WO2012091411A2 - 극저온 인성이 우수한 고강도 강판 및 그 제조방법 - Google Patents

극저온 인성이 우수한 고강도 강판 및 그 제조방법 Download PDF

Info

Publication number
WO2012091411A2
WO2012091411A2 PCT/KR2011/010156 KR2011010156W WO2012091411A2 WO 2012091411 A2 WO2012091411 A2 WO 2012091411A2 KR 2011010156 W KR2011010156 W KR 2011010156W WO 2012091411 A2 WO2012091411 A2 WO 2012091411A2
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
toughness
strength steel
high strength
Prior art date
Application number
PCT/KR2011/010156
Other languages
English (en)
French (fr)
Other versions
WO2012091411A3 (ko
WO2012091411A9 (ko
Inventor
김우겸
김상호
방기현
서인식
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP11853770.3A priority Critical patent/EP2660346B1/en
Priority to ES11853770.3T priority patent/ES2585635T3/es
Priority to US13/997,703 priority patent/US9255305B2/en
Priority to CN201180068651.9A priority patent/CN103403204B/zh
Priority to JP2013547333A priority patent/JP5740486B2/ja
Publication of WO2012091411A2 publication Critical patent/WO2012091411A2/ko
Publication of WO2012091411A9 publication Critical patent/WO2012091411A9/ko
Publication of WO2012091411A3 publication Critical patent/WO2012091411A3/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a high-strength steel sheet having excellent cryogenic toughness and a method for manufacturing the same, and more particularly, to a high strength steel sheet having excellent impact toughness even when applied to cryogenic environments such as structural steel such as ships and marine structures or steel for multi-purpose tanks. It relates to a steel sheet and a method of manufacturing the same.
  • a technique for improving the hardness and strength of a steel sheet has been proposed by forming an low temperature transformation phase at any time by adding an element mainly improving hardenability for strength.
  • the toughness of the steel sheet may be extremely poor due to the residual stress inside the steel sheet.
  • the strength and toughness of steel sheet are two kinds of physical properties that are difficult to be compatible with each other conventionally.
  • the marine structural steel and the hank steel have very high toughness at low temperature as well as strength.
  • marine structural steels are gradually moving to cold regions such as the Arctic, which are rich in offshore oil and gas resources due to resource depletion in warmer regions. Therefore, it is difficult to withstand the harsh cryogenic environment as described above only with the existing high-strength steel sheet excellent in low temperature toughness.
  • the thick steel plates for multi-purpose tanks can be Since it contains a liquefied gas, the steel sheet to transport and store it must be secured even at a temperature lower than the liquefaction temperature.
  • the liquefaction temperatures of acetylene and ethylene are -82 ° C and 104 ° C, respectively, and therefore, a high strength steel sheet having excellent toughness at cryogenic temperatures is required even in such a use environment.
  • a method of controlling the microstructure by adding Ni 6-12 wt% or by quenching tempering or the like is used, which is expensive in manufacturing cost and low in productivity. There was a limit.
  • the steel sheet with excellent low temperature toughness can be secured at -60 ° C.
  • the low temperature toughness can be ensured at about -60 ° C.
  • One aspect of the present invention is to provide a high-strength steel sheet having excellent strength and excellent cryogenic toughness capable of securing toughness at a cryogenic temperature of less than -60 ° C to provide a steel material that can be used even at cryogenic temperatures and a method of manufacturing the same.
  • One aspect of the present invention is by weight% C: 0.02-0.06%, Si: 0.1-0.35%, Mn: 1.0-1.6%, A1: 0.02% or less (excluding 0%), Ni: 0.7-2.0%, Cu: 0.4-0.9%, Ti: 0.003-0.015%, Nb: 0.003-0.02%, P: 0.01% or less, S: 0.005% or less, including residual Fe and inevitable impurities, [Mn] +5.4 [Si] Cryogenic toughness, which satisfies +26 [Al] +32.8 [Nb] ⁇ 4.3, where [Mn], [Si], [A1] and [Nb] represent the weight 3 ⁇ 4> unit content of Mn, Si, Al and Nb Provide this excellent high strength steel sheet.
  • the microstructure of the steel sheet is an area fraction, more than 99% of the ash (accicular) It is preferred to include ferrite and up to 1% phase austenite / martensite (M & A).
  • the effective grains having a grain boundary orientation of 15 ° or more are 70 area% or more in the microstructure, and the grains having a size of 10 / ⁇ or less in the effective grains are 70 or more 3 ⁇ 4 or more in the microstructure.
  • the average size of the effective crystal grains is preferably 3-7 /.
  • the steel sheet has a tensile strength of 490 MPa or more, Charpy impact absorption energy at -140 ° C is 300J or more, and the ductile-brittle transition temperature (DBT) is more preferably -140 ° C or less.
  • another aspect of the present invention is% by weight, C: 0.02-0.06%, Si: 0.1-0.35%, Mn: 1.0-1.6%, A1: 0.02% or less (excluding 0%), Ni: 0.7 -2.0%, Cu: 0.4-0.9%, Ti: 0.003-0.015%, Nb: 0.003-0.02%, P: 0.01% or less, S: 0.005% or less, balance Fe and inevitable impurities, [Mn] + 5.4 [Si] +26 [Al] +32.8 [Nb] ⁇ 4.3, where [Mn] [Si], [A1] and [Nb] refer to the weight percent unit content of Mn, Si, A1 and Nb
  • the first rolling step is preferably rolling the last two passes with a reduction ratio of 15 to 25% per pass, respectively.
  • the cumulative reduction ratio is more preferably 50 to 60%.
  • the cooling step is a point of t / 4 when the thickness of the steel sheet is t As a guide, it is preferable to cool to 320 to 380 ° C at an angular velocity of 8 to 15 ° C / s.
  • 1 is a graph showing a change in Charpy impact absorption energy according to the temperature of the steel sheet according to the invention example.
  • Figure 2 shows the microstructure of the steel sheet according to the invention example.
  • One aspect of the present invention is a weight%, C: 0.02-0.06%, Si: 0.1-0.35%, Mn: 1.0-1.6%, Al: 0.02% or less (excluding 0%), Ni: 0.7-2.0%, Cu: 0.4-0.9%, Ti: 0.003-0.015%, Nb: 0.003-0.02%, P: 0.01% or less (excluding 0%), S: 0.005% or less, including residual Fe and unavoidable impurities, [Mn ] +5.4 [Si] +26 [Al] +32.8 [Nb] ⁇ 4.3, where [Mn], [Si], [Al], and [Nb] are MW, Si, Al, and Nb by weight unit content It provides a high strength steel sheet excellent in cryogenic toughness. First, the component system and the composition range will be described. (Weight 3 ⁇ 4>)
  • Si is an element added as a deoxidizer, and it is preferable to add 0.1% or more for deoxidation, but when the content exceeds 0.35%, toughness or weldability is lowered.
  • the content of Si is preferably controlled to 0.1 to 0.35%.
  • Mn is an element added to improve strength by solid solution strengthening and to refine grains and to improve base metal toughness, and in order to sufficiently obtain the effect, Mn is preferably added at least 1.0%, but the addition amount may exceed 1.6%. In this case, the toughness of the weld can be reduced by increasing the hardenability, so the amount of Mn added is preferably controlled at 1.0-1.6%.
  • A1 is an element capable of effectively deoxidation, it is preferable to limit the upper limit to 0.02% because it can promote MA formation in a small amount.
  • Ni is an element that can improve the strength and toughness of the base material at the same time, it is preferable to add at least 0.7% in order to sufficiently obtain the above effect, but Ni is an expensive element, if the amount is too large, weldability may deteriorate, It is preferable to limit the upper limit to 2.0%.
  • Cu is an element that can increase the strength by minimizing the toughness of the base material by solid solution strengthening and precipitation strengthening, and it is preferable to contain about 0.3% in order to achieve the effect of improving the strength. It is preferable to limit the upper limit to 0.93 ⁇ 4> since it may cause a defect of. Titanium (Ti): 0.003-0.015%
  • Ti has an effect of forming nitrides with N to refine the grains of the HAZ portion to improve HAZ toughness. In order to secure such an effect sufficiently, it is preferable to add 0.003% or more. However, if the amount is too large, the low temperature toughness deteriorates, such as coarsening of the nitride, so that the amount is preferably controlled at 0.015% or less. therefore, It is preferable to control the addition amount of Ti to 0.003 to 0.015%. Niobium (Nb): 0.003-0.02%
  • Nb is precipitated in the form of NbC and NbCN to greatly enhance the strength of the base metal and to suppress the transformation of ferrite and bainite to refine the grains.
  • 0.003% or more must be added.
  • the upper limit is preferably limited to 0.02%.
  • P is an element that is advantageous in improving the strength and corrosion resistance, but it is advantageous to make it as low as possible because it is an element that greatly impairs the impact toughness. Therefore, the upper limit thereof is preferably 0.0. Sulfur (S): 0.005% or less
  • the component system should additionally satisfy [Mn] +5.4 [Si] +26 [Al] +32.8 [Nb] ⁇ 4.3, where [Mn], [Si], [A1] and [Nb] are Mn, Si, Al And weight% unit content of Nb. Mn, Si, Al, and Nb are components that influence the formation of phase austenite / martensite (M & A).
  • the microstructure of the steel sheet as an area fraction it is preferable to include more than 99% of an acylar (accicular) ferrite and less than 1% of the phase austenite / martensite (M & A).
  • the microstructure in the steel sheet provided in the present invention has an acicle (accicular) ferrite as the main structure, and has a phase austenite / martensite (M & A) as the second phase structure.
  • Ashicular ferrite has good strength, while on the other hand, austenite / martensitic (M & A) tissue Since it becomes a cause to inhibit toughness, it is more preferable to limit the said 2nd phase structure to 1% or less.
  • the effective grain having a grain boundary orientation of 15 ° or more is 70 or more in area 3/4 of the microstructure, and the grain having a size of 10 or less in the effective grain is 70 or more in area of the microstructure.
  • the decisive factor affecting the properties of the steel is effective grains having a grain boundary orientation of 15 ° or more, it is preferable that such effective grains contain 70 area% or more in the microstructure.
  • the effective grains having an important effect on the properties of such steels have a size of ⁇ or less and a microstructure increase of more than 70% by area, which is closely related to the lamella toughness of the grain size of the acicular ferrite. The smaller is, the greater the stratified toughness.
  • the microstructure of the effective grain size of 10 / or less is included in more than 70 areas 3 ⁇ 4
  • the microstructure of the steel sheet according to the present invention is obtained that the average grain size of the effective grain is 3 ⁇ 7 ⁇ , if the effective grain size is controlled very fine in this way it is excellent in toughness at low temperature with the strength of the steel , Can be used as a steel sheet suitable for cryogenic use environment such as marine structures.
  • the steel sheet of the present invention as described above can be obtained that the tensile strength is 490MPa or more, Charpy impact absorption energy at -14CTC is 300J or more, and the ductile-brittle transition temperature (DBTT) is -140 ° C or less.
  • the strength of the steel sheet is 490MPa or more can exhibit a high strength that can be used in the environment to which the steel sheet of the present invention is applied, the Charpy impact absorption energy is 300J or more even at cryogenic temperature of -14C C has particularly excellent cryogenic toughness Can be.
  • DBTT ductile-brittle transition temperature
  • Another aspect of the present invention is% by weight, C: 0.02-0.06%, Si: 0.1-0.35%, Mn: 1.0-1.6%, A1: 0.02% or less (excluding 03 ⁇ 4>), Ni: 0.7 -2.0%, Cu: 0.4-0.9%, Ti: 0.003-0.015%, Nb: 0.003-0.02%, P: 0.01% or less, S: 0.005% or less, residual Fe and inevitable impurities, [Mn ] +5.4 [Si] +26 [Al] +32.8 [Nb] ⁇ 4.3, where [Mn] [Si], [A1] and [Nb] represent the weight percent unit content of Mn, Si, Al and Nb.
  • the steel slab having the composition as described above is subjected to a heating step of heating at 1050 ⁇ 118 (C, the heating step of such a slab is performed to smoothly carry out the subsequent rolling process and to sufficiently heat the steel sheet to obtain the properties of the target steel sheet
  • the heating process should be carried out within the proper temperature range according to the purpose. The important thing in this heating process is not only need to heat uniformly enough that the precipitated elements inside the steel sheet can be sufficiently dissolved, To avoid excessive coarsening of grains, if the heating temperature of steel is less than 1050 ° C, Nb, Ti, etc. cannot be re-used in the steel, making it hard to achieve high strength of steel sheet and partial recrystallization occurs.
  • the heating temperature of the slab is controlled to 1050 ⁇ 1180 ° C
  • the slab is heated after the slab is heated, and in order for the steel sheet to have low temperature toughness, the austenitic grains must be present in a fine size, which is possible by controlling the rolling temperature and the rolling reduction rate.
  • Rolling of the present invention The step is characterized in that it is carried out in two temperature ranges. In addition, since the recrystallization behavior in each temperature range is different from each other, the conditions are also set separately.
  • a first rolling step of rolling four or more passes at austenite recrystallization temperature (Tnr) or more is performed. Rolling in the austenite recrystallization region produces an effect of making grains smaller through austenite recrystallization, and such grain refinement has an important effect on improving strength and toughness.
  • the first rolling step is a multi-pass rolling four or more times at a temperature above the austenite recrystallization temperature (Tnr), it is more preferable that the last two passes of the rolling step with a rolling reduction of 15 ⁇ 253 ⁇ 4 per pass. That is, the present inventors recognize that in the multi-pass rolling in the first rolling, it is the last two passes that have a decisive influence on the grain size of the austenite.
  • the total number of passes is also required at least four times in order to achieve grain refinement through intense reduction.
  • the cumulative reduction ratio in the second rolling stage is 50% or more in total.
  • the limit on the reduction ratio that can be applied in the first rolling stage is increased, and thus the layer fraction is increased.
  • grain refinement cannot be achieved, it is more effective to limit the cumulative reduction ratio to 50-6.
  • the steel sheet is angled to 320 to 380 ° C at an angle of angular velocity of 8 to 15 ° C / s based on the point t / 4.
  • the angle condition is a factor that affects the microstructure. If the angle is less than 8 ° C / s, the amount of M & A is excessively increased, which may inhibit the strength and toughness, and when the angle speed exceeds 15 ° C / s. Due to the excessive amount of deflection, the deformation of the steel sheet may occur and shape control may be inferior. Therefore, it is preferable to control the deflection speed after rolling at 8 to 15 ° C / s.
  • the corner temperature it is preferable to control the corner temperature below 380 ° C so that M & A structure is not generated.
  • the corner temperature is too low, the effect is not only saturated, but excessive cooling may cause the steel sheet to fall.
  • the lower limit is preferably limited to 320 ° C.
  • the steel slab was subjected to first rolling (rough rolling) under the conditions shown in Table 2, followed by rolling (deformation rolling), followed by corner angles.
  • Table 3 Gajo o Funho YS S -100-C -120-C -140-C DBTT
  • 1-1 to 1—3, 2-1 to 2-3, and 3-1 to 3 ⁇ 3 were all made of the invention steel, and the final two-pass reduction ratio in rough rolling was 15-25%, respectively.
  • the cumulative rolling rate is 50 to 60% in filament rolling, and the angle angle is also the angle angle of 8 to 15 ° C / s, and the angle temperature is 320 to 380 ° C., all of them satisfy the conditions of the present invention. Accordingly, the yield strength was 440 MPa or more, the tensile strength was 490 MPa or more, and the Sarphi impact absorption energy was 300 J or more at -100 ° C, -120 ° C, and -140 ° C. At the lowest reading temperature of -140 ° C, no embrittlement occurs. It was found that the temperature is much lower than that. In contrast, 1-4, 2-4, 3-4 used the invention steel, but the last
  • FIG. 1 is a graph showing the change in Charpy impact absorption energy according to the temperature of the invention example using the invention steel and the manufacturing conditions also meet the scope of the present invention. All of the range of -140 ° C, the lowest measurable temperature at -40 ° C, showed high energy values of over 300J, indicating that the cryogenic toughness was very good.
  • Figure 2 shows a microstructure photograph of the steel sheet according to the invention, black grains mean effective grains having a grain boundary orientation of 15 ° or more. This effective grain was found to be more than 70% by area, and it can be seen that the acylar (accicular) ferrite is a microstructure having a 99 area 3 ⁇ 4 or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명의 일측면은 중량%로, C: 0.02~0.06%, Si: 0.1~0.35%, Mn: 1.0~1.6%, Al: 0.02% 이하(0%는 제외), Ni: 0.7~2.0%, Cu: 0.4~0.9%, Ti: 0.003~0.015%, Nb: 0.003~0.02%, P: 0.01% 이하, S: 0.005% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고, [Mn]+5.4[Si]+26[Al]+32.8[Nb]<4.3를 만족하며, [Mn], [Si], [Al] 및 [Nb]는 Mn, Si, Al 및 Nb의 중량% 단위 함량을 의미하는 극저온 인성이 우수한 고강도 강판을 제공함으로써, 선박, 해양구조물 등의 구조용 강재나 액화가스를 저장, 운반 하는 탱크용 강재의 극저온 사용 환경에서도 우수한 인성을 확보할 수 있고, 인장강도가 490MPa 이상인 고강도를 확보할 수 있다.

Description

【명세세
【발명의 명칭】
극저온 인성이 우수한 고강도 강판 및 그 제조방법
【기술분야】
본 발명은 극저온 인성이 우수한 고강도 강판 및 그 제조방법에 관한 것으로, 보다 상세하게는 선박, 해양구조물 등의 구조용 강재 또는 다목적 탱크용 강재와 같이 극저온의 환경에 적용되는 경우에도 우수한 충격인성을 가지는 고강도 강판 및 그 제조방법에 관한 것이다.
【배경기술】
선박, 해양 구조물 등의 구조용 강재나, 이산화탄소, 암모니아, LNG 등의 다종 액화가스를 흔재하는 다목적 탱크용 후강판은 그 사용환경이 매우 가혹하다. 따라서 강도가 매우 중요시되는데, 종래에는 강도향상을 위해서 주로 경화능을 향상시키는 원소를 첨가하여 넁각시 저온변태상을 형성함으로써 강판의 경도 및 강도도 향상시킬 수 있는 기술이 제안되었다. 그러나, 상기와 같이 마르텐사이트와 같은 저온변태조직이 강판 내부에 형성되면 강판내부의 잔류응력으로 인하여 강판의 인성이 극히 열악해질 수 있다는 문제를 가지고 있었다. 즉, 강판의 강도와 인성은 종래에는 양립하기 어려운 두 가지 물성으로서 강판의 강도가 증가하면 인성이 감소한다는 것이 일반적인 인식이었다ᅳ 상기 해양 구조용 강재나 행크용 강재는 강도 뿐만 아니라 저온에서의 인성이 매우 중요시되는데, 먼저 해양구조용 강재는 온난지역에서의 자원 고갈로 인해 해상석유가스 자원이 풍부한 북극과 같은 한랭지역으로 그 사용환경이 점차 이동하고 있다. 따라서, 기존의 저온인성이 우수한 고강도 강판만으로는 상기와 같이 가혹해지는 극저온 환경을 견디기가 어려워지고 있다. 뿐만 아니라, 다목적 탱크용 후강판도 탱크 안에 매우 낮은 액화온도의 액화가스를 담고 있기 때문에, 이를 운반, 저장하는 강판은 상기 액화온도보다 더 낮은 온도에서도 인성이 확보되어야 한다. 예를 들어, 아세틸렌과 에틸렌의 액화온도는 각각 -82°C와 104°C이므로, 이러한 사용환경에서도 극저온에서 우수한 인성을 가진 고강도 강판이 필요하게 된다. 상기 탱크용 강판의 저온인성 확보를 위해 종래에는 Ni을 6~12중량 % 첨가하거나 담금질 템퍼링 등의 처리를 통하여 미세조직을 제어하는 방법 등을 사용하였는데, 이는 고가의 제조비용이 들고, 생산성이 떨어진다는 한계가 있었다. 저탄소강에서도 현재까지 확보 가능한 저온인성이 우수한 강판을 보면 -60°C 정도에서 저온인성이 확보가능한 정도이고, 최근 선박, 해양구조물 등의 극저온 사용환경을 고려할 때, 현재 확보가능한 저온인성이 우수한 강판으로 그 요구를 충족시키기는 어려운 상황이다. 따라서, -60°C 미만의 극저은에서 우수한 인성이 확보될 수 있는 고강도 강판에 대한 연구가 매우 절실한 시점이라 할 수 있다.
【발명의 상세한 설명】
【기술적 과제】
본 발명의 일측면은 극저온에서도 사용가능한 강재를 제공하기 위해 강도가 우수하고, -60°C 미만의 극저온에서 인성의 확보가 가능한 극저온 인성이 우수한 고강도 강판 및 그 제조방법을 제공하고자 한다.
【기술적 해결방법】
본 발명의 일측면은 중량 %로ᅳ C: 0.02-0.06%, Si: 0.1-0.35%, Mn: 1.0-1.6%, A1: 0.02% 이하 (0%는 제외), Ni: 0.7-2.0%, Cu: 0.4-0.9%, Ti: 0.003-0.015%, Nb: 0.003-0.02%, P: 0.01% 이하, S: 0.005% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고, [Mn]+5.4[Si]+26[Al]+32.8[Nb]<4.3를 만족하며, [Mn] , [Si], [A1] 및 [Nb]는 Mn, Si, Al 및 Nb의 중량 ¾> 단위 함량을 의미하는 극저온 인성이 우수한 고강도 강판을 제공한다. 이때, 상기 강판의 미세조직은 면적분율로, 99% 이상의 애시클러 (accicular) 페라이트와 1% 이하의 도상 오스테나이트 /마르텐사이트 (M&A)를 포함하는 것이 바람직하다.
또한, 결정립계 방위가 15° 이상인 유효 결정립이 상기 미세조직 중 70면적 % 이상이고, 상기 유효 결정립 중 크기가 10/ΛΠ 이하인 결정립이 상기 미세조직 중 70면적 ¾ 이상인 것이 보다 바람직하다. 이때, 상기 유효 결정립의 평균 크기가 3~7 / 인 것이 바람직하다. 또한, 상기 강판은 인장강도가 490MPa 이상이고, -140 °C에서의 샤르피 충격 흡수 에너지가 300J 이상이며, 연성 -취성 천이온도 (DBT)가 -140°C 이하인 것이 보다 바람직하다.
한편, 본 발명의 또다른 일측면은 중량 %로, C: 0.02-0.06%, Si: 0.1-0.35%, Mn: 1.0-1.6%, A1: 0.02% 이하 (0%는 제외), Ni: 0.7-2.0%, Cu: 0.4-0.9%, Ti: 0.003-0.015%, Nb: 0.003-0.02%, P: 0.01% 이하, S: 0.005% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고, [Mn]+5.4[Si]+26[Al]+32.8[Nb]<4.3를 만족하며, [Mn] [Si], [A1] 및 [Nb]는 Mn, Si, A1 및 Nb의 중량 % 단위 함량을 의미하는 강슬라브에 대하여, 강슬라브를 1050~1180°C에서 가열하는 가열 단계; 오스테나이트 재결정 온도 (Tnr) 이상의 온도에서 4회 이상의 패스수로 압연하는 제 1 압연 단계; Ar3~Tnr 온도 범위에서 마무리 압연하는 제 2 압연 단계; 및 넁각하는 단계를 포함하는 극저온 인성이 우수한 고강도 강판의 제조방법을 제공한다. 이때, 상기 제 1 압연 단계는 마지막 2패스는 각각 패스당 15~25%의 압하율로 압연하는 것이 바람직하다. 또한, 상기 제 2 압연 단계는 누적압하율이 총 50~60%가 되도록 하는 것이 보다 바람직하다. 또한, 상기 냉각하는 단계는 강판의 두께를 t라고 할 때, t/4인 지점을 기준으로 8~15°C/s의 넁각속도로 320~380°C까지 냉각하는 것이 바람직하다. 【유리한 효과】
본 발명의 일측면에 따르면, 선박, 해양구조물 등의 구조용 강재나 액화가스를 저장, 운반 하는 탱크용 강재의 극저온 사용 환경에서도 우수한 인성을 확보할 수 있고, 인장강도가 490MPa 이상인 고강도를 확보할 수 있다.
【도면의 간단한 설명】
도 1은 발명예에 따른 강판의 온도에 따른 샤르피 충격 흡수 에너지의 변화를 그래프로 나타낸 것이다.
도 2는 발명예에 따른 강판의 미세조직 사진을 나타낸 것이다.
【발명의 실시를 위한 최선의 형태】
본 발명의 일측면은 중량 %로, C: 0.02-0.06%, Si : 0.1-0.35%, Mn: 1.0-1.6%, Al: 0.02% 이하 (0%는 제외), Ni: 0.7-2.0%, Cu: 0.4-0.9%, Ti: 0.003-0.015%, Nb: 0.003-0.02%, P: 0.01% 이하 (0%는 제외), S: 0.005% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고, [Mn]+5.4[Si]+26[Al]+32.8[Nb]<4.3를 만족하며, [Mn], [Si] , [Al] 및 [Nb]는 Mn, Si , Al 및 Nb의 중량 % 단위 함량을 의미하는 극저온 인성이 우수한 고강도 강판을 제공한다. 먼저, 상기 성분계 및 조성범위에 대해 설명한다. (중량 ¾>)
탄소 (C): 0.02-0.06%
C은 강도와 미세조직 형성에 있어 가장 중요한 성분으로서, 강도 확보를 위해 0.02% 이상 첨가되어야 하고, 다만 그 양이 너무 많으면 저온인성을 저하시키고, MA 조직을 형성하여 용접 열영향부 인성 저하를 초래하게 되므로, 상한은 0.06%로 제한하는 것이 바람직하다. 실리콘 (Si): 0.1-0.35%
Si는 탈산제로 첨가되는 원소로서, 탈산 작용을 위해 0.1% 이상 첨가되는 것이 바람직하나, 그 함량이 0.35%를 초과하면 인성이나 용접성이 저하되기 때문에, Si의 함량은 0.1~0.35%로 제어하는 것이 바람직하다. 망간 (Mn): 1.0-1.6%
Mn은 고용강화에 의해 강도를 향상시키고, 결정립 미세화 및 모재 인성을 개선시키기 위해 첨가되는 원소로서, 상기 효과를 충분히 얻기 위해서는 1.0% 이상 첨가되는 것이 바람직하고, 다만, 상기 첨가량이 1.6%를 초과할 경우 경화능의 증가로 용접부의 인성을 저하시킬 수 있으므로, Mn의 첨가량은 1.0-1.6%로 제어하는 것이 바람직하다. 알루미늄 (A1): 0.02% 이하 (0%는 제외)
A1는 효과적으로 탈산을 할 수 있는 원소이지만, 적은 양으로도 MA 형성을 조장할 수 있으므로, 상한을 0.02%로 제한하는 것이 바람직하다. 니켈 (Ni): 0.7-2.0%
Ni은 모재의 강도와 인성을 동시에 향상시킬 수 있는 원소로서, 상기 효과를 충분히 얻기 위해서는 0.7% 이상으로 첨가하는 것이 바람직하고, 다만 고가의 원소이고, 그 양이 너무 많으면 용접성이 열화될 수 있으므로, 상한을 2.0%로 제한하는 것이 바람직하다. 구리 (Cu): 0.3-0.9%
Cu는 고용강화 및 석출강화에 의하여 모재의 인성 저하를 최소화하면서 강도를 증가시킬 수 있는 원소이고, 층분한 강도향상의 효과를 달성하기 위해서는 0.3%정도가 함유되는 것이 바람직하고, 다만 과도한 첨가는 표면의 불량을 야기할 수 있으므로ᅳ 그 상한을 0.9¾>로 제한하는 것이 바람직하다. 티타늄 (Ti): 0.003-0.015%
Ti는 N과 질화물을 형성하여 HAZ부의 결정립을 미세화하여 HAZ 인성을 개선하는 효과를 가진다. 이러한 효과를 충분히 확보하기 위해서는 0.003% 이상 첨가하는 것이 바람직하다. 다만, 그 양이 너무 많으면 상기 질화물이 조대화되는 등 저온인성이 나빠지기 때문에, 0.015% 이하로 제어되는 것이 바람직하다. 따라서, Ti의 첨가량은 0·003~0.015%로 제어하는 것이 바람직하다. 니오븀 (Nb): 0.003-0.02%
Nb는 NbC, NbCN의 형태로 석출하여 모재의 강도를 크게 향상시키고 페라이트, 베이나이트의 변태를 억제하여 결정립을 미세화한다. 이러한 Nb의 첨가효과를 층분히 얻기 위해서는 0.003%이상이 첨가되어야 하고, 다만, 그 양이 너무 많으면 HAZ 인성의 저하를 초래하기 때문에, 그 상한을 0.02%로 제한하는 것이 바람직하다. 인 (P): 0.01% 이하 (0%는 제외)
P는 강도향상과 내식성에 유리한 원소이지만, 충격인성을 크게 저해하는 원소이므로 가능한 낮게 하는 것이 유리하므로, 그 상한을 0.0 로 하는 것이 바람직하다. 황 (S): 0.005%이하
S는 MnS 등을 형성하여 층격인성을 크게 저해하므로, 가능한 한 줄이는 것이 바람직하고, 최소한 0.005%를 초과하지 않도록 하는 것이 바람직하다. 또한. 상기 성분계는 추가적으로 [Mn]+5.4[Si]+26[Al]+32.8[Nb]<4.3를 만족하여야 하고, [Mn], [Si], [A1] 및 [Nb]는 Mn, Si, Al 및 Nb의 중량 % 단위 함량을 의미한다. Mn, Si, Al 및 Nb는 도상 오스테나이트 /마르텐사이트 (M&A)의 형성에 영향을 미치는 성분들로서, [Mn]+5.4[Si]+26[Al]+32.8[Nb] 값이 4.3 이상이 되면 M&A 조직의 형성을 조장하여 극저온에서의 인성을 저하시키게 된다. 따라서, 극저온 인성 확보를 위해서는 반드시 상기 관계식을 만족시킬 필요가 있다. 이때, 상기 강판의 미세조직은 면적분율로, 99% 이상의 애시클러 (accicular) 페라이트와 1% 이하의 도상 오스테나이트 /마르텐사이트 (M&A)를 포함하는 것이 바람직하다. 먼저, 본 발명에서 제공하는 강판 내부의 미세조직은 애시클러 (accicular) 페라이트를 주된 조직으로 가지고, 도상 오스테나이트 /마르텐사이트 (M&A)를 제 2상 조직으로 가진다. 애시클러 (accicular) 페라이트는 강도가 우수하고, 반대로 도상 오스테나이트 /마르텐사이트 (M&A) 조직은 인성을 저해하는 원인이 되기 때문에, 상기 제 2상 조직을 1% 이하로 제한하는 것이 보다 바람직하다.
또한, 결정립계 방위가 15° 이상인 유효 결정립이 상기 미세조직 중 70면적 ¾ 이상이고, 상기 유효 결정립 중 크기가 10 이하인 결정립이 상기 미세조직 중 70면적 ¾> 이상인 것이 보다 바람직하다. 먼저, 강의 물성에 영향을 미치는 결정적인 요소는 결정립계 방위가 15° 이상인 유효 결정립이기 때문에 , 이러한 유효 결정립이 미세조직 중에 70면적 % 이상을 포함되어 있는 바람직하다. 또한, 이러한 강의 물성에 중요한 영향을 미치는 유효 결정립 중 크기가 ΙΟμια 이하인 것이 미세조직 증 70면적 % 이상인 것이 바람직한데, 이는 애시클러 (accicular) 페라이트의 결정립 크기가 층격인성과 밀접한 관계가 있는데, 그 크기가 작을수록 층격인성은 커지게 된다. 따라서, 유효 결정립 중 크기가 10/ 이하인 미세한 조직이 70면적 ¾» 이상으로 층분히 포함될 경우 강의 인성을 확보하는 데에 매우 유리할 수 있다. 특히, 본 발명에 따른 강판의 미세조직은 상기 유효 결정립의 평균 크기가 3~7卿인 것이 얻어지는데, 유효 결정립 크기가 이와 같이 매우 미세하게 제어되면 강의 강도와 함께 저온에서의 인성이 우수해지므로, 해양 구조물 등 극저온의 사용환경에 적합한 강판으로 사용할 수 있게 된다. 상기와 같은 본 발명의 강판은 인장강도가 490MPa 이상이고, -14CTC에서의 샤르피 충격 흡수 에너지가 300J 이상이며, 연성 -취성 천이온도 (DBTT)가 -140 °C 이하인 것을 얻을 수 있다. 먼저, 상기 강판의 강도는 490MPa 이상으로서 본 발명의 강판이 적용되는 환경에 사용할 수 있는 높은 강도를 나타낼 수 있고, 샤르피 충격 흡수 에너지는 -14C C라는 극저온에서도 300J 이상을 나타내어 특히 우수한 극저온 인성을 가질 수 있다. 또한, 연성 -취성 천이온도 (DBTT)도 -140°C 이하로서, 현재 넁매로서 측정가능한 온도인 -14C C에서도 취화가 발생하지 않았고, 그보다 훨씬 낮은 온도로 예상되고 있어, 극저은 인성이 매우 우수한 고강도 강판을 얻을 수 있다. 한편, 본 발명의 또다른 일측면은 중량 %로, C: 0.02-0.06%, Si: 0.1-0.35%, Mn: 1.0-1.6%, A1: 0.02% 이하 (0¾>는 제외), Ni: 0.7-2.0%, Cu: 0.4-0.9%, Ti: 0.003-0.015%, Nb: 0.003-0.02%, P: 0.01% 이하, S: 0.005% 이하, 잔부 Fe 및 블가피한 불순물을 포함하고, [Mn]+5.4[Si]+26[Al]+32.8[Nb]<4.3를 만족하며, [Mn] [Si], [A1] 및 [Nb]는 Mn, Si, Al 및 Nb의 중량 % 단위 함량을 의미하는 강슬라브에 대하여, 강슬라브를 1050~1180°C에서 가열하는 가열 단계; 오스테나이트 재결정 온도 (Tnr) 이상의 온도에서 4회 이상의 패스수로 압연하는 제 1 압연 단계; Ar;rTnr 온도 범위에서 마무리 압연하는 제 2 압연 단계; 및 냉각하는 단계를 포함하는 극저온 인성이 우수한 고강도 강판의 제조방법을 제공한다. 먼저, 상기와 같은 조성을 갖는 강슬라브를 1050~118( C에서 가열하는 가열 단계를 거치게 되는데, 이러한 슬라브의 가열공정은 후속되는 압연공정을 원할히 수행하고 목표하는 강판의 물성을 충분히 얻올 수 있도록 강올 가열하는 공정이므로 목적에 맞게 적절한 온도 범위 내에서 가열공정이 수행되어야 한다. 상기 가열공정에서 중요한 것은 강판 내부의 석출형 원소들이 층분히 고용될 수 있을 정도로 균일하게 가열하여야 할 뿐만 아니라 너무 가열온도로 인하여 결정립이 과다하게 조대화되는 것을 최대한 방지하여야 한다는 것이다. 만일, 강의 가열온도가 1050°C 미만인 경우에는 Nb, Ti 등이 강 중에 재고용되지 못하여 강판의 고강도화를 이루기 어려울 뿐 아니라 부분 재결정이 발생하여 오스테나이트 결정립이 균일하지 않게 형성되어 고인성화가 어려우며, 반면 1180°C를 초과하는 온도에서는 오스테나이트 결정립이 지나치게 조대화되어 결국 강판의 결정립 크기가 증가하고 강판의 인성이 극히 열화된다. 따라서, 슬라브의 가열온도는 1050 ~ 1180°C로 제어하는 것이 바람직하다. 다음으로, 슬라브 가열 후 슬라브를 압연하는 과정을 거치게 되는데, 강판이 저온인성을 갖추기 위해서는 오스테나이트 결정립이 미세한 크기로 존재하여야 하는데, 이는 압연온도 및 압하율을 제어함으로써 가능하다. 본 발명의 압연 단계는 두 가지 온도영역에서 실시하는 것을 특징으로 한다. 또한, 각각의 온도영역에서의 재결정 거동은 서로 상이하므로 그 조건도 따로 설정한다. 먼저, 오스테나이트 재결정 온도 (Tnr) 이상의 온도에서 4회 이상의 패스수로 압연하는 제 1 압연 단계를 거치게 된다. 오스테나이트 재결정 영역에서의 압연은 오스테나이트 재결정을 통하여 결정립을 작게 하는 효과를 발생시키게 되고, 이러한 결정립 미세화는 강도 및 인성 향상에 중요한 영향을 미치게 된다. 특히, 상기 제 1 압연 단계는 오스테나이트 재결정 온도 (Tnr) 이상의 온도에서 4회 이상의 다패스 압연하되, 상기 단계 중 마지막 2패스는 각각 패스당 15~25¾의 압하율로 압연하는 것이 보다 바람직하다. 즉, 본 발명자들은 제 1 압연에서의 다패스 압연에 있어서, 오스테나이트의 결정립 크기에 결정적인 영향을 미치는 것은 마지막 2 패스임을 인지하여, 마지막 2 패스에서는 각각 패스당 15% 이상의 압하율을 가해야만 오스테나이트 재결정을 통한 결정립 미세화를 달성할 수 있음을 발명하기에 이른 것이다. 또한, 층분한 압하를 통해 결정립 미세화를 달성하기 위해서는 총 패스수도 최소 4회 이상이 필요하다. 다만, 압연기에 가해지는 너무 큰 부하가 가해지는 것을 방지하기 위해 상기 패스당 압하율을 25% 이하로 제어하는 것이 바람직하다. 따라서, 가장 바람직하게는 제 1 압연 단계에서 4회 이상의 다패스 압연을 실시하되 마지막 2 패스에서는 패스당 15~25%의 압하율을 가함으로써, 결정립 미세화를 통한 저온인성의 향상을 달성하면서도 압연기에 무리한 부하가 가해지는 것을 방지할 수 있다. 다음으로, Ar3~Tnr 온도 범위에서 마무리 압연하는 제 2 압연 단계를 거치는데, 이는 결정립을 더욱 찌그러뜨리고, 이러한 결정립 내부의 변형에 의해 전위를 발달시켜 넁각시에 애시클러 (accicular) 페라이트로의 변태를 용이하게 만들어주기 위함이다. 이러한 효과를 발생시키기 위해서는 제 2 압연 단계에서의 누적압하율이 총 50% 이상이 되도록 하는 것이 보다 바람직하고, 다만 60%를 초과하게 되면 제 1 압연 단계에서 가할 수 있는 압하율에 제한이 커져 층분한 결정립 미세화를 달성할 수 없기 때문에, 상기 누적압하율은 50-6 로 한정하는 것이 더욱 효과적이다. 또한, 상기 넁각하는 단계는 강판의 두께를 t라고 할 때, t/4인 지점을 기준으로 8~15°C/s의 넁각속도로 320~380°C까지 넁각하는 것이 보다 바람직하다. 넁각조건은 미세조직에 영향을 미치는 요소로서, 8°C/s 미만으로 넁각할 경우 M&A의 양이 지나치게 증가하여 강도 및 인성을 저해할 수 있고, 넁각속도가 15°C/s를 초과할 경우 과다한 넁각수량으로 인하여 강판의 뒤를림 현상이 발생하여 형상제어가 불량하게 될 수 있으므로, 압연 후 넁각속도는 8~15°C/s로 제어하는 것이 바람직하다. 또한, 넁각온도는 M&A 조직이 생성되지 않도록 380°C 미만으로 제어하는 것이 바람직하고, 다만 넁각온도가 너무 낮으면 그 효과가 포화될 뿐만 아니라 과다한 냉각으로 인해 강판의 뒤를림 현상이 발생할 수 있고, 또한 과도한 강도 상승으로 인하여 충격인성이 저하되는 문제가 있을 수 있으므로, 하한은 320°C로 한정하는 것이 바람직하다. 이하, 실시예를 통해 본 발명을 상세히 설명하지만, 이는 본 발명의 보다 완전한 설명을 위한 것이고, 하기 개별실시예에 의해 본 발명의 권리범위가 제한되는 것은 아니다.
(실시예)
먼저, 표 1에 나타난 조성을 갖는 강슬라브를 제조하였다. 하기에서 실험식은 [Mn]+5.4[Si]+26[Al]+32.8[Nb] 값을 의미한다.
【표 1】 구분 C Si Mn P S Al Ni Ti Nb Cu Al히 Λ1
(vt ) (圃) (ppm)
o 0.038 0.108 1.304 48 18 0.011 1.19 0.011 0.009 0.578 2.47
0.04 0.11 1.32 50 17 0.012 1.21 0.01 0.01 0.496 2.55
0.038 0.105 1.42 50 18 0.01 1.18 0,011 0.012 0.6 2.64 비교 ¾1 0.08 0.12 1.25 50 18 0.011 1.21 0.011 0.01 0.62 2.51 비교강 2 0.037 0.11 1.32 50 17 0.013 1.21 0.012 0.001 0.587 2.28 비교 ¾3 0.04 0.11 1.302 48 17 0.012 1.17 0.01 0.012 0.021 2.60 비교 ¾4 0.042 0.13 1.305 47 18 0.035 1.16 0.01 0.011 0.595 3.28 비교강 5 0.04 0.106 1.81 50 18 0.011 1.22 0.012 0.011 0.61 3.03
상기 강슬라브를 표 2에 기재된 조건으로 제 1 압연 (조압연)을 행하고, 압연 (사상압연)을 행한 후에, 넁각을 시켰다.
【표 2]
:가조
。 번호 조압연조건 사샹압면조건 U1;가 거
가열 조압연 마지막 압면 압연 누격 내 7 l 7\
은도 휸료 2단계의 개시 좀료 압하을 개시 좀료 속도
(■■€) 은도 ° 하듈 믄도 믄도 ( ) 은도 은도 (:C/s)
(::) (%) (:c) (:c) (::) (■■
yvp극 ^>ι 1 1-1 1085 1066 15.2/19.6 773 765 60 730 330 12.5
1-2 1088 1059 16.3/21.5 780 775 60 732 342 11.8
1-3 1090 1068 16.2/23.4 778 762 55 738 329 13.1
1-4 1088 1068 12.5/14.2 776 765 60 735 338 12.5
1-5 1086 1066 18.4/24.2 778 768 60 734 453 13.4
1-6 1079 1060 16.2/22.8 779 770 60 738 341 6.4
2-1 1092 1069 18.5/20.0 782 770 60 735 335 11.8
2-2 1092 1068 17.8/21.4 772 765 52 735 332 12.2
2-3 1088 1064 19.5/22.5 776 759 60 738 352 13.2
2-4 1086 1065 12.1/13.5 775 758 60 736 345 12.5
2-5 1100 1070 18.5/21.2 773 762 60 738 406 11.8
2-6 1083 1064 20.1/23.5 775 762 60 740 350 5.8
발명강 3 3-1 1084 1068 18.6/23.2 776 763 60 742 336 9.8
3-2 1088 1066 17.2/21.3 769 759 52 735 345 11.5
3-3 1093 1065 15.8/24.3 768 757 58 734 338 12.5
3-4 1095 1059 11.5/13.2 775 758 60 734 365 12.6
3-5 1085 1066 18.5/22.1 772 762 60 742 415 12.4
3-6 1088 1065 17,8/23.5 776 763 60 734 348 6.8
비교강 1 4-1 1096 1064 17.3/21.8 780 768 60 735 345 11.5
4-2 1079 1064 19.2/24.1 781 765 60 730 335 12.2
4-3 1080 1068 20,3/21.5 775 765 60 735 338 12.4
5-1 1085 1062 20.8/23.5 776 762 60 739 335 11.7
5-2 1086 1065 18.8/19.6 779 760 60 734 345 13.2
5-3 1092 1064 18.4/19.8 772 765 60 735 356 9.9
비교강 2 6-1 1095 1068 17.2/22.9 773 768 60 ?36 365 10.5
6-2 1096 1070 16.5/23.5 769 759 60 ?32 355 11.5
6-3 1086 1062 20.8/21.7 781 765 60 735 345 11.7
비교강 3 7-1 1085 1065 17.8/23.5 775 762 60 740 365 12.2
7-2 1085 1063 19.6/19.8 776 768 60 734 355 12.8
7-3 1089 1072 20.5/23.5 774 764 60 731 345 11.6
비교강 4 8-1 1902 1065 21.5/22.5 772 766 60 735 339 10.9
8-2 1096 1068 18.8/23.8 775 765 60 736 335 13.4
8-3 1087 1067 22.3/23.1 776 765 60 735 354 12.2
상기 제조된 강판에 대하여, 항복강도 (YS), 인장강도 (TS), -100°C, -120°C, -140°C에서의 샤르피 충격 흡수 에너지 (CVN) 및 연성—취성 천이온도 (DBTT)를 측정하여 , 그 결과를 표 3에 나타내었다.
【표 3】 :가조 o 펀호 YS S -100-C -120-C -140-C DBTT
(MPa) (MPa) 에서의 VN 에서의 CVN 에서의 CVN CO
(J) (J) (J)
1-1 469 549 416 386 384 -140 이하
1-2 476 548 396 375 386 -140 이하
1-3 468 547 424 416 406 -140 이하
1-4 454 516 183 46 12 -98
1-5 434 486 162 104 26 -114
1-6 453 508 364 323 62 -125
2-1 481 521 423 384 364 -140 이하
2-2 490 533 395 388 386 -140 이하
2-3 480 517 394 346 354 -140 이하
2-4 475 511 126 26 4 -102
2-5 456 476 246 106 32 -110
2-6 465 486 369 214 21 -125
발명강 3 3-1 463 537 384 374 351 -140 이하
3-2 445 534 365 354 338 -140 이하
3-3 484 523 435 413 393 -140 이하
3-4 461 527 46 21 12 -87
3-5 438 475 135 36 12 -98
3-6 441 488 118 24 10 -91
비교 ¾1 4-1 488 564 48 24 8 -86
4-2 492 572 68 26 5 -84
4-3 495 568 58 18 6 -80
5-1 421 472 428 425 346 -140 이하
5-2 425 475 425 435 384 -140 이하
5-3 431 468 415 426 368 -140 이하
비교강 2 6-1 458 496 386 347 326 -140 이하
6-2 439 482 406 407 389 -140 이하
6-3 452 503 395 356 345 -140 이하
비교강 3 7-1 468 521 365 120 15 -112
7-2 489 548 246 86 12 -108
7-3 469 552 114 75 13 -97
비교 M 8-1 496 565 168 45 12 -106
8-2 492 575 75 18 8 -78
8-3 495 552 124 24 12 -95
먼저, 1-1 내지 1—3, 2-1 내지 2-3, 3-1 내지 3ᅳ3은 모두 발명강을 사용하였고, 압연조건도 조압연에서 마지막 2패스 압하율이 각각 15~25%이고, 사상압연에서 누적압하율이 50~60%이며, 넁각조건도 넁각속도가 8~15°C/s이고, 넁각온도가 320~380°C이므로, 모두 본 발명의 조건을 만족하였다. 이에 따라, 항복강도가 440MPa 이상, 인장강도가 490MPa 이상이고, 사르피 충격 흡수 에너지가 -100°C, -120°C, -140°C에서 모두 300J 이상으로 나타나 극저온 인성이 매우 우수하였으며, D T 값도 가장 낮은 측정온도인 -140°C에서 취화가 발생되지 않아 그보다 훨씬 낮은 온도값을 가짐을 알 수 있었다. 이에 반해, 1-4, 2—4, 3-4는 발명강을 사용하였으나, 조압연에서 마지막
2단계의 각 단계당 압하율이 15%에 미달하여 결정립 미세화를 달성하지 못하였으므로, 샤르피 충격 흡수 에너지가 매우 낮고, 값도 높게 나타나 저온인성이 매우 좋지 않음을 알 수 있다. 또한, 1—5, 2-5, 3-5는 발명강을 사용하였으나, 넁각온도가 380 °C를 초과하여 MA조직이 상당수 형성도ᅵ었을 것이므로, 샤르피 충격 흡수 에너지가 매우 낮고, DBn 값도 높게 나타나 저온인성이 매우 좋지 않음을 알 수 있다. 또한, 1-6, 2-6, 3-6은 발명강을 사용하였으나, 넁각속도가 너무 느려 MA조직이 상당수 형성되었을 것이므로, 샤르피 충격 흡수 에너지가 매우 낮고, DMT 값도 높게 나타나 저온인성이 매우 좋지 않음을 알 수 있다. 도 1은 발명강을 사용하고, 제조조건도 본 발명의 범위에 부합하는 발명예의 온도에 따른 샤르피 충격 흡수 에너지의 변화를 그래프로 나타낸 것이다. - 40°C에서 측정가능한 최저온도인 -140 °C의 범위에도 모두 300J 이상의 높은 에너지 값으로 나타나 극저온 인성이 매우 우수하였음을 확인할 수 있다. 도 2는 발명예에 따른 강판의 미세조직 사진을 나타낸 것인데, 검은 결정립이 결정립계 방위가 15° 이상인 유효결정립을 의미하는데. 이러한 유효결정립이 70면적 % 이상으로 나타났고, 애시클러 (accicular) 페라이트가 99면적 ¾ 이상인 미세조직임을 확인할 수 있다.

Claims

【특허청구범위】
【청구항 11
중량 %로, C: 0.02-0.06%, Si: 0.1-0.35%, Mn: 1.0-1.6%, Al: 0.02% 이하 (OT는 제외), Ni: 0.7-2.0%, Cu: 0.4-0.9%, Ti: 0.003-0.015%, Nb: 0.003-0.02%, P: 0.01% 이하 (0%는 제외), S: 0.005% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고, [Mn]+5.4[Si]+26[Al]+32.8[Nb]<4.3를 만족하며 , [Mn] , [Si].
[Al] 및 [Nb]는 Mn, Si, Al 및 Nb의 중량 % 단위 함량을 의미하는 극저온 인성이 우수한 고강도 강판.
【청구항 2]
청구항 1에 있어서,
상기 강판의 미세조직은 면적분율로, 99% 이상의 애시클러 (accicular) 페라이트와 ]_% 이하의 도상 오스테나이트 /마르텐사이트 (M&A)를 포함하는 극저온 인성이 우수한 고강도 강판.
【청구항 3】
청구항 2에 있어서,
결정립계 방위가 15° 이상인 유효 결정립이 상기 미세조직 중 70면적 % 이상이고, 상기 유효 결정립 중 크기가 10//m 이하인 결정립이 상기 미세조직 중 70면적 % 이상인 극저온 인성이 우수한 고강도 강판.
【청구항 4】
청구항 2 또는 3에 있어서,
상기 유효 결정립의 평균 크기가 3~7 m인 극저온 인성이 우수한 고강도 강판.
【청구항 5]
청구항 4에 있어서,
상기 강판은 인장강도가 490MPa 이상이고ᅳ -14C C에서의 샤르피 층격 흡수 에너지가 300J 이상이며, 연성 -취성 천이온도 (DBTT)가 -140°C 이하인 극저온 인성이 우수한 고강도 강판. 【청구항 6]
중량 %로, C: 0.02-0.06%, Si: 0.1-0.35%, Mn: 1.0-1.
6%, A1: 0.02% 이하 (0%는 제외), Ni: 0.7-2.0%, Cu: 0.4-0.9%, Ti: 0.003-0.015%, Nb: 0.003-0.02%, P: 0.01% 이하 (0%는 제외), S: 0.005% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고, [Mn]+5.4[Si]+26[Al]+32.8[Nb]<4.3를 만족하며, [Mn] , [Si], [A1] 및 [Nb]는 Mn, Si, Al 및 Nb의 중량 % 단위 함량을 의미하는 강슬라브에 대하여 ,
강슬라브를 1050~1180°C에서 가열하는 가열 단계;
오스테나이트 재결정 온도 (Tnr) 이상의 은도에서 4회 이상의 패스수로 압연하는 제 1 압연 단계 ;
Ar3~Tnr 온도 범위에서 마무리 압연하는 제 2 압연 단계; 및
넁각하는 단계를 포함하는 극저온 인성이 우수한 고강도 강판의 제조방법 .
【청구항 7】
청구항 6에 있어서,
상기 제 1 압연 단계는 마지막 2 패스는 각각 패스당 15~25%의 압하율로 압연하는 극저온 인성이 우수한 고강도 강판의 제조방법 .
【청구항 8]
청구항 7에 있어서,
상기 제 2 압연 단계는 누적압하율이 총 50~60%가 되도록 하는 극저온 인성이 우수한 고강도 강판의 제조방법 .
【청구항 91
청구항 6 내지 8중 어느 한 항에 있어서,
상기 넁각하는 단계는 강판의 두께를 t라고 할 때, t/4인 지점을 기준으로 8~15°C/s의 넁각속도로 320~380°C까지 넁각하는 극저온 인성이 우수한 고강도 강판의 제조방법 .
PCT/KR2011/010156 2010-12-28 2011-12-27 극저온 인성이 우수한 고강도 강판 및 그 제조방법 WO2012091411A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11853770.3A EP2660346B1 (en) 2010-12-28 2011-12-27 High-strength steel sheet having superior toughness at cryogenic temperatures, and method for manufacturing same
ES11853770.3T ES2585635T3 (es) 2010-12-28 2011-12-27 Lámina de acero de alta resistencia que tiene tenacidad superior a temperaturas criogénicas, y método para fabricar la misma
US13/997,703 US9255305B2 (en) 2010-12-28 2011-12-27 High-strength steel sheet having superior toughness at cryogenic temperatures, and method for manufacturing same
CN201180068651.9A CN103403204B (zh) 2010-12-28 2011-12-27 在低温下具有优异韧性的高强度钢板及其制造方法
JP2013547333A JP5740486B2 (ja) 2010-12-28 2011-12-27 極低温靭性に優れた高強度鋼板及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0137340 2010-12-28
KR20100137340A KR20120075274A (ko) 2010-12-28 2010-12-28 극저온 인성이 우수한 고강도 강판 및 그 제조방법

Publications (3)

Publication Number Publication Date
WO2012091411A2 true WO2012091411A2 (ko) 2012-07-05
WO2012091411A9 WO2012091411A9 (ko) 2012-09-27
WO2012091411A3 WO2012091411A3 (ko) 2012-11-15

Family

ID=46383688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/010156 WO2012091411A2 (ko) 2010-12-28 2011-12-27 극저온 인성이 우수한 고강도 강판 및 그 제조방법

Country Status (7)

Country Link
US (1) US9255305B2 (ko)
EP (1) EP2660346B1 (ko)
JP (1) JP5740486B2 (ko)
KR (1) KR20120075274A (ko)
CN (1) CN103403204B (ko)
ES (1) ES2585635T3 (ko)
WO (1) WO2012091411A2 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6788589B2 (ja) * 2014-12-24 2020-11-25 ポスコPosco 脆性亀裂伝播抵抗性に優れた高強度鋼材及びその製造方法
US10883159B2 (en) 2014-12-24 2021-01-05 Posco High-strength steel having superior brittle crack arrestability, and production method therefor
EP3239330B1 (en) * 2014-12-24 2020-12-02 Posco High-strength steel having superior brittle crack arrestability, and production method therefor
KR101726082B1 (ko) * 2015-12-04 2017-04-12 주식회사 포스코 취성균열전파 저항성 및 용접부 취성균열개시 저항성이 우수한 고강도 강재 및 그 제조방법
KR101736611B1 (ko) * 2015-12-04 2017-05-17 주식회사 포스코 취성균열전파 저항성 및 용접부 취성균열개시 저항성이 우수한 고강도 강재 및 그 제조방법
KR101758520B1 (ko) * 2015-12-23 2017-07-17 주식회사 포스코 열간 저항성이 우수한 고강도 구조용 강판 및 그 제조방법
CN106435392B (zh) * 2016-09-23 2018-06-05 中国科学院合肥物质科学研究院 一种改进低活化马氏体钢力学性能的热机械处理方法
KR101819380B1 (ko) 2016-10-25 2018-01-17 주식회사 포스코 저온인성이 우수한 고강도 고망간강 및 그 제조방법
KR101908819B1 (ko) * 2016-12-23 2018-10-16 주식회사 포스코 저온에서의 파괴 개시 및 전파 저항성이 우수한 고강도 강재 및 그 제조방법
DK3666911T3 (da) * 2018-12-11 2021-11-15 Ssab Technology Ab Højstyrke-stålprodukt og fremgangsmåde til fremstilling af samme
KR102220739B1 (ko) * 2018-12-19 2021-03-02 주식회사 포스코 두께 중심부 인성이 우수한 극후물 강판의 제조방법
KR102209547B1 (ko) * 2018-12-19 2021-01-28 주식회사 포스코 취성균열개시 저항성이 우수한 구조용 극후물 강재 및 그 제조방법
JPWO2023181895A1 (ko) * 2022-03-22 2023-09-28

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2809795A1 (de) * 1978-03-07 1979-09-13 Kobe Steel Ltd Niobhaltiger schweissbarer baustahl mit verbesserter schweissbarkeit
JPS57123927A (en) * 1981-01-27 1982-08-02 Kawasaki Steel Corp Production of high tensile steel plate of superior low temperature toughness
JPS6415319A (en) * 1987-07-08 1989-01-19 Kawasaki Steel Co Production of high tensile steel plate having excellent brittle fracture generation resistance characteristic
JPH059651A (ja) * 1991-07-05 1993-01-19 Kobe Steel Ltd 脆性破壊伝播停止特性に優れる厚肉鋼板およびその製造方法
JP2662485B2 (ja) * 1991-11-26 1997-10-15 新日本製鐵株式会社 低温靭性の良い鋼板およびその製造方法
JP3211046B2 (ja) 1994-09-07 2001-09-25 新日本製鐵株式会社 溶接継手部の脆性破壊伝播停止性能の優れた溶接構造用厚鋼板の製造方法
JPH10168542A (ja) * 1996-12-12 1998-06-23 Nippon Steel Corp 低温靭性と疲労強度に優れた高強度鋼材及びその製造方法
DZ2528A1 (fr) * 1997-06-20 2003-02-01 Exxon Production Research Co Conteneur pour le stockage de gaz natural liquéfiesous pression navire et procédé pour le transport de gaz natural liquéfié sous pression et système de traitement de gaz natural pour produire du gaz naturel liquéfié sous pression.
UA59411C2 (uk) 1997-07-28 2003-09-15 Ексонмобіл Апстрім Рісерч Компані Низьколегована конструкційна сталь (варіанти) та спосіб одержання листа сталі (варіанти)
JP3922805B2 (ja) * 1998-06-22 2007-05-30 新日本製鐵株式会社 低温靭性に優れた高張力鋼材の製造方法
EP1136580B1 (en) * 1999-08-19 2007-02-21 Nippon Steel Corporation Use of steel in laser welding
US6558483B2 (en) * 2000-06-12 2003-05-06 Sumitomo Metal Industries, Ltd. Cu precipitation strengthened steel
JP2002266022A (ja) * 2001-03-09 2002-09-18 Nippon Steel Corp 高靱性・高延性高張力鋼の製造方法
JP2002363644A (ja) * 2001-06-11 2002-12-18 Nippon Steel Corp 靭性と疲労強度とに優れた高張力鋼の製造方法
US20070193665A1 (en) * 2004-03-11 2007-08-23 Hitoshi Furuya Steel plate excellent in machineability and in toughness and weldability and method of production of the same
JP4660250B2 (ja) * 2004-04-07 2011-03-30 新日本製鐵株式会社 大入熱溶接による溶接熱影響部の低温靭性に優れた厚手高強度鋼板
KR100723201B1 (ko) * 2005-12-16 2007-05-29 주식회사 포스코 다층용접부 인성이 우수한 고강도 고인성 강 및 그제조방법
JP4058097B2 (ja) 2006-04-13 2008-03-05 新日本製鐵株式会社 アレスト性に優れた高強度厚鋼板
KR100851189B1 (ko) * 2006-11-02 2008-08-08 주식회사 포스코 저온인성이 우수한 초고강도 라인파이프용 강판 및 그제조방법
KR100833047B1 (ko) * 2006-12-20 2008-05-27 주식회사 포스코 대입열 용접부 인성이 우수한 고강도 용접이음부
KR100951296B1 (ko) * 2007-12-04 2010-04-02 주식회사 포스코 저온인성이 우수한 고강도 라인파이프용 강판 및 그제조방법
US8647564B2 (en) 2007-12-04 2014-02-11 Posco High-strength steel sheet with excellent low temperature toughness and manufacturing thereof
KR100979007B1 (ko) * 2007-12-27 2010-08-30 주식회사 포스코 극저온 인성이 우수한 초고강도 라인파이프용 강판 및 그제조방법
CN101649420B (zh) * 2008-08-15 2012-07-04 宝山钢铁股份有限公司 一种高强度高韧性低屈强比钢、钢板及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP2660346A4 *

Also Published As

Publication number Publication date
US20130292011A1 (en) 2013-11-07
ES2585635T3 (es) 2016-10-07
EP2660346A4 (en) 2014-07-09
WO2012091411A3 (ko) 2012-11-15
EP2660346B1 (en) 2016-05-04
KR20120075274A (ko) 2012-07-06
EP2660346A2 (en) 2013-11-06
CN103403204B (zh) 2016-04-06
WO2012091411A9 (ko) 2012-09-27
JP2014505170A (ja) 2014-02-27
JP5740486B2 (ja) 2015-06-24
CN103403204A (zh) 2013-11-20
US9255305B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
WO2012091411A2 (ko) 극저온 인성이 우수한 고강도 강판 및 그 제조방법
CN108893675B (zh) 一种屈服强度500MPa级厚规格热轧H型钢及其制备方法
CA3009137C (en) Low-yield ratio and high-strength steel having excellent stress corrosion cracking resistance and low temperature toughness
KR101094310B1 (ko) 저온인성이 우수한 용접성 초고강도강 및 그 제조방법
EP3392366B1 (en) High-strength steel material having excellent low-temperature strain aging impact properties and welding heat-affected zone impact properties and method for manufacturing same
WO2012067474A2 (ko) 극저온 인성이 우수한 고강도 강재 및 그 제조방법
CN111996449B (zh) 一种塑韧性优异的管线用厚板及其生产方法
CN111492083B (zh) 具有优异的抗氢致开裂性和低温冲击韧性的高强度钢材及其制造方法
CN104220617A (zh) 具有优异的机械加工性并且在焊接热影响区域具有低温韧性的奥氏体钢,及其制造方法
US20120288396A1 (en) Austenite steel material having superior ductility
CN110088346B (zh) 具有优异纵向均匀延伸率的用于焊接钢管的钢材、其制造方法和使用其的钢管
JP6703608B2 (ja) 耐水素脆化性に優れたオーステナイト系鋼材
CN108368593B (zh) 具有优异的低温应变时效冲击特性的高强度钢材及其制造方法
CN111225992B (zh) 具有优异的表面品质的用于低温的高锰钢及其制造方法
KR102255823B1 (ko) 성형성이 우수한 고항복비형 강판 및 그 제조방법
CN112912532B (zh) 抗硫化物应力腐蚀开裂性优异的高强度钢材及其制造方法
KR20190077180A (ko) 저온인성이 우수한 저항복비 고강도 강관용 강재 및 그 제조방법
KR20150002884A (ko) 취성 균열 전파 정지 특성이 우수한 구조용 고강도 후강판 및 그 제조 방법
KR102349426B1 (ko) 저온 충격인성이 우수한 강재 및 그 제조방법
KR101125886B1 (ko) 강산 염수용액 내에서 전면부식 및 국부부식 저항성과 용접열영향부 인성이 우수한 고강도 선박용 강재 및 그 제조방법
KR20210062892A (ko) 극저온 인성이 우수한 강판 및 그 제조방법
KR101344610B1 (ko) 강판 및 그 제조 방법
CN112969809B (zh) 具有良好耐海水腐蚀性能的结构用高强度钢和制造其的方法
KR102475606B1 (ko) 저온 충격인성이 우수한 강재 및 그 제조방법
JP5949114B2 (ja) 脆性き裂伝播停止特性に優れた構造用高強度厚鋼板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180068651.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853770

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13997703

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013547333

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011853770

Country of ref document: EP