WO2012091130A1 - Clarification tank, glass melting furnace, molten glass production method, glassware production method and glassware production device - Google Patents

Clarification tank, glass melting furnace, molten glass production method, glassware production method and glassware production device Download PDF

Info

Publication number
WO2012091130A1
WO2012091130A1 PCT/JP2011/080490 JP2011080490W WO2012091130A1 WO 2012091130 A1 WO2012091130 A1 WO 2012091130A1 JP 2011080490 W JP2011080490 W JP 2011080490W WO 2012091130 A1 WO2012091130 A1 WO 2012091130A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover
plate
molten glass
clarification tank
side wall
Prior art date
Application number
PCT/JP2011/080490
Other languages
French (fr)
Japanese (ja)
Inventor
整 長野
清太 宮崎
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2012551058A priority Critical patent/JPWO2012091130A1/en
Publication of WO2012091130A1 publication Critical patent/WO2012091130A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/04Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in tank furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/183Stirring devices; Homogenisation using thermal means, e.g. for creating convection currents
    • C03B5/185Electric means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining

Definitions

  • the present invention relates to a clarification tank provided with an inner surface cover in a flow path of molten glass defined by a bottom wall portion and a side wall portion, a glass melting furnace provided with the same, a method for manufacturing molten glass, a method for manufacturing glass products, and glass products It relates to a manufacturing apparatus.
  • a glass production apparatus provided with a melting tank, a clarification tank, and a molding apparatus is used, a glass raw material is melted in the melting tank, and the obtained molten glass is defoamed in the clarification tank,
  • a float method is known in which a uniform molten glass with a small amount of glass is sent to a forming apparatus equipped with a float bath to form a glass plate.
  • a flow path of molten glass is formed in a clarification tank used in the float process, and this flow path is generally configured by assembling a plurality of refractories such as refractory bricks.
  • the temperature of the molten glass is as high as 1200 to 1500 ° C.
  • a refractory material such as a refractory brick
  • a part of the refractory material is partially used when used for a long time.
  • the refractory melts into the glass and flows out into the glass as a heterogeneous substrate, which becomes a defect.
  • a melting tank that melts batch materials to form molten glass, and a structure including a shallow molten glass channel connected to the melting tank.
  • a glass melting apparatus having a clarification tank and a homogenization tank connected to the clarification tank is known (for example, Patent Document 2).
  • the glass melting tank described in Patent Document 2 intends to apply a refractory containing alumina, silica, and zirconia to a portion in contact with the molten glass to provide a structure that can withstand erosion by high-temperature molten glass.
  • a glass melting facility that can withstand the erosion of molten glass even if the material of the refractory is slightly improved, and it is desired to provide a glass melting tank having a new structure that can withstand the erosion of molten glass. .
  • the temperature of the molten glass flowing through the clarification tank is set as high as possible under the conditions where re-foaming is not performed, thereby reducing the viscosity of the molten glass and reducing the viscosity. It operates so that foam can be surely removed from the molten glass in the clarification tank. That is, since the molten glass flow path of the clarification tank is in contact with a higher temperature molten glass, the refractory constituting the molten glass flow path is likely to be eroded, and the constituent elements of the refractory diffuse to the molten glass side.
  • the composition of the molten glass may be non-uniform.
  • Patent Document 1 and Patent Document 2 a refractory metal is used instead of the refractory according to the clarification tank, but only a part of the refractory is replaced, and the majority of the refractory is replaced with the refractory metal. There is no disclosure or suggestion of the specific method of the case.
  • the present invention prevents the erosion of the bottom wall portion and the side wall portion by the molten glass by disposing an inner surface cover that covers the bottom wall portion and the side wall portion constituting the molten glass flow path in the clarification tank in the glass manufacturing apparatus. It aims at providing the clarification tank which can provide the high quality molten glass which suppressed elution of the structural component of the refractory material which comprises a wall part and a side wall part, and the impurity mixing does not arise. Moreover, this invention aims at provision of the manufacturing method and manufacturing apparatus of a molten glass which can provide the high quality molten glass provided with the said clarification tank, and the manufacturing method of a molten glass product.
  • the present invention is a clarification tank provided with a molten glass flow path made of refractory bricks, wherein the clarification tank includes a bottom wall portion and side wall portions on both sides of the molten glass flow path, and the bottom wall portion and both sides.
  • An inner surface cover for covering the molten glass flow path side in the wall portion wherein the inner surface cover is composed of a plurality of cover assemblies arranged along a flow path direction of the molten glass, and the cover assembly is the bottom wall
  • a clarification tank comprising a bottom wall plate that covers a part, a side wall plate that covers the side wall part, and a first cover plate that covers a butting region between cover assemblies arranged along the flow path.
  • the fining tank of the present invention is formed with an ear extending from the end of the side wall plate toward the outside of the flow path at the end of the side wall plate on the downstream side of the flow path or the end of the flow path on the upstream side. It is preferred that The ear part can be expressed as overhang during English translation. It is preferable that the clarification tank of this invention joins through the joint part of a some refractory brick, the said side wall part is formed, and the said ear
  • the cover assembly is made of Mo (molybdenum), the upper end portion of the side wall plate protrudes above the liquid surface position of the molten glass, and the upper end portion is Pt, Pt alloy, or
  • the cover member is preferably covered with a heat-resistant ceramic cover member.
  • the cover assembly made of Mo (molybdenum) means a cover assembly made of Mo metal or Mo alloy, and means that contains 45 atomic% or more of Mo.
  • the Mo alloy examples include those containing La (lanthanum) and W (tungsten), and those containing ZrO 2 (zirconia oxide).
  • the cover assembly is made of Mo and the upper end position of the side wall plate is formed at a position lower than the liquid surface position of the molten glass.
  • the cover assembly includes a first plate assembly disposed on one of the left and right sides of the molten glass flow path, and a second plate disposed on the other of the left and right sides of the molten glass flow path. It is preferable to provide a plate assembly and a second cover plate that covers a butt region between the first plate assembly and the second plate assembly.
  • the first plate assembly and the second plate assembly each cover a bottom wall plate, a side wall plate, and a butted region of the bottom wall plate and the side wall plate, respectively.
  • the cover plate is preferably provided.
  • the clarification tank of the present invention preferably includes a fourth cover plate that covers the butting region between the second cover plate and the third cover plate in the butting region between the cover assemblies.
  • the side wall plate may be supported by a support that passes through the side wall plate and is attached to the outer side wall portion.
  • the clarification tank of the present invention includes a first clarification tank having a first molten glass flow path defined by a first bottom wall part and first side wall parts on both sides thereof, and the first clarification tank.
  • a second clarification tank having a second molten glass flow path defined by a second bottom wall and second sidewalls on both sides of the second bottom wall, and the second clarification tank.
  • At least any one of the first clarification tank, the second clarification tank, and the cooling tank includes a bottom wall portion and side wall portions on both sides of each of the molten glass flow paths.
  • an inner surface cover that covers the molten glass flow channel side in the bottom wall portion and both side wall portions, the inner surface cover is composed of a plurality of cover assemblies arranged along the flow channel direction of the molten glass,
  • a cover assembly includes a bottom wall plate that covers the bottom wall portion, a side wall plate that covers the side wall portion, and a first cover plate that covers a butting region between the cover assemblies disposed along the flow path. It is preferable to provide.
  • This invention provides the glass melting furnace which has a clarification tank in any one of the above, and is equipped with a melting tank in the upstream of the flow direction of the molten glass of the said clarification tank.
  • This invention provides the manufacturing method of the molten glass which has the process of fuse
  • the present invention includes a step of melting a glass raw material using the glass melting furnace described above to produce molten glass, a step of forming the molten glass, and a step of gradually cooling the glass after forming.
  • the present invention provides a glass product production apparatus comprising the glass melting furnace described above, a molding means for molding the molten glass produced by the glass melting furnace, and a slow cooling means for gradually cooling the glass after molding. provide.
  • an inner surface cover is constituted by a plurality of cover assemblies, and the bottom surface and the inner surface of the molten glass flow path are covered with the inner surface cover. Therefore, erosion of the bottom wall portion and the side wall portion can be suppressed.
  • the inner surface cover is disposed between the high-temperature molten glass flowing through the flow path and the bottom wall and side walls, impurities should be mixed directly from the bottom wall and side walls into the molten glass flowing through the flow path. Can be prevented. Therefore, bubbles can be removed without causing impurities in the clarification tank, and a high-quality molten glass having a uniform composition and no bubbles can be obtained.
  • the cover assembly can be stably supported by forming an ear portion at the end portion of the side wall plate and inserting and supporting the ear portion in the joint portion or slit portion of the refractory brick provided outside the side wall plate. Further, since the molten glass that is going to flow through the gap existing between the side wall portion constituting the flow path of the molten glass and the side wall plate of the cover assembly can be blocked by the ear portion of the side wall plate, The molten glass that is in contact with the glass and has a high possibility of impurities being mixed does not flow downstream of the clarification tank.
  • FIG. 1 is a lineblock diagram showing an example of the manufacture device of the glassware provided with the clarification tank concerning a 1st embodiment of the present invention.
  • FIG. 2 is a schematic plan view showing the main part of the manufacturing apparatus. 3 shows a cross-sectional structure of the clarification tank shown in FIG. 1, FIG. 3 (a) is a cross-sectional view, and FIG. 3 (b) is a partially enlarged cross-sectional view of the clarification tank.
  • FIG. 4 is a block diagram showing an example of an inner surface cover disposed inside the clarification tank.
  • FIG. 5 is a plan view showing an example of an inner surface cover arranged inside the clarification tank.
  • FIG. 6 is a partial cross-sectional view showing an example of an inner surface cover disposed in the clarification tank.
  • FIG. 1 is a lineblock diagram showing an example of the manufacture device of the glassware provided with the clarification tank concerning a 1st embodiment of the present invention.
  • FIG. 2 is a schematic plan view showing the main part of the manufacturing apparatus. 3 shows
  • FIG. 7 is an exploded perspective view showing an example of an inner surface cover arranged inside the clarification tank.
  • FIG. 8 is a flowchart showing an example of a manufacturing process of a glass product performed using the clarification tank.
  • FIG. 9 is a partial cross-sectional view showing an example of an inner surface cover arranged in the clarification tank of the second embodiment.
  • FIG. 10 is a fragmentary sectional view which shows the other example of the inner surface cover arrange
  • FIG. 11 is a perspective view which shows the other example of the inner surface cover arrange
  • FIG. 1 is a configuration diagram schematically showing one embodiment of a molten glass production apparatus provided with a clarification tank according to the present invention
  • FIG. 2 is a plan view of the main part of the apparatus.
  • the glass product manufacturing apparatus 1 of the present embodiment includes a melting tank 2 for melting a glass raw material to produce molten glass, a first clarification tank 3 sequentially installed on the downstream side of the melting tank 2, A second clarification tank 4, a cooling tank 5, and a molding device 6 are provided.
  • a molten glass clarification tank 7 is constituted by the first clarification tank 3, the second clarification tank 4, and the cooling tank 5, and a glass melting furnace is formed by the melting tank 2 and the clarification tank 7. 14 is configured.
  • the melting tank 2 of the present embodiment is provided with a glass raw material charging part (not shown) on one side and a connecting part to the first clarification tank 3 on the opposite side. It is provided as a tank for preparing molten glass by melting the charged glass raw material using a heating device such as a burner.
  • the burner provided in the melting tank 2 is attached to the side wall of the melting tank 2 in a horizontal direction and blows out the combustion flame. May be used, or an air-melting type burner in which a mixed powder material obtained by mixing glass raw material powders in a predetermined ratio is directly blown from the burner to form molten glass.
  • the first clarification tank 3 to which the melting tank 2 of the present embodiment is connected is elongated and has a substantially constant width in plan view, and has a depth approximately equal to the lateral width as shown in FIGS. And includes a bottom wall portion 3a, side wall portions 3b on both sides thereof, and a ceiling portion 3c.
  • a region defined by the bottom wall portion 3a and the side wall portions 3b on both sides of the first clarification tank 3 is a flow path R1 of molten glass, and a two-dot chain line GH in FIG. In this way, molten glass is supplied to the first clarification tank 3.
  • a plurality of electrodes 8 are erected on the bottom wall portion 3a of the first clarification tank 3 at a predetermined interval, and by controlling the amount of current applied to these electrodes 8, 8. Can be heated.
  • a plurality of refractory bricks are joined via joints to form a bottom wall portion 3a, a side wall portion 3b, and a ceiling portion 3c, and the shapes shown in FIGS. 1 and 2 as a whole. It is comprised so that it may become the general shape as a tank of.
  • the thickness of the firebrick which comprises the 1st clarification tank 3 is abbreviate
  • an upstream end side that is, an inlet side step part 3d raised one step from the bottom wall part 3a is formed on the melting tank 2 side, and in the first clarification tank 3, the downstream end side, That is, on the second clarification tank 4 side, a plurality of drain-out parts 3e for discharging the drain are formed in the width direction of the first clarification tank 3 so as to be lowered by one step from the bottom wall part 3a.
  • the inlet part 3f of the first clarification tank 3 is formed shallower than the other part of the first clarification tank 3 by the amount of the inlet-side step 3d.
  • the downstream end side of the first clarification tank 3 is partitioned by a partition wall 3g that rises vertically, and the first end portion of the partition wall 3g is connected to the first through a portion where the depth of the flow path R of the molten glass is reduced.
  • a second clarification tank 4 is connected.
  • the second clarification tank 4 is long and narrow in plan view, and is configured as a shallow tank as compared with the lateral width as shown in FIGS. 1 and 2, and includes a bottom wall portion 4a and side walls on both sides thereof. It is comprised from the part 4b and the ceiling part 4c. A region defined by the bottom wall portion 4a and the side wall portions 4b on both sides of the second clarification tank 4 serves as a flow path R2 for molten glass, and the two-dot chain line GH in FIG. 1 is the liquid surface position of the molten glass.
  • the molten glass G is supplied to the second clarification tank 4.
  • a plurality of refractory bricks are joined via joints to form a bottom wall part 4a, a side wall part 4b, and a ceiling part 4c, and the tank as shown in FIGS. 1, 2, and 3 as a whole. It is comprised so that it may become the general form. 1 and 2, the thickness of the refractory brick (refractory) constituting the second clarification tank 4 is abbreviated, only the outline of the tank is shown, and FIG. 3 shows the bottom wall 4a and the side wall as an example. 4b and the thickness of the refractory bricks that compose them.
  • the size of the refractory bricks constituting the bottom wall portion 4a and the side wall portion 4b is arbitrary, and the number and size of the refractory bricks to be applied can be freely selected according to the size of the bottom wall portion 4a and the side wall portion 4b. can do.
  • the bottom wall portion 4a and the side wall portion 4b shown in FIG. 3A may have a multilayer structure with a plurality of refractory bricks.
  • FIG. 3 for simplicity of explanation, only one refractory brick 4c constituting the bottom wall portion 4a is shown, and two refractory bricks constituting the side wall portion 4b are stacked in the height direction of the side wall portion 4b.
  • FIG. 3 for simplicity of explanation, only one refractory brick 4c constituting the bottom wall portion 4a is shown, and two refractory bricks constituting the side wall portion 4b are stacked in the height direction of the side wall portion 4b.
  • FIG. 3 for simplicity of explanation, only one refractory brick 4c constitu
  • the water cooling jacket 50 is provided in the outer side (back side) of the refractory brick 4e which comprises the upper end part of the side wall part 4b. Since the structure of the water-cooling jacket 50 is a known configuration, the detailed description is omitted and the detailed structure is also omitted in FIG. As an example, the water-cooling jacket 50 can employ a structure in which a circulation channel is constituted by an outgoing tube and a return tube, and cooling is performed by flowing cooling water through the circulation channel.
  • an upstream end side that is, a portion on the first clarification tank 3 side is formed with an inlet side step portion 4g raised by one step from the bottom wall portion 4a, and the inlet of the second clarification tank 4
  • the part 4f is formed shallower than the other part of the second clarification tank 4, and the bottom wall part 4b on the downstream end side in the second clarification tank 4 is connected to the cooling tank 5 with a constant depth.
  • the cooling tank 5 is elongated in plan view and has a substantially constant width, and is configured as a tank deeper than the second clarification tank 4, as shown in FIG. 1, and includes a bottom wall portion 5a, side wall portions 5b on both sides thereof, and a ceiling portion. 5c.
  • a region defined by the bottom wall portion 5a and the side wall portions 5b on both sides of the cooling tank 5 is a flow path R3 of molten glass, and a two-dot chain line GH in FIG. 1 is a liquid surface position of the molten glass.
  • Molten glass G is supplied to the cooling bath 5.
  • a discharge side step portion 5d is formed on the downstream end side of the cooling tank 5, and a molding device 6 is connected to the downstream side of the discharge side step portion 5d, and the flow path R4 formed shallow by the discharge side step portion 5d.
  • Molten glass G is supplied to the forming apparatus 6 from the downstream end.
  • symbol 9 shown in FIG. 2 shows the stirring apparatus provided in the inside of the cooling tank 5.
  • FIG. 1 a plurality of refractory bricks are joined via joints to form the bottom wall part 5a, the side wall part 5b, and the ceiling part 5c, and the overall shape of the tank as shown in FIGS. It is configured as follows. In FIGS. 1 and 2, the thickness of the refractory brick constituting the cooling tank 5 is abbreviated and only the outline of the tank is shown.
  • the inner surface cover 15 is formed to have a height and width so as to substantially surround the flow path R2 defined by the bottom wall part 4a and the side wall parts 4b, 4b of the second clarification tank 4.
  • the height of the second clarification tank 4 is set over almost the entire length and can surround the flow path R3 defined by the bottom wall part 5a and the side wall parts 5b and 5b of the cooling tank 5. It is preferable that the cooling tank 5 is formed over a substantially entire length.
  • the inner surface cover 15 of the present embodiment is configured by adding a plurality of cover assemblies 16 shown in FIG. 4 and subsequent figures in the length direction of the flow paths R2 and R3, and the second clarification tank 4 and the cooling tank. 5 is applied.
  • the inner surface cover 15 applied to the cooling tank 5 has an equivalent structure to the inner surface cover 15 applied to the second clarification tank 4, the explanation of the inner surface cover 15 described later is the second clarification.
  • the inner surface cover 15 provided for the tank 4 will be described in detail, and the inner surface cover 15 provided for the cooling tank 5 will not be described.
  • the forming apparatus 6 has a molten tin bed layer 10 (that is, a float bath containing molten tin in the float glass manufacturing apparatus) in a pool section defined by the bottom wall 6a and the peripheral wall 6b. It is provided, and the molten glass G is allowed to flow on the bed layer 10 to be spread, so that a plate-like glass can be formed.
  • a molten tin bed layer 10 that is, a float bath containing molten tin in the float glass manufacturing apparatus
  • the second clarification tank 4 is provided with an inner surface cover 15 for protecting the inner surfaces of the bottom wall portion 4a and the side wall portions 4b and 4c as shown in FIG.
  • This inner surface cover 15 is configured in detail as shown in FIGS.
  • the inner surface cover 15 of the present embodiment is formed with a height and a width so as to substantially surround the flow path R2 defined by the bottom wall portion 4a and the side wall portions 4b and 4b of the second clarification tank 4,
  • the clarification tank 4 is installed over almost the entire length.
  • FIG. 4 shows a state in which a plurality of cover assemblies 16 are added to form the inner surface cover 15, a planar structure in the same state is shown in FIG. 5, and a front structure in the same state is shown in FIG. 6.
  • FIG. 7 shows a state where is partially disassembled.
  • the cover assembly 16 of the present embodiment includes a first plate assembly 17 and a second plate that are disposed adjacent to the width direction of the second clarification tank 4 (direction orthogonal to the flow direction of the flow path R2).
  • the assembly 18 is mainly composed of a first cover plate 22 and a second cover plate 23 arranged around them.
  • the first plate assembly 17 and the second plate assembly 18, and the first cover plate 22 and the second cover plate 23 are all made of a heat-resistant metal plate material such as Mo, Pt, or PtRh alloy. Consists of.
  • the first plate assembly 17 can cover about half the width of the bottom wall portion 4a of the second clarification tank 4 (about half the width direction of the bottom wall portion 4a perpendicular to the flow direction of the flow path R).
  • a rectangular first bottom wall plate 20 that has a width and is elongated in the flow direction of the flow path R2, and a first side wall plate 21 that is erected along the long side on one side in the width direction.
  • the second plate assembly 18 has a width that can cover about half the width of the bottom wall portion 4a of the second clarification tank 4, and is a rectangular second bottom wall that is elongated in the flow direction of the flow path R2.
  • the plate 25 and the second side wall plate 26 erected along the long side on one side in the width direction of the bottom wall plate 25 are mainly configured.
  • a first cover plate 22 is provided so as to cover the butting region of the first plate assemblies 17 and 17 and the butting region of the second plate assemblies 18 and 18 arranged along the flow path R2. It has been.
  • the first cover plate 22 includes an L-shaped third cover plate 22 ⁇ / b> A covering the end of the first bottom wall plate 20 and the end of the first side wall plate 21, and the second bottom wall plate 25.
  • An L-shaped third cover plate 22B that covers the end portion and the end portion of the second side wall plate 26, and a fourth cover plate 24 that covers the end portion of the third cover plate 22A.
  • a rod-shaped joint member 28 is attached to a portion where the first side wall plate 21 is erected on the long side of the upper surface of the first bottom wall plate 20, and the bottom wall plate 20 and the side wall plate 21 are tapped. It is fixed with screws through the opened joint member 28.
  • the material of the joint member 28 and the screw can be exemplified by Mo.
  • the joint member 28 is formed slightly shorter than the entire length of the long side of the first bottom wall plate 20, and the joint member 28 extends outside the both ends of the joint member 28 in the first bottom wall plate 20. No corner 29 is formed.
  • the joint member 28 may be provided with a step by bending or cutting as long as it has a structure that can cover the gap between the plates.
  • the joint member 28 is formed slightly shorter than the overall length of the long side of the first bottom wall plate 20, and the joint member 28 does not extend outside the both ends of the joint member 28 in the first bottom wall plate 20. Corner portions 29 are formed.
  • Both the first side wall plate 21 and the second side wall plate 26 are formed at the same height. These side wall plates 21 and 26 are formed so that the upper ends thereof are lower than the liquid surface position GH of the molten glass flowing through the flow path R2. In other words, when the molten glass G flows along the flow path R2, both the first side wall plate 21 and the second side wall plate 26 are formed so as to be covered with the molten glass G as a whole. ing. This is to prevent this when the plates 21 and 26 are made of Mo, for example, and there is a risk of burning if the Mo is in contact with air at 500 to 600 ° C.
  • the ears 21a and 26a projecting toward the outside of the flow path R2 are formed at right angles to the plates 21 and 26, respectively.
  • the third cover plate 22A is composed of a bottom plate 22a formed by bending one plate material and a side plate 22b, and is formed in an L shape.
  • the third cover plate 22A has a corner portion 29 formed on the end side of the joint member 28 along a boundary portion between the bottom plate 22a and the side plate 22b, and a rivet or the like along the end portion of the first side wall plate 21.
  • the fixing tool 30 is attached. The number and size of rivets can be appropriately determined depending on the plate thickness.
  • the fixture 30 is made of a material equivalent to the refractory metal material constituting the plate assemblies 17 and 18.
  • the attachment position by the fixing tool 30 may be an arbitrary position. In FIG. 5, only one place is attached at a position where the side plate 22 b faces the first side wall plate 21.
  • the third cover plate 22A has about half of the width direction of the bottom plate 22a and the side plate 22b (about half of the width direction of each plate along the flow direction of the flow path R2) as the edge portion of the first bottom wall plate 20.
  • the first side wall plate 21 is covered with the edge portion, and the other half width is projected from the edge portion of the first bottom wall plate 20 and the edge portion of the first side wall plate 21 so as to protrude from the first side wall plate 21. It is attached to the end side of the plate 21.
  • the length of the bottom plate 22a along the width direction of the flow path R2 is formed slightly longer than the width of the first bottom wall plate 20 along the same direction, and extends in the depth direction of the flow path R2.
  • the height of the side plate 22b along is made equal to the height of the first side wall plate 21 along the same depth direction.
  • the third cover plate 22B includes a bottom plate 22c and side plates 22d, and is formed in an L shape.
  • the third cover plate 22B is installed along the boundary portion between the bottom plate 22c and the side plate 22d at the abutting portion between the second bottom wall plate 25 and the second side wall plate 26. More specifically, the third cover plate 22B covers about half of the width direction on the edge portion of the second bottom wall plate 25 and the edge portion of the second side wall plate 26, and the remaining half width. Is protruded from the end edge portion of the second bottom wall plate 25 and the end edge portion of the second side wall plate 26, and is attached to the second side wall plate 26 by a fixture 30 such as a rivet.
  • the length of the bottom plate 22c along the width direction of the flow path R2 is formed slightly shorter than the width of the second bottom wall plate 25 along the same direction, and the height of the side plate 22d along the depth direction of the flow path R2 is the same. The height is equal to the height of the second side wall plate 26 along the depth direction.
  • the second cover plate 23 is formed in an elongated rectangular shape having the same width as the third cover plates 22A and 22B, and covers about half of the width direction on the long side of the first bottom wall plate 20, and the remaining half. The degree is projected from the long side of the first bottom wall plate 20 and is attached to the first bottom wall plate 20 by a fixture 31 such as a rivet.
  • the total length of the long side of the second cover plate 23 is slightly shorter than the total length of the long side of the first bottom wall plate 20, and one end 23a side of the second cover plate 23 is connected to the bottom plate 22a. When extending along the side edge, the other end 23 a is disposed slightly inside the end of the first bottom wall plate 20. Therefore, the end portion 20 a of the first bottom wall plate 20 that is not covered with the second cover plate 23 is exposed outside the end portion 23 a of the second cover plate 23.
  • the fourth cover plate 24 is made of an L-shaped plate material in plan view including a square plate-like main body portion 24a and projecting portions 24b and 24c formed to extend on both sides thereof.
  • the fourth cover plate 24 is made of a refractory metal material equivalent to the cover plates 22A, 22B, and 23.
  • the fourth cover plate 24 is a corner portion of the rectangular first bottom wall plate 20, and is a fixture such as a rivet so as to cover the abutting portion between the third cover plate 22A and the second cover plate 23. 32 is attached.
  • the mounting direction of the fourth cover plate 24 is such that the protrusion 24b faces the width direction of the flow path R2 and away from the end of the third cover plate 22A, and the protrusion 24c is on the downstream side in the flow direction of the flow path R2. Is directed away from the second cover plate 23.
  • the first plate assembly 17 and the first plate assembly 18 described above are disposed so as to be adjacent to the left and right in the width direction of the flow path R2. As shown in FIG. 5, the first plate assembly 17 and the first plate assembly 18 are arranged such that the long side of the first bottom wall plate 20 and the long side of the second bottom wall plate 25 are adjacent to each other. It is installed on the bottom wall 4a of the flow path R2 with a gap D1 therebetween. Most of the gap D1 between the first plate assembly 17 and the first plate assembly 18 is covered with the second cover plate 23 in plan view. Further, the projecting portion 24b of the fourth cover plate 24 attached to the first plate assembly 17 is placed on the end portion of the bottom plate 22c of the third cover plate 22B adjacent thereto and the end portion of the bottom plate 22b. Is covered in plan view.
  • the gap D1 is provided for absorbing the expansion when the first bottom wall plate 20 and the second bottom wall plate 25 are thermally expanded in the width direction of the flow path R2 according to the temperature of the molten glass flowing through the flow path R2. It has been.
  • the cover assembly 16 can be configured by arranging the first plate assembly 17 and the second plate assembly 18 as described above, all the edge sides of the cover assembly 16 located on the downstream side of the flow path R2 are included. Can be covered with the first cover plate 22 in a plan view so that there is no gap, in other words, with the third cover plates 22A and 22B and the fourth cover plate 24.
  • a plurality of cover assemblies 16 are arranged and connected in the same direction along the flow direction of the flow path R ⁇ b> 2 to constitute the inner surface cover 15. More specifically, the third cover plates 22A and 22B and the fourth cover plate 24 are disposed at the downstream edge portion of any one cover assembly 16 along the flow path R2.
  • the other cover assembly 16 to be installed on the downstream side of the assembly 16 is also arranged in the same direction, and the upstream edge portion of the cover assembly 16 to be arranged on the downstream side is to be arranged on the upstream side.
  • a plurality of cover assemblies 16 are sequentially arranged in the flow direction of the flow path R ⁇ b> 2 by being fitted so as to be fitted into the downstream edge portion of the solid body 16.
  • the third cover plates 22A and 22B and the fourth cover plate 24 exist at the downstream edge of the upstream cover assembly 16, but the third cover plate 22A or 22B and the flow path are provided. Since there is a gap corresponding to one plate between the bottom wall portion 4a of R2 and between the fourth cover plate 24 and the side wall portion 4b, the cover assembly on the downstream side is utilized using these gaps.
  • the upstream edge portion of the solid 16 can be fitted and both can be faced to each other. When the cover assemblies 16 are engaged, a slight gap D2 is formed between the upstream cover assembly 16 and the downstream cover assembly 16 as shown in FIG.
  • a gap D ⁇ b> 2 is formed between the first bottom wall plate 20 of the upstream cover assembly 16 and the first bottom wall plate 20 of the downstream cover assembly 16, and the upstream cover assembly 16.
  • a gap D ⁇ b> 2 is formed between the second bottom wall plate 25 and the second bottom wall plate 25 of the downstream cover assembly 16.
  • the first side wall plate 21 and the second side wall plate 26 can be stably supported by the side wall portion 4b.
  • a slit 4h is provided on the flow path R2 side of the refractory brick 4d, and the ear portions 21a and 26a are inserted and supported in the slit 4h.
  • a structure may be adopted.
  • a bolt-shaped fixture made of a heat-resistant metal such as Mo or W (tang ten) so as to penetrate the refractory brick 4 d.
  • a structure may be adopted in which the side wall plates 21 and 26 of the cover assembly 16 are separately supported by installing 35 and fixing the fixture 35 through the necessary portions of the side wall plates 21 and 26.
  • the molten glass product manufactured using the glass manufacturing apparatus 1 of the present embodiment is a molded product such as a glass plate manufactured by a float method, a rollout method, a downdraw method, a glass bottle manufactured by a blow method, or the like. As long as there is, it is not limited in composition. Therefore, any of soda lime glass, mixed alkali glass, borosilicate glass, or non-alkali glass may be used. Moreover, the use of the manufactured glass product is not limited to architectural use or vehicle use, and examples include flat panel display use and other various uses.
  • soda-lime glass used for plate glass for buildings or vehicles, it is expressed in terms of mass percentage on the basis of oxide, SiO 2 : 65 to 75%, Al 2 O 3 : 0 to 3%, CaO: 5 to 15%, MgO: 0 to 15%, Na 2 O: 10 to 20%, K 2 O: 0 to 3%, Li 2 O: 0 to 5%, Fe 2 O 3 : 0 to 3%, TiO 2 : 0 to 5%, CeO 2 : 0 to 3%, BaO: 0 to 5%, SrO: 0 to 5%, B 2 O 3 : 0 to 5%, ZnO: 0 to 5%, ZrO 2 : 0 to 5 %, SnO 2 : 0 to 3%, SO 3 : 0 to 0.5%.
  • SiO 2 39 to 75%
  • Al 2 O 3 3 to 27%
  • B 2 O 3 0 to 20%
  • SrO: 0 to 20% BaO: 0 to 30% are preferable.
  • a mixed alkali glass used for a substrate for plasma display it is expressed in terms of mass percentage on the basis of oxide, and SiO 2 : 50 to 75%, Al 2 O 3 : 0 to 15%, MgO + CaO + SrO + BaO + ZnO: 6 to 24 %, Na 2 O + K 2 O: preferably 6 to 24%.
  • the first bottom wall plate 20, the first side wall plate 21, and the third The cover plate 22A and the fourth cover plate 24 are riveted and assembled as the first plate assembly 17 in the state shown in FIG.
  • the second bottom wall plate 25, the second side wall plate 26 and the third cover plate 22B are riveted and assembled as the second plate assembly 18 in the state shown in FIG.
  • a plurality of the first plate assembly 17 and the second plate assembly 18 are prepared and aligned in the direction shown in FIG. 7, and these are sequentially shown in the flow path R2 of the second clarification tank 4 as shown in FIGS.
  • the flow path R2 can be sequentially covered with the cover assembly 16.
  • the cover assembly 16 when a plurality of refractory bricks 4d for constituting the side wall portion 4b of the second clarification tank 4 are joined via the joint portion 4B to construct the side wall portion 4b, the ear portions 21a and 26a of each cover assembly 16 are provided.
  • the inner surface cover 15 can be constructed simultaneously with the construction of the second clarification tank 4 by constructing the second clarification tank 4 while being inserted into the joint portion 4B.
  • the cooling tank 5 a plurality of first plate assemblies 17 and second plate assemblies 18 are prepared and aligned in the direction shown in FIG. 7, and these are sequentially arranged in the flow path R 3 of the cooling tank 5.
  • the flow path R ⁇ b> 3 can be covered with the inner surface cover 15 by spreading and overlapping.
  • the inner surface cover 15 includes the bottom wall portion constituting the second molten glass flow channel of the second clarification tank, the side wall portions on both sides thereof, and the molten glass flow channel side in the bottom wall portion and both side wall portions.
  • the inner surface cover 15 covers the bottom wall part constituting the first molten glass flow path of the first clarification tank and the side wall parts on both sides thereof, and the molten glass flow path side in the bottom wall part and both side wall parts. It may be provided, or may be provided so as to cover only the bottom wall part constituting the cooling tank and the side wall parts on both sides thereof, and the molten glass flow path side in the bottom wall part and both side wall parts.
  • cover assemblies 16 and 16 are sequentially laid down with the cover plate 22 facing the downstream side of the flow paths R2 and R3 has been described, but the upstream side of the flow paths R2 and R3.
  • the cover assemblies 16 and 16 may be sequentially spread and arranged with the cover plate 22 facing toward each other, and the arrangement direction of the cover assembly 16 is not limited in the present invention.
  • a method of manufacturing a glass product using the glass product manufacturing apparatus 1 including the second clarification tank 4 and the cooling tank 5 provided with the inner surface cover 15 described above will be described below.
  • a glass raw material is melt
  • a step of melting the glass raw material in the melting tank 2 to form a molten glass is referred to as a glass melting step S1 as shown in FIG.
  • the temperature of the molten glass is adjusted to a high temperature in the range of about 1420 to 1510 ° C. by energizing and heating using the electrode 8 and clarified.
  • a high temperature in the range of about 1420 to 1510 ° C.
  • defoaming proceeds by the effect of the clarifying agent contained in the component of the molten glass G.
  • the viscosity of a molten glass falls by heating to the high temperature of this range, it becomes easy to remove a bubble.
  • the molten glass is guided to the second clarification tank 4 to further proceed with clarification treatment to defoam.
  • the first clarification tank 3 has a certain depth and is heated by energization with a plurality of electrodes 8.
  • the second clarification tank 4 since the second clarification tank 4 is shallow, it does not basically cause a return flow of the molten glass, and is constant along the second clarification tank 4 from the upstream side to the downstream side. Then, the molten glass is moved to the cooling tank 5 side.
  • the temperature of the second clarification tank 4 is about 1510 ° C. on the inlet side and about 1500 ° C. on the outlet side to promote clarification of the molten glass. Since the above-mentioned inner surface cover 15 is provided in the second clarification tank 4, the function and effect of the inner surface cover 15 can be obtained. Details of the function and effect will be described later.
  • the molten glass defoamed in the second clarification tank 4 is cooled in the cooling tank 5 from a temperature of about 1500 ° C. on the inlet side to a temperature of about 1200 ° C. on the outlet side.
  • the step of cooling and adjusting to the molding temperature range so as to be clarified in the first clarification tank 3 and the second clarification tank 4 and to form molten glass, as shown in FIG. This is referred to as S2.
  • the molten glass cooled to about 1200 ° C. in the cooling bath 5 is spread on the molten tin bed layer 10 of the float glass manufacturing apparatus in the molding apparatus 6 in the next step, and can be made into sheet glass.
  • the step of forming the sheet glass using the forming device 6 is referred to as a forming step S3 as shown in FIG.
  • molding plate-shaped glass is not restricted to the float glass manufacturing method which was illustrated, The roll-out method and the down draw method may be sufficient.
  • a glass product G6 of interest can be obtained as shown in FIG. 8 by performing a slow cooling step S4 of slowly cooling the sheet glass to a temperature close to room temperature and a cutting step S5 of cutting to a desired size. .
  • the inner surface cover 15 made of a heat-resistant metal is provided in the second clarification tank 4 and the cooling tank 5.
  • the inner surface cover 15 covers the inner surface side of the bottom wall portion 4a and the side wall portion 4b constituting the flow path R2 of the molten glass G, and thus constitutes the bottom wall portion 4a and the side wall portion 4b. Direct contact between the refractory brick and the molten glass G can be reduced as much as possible, and the constituent components of the refractory brick can be prevented from being eluted to the molten glass G side.
  • the inner surface cover 15 covers the inner surface side of the bottom wall portion 5a and the side wall portion 5b constituting the flow path R3 of molten glass, the refractory brick G constituting the bottom wall portion 5a and the side wall portion 5b, Direct contact with the molten glass can be reduced as much as possible, and the components of the refractory brick can be prevented from eluting to the molten glass G side. Accordingly, even when the clarification of the molten glass G is continuously performed for a long period of time, the production of the molten glass G can be performed without causing elution of the components of the refractory bricks in the molten glass G flowing through the flow paths R2 and R3. It can be carried out.
  • a high-quality glass product G6 can be obtained by sending a high-quality molten glass G whose composition is not disturbed to the next process and forming it with the forming apparatus 6.
  • polished the surface can also be manufactured.
  • the silica coat film may prevent the reaction between Mo and air before the molten glass G covers the entire inner surface cover 15 at the start of production of the molten glass, the molten glass G covers the entire inner surface cover 15. Cover with a film thickness sufficient to withstand time. After the molten glass G covers the entire inner surface cover 15, the silica coat film melts and disappears as time passes, and thereafter, the molten glass G covering the inner surface cover 15 isolates the inner surface cover 15 from the air.
  • a gap D1 is formed between the first bottom wall plate 20 and the second bottom wall plate 25, and the flow of the flow path R2
  • a gap D2 is formed between the cover assemblies 16 and 16 adjacent to each other in the front and rear direction.
  • the thermal expansion coefficient of the refractory brick 4d constituting the bottom wall portion 4a and the side wall portion 4b of the flow path R2 is different from that of the inner surface cover 15 made of a heat-resistant metal such as Mo.
  • each plate constituting the inner surface cover 15 expands more than the refractory brick 4d having a low coefficient of thermal expansion.
  • the gaps D1 and D2 are formed on the inner side of the inner cover 15, the thermal expansion of each plate constituting the inner cover 15 can be absorbed by the gaps D1 and D2, and the molten glass G
  • unnecessary thermal stress can be prevented from being applied to the inner surface cover 15 in a heated state. Therefore, even if the molten glass is manufactured by continuously using the second clarification tank 4 and the cooling tank 5 provided with the inner surface cover 15, unnecessary burdens such as thermal stress do not act on the inner surface cover 15.
  • the following effects can be acquired by inserting the ear
  • the molten glass G flows along the flow path R2
  • the molten glass G flows through the flow path R2 on the inner surface side of the inner surface cover 15, and at the same time, the bottom wall portion 4a and the side wall portion 4b of the flow path R2 and the inner surface cover 15
  • a small amount of molten glass G also flows into the gap portion with the back side.
  • the inner surface of the flow path R2 Even if a plurality of cover assemblies 16 are engaged to form the inner surface cover 15 and cover the surface of the bottom wall portion 4a and the side wall portion 4b of the flow path R2, the inner surface of the flow path R2
  • the bottom surface and the side surface of the inner cover 15 are not completely in close contact with each other.
  • the upper ends of the side wall plates 21 and 26 of the inner surface cover 15 are at a position lower than the liquid level GH of the molten glass, and the inner surface cover 15 has gaps D1 and D2, so the back side of the inner surface cover 15 is provided.
  • some molten glass G wraps around.
  • the molten glass G flowing between the bottom wall portion 4a and the side wall portion 4b of the flow path R2 and the inner surface cover 15 directly contacts the bottom wall portion 4a and the side wall portion 4b, so that the bottom wall portion 4a and the side wall portion 4b are formed.
  • the refractory brick 4d may be eroded or a part of the components constituting the refractory brick 4d may be eluted to the molten glass side to contaminate the molten glass.
  • the amount of the molten glass G flowing between the bottom wall portion 4a and the side wall portion 4b and the back surface side of the inner surface cover 15 is extremely small with respect to the main flow of the molten glass flowing on the inner side of the flow path R2.
  • the molten glass that has flowed into the back surface side of the cover 15 cannot easily return to the flow path R2 side, the molten glass G that flows through the flow path R2 inside the inner surface cover 15 is slightly contaminated on the back side of the inner surface cover 15. The possibility that the molten glass G is affected is low.
  • the molten glass G flowing between the bottom wall portion 4a and the side wall portion 4b and the back surface side of the inner surface cover 15 tends to move along the flow direction of the flow path R2.
  • the ear portions 21a and 26a are intermittently present at a plurality of locations in the length direction of the inner surface cover 15, the molten glass G travels along the back surface side of the inner surface cover 15 and moves downstream in the flow path R2. Since the ear portions 21a and 26a block the flow to be attempted, the molten glass G on the back surface side of the inner surface cover 15 that is likely to get dirty by touching the side wall portion 4b is not sent downstream of the flow path R2.
  • FIG. 9 is an inner surface cover applied to the structure of the second embodiment of the fining tank according to the present invention, and the upper end of the Mo side wall plate 21 in the cover assembly protrudes upward from the liquid surface position GH of the molten glass G.
  • It is sectional drawing which shows an example structure at the time of arranging in this way.
  • the Mo side wall plate 21 is arranged so as to protrude upward from the liquid surface position GH of the molten glass G as in this embodiment, the outer side of the inverted U-shaped cross section is arranged so that the side wall plate 21 does not come into contact with air.
  • the upper end portion of the side wall plate 21 is covered by the first cover piece 51 and the inner second cover piece 52.
  • the outer first cover piece 51 is made of a Pt alloy such as Pt and PtRh, and a heat resistant metal material such as iridium, and the inner second cover piece 52 is made of a heat resistant ceramic such as alumina (Al 2 O 3 ) and zirconia. .
  • the outer first cover piece 51 is made of a heat-resistant metal that is not easily eroded by the molten glass G and that does not have any problem even if it comes into contact with the air.
  • the second cover piece 52 made of heat-resistant ceramic is formed after the clarification tank 4 is constructed.
  • the position of the lower edge portion 51a of the outer first cover piece 51 is formed so as to be positioned above the lower end portion 52a of the inner second cover piece 52, and the first cover It is desirable that the lower end portion 51a of the piece 51 is separated from the surface of the side wall plate 21 by about several tens of millimeters.
  • the upper end positions of the Mo side wall plates 21 and 26 can be disposed above the liquid surface position GH of the molten glass G.
  • the side wall portion 4b constituting the flow path R2 can be covered with the inner surface cover 15 in a wider range.
  • the 1st side wall plate 21 can be arrange
  • the glass manufacturing apparatus 1 is operated so that the liquid level position GH of the molten glass G fluctuates up and down and the clarification tank 4 is used, a structure in which the side wall plates 21 and 26 are hardly damaged can be provided. That is, even if the liquid level position GH of the molten glass G changes about the height of the first cover piece 51, the side wall plates 21 and 26 do not come into contact with air. Even if the liquid level position GH fluctuates, there is no problem.
  • FIG. 10 shows a cover assembly 16 applied to the structure of the third embodiment according to the present invention.
  • Ears 20c, 25c are also provided on the end portions of the first bottom wall plate 20 and the second bottom wall plate 25.
  • An example is shown.
  • Other structures are the same as those of the first embodiment.
  • the ear portion 20c is provided downward on the end portion side of the first bottom wall plate 20, and the ear portion 25c is provided downward on the end portion side of the second bottom wall plate 25.
  • the first bottom wall plate 20 and the second bottom wall plate 25 are installed on the bottom wall portion 4a of the clarification tank 4 by being inserted into the joints or slits 4h of the refractory brick 4c constituting the bottom wall portion 4a. Has been.
  • the ear portions 20c, 25c are formed on the end portions of the first bottom wall plate 20 and the second bottom wall plate 25, the first bottom wall plate 20 and the second bottom wall plate 20
  • the ear portions 20c and 25c block the flow of the molten glass G that is about to flow along the flow path R2 in the gap area between the second bottom wall plate 25 and the bottom wall portion 4a of the flow path R2, and the gap area It is possible to prevent the flow of the molten glass G that is about to flow to the downstream side of the flow path R2.
  • the ear portions 20 c and 25 c on the end portions of the first bottom wall plate 20 and the second bottom wall plate 25, the dirty molten glass G can be prevented from flowing to the downstream side of the clarification tank 4.
  • the dirty molten glass G in the gap portion between the side wall portion 4b and the cover assembly 16 is not allowed to flow downstream. It is possible to provide a structure in which the molten glass G contaminated in the gap between the bottom wall portion 4a and the cover assembly 16 does not flow downstream.
  • FIG. 11 shows a cover assembly 16A applied to the inner surface cover 15A of the fourth embodiment according to the present invention.
  • the structure of the first embodiment is different from that of the previous first embodiment.
  • the first bottom wall plate 20 and the second bottom wall plate 25 separated in the first embodiment are integrated into a single bottom wall plate 60.
  • the first plate assembly 17 and the second plate assembly 18 separated in the previous first embodiment are integrated into a single plate assembly 61.
  • the third cover plates 22A and 22B separated in the previous first embodiment are integrated into a U-shaped cover plate 62, and the fourth cover plate 24 is omitted.
  • the cross-sectional shape of the cover plate 62 is formed in a U shape including a bottom plate 62a and side plates 62b on both sides.
  • the bottom plate 62a of the cover plate 62 is placed on the end edge side of the bottom wall plate 60 by about half the width, and the remaining half width is projected, and the cover assembly 16A is fixed by a fixture such as a rivet (not shown).
  • a cover plate 62 is fixed to the edge portion of the cover.
  • one side plate 62b of the cover plate 62 is put on the first side wall plate 21 by a half width, the remaining half width is projected, and the other side plate 62b is half a width on the edge side of the second side wall plate 26.
  • the cover plate 62 is fixed to the end edge portion of the cover assembly 16A by a fixing tool such as a rivet (not shown).
  • the side wall plates 21 and 26 are formed by bending a single heat-resistant metal plate with respect to the bottom wall plate 60.
  • the bottom wall 4a and the side walls 4b, 4b of the flow path R2 can be protected from the molten glass G also by the inner surface cover 15A of the fourth embodiment.
  • the absorption effect of the thermal expansion when the cover assemblies 16A and 16A expand in the length direction of the flow path R2 can be obtained in the same manner as the structure of the first embodiment. That is, the length of the flow path R2 using the gap between the bottom wall plates 60, 60 adjacent to each other in the flow direction of the flow path R2, the clearance between the side wall plates 21, 21, and the clearance between the side wall plates 26, 26.
  • the absorption effect of the thermal expansion when the cover assemblies 16A and 16A are thermally expanded in the direction can be obtained.
  • the inner surface cover 15A of the fourth embodiment shares the first plate assembly 17 and the second plate assembly 18 that are adjacent to each other in the width direction of the flow path R2 in the first embodiment. Therefore, the absorption effect when the cover assembly 16A expands in the width direction of the flow path R2 cannot be obtained, but the side wall plates 21 and 26 are not in close contact with the side wall portion 4b of the flow path R2, but have a slight gap. Since the gaps are arranged so that the thermal expansion in the width direction of the flow path R2 does not need to be considered, the structure shown in FIG. 11 can be applied.
  • the side wall plate 26 when the side wall plate 26 is supported by a bolt-shaped fixture 35 made of a heat-resistant metal such as Mo so as to penetrate the refractory brick 4d as shown in FIG. 6, there is a gap between the side wall plate 26 and the refractory brick 4d.
  • This gap can be used for absorbing the thermal expansion.
  • the ears 26a of the side wall plate 26 are reliably supported by the joints 4B of the refractory bricks 4d, there will be no problem with the structural strength of the side wall plate 26.
  • the technology of the present invention can be widely applied to the production of architectural glass, vehicle glass, optical glass, medical glass, display device glass, and other general glass products.
  • the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2010-293234 filed on Dec. 28, 2010 are incorporated herein as the disclosure of the present invention. .
  • R1, R2, R3 ... flow path, G ... molten glass, GH ... liquid surface position of molten glass, 1 ... manufacturing apparatus, 2 ... melting tank, 3 ... first clarification tank, 4 ... second clarification tank, 4a ... bottom wall part, 4b ... side wall part, 4g, 4e ... refractory brick (refractory), 4h ... slit, 5 ... cooling tank, 5a ... bottom wall part, 5b ... side wall part, 6 ... molding device, 7 ... clarification tank , 8 ... Electrode, 14 ... Glass melting furnace, 15 ... Inner cover, 16 ... Cover assembly, 17 ... First plate assembly, 18 ... Second plate assembly, 20 ... First bottom wall plate, 20c ... ear part, 21 ...

Abstract

The purpose of the present invention is to provide a structure equipped with an inner-surface cover for protecting a bottom wall and side walls from molten glass. The present invention is a clarification tank equipped with a molten glass flow channel formed from fire-resistant bricks. The clarification tank is equipped with: a bottom wall and side walls disposed on both sides of the bottom wall so as to constitute a molten glass flow channel; and an inner-surface cover that covers the bottom wall and side walls on the sides that constitute the molten glass flow channel. The inner-surface cover comprises a plurality of cover assemblies disposed along the direction of the molten glass flow channel, and the cover assemblies are equipped with a bottom plate that covers the bottom wall, side plates that cover the side walls, and first cover plates that cover the regions where the cover assemblies disposed along the flow channel abut one another.

Description

清澄槽、ガラス溶融炉、溶融ガラスの製造方法、ガラス製品の製造方法およびガラス製品の製造装置Clarification tank, glass melting furnace, molten glass manufacturing method, glass product manufacturing method, and glass product manufacturing apparatus
 本発明は、底壁部と側壁部により区画される溶融ガラスの流路に内面カバーを備えた清澄槽、それを備えたガラス溶融炉、溶融ガラスの製造方法、ガラス製品の製造方法およびガラス製品の製造装置に関する。 The present invention relates to a clarification tank provided with an inner surface cover in a flow path of molten glass defined by a bottom wall portion and a side wall portion, a glass melting furnace provided with the same, a method for manufacturing molten glass, a method for manufacturing glass products, and glass products It relates to a manufacturing apparatus.
 ガラス板を製造する方法の一例として、溶融槽と清澄槽と成形装置を備えたガラス製造装置を用い、ガラス原料を溶融槽において溶融し、得られた溶融ガラスを清澄槽において泡抜きし、泡の少ない均一化した溶融ガラスを、フロートバスを備えた成形装置に送ってガラス板とするフロート法が知られている。
 このフロート法に使用される清澄槽には溶融ガラスの流路が形成され、この流路は一般に耐火レンガなどの耐火物を複数組み付けて構成されている。しかし、溶融ガラスの温度は1200~1500℃の高温になるので、耐火レンガなどの耐火物から構成される流路であっても、長期間使用すると、耐火物の構成材料の一部が部分的に徐々に浸食されるなどの原因によって損傷するおそれがある。また、耐火物がガラスに溶融し異質素地としてガラス中に流出し欠点になる。
As an example of a method for producing a glass plate, a glass production apparatus provided with a melting tank, a clarification tank, and a molding apparatus is used, a glass raw material is melted in the melting tank, and the obtained molten glass is defoamed in the clarification tank, A float method is known in which a uniform molten glass with a small amount of glass is sent to a forming apparatus equipped with a float bath to form a glass plate.
A flow path of molten glass is formed in a clarification tank used in the float process, and this flow path is generally configured by assembling a plurality of refractories such as refractory bricks. However, since the temperature of the molten glass is as high as 1200 to 1500 ° C., even if the flow path is composed of a refractory material such as a refractory brick, a part of the refractory material is partially used when used for a long time. There is a risk of damage due to erosion. Further, the refractory melts into the glass and flows out into the glass as a heterogeneous substrate, which becomes a defect.
 また、溶融槽でガラス原料の溶融を行うと原料成分の反応時に必然的に溶融ガラスの内部に泡が生じるので、清澄槽において溶融ガラスの脱泡を行い、泡の少ない高品質の溶融ガラスを得、この溶融ガラスを次工程の成形装置に送る必要がある。高温で清澄を行うタイプの清澄槽では、上記の耐火物を起因とする異質素地の発生がとくに問題となる。
 この問題に対して、清澄槽の清澄壁(ダム)を耐火物ではなく、耐熱金属で構成した例がある(例えば特許文献1)。
In addition, if the glass raw material is melted in the melting tank, bubbles are inevitably generated inside the molten glass during the reaction of the raw material components. Therefore, the molten glass is defoamed in the clarification tank, and a high-quality molten glass with few bubbles is obtained. It is necessary to send this molten glass to a molding apparatus for the next step. In a clarification tank that performs clarification at a high temperature, the generation of a heterogeneous base caused by the refractory is a particular problem.
In order to solve this problem, there is an example in which the clarification wall (dam) of the clarification tank is composed of a refractory metal instead of a refractory (for example, Patent Document 1).
 このような背景において、フロート法に用いることが望ましいガラス溶融設備として、バッチ材料を溶融して溶融ガラスを形成する溶融槽と、この溶融槽に接続された浅い溶融ガラス流路を備えた構造の清澄槽と、この清澄槽に接続された均質化槽を備えた構造のガラス溶融装置が知られている(例えば特許文献2)。 In such a background, as a glass melting facility that is desirably used in the float process, a melting tank that melts batch materials to form molten glass, and a structure including a shallow molten glass channel connected to the melting tank. A glass melting apparatus having a clarification tank and a homogenization tank connected to the clarification tank is known (for example, Patent Document 2).
日本特開2004-75533号公報Japanese Unexamined Patent Publication No. 2004-75533 日本特開昭61-132565号公報Japanese Unexamined Patent Publication No. Sho 61-132565
 特許文献2に記載のガラス溶融タンクは、溶融ガラスに接触する部分にアルミナ、シリカ、ジルコニアを含む耐火物を適用し、高温の溶融ガラスによる浸食に耐える構造を提供しようとしている。しかし、耐火物の材料を多少改良したとしても溶融ガラスの浸食に耐えるガラス溶融設備の提供は難しいのが現状で、溶融ガラスの浸食に耐える新規な構造のガラス溶融槽の提供が望まれている。 The glass melting tank described in Patent Document 2 intends to apply a refractory containing alumina, silica, and zirconia to a portion in contact with the molten glass to provide a structure that can withstand erosion by high-temperature molten glass. However, it is difficult to provide a glass melting facility that can withstand the erosion of molten glass even if the material of the refractory is slightly improved, and it is desired to provide a glass melting tank having a new structure that can withstand the erosion of molten glass. .
 また、前記した高温清澄タイプの清澄槽では、泡抜きを効率よく行うために、清澄槽を流れる溶融ガラスの温度を再発泡しない条件においてできるだけ高く設定して溶融ガラスの粘性を下げ、粘性を低くした溶融ガラスから清澄槽において確実に泡抜きができるように運転している。
 即ち、清澄槽の溶融ガラス流路は、より高温の溶融ガラスに接触するので、溶融ガラス流路を構成する耐火物は浸食されるおそれが高く、溶融ガラス側に耐火物の構成元素が拡散し、溶融ガラスの組成が不均一となるおそれがある。従って、清澄槽において高温の溶融ガラスの浸食に耐える構造の提供が望まれている。
 さらに、特許文献1および特許文献2では、清澄槽に係る耐火物の代わりに耐熱金属を用いているが、一部の耐火物を置き換えているだけであり、耐火物の大半を耐熱金属に置き換える場合の具体的な方法については開示も示唆もされていない。
Moreover, in the above-described high-temperature clarification type clarification tank, in order to efficiently remove bubbles, the temperature of the molten glass flowing through the clarification tank is set as high as possible under the conditions where re-foaming is not performed, thereby reducing the viscosity of the molten glass and reducing the viscosity. It operates so that foam can be surely removed from the molten glass in the clarification tank.
That is, since the molten glass flow path of the clarification tank is in contact with a higher temperature molten glass, the refractory constituting the molten glass flow path is likely to be eroded, and the constituent elements of the refractory diffuse to the molten glass side. The composition of the molten glass may be non-uniform. Therefore, it is desired to provide a structure that can withstand the erosion of high-temperature molten glass in the fining tank.
Further, in Patent Document 1 and Patent Document 2, a refractory metal is used instead of the refractory according to the clarification tank, but only a part of the refractory is replaced, and the majority of the refractory is replaced with the refractory metal. There is no disclosure or suggestion of the specific method of the case.
 本発明は、ガラス製造装置における清澄槽において溶融ガラス流路を構成する底壁部と側壁部を覆う内面カバーを配置することで底壁部と側壁部の溶融ガラスによる浸食を防止するとともに、底壁部と側壁部を構成する耐火物の構成成分の溶出を抑制して不純物混入の生じていない高品質の溶融ガラスを提供できる清澄槽の提供を目的とする。
 また、本発明は、前記清澄槽を備えて高品質の溶融ガラスを提供できる溶融ガラスの製造方法と製造装置および溶融ガラス製品の製造方法の提供を目的とする。
The present invention prevents the erosion of the bottom wall portion and the side wall portion by the molten glass by disposing an inner surface cover that covers the bottom wall portion and the side wall portion constituting the molten glass flow path in the clarification tank in the glass manufacturing apparatus. It aims at providing the clarification tank which can provide the high quality molten glass which suppressed elution of the structural component of the refractory material which comprises a wall part and a side wall part, and the impurity mixing does not arise.
Moreover, this invention aims at provision of the manufacturing method and manufacturing apparatus of a molten glass which can provide the high quality molten glass provided with the said clarification tank, and the manufacturing method of a molten glass product.
 本発明は、耐火レンガ製の溶融ガラス流路を備えた清澄槽であって、該清澄槽が、溶融ガラス流路を構成する底壁部およびその両側の側壁部と、前記底壁部および両側壁部における溶融ガラス流路側を覆う内面カバーとを備え、前記内面カバーが、前記溶融ガラスの流路方向に沿って配置される複数のカバー組立体からなり、前記カバー組立体が、前記底壁部を覆う底壁プレートと、前記側壁部を覆う側壁プレートと、前記流路に沿って配置されたカバー組立体どうしの突き合わせ領域を覆う第一のカバープレートを備える清澄槽を提供する。 The present invention is a clarification tank provided with a molten glass flow path made of refractory bricks, wherein the clarification tank includes a bottom wall portion and side wall portions on both sides of the molten glass flow path, and the bottom wall portion and both sides. An inner surface cover for covering the molten glass flow path side in the wall portion, wherein the inner surface cover is composed of a plurality of cover assemblies arranged along a flow path direction of the molten glass, and the cover assembly is the bottom wall There is provided a clarification tank comprising a bottom wall plate that covers a part, a side wall plate that covers the side wall part, and a first cover plate that covers a butting region between cover assemblies arranged along the flow path.
 本発明の清澄槽は、前記側壁プレートの流路下流側の端部あるいは流路上流側の端部に、前記側壁プレートの端部から前記流路の外側に向いて延在する耳部が形成されることが好ましい。なお、耳部とは、英訳時にはoverhangと表現できるものとする。
 本発明の清澄槽は、複数の耐火レンガの目地部を介し接合して前記側壁部が形成され、前記耳部が前記耐火レンガの目地部に挿入されることが好ましい。
 本発明の清澄槽は、前記カバー組立体の側方に位置する耐火レンガの側面にスリットが形成され、該スリットに前記耳部が挿入されることが好ましい。
 本発明の清澄槽は、前記カバー組立体がMo(モリブデン)からなり、前記側壁プレートの上端部が前記溶融ガラスの液面位置よりも上方に突出され、前記上端部がPt、Pt合金、または、耐熱セラミックスからなるカバー部材により覆われることが好ましい。
 本発明において、Mo(モリブデン)からなるカバー組立体とは、Mo金属、またはMo合金からなるカバー組立体を意味し、Moを45原子%以上含むものを意味する。
 Mo合金としては、たとえば、La(ランタン)やW(タングステン)の入ったもの、あるいはZrO(酸化ジルコニア)を含むものが挙げられる。
 本発明の清澄槽は、前記カバー組立体がMoからなり、前記側壁プレートの上端位置が前記溶融ガラスの液面位置よりも低い位置に形成されることが好ましい。
The fining tank of the present invention is formed with an ear extending from the end of the side wall plate toward the outside of the flow path at the end of the side wall plate on the downstream side of the flow path or the end of the flow path on the upstream side. It is preferred that The ear part can be expressed as overhang during English translation.
It is preferable that the clarification tank of this invention joins through the joint part of a some refractory brick, the said side wall part is formed, and the said ear | edge part is inserted in the joint part of the said refractory brick.
In the clarification tank of the present invention, it is preferable that a slit is formed on a side surface of the refractory brick located on the side of the cover assembly, and the ear portion is inserted into the slit.
In the clarification tank of the present invention, the cover assembly is made of Mo (molybdenum), the upper end portion of the side wall plate protrudes above the liquid surface position of the molten glass, and the upper end portion is Pt, Pt alloy, or The cover member is preferably covered with a heat-resistant ceramic cover member.
In the present invention, the cover assembly made of Mo (molybdenum) means a cover assembly made of Mo metal or Mo alloy, and means that contains 45 atomic% or more of Mo.
Examples of the Mo alloy include those containing La (lanthanum) and W (tungsten), and those containing ZrO 2 (zirconia oxide).
In the clarification tank of the present invention, it is preferable that the cover assembly is made of Mo and the upper end position of the side wall plate is formed at a position lower than the liquid surface position of the molten glass.
 本発明の清澄槽は、前記カバー組立体が、前記溶融ガラス流路の左右の一方に配置された第一のプレート組立体と、前記溶融ガラス流路の左右の他方に配置された第二のプレート組立体と、前記第一のプレート組立体と第二のプレート組立体との突き合わせ領域を覆う第二のカバープレートを備えることが好ましい。
 本発明の清澄槽は、前記第一のプレート組立体および第二のプレート組立体が、それぞれ、底壁プレートと、側壁プレートと、前記底壁プレートと前記側壁プレートとの突き合わせ領域を覆う第三のカバープレートとを備えることが好ましい。
 本発明の清澄槽は、前記カバー組立体どうしの突き合わせ領域において前記第二のカバープレートと前記第三のカバープレートの突き合わせ領域を覆う第四のカバープレートを備えることが好ましい。
In the clarification tank of the present invention, the cover assembly includes a first plate assembly disposed on one of the left and right sides of the molten glass flow path, and a second plate disposed on the other of the left and right sides of the molten glass flow path. It is preferable to provide a plate assembly and a second cover plate that covers a butt region between the first plate assembly and the second plate assembly.
In the clarification tank of the present invention, the first plate assembly and the second plate assembly each cover a bottom wall plate, a side wall plate, and a butted region of the bottom wall plate and the side wall plate, respectively. The cover plate is preferably provided.
The clarification tank of the present invention preferably includes a fourth cover plate that covers the butting region between the second cover plate and the third cover plate in the butting region between the cover assemblies.
 本発明の清澄槽は、前記側壁プレートを貫通してその外側の側壁部に取り付けられる支持具によって前記側壁プレートが支持されてもよい。
 本発明の清澄槽は、第一の底壁部およびその両側の第一の側壁部により区画される第一の溶融ガラスの流路を有する第一の清澄槽と、前記第一の清澄槽に続き設けられ、第二の底壁部およびその両側の第二の側壁部により区画される第二の溶融ガラスの流路を有する第二の清澄槽と、前記第二の清澄槽に続き設けられ、第三の底壁部およびその両側の第三の側壁部により区画される第三の溶融ガラスの流路を有する冷却槽とを備えることが好ましい。
 本発明の清澄槽においては、前記第一の清澄槽、前記第二の清澄槽および前記冷却槽の少なくともいずれか一方が、それぞれの溶融ガラス流路を構成する底壁部およびその両側の側壁部と、前記底壁部および両側壁部における溶融ガラス流路側を覆う内面カバーとを備え、前記内面カバーが、前記溶融ガラスの流路方向に沿って配置される複数のカバー組立体からなり、前記カバー組立体が、前記底壁部を覆う底壁プレートと、前記側壁部を覆う側壁プレートと、前記流路に沿って配置されたカバー組立体どうしの突き合わせ領域を覆う第一のカバープレートとを備えることが好ましい。
In the clarification tank of the present invention, the side wall plate may be supported by a support that passes through the side wall plate and is attached to the outer side wall portion.
The clarification tank of the present invention includes a first clarification tank having a first molten glass flow path defined by a first bottom wall part and first side wall parts on both sides thereof, and the first clarification tank. A second clarification tank having a second molten glass flow path defined by a second bottom wall and second sidewalls on both sides of the second bottom wall, and the second clarification tank. It is preferable to include a cooling tank having a third molten glass flow path defined by the third bottom wall portion and the third side wall portions on both sides thereof.
In the clarification tank of the present invention, at least any one of the first clarification tank, the second clarification tank, and the cooling tank includes a bottom wall portion and side wall portions on both sides of each of the molten glass flow paths. And an inner surface cover that covers the molten glass flow channel side in the bottom wall portion and both side wall portions, the inner surface cover is composed of a plurality of cover assemblies arranged along the flow channel direction of the molten glass, A cover assembly includes a bottom wall plate that covers the bottom wall portion, a side wall plate that covers the side wall portion, and a first cover plate that covers a butting region between the cover assemblies disposed along the flow path. It is preferable to provide.
 本発明は、先のいずれかに記載の清澄槽を有し、当該清澄槽の溶融ガラスの流れ方向の上流側に溶融槽を備えるガラス溶融炉を提供する。
 本発明は、先に記載のガラス溶融炉を用いてガラス原料を溶融する工程を有する溶融ガラスの製造方法を提供する。
 本発明は、先に記載のガラス溶融炉を用いてガラス原料を溶融し溶融ガラスを製造する工程と、該溶融ガラスを成形する工程と、成形後のガラスを徐冷する工程と、を含むガラス製品の製造方法を提供する。
 本発明は、先に記載のガラス溶融炉と、該ガラス溶融炉により製造された溶融ガラスを成形する成形手段と、成形後のガラスを徐冷する徐冷手段とを備えるガラス製品の製造装置を提供する。
This invention provides the glass melting furnace which has a clarification tank in any one of the above, and is equipped with a melting tank in the upstream of the flow direction of the molten glass of the said clarification tank.
This invention provides the manufacturing method of the molten glass which has the process of fuse | melting a glass raw material using the glass melting furnace as described above.
The present invention includes a step of melting a glass raw material using the glass melting furnace described above to produce molten glass, a step of forming the molten glass, and a step of gradually cooling the glass after forming. Provide a method for manufacturing a product.
The present invention provides a glass product production apparatus comprising the glass melting furnace described above, a molding means for molding the molten glass produced by the glass melting furnace, and a slow cooling means for gradually cooling the glass after molding. provide.
 本発明は、複数のカバー組立体から内面カバーを構成し、この内面カバーで溶融ガラスの流路の底面と内側面を覆うので、溶融ガラスの流路を構成する底壁部と側壁部を高温の溶融ガラスから保護することができ、底壁部と側壁部の浸食を抑制できる。また、流路を流れる高温の溶融ガラスと底壁部および側壁部との間に内面カバーを配置するので、流路を流れる溶融ガラス側に底壁部と側壁部から直に不純物が混入することを防止できる。よって、清澄槽において不純物の混入を引き起こすことなく泡抜きができ、不純物の混入していない組成の均一な泡の少ない高品質の溶融ガラスを得ることができる。 In the present invention, an inner surface cover is constituted by a plurality of cover assemblies, and the bottom surface and the inner surface of the molten glass flow path are covered with the inner surface cover. Therefore, erosion of the bottom wall portion and the side wall portion can be suppressed. In addition, since the inner surface cover is disposed between the high-temperature molten glass flowing through the flow path and the bottom wall and side walls, impurities should be mixed directly from the bottom wall and side walls into the molten glass flowing through the flow path. Can be prevented. Therefore, bubbles can be removed without causing impurities in the clarification tank, and a high-quality molten glass having a uniform composition and no bubbles can be obtained.
 側壁プレートの端部に耳部を形成し、側壁プレートの外側に設けられている耐火レンガの目地部あるいはスリット部に耳部を挿入して支持することで、カバー組立体を安定支持できる。
 また、溶融ガラスの流路を構成する側壁部とカバー組立体の側壁プレートとの間に存在する隙間を介して流動しようとする溶融ガラスを側壁プレートの耳部によりせき止めることができるので、側壁部に接している溶融ガラスであって不純物が混入する可能性の高い溶融ガラスを清澄槽の下流側に流すことがない。
The cover assembly can be stably supported by forming an ear portion at the end portion of the side wall plate and inserting and supporting the ear portion in the joint portion or slit portion of the refractory brick provided outside the side wall plate.
Further, since the molten glass that is going to flow through the gap existing between the side wall portion constituting the flow path of the molten glass and the side wall plate of the cover assembly can be blocked by the ear portion of the side wall plate, The molten glass that is in contact with the glass and has a high possibility of impurities being mixed does not flow downstream of the clarification tank.
 本発明に係る内面カバーを用いて清澄槽の溶融ガラス流路を覆うことにより、清澄槽の側壁部と底壁部から溶融ガラス側に不純物を混入させることがなくなり、清澄槽において目的の泡抜きができる。これにより、不純物の混入していない泡の少ない高品質の溶融ガラスおよびガラス製品を提供できる。 By covering the molten glass flow path of the clarification tank using the inner surface cover according to the present invention, impurities are prevented from being mixed into the molten glass side from the side wall and bottom wall of the clarification tank. Can do. Thereby, the high quality molten glass and glass product with few bubbles in which impurities are not mixed can be provided.
図1は本発明の第1実施形態に係る清澄槽を備えたガラス製品の製造装置の一例を示す構成図。Drawing 1 is a lineblock diagram showing an example of the manufacture device of the glassware provided with the clarification tank concerning a 1st embodiment of the present invention. 図2は同製造装置の要部を示す平面略図。FIG. 2 is a schematic plan view showing the main part of the manufacturing apparatus. 図3は図1に示す清澄槽の断面構造を示すもので、図3(a)は横断面図、図3(b)は同清澄槽の部分拡大断面図。3 shows a cross-sectional structure of the clarification tank shown in FIG. 1, FIG. 3 (a) is a cross-sectional view, and FIG. 3 (b) is a partially enlarged cross-sectional view of the clarification tank. 図4は同清澄槽の内部に配置されている内面カバーの一例を示す構成図。FIG. 4 is a block diagram showing an example of an inner surface cover disposed inside the clarification tank. 図5は同清澄槽の内部に配置されている内面カバーの一例を示す平面図。FIG. 5 is a plan view showing an example of an inner surface cover arranged inside the clarification tank. 図6は同清澄槽の内部に配置されている内面カバーの一例を示す部分断面図。FIG. 6 is a partial cross-sectional view showing an example of an inner surface cover disposed in the clarification tank. 図7は同清澄槽の内部に配置されている内面カバーの一例を示す分解斜視図。FIG. 7 is an exploded perspective view showing an example of an inner surface cover arranged inside the clarification tank. 図8は同清澄槽を用いて行うガラス製品の製造工程の一例を示すフロー図。FIG. 8 is a flowchart showing an example of a manufacturing process of a glass product performed using the clarification tank. 図9は第2実施形態の清澄槽の内部に配置されている内面カバーの一例を示す部分断面図。FIG. 9 is a partial cross-sectional view showing an example of an inner surface cover arranged in the clarification tank of the second embodiment. 図10は第3実施形態の清澄槽の内部に配置されている内面カバーの他の例を示す部分断面図。FIG. 10: is a fragmentary sectional view which shows the other example of the inner surface cover arrange | positioned inside the clarification tank of 3rd Embodiment. 図11は第4実施形態の清澄槽の内部に配置されている内面カバーの他の例を示す斜視図。FIG. 11: is a perspective view which shows the other example of the inner surface cover arrange | positioned inside the clarification tank of 4th Embodiment.
 以下、本発明に係る清澄槽、それを備えたガラス溶融炉、溶融ガラスの製造方法、ガラス製品の製造方法および製造装置の一実施形態について図面に基づき説明するが、本発明は以下の実施形態に制限されるものではない。また、以下に示す各図において各構成要素の縮尺については図示した場合に把握し易いように簡略化して示す。
 図1は本発明に係る清澄槽を備えた溶融ガラスの製造装置の一実施形態を模式的に示す構成図、図2は同装置の要部平面図である。
 本実施形態のガラス製品の製造装置1は、ガラス原料を溶融して溶融ガラスを生成するための溶融槽2と、この溶融槽2の下流側に順次設置された第一の清澄槽3と、第二の清澄槽4と、冷却槽5と、成形装置6とを備えてなる。本実施形態において、第一の清澄槽3と第二の清澄槽4と冷却槽5とから溶融ガラスの清澄槽7が構成されており、また、溶融槽2と清澄槽7とからガラス溶融炉14が構成されている。
DESCRIPTION OF EMBODIMENTS Hereinafter, a clarification tank according to the present invention, a glass melting furnace including the same, a method for manufacturing a molten glass, a method for manufacturing a glass product, and a manufacturing apparatus will be described with reference to the drawings. It is not limited to. Moreover, in each figure shown below, about the reduced scale of each component, it simplifies and shows so that it may be easy to grasp | ascertain in the case of illustration.
FIG. 1 is a configuration diagram schematically showing one embodiment of a molten glass production apparatus provided with a clarification tank according to the present invention, and FIG. 2 is a plan view of the main part of the apparatus.
The glass product manufacturing apparatus 1 of the present embodiment includes a melting tank 2 for melting a glass raw material to produce molten glass, a first clarification tank 3 sequentially installed on the downstream side of the melting tank 2, A second clarification tank 4, a cooling tank 5, and a molding device 6 are provided. In the present embodiment, a molten glass clarification tank 7 is constituted by the first clarification tank 3, the second clarification tank 4, and the cooling tank 5, and a glass melting furnace is formed by the melting tank 2 and the clarification tank 7. 14 is configured.
 本実施形態の溶融槽2は、その一側にガラス原料の投入部(図示せず)が設けられ、その反対側に第一の清澄槽3への接続部が設けられており、投入部から投入されたガラス原料をバーナーなどの加熱装置を用いて溶融することにより溶融ガラスを作成するための槽として設けられている。なお、溶融槽2に設けられているバーナーは、溶融槽2の側壁に横向きに取り付けられて燃焼炎を吹き出す形式のバーナーであっても、溶融槽2の天井壁に下向きに取り付けられて燃焼炎を吹き出す形式のバーナーであってもよく、また、ガラス原料粉末を所定の割合で混合してなる混合粉末原料をバーナーから直接吹き出して溶融ガラスとする気中溶融式のバーナーであってもよい。 The melting tank 2 of the present embodiment is provided with a glass raw material charging part (not shown) on one side and a connecting part to the first clarification tank 3 on the opposite side. It is provided as a tank for preparing molten glass by melting the charged glass raw material using a heating device such as a burner. The burner provided in the melting tank 2 is attached to the side wall of the melting tank 2 in a horizontal direction and blows out the combustion flame. May be used, or an air-melting type burner in which a mixed powder material obtained by mixing glass raw material powders in a predetermined ratio is directly blown from the burner to form molten glass.
 本実施形態の溶融槽2が接続された第一の清澄槽3は、平面視で、細長く、幅がほぼ一定であって、図1、図2に示す如く横幅と同程度の深さの槽として構成され、底壁部3aとその両側の側壁部3bと天井部3cとから構成されている。第一の清澄槽3の底壁部3aと両側の側壁部3bとによって区画された領域が溶融ガラスの流路R1とされていて、図1の2点鎖線GHが溶融ガラスの液面位置となるように第一の清澄槽3に溶融ガラスが供給されるようになっている。第一の清澄槽3の底壁部3aには複数本の電極8が所定の間隔をあけて立設され、これらの電極8、8…に対する通電量を制御することで溶融ガラスを目的の温度に加熱することができる。 The first clarification tank 3 to which the melting tank 2 of the present embodiment is connected is elongated and has a substantially constant width in plan view, and has a depth approximately equal to the lateral width as shown in FIGS. And includes a bottom wall portion 3a, side wall portions 3b on both sides thereof, and a ceiling portion 3c. A region defined by the bottom wall portion 3a and the side wall portions 3b on both sides of the first clarification tank 3 is a flow path R1 of molten glass, and a two-dot chain line GH in FIG. In this way, molten glass is supplied to the first clarification tank 3. A plurality of electrodes 8 are erected on the bottom wall portion 3a of the first clarification tank 3 at a predetermined interval, and by controlling the amount of current applied to these electrodes 8, 8. Can be heated.
 第一の清澄槽3において、耐火レンガ(耐火物)を複数、目地部を介し接合して底壁部3aと側壁部3bと天井部3cが構成され、全体として図1、図2に示す形状の槽としての概形になるように構成されている。図1と図2においては第一の清澄槽3を構成する耐火レンガの肉厚は略して記載し、槽の輪郭のみ示している。
 第一の清澄槽3において上流端側、即ち、溶融槽2側の部分に底壁部3aから1段高められた入口側段部3dが形成され、第一の清澄槽3において下流端側、即ち、第二の清澄槽4側には底壁部3aから一段低めてドレン排出用のドレンアウト部3eが第一の清澄槽3の幅方向に複数形成されている。第一の清澄槽3の入口部3fは入口側段部3dが形成されている分だけ第一の清澄槽3の他の部分よりも浅く形成されている。また、第一の清澄槽3の下流端側は垂直に立ち上がる仕切壁3gにより区画され、この仕切壁3gの上端部側において溶融ガラスの流路Rの深さが絞られた部分を介して第二の清澄槽4が接続されている。
In the first clarification tank 3, a plurality of refractory bricks (refractories) are joined via joints to form a bottom wall portion 3a, a side wall portion 3b, and a ceiling portion 3c, and the shapes shown in FIGS. 1 and 2 as a whole. It is comprised so that it may become the general shape as a tank of. In FIG. 1 and FIG. 2, the thickness of the firebrick which comprises the 1st clarification tank 3 is abbreviate | omitted, and only the outline of the tank is shown.
In the first clarification tank 3, an upstream end side, that is, an inlet side step part 3d raised one step from the bottom wall part 3a is formed on the melting tank 2 side, and in the first clarification tank 3, the downstream end side, That is, on the second clarification tank 4 side, a plurality of drain-out parts 3e for discharging the drain are formed in the width direction of the first clarification tank 3 so as to be lowered by one step from the bottom wall part 3a. The inlet part 3f of the first clarification tank 3 is formed shallower than the other part of the first clarification tank 3 by the amount of the inlet-side step 3d. Moreover, the downstream end side of the first clarification tank 3 is partitioned by a partition wall 3g that rises vertically, and the first end portion of the partition wall 3g is connected to the first through a portion where the depth of the flow path R of the molten glass is reduced. A second clarification tank 4 is connected.
 前記第二の清澄槽4は、平面視で、細長く、幅がほぼ一定であって、図1、図2に示す如く横幅に比べて浅い槽として構成され、底壁部4aとその両側の側壁部4bと天井部4cとから構成されている。第二の清澄槽4の底壁部4aと両側の側壁部4bとによって区画された領域が溶融ガラスの流路R2とされ、図1の2点鎖線GHが溶融ガラスの液面位置となるように第二の清澄槽4に溶融ガラスGが供給されるようになっている。
 第二の清澄槽4において、耐火レンガを複数、目地部を介し接合して底壁部4aと側壁部4bと天井部4cが構成され、全体として図1、図2、図3に示す如き槽としての概形になるように構成されている。図1と図2においては第二の清澄槽4を構成する耐火レンガ(耐火物)の肉厚は略して記載し、槽の輪郭のみを示し、図3に一例として底壁部4aと側壁部4bとそれらを構成する耐火レンガの肉厚を描いている。
The second clarification tank 4 is long and narrow in plan view, and is configured as a shallow tank as compared with the lateral width as shown in FIGS. 1 and 2, and includes a bottom wall portion 4a and side walls on both sides thereof. It is comprised from the part 4b and the ceiling part 4c. A region defined by the bottom wall portion 4a and the side wall portions 4b on both sides of the second clarification tank 4 serves as a flow path R2 for molten glass, and the two-dot chain line GH in FIG. 1 is the liquid surface position of the molten glass. The molten glass G is supplied to the second clarification tank 4.
In the second clarification tank 4, a plurality of refractory bricks are joined via joints to form a bottom wall part 4a, a side wall part 4b, and a ceiling part 4c, and the tank as shown in FIGS. 1, 2, and 3 as a whole. It is comprised so that it may become the general form. 1 and 2, the thickness of the refractory brick (refractory) constituting the second clarification tank 4 is abbreviated, only the outline of the tank is shown, and FIG. 3 shows the bottom wall 4a and the side wall as an example. 4b and the thickness of the refractory bricks that compose them.
 なお、底壁部4aと側壁部4bを構成する耐火レンガの大きさは任意であり、底壁部4aと側壁部4bの大きさに応じて適用する耐火レンガの個数や大きさは自由に選定することができる。例えば、図3(a)に示す底壁部4aと側壁部4bを複数の耐火レンガで複層構造としてもよい。図3に示す構造では説明の簡略化のために底壁部4aを構成する耐火レンガ4cを1つのみとして示し、側壁部4bを構成する耐火レンガを側壁部4bの高さ方向に2つ積層した例として示している。図3では例えば、側壁部4bの底部側に第一の耐火レンガ4dを配置し、その上に第二の耐火レンガ4eを重ねた構造として示している。なお、図3において側壁部4bの上端部を構成する耐火レンガ4eの外側(裏側)には水冷ジャケット50が設けられている。水冷ジャケット50の構造については公知の構成であるので、詳細な説明は略するとともに、図3においても詳細構造は略す。なお、水冷ジャケット50は一例として、往管と戻管により循環流路を構成し、その循環路に冷却水を流して冷却する構造を採用できる。
 第二の清澄槽4において上流端側、即ち、第一の清澄槽3側の部分に底壁部4aから1段高められた入口側段部4gが形成され、第二の清澄槽4の入口部4fは第二の清澄槽4の他の部分よりも浅く形成され、第二の清澄槽4において下流端側の底壁部4bは一定の深さのまま冷却槽5に接続されている。
The size of the refractory bricks constituting the bottom wall portion 4a and the side wall portion 4b is arbitrary, and the number and size of the refractory bricks to be applied can be freely selected according to the size of the bottom wall portion 4a and the side wall portion 4b. can do. For example, the bottom wall portion 4a and the side wall portion 4b shown in FIG. 3A may have a multilayer structure with a plurality of refractory bricks. In the structure shown in FIG. 3, for simplicity of explanation, only one refractory brick 4c constituting the bottom wall portion 4a is shown, and two refractory bricks constituting the side wall portion 4b are stacked in the height direction of the side wall portion 4b. As an example. For example, FIG. 3 shows a structure in which the first refractory brick 4d is arranged on the bottom side of the side wall 4b and the second refractory brick 4e is stacked thereon. In addition, in FIG. 3, the water cooling jacket 50 is provided in the outer side (back side) of the refractory brick 4e which comprises the upper end part of the side wall part 4b. Since the structure of the water-cooling jacket 50 is a known configuration, the detailed description is omitted and the detailed structure is also omitted in FIG. As an example, the water-cooling jacket 50 can employ a structure in which a circulation channel is constituted by an outgoing tube and a return tube, and cooling is performed by flowing cooling water through the circulation channel.
In the second clarification tank 4, an upstream end side, that is, a portion on the first clarification tank 3 side is formed with an inlet side step portion 4g raised by one step from the bottom wall portion 4a, and the inlet of the second clarification tank 4 The part 4f is formed shallower than the other part of the second clarification tank 4, and the bottom wall part 4b on the downstream end side in the second clarification tank 4 is connected to the cooling tank 5 with a constant depth.
 冷却槽5は平面視で細長く、幅がほぼ一定であって、図1に示す如く第二の清澄槽4よりも深い槽として構成され、底壁部5aとその両側の側壁部5bと天井部5cとから構成されている。冷却槽5の底壁部5aと両側の側壁部5bとによって区画された領域が溶融ガラスの流路R3とされていて、図1の2点鎖線GHが溶融ガラスの液面位置となるように冷却槽5に溶融ガラスGが供給されるようになっている。 The cooling tank 5 is elongated in plan view and has a substantially constant width, and is configured as a tank deeper than the second clarification tank 4, as shown in FIG. 1, and includes a bottom wall portion 5a, side wall portions 5b on both sides thereof, and a ceiling portion. 5c. A region defined by the bottom wall portion 5a and the side wall portions 5b on both sides of the cooling tank 5 is a flow path R3 of molten glass, and a two-dot chain line GH in FIG. 1 is a liquid surface position of the molten glass. Molten glass G is supplied to the cooling bath 5.
 また、冷却槽5の下流端側に排出側段部5dが形成され、この排出側段部5dの下流側に成形装置6が接続され、排出側段部5dにより浅く形成された流路R4の下流端部から成形装置6に溶融ガラスGが供給されるようになっている。なお、図2に示す符号9は冷却槽5の内部側に設けられた攪拌装置を示す。
 冷却槽5において、耐火レンガを複数、目地部を介し接合して底壁部5aと側壁部5bと天井部5cが構成され、全体として図1、図2に示す如き槽としての概形になるように構成されている。図1と図2においては冷却槽5を構成する耐火レンガの肉厚は略して記載し、槽の輪郭のみを示している。
Further, a discharge side step portion 5d is formed on the downstream end side of the cooling tank 5, and a molding device 6 is connected to the downstream side of the discharge side step portion 5d, and the flow path R4 formed shallow by the discharge side step portion 5d. Molten glass G is supplied to the forming apparatus 6 from the downstream end. In addition, the code | symbol 9 shown in FIG. 2 shows the stirring apparatus provided in the inside of the cooling tank 5. FIG.
In the cooling tank 5, a plurality of refractory bricks are joined via joints to form the bottom wall part 5a, the side wall part 5b, and the ceiling part 5c, and the overall shape of the tank as shown in FIGS. It is configured as follows. In FIGS. 1 and 2, the thickness of the refractory brick constituting the cooling tank 5 is abbreviated and only the outline of the tank is shown.
 本実施形態の清澄槽7において内面カバー15は、第二の清澄槽4の底壁部4aと側壁部4b、4bにより区画される流路R2をほぼ囲むことができるような高さと幅に形成され、第二の清澄槽4のほぼ全長に渡り設置されているとともに、冷却槽5の底壁部5aと側壁部5b、5bにより区画される流路R3をほぼ囲むことができるような高さと幅に形成され、冷却槽5のほぼ全長に渡り設置されているのが好ましい。 In the clarification tank 7 of the present embodiment, the inner surface cover 15 is formed to have a height and width so as to substantially surround the flow path R2 defined by the bottom wall part 4a and the side wall parts 4b, 4b of the second clarification tank 4. The height of the second clarification tank 4 is set over almost the entire length and can surround the flow path R3 defined by the bottom wall part 5a and the side wall parts 5b and 5b of the cooling tank 5. It is preferable that the cooling tank 5 is formed over a substantially entire length.
 本実施形態の内面カバー15は、詳細には、図4以降に示す複数のカバー組立体16を流路R2、R3の長さ方向に複数継ぎ足して構成され、第二の清澄槽4と冷却槽5に対し適用されている。なお、本実施形態において冷却槽5に適用される内面カバー15は第二の清澄槽4に適用される内面カバー15と同等構造であるので、後述する内面カバー15の説明については第二の清澄槽4に対し設けた内面カバー15について詳述し、冷却槽5に設けた内面カバー15については説明を略する。
 成形装置6は、フロートガラス板製造方法の場合、底壁6aと周壁6bにより区画されたプール部に溶融錫のベッド層10(すなわち、フロートガラス製造装置における溶融錫が収容されたフロート浴)が設けられており、このベッド層10の上に溶融ガラスGを流入させて拡げて、板状のガラスを成形できるようになっている。
Specifically, the inner surface cover 15 of the present embodiment is configured by adding a plurality of cover assemblies 16 shown in FIG. 4 and subsequent figures in the length direction of the flow paths R2 and R3, and the second clarification tank 4 and the cooling tank. 5 is applied. In addition, in this embodiment, since the inner surface cover 15 applied to the cooling tank 5 has an equivalent structure to the inner surface cover 15 applied to the second clarification tank 4, the explanation of the inner surface cover 15 described later is the second clarification. The inner surface cover 15 provided for the tank 4 will be described in detail, and the inner surface cover 15 provided for the cooling tank 5 will not be described.
In the case of the float glass plate manufacturing method, the forming apparatus 6 has a molten tin bed layer 10 (that is, a float bath containing molten tin in the float glass manufacturing apparatus) in a pool section defined by the bottom wall 6a and the peripheral wall 6b. It is provided, and the molten glass G is allowed to flow on the bed layer 10 to be spread, so that a plate-like glass can be formed.
 本実施形態の製造装置1において第二の清澄槽4に図3に示す如く底壁部4a、側壁部4b、4cの内面を保護するための内面カバー15が設けられている。この内面カバー15は、詳細には図4~7に示す構成とされている。
 本実施形態の内面カバー15は、第二の清澄槽4の底壁部4aと側壁部4b、4bにより区画される流路R2をほぼ囲むことができるような高さと幅に形成され、第二の清澄槽4のほぼ全長に渡り設置されている。
 カバー組立体16を複数継ぎ足して内面カバー15を構成した状態を図4に示し、同状態の平面構造を図5に示し、同状態の正面構造を図6に示し、複数継ぎ足したカバー組立体16を一部分解した状態を図7に示す。
In the manufacturing apparatus 1 of this embodiment, the second clarification tank 4 is provided with an inner surface cover 15 for protecting the inner surfaces of the bottom wall portion 4a and the side wall portions 4b and 4c as shown in FIG. This inner surface cover 15 is configured in detail as shown in FIGS.
The inner surface cover 15 of the present embodiment is formed with a height and a width so as to substantially surround the flow path R2 defined by the bottom wall portion 4a and the side wall portions 4b and 4b of the second clarification tank 4, The clarification tank 4 is installed over almost the entire length.
FIG. 4 shows a state in which a plurality of cover assemblies 16 are added to form the inner surface cover 15, a planar structure in the same state is shown in FIG. 5, and a front structure in the same state is shown in FIG. 6. FIG. 7 shows a state where is partially disassembled.
 本実施形態のカバー組立体16は、第二の清澄槽4の幅方向(流路R2の流れ方向に直交する方向)に隣接して配置された第一のプレート組立体17および第二のプレート組立体18と、これらの周囲に配置される第一のカバープレート22および第二のカバープレート23を主体として構成されている。
 第一のプレート組立体17および第二のプレート組立体18と、第一のカバープレート22および第二のカバープレート23は、いずれも全体がMo、Pt、あるいはPtRh合金などの耐熱金属製の板材からなる。
The cover assembly 16 of the present embodiment includes a first plate assembly 17 and a second plate that are disposed adjacent to the width direction of the second clarification tank 4 (direction orthogonal to the flow direction of the flow path R2). The assembly 18 is mainly composed of a first cover plate 22 and a second cover plate 23 arranged around them.
The first plate assembly 17 and the second plate assembly 18, and the first cover plate 22 and the second cover plate 23 are all made of a heat-resistant metal plate material such as Mo, Pt, or PtRh alloy. Consists of.
 第一のプレート組立体17は、第二の清澄槽4の底壁部4aの幅半分程度(流路Rの流れ方向に直交する底壁部4aの幅方向の半分程度)を覆うことができる幅を有して流路R2の流れ方向に細長い長方形状の第一の底壁プレート20と、その幅方向一側の長辺に沿って立設された第一の側壁プレート21を主体として構成されている。
 第二のプレート組立体18は、第二の清澄槽4の底壁部4aの幅半分程度を覆うことができる幅を有して流路R2の流れ方向に細長い長方形状の第二の底壁プレート25と、この底壁プレート25の幅方向一側の長辺に沿って立設された第二の側壁プレート26を主体として構成されている。
The first plate assembly 17 can cover about half the width of the bottom wall portion 4a of the second clarification tank 4 (about half the width direction of the bottom wall portion 4a perpendicular to the flow direction of the flow path R). A rectangular first bottom wall plate 20 that has a width and is elongated in the flow direction of the flow path R2, and a first side wall plate 21 that is erected along the long side on one side in the width direction. Has been.
The second plate assembly 18 has a width that can cover about half the width of the bottom wall portion 4a of the second clarification tank 4, and is a rectangular second bottom wall that is elongated in the flow direction of the flow path R2. The plate 25 and the second side wall plate 26 erected along the long side on one side in the width direction of the bottom wall plate 25 are mainly configured.
 また、流路R2に沿って配置されている第一のプレート組立体17、17の突き合わせ領域、および第二のプレート組立体18、18の突き合わせ領域を覆うように第一のカバープレート22が設けられている。この第一のカバープレート22は、第一の底壁プレート20の端部および第一の側壁プレート21の端部を覆うL型の第三のカバープレート22Aと、第二の底壁プレート25の端部および第二の側壁プレート26の端部を覆うL型の第三のカバープレート22Bと、前記第三のカバープレート22Aの端部を覆う第四のカバープレート24とから構成されている。 In addition, a first cover plate 22 is provided so as to cover the butting region of the first plate assemblies 17 and 17 and the butting region of the second plate assemblies 18 and 18 arranged along the flow path R2. It has been. The first cover plate 22 includes an L-shaped third cover plate 22 </ b> A covering the end of the first bottom wall plate 20 and the end of the first side wall plate 21, and the second bottom wall plate 25. An L-shaped third cover plate 22B that covers the end portion and the end portion of the second side wall plate 26, and a fourth cover plate 24 that covers the end portion of the third cover plate 22A.
 第一の底壁プレート20の上面長辺側において第一の側壁プレート21が立設された部分に、棒状の継手部材28が添えられていて、底壁プレート20と側壁プレート21とをタップを開けた継手部材28を介してネジで止めている。この継手部材28とネジの材質はMo製が例示できる。なお、継手部材28は第一の底壁プレート20の長辺側の全長より若干短く形成され、第一の底壁プレート20において継手部材28の両端外側には、継手部材28が延在されていないコーナー部29が形成されている。継手部材28は、プレート間の隙間をカバーできる構造になっていれば、曲げ加工、あるいは切削加工によって段差をつけたものでもよい。
 なお、継手部材28は第一の底壁プレート20の長辺側の全長より若干短く形成され、第一の底壁プレート20において継手部材28の両端外側には継手部材28が延在されていないコーナー部29が形成されている。
A rod-shaped joint member 28 is attached to a portion where the first side wall plate 21 is erected on the long side of the upper surface of the first bottom wall plate 20, and the bottom wall plate 20 and the side wall plate 21 are tapped. It is fixed with screws through the opened joint member 28. The material of the joint member 28 and the screw can be exemplified by Mo. The joint member 28 is formed slightly shorter than the entire length of the long side of the first bottom wall plate 20, and the joint member 28 extends outside the both ends of the joint member 28 in the first bottom wall plate 20. No corner 29 is formed. The joint member 28 may be provided with a step by bending or cutting as long as it has a structure that can cover the gap between the plates.
The joint member 28 is formed slightly shorter than the overall length of the long side of the first bottom wall plate 20, and the joint member 28 does not extend outside the both ends of the joint member 28 in the first bottom wall plate 20. Corner portions 29 are formed.
 第一の側壁プレート21と第二の側壁プレート26はいずれも同じ高さに形成されている。これらの側壁プレート21、26はその上端が流路R2を流れる溶融ガラスの液面位置GHよりも低い位置になるように形成されている。換言すると、流路R2に沿って溶融ガラスGが流動する際、第一の側壁プレート21と第二の側壁プレート26はいずれもそれらの全体が溶融ガラスGで覆われるような高さに形成されている。これは、これらのプレート21、26を例えばMoで形成した場合、Moが500~600℃で空気に触れた状態であると燃焼する危険性があることに鑑み、これを防止するためである。
 更に、前記流路R2に沿って下流側に位置する第一の側壁プレート21の端部側と、流路R2に沿って下流側に位置する第二の側壁プレート26の端部側に、それぞれ、流路R2の外側に向いて突出する耳部21a、26aが各プレート21、26と直角に形成されている。
Both the first side wall plate 21 and the second side wall plate 26 are formed at the same height. These side wall plates 21 and 26 are formed so that the upper ends thereof are lower than the liquid surface position GH of the molten glass flowing through the flow path R2. In other words, when the molten glass G flows along the flow path R2, both the first side wall plate 21 and the second side wall plate 26 are formed so as to be covered with the molten glass G as a whole. ing. This is to prevent this when the plates 21 and 26 are made of Mo, for example, and there is a risk of burning if the Mo is in contact with air at 500 to 600 ° C.
Furthermore, on the end side of the first side wall plate 21 located on the downstream side along the flow path R2, and on the end side of the second side wall plate 26 located on the downstream side along the flow path R2, respectively. The ears 21a and 26a projecting toward the outside of the flow path R2 are formed at right angles to the plates 21 and 26, respectively.
 第三のカバープレート22Aは、1枚の板材を折り曲げ形成してなる底板22aと、側板22bからなり、L字状に形成されている。第三のカバープレート22Aは、前記継手部材28の端部側に形成されているコーナー部29に底板22aと側板22bの境界部分を沿わせて第一の側壁プレート21の端部沿ってリベット等の固定具30により取り付けられている。なお、リベットの個数、サイズは、プレートの板厚などによって適宜決めることができる。
 固定具30は、プレート組立体17、18を構成する耐熱金属材料と同等材料からなる。固定具30による取り付け位置は任意の位置でよく、図5においては側板22bを第一の側壁プレート21に対向させた位置に1箇所のみ取り付けられている。固定具30の取り付け位置については、各プレート組立体17、18に必要な組立強度等に応じて底板22aと側板22bの任意の位置に必要個数固定具30を貫通させて取り付けることができる。
 第三のカバープレート22Aは、底板22aと側板22bの幅方向の半分程度(流路R2の流れ方向に沿う各板の幅方向の半分程度)を第一の底壁プレート20の端縁部分と第一の側壁プレート21の端縁部分に被せ、残りの半分程度の幅を第一の底壁プレート20の端縁部分と第一の側壁プレート21の端縁部分から突出させて第一の側壁プレート21の端部側に取り付けられている。
 第三のカバープレート22Aにおいて、流路R2の幅方向に沿う底板22aの長さは、同方向に沿う第一の底壁プレート20の幅より若干長く形成され、流路R2の深さ方向に沿う側板22bの高さは同深さ方向に沿う第一の側壁プレート21の高さと同等にされている。
The third cover plate 22A is composed of a bottom plate 22a formed by bending one plate material and a side plate 22b, and is formed in an L shape. The third cover plate 22A has a corner portion 29 formed on the end side of the joint member 28 along a boundary portion between the bottom plate 22a and the side plate 22b, and a rivet or the like along the end portion of the first side wall plate 21. The fixing tool 30 is attached. The number and size of rivets can be appropriately determined depending on the plate thickness.
The fixture 30 is made of a material equivalent to the refractory metal material constituting the plate assemblies 17 and 18. The attachment position by the fixing tool 30 may be an arbitrary position. In FIG. 5, only one place is attached at a position where the side plate 22 b faces the first side wall plate 21. About the attachment position of the fixing tool 30, the required number fixing tool 30 can be penetrated and attached to the arbitrary positions of the bottom plate 22a and the side plate 22b according to the assembly strength required for each plate assembly 17 and 18.
The third cover plate 22A has about half of the width direction of the bottom plate 22a and the side plate 22b (about half of the width direction of each plate along the flow direction of the flow path R2) as the edge portion of the first bottom wall plate 20. The first side wall plate 21 is covered with the edge portion, and the other half width is projected from the edge portion of the first bottom wall plate 20 and the edge portion of the first side wall plate 21 so as to protrude from the first side wall plate 21. It is attached to the end side of the plate 21.
In the third cover plate 22A, the length of the bottom plate 22a along the width direction of the flow path R2 is formed slightly longer than the width of the first bottom wall plate 20 along the same direction, and extends in the depth direction of the flow path R2. The height of the side plate 22b along is made equal to the height of the first side wall plate 21 along the same depth direction.
 第三のカバープレート22Bは、底板22cと側板22dとからなり、L字状に形成されている。第三のカバープレート22Bは、第二の底壁プレート25と第二の側壁プレート26の突き合わせ部分に底板22cと側板22dの境界部分を沿わせて設置されている。
 更に詳しく説明すると、第三のカバープレート22Bは、その幅方向半分程度を第二の底壁プレート25の端縁部分と第二の側壁プレート26の端縁部分に被せ、残りの半分程度の幅を第二の底壁プレート25の端縁部分と第二の側壁プレート26の端縁部分から突出させて第二の側壁プレート26にリベット等の固定具30により取り付けられている。
 流路R2の幅方向に沿う底板22cの長さは同方向に沿う第二の底壁プレート25の幅より若干短く形成され、流路R2の深さ方向に沿う側板22dの高さは、同深さ方向に沿う第二の側壁プレート26の高さと同等にされている。
The third cover plate 22B includes a bottom plate 22c and side plates 22d, and is formed in an L shape. The third cover plate 22B is installed along the boundary portion between the bottom plate 22c and the side plate 22d at the abutting portion between the second bottom wall plate 25 and the second side wall plate 26.
More specifically, the third cover plate 22B covers about half of the width direction on the edge portion of the second bottom wall plate 25 and the edge portion of the second side wall plate 26, and the remaining half width. Is protruded from the end edge portion of the second bottom wall plate 25 and the end edge portion of the second side wall plate 26, and is attached to the second side wall plate 26 by a fixture 30 such as a rivet.
The length of the bottom plate 22c along the width direction of the flow path R2 is formed slightly shorter than the width of the second bottom wall plate 25 along the same direction, and the height of the side plate 22d along the depth direction of the flow path R2 is the same. The height is equal to the height of the second side wall plate 26 along the depth direction.
 第二のカバープレート23は、第三のカバープレート22A、22Bと同等幅の細長い長方形状に形成され、その幅方向の半分程度を第一の底壁プレート20の長辺側に被せ、残り半分程度を第一の底壁プレート20の長辺側から突出させて第一の底壁プレート20にリベット等の固定具31により取り付けられている。第二のカバープレート23の長辺側の全長は第一の底壁プレート20の長辺側の全長より若干短く形成され、第二のカバープレート23の一方の端部23a側を前記底板22aの側縁に沿わせた場合、他方の端部23aは第一の底壁プレート20の端部よりも若干内側に配置される。従って、第二のカバープレート23の端部23aの外側に、この第二のカバープレート23で覆われていない第一の底壁プレート20の端部20aが露出されている。 The second cover plate 23 is formed in an elongated rectangular shape having the same width as the third cover plates 22A and 22B, and covers about half of the width direction on the long side of the first bottom wall plate 20, and the remaining half. The degree is projected from the long side of the first bottom wall plate 20 and is attached to the first bottom wall plate 20 by a fixture 31 such as a rivet. The total length of the long side of the second cover plate 23 is slightly shorter than the total length of the long side of the first bottom wall plate 20, and one end 23a side of the second cover plate 23 is connected to the bottom plate 22a. When extending along the side edge, the other end 23 a is disposed slightly inside the end of the first bottom wall plate 20. Therefore, the end portion 20 a of the first bottom wall plate 20 that is not covered with the second cover plate 23 is exposed outside the end portion 23 a of the second cover plate 23.
 第四のカバープレート24は、正方形板状の本体部24aとその両側に延出形成された突出部24b、24cを備えた平面視でL字型の板材からなる。第四のカバープレート24は前記カバープレート22A、22B、23と同等の耐熱金属材料からなる。第四のカバープレート24は長方形状の第一の底壁プレート20のコーナー部分であって、第三のカバープレート22Aと第二のカバープレート23との突き合わせ部分を覆うようにリベット等の固定具32により取り付けられている。第四のカバープレート24の取り付け方向は、突出部24bを流路R2の幅方向に向けて第三のカバープレート22Aの端部から離れる向きに、突出部24cを流路R2の流れ方向下流側に向けて第二のカバープレート23から離れる向きに向けられている。
 第四のカバープレート24は、図5に示すように4つのプレート組立体17、17、18、18を突き合わせて配置した場合、底壁プレート20、20のコーナー部分と底壁プレート25、25のコーナー部分との突き合わせ領域をある程度の幅でもって覆い隠すことができるように配置される。
The fourth cover plate 24 is made of an L-shaped plate material in plan view including a square plate-like main body portion 24a and projecting portions 24b and 24c formed to extend on both sides thereof. The fourth cover plate 24 is made of a refractory metal material equivalent to the cover plates 22A, 22B, and 23. The fourth cover plate 24 is a corner portion of the rectangular first bottom wall plate 20, and is a fixture such as a rivet so as to cover the abutting portion between the third cover plate 22A and the second cover plate 23. 32 is attached. The mounting direction of the fourth cover plate 24 is such that the protrusion 24b faces the width direction of the flow path R2 and away from the end of the third cover plate 22A, and the protrusion 24c is on the downstream side in the flow direction of the flow path R2. Is directed away from the second cover plate 23.
As shown in FIG. 5, the fourth cover plate 24, when the four plate assemblies 17, 17, 18, 18 are arranged to face each other, the corner portions of the bottom wall plates 20, 20 and the bottom wall plates 25, 25 are arranged. It arrange | positions so that the butt | matching area | region with a corner part can be covered with a certain amount of width.
 以上説明の第一のプレート組立体17と第一のプレート組立体18は、流路R2の幅方向の左右に隣接するように配置されている。第一のプレート組立体17と第一のプレート組立体18は、図5に示す如く、第一の底壁プレート20の長辺と第二の底壁プレート25の長辺を隣接させ、それらの間に隙間D1をあけて流路R2の底壁部4a上に設置されている。
 第一のプレート組立体17と第一のプレート組立体18の間の間隙D1の大部分が平面視で、第二のカバープレート23により覆われている。更に、第一のプレート組立体17に取り付けられている第四のカバープレート24の突出部24bをそれに隣接する第三のカバープレート22Bの底板22cの端部上に載せてこの底板22bの端部が平面視覆われている。
The first plate assembly 17 and the first plate assembly 18 described above are disposed so as to be adjacent to the left and right in the width direction of the flow path R2. As shown in FIG. 5, the first plate assembly 17 and the first plate assembly 18 are arranged such that the long side of the first bottom wall plate 20 and the long side of the second bottom wall plate 25 are adjacent to each other. It is installed on the bottom wall 4a of the flow path R2 with a gap D1 therebetween.
Most of the gap D1 between the first plate assembly 17 and the first plate assembly 18 is covered with the second cover plate 23 in plan view. Further, the projecting portion 24b of the fourth cover plate 24 attached to the first plate assembly 17 is placed on the end portion of the bottom plate 22c of the third cover plate 22B adjacent thereto and the end portion of the bottom plate 22b. Is covered in plan view.
 隙間D1は、流路R2を流れる溶融ガラスの温度に応じ、第一の底壁プレート20と第二の底壁プレート25が流路R2の幅方向に熱膨張した場合の膨張分吸収用として設けられている。
 以上のように第一のプレート組立体17と第二のプレート組立体18を配置することによりカバー組立体16を構成できるが、流路R2の下流側に位置するカバー組立体16の端縁側全てを平面視で、隙間の無いように第一のカバープレート22により、換言すると、第三のカバープレート22A、22Bと第四のカバープレート24により覆うことができる。
The gap D1 is provided for absorbing the expansion when the first bottom wall plate 20 and the second bottom wall plate 25 are thermally expanded in the width direction of the flow path R2 according to the temperature of the molten glass flowing through the flow path R2. It has been.
Although the cover assembly 16 can be configured by arranging the first plate assembly 17 and the second plate assembly 18 as described above, all the edge sides of the cover assembly 16 located on the downstream side of the flow path R2 are included. Can be covered with the first cover plate 22 in a plan view so that there is no gap, in other words, with the third cover plates 22A and 22B and the fourth cover plate 24.
 次に、流路R2の流れ方向に沿って図4または図5に示す如く複数のカバー組立体16が同じ向きに配置されて接続され、内面カバー15が構成されている。
 より詳細には、流路R2に沿って任意の1つのカバー組立体16の下流側の端縁部分に第三のカバープレート22A、22Bと第四のカバープレート24が配置されるが、このカバー組立体16よりも下流側に設置するべき他のカバー組立体16も同じ向きに配置し、下流側に配置するべきカバー組立体16の上流側の端縁部を上流側に配置するべきカバー組立体16の下流側の端縁部に嵌め込むように突き合わせることで流路R2の流れ方向に複数のカバー組立体16が順次配置されている。
Next, as shown in FIG. 4 or FIG. 5, a plurality of cover assemblies 16 are arranged and connected in the same direction along the flow direction of the flow path R <b> 2 to constitute the inner surface cover 15.
More specifically, the third cover plates 22A and 22B and the fourth cover plate 24 are disposed at the downstream edge portion of any one cover assembly 16 along the flow path R2. The other cover assembly 16 to be installed on the downstream side of the assembly 16 is also arranged in the same direction, and the upstream edge portion of the cover assembly 16 to be arranged on the downstream side is to be arranged on the upstream side. A plurality of cover assemblies 16 are sequentially arranged in the flow direction of the flow path R <b> 2 by being fitted so as to be fitted into the downstream edge portion of the solid body 16.
 上流側のカバー組立体16の下流側の端縁部には、第三のカバープレート22A、22Bと第四のカバープレート24が存在しているが、第三のカバープレート22Aまたは22Bと流路R2の底壁部4aとの間、および第四のカバープレート24と側壁部4bとの間にはプレート1枚分に相当する隙間があくので、これらの隙間を利用して下流側のカバー組立体16の上流側の端縁部を嵌め込み、両者を突き合わせて配置することができる。カバー組立体16、16の係合の際、上流側のカバー組立体16と下流側のカバー組立体16との間には図5に示す如く若干の隙間D2が形成される。即ち、上流側のカバー組立体16の第一の底壁プレート20と下流側のカバー組立体16の第一の底壁プレート20との間に隙間D2が形成され、上流側のカバー組立体16の第二の底壁プレート25と下流側のカバー組立体16の第二の底壁プレート25との間に隙間D2が形成される。
 これらの隙間D2は、流路Rを流れる溶融ガラスによって第一の底壁プレート20と第二の底壁プレート25が熱膨張した場合の熱膨張分吸収用として設けられている。
The third cover plates 22A and 22B and the fourth cover plate 24 exist at the downstream edge of the upstream cover assembly 16, but the third cover plate 22A or 22B and the flow path are provided. Since there is a gap corresponding to one plate between the bottom wall portion 4a of R2 and between the fourth cover plate 24 and the side wall portion 4b, the cover assembly on the downstream side is utilized using these gaps. The upstream edge portion of the solid 16 can be fitted and both can be faced to each other. When the cover assemblies 16 are engaged, a slight gap D2 is formed between the upstream cover assembly 16 and the downstream cover assembly 16 as shown in FIG. That is, a gap D <b> 2 is formed between the first bottom wall plate 20 of the upstream cover assembly 16 and the first bottom wall plate 20 of the downstream cover assembly 16, and the upstream cover assembly 16. A gap D <b> 2 is formed between the second bottom wall plate 25 and the second bottom wall plate 25 of the downstream cover assembly 16.
These gaps D2 are provided for absorbing thermal expansion when the first bottom wall plate 20 and the second bottom wall plate 25 are thermally expanded by the molten glass flowing through the flow path R.
 次に、複数のカバー組立体16を継ぎ合わせて内面カバー15を構成した場合において、内面カバー15と流路R2を構成する側壁部4bとの位置関係について説明する。
 内面カバー15を構成した場合、カバー組立体16の底壁プレート20、25は流路R2の底壁部4aを覆うように底壁部4aの上に設置され、カバー組立体16の側壁プレート21、26は流路R2の側壁部4bを覆うように側壁部4bに沿って設置される。カバー組立体16の外側に突出されている耳部21a、26aについては、流路R2を構成する耐火レンガ4dの接合境界である目地部4Bに挿入する。
Next, the positional relationship between the inner surface cover 15 and the side wall portion 4b constituting the flow path R2 when the inner surface cover 15 is configured by joining a plurality of cover assemblies 16 will be described.
When the inner surface cover 15 is configured, the bottom wall plates 20 and 25 of the cover assembly 16 are installed on the bottom wall portion 4a so as to cover the bottom wall portion 4a of the flow path R2, and the side wall plate 21 of the cover assembly 16 is provided. , 26 are installed along the side wall 4b so as to cover the side wall 4b of the flow path R2. About the ear | edge parts 21a and 26a which protrude outside the cover assembly 16, it inserts in the joint part 4B which is a joining boundary of the refractory brick 4d which comprises the flow path R2.
 この構造により第一の側壁プレート21と第二の側壁プレート26を側壁部4bでもって安定に支持できる。なお、耳部21a、26aの挿入位置として耐火レンガ4dの目地部4Bではなく、耐火レンガ4dの流路R2側にスリット4hを設けてこのスリット4hに耳部21a、26aを挿入して支持する構造を採用してもよい。
 なお、カバー組立体16の側壁プレート21、26を支持するために、例えば、図5に示す如く耐火レンガ4dを貫通するようにMoやW(タングテン)などの耐熱金属製のボルト状の固定具35を設置し、この固定具35を側壁プレート21、26の必要部分に貫通させて固定することで、カバー組立体16の側壁プレート21、26を別途支持する構造を採用してもよい。
With this structure, the first side wall plate 21 and the second side wall plate 26 can be stably supported by the side wall portion 4b. It should be noted that, as an insertion position of the ear portions 21a and 26a, not the joint portion 4B of the refractory brick 4d but a slit 4h is provided on the flow path R2 side of the refractory brick 4d, and the ear portions 21a and 26a are inserted and supported in the slit 4h. A structure may be adopted.
In order to support the side wall plates 21 and 26 of the cover assembly 16, for example, as shown in FIG. 5, a bolt-shaped fixture made of a heat-resistant metal such as Mo or W (tang ten) so as to penetrate the refractory brick 4 d. A structure may be adopted in which the side wall plates 21 and 26 of the cover assembly 16 are separately supported by installing 35 and fixing the fixture 35 through the necessary portions of the side wall plates 21 and 26.
 本実施形態のガラス製造装置1を用いて製造する溶融ガラス製品は、フロート法、ロールアウト法、ダウンドロー法などにより製造されるガラス板、ブロー法などにより製造されるガラス瓶などの成型品などである限り、組成的には制限されない。したがって、ソーダライムガラス、混合アルカリ系ガラス、ホウケイ酸ガラス、あるいは、無アルカリガラスのいずれであってもよい。また、製造されるガラス製品の用途は、建築用や車両用に限定されず、フラットパネルディスプレイ用、その他の各種用途が挙げられる。 The molten glass product manufactured using the glass manufacturing apparatus 1 of the present embodiment is a molded product such as a glass plate manufactured by a float method, a rollout method, a downdraw method, a glass bottle manufactured by a blow method, or the like. As long as there is, it is not limited in composition. Therefore, any of soda lime glass, mixed alkali glass, borosilicate glass, or non-alkali glass may be used. Moreover, the use of the manufactured glass product is not limited to architectural use or vehicle use, and examples include flat panel display use and other various uses.
 建築用または車両用の板ガラスに使用されるソーダライムガラスの場合には、酸化物基準の質量百分率表示で、SiO:65~75%、Al:0~3%、CaO:5~15%、MgO:0~15%、NaO:10~20%、KO:0~3%、LiO:0~5%、Fe:0~3%、TiO:0~5%、CeO:0~3%、BaO:0~5%、SrO:0~5%、B:0~5%、ZnO:0~5%、ZrO:0~5%、SnO:0~3%、SO:0~0.5%、という組成を有することが好ましい。 In the case of soda-lime glass used for plate glass for buildings or vehicles, it is expressed in terms of mass percentage on the basis of oxide, SiO 2 : 65 to 75%, Al 2 O 3 : 0 to 3%, CaO: 5 to 15%, MgO: 0 to 15%, Na 2 O: 10 to 20%, K 2 O: 0 to 3%, Li 2 O: 0 to 5%, Fe 2 O 3 : 0 to 3%, TiO 2 : 0 to 5%, CeO 2 : 0 to 3%, BaO: 0 to 5%, SrO: 0 to 5%, B 2 O 3 : 0 to 5%, ZnO: 0 to 5%, ZrO 2 : 0 to 5 %, SnO 2 : 0 to 3%, SO 3 : 0 to 0.5%.
 液晶ディスプレイ用または有機ELディスプレイ用の基板に使用される無アルカリガラスの場合には、酸化物基準の質量百分率表示で、SiO:39~75%、Al:3~27%、B:0~20%、MgO:0~13%、CaO:0~17%、SrO:0~20%、BaO:0~30%、という組成を有することが好ましい。 In the case of an alkali-free glass used for a substrate for a liquid crystal display or an organic EL display, SiO 2 : 39 to 75%, Al 2 O 3 : 3 to 27%, B 2 O 3 : 0 to 20%, MgO: 0 to 13%, CaO: 0 to 17%, SrO: 0 to 20%, BaO: 0 to 30% are preferable.
 プラズマディスプレイ用の基板に使用される混合アルカリ系ガラスの場合には、酸化物基準の質量百分率表示で、SiO:50~75%、Al:0~15%、MgO+CaO+SrO+BaO+ZnO:6~24%、NaO+KO:6~24%、という組成を有することが好ましい。 In the case of a mixed alkali glass used for a substrate for plasma display, it is expressed in terms of mass percentage on the basis of oxide, and SiO 2 : 50 to 75%, Al 2 O 3 : 0 to 15%, MgO + CaO + SrO + BaO + ZnO: 6 to 24 %, Na 2 O + K 2 O: preferably 6 to 24%.
 その他の用途として、耐熱容器または理化学用器具等に使用されるホウケイ酸ガラスの場合には、酸化物基準の質量百分率表示で、SiO:60~85%、Al:0~5%、B:5~20%、NaO+KO:2~10%、という組成を有することが好ましい。 For other applications, in the case of borosilicate glass used for heat-resistant containers or physics and chemistry instruments, etc., it is expressed in terms of mass percentage based on oxide, SiO 2 : 60 to 85%, Al 2 O 3 : 0 to 5% B 2 O 3 : 5 to 20%, Na 2 O + K 2 O: 2 to 10% are preferable.
 上述の構成の内面カバー15を第2清澄槽4の流路R2に設置するには、一例として、予め図7に示す如く第一の底壁プレート20と第一の側壁プレート21と第三のカバープレート22Aと第四のカバープレート24をリベット止めして図7に示す状態に第一のプレート組立体17として組み付けておく。また、第二の底壁プレート25と第二の側壁プレート26と第三のカバープレート22Bをリベット止めして図7に示す状態の第二のプレート組立体18として組み付けておく。
 これら第一のプレート組立体17と第二のプレート組立体18を複数用意して図7に示す方向に揃え、これらを順次第二の清澄槽4の流路R2に図4と図5に示す如く敷き詰めて重ね合わせてゆくことにより、流路R2をカバー組立体16で順次覆うことができる。
 また、第2清澄槽4の側壁部4bを構成するための耐火レンガ4dを複数、目地部4Bを介して接合して側壁部4bを構築する場合、各カバー組立体16の耳部21a、26aを目地部4Bに挿入しつつ第2清澄槽4を構築することで、第2清澄槽4の構築と同時に内面カバー15を構築することができる。
In order to install the inner surface cover 15 having the above-described configuration in the flow path R2 of the second clarification tank 4, as an example, the first bottom wall plate 20, the first side wall plate 21, and the third The cover plate 22A and the fourth cover plate 24 are riveted and assembled as the first plate assembly 17 in the state shown in FIG. Further, the second bottom wall plate 25, the second side wall plate 26 and the third cover plate 22B are riveted and assembled as the second plate assembly 18 in the state shown in FIG.
A plurality of the first plate assembly 17 and the second plate assembly 18 are prepared and aligned in the direction shown in FIG. 7, and these are sequentially shown in the flow path R2 of the second clarification tank 4 as shown in FIGS. By laying down and overlapping in this manner, the flow path R2 can be sequentially covered with the cover assembly 16.
Further, when a plurality of refractory bricks 4d for constituting the side wall portion 4b of the second clarification tank 4 are joined via the joint portion 4B to construct the side wall portion 4b, the ear portions 21a and 26a of each cover assembly 16 are provided. The inner surface cover 15 can be constructed simultaneously with the construction of the second clarification tank 4 by constructing the second clarification tank 4 while being inserted into the joint portion 4B.
 なお、冷却槽5においても同様に第一のプレート組立体17と第二のプレート組立体18を複数用意して図7に示す方向に揃え、これらを順次冷却槽5の流路R3に図4と図5に示す如く敷き詰めて重ね合わせてゆくことにより、流路R3を内面カバー15で覆うことができる。
 上記した説明においては、内面カバー15を第二の清澄槽の第二の溶融ガラス流路を構成する底壁部およびその両側の側壁部と、前記底壁部および両側壁部における溶融ガラス流路側を覆うように設ける形態の例について、また併せて冷却槽を構成する底壁部およびその両側の側壁部と、前記底壁部および両側壁部における溶融ガラス流路側を覆うように設ける形態の例について説明した。しかし、内面カバー15を第一の清澄槽の第一の溶融ガラス流路を構成する底壁部およびその両側の側壁部と、前記底壁部および両側壁部における溶融ガラス流路側を覆うように設けても良いし、また冷却槽を構成する底壁部およびその両側の側壁部と、前記底壁部および両側壁部における溶融ガラス流路側のみを覆うように設けても良い。
 ところで、これまでの説明においては、流路R2、R3の下流側にカバープレート22を向けてカバー組立体16、16を順次敷き詰めて配置した構成について説明したが、流路R2、R3の上流側にカバープレート22を向けてカバー組立体16、16を順次敷き詰めて配置した構成にしてもよく、本発明においてカバー組立体16の配置方向は限定するものではない。
Similarly, in the cooling tank 5, a plurality of first plate assemblies 17 and second plate assemblies 18 are prepared and aligned in the direction shown in FIG. 7, and these are sequentially arranged in the flow path R 3 of the cooling tank 5. As shown in FIG. 5, the flow path R <b> 3 can be covered with the inner surface cover 15 by spreading and overlapping.
In the above description, the inner surface cover 15 includes the bottom wall portion constituting the second molten glass flow channel of the second clarification tank, the side wall portions on both sides thereof, and the molten glass flow channel side in the bottom wall portion and both side wall portions. The example of the form provided so as to cover the bottom wall part and the side wall parts on both sides of the cooling tank and the molten glass flow path side in the bottom wall part and both side wall parts together Explained. However, the inner surface cover 15 covers the bottom wall part constituting the first molten glass flow path of the first clarification tank and the side wall parts on both sides thereof, and the molten glass flow path side in the bottom wall part and both side wall parts. It may be provided, or may be provided so as to cover only the bottom wall part constituting the cooling tank and the side wall parts on both sides thereof, and the molten glass flow path side in the bottom wall part and both side wall parts.
By the way, in the description so far, the configuration in which the cover assemblies 16 and 16 are sequentially laid down with the cover plate 22 facing the downstream side of the flow paths R2 and R3 has been described, but the upstream side of the flow paths R2 and R3. Alternatively, the cover assemblies 16 and 16 may be sequentially spread and arranged with the cover plate 22 facing toward each other, and the arrangement direction of the cover assembly 16 is not limited in the present invention.
 次に、先に説明した内面カバー15を備えた第2清澄槽4と冷却槽5を備えたガラス製品の製造装置1を用いてガラス製品を製造する方法について以下に説明する。
 本実施形態の製造装置1においては、溶融槽2においてガラス原料を溶融して溶融ガラスGを生成し、この溶融ガラスGを溶融槽2において循環させるなどの手法を採用し、ある程度の泡抜き、均質化をした後に、第一の清澄槽3に移動させる。溶融槽2においてガラス原料を溶融させて溶融ガラスを形成する工程を図8に示す如くガラス溶融工程S1と称する。
Next, a method of manufacturing a glass product using the glass product manufacturing apparatus 1 including the second clarification tank 4 and the cooling tank 5 provided with the inner surface cover 15 described above will be described below.
In the manufacturing apparatus 1 of this embodiment, a glass raw material is melt | dissolved in the melting tank 2, the molten glass G is produced | generated, and techniques, such as circulating this molten glass G in the melting tank 2, are employ | adopted, a certain amount of bubble removal, After homogenization, it is moved to the first clarification tank 3. A step of melting the glass raw material in the melting tank 2 to form a molten glass is referred to as a glass melting step S1 as shown in FIG.
 第一の清澄槽3において、電極8を用いて通電加熱することにより、溶融ガラスの温度を1420~1510℃程度の範囲の高温に調整し、清澄する。この範囲の高温度域に保持することで溶融ガラスGの成分中に含まれている清澄剤の効果などにより泡抜きが進行される。また、この範囲の高温に加熱することで、溶融ガラスの粘度が低下するので、泡も抜けやすくなる。 In the first clarification tank 3, the temperature of the molten glass is adjusted to a high temperature in the range of about 1420 to 1510 ° C. by energizing and heating using the electrode 8 and clarified. By maintaining in the high temperature range of this range, defoaming proceeds by the effect of the clarifying agent contained in the component of the molten glass G. Moreover, since the viscosity of a molten glass falls by heating to the high temperature of this range, it becomes easy to remove a bubble.
 第一の清澄槽3においてある程度泡抜きを行った後、第二の清澄槽4に溶融ガラスを導いて更に清澄処理を進め泡抜きする。
 第一の清澄槽3から第二の清澄槽4に溶融ガラスが移動する際、第一の清澄槽3においてはある程度の深さがあり、複数の電極8で通電加熱するので、溶融ガラスの対流なども部分的に生じるが、第二の清澄槽4は浅いので、溶融ガラスの戻り流を基本的には生じさせることなく第二の清澄槽4に沿ってその上流側から下流側に向かう一定の流れを生じさせて溶融ガラスを冷却槽5側に移動する。
 第二の清澄槽4の温度は入口側において1510℃程度に、出口側において1500℃程度として溶融ガラスの清澄を促進する。この第二の清澄槽4に前述の内面カバー15を設けているので、内面カバー15による作用効果を得ることができるが、作用効果の詳細については後に説明する。
After defoaming to some extent in the first clarification tank 3, the molten glass is guided to the second clarification tank 4 to further proceed with clarification treatment to defoam.
When the molten glass moves from the first clarification tank 3 to the second clarification tank 4, the first clarification tank 3 has a certain depth and is heated by energization with a plurality of electrodes 8. However, since the second clarification tank 4 is shallow, it does not basically cause a return flow of the molten glass, and is constant along the second clarification tank 4 from the upstream side to the downstream side. Then, the molten glass is moved to the cooling tank 5 side.
The temperature of the second clarification tank 4 is about 1510 ° C. on the inlet side and about 1500 ° C. on the outlet side to promote clarification of the molten glass. Since the above-mentioned inner surface cover 15 is provided in the second clarification tank 4, the function and effect of the inner surface cover 15 can be obtained. Details of the function and effect will be described later.
 第二の清澄槽4において泡抜きした溶融ガラスは冷却槽5において入口側で1500℃程度の温度から出口側で1200℃程度の温度まで冷却する。
 本実施形態においては第一の清澄槽3と第二の清澄槽4において清澄し、溶融ガラスを成形できるように、その成形温度域まで冷却して調整する工程を、図8に示す如く清澄工程S2と称する。
 冷却槽5において1200℃程度まで冷却した溶融ガラスは次工程の成形装置6においてフロートガラス製造装置の溶融錫のベッド層10の上に拡げられ、板状ガラスとすることができる。本実施例において成形装置6を用いて板状ガラスを成形する工程を図8に示す如く成形工程S3と称する。なお、板状ガラスを成形する工程は、例示したようなフロートガラス製造法に限らず、ロールアウト法、ダウンドロー法であっても良い。
 次いで、板状ガラスを常温に近い温度まで徐冷する徐冷工程S4を行い、目的のサイズに切断する切断工程S5を施すことにより、図8に示す如く目的のガラス製品G6を得ることができる。
The molten glass defoamed in the second clarification tank 4 is cooled in the cooling tank 5 from a temperature of about 1500 ° C. on the inlet side to a temperature of about 1200 ° C. on the outlet side.
In the present embodiment, the step of cooling and adjusting to the molding temperature range so as to be clarified in the first clarification tank 3 and the second clarification tank 4 and to form molten glass, as shown in FIG. This is referred to as S2.
The molten glass cooled to about 1200 ° C. in the cooling bath 5 is spread on the molten tin bed layer 10 of the float glass manufacturing apparatus in the molding apparatus 6 in the next step, and can be made into sheet glass. In this embodiment, the step of forming the sheet glass using the forming device 6 is referred to as a forming step S3 as shown in FIG. In addition, the process of shape | molding plate-shaped glass is not restricted to the float glass manufacturing method which was illustrated, The roll-out method and the down draw method may be sufficient.
Next, a glass product G6 of interest can be obtained as shown in FIG. 8 by performing a slow cooling step S4 of slowly cooling the sheet glass to a temperature close to room temperature and a cutting step S5 of cutting to a desired size. .
 以上のガラス製品G6の製造工程において、本実施形態では第二の清澄槽4と冷却槽5に耐熱金属製の内面カバー15を設けている。
 第二の清澄槽4において、内面カバー15は溶融ガラスGの流路R2を構成する底壁部4aと側壁部4bの内面側を覆っているので、底壁部4aと側壁部4bを構成する耐火レンガと溶融ガラスGとの直接接触を極力少なくし、耐火レンガの構成成分が溶融ガラスG側に溶出することを抑制できる。
 冷却槽5において、内面カバー15は溶融ガラスの流路R3を構成する底壁部5aと側壁部5bの内面側を覆っているので、底壁部5aと側壁部5bを構成する耐火レンガGと溶融ガラスとの直接接触を極力少なくし、耐火レンガの構成成分が溶融ガラスG側に溶出することを抑制できる。
 従って、溶融ガラスGの清澄を長期間連続的に行った場合であっても、流路R2、R3を流れる溶融ガラスGに耐火レンガの構成成分の溶出を生じさせることなく溶融ガラスGの製造を行うことができる。従って組成の乱れていない高品質の溶融ガラスGを次工程に送り、成形装置6で成形することで高品質のガラス製品G6を得ることができる。
 なお、必要に応じて、成形後の溶融ガラスを研磨する工程を設け、表面を研磨したガラス製品を製造することもできる。
In the manufacturing process of the above glass product G6, in this embodiment, the inner surface cover 15 made of a heat-resistant metal is provided in the second clarification tank 4 and the cooling tank 5.
In the second clarification tank 4, the inner surface cover 15 covers the inner surface side of the bottom wall portion 4a and the side wall portion 4b constituting the flow path R2 of the molten glass G, and thus constitutes the bottom wall portion 4a and the side wall portion 4b. Direct contact between the refractory brick and the molten glass G can be reduced as much as possible, and the constituent components of the refractory brick can be prevented from being eluted to the molten glass G side.
In the cooling tank 5, since the inner surface cover 15 covers the inner surface side of the bottom wall portion 5a and the side wall portion 5b constituting the flow path R3 of molten glass, the refractory brick G constituting the bottom wall portion 5a and the side wall portion 5b, Direct contact with the molten glass can be reduced as much as possible, and the components of the refractory brick can be prevented from eluting to the molten glass G side.
Accordingly, even when the clarification of the molten glass G is continuously performed for a long period of time, the production of the molten glass G can be performed without causing elution of the components of the refractory bricks in the molten glass G flowing through the flow paths R2 and R3. It can be carried out. Therefore, a high-quality glass product G6 can be obtained by sending a high-quality molten glass G whose composition is not disturbed to the next process and forming it with the forming apparatus 6.
In addition, the glass product which grind | polished the molten glass after shaping | molding as needed, and grind | polished the surface can also be manufactured.
 ところで、第二の清澄槽4と冷却槽5にMo製の内面カバー15を流路R2、R3に対し、設置した場合、溶融ガラスの生産開始時に始めて溶融ガラスGを流す場合、これらの槽内には空気が存在しているので、内面カバー15が500~600℃以上に加熱される際、内面カバー15が燃焼することを防止する必要がある。
 この生産開始時の内面カバー15の燃焼を防止するため、内面カバー15の全面においてMoが空気に触れないようにコーティング層を形成しておくことが好ましい。このコーティング層として、例えばシリカコート皮膜を採用できる。シリカコート皮膜は溶融ガラスの生産開始時に内面カバー15の全体を溶融ガラスGが覆うまでの間にMoと空気の反応を防止すればよいので、溶融ガラスGが内面カバー15の全体を覆うまでの時間、十分に耐える程度の膜厚で被覆しておく。内面カバー15の全体を溶融ガラスGが覆った後、時間経過と共にシリカコート皮膜は溶融して消失するので、その後は内面カバー15を覆った溶融ガラスGが空気から内面カバー15を隔離する。
By the way, when the Mo inner surface cover 15 is installed in the second clarification tank 4 and the cooling tank 5 with respect to the flow paths R2 and R3, when flowing the molten glass G for the first time at the start of production of the molten glass, Since air is present in the inner cover 15, it is necessary to prevent the inner cover 15 from burning when the inner cover 15 is heated to 500 to 600 ° C. or higher.
In order to prevent combustion of the inner cover 15 at the start of production, it is preferable to form a coating layer on the entire inner cover 15 so that Mo does not come into contact with air. As this coating layer, for example, a silica coat film can be employed. Since the silica coat film may prevent the reaction between Mo and air before the molten glass G covers the entire inner surface cover 15 at the start of production of the molten glass, the molten glass G covers the entire inner surface cover 15. Cover with a film thickness sufficient to withstand time. After the molten glass G covers the entire inner surface cover 15, the silica coat film melts and disappears as time passes, and thereafter, the molten glass G covering the inner surface cover 15 isolates the inner surface cover 15 from the air.
 次に、本実施形態の内面カバー15の作用効果について更に説明する。
 上述の如く流路R2、R3の内面を覆っている内面カバー15においては、第一の底壁プレート20と第二の底壁プレート25との間に間隙D1が形成され、流路R2の流れ方向前後に隣接するカバー組立体16、16の間に間隙D2が形成されている。
 流路R2の底壁部4aと側壁部4bを構成する耐火レンガ4dの熱膨張率とMoなどの耐熱金属製の内面カバー15では熱膨張率が異なる。流路R2、R3を溶融ガラスGが流れた場合、熱膨張率の少ない耐火レンガ4dよりも内面カバー15を構成する各プレートの方がより膨張する。ここで、内面カバー15にはその内部側に間隙D1、D2があけられているので、内面カバー15を構成する各プレートの熱膨張分を間隙D1、D2で吸収することができ、溶融ガラスGにより加熱状態とされた内面カバー15に無用な熱応力が付加されないようにできる。よって、内面カバー15を備えた第二の清澄槽4、冷却槽5を連続使用して溶融ガラスを製造しても、内面カバー15に熱応力などの無用な負担が作用しない。
Next, the effect of the inner surface cover 15 of this embodiment is further demonstrated.
In the inner surface cover 15 covering the inner surfaces of the flow paths R2 and R3 as described above, a gap D1 is formed between the first bottom wall plate 20 and the second bottom wall plate 25, and the flow of the flow path R2 A gap D2 is formed between the cover assemblies 16 and 16 adjacent to each other in the front and rear direction.
The thermal expansion coefficient of the refractory brick 4d constituting the bottom wall portion 4a and the side wall portion 4b of the flow path R2 is different from that of the inner surface cover 15 made of a heat-resistant metal such as Mo. When the molten glass G flows through the flow paths R2 and R3, each plate constituting the inner surface cover 15 expands more than the refractory brick 4d having a low coefficient of thermal expansion. Here, since the gaps D1 and D2 are formed on the inner side of the inner cover 15, the thermal expansion of each plate constituting the inner cover 15 can be absorbed by the gaps D1 and D2, and the molten glass G Thus, unnecessary thermal stress can be prevented from being applied to the inner surface cover 15 in a heated state. Therefore, even if the molten glass is manufactured by continuously using the second clarification tank 4 and the cooling tank 5 provided with the inner surface cover 15, unnecessary burdens such as thermal stress do not act on the inner surface cover 15.
 また、本実施形態のカバー組立体16の耳部21a、26aをその周囲の耐火レンガ4dの目地部4Bまたはスリット4hに挿入することで、以下の作用効果を得ることができる。
 流路R2に沿って溶融ガラスGが流れると、内面カバー15の内面側の流路R2を溶融ガラスGが流れると同時に、流路R2の底壁部4aおよび側壁部4bと、内面カバー15の裏面側との隙間部分にも少量の溶融ガラスGが流れ込む。
 ここで、複数のカバー組立体16を係合して内面カバー15を構成し、流路R2の底壁部4aの表面および側壁部4bの表面を覆っていたとしても、流路R2の内表面に内面カバー15の底面と側面が完全に密着している訳ではない。更に、内面カバー15の側壁プレート21、26の上端は溶融ガラスの液面GHよりも低い位置にあり、また、内面カバー15には間隙D1、D2が内在されているので、内面カバー15の裏側にも若干の溶融ガラスGが回り込む。
Moreover, the following effects can be acquired by inserting the ear | edge parts 21a and 26a of the cover assembly 16 of this embodiment in the joint part 4B or the slit 4h of the surrounding fireproof brick 4d.
When the molten glass G flows along the flow path R2, the molten glass G flows through the flow path R2 on the inner surface side of the inner surface cover 15, and at the same time, the bottom wall portion 4a and the side wall portion 4b of the flow path R2 and the inner surface cover 15 A small amount of molten glass G also flows into the gap portion with the back side.
Here, even if a plurality of cover assemblies 16 are engaged to form the inner surface cover 15 and cover the surface of the bottom wall portion 4a and the side wall portion 4b of the flow path R2, the inner surface of the flow path R2 The bottom surface and the side surface of the inner cover 15 are not completely in close contact with each other. Further, the upper ends of the side wall plates 21 and 26 of the inner surface cover 15 are at a position lower than the liquid level GH of the molten glass, and the inner surface cover 15 has gaps D1 and D2, so the back side of the inner surface cover 15 is provided. In addition, some molten glass G wraps around.
 流路R2の底壁部4aおよび側壁部4bと内面カバー15との間に流れ込んだ溶融ガラスGは、底壁部4aおよび側壁部4bに直接接するので底壁部4aおよび側壁部4bを構成する耐火レンガ4dと接触し、長期間の運転によっては耐火レンガ4dを浸食するか、耐火レンガ4dを構成する成分の一部が溶融ガラス側に溶出して溶融ガラスを汚すおそれがある。しかし、底壁部4aおよび側壁部4bと内面カバー15の裏面側との間に流れ込んだ溶融ガラスGは流路R2の内部側を流れる溶融ガラスの主流に対しその量は極めて少なく、また、内面カバー15の裏面側に流れ込んだ溶融ガラスは流路R2側には容易には戻れないので、内面カバー15の内側の流路R2を流れる溶融ガラスGに内面カバー15の裏側にわずかに存在する汚れた溶融ガラスGが影響を与える可能性は低くなる。 The molten glass G flowing between the bottom wall portion 4a and the side wall portion 4b of the flow path R2 and the inner surface cover 15 directly contacts the bottom wall portion 4a and the side wall portion 4b, so that the bottom wall portion 4a and the side wall portion 4b are formed. Depending on the long-term operation, the refractory brick 4d may be eroded or a part of the components constituting the refractory brick 4d may be eluted to the molten glass side to contaminate the molten glass. However, the amount of the molten glass G flowing between the bottom wall portion 4a and the side wall portion 4b and the back surface side of the inner surface cover 15 is extremely small with respect to the main flow of the molten glass flowing on the inner side of the flow path R2. Since the molten glass that has flowed into the back surface side of the cover 15 cannot easily return to the flow path R2 side, the molten glass G that flows through the flow path R2 inside the inner surface cover 15 is slightly contaminated on the back side of the inner surface cover 15. The possibility that the molten glass G is affected is low.
 また、場合によっては、底壁部4aおよび側壁部4bと内面カバー15の裏面側との間に流れ込んだ溶融ガラスGが流路R2の流れ方向に沿って移動しようとする。しかし、内面カバー15の長さ方向には複数箇所に耳部21a、26aが間欠的に存在しているので、溶融ガラスGが内面カバー15の裏面側を伝わって流路R2の下流側に移動しようとする流れを耳部21a、26aがせき止めるので、側壁部4bに触れて汚れるおそれの高い内面カバー15の裏面側の溶融ガラスGを流路R2の下流側に送ることがない。
 このため、第二の清澄槽4と冷却槽5の下流側に設けられている成形装置6に汚れた溶融ガラスを送るおそれが無く、不純物の入っていない均一な組成の泡の少ない高品質の溶融ガラスを成形装置6に送って成形できる効果がある。
In some cases, the molten glass G flowing between the bottom wall portion 4a and the side wall portion 4b and the back surface side of the inner surface cover 15 tends to move along the flow direction of the flow path R2. However, since the ear portions 21a and 26a are intermittently present at a plurality of locations in the length direction of the inner surface cover 15, the molten glass G travels along the back surface side of the inner surface cover 15 and moves downstream in the flow path R2. Since the ear portions 21a and 26a block the flow to be attempted, the molten glass G on the back surface side of the inner surface cover 15 that is likely to get dirty by touching the side wall portion 4b is not sent downstream of the flow path R2.
For this reason, there is no fear of sending the dirty molten glass to the molding apparatus 6 provided on the downstream side of the second clarification tank 4 and the cooling tank 5, and the high quality of the uniform composition free of impurities and with few bubbles There is an effect that the molten glass can be sent to the molding device 6 and molded.
 図9は本発明に係る清澄槽の第2実施形態の構造に適用される内面カバーにおいて、カバー組立体におけるMo製の側壁プレート21の上端を溶融ガラスGの液面位置GHから上方に突出するように配置した場合の一例構造を示す断面図である。
 この実施形態の如くMo製の側壁プレート21を溶融ガラスGの液面位置GHから上方に突出するように配置する場合、側壁プレート21が空気に触れないように横断面逆U字型の外側の第一のカバー片51と内側の第二のカバー片52により側壁プレート21の上端部が覆われている。
 外側の第一のカバー片51はPt、PtRhなどのPt合金、イリジウムなどの耐熱金属材料からなり、内側の第二のカバー片52はアルミナ(Al)、ジルコニアなどの耐熱セラミックスからなる。
FIG. 9 is an inner surface cover applied to the structure of the second embodiment of the fining tank according to the present invention, and the upper end of the Mo side wall plate 21 in the cover assembly protrudes upward from the liquid surface position GH of the molten glass G. It is sectional drawing which shows an example structure at the time of arranging in this way.
When the Mo side wall plate 21 is arranged so as to protrude upward from the liquid surface position GH of the molten glass G as in this embodiment, the outer side of the inverted U-shaped cross section is arranged so that the side wall plate 21 does not come into contact with air. The upper end portion of the side wall plate 21 is covered by the first cover piece 51 and the inner second cover piece 52.
The outer first cover piece 51 is made of a Pt alloy such as Pt and PtRh, and a heat resistant metal material such as iridium, and the inner second cover piece 52 is made of a heat resistant ceramic such as alumina (Al 2 O 3 ) and zirconia. .
 外側の第一のカバー片51は溶融ガラスGの浸食を受け難く、空気に触れても問題のない耐熱金属製であり、耐熱セラミックス製の第二のカバー片52は、清澄槽4の構築後に溶融ガラスGを始めて流す際、カバー組立体16にシリカコート層を形成する場合、シリカコート層がPtに接触するとPtが損傷するので、この損傷を防止するために設けられている。なお、この観点から外側の第一のカバー片51の下縁部51aの位置を内側の第二のカバー片52の下端部52aよりも上方に位置するように形成しておき、第一のカバー片51の下端部51aが側壁プレート21の表面から数10mm程度離間するようにしておくことが望ましい。 The outer first cover piece 51 is made of a heat-resistant metal that is not easily eroded by the molten glass G and that does not have any problem even if it comes into contact with the air. The second cover piece 52 made of heat-resistant ceramic is formed after the clarification tank 4 is constructed. When the molten glass G is flowed for the first time, when a silica coat layer is formed on the cover assembly 16, Pt is damaged when the silica coat layer comes into contact with Pt. This is provided to prevent this damage. From this point of view, the position of the lower edge portion 51a of the outer first cover piece 51 is formed so as to be positioned above the lower end portion 52a of the inner second cover piece 52, and the first cover It is desirable that the lower end portion 51a of the piece 51 is separated from the surface of the side wall plate 21 by about several tens of millimeters.
 図9に示す構造を採用することにより、Mo製の側壁プレート21、26の上端位置を溶融ガラスGの液面位置GHよりも上方に配置することができる。この構造によれば、流路R2を構成する側壁部4bを内面カバー15でより広い範囲覆うことができる。これにより、溶融ガラスGの液面位置GHの上方まで第一の側壁プレート21を配置できるので、溶融ガラスGの液面GH近くにおいても溶融ガラスGが耐火レンガ4eに直に触れない構造を実現できる。また、溶融ガラスGの液面位置GHが上下に変動するようにガラスの製造装置1を運転し、清澄槽4を使用しても、側壁プレート21、26が損傷し難い構造を提供できる。即ち、第一のカバー片51の高さ程度、溶融ガラスGの液面位置GHが変動しても、側壁プレート21、26が空気に触れてしまうことがないので、側壁プレート21、26がMo製であって、液面位置GHが変動しても、支障がない。
 また、液面位置GHの近傍において溶融ガラスGに対し耐火レンガ4d、4e側からの不純物の溶出を防止できるので、液面位置GH近傍の溶融ガラスGに対し不純物を混入させることもない。
By adopting the structure shown in FIG. 9, the upper end positions of the Mo side wall plates 21 and 26 can be disposed above the liquid surface position GH of the molten glass G. According to this structure, the side wall portion 4b constituting the flow path R2 can be covered with the inner surface cover 15 in a wider range. Thereby, since the 1st side wall plate 21 can be arrange | positioned above the liquid level position GH of the molten glass G, the structure which the molten glass G does not touch the refractory brick 4e directly near the liquid level GH of the molten glass G is implement | achieved. it can. Moreover, even if the glass manufacturing apparatus 1 is operated so that the liquid level position GH of the molten glass G fluctuates up and down and the clarification tank 4 is used, a structure in which the side wall plates 21 and 26 are hardly damaged can be provided. That is, even if the liquid level position GH of the molten glass G changes about the height of the first cover piece 51, the side wall plates 21 and 26 do not come into contact with air. Even if the liquid level position GH fluctuates, there is no problem.
In addition, since the elution of impurities from the refractory bricks 4d and 4e side can be prevented with respect to the molten glass G in the vicinity of the liquid surface position GH, impurities are not mixed into the molten glass G near the liquid surface position GH.
 図10は本発明に係る第3実施形態の構造に適用されるカバー組立体16において、第一の底壁プレート20と第二の底壁プレート25の端部側にも耳部20c、25cを設けた例を示す。その他の構造は先の第1実施形態の構造と同等である。
 この実施形態の構造の如く第一の底壁プレート20の端部側に下向きに耳部20cを設け、第二の底壁プレート25の端部側に下向きに耳部25cを設け、これらをいずれも底壁部4aを構成する耐火レンガ4cの目地部あるいはスリット4hに挿入することにより、第一の底壁プレート20と第二の底壁プレート25が清澄槽4の底壁部4a上に設置されている。
FIG. 10 shows a cover assembly 16 applied to the structure of the third embodiment according to the present invention. Ears 20c, 25c are also provided on the end portions of the first bottom wall plate 20 and the second bottom wall plate 25. An example is shown. Other structures are the same as those of the first embodiment.
As in the structure of this embodiment, the ear portion 20c is provided downward on the end portion side of the first bottom wall plate 20, and the ear portion 25c is provided downward on the end portion side of the second bottom wall plate 25. Also, the first bottom wall plate 20 and the second bottom wall plate 25 are installed on the bottom wall portion 4a of the clarification tank 4 by being inserted into the joints or slits 4h of the refractory brick 4c constituting the bottom wall portion 4a. Has been.
 第3実施形態の構造においては、第一の底壁プレート20と第二の底壁プレート25の端部側に耳部20c、25cが形成されているので、第一の底壁プレート20および第二の底壁プレート25と、流路R2の底壁部4aとの間の隙間領域を流路R2に沿って流れようとする溶融ガラスGの流れを耳部20c、25cがせき止め、前記隙間領域を伝わって流路R2の下流側に流れようとする溶融ガラスGの流れを阻止できる。
 第一の底壁プレート20と第二の底壁プレート25の端部側に耳部20c、25cを形成することにより、汚れた溶融ガラスGを清澄槽4の下流側に流さないようにできる。
 よって、第3実施形態の構造によれば、先の第1実施形態の構造と同様、側壁部4bとカバー組立体16の隙間部分の汚れた溶融ガラスGを下流側に流さないことは勿論、底壁部4aとカバー組立体16の隙間部分の汚れた溶融ガラスGも、下流側に流さない構造を提供できる。
In the structure of the third embodiment, since the ear portions 20c, 25c are formed on the end portions of the first bottom wall plate 20 and the second bottom wall plate 25, the first bottom wall plate 20 and the second bottom wall plate 20 The ear portions 20c and 25c block the flow of the molten glass G that is about to flow along the flow path R2 in the gap area between the second bottom wall plate 25 and the bottom wall portion 4a of the flow path R2, and the gap area It is possible to prevent the flow of the molten glass G that is about to flow to the downstream side of the flow path R2.
By forming the ear portions 20 c and 25 c on the end portions of the first bottom wall plate 20 and the second bottom wall plate 25, the dirty molten glass G can be prevented from flowing to the downstream side of the clarification tank 4.
Therefore, according to the structure of the third embodiment, like the structure of the first embodiment, of course, the dirty molten glass G in the gap portion between the side wall portion 4b and the cover assembly 16 is not allowed to flow downstream. It is possible to provide a structure in which the molten glass G contaminated in the gap between the bottom wall portion 4a and the cover assembly 16 does not flow downstream.
 図11は、本発明に係る第4実施形態の内面カバー15Aに適用されるカバー組立体16Aを示すもので、この第4実施形態において先の第1実施形態の構造と異なるのは、先の第1実施形態において分離されていた第1の底壁プレート20と第2の底壁プレート25を一体化して1つの底壁プレート60に共用化されている点である。また、先の第1実施形態において分離されていた第1のプレート組立体17と第2のプレート組立体18を一体化して1つのプレート組立体61に共用化されている。更に、先の第1実施形態において分離されていた第三のカバープレート22A、22Bを一体化してU字型のカバープレート62に共用化され、第四のカバープレート24は略されている。前記カバープレート62の断面形状は、底板62aと両側の側版62bとからなるU字型に形成されている。 FIG. 11 shows a cover assembly 16A applied to the inner surface cover 15A of the fourth embodiment according to the present invention. In this fourth embodiment, the structure of the first embodiment is different from that of the previous first embodiment. The first bottom wall plate 20 and the second bottom wall plate 25 separated in the first embodiment are integrated into a single bottom wall plate 60. In addition, the first plate assembly 17 and the second plate assembly 18 separated in the previous first embodiment are integrated into a single plate assembly 61. Furthermore, the third cover plates 22A and 22B separated in the previous first embodiment are integrated into a U-shaped cover plate 62, and the fourth cover plate 24 is omitted. The cross-sectional shape of the cover plate 62 is formed in a U shape including a bottom plate 62a and side plates 62b on both sides.
 第4実施形態の構造においてカバープレート62の底板62aを底壁プレート60の端縁部側に幅半分程度被せ、残り幅半分ほどを突出させて図示略のリベット等の固定具によりカバー組立体16Aの端縁部分にカバープレート62が固定されている。また、カバープレート62の一方の側板62bを第1の側壁プレート21に幅半分ほど被せ、残り幅半分ほどを突出させ、他方の側板62bを第2の側壁プレート26の端縁部側に幅半分程被せ、残り幅半分ほどを突出させてカバー組立体16Aの端縁部分にカバープレート62が図示略のリベット等の固定具により固定されている。また、底壁プレート60に対し側壁プレート21、26は1枚の耐熱金属製の板材に対する折り曲げにより形成されている。 In the structure of the fourth embodiment, the bottom plate 62a of the cover plate 62 is placed on the end edge side of the bottom wall plate 60 by about half the width, and the remaining half width is projected, and the cover assembly 16A is fixed by a fixture such as a rivet (not shown). A cover plate 62 is fixed to the edge portion of the cover. Further, one side plate 62b of the cover plate 62 is put on the first side wall plate 21 by a half width, the remaining half width is projected, and the other side plate 62b is half a width on the edge side of the second side wall plate 26. The cover plate 62 is fixed to the end edge portion of the cover assembly 16A by a fixing tool such as a rivet (not shown). Further, the side wall plates 21 and 26 are formed by bending a single heat-resistant metal plate with respect to the bottom wall plate 60.
 第4実施形態の内面カバー15Aによっても流路R2の底壁部4aと側壁部4b、4bを溶融ガラスGから保護することができる。そして、流路R2の長さ方向にカバー組立体16A、16Aが膨張した場合の熱膨張分の吸収効果は先の第1実施形態の構造と同様に得ることができる。即ち、流路R2の流れ方向に隣接された底壁プレート60、60どうしの間隙と側壁プレート21、21どうしの隙間と、側壁プレート26、26どうしの隙間を利用して流路R2の長さ方向にカバー組立体16A、16Aが熱膨張した場合の熱膨張分の吸収効果を得ることができる。 The bottom wall 4a and the side walls 4b, 4b of the flow path R2 can be protected from the molten glass G also by the inner surface cover 15A of the fourth embodiment. And the absorption effect of the thermal expansion when the cover assemblies 16A and 16A expand in the length direction of the flow path R2 can be obtained in the same manner as the structure of the first embodiment. That is, the length of the flow path R2 using the gap between the bottom wall plates 60, 60 adjacent to each other in the flow direction of the flow path R2, the clearance between the side wall plates 21, 21, and the clearance between the side wall plates 26, 26. The absorption effect of the thermal expansion when the cover assemblies 16A and 16A are thermally expanded in the direction can be obtained.
 なお、第4実施形態の内面カバー15Aは、前記した第1実施形態における流路R2の幅方向に隣接されていた第1のプレート組立体17と第2のプレート組立体18とを共用化したので、流路R2の幅方向にカバー組立体16Aが膨張した場合の吸収効果は得られないが、側壁プレート21、26は流路R2の側壁部4bに密着させる訳ではなく、若干の隙間をあけて配置するので、流路R2の幅方向への熱膨張分を考慮しなくてもよい構造とする場合は、図11に示す構造を適用できる。 The inner surface cover 15A of the fourth embodiment shares the first plate assembly 17 and the second plate assembly 18 that are adjacent to each other in the width direction of the flow path R2 in the first embodiment. Therefore, the absorption effect when the cover assembly 16A expands in the width direction of the flow path R2 cannot be obtained, but the side wall plates 21 and 26 are not in close contact with the side wall portion 4b of the flow path R2, but have a slight gap. Since the gaps are arranged so that the thermal expansion in the width direction of the flow path R2 does not need to be considered, the structure shown in FIG. 11 can be applied.
 例えば、図6に示した如く耐火レンガ4dを貫通するようにMoなどの耐熱金属製のボルト状の固定具35で側壁プレート26を支持する場合、側壁プレート26と耐火レンガ4dとの間に間隙をあけることが容易にできるので、この間隙を熱膨張分の吸収用として利用できる。なお、その場合は固定具35を側壁プレート26に強固に固定する必要はなく、側壁プレート26が固定具35の軸方向に多少移動できるように係合することが好ましい。勿論、側壁プレート26の耳部26aを耐火レンガ4dの目地部4Bにて確実に支持するならば、側壁プレート26の構造強度についても問題は生じない。 For example, when the side wall plate 26 is supported by a bolt-shaped fixture 35 made of a heat-resistant metal such as Mo so as to penetrate the refractory brick 4d as shown in FIG. 6, there is a gap between the side wall plate 26 and the refractory brick 4d. This gap can be used for absorbing the thermal expansion. In this case, it is not necessary to firmly fix the fixture 35 to the side wall plate 26, and it is preferable to engage the side wall plate 26 so that the side wall plate 26 can move somewhat in the axial direction of the fixture 35. Of course, if the ears 26a of the side wall plate 26 are reliably supported by the joints 4B of the refractory bricks 4d, there will be no problem with the structural strength of the side wall plate 26.
 本発明の技術は、建築用ガラス、車両用ガラス、光学用ガラス、医療用ガラス、表示装置用ガラス、その他一般のガラス製品の製造に広く適用できる。
 なお、2010年12月28日に出願された日本特許出願2010-293234号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
The technology of the present invention can be widely applied to the production of architectural glass, vehicle glass, optical glass, medical glass, display device glass, and other general glass products.
The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2010-293234 filed on Dec. 28, 2010 are incorporated herein as the disclosure of the present invention. .
 R1、R2、R3…流路、G…溶融ガラス、GH…溶融ガラスの液面位置、1…製造装置、2…溶融槽、3…第一の清澄槽、4…第二の清澄槽、4a…底壁部、4b…側壁部、4g、4e…耐火レンガ(耐火物)、4h…スリット、5…冷却槽、5a…底壁部、5b…側壁部、6…成形装置、7…清澄槽、8…電極、14…ガラス溶融炉、15…内面カバー、16…カバー組立体、17…第一のプレート組立体、18…第二のプレート組立体、20…第一の底壁プレート、20c…耳部、21…第一の側壁プレート、21a…耳部、22…第一のカバープレート、22A、22B…第三のカバープレート、23…第二のカバープレート、24…第四のカバープレート、25…第二の底壁プレート、25c…耳部、26…第二の側壁プレート、26a…耳部、30、31、32…リベット、S1…ガラス溶融工程、S2…清澄工程、S3…成形工程、S4…徐冷工程、S5…切断工程、G6…ガラス製品、51…第一のカバー片、52…第二のカバー片、15A…内面カバー、16A…カバー組立体、60…底壁プレート、62…カバープレート。 R1, R2, R3 ... flow path, G ... molten glass, GH ... liquid surface position of molten glass, 1 ... manufacturing apparatus, 2 ... melting tank, 3 ... first clarification tank, 4 ... second clarification tank, 4a ... bottom wall part, 4b ... side wall part, 4g, 4e ... refractory brick (refractory), 4h ... slit, 5 ... cooling tank, 5a ... bottom wall part, 5b ... side wall part, 6 ... molding device, 7 ... clarification tank , 8 ... Electrode, 14 ... Glass melting furnace, 15 ... Inner cover, 16 ... Cover assembly, 17 ... First plate assembly, 18 ... Second plate assembly, 20 ... First bottom wall plate, 20c ... ear part, 21 ... first side wall plate, 21a ... ear part, 22 ... first cover plate, 22A, 22B ... third cover plate, 23 ... second cover plate, 24 ... fourth cover plate 25 ... Second bottom wall plate, 25c ... Ear, 26 ... Second side wall plate 26a ... ear, 30, 31, 32 ... rivet, S1 ... glass melting step, S2 ... fining step, S3 ... molding step, S4 ... slow cooling step, S5 ... cutting step, G6 ... glass product, 51 ... first Cover piece, 52 ... second cover piece, 15A ... inner cover, 16A ... cover assembly, 60 ... bottom wall plate, 62 ... cover plate.

Claims (16)

  1.  耐火レンガ製の溶融ガラス流路を備えた清澄槽であって、該清澄槽が、溶融ガラス流路を構成する底壁部およびその両側の側壁部と、前記底壁部および両側壁部における溶融ガラス流路側を覆う内面カバーとを備え、
     前記内面カバーが、前記溶融ガラスの流路方向に沿って配置される複数のカバー組立体からなり、
     前記カバー組立体が、前記底壁部を覆う底壁プレートと、前記側壁部を覆う側壁プレートと、前記流路に沿って配置されたカバー組立体どうしの突き合わせ領域を覆う第一のカバープレートとを備えた清澄槽。
    A clarification tank having a molten glass flow path made of refractory bricks, wherein the clarification tank comprises a bottom wall part constituting the molten glass flow path and side wall parts on both sides thereof, and melting in the bottom wall part and both side wall parts. An inner cover that covers the glass flow path side,
    The inner surface cover is composed of a plurality of cover assemblies arranged along the flow direction of the molten glass,
    The cover assembly includes a bottom wall plate that covers the bottom wall portion, a side wall plate that covers the side wall portion, and a first cover plate that covers a butting region between the cover assemblies arranged along the flow path. A clarification tank equipped with
  2.  前記側壁プレートの流路下流側の端部あるいは流路上流側の端部に、前記側壁プレートの端部から前記流路の外側に向いて延在する耳部が形成された請求項1に記載の清澄槽。 The ear | edge part extended toward the outer side of the said flow path from the edge part of the said side wall plate was formed in the edge part of the flow path downstream side of the said side wall plate, or the edge part of the flow path upstream side. Clarification tank.
  3.  複数の耐火レンガの目地部を介し接合して前記側壁部が形成され、前記耳部が前記耐火レンガの目地部に挿入された請求項2に記載の清澄槽。 The clarification tank according to claim 2, wherein the side wall portion is formed by joining through joint portions of a plurality of refractory bricks, and the ear portion is inserted into the joint portion of the refractory bricks.
  4.  前記カバー組立体の側方に位置する耐火レンガの側面にスリットが形成され、該スリットに前記耳部が挿入された請求項2に記載の清澄槽。 The clarification tank according to claim 2, wherein a slit is formed in a side surface of the refractory brick located on a side of the cover assembly, and the ear portion is inserted into the slit.
  5.  前記カバー組立体がMo(モリブデン)からなり、前記側壁プレートの上端部が前記溶融ガラスの液面位置よりも上方に突出され、前記上端部がPt、Pt合金、または、耐熱セラミックスからなるカバー部材により覆われてなる請求項1~4のいずれか一項に記載の清澄槽。 The cover assembly is made of Mo (molybdenum), the upper end portion of the side wall plate protrudes above the liquid surface position of the molten glass, and the upper end portion is made of Pt, a Pt alloy, or a heat-resistant ceramic. The clarification tank according to any one of claims 1 to 4, wherein the clarification tank is covered with water.
  6.  前記カバー組立体がMoからなり、前記側壁プレートの上端位置が前記溶融ガラスの液面位置よりも低い位置に形成されてなる請求項1~4のいずれか一項に記載の清澄槽。 The clarification tank according to any one of claims 1 to 4, wherein the cover assembly is made of Mo, and an upper end position of the side wall plate is formed at a position lower than a liquid surface position of the molten glass.
  7.  前記カバー組立体が、前記溶融ガラス流路の左右の一方に配置された第一のプレート組立体と、前記溶融ガラス流路の左右の他方に配置された第二のプレート組立体と、前記第一のプレート組立体と第二のプレート組立体との突き合わせ領域を覆う第二のカバープレートを備えた請求項1~6のいずれか一項に記載の清澄槽。 A first plate assembly disposed on one of the left and right sides of the molten glass flow path; a second plate assembly disposed on the other of the left and right sides of the molten glass flow path; The clarification tank according to any one of claims 1 to 6, further comprising a second cover plate that covers a butting region between the one plate assembly and the second plate assembly.
  8.  前記第一のプレート組立体および第二のプレート組立体が、それぞれ、底壁プレートと、側壁プレートと、前記底壁プレートと前記側壁プレートとの突き合わせ領域を覆う第三のカバープレートとを備えた請求項1~7のいずれか一項に記載の清澄槽。 The first plate assembly and the second plate assembly each include a bottom wall plate, a side wall plate, and a third cover plate that covers a butting region of the bottom wall plate and the side wall plate. The clarification tank according to any one of claims 1 to 7.
  9.  前記カバー組立体どうしの突き合わせ領域において前記第二のカバープレートと前記第三のカバープレートの突き合わせ領域を覆う第四のカバープレートを備えた請求項8に記載の清澄槽。 The clarification tank according to claim 8, further comprising a fourth cover plate that covers a butting region between the second cover plate and the third cover plate in a butting region between the cover assemblies.
  10.  前記側壁プレートを貫通してその外側の側壁部に取り付けられる支持具によって前記側壁プレートが支持されてなる請求項1~9のいずれか一項に記載の清澄槽。 The clarification tank according to any one of claims 1 to 9, wherein the side wall plate is supported by a support that passes through the side wall plate and is attached to the outer side wall portion.
  11.  前記清澄槽は、第一の底壁部およびその両側の第一の側壁部により区画される第一の溶融ガラスの流路を有する第一の清澄槽と、前記第一の清澄槽に続き設けられ、第二の底壁部およびその両側の第二の側壁部により区画される第二の溶融ガラスの流路を有する第二の清澄槽と、前記第二の清澄槽に続き設けられ、第三の底壁部およびその両側の第三の側壁部により区画される第三の溶融ガラスの流路を有する冷却槽とを備えた請求項1~10のいずれか一項に記載の清澄槽。 The clarification tank is provided following a first clarification tank having a first molten glass flow path defined by a first bottom wall portion and first side wall portions on both sides thereof, and the first clarification tank. A second clarification tank having a second molten glass flow path partitioned by a second bottom wall part and second side wall parts on both sides of the second bottom wall part, and the second clarification tank. The clarification tank according to any one of claims 1 to 10, further comprising a cooling tank having a third molten glass flow path defined by the three bottom wall parts and the third side wall parts on both sides thereof.
  12.  前記第一の清澄槽、前記第二の清澄槽および前記冷却槽の少なくともいずれか一方が、それぞれの溶融ガラス流路を構成する底壁部およびその両側の側壁部と、前記底壁部および両側壁部における溶融ガラス流路側を覆う内面カバーとを備え、前記内面カバーが、前記溶融ガラスの流路方向に沿って配置される複数のカバー組立体からなり、前記カバー組立体が、前記底壁部を覆う底壁プレートと、前記側壁部を覆う側壁プレートと、前記流路に沿って配置されたカバー組立体どうしの突き合わせ領域を覆う第一のカバープレートとを備えた請求項11に記載の清澄槽。 At least one of the first clarification tank, the second clarification tank, and the cooling tank includes a bottom wall portion and side wall portions on both sides of each molten glass flow path, and the bottom wall portion and both sides. An inner surface cover for covering the molten glass flow path side in the wall portion, wherein the inner surface cover is composed of a plurality of cover assemblies arranged along a flow path direction of the molten glass, and the cover assembly is the bottom wall The bottom wall plate which covers a part, The side wall plate which covers the said side wall part, The 1st cover plate which covers the butt | matching area | region of the cover assemblies arrange | positioned along the said flow path is provided. A clarification tank.
  13.  請求項1~12のいずれか一項に記載の清澄槽を有し、当該清澄槽の溶融ガラスの流れ方向の上流側に溶融槽を備えたガラス溶融炉。 A glass melting furnace comprising the clarification tank according to any one of claims 1 to 12, and a melting tank provided upstream of the clarification tank in the flow direction of the molten glass.
  14.  請求項13に記載のガラス溶融炉を用いてガラス原料を溶融する工程を有する溶融ガラスの製造方法。 A method for producing molten glass comprising a step of melting a glass raw material using the glass melting furnace according to claim 13.
  15.  請求項13に記載のガラス溶融炉を用いてガラス原料を溶融し溶融ガラスを製造する工程と、該溶融ガラスを成形する工程と、成形後のガラスを徐冷する工程と、を含むガラス製品の製造方法。 A glass product comprising: a step of melting a glass raw material using the glass melting furnace according to claim 13; and a step of forming the molten glass; and a step of gradually cooling the glass after forming. Production method.
  16.  請求項13に記載のガラス溶融炉と、該ガラス溶融炉により製造された溶融ガラスを成形する成形手段と、成形後のガラスを徐冷する徐冷手段とを備えたガラス製品の製造装置。 An apparatus for producing a glass product, comprising: the glass melting furnace according to claim 13; a forming means for forming the molten glass manufactured by the glass melting furnace; and a slow cooling means for gradually cooling the glass after forming.
PCT/JP2011/080490 2010-12-28 2011-12-28 Clarification tank, glass melting furnace, molten glass production method, glassware production method and glassware production device WO2012091130A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012551058A JPWO2012091130A1 (en) 2010-12-28 2011-12-28 Clarification tank, glass melting furnace, molten glass manufacturing method, glass product manufacturing method, and glass product manufacturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-293234 2010-12-28
JP2010293234 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012091130A1 true WO2012091130A1 (en) 2012-07-05

Family

ID=46383217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080490 WO2012091130A1 (en) 2010-12-28 2011-12-28 Clarification tank, glass melting furnace, molten glass production method, glassware production method and glassware production device

Country Status (2)

Country Link
JP (1) JPWO2012091130A1 (en)
WO (1) WO2012091130A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045016A1 (en) * 2018-08-30 2020-03-05 日本電気硝子株式会社 Manufacturing device and manufacturing method for glass article

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020887A1 (en) * 2005-08-19 2007-02-22 Nippon Electric Glass Co., Ltd. Heat resistant material for glass melting, glass article producing apparatus, and process for producing glass article
JP2007153713A (en) * 2005-12-08 2007-06-21 Tanaka Kikinzoku Kogyo Kk Glass manufacturing unit
JP2010202444A (en) * 2009-03-03 2010-09-16 Asahi Glass Co Ltd Glass melting furnace and glass melting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020887A1 (en) * 2005-08-19 2007-02-22 Nippon Electric Glass Co., Ltd. Heat resistant material for glass melting, glass article producing apparatus, and process for producing glass article
JP2007153713A (en) * 2005-12-08 2007-06-21 Tanaka Kikinzoku Kogyo Kk Glass manufacturing unit
JP2010202444A (en) * 2009-03-03 2010-09-16 Asahi Glass Co Ltd Glass melting furnace and glass melting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045016A1 (en) * 2018-08-30 2020-03-05 日本電気硝子株式会社 Manufacturing device and manufacturing method for glass article

Also Published As

Publication number Publication date
JPWO2012091130A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
WO2012091133A1 (en) Clarification tank, glass melting furnace, molten glass production method, glassware production method and glassware production device
KR101488076B1 (en) Method and apparatus for making glass sheet
WO2012132474A1 (en) Glass substrate production method
JP6015671B2 (en) Molten glass production apparatus, molten glass production method, and plate glass production method using them
JP5956009B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP7118359B2 (en) Method for manufacturing glass article
KR101760172B1 (en) Method of manufacturing glass
JP5731437B2 (en) Manufacturing method of glass plate
WO2012091130A1 (en) Clarification tank, glass melting furnace, molten glass production method, glassware production method and glassware production device
JP6739965B2 (en) Glass plate manufacturing method
JP6276218B2 (en) Manufacturing method of glass plate
JP5668066B2 (en) Manufacturing method of glass substrate
JP7301280B2 (en) Method for manufacturing glass article
WO2022270555A1 (en) Glass article production device and production method
WO2023106093A1 (en) Glass transfer device, glass article manufacturing device, and glass article manufacturing method
JP2015124111A (en) Manufacturing method for glass substrate, and glass substrate manufacturing method
KR20190078512A (en) Glass substrate manufacturing apparatus and method for manufacturing glass substrate
JP2015196609A (en) Manufacturing method for glass substrate and manufacturing apparatus for glass substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853197

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012551058

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853197

Country of ref document: EP

Kind code of ref document: A1