B1 (en) Time synchronization apparatus and method for automatically detecting the asymmetry of an optical fiber
US8817823B2 (en) Method and device for time synchronization
EP2706686B1 (en) Method, terminal and system for measuring asymmetric delay of transmission link
WO2018006686A1 (zh) 一种通信网络设备间时间同步的优化方法、装置及设备
CN103840902B (zh) 检测光纤非对称性的同步***、方法及主从光模块设备
US10439712B2 (en) System and methods for determining propagation delay
WO2013143385A1 (en) Calculating time offset
WO2012149736A1 (zh) 一种时间同步的方法和***及节点设备
WO2012095043A2 (zh) 时间路径补偿方法和装置
CN108616309B (zh) 采用偏振光在光纤中传递时间频率信号的方法
WO2013086959A1 (zh) 线路非对称性补偿方法、设备及***
WO2013075307A1 (zh) 监测网络节点的输出时间方法、装置和***
CN112751639A (zh) 时间同步的方法、通信设备和***
JPH11344583A (ja) 時刻同期方法
CN102142953B (zh) 时间同步方法、网元及***
JP2019035591A (ja) 時刻管理装置、時刻基準装置、基準時刻管理システム、および基準時刻管理方法
WO2020172766A1 (zh) 一种时间同步方法、装置及***
CN117478263A (zh) 一种时间同步方法、fpga相位测量***
JP3536819B2 (ja) 時刻同期方法及び時刻同期システム及び時刻同期マスタ装置及び時刻同期スレーブ装置
Liangfu Time Synchronization Algorithm for Asymmetric Optical Fiber Communication Link
JP2017022647A (ja) 時刻同期装置および時刻同期方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280000106.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12732198

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012732198

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE