WO2012090820A1 - Actuator - Google Patents

Actuator Download PDF

Info

Publication number
WO2012090820A1
WO2012090820A1 PCT/JP2011/079644 JP2011079644W WO2012090820A1 WO 2012090820 A1 WO2012090820 A1 WO 2012090820A1 JP 2011079644 W JP2011079644 W JP 2011079644W WO 2012090820 A1 WO2012090820 A1 WO 2012090820A1
Authority
WO
WIPO (PCT)
Prior art keywords
end side
bore
piston
hole
plunger
Prior art date
Application number
PCT/JP2011/079644
Other languages
French (fr)
Japanese (ja)
Inventor
伸介 有吉
Original Assignee
株式会社ロブテックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ロブテックス filed Critical 株式会社ロブテックス
Publication of WO2012090820A1 publication Critical patent/WO2012090820A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D29/00Hand-held metal-shearing or metal-cutting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/02Mechanical layout characterised by the means for converting the movement of the fluid-actuated element into movement of the finally-operated member
    • F15B15/06Mechanical layout characterised by the means for converting the movement of the fluid-actuated element into movement of the finally-operated member for mechanically converting rectilinear movement into non- rectilinear movement
    • F15B15/061Mechanical layout characterised by the means for converting the movement of the fluid-actuated element into movement of the finally-operated member for mechanically converting rectilinear movement into non- rectilinear movement by unidirectional means

Definitions

  • the present invention relates to an actuator that converts rotational motion into linear motion. More specifically, the present invention relates to an actuator that converts a rotary motion driven by a motor into a linear reciprocating motion and outputs the same.
  • hydraulic cylinders have been provided as actuators for operating various devices.
  • the hydraulic cylinder has a cylindrical cylinder body having a first end and a second end opposite to the first end, and a rod-shaped rod having a first end and a second end opposite to the first end. And a piston rod including a large-diameter piston connected to the first end of the rod.
  • the piston of the piston rod and a part of the rod are concentrically housed in the cylinder body.
  • the hydraulic cylinder is supplied with hydraulic oil to the internal space on either the first end side or the second end side of the cylinder body with the piston as a boundary.
  • the piston is pushed in the axial direction by the action of the fluid pressure of the hydraulic oil supplied into the cylinder body.
  • the entire piston rod moves while generating an axial force in the axial direction.
  • a general hydraulic cylinder moves the piston rod to the second end side by supplying hydraulic oil to the internal space on the first end side of the cylinder body with the piston as a boundary, and the second end side of the cylinder body
  • the piston rod is moved to the first end side by supplying hydraulic oil to the inner space of the piston rod.
  • some hydraulic cylinders have a return spring that biases the piston in the internal space on either the first end side or the second end side of the cylinder body with the piston as a boundary. is there.
  • the hydraulic oil is supplied to the other internal space on the first end side or the second end side of the cylinder body, so that the piston rod is connected to the first end side or the second end of the cylinder body.
  • the piston rod moves to either the first end side or the second end side of the cylinder body by the biasing force of the return spring.
  • a hydraulic unit for supplying hydraulic oil to the hydraulic cylinder is separately installed at a position different from the hydraulic cylinder.
  • a hydraulic cylinder is mounted on a handy device to be carried (for example, a riveter for caulking a rivet or a hand-held tool such as a bar cutter for cutting a metal bar)
  • a hydraulic unit is integrally connected to a hydraulic cylinder (cylinder body) (see, for example, Patent Document 1).
  • the hydraulic unit includes a tank for storing hydraulic oil, a pump for sending hydraulic oil in the tank, a motor for operating the pump, and the like. For this reason, the space occupied by the hydraulic unit is large, and when the hydraulic cylinder is employed as an actuator for operating various devices, there is a problem that the entire device becomes large.
  • a hydraulic cylinder when a hydraulic cylinder is used in a handy device to be carried (for example, a riveter for caulking a rivet or a hand-held tool such as a bar cutter for cutting a metal bar), the hydraulic unit becomes larger. There is a problem that the weight is increased and the handling property is impaired.
  • an object of the present invention is to provide an actuator that can be reduced in size and weight while exhibiting performance equivalent to that of a hydraulic cylinder.
  • the actuator according to the present invention is A bore extending in one direction, in which a bore having a first end and a second end opposite to the first end is formed in one direction, and a pair of closing portions closing both ends of the bore of the cylinder portion
  • a cylinder body including A rod portion having a distal end and a proximal end opposite to the distal end, the rod portion being inserted in a liquid-tight manner into one of the closed portions, and concentric with the proximal end of the rod portion
  • a return spring housed in the cylinder body comprising a return spring that urges the piston portion to either the first end side or the second end side of the bore, When the hydraulic oil is supplied to either the first end side or the second end side of the bore with the piston portion as a boundary, the piston rod is either the first end side or the second end side of the bore.
  • the plunger hole A plurality of piston parts are provided at intervals in the circumferential direction,
  • the first channel and the second channel are A plurality are provided corresponding to each of the plurality of plunger holes,
  • the plunger and biasing member Built in each of the multiple plunger holes,
  • the check valve Each of the plurality of first flow paths and the plurality of second flow paths are internally provided,
  • the biasing member may be provided so as to always contact the eccentric shaft portion by biasing by the biasing member.
  • the actuator according to the present invention is A bore extending in one direction, in which a bore having a first end and a second end opposite to the first end is formed in one direction, and a pair of closing portions closing both ends of the bore of the cylinder portion
  • a cylinder body including A rod portion having a distal end and a proximal end opposite to the distal end, the rod portion being inserted in a liquid-tight manner into one of the closed portions, and concentric with the proximal end of the rod portion
  • a return spring housed in the cylinder body comprising a return spring that urges the piston portion to either the first end side or the second end side of the bore, When the hydraulic oil is supplied to either the first end side or the second end side of the bore with the piston portion as a boundary, the piston rod is either the first end side or the second end side of the bore.
  • a rotating shaft inserted in a liquid-tight state into the other closing part of the pair of closing parts,
  • the bore is composed of round holes,
  • the bore is filled with hydraulic oil,
  • the piston part A piston body continuously provided on the rod portion, and an outer circumferential circular piston body concentric with the rotation center of the rotation shaft;
  • An outer ring portion having an inner peripheral surface defining an inner hole, and an annular outer ring portion surrounding the outer periphery of the piston body,
  • the inner ring of the outer ring part is composed of an eccentric hole whose center is set at a position deviated from the rotation center of the rotating shaft,
  • the outer ring is It is configured to be movable in one direction together with the piston body and is provided to be rotatable concentrically with the rotation center of the rotation shaft,
  • the piston body At least one plunger hole opened toward the inner peripheral surface of the outer ring portion;
  • a first channel opened toward the other side of the first end
  • the actuator according to the present invention is A bore extending in one direction, in which a bore having a first end in one direction and a second end opposite to the bore is formed, and a pair of closing portions closing both ends of the bore of the cylinder portion
  • a cylinder body including a pair of closed portions each having an inner surface facing each other and an outer surface opposite to the inner surface;
  • a rod portion having a distal end and a proximal end opposite to the distal end, the rod portion being inserted in a liquid-tight manner into one of the closed portions, and concentric with the proximal end of the rod portion
  • a return spring housed in the cylinder body comprising a return spring that urges the piston portion to either the first end side or the second end side of the bore, When the hydraulic oil is supplied to either the first end side or the second end side of the bore with the piston portion as a boundary, the piston rod is either the first end side or the second
  • a rotating shaft projecting from the outer surface of the other closing portion of the pair of closing portions, the rotating shaft being concentric with the center of the bore;
  • a guide bar extending toward the one closing portion on the inner surface of the other closing portion,
  • the bore is composed of round holes,
  • the bore is filled with hydraulic oil,
  • the piston part A piston body continuously provided on the rod portion, and an outer circumferential circular piston body concentric with the rotation center of the rotation shaft;
  • An outer ring portion having an inner peripheral surface defining an inner hole, and an annular outer ring portion surrounding the outer periphery of the piston body,
  • the inner ring of the outer ring part is composed of an eccentric hole whose center is set at a position deviated from the rotation center of the rotating shaft,
  • the outer ring is It is configured to be movable in one direction together with the piston body and is provided to be rotatable concentrically with the rotation center of the rotation shaft,
  • the piston body At least
  • the plunger hole A plurality of piston bodies are provided at intervals in the circumferential direction,
  • the first channel and the second channel are A plurality are provided corresponding to each of the plurality of plunger holes,
  • the plunger and biasing member Built in each of the multiple plunger holes,
  • the check valve Each of the plurality of first flow paths and the plurality of second flow paths are internally provided,
  • Each of the multiple plungers It can be arranged so as to be always in contact with the inner peripheral surface of the outer ring portion by urging by the urging member.
  • a communication passage penetrating in one direction is formed in the piston part, A valve mechanism built in the communication path, further comprising a valve mechanism including a shaft-like valve inserted in the communication path so as to be movable toward the center of the hole;
  • the shaft valve In a state of being located on the other side of the first end side or the second end side of the bore, the communication path is blocked, and one end portion on the other side of the first end side or the second end side of the bore is It is configured to protrude from the piston part toward the closing part on the other side of the first end side or the second end side of the bore, In a state where the piston portion is located at a limit position or a predetermined position set on the other end side of the first end side or the second end side of the bore, the one end portion of the shaft-like valve is located on the first end side or the second end of the bore.
  • the shaft-shaped valve moves to either the first end side or the second end side of the bore by interfering with the blocking portion on the other side
  • FIG. 1 is an overall perspective view of the actuator according to the first embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view of the actuator according to the first embodiment.
  • FIG. 3 is a sectional view of the actuator according to the first embodiment and is a sectional view taken along the line II of FIG.
  • FIG. 4 is a partial cross-sectional view of the actuator (piston portion) of the first embodiment and includes a valve mechanism.
  • FIG. 5 is an overall perspective view of the actuator according to the second embodiment of the present invention.
  • FIG. 6 is a longitudinal sectional view of the actuator according to the second embodiment.
  • FIG. 7 is a cross-sectional view of the actuator according to the second embodiment, and is a cross-sectional view taken along the line II-II in FIG. FIG.
  • FIG. 8 is a partial cross-sectional view of the actuator (piston portion) of the second embodiment and includes a valve mechanism.
  • FIG. 9 is a partially enlarged sectional view of an actuator (valve mechanism) according to another embodiment of the present invention.
  • FIG. 10 is a longitudinal sectional view of an actuator according to another embodiment of the present invention.
  • the actuator includes a cylinder body 2 having an outer appearance having a first end surface and a second end surface opposite to the first end surface, and a piston rod 3 protruding from the first end surface of the cylinder body 2. And a rotating shaft 4 protruding from the second end surface of the cylinder body 2.
  • the actuator 1 includes a bore 20 extending in one direction as shown in FIG. 2, and the bore 20 having a first end and a second end opposite to the first end in one direction.
  • Rod portion having a cylinder body 2 including a formed cylinder portion 21 and a pair of closing portions 22 and 23 closing both ends of the bore 20 of the cylinder portion 21, and a distal end and a proximal end opposite to the distal end.
  • 30 is a rod part 30 inserted in a liquid-tight state into one of the pair of closing parts 22, 23, and a piston part 31 concentrically connected to the proximal end of the rod part 30.
  • a piston rod 31 including a piston portion 31 housed in the bore 20, a rotating shaft 4 inserted in a liquid-tight state into the other closing portion 23 of the pair of closing portions 22 and 23, and a cylinder body 2 is a return spring 5 built in Te, the piston unit 31 first end side of the bore 20: and a return spring 5 which urges the (one direction on one side the other of the closure part 23 side).
  • the inside of the bore 20 of the cylinder body 2 is filled with hydraulic oil (not shown). That is, the hydraulic oil is filled in both the first end side and the second end side (one area in one direction and the other area in one direction) of the bore 20 with the piston portion 31 of the cylinder body 2 as a boundary. Has been.
  • the cylinder body 2 has a bore 20 formed in a round hole shape. More specifically, the cylinder part 21 is formed in a true cylindrical shape. Thereby, the bore 20 is configured by an inner hole of the cylinder portion 21.
  • Each of the pair of closing portions 22 and 23 is a fitting portion 220 or 230 having a first end and a second end opposite to the first end, and is a circle fitted into the opening end portion of the cylinder portion 21. Plate-like fitting portions 220 and 230 and flange portions 221 and 231 provided continuously at the first ends of the fitting portions 220 and 230 are provided.
  • Ring grooves 222 and 232 are formed on the outer circumferences of the fitting portions 220 and 230 of the closing portions 22 and 23.
  • An annular sealing material (O-ring in this embodiment) S is fitted in the annular grooves 222 and 232.
  • the closing portions 22 and 23 are fitted into the opening end portion of the cylinder portion 21.
  • the flange portions 221 and 231 are fixed to the end surface of the cylinder portion 21 (screwed in this embodiment) in a state where the insertion portions 220 and 230 are inserted into the opening end portions of the cylinder portion 21. Thereby, both ends of the bore 20 of the cylinder portion 21 are sealed by the closing portions 22 and 23.
  • a rod insertion hole 223 concentric with the hole center of the bore 20 is formed in one of the pair of closing portions 22 and 23 (in the present embodiment, the closing portion 22 on the second end side of the bore 20). Is provided.
  • An annular groove 224 is formed on the inner peripheral surface that defines the rod insertion hole 223.
  • An annular sealing material (O-ring in this embodiment) S is fitted in the groove 224.
  • the other closing portion 23 (the closing portion 23 on the first end side of the bore 20 in this embodiment) of the pair of closing portions 22 and 23 is concentric with the hole center of the bore 20.
  • a rotation shaft insertion hole 233 is provided.
  • the rotating shaft insertion hole 233 is formed of a stepped hole set to have a larger diameter toward the outer side.
  • the rotation shaft insertion hole 233 includes the innermost shaft insertion hole 233a, the outermost bearing fitting hole 233b, and the seal fit between the shaft insertion hole 233a and the bearing fitting hole 233b. It is comprised with the hole 233c.
  • An annular seal member S1 is fitted into the seal fitting hole 233c, and an annular bearing B is fitted into the bearing fitting hole 233b.
  • the piston portion 31 of the piston rod 3 is housed in the bore 20 so as not to rotate around the axis.
  • a non-through shaft insertion hole 300 opened on the other closing portion 23 side is formed concentrically with the rotation center of the rotation shaft 4.
  • the piston rod 3 has a first end (one end) and a second end (the other end) opposite to the first end, and a cylinder whose first end is closed.
  • the inner hole of the rod part 30 and the inner hole of the piston part 31 continue, and the round-hole-shaped shaft insertion hole 300 is formed.
  • the outer diameter of the rod portion 30 is set to be approximately equal to the hole diameter of the rod insertion hole 223.
  • the outer diameter of the piston part 31 is set substantially equal to the hole diameter of the bore 20 of the cylinder part 21.
  • the piston portion 31 is concentric with the bore 20 and is provided in the bore 20.
  • an endless annular groove is formed on the entire outer periphery of the piston portion 31.
  • An O-ring is fitted in the groove.
  • the piston portion 31 is provided with a plunger hole (plunger internal hole) 301 that opens toward the shaft insertion hole 300.
  • Plural plunger holes 301 are provided at intervals in the circumferential direction.
  • the plunger hole 301 includes a plunger 302 that can move in the center direction of the plunger hole 301 and a biasing member (plunger biasing means) 303 that biases the plunger 302 toward the shaft insertion hole 300.
  • Plural plunger holes 301 are provided at intervals in the circumferential direction.
  • the plunger hole 301 includes a plunger 302 that can move in the center direction of the plunger hole 301 and a biasing member (plunger biasing means) 303 that biases the plunger 302 toward the shaft insertion hole 300. Has been.
  • the piston portion 31 is a first flow path 304 that opens toward the second end side of the bore 20 (the other side in one direction: the one closing portion 22 side), and is a first flow that communicates with the plunger hole 301.
  • a second flow path 305 that opens toward the passage 304 and the first end side of the bore 20 (one side in one direction: the other closed portion 23 side), and communicates with the plunger hole 301. And are provided.
  • Each of the first channel 304 and the second channel 305 is provided with check valves 306 and 307.
  • the check valves 306 and 307 allow the hydraulic oil to flow from the second end side of the bore 20 toward the first end side of the bore 20, while the second end of the bore 20 from the first end side of the bore 20. Blocks hydraulic fluid from flowing toward the end.
  • the piston portion 31 is provided with a plurality of through-holes penetrating in the radial direction around the shaft insertion hole 300. And the plug P is inserted by the opening part of the outer side of a through-hole. Thereby, a plurality of plunger holes 301 in a non-penetrating state are formed around the shaft insertion hole 300.
  • five plunger holes 301 are provided.
  • the five plunger holes 301 are arranged at regular intervals (every 60 °) except for one place. Therefore, in the piston portion 31 according to the present embodiment, one place between the plunger holes 301 is set to a 120 ° interval, and the other interval is set to 60 °.
  • a pin-shaped plunger 302 and a coil spring 303 as an urging member are concentrically housed.
  • the plunger 302 and the biasing member (coil spring) 303 are inserted into the through hole, and the plug P is fitted into the through hole.
  • the plunger 302 and the urging member (coil spring) 303 are in the plunger hole 301.
  • the plug P has a sealing material (O-ring) S (not numbered) fitted in an annular groove (not numbered) formed on the outer periphery. Thereby, the space between the inner peripheral surface of the through hole and the plug P is liquid-tight.
  • the urging member (coil spring) 303 is interposed between the plug P and the base end of the plunger 302. Thereby, the urging member (coil spring) 303 urges the plunger 302 toward the shaft insertion hole 300 (center of the piston portion 31).
  • the outer diameter of the plunger 302 is set to the same diameter as that of the plunger hole 301.
  • the plunger 302 is movable in its own axial direction in a state where the outer peripheral surface is in sliding contact with the inner peripheral surface of the plunger hole 301.
  • the tip of the plunger 302 is formed in a rounded hemisphere.
  • the urging member 303 urges the plunger 302 toward the shaft insertion hole 300. Thereby, the urging member 303 always brings the tip of the plunger 302 into contact with the outer periphery of the eccentric shaft portion 40 described later.
  • the bending allowance of the urging member 303 is set so that the tip end portion of the plunger 302 protrudes from the plunger hole 301 into the shaft insertion hole 300 and the whole plunger 302 is pushed into the plunger hole 301.
  • the first flow path 304 and the second flow path 305 are provided for each plunger 302 (plunger hole 301). Therefore, the check valves 306 and 307 are provided in the first flow path 304 and the second flow path 305, respectively.
  • Each of the first flow path 304 and the second flow path 305 communicates with a region where the urging member 303 of the plunger hole 301 is housed.
  • the first flow path 304 is formed to extend in one direction (the same direction as the bore 20).
  • the first flow path 304 includes a large-diameter hole 304a formed at an intermediate position, and small-diameter holes 304b and 304b formed on both sides of the large-diameter hole 304a.
  • the first flow path 304 has a stepped hole provided in the piston portion 31 and an inner hole of a cylindrical plug (not numbered) fitted in the opening of the stepped hole. It is formed by being continuous.
  • a spherical valve (hereinafter referred to as a ball valve) 308 having a larger diameter than the hole diameter of the small diameter hole 304b is disposed in the large diameter hole 304a of the first flow path 304.
  • a coil spring 309 that urges the ball valve 308 toward the second end side of the bore 20 is provided.
  • the check valve 306 of the first flow path 304 is formed.
  • the check valve 306 is biased by the coil spring 309 so that the ball valve 308 is pressed against an annular step formed at the boundary between the small diameter hole 304b and the large diameter hole 304a on the second end side of the bore 20.
  • the ball valve 308 closes the small diameter hole 304b.
  • the second channel 305 is formed to extend in one direction (the same direction as the bore 20).
  • the second flow path 305 includes a large-diameter hole 305a formed at an intermediate position, and small-diameter holes 305b and 305b formed on both sides of the large-diameter hole 305a.
  • the second flow path 305 includes a stepped hole formed in the piston portion 31 and an inner hole of a cylindrical plug (not numbered) fitted in the opening of the stepped hole. And is formed by continuation.
  • the large diameter hole 305b of the second flow path 305 includes a spherical valve (hereinafter referred to as a ball valve) 310 having a diameter larger than the diameter of the small diameter hole 305b, A coil spring 311 that urges the ball valve 310 toward the second end side of the bore 20 is housed.
  • the check valve 307 of the second flow path 305 is formed.
  • the check valve 307 is biased by the coil spring 311 so that the ball valve 310 presses against an annular step formed at the boundary between the small diameter hole 305b and the large diameter hole 305a on the second end side of the bore 20.
  • the ball valve 310 closes the small diameter hole 305b.
  • the check valve 307 of the second flow path 305 causes the ball valve 310 to be attached to the coil spring 311 by the fluid pressure of the hydraulic oil when the hydraulic oil tries to flow into the second flow path 305 from the plunger hole 301.
  • the bore 20 is pushed toward the first end side against the force.
  • the hydraulic oil can flow from the second end side of the bore 20 to the first end side of the bore 20.
  • the ball valve 310 is pressed against the step portion by the urging force of the coil spring 311. Thereby, the ball valve 310 closes the small diameter hole 305b. Therefore, the hydraulic oil is prevented from flowing into the plunger hole 301 from the first end side of the bore 20.
  • the actuator 1 is a guide bar 6 extending in one direction (axial center direction of the piston rod 3), and a position where the plunger 302 (plunger hole 301) in the piston portion 31 is bent.
  • the guide bar 6 inserted in is provided.
  • the piston portion 31 moves in one direction (axial direction) along the guide bar 6.
  • Both ends of the guide bar 6 are connected to a pair of closing portions 22 and 23.
  • the guide bar 6 is inserted between plungers 302 (plunger holes 301) arranged at intervals in the circumferential direction of the piston portion 31.
  • two guide bars 6 are provided.
  • the two guide bars 6 and 6 are disposed at symmetrical positions with respect to the shaft insertion hole 300.
  • the rotary shaft 4 has a first end (one end) and a second end (the other end) opposite to the first end as shown in FIG.
  • the rotating shaft 4 is inserted into a rotating shaft insertion hole 233 formed in the other closing portion 23.
  • the first end side of the rotating shaft 4 is located in the cylinder portion 21 (bore 20), and the second end side of the rotating shaft 4 is located outside the cylinder portion 21.
  • the first end side of the rotation shaft 4 is inserted into the shaft insertion hole 300.
  • An eccentric shaft portion 40 that is eccentric with respect to the rotation center of the rotation shaft 4 is provided in a range corresponding to at least the movement range of the piston portion 31 of the rotation shaft 4.
  • the rotating shaft 4 is a shaft main body 41 having a first end and a second end opposite to the first end, and is supported by the bearing B.
  • the shaft body portion 41 has an eccentric shaft portion 40 having a first end and a second end opposite to the first end, the first end being continuous with the first end of the shaft body portion 41,
  • An eccentric shaft portion 40 that is eccentric with respect to the shaft center of the main body portion 41, and a tip shaft portion 42 that is continuous with the second end of the eccentric shaft portion 40, the tip shaft portion 42 being concentric with the shaft body portion 41 ing.
  • the shaft main body 41 is a seal portion 41a to which a seal member S1 fitted to the other closing portion 23 is fitted, and a shaft support portion 41b that is continuous to the seal portion 41a.
  • the shaft support 41b includes an input portion 41c that is continuous with the shaft support 41b and is directly or indirectly connected to the output shaft of the motor.
  • the seal part 41a, the shaft support part 41b, and the input part 41c are formed concentrically.
  • the input portion 41 c is formed so as to protrude outward from the other closing portion 23 in a state where the shaft main body portion 41 is inserted through the rotation shaft insertion hole 233.
  • the eccentric shaft portion 40 is set to have a smaller diameter than the diameter of the shaft insertion hole 300 formed in the piston rod 3.
  • the eccentric shaft portion 40 according to the present embodiment is eccentric in a substantially parallel state with respect to the rotation center of the rotating shaft 4 (the shaft center of the shaft main body portion 41 supported by the bearing B).
  • the outermost outer peripheral surface in the eccentric direction moves (rotates) along the inner peripheral surface of the shaft insertion hole 300 when the entire rotation shaft 4 is rotated.
  • the eccentric shaft portion 40 is set to a length equal to or longer than the moving distance in the axial direction of the piston portion 31 (plunger 302) and is inserted into the shaft insertion hole 300 of the piston rod 3.
  • the tip shaft portion 42 is set to have a diameter substantially the same as the diameter of the shaft insertion hole 300 of the piston rod 3.
  • the distal end shaft portion 42 is configured such that the outer peripheral surface is in sliding contact with the inner peripheral surface of the shaft insertion hole 300 when the rotary shaft 4 is rotated.
  • a step is formed at the boundary portion between the distal end shaft portion 42 and the eccentric shaft portion 40.
  • An oil draining hole 420 penetrating in one direction (axial direction) is provided in the step (surface facing the shaft main body) portion of the tip shaft portion 42.
  • the return spring 5 is composed of a compression coil spring.
  • the return spring 5 is interposed between the one closing portion 22 and the piston portion 31.
  • the return spring 5 is fitted on the guide bar 6.
  • the return spring 5 biases the piston portion 31.
  • the return spring 5 is set to a length capable of pushing the piston portion 31 to a position where the piston portion 31 contacts the other closing portion 23 (a limit position on the first end side of the bore 20).
  • the actuator 1 includes a communication path 320 that communicates the first end side of the bore 20 and the second end side of the bore 20 with the piston portion 31 as a boundary, as shown in FIGS.
  • a valve mechanism 7 for switching between blocking and opening of the passage 320 is further provided.
  • the valve mechanism 7 includes a shaft-like valve 70 inserted in the communication path 320 so as to be movable in the axial direction.
  • the shaft-like valve 70 blocks the communication passage 320 while being positioned on the second end side of the bore 20, and one end portion on the second end side of the bore 20 is directed from the piston portion 31 toward the one closing portion 22. It is comprised so that it may protrude.
  • the communication path 320 is formed so as to penetrate the piston part 31 in one direction.
  • the communication path 320 has a large-diameter hole portion 320a provided at an intermediate position in one direction and a pair of medium-diameter hole portions provided concentrically with the large-diameter hole portion 320a and provided on both sides of the large-diameter hole portion 320a.
  • the communication path 320 according to the present embodiment is formed by a continuous through hole that penetrates the piston portion 31 and an inner hole of a cylindrical plug that is fitted to both end openings of the through hole. .
  • the shaft-like valve 70 is extended to both ends of the large-diameter shaft portion 70a so as to be concentric with the large-diameter shaft portion 70a, which is housed in the large-diameter hole portion 320a.
  • a pair of small-diameter shaft portions 70b and 70b inserted into the medium-diameter hole portion 320b and the small-diameter hole portion 320c are provided.
  • the length of the large-diameter shaft portion 70a in the axial center direction is set to be shorter than the length of the large-diameter hole portion 320a in the hole center direction.
  • the large diameter shaft portion 70a is slidable in the axial direction within the large diameter hole portion 320a.
  • the large-diameter shaft portion 70a is positioned on the second end side of the bore 20, and the one end surface of the large-diameter shaft portion 70a includes the medium-diameter hole portion 320b and the large-diameter hole portion 320a.
  • the communication path 320 is blocked by being in close contact with the step formed at the boundary.
  • Each of the pair of small diameter shaft portions 70b, 70b has a first end portion and a second end portion opposite to the first end portion and connected to the large diameter shaft portion 70a.
  • the length in the axial direction of one small diameter shaft portion 70b on at least the second end side of the bore 20 is such that the large diameter shaft portion 70a is on one end side of the large diameter hole portion 320a.
  • the first end portion (tip portion) is set so as to protrude outward from the piston portion 31 when it is on the second end side of the bore 20.
  • one small-diameter shaft portion 70b is long in the axial direction so that the first end portion (tip portion) protrudes outward from the piston portion 31 in a state where the large-diameter shaft portion 70a blocks the communication path 320.
  • the length of the other small-diameter shaft portion 70b in the axial direction is such that the first end portion (tip) of the bore 20 in the piston portion 31 is in a state where the large-diameter shaft portion 70a blocks the communication path 320.
  • the large diameter shaft portion 70a opens the communication path 320 (the large diameter shaft portion 70a is formed on the large diameter hole portion 320a).
  • the first end portion (tip portion) is set so as to protrude outward from the piston portion 31 on the other end side (when it is on the first end side of the bore 20).
  • the shaft-like valve 70 (the tip surface of the other small-diameter shaft portion 70 b) is pushed to the second end side of the bore 20 by the fluid pressure when hydraulic oil is supplied to the first end side of the bore 20. It is supposed to be. Thereby, the large-diameter shaft portion 70a blocks the communication path 320. Then, when the piston portion 31 reaches the limit position on the second end side of the bore 20, the valve mechanism 7 is configured such that one small diameter shaft portion 70 b comes into contact with the one closing portion 22, so Is pushed to the first end side of the bore 20. Thereby, the end surface of the large-diameter shaft portion 70a is separated from the step formed at the boundary between the medium-diameter hole portion 320b and the large-diameter hole portion 320a, and the communication path 320 is opened.
  • the valve mechanism 7 is configured so that when the piston portion 31 moves to the first end side of the bore 20 with the communication path 320 opened, the hydraulic oil that exists on the first end side of the bore 20. This resistance can prevent the shaft-like valve 70 from being pushed back to the second end side of the bore 20.
  • the valve mechanism 7 includes a valve urging member (valve urging means) 71 that urges the shaft-like valve 70 toward the first end side of the bore 20.
  • the valve urging member 71 is constituted by a coil spring.
  • the valve urging member 71 is housed inside the medium-diameter hole portion 320b in a state of being fitted on the small-diameter shaft portion 70b on the second end side of the bore 20.
  • the valve urging member 71 is opposite to the step formed at the boundary between the small diameter hole portion 320c and the medium diameter hole portion 320b and the step formed between the large diameter shaft portion 70a and the small diameter shaft portion 70b. Arranged to exert force.
  • the actuator 1 according to the present embodiment is as described above. Next, the operation of the actuator 1 having the above configuration will be described.
  • each of the plurality of plungers 302 is pushed toward the shaft insertion hole 300 by the urging of the urging member 303.
  • the tip of each plunger 302 is always in contact with the outer periphery of the eccentric shaft portion 40.
  • the eccentric shaft portion 40 having a smaller diameter than the shaft insertion hole 300 is eccentric with respect to the rotation center of the rotation shaft 4 (hole center of the shaft insertion hole 300).
  • at least any one plunger 302 is pushed into the plunger hole 301 by the eccentric shaft portion 40 (see FIG. 3).
  • the drive of the motor is transmitted to the rotating shaft 4.
  • the rotating shaft 4 rotates.
  • the piston rod 3 is maintained in a state where it is prevented from rotating by the guide bar 6 (non-rotating state).
  • the eccentric shaft portion 40 rotates around the rotation shaft 4 of the rotation shaft 4.
  • the eccentric shaft part 40 presses each of the plurality of plungers 302 arranged around the shaft insertion hole 300 in order and pushes them into the plunger hole 301.
  • the plunger 302 released from being pressed by the eccentric shaft portion 40 protrudes toward the shaft insertion hole 300 (eccentric shaft portion 40) by the biasing member 303.
  • each of the plurality of plungers 302 reciprocates within the plunger hole 301 at different timings. Accordingly, the volume of the space of the plunger hole 301 (the region where the plunger 302 does not exist) changes in volume. As a result, the hydraulic oil on the second end side of the bore 20 with the piston portion 31 as a boundary flows into the plunger hole 301 and is pushed out to the first end side of the bore 20 with the piston portion 31 as a boundary.
  • the first end side of the bore 20 is filled with the hydraulic oil.
  • the shaft insertion hole 300 has the same diameter over the entire length, the hydraulic oil that has flowed into the first end side of the bore 20 also enters the shaft insertion hole 300. Accordingly, hydraulic oil flows from the oil drain hole 420 provided on the step of the tip shaft portion 42 to the back side of the tip shaft portion 42.
  • the actuator 1 includes a valve mechanism 7. Therefore, when the piston rod 3 reaches the limit position on the second end side of the bore 20, the valve mechanism 7 opens the communication path 320, so that the hydraulic oil in the region on the first end side of the bore 20 is present. Flows into the region on the second end side of the bore 20. Thereby, the pressure in the area
  • the oil drain hole 420 in the axial direction is formed in the distal end shaft portion 42. Therefore, when the piston portion 31 moves to the first end side of the bore 20, the hydraulic oil in the shaft insertion hole 300 is pushed out to the region on the first end side of the bore 20 through the oil draining hole 420. Then, the air is sent out from the communication path 320 to the area on the second end side of the bore 20.
  • the actuator 1 configured as described above moves the piston rod 3 by applying the fluid pressure of the hydraulic oil to the piston portion 31 in the cylinder body 2 (in the bore 20). Thereby, the actuator 1 can exhibit the performance equivalent to a hydraulic cylinder.
  • the actuator 1 includes a configuration in which the hydraulic oil flows only in the cylinder body 2 and the hydraulic oil flows in the cylinder body 2. Thereby, the actuator 1 is reduced in size and weight.
  • the actuator 1 includes an external cylindrical cylinder body 2 having a first end face and a second end face opposite to the first end face, and a piston rod protruding from the first end face of the cylinder body 2. 3 and a rotating shaft 4 protruding from the second end face of the cylinder body 2.
  • the actuator 1 includes a bore 20 extending in one direction as shown in FIG. 6, and the bore 20 having a first end and a second end opposite to the first end in one direction.
  • Rod portion having a cylinder body 2 including a formed cylinder portion 21 and a pair of closing portions 22 and 23 closing both ends of the bore 20 of the cylinder portion 21, and a distal end and a proximal end opposite to the distal end.
  • 30 is a rod part 30 inserted in a liquid-tight state into one of the pair of closing parts 22, 23, and a piston part 31 concentrically connected to the proximal end of the rod part 30.
  • a piston rod 31 including a piston portion 31 housed in the bore 20, a rotating shaft 4 inserted in a liquid-tight state into the other closing portion 23 of the pair of closing portions 22 and 23, and a cylinder body 2 is a return spring 5 built in Te, the piston unit 31 first end side of the bore 20: and a return spring 5 which urges the (one direction on one side the other of the closure part 23 side).
  • the inside of the bore 20 of the cylinder body 2 is filled with hydraulic oil (not shown). That is, also in this embodiment, the first end side and the second end side of the bore 20 with the piston portion 31 of the cylinder body 2 as a boundary (the region on the first end side of the bore 20 and the second end side of the bore 20). (Area) is filled with hydraulic oil.
  • the cylinder body 2 has a bore 20 formed in a round hole shape. More specifically, the cylinder part 21 is formed in a true cylindrical shape. Thereby, the bore 20 is configured by the inner hole of the cylinder body 2.
  • Each of the pair of closing portions 22 and 23 is a fitting portion 220 and 230 having a first end and a second end opposite to the first end, and is a disc fitted into the opening end portion of the cylinder portion 21. Shaped fitting portions 220 and 230, and flange portions 221 and 231 provided continuously at the first ends of the fitting portions 220 and 230.
  • Ring grooves 222 and 232 are formed on the outer circumferences of the fitting portions 220 and 230 of the closing portions 22 and 23.
  • An annular sealing material (O-ring in this embodiment) S is fitted in the annular grooves 222 and 232.
  • the closing portions 22 and 23 are fitted into the opening end portion of the cylinder portion 21.
  • the flange portions 221 and 231 are fixed to the end surface of the cylinder portion 21 (screwed in this embodiment) in a state where the insertion portions 220 and 230 are inserted into the opening end portions of the cylinder portion 21. Thereby, both ends of the bore 20 of the cylinder portion 21 are sealed by the closing portions 22 and 23.
  • a hole is provided concentrically with the hole center of the bore 20. More specifically, one closed portion 22 has a round hole-shaped rod insertion hole 223 concentric with the hole center of the bore 20, and a non-circular guide for concentric continuous with the rod insertion hole 223.
  • a hole 225 is formed.
  • the rod insertion hole 223 is disposed on the outer surface side of the blocking portion 22 and opens outward.
  • the guide hole 225 is disposed on the inner surface side of the blocking portion 22 (insertion portion 220) and opens toward the bore 20.
  • a pair of guide surfaces 226 and 226 facing each other across the hole center are formed on the inner peripheral surface that defines the guide hole 225.
  • the guide surfaces 226 and 226 are configured as flat surfaces.
  • the guide surfaces 226 and 226 are formed over the entire length of the guide hole 225 in the hole center direction.
  • An annular groove 224 is formed on the inner peripheral surface that defines the rod insertion hole 223 in one closing portion 22.
  • An annular seal material (O-ring in this embodiment) S is fitted in the groove 224.
  • the other closing portion 23 (the closing portion 23 on the first end side of the bore 20 in this embodiment) of the pair of closing portions 22 and 23 is concentric with the hole center of the bore 20.
  • a rotation shaft insertion hole 233 is provided.
  • the rotating shaft insertion hole 233 is formed of a stepped hole set to have a larger diameter toward the outer side. More specifically, the rotation shaft insertion hole 233 includes an innermost shaft insertion hole 233a, an outermost bearing fitting hole 233b, and a seal between the shaft insertion hole 233a and the bearing fitting hole 233b. It is comprised with the fitting hole 233c.
  • An annular seal member S1 is fitted into the seal fitting hole 233c.
  • An annular bearing B is fitted into the bearing fitting hole 233b.
  • the rod portion of the piston rod 3 in a state where the piston portion 31 of the piston rod 3 is disposed in the cylinder portion 21 so that the rod portion 30 and the piston portion 31 of the piston rod 3 are concentric with the rotation center of the rotating shaft 4. 30 is inserted through one of the closed portions 22.
  • the piston rod 3 includes an axial rod portion 30 and a piston portion 31 concentrically connected to the rod portion 30.
  • the rod portion 30 is a rod main body 30a having a first end and a second end opposite to the first end, and the rod main body 30a and the rod main body 30a are concentric with the rod main body 30a. It is comprised by the shaft part 30b for non-rotation of a non-circular cross section provided in a row by the 1st end of 30a.
  • the outer diameter of the rod main body 30a is set to be approximately equal to the hole diameter of the rod insertion hole 223 formed in one of the closed portions 22.
  • a pair of flat surface portions 350, 350 extending in the axial direction are formed on the rotation shaft portion 30b with the axis of the rotation shaft portion 30b interposed therebetween.
  • the rotation shaft portion 30 b is inserted into a guide hole 225 formed in the one closing portion 22. That is, the rotation shaft portion 30b is for guiding so that the flat portions 350 and 350 are in sliding contact with the pair of guide surfaces 226 and 226 on the inner peripheral surface that defines the guide hole 225. It is inserted into the hole 225. Then, in the state where the piston portion 31 is located at the limit position on the first end side of the bore 20, the length of the rotation shaft portion 30b is such that a part on the rod body 30a side is located in the guide hole 225. Is set.
  • the outer diameter of the piston portion 31 is set substantially equal to the hole diameter of the bore 20.
  • the piston portion 31 is housed in the bore 20 so as to be concentric with the bore 20.
  • the piston part 31 according to the present embodiment is a piston body 31 a provided continuously to the rod part 30, and has an outer circumferential circular piston body 31 a concentric with the rotating shaft 4;
  • the piston body 31a is provided with a plunger hole (plunger internal hole) 301 that opens toward the inner peripheral surface (outside) of the outer ring portion 31b.
  • the plunger hole 301 includes a plunger 302 that can move in the center direction of the plunger hole 301, a biasing member (plunger biasing means) 303 that biases the plunger 302 toward the outer ring portion 31 b (radially outward), Is decorated.
  • the piston main body 31 a has a first flow path 304 that opens toward the second end side of the bore 20 (the other side in one direction: the one closed portion 22 side), and is in communication with the plunger hole 301.
  • a second flow path 305 that opens toward the passage 304 and the first end side of the bore 20 (one side in one direction: the other closed portion 23 side), and communicates with the plunger hole 301.
  • Each of the first channel 304 and the second channel 305 is provided with check valves 306 and 307.
  • the check valves 306 and 307 allow the hydraulic oil to flow from the second end side of the bore 20 toward the first end side of the bore 20, while the second end of the bore 20 from the first end side of the bore 20. Blocks hydraulic fluid from flowing toward the end.
  • the piston main body 31a is provided with a plurality of non-penetrating plunger holes 301 that are opened on the outer peripheral surface at intervals in the circumferential direction. .
  • six plunger holes 301 are provided, and are arranged at equal intervals (every 60 °).
  • an external pin-shaped plunger 302 and a coil spring 303 as an urging member are concentrically housed.
  • the outer diameter of the plunger 302 is set to the same diameter as that of the plunger hole 301. Accordingly, the plunger 302 can move in the axial direction of the plunger 302 in a state where the outer peripheral surface of the plunger 302 is in sliding contact with the inner peripheral surface of the plunger hole 301.
  • the tip of the plunger 302 is formed in a rounded hemisphere.
  • the urging member 303 urges the plunger 302 toward the outside (outer ring portion 31b). Thereby, the urging member 303 always brings the tip of the plunger 302 into contact with the inner peripheral surface of the outer ring portion 31b. Further, the bending allowance of the urging member 303 is set so that the distal end portion of the plunger 302 protrudes outward from the plunger hole 301 and the entire plunger 302 is pushed into the plunger hole 301. .
  • the back side of the plunger hole 301 is a small diameter hole. Thereby, the step part formed with the change of the hole diameter of the plunger hole 301 supports the urging member 303.
  • the first flow path 304 and the second flow path 305 are provided for each plunger 302 (plunger hole 301). Therefore, the check valves 306 and 307 are provided in the first flow path 304 and the second flow path 305, respectively.
  • the first flow path 304 is formed to extend in one direction (the same direction as the bore 20).
  • the first flow path 304 includes a large-diameter hole portion 304a formed on the plunger hole 301 side, and a small-diameter hole portion 304b continuous with the large-diameter hole portion 304a on the second end side of the bore 20 (on the one closing portion 22 side). Is provided.
  • the first flow path 304 small diameter hole portion 304b
  • the large-diameter hole 304a of the first flow path 304 includes a spherical valve (hereinafter referred to as a ball valve) 308 having a diameter larger than that of the small-diameter hole 304b, and a ball valve 308. And a coil spring 309 that urges the bore 20 toward the second end side of the bore 20. Thereby, the check valve 306 of the first flow path 304 is formed. The check valve 306 is urged by the coil spring 309 so that the ball valve 308 is pressed against an annular step formed at the boundary between the small diameter hole 304b and the large diameter hole 304a on the second end side of the bore 20. As a result, the ball valve 308 closes the small diameter hole 304b.
  • a ball valve spherical valve
  • the second flow path 305 is formed to extend in one direction.
  • the second flow path 305 includes a large-diameter hole 305a formed at an intermediate position, and small-diameter holes 305b and 305b formed on both sides of the large-diameter hole 305a.
  • the second flow path 305 includes a stepped hole formed in the piston portion 31 and an inner hole of a cylindrical plug (not numbered) fitted in the opening of the stepped hole. And is formed by continuation.
  • the large-diameter hole 305a of the second flow path 305 includes a spherical valve (hereinafter referred to as a ball valve) 310 having a diameter larger than that of the small-diameter hole 305b.
  • a coil spring 311 that urges the ball valve 310 toward the second end side of the bore 20 is housed.
  • the check valve 307 of the second flow path 305 is formed.
  • the check valve 307 is biased by the coil spring 311, and the ball valve 310 is pressed against an annular step formed at the boundary between the small diameter hole 305 b and the large diameter hole 305 a on the second end side of the bore 20.
  • the ball valve 310 closes the small diameter hole 305b.
  • the check valve 307 of the second flow path 305 causes the ball valve 310 to be attached to the coil spring 311 by the fluid pressure of the hydraulic oil when the hydraulic oil tries to flow into the second flow path 305 from the plunger hole 301.
  • the bore 20 is pushed toward the first end side against the force.
  • the hydraulic oil can flow from the second end side of the bore 20 to the first end side of the bore 20.
  • the ball valve 310 is pressed against the step portion by the urging force of the coil spring 311. Thereby, the ball valve 310 closes the small diameter hole 305b. Therefore, the hydraulic oil is prevented from flowing into the plunger hole 301 from the first end side of the bore 20.
  • the small diameter hole 305b on the plunger hole 301 side of the second flow path 305 is formed to have the same diameter and concentricity as the large diameter hole 304a of the first flow path 304, and the plunger hole It communicates with a small-diameter hole on the back side of 301. Accordingly, the small diameter hole 305b of the second flow path 305 and the large diameter hole 304a of the first flow path 304 constitute a continuous hole. Therefore, the coil spring 309 of the check valve 306 of the first flow path 304 is interposed between the ball valve 308 of the check valve 306 of the first flow path 304 and the ball valve 310 of the check valve 307 of the second flow path 305. It is disguised.
  • the outer diameter of the outer ring portion 31b is set substantially equal to the hole diameter of the bore 20.
  • the outer ring portion 31b is configured to be movable in one direction together with the piston main body 31a.
  • the outer ring portion 31b is provided to be rotatable around the piston body 31a with the axis of the rotation shaft 4 as the center of rotation.
  • the outer ring portion 31b is provided to be rotatable around the center of the piston main body 31a (the rotation center of the rotation shaft 4).
  • wheel part 31b is comprised by the eccentric hole by which the center was set in the position shifted
  • the inner hole (eccentric hole) of the outer ring portion 31b according to the present embodiment is formed in a round hole shape.
  • the center line of the inner hole of the outer ring portion 31b is eccentric in a state of being substantially parallel to the rotation center of the rotation shaft 4 (the axis center of the shaft main body portion supported by the bearing B).
  • the outer ring portion 31b is provided with a pair of annular portions 330 and 330 at both ends in one direction.
  • the pair of annular portions 330 and 330 extend radially inward.
  • a piston main body 31 a is interposed between the pair of annular portions 330 and 330.
  • an endless annular groove is formed on the entire outer periphery of the piston portion 31 (outer ring portion 31b). Then, an O-ring is fitted into the groove. Thereby, in the actuator 1 according to the present embodiment, the movement of the piston portion 31 in one direction (the axial center direction of the piston rod 3) is allowed, and the outer peripheral surface of the piston portion 31 and the inner peripheral surface of the cylinder portion 21 are allowed to move. The space is liquid-tight.
  • the rotary shaft 4 is inserted into a rotary shaft insertion hole 233 formed in the other closing portion 23.
  • One end side of the rotating shaft 4 is located in the cylinder part 21 (bore 20), and the other end side of the rotating shaft 4 is located outside.
  • the rotating shaft 4 according to the present embodiment includes a flange 43 disposed in the bore 20 and a guide bar 6 extending from the flange 43 toward the one closing portion 22.
  • the rotating shaft 4 includes a shaft main body portion 41 that is pivotally supported by the bearing B, and a flange 43 that is connected to one end of the shaft main body portion 41.
  • a flange 43 concentric with the shaft center 41 and a guide bar 6 extending from the outer peripheral portion of the flange 43 toward the one closed portion 22 are provided.
  • the shaft main body 41 includes a seal portion 41a to which a seal member S1 fitted to the other closing portion 23 is fitted, and a shaft support portion 41b that is provided continuously to the seal portion 41a.
  • the seal part 41a, the shaft support part 41b, and the input part 41c are formed concentrically.
  • the shaft main body 41 is formed such that the input portion 41 c protrudes outward from the other closing portion 23 in a state where the shaft main body 41 is inserted through the rotary shaft insertion hole 233.
  • the flange 43 is formed in a disc shape.
  • the flange 43 is disposed along the inner surface of the other closing portion 23.
  • the flange 43 is rotatable in the bore 20 with the hole center of the bore 20 as the center of rotation.
  • the guide bar 6 has a distal end and a proximal end opposite to the distal end and connected to the flange 43.
  • a pair of guide bars 6 are provided at intervals in the circumferential direction of the flange 43.
  • the pair of guide bars 6 are inserted through two locations of the outer ring portion 31b (see FIG. 7).
  • the cylinder body 2 is provided with an annular guide ring 44 for supporting the tip of the guide bar 6.
  • the guide ring 44 is disposed along the one closed portion 22 on the second end side of the bore 20. The outer periphery of the guide ring 44 is guided by the inner peripheral surface of the cylinder part 21.
  • the guide ring 44 is rotatable about the hole center of the bore 20 (the rotation center of the rotation shaft 4) as the rotation center.
  • the tip of the guide bar 6 is connected to the guide ring 44. That is, both ends of the guide bar 6 are supported by the flange 43 and the guide ring 44 of the rotating shaft 4. Thereby, generation
  • the return spring 5 is composed of a compression coil spring.
  • the return spring 5 is interposed between the one closing portion 22 and the piston portion 31.
  • the return spring 5 according to this embodiment is fitted on the guide bar 6.
  • the return spring 5 biases the piston portion 31.
  • the return spring 5 is set to a length capable of pushing the piston portion 31 to a position where the piston portion 31 contacts the other closing portion 23 (a limit position on the first end side of the bore 20).
  • the actuator 1 includes a communication passage 320 that communicates the first end side of the bore 20 and the second end side of the bore 20 with the piston portion 31 as a boundary, as shown in FIGS.
  • a valve mechanism 7 for switching between blocking and opening of the passage 320 is further provided.
  • the valve mechanism 7 includes a shaft-like valve 70 inserted in the communication path 320 so as to be movable in the axial direction.
  • the shaft-like valve 70 blocks the communication passage 320 while being positioned on the second end side of the bore 20, and one end portion on the second end side of the bore 20 is directed from the piston portion 31 toward the one closing portion 22. It is comprised so that it may protrude.
  • the communication path 320 is formed so as to penetrate the piston portion 31 (outer ring portion 31b) in one direction.
  • the communication path 320 is concentrically continuous with the large-diameter hole portion 320a provided in the middle of one direction and the large-diameter hole portion 320a, and one end side of the large-diameter hole portion 320a (the second end side of the bore 20).
  • the medium diameter hole 320b provided in the inner diameter hole, the small diameter hole 320c concentrically continuous with the medium diameter hole 320b, the concentric continuous with the large diameter hole 320a, and the other end side of the large diameter hole 320a (bore 20).
  • a small-diameter hole portion 320c provided on the first end side).
  • the shaft valve 70 includes a large diameter shaft portion 70a and a pair of small diameter shaft portions 70b and 70b extending from both ends of the large diameter shaft portion 70a.
  • the large diameter shaft portion 70a is internally provided in the large diameter hole portion 320a.
  • the length of the large-diameter shaft portion 70a in the axial center direction is set shorter than the length of the large-diameter hole portion 320a in the hole center direction.
  • the large diameter shaft portion 70a is slidable in the axial direction within the large diameter hole portion 320a.
  • the end surface of the large-diameter shaft portion 70a is formed between the medium-diameter hole portion 320b and the large-diameter hole portion 320a with the large-diameter shaft portion 70a positioned on the second end side of the bore 20.
  • the communication path 320 is blocked by being in close contact with the step formed at the boundary.
  • the pair of small diameter shaft portions 70b and 70b are provided concentrically with the large diameter shaft portion 70a.
  • the pair of small diameter shaft portions 70b and 70b are inserted through the small diameter hole portion 320c.
  • the length in the axial direction of at least one small diameter shaft portion 70b on the second end side of the bore 20 is such that the large diameter shaft portion 70a is on one end side of the large diameter hole portion 320a.
  • the tip portion is set so as to protrude outward from the piston portion 31 when it is on the second end side of the bore 20.
  • the length in the axial direction of one small-diameter shaft portion 70b is set so that the tip portion protrudes outward from the piston portion 31 in a state where the large-diameter shaft portion 70a blocks the communication path 320.
  • the length of the other small-diameter shaft portion 70b in the axial direction is such that the tip is directed to one side in one direction of the piston portion 31 with the large-diameter shaft portion 70a blocking the communication path 320 (the other obstruction)
  • the large diameter shaft portion 70a opens the communication path 320
  • the large diameter shaft portion 70a is the other end side of the large diameter hole portion 320a (the bore 20). It is set so as to protrude outward from the piston portion 31) when it is on the first end side).
  • the shaft-like valve 70 (the tip surface of the other small-diameter shaft portion 70 b) is pushed toward the second end side of the bore 20 by the fluid pressure when hydraulic oil is supplied to the first end side of the bore 20.
  • the large-diameter shaft portion 70a blocks the communication path 320.
  • the valve mechanism 7 is configured such that one small-diameter shaft portion 70 b comes into contact with the one closing portion 22 so that the entire shaft-shaped valve 70 is disposed.
  • the valve mechanism 7 When the piston mechanism 31 is moved to the first end side of the bore 20 with the communication path 320 opened, the valve mechanism 7 is driven by the resistance of the hydraulic oil existing on the first end side of the bore 20. Can be prevented from being pushed back to the second end side of the bore 20. That is, the valve mechanism 7 includes a valve urging member (valve urging means) 71 that urges the shaft-like valve 70 toward the first end side of the bore 20.
  • the valve urging member 71 is constituted by a coil spring.
  • the valve urging member 71 is housed in the medium-diameter hole portion 320b in a state of being fitted on the small-diameter shaft portion 70b on the second end side of the bore 20.
  • the valve urging member 71 is opposite to the step formed at the boundary between the small diameter hole portion 320c and the medium diameter hole portion 320b and the step formed between the large diameter shaft portion 70a and the small diameter shaft portion 70b. It is arranged to apply force.
  • the actuator 1 according to the present embodiment is as described above. Next, the operation of the actuator 1 having the above configuration will be described.
  • each of the plurality of plungers 302 is pushed toward the outer ring portion 31 b by the urging of the urging member 303.
  • the tip of each plunger 302 is always in contact with the inner peripheral surface of the outer ring portion 31b.
  • the eccentric hole (inner hole) of the outer ring portion 31 b is eccentric with respect to the rotation center of the rotating shaft 4.
  • at least any one plunger 302 is pushed into the plunger hole 301 by the inner peripheral surface of the outer ring portion 31b (see FIG. 7).
  • the drive of the motor is transmitted to the rotating shaft 4.
  • the rotating shaft 4 rotates. If it does so, rotational torque will be transmitted to the outer ring
  • the outer ring portion 31b rotates around the rotation shaft 4 and presses each of the plurality of plungers 302 arranged on the piston main body 31a in sequence into the plunger hole 301.
  • the plunger 302 released from pressing by the outer ring portion 31b protrudes outward (inner peripheral surface side of the outer ring portion 31b) by the biasing member 303.
  • each of the plurality of plungers 302 reciprocates within the plunger hole 301 by shifting the timing by rotating the rotating shaft 4. Accordingly, the volume of the space of the plunger hole 301 (the region where the plunger 302 does not exist) changes in volume. As a result, the hydraulic oil on the second end side of the bore 20 with the piston portion 31 as a boundary flows into the plunger hole 301 and is pushed out to the first end side of the bore 20 with the piston portion 31 as a boundary.
  • the first end side of the bore 20 is filled with the hydraulic oil.
  • the hydraulic oil is further fed in the state where the hydraulic oil is filled in the first end side of the bore 20 with the piston portion 31 as a boundary, the pressure on the first end side of the bore 20 with the piston portion 31 as a boundary increases. .
  • the piston portion 31 is pushed to the second end side of the bore 20 and the piston rod 3 moves in the axial direction.
  • the actuator 1 since the guide bar 6 is inserted through the outer ring portion 31b, the outer ring portion 31b moves along the guide bar 6 while rotating about the axis of the rotation shaft 4.
  • a region (bore 20) on the first end side of the bore 20 with the piston portion 31 as a boundary is hydraulic oil. It will be in a full state.
  • the actuator 1 includes a valve mechanism 7. Therefore, when the piston rod 3 reaches the limit position on the second end side of the bore 20, the valve mechanism 7 opens the communication path 320, so that the hydraulic oil in the region on the first end side of the bore 20 is present. Flows into the region on the second end side of the bore 20 and the pressure in the region on the first end side of the bore 20 (bore 20) decreases.
  • the actuator 1 reciprocates in the axial direction of the rod of the piston rod 3 by repeating the above operation.
  • the actuator 1 configured as described above moves the piston rod 3 by applying the fluid pressure of the hydraulic oil to the piston portion 31 in the cylinder body 2 (in the bore 20). Thereby, the actuator 1 can exhibit the performance equivalent to a hydraulic cylinder.
  • the actuator 1 includes a configuration in which the hydraulic oil flows only in the cylinder body 2 and the hydraulic oil flows in the cylinder body 2. Thereby, the actuator 1 is reduced in size and weight.
  • a plurality of plunger holes 301 are formed, and a plunger 302 and an urging member 303 are internally provided therein.
  • the present invention is not limited to this.
  • a single plunger hole 301 may be formed, and a plunger 302 and a biasing member 303 may be housed therein.
  • a first flow path 304 and a second flow path 305 in which check valves 306 and 307 are installed are provided correspondingly. Even in this way, the plunger 302 reciprocates in the plunger hole 301. Accordingly, the hydraulic oil is fed from the second end side of the bore 20 to the first end side of the bore 20, and the piston rod 3 moves in one direction (axial direction).
  • a plurality of plunger holes 301 are formed in the same manner as in the above embodiments, and a plunger 302 and a biasing member 303 are housed in these holes. What is necessary is just to provide the 1st flow path 304 and the 2nd flow path 305 by which the valves 306 and 307 were equipped.
  • the hydraulic oil is supplied to the first end side of the bore 20, whereby the piston portion 31 (piston rod 3) moves to the second end side of the bore 20 and the urging force of the return spring 5.
  • the piston portion 31 (piston rod 3) is pushed back to the first end side of the bore 20, but is not limited to this.
  • the piston portion 31 (piston rod 3) moves to the first end side of the bore 20 and the urging force of the return spring 5 causes the piston portion 31 to move.
  • the (piston rod 3) may be pushed back to the second end side of the bore 20.
  • the return spring 5 is provided on the first end side of the bore 20 of the cylinder body 2.
  • a first flow path 304 that opens toward the first end side of the bore 20 and communicates with the plunger hole 301
  • a second flow that opens toward the second end side of the bore 20 and communicates with the plunger hole 301
  • a path 305 is provided corresponding to the plunger hole 301. While allowing the hydraulic fluid to flow from the first end side of the bore 20 toward the second end side of the bore 20 in each of the first flow path 304 and the second flow path 305, A check valve 306.307 is provided to prevent the flow of hydraulic oil from the end side toward the first end side of the bore 20.
  • the valve mechanism 7 can be provided.
  • the shaft-like valve 70 blocks the communication path while being positioned on the first end side of the bore 20, and the one end portion on the first end side of the bore 20 extends from the piston portion 31 to the one side. It is comprised so that it may protrude toward a certain obstruction
  • the shaft-like valve 70 is in a state where the piston portion 31 is located at a limit position or a predetermined position set on the first end side of the bore 20, and one end portion of the shaft-like valve interferes with a closing portion on one side.
  • the shaft-like valve is configured to move to the second end side of the bore 20 to open the communication path.
  • the communication passage 320 that communicates the first end side of the bore 20 and the second end side of the bore 20 with the piston portion 31 as a boundary is provided to penetrate the piston portion 31.
  • the valve mechanism 7 is built in, it is not limited to this.
  • only the communication path 320 that communicates the first end side of the bore 20 and the second end side of the bore 20 with the piston portion 31 as a boundary may be provided in the piston portion 31. Even if it does in this way, when the piston part 31 comes to the limit position which exists in the 2nd end side of the bore 20, the substantially whole quantity of the hydraulic fluid in the bore 20 will exist in the 1st end side of the bore 20.
  • the pressure increase stops and the hydraulic oil on the first end side of the bore 20 flows from the communication path 320 to the second end side of the bore 20. Accordingly, the piston portion 31 is pushed back to the first end side of the bore 20 by the urging force of the return spring 5.
  • the piston portion 31 can be pushed back to the first end side of the bore 20 by the urging force of the return spring 5 without providing the communication path 320.
  • the first flow path 304 and the second flow path 305 are formed in the piston portion 31, and the ball valves 308 and 310 and the coil springs 309 and 311 are provided in the first flow path 304 and the second flow path 305, respectively.
  • these are built in and constitute the check valves 306 and 307, they are not limited thereto.
  • independent check valves 306 and 307 (check valves 306 and 307 assembled as a unit) may be incorporated in the first flow path 304 and the second flow path 305.
  • the communication passage 320 that connects the first end side of the bore 20 and the second end side of the bore 20 with the piston portion 31 as a boundary is formed in the piston portion 31, but is not limited thereto. It is not a thing.
  • the first end side of the bore 20 and the second end side of the bore 20 may be communicated with each other via a pipe disposed outside the cylinder portion 21.
  • a valve mechanism such as a gate valve may be provided on the pipe so that the pressure in the bore 20 can be released. If it does in this way, piston part 31 (piston rod 3) can be pushed back rapidly like the above-mentioned embodiment.
  • valve mechanism 7 is not limited to those described in the above embodiments.
  • the valve mechanism 7 has a bypass flow path 321 communicating with the pressure side bore 20 (in the above embodiment, the first end side of the bore 20).
  • a large-diameter shaft portion 70a is formed at an intermediate position of the shaft-like valve 70 while being connected to an intermediate position of the passage 320, and an outer peripheral surface of the large-diameter shaft portion 70a is in sliding contact with an inner peripheral surface of the communication passage 320. You may make it move to an axial direction.
  • bypass flow path 321 communicates with the bore 20 (region) on the pressurization side.
  • the bypass flow path 321 communicates with the negative pressure side bore 20.
  • the valve mechanism 7 having the above-described configuration when the valve mechanism 7 having the above-described configuration is housed in the piston portion 31, the small diameter projecting toward the bore 20 on the negative pressure side (the second end side of the bore 20 in the above embodiment) with respect to the large-diameter shaft portion 70a.
  • a shaft portion 70b is provided, and when the piston portion 31 reaches the limit position on the negative pressure side, the small diameter shaft portion 70b comes into contact with the cylinder body 2 (blocking portion 22), and the large diameter shaft portion 70a) is connected to the bore 20 on the pressure side. If it is made to move toward, the same operations and effects as in the above embodiment can be obtained.
  • the rotary shaft 4 is constituted by the shaft main body portion 41 inserted into the other closing portion 23, the flange 43 disposed in the cylinder main body 2, and the guide bar 6 extended to the flange 43.
  • the guide bar 6 is inserted through the outer ring portion 31b, the present invention is not limited to this.
  • the embodiment shown in FIG. 1 the embodiment shown in FIG.
  • the actuator 1 shown in FIG. 10 is based on the premise that the piston portion 31 is configured in the same manner as in the second embodiment. Therefore, here, the description of the piston part 31 is substituted for the description of the second embodiment.
  • the rod portion 30 of the piston rod 3 is inserted into the cylinder body 2 (one closing portion 22) so as to be rotatable around the axis.
  • a rotating shaft 4 that is concentric with the center of the bore 20 is provided on the outer surface of the other closing portion 23.
  • a guide bar 6 extending toward the one closing portion 22 is provided on the inner surface of the other closing portion 23.
  • the guide bar 6 is inserted through the outer ring portion 31b.
  • the return spring 5 is fitted on the rod portion 30. However, the return spring 5 only needs to be able to urge the piston portion 31, and may be externally fitted to the guide bar 6 or may be disposed at other locations.
  • the plunger 302 is switched between a state in which the plunger 302 is pushed into the plunger hole 301 by pressing by the inner peripheral surface of the outer ring portion 31b and a state in which the plunger 302 protrudes outward from the plunger hole 301 by urging of the urging member 303. Then, as the plunger 302 moves in and out, the space of the plunger hole 301 (the region in which the urging member 303 is housed) changes in volume. Accordingly, the hydraulic oil on the second end side of the bore 20 with the piston portion 31 as a boundary flows into the plunger hole 301 and is pushed out to the first end side of the bore 20 with the piston portion 31 as a boundary. Thereby, the pressure at the first end of the bore 20 increases, and the piston rod 3 moves to the second end of the bore 20.
  • the piston rod 3 is pushed back to the first end side of the bore 20 by the urging force of 5.
  • the actuator 1 shown in FIG. 10 also includes the communication path 320 and the valve mechanism 7, the valve mechanism 7 opens the communication path 320, so that the piston rod 3 is bored at a high speed by the urging force of the return spring 5. Is pushed back to the first end side. Therefore, also in the actuator 1 having the above configuration, the piston rod 3 reciprocates in one direction by repeating the above operation.
  • valve mechanism 7 is provided in the outer ring portion 31b, but the present invention is not limited to this.
  • the communication passage 320 may be formed in the piston body 31a, and the valve mechanism 7 may be built in the communication passage 320.
  • the guide ring 44 for supporting the guide bar 6 is provided, but the present invention is not limited to this.
  • the guide bar 6 may be supported only by the flange 43 of the rotating shaft 4.
  • it is not limited to the one provided with two guide bars 6.
  • the guide bar 6 may be provided with one or three or more guide bars.
  • the actuator according to the present invention may be one in which a motor is integrated, or one in which a speed reducer and a motor are integrated.
  • the cylinder body may be formed integrally with a case of the device and configured so as not to be separated from the device.
  • the actuator according to the present invention can be employed not only in the field of hand-held tools but also in various machine fields such as the automobile field and the industrial machine field.
  • Energizing Member (coil spring: plunger urging means) 304 ... first flow path 304a ... large diameter hole 304b ... small diameter hole 305 ... second flow path 305a ... large diameter hole 305b ... small diameter hole 306 307: Check valve, 308, 310 ... Ball valve, 309, 311 ... Coil spring, 320 ... Communication path, 320a ... Large diameter hole, 320b ... Medium diameter hole, 320c ... Small diameter hole, 321 ... Bypass flow path , 330 ... annular part, 350 ... flat part, 420 ... oil draining hole, B ... bearing, P ... plug, S ... sealing material, S1 ... sealing member

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Actuator (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Shearing Machines (AREA)
  • Reciprocating Pumps (AREA)

Abstract

Provided is an actuator which comprises a rotation shaft inserted in a blocking part that blocks a cylinder bore filled with a working fluid. A piston rod comprises a concentric shaft insertion hole. A plurality of plunger holes which are open toward the shaft insertion hole are formed at intervals in the circumferential direction of a piston part, and plungers and urging parts are disposed in the plunger holes. The plungers can move in the direction of the center of the plunger holes and the urging parts urge the plungers toward the shaft insertion hole. A plurality of first flow passages, which open at an end side of the piston part to communicate with the plunger holes, and a plurality of second flow passages, which open at the other end side of the piston part to communicate with the plunger holes, are provided corresponding to the plungers. A check valve is disposed in each of the first and second flow passages to allow the working fluid to flow in one direction toward one side but prevent the working fluid from flowing in the other direction toward the other side. A portion of the rotation shaft inserted in the shaft insertion hole and corresponding to at least the axial movement range of the piston part is provided with an eccentric shaft part having a center at a position not in alignment with the rotation center of the rotation shaft.

Description

アクチュエータActuator
 本発明は、回転運動を直線運動に変換するアクチュエータに関する。より詳しくは、本発明は、モータ駆動による回転運動を直線往復動に変換して出力するアクチュエータに関する。 The present invention relates to an actuator that converts rotational motion into linear motion. More specifically, the present invention relates to an actuator that converts a rotary motion driven by a motor into a linear reciprocating motion and outputs the same.
 従来から、各種機器を動作させるためのアクチュエータとして、油圧シリンダが提供されている。 Conventionally, hydraulic cylinders have been provided as actuators for operating various devices.
 油圧シリンダは、第一端と該第一端の反対側の第二端とを有する筒状のシリンダ本体と、第一端と該第一端の反対側の第二端とを有する棒状のロッド、及びロッドの第一端に連結された大径のピストンを含むピストンロッドとを備える。ピストンロッドのピストン及びロッドの一部は、シリンダ本体に同心で内装される。 The hydraulic cylinder has a cylindrical cylinder body having a first end and a second end opposite to the first end, and a rod-shaped rod having a first end and a second end opposite to the first end. And a piston rod including a large-diameter piston connected to the first end of the rod. The piston of the piston rod and a part of the rod are concentrically housed in the cylinder body.
 油圧シリンダは、ピストンを境にしたシリンダ本体の第一端側又は第二端側の何れか一方側の内部空間に対して作動油が供給される。ピストンは、シリンダ本体内に供給される作動油の流体圧の作用で軸線方向に押される。これにより、ピストンロッド全体が軸線方向に軸力を発生させつつ移動する。なお、一般的な油圧シリンダは、ピストンを境にしたシリンダ本体の第一端側の内部空間に作動油を供給することでピストンロッドが第二端側に移動し、シリンダ本体の第二端側の内部空間に作動油を供給することでピストンロッドが第一端側に移動するようになっている。しかしながら、油圧シリンダには、この他に、ピストンを境にしたシリンダ本体の第一端側又は第二端側の何れか一方側の内部空間にピストンを付勢するリターンスプリングが内装されたものがある。この種の油圧シリンダは、シリンダ本体の第一端側又は第二端側の何れか他方の内部空間に作動油が供給されることで、ピストンロッドがシリンダ本体の第一端側又は第二端側の何れか一方側に移動し、リターンスプリングの付勢力でピストンロッドがシリンダ本体の第一端側又は第二端側の何れか他方側に移動する。 The hydraulic cylinder is supplied with hydraulic oil to the internal space on either the first end side or the second end side of the cylinder body with the piston as a boundary. The piston is pushed in the axial direction by the action of the fluid pressure of the hydraulic oil supplied into the cylinder body. As a result, the entire piston rod moves while generating an axial force in the axial direction. Note that a general hydraulic cylinder moves the piston rod to the second end side by supplying hydraulic oil to the internal space on the first end side of the cylinder body with the piston as a boundary, and the second end side of the cylinder body The piston rod is moved to the first end side by supplying hydraulic oil to the inner space of the piston rod. However, in addition to this, some hydraulic cylinders have a return spring that biases the piston in the internal space on either the first end side or the second end side of the cylinder body with the piston as a boundary. is there. In this type of hydraulic cylinder, the hydraulic oil is supplied to the other internal space on the first end side or the second end side of the cylinder body, so that the piston rod is connected to the first end side or the second end of the cylinder body. The piston rod moves to either the first end side or the second end side of the cylinder body by the biasing force of the return spring.
 定常的に設置される機器に油圧シリンダが搭載される場合、油圧シリンダに作動油を供給するための油圧ユニットが油圧シリンダと異なる位置に別途設置される。これに対し、持ち運びされるハンディー装置(例えば、リベットをかしめ処理するためのリベッタや、金属製の棒材を切断するバーカッタ等の手持ち工具等)に油圧シリンダが搭載される場合、機器全体のサイズを小型化するために、油圧ユニットが油圧シリンダ(シリンダ本体)に一体的に連結される(例えば、特許文献1参照)。 When a hydraulic cylinder is mounted on equipment that is regularly installed, a hydraulic unit for supplying hydraulic oil to the hydraulic cylinder is separately installed at a position different from the hydraulic cylinder. On the other hand, when a hydraulic cylinder is mounted on a handy device to be carried (for example, a riveter for caulking a rivet or a hand-held tool such as a bar cutter for cutting a metal bar), the size of the entire device In order to reduce the size, a hydraulic unit is integrally connected to a hydraulic cylinder (cylinder body) (see, for example, Patent Document 1).
 ところで、機器を動作させるアクチュエータとして油圧シリンダが採用される場合、上述の如く、油圧ユニットが必要である。そのため、油圧シリンダ以外に油圧ユニットを配置するためのスペースの確保が必要である。すなわち、油圧ユニットは、作動油を貯留するためのタンクや、該タンク内の作動油を送り出すポンプ、ポンプを動作させるモータ等を備える。そのため、油圧ユニットの占有スペースが大きく、各種機器を動作させるアクチュエータに油圧シリンダが採用されると、機器全体が大きくなるといった問題がある。 By the way, when a hydraulic cylinder is employed as an actuator for operating equipment, a hydraulic unit is required as described above. Therefore, it is necessary to secure a space for arranging the hydraulic unit in addition to the hydraulic cylinder. That is, the hydraulic unit includes a tank for storing hydraulic oil, a pump for sending hydraulic oil in the tank, a motor for operating the pump, and the like. For this reason, the space occupied by the hydraulic unit is large, and when the hydraulic cylinder is employed as an actuator for operating various devices, there is a problem that the entire device becomes large.
 特に、持ち運びされるハンディー装置(例えば、リベットをかしめ処理するためのリベッタや、金属製の棒材を切断するバーカッタ等の手持ち工具等)に油圧シリンダが採用された場合、油圧ユニットが大型化や重量化の原因となり、ハンドリング性が害されるといった問題がある。 In particular, when a hydraulic cylinder is used in a handy device to be carried (for example, a riveter for caulking a rivet or a hand-held tool such as a bar cutter for cutting a metal bar), the hydraulic unit becomes larger. There is a problem that the weight is increased and the handling property is impaired.
日本国特開平7-223113号公報Japanese Unexamined Patent Publication No. 7-223113
 そこで、本発明は、斯かる実情に鑑み、油圧シリンダと同等の性能を発揮しつつも小型化及び軽量化することのできるアクチュエータを提供することを課題とする。 Therefore, in view of such a situation, an object of the present invention is to provide an actuator that can be reduced in size and weight while exhibiting performance equivalent to that of a hydraulic cylinder.
 本発明に係るアクチュエータは、
 一方向に延びるボアであって、一方向に第一端とその反対側の第二端とを有するボアが形成されたシリンダ部と、該シリンダ部のボアの両端を閉塞する一対の閉塞部とを含むシリンダ本体と、
 先端と該先端の反対側の基端とを有するロッド部であって、一対の閉塞部のうちの一方の閉塞部に液密状態で挿通されたロッド部と、該ロッド部の基端に同心で連結されたピストン部であって、ボアに内装されたピストン部とを含むピストンロッドと、
 シリンダ本体に内装されたリターンスプリングであって、ピストン部をボアの第一端側又は第二端側の何れか一方側に付勢するリターンスプリングと、を備え、
 ピストン部を境にしたボアの第一端側又は第二端側の何れか一方側に作動油が供給されることで、ピストンロッドがボアの第一端側又は第二端側の何れか他方側に移動し、リターンスプリングの付勢で、ピストンロッドがボアの第一端側又は第二端側の何れか一方側に移動するように構成されたアクチュエータにおいて、
 一対の閉塞部のうちの他方の閉塞部に液密状態で挿通された回転軸を備え、
 ボア内に作動油が充填され、
 ピストンロッドのピストン部が軸心回りで回転不能にボアに内装され、
 ピストンロッドには、
 他方の閉塞部側で開口した非貫通状態の軸挿入穴が回転軸の回転中心と同心で形成され、
 ピストン部には、
 軸挿入穴に向けて開口した少なくとも一つのプランジャ穴と、
 ボアの第一端側又は第二端側の何れか他方側に向けて開口した第一流路であって、プランジャ穴に連通する第一流路と、
 ボアの第一端側又は第二端側の何れか一方側に向けて開口した第二流路であって、プランジャ穴に連通する第二流路と、が設けられ、
 プランジャ穴には、
 該プランジャ穴の穴中心方向で移動可能なプランジャと、
 該プランジャを軸挿入穴に向けて付勢する付勢部材と、が内装され、
 第一流路及び第二流路のそれぞれには、
 ボアの第一端側又は第二端側の何れか他方側からボアの第一端側又は第二端側の何れか一方側に向けての作動油の流通を許容し、ボアの第一端側又は第二端側の何れか一方側からボアの第一端側又は第二端側の何れか他方側に向けての作動油の流通を阻止する逆止弁が内装され、
 回転軸は、
 軸挿入穴に挿入され、少なくともピストン部の移動範囲と対応する範囲に当該回転軸の回転中心に対して偏心した偏心軸部を備え、
 プランジャが付勢部材による付勢で偏心軸部に常時接触するように設けられる。
The actuator according to the present invention is
A bore extending in one direction, in which a bore having a first end and a second end opposite to the first end is formed in one direction, and a pair of closing portions closing both ends of the bore of the cylinder portion A cylinder body including
A rod portion having a distal end and a proximal end opposite to the distal end, the rod portion being inserted in a liquid-tight manner into one of the closed portions, and concentric with the proximal end of the rod portion A piston rod connected to the piston rod, the piston rod including a piston portion built in the bore;
A return spring housed in the cylinder body, comprising a return spring that urges the piston portion to either the first end side or the second end side of the bore,
When the hydraulic oil is supplied to either the first end side or the second end side of the bore with the piston portion as a boundary, the piston rod is either the first end side or the second end side of the bore. In the actuator configured such that the piston rod moves to either the first end side or the second end side of the bore by the bias of the return spring,
A rotating shaft inserted in a liquid-tight state into the other closing part of the pair of closing parts,
The bore is filled with hydraulic oil,
The piston part of the piston rod is built in the bore so that it cannot rotate around the axis,
The piston rod
A non-through shaft insertion hole opened on the other closing portion side is formed concentrically with the rotation center of the rotation shaft,
In the piston part,
At least one plunger hole opened toward the shaft insertion hole;
A first channel opened toward the other side of the first end side or the second end side of the bore, the first channel communicating with the plunger hole;
A second flow path opened toward either one of the first end side or the second end side of the bore, and a second flow path communicating with the plunger hole; and
In the plunger hole,
A plunger movable in the hole center direction of the plunger hole;
An urging member that urges the plunger toward the shaft insertion hole;
In each of the first channel and the second channel,
The flow of hydraulic oil from either the first end side or the second end side of the bore to the one side of the first end side or the second end side of the bore is allowed, and the first end of the bore A check valve that prevents the flow of hydraulic oil from either one of the second end side or the second end side toward the other end of the first end side or the second end side of the bore,
The rotation axis is
An eccentric shaft portion that is inserted into the shaft insertion hole and is eccentric with respect to the rotation center of the rotation shaft at least in a range corresponding to the movement range of the piston portion,
The plunger is provided so as to always contact the eccentric shaft portion by urging by the urging member.
 この場合、
 プランジャ穴は、
 ピストン部の周方向に間隔をあけて複数設けられ、
 第一流路及び第二流路は、
 複数のプランジャ穴のそれぞれに対応して複数設けられ、
 プランジャ及び付勢部材は、
 複数のプランジャ穴のそれぞれに内装され、
 逆止弁は、
 複数の第一流路及び複数の第二流路のそれぞれに内装され、
 複数のプランジャのそれぞれは、
 付勢部材による付勢で偏心軸部に常時接触するように設けられる、ようにすることができる。
in this case,
The plunger hole
A plurality of piston parts are provided at intervals in the circumferential direction,
The first channel and the second channel are
A plurality are provided corresponding to each of the plurality of plunger holes,
The plunger and biasing member
Built in each of the multiple plunger holes,
The check valve
Each of the plurality of first flow paths and the plurality of second flow paths are internally provided,
Each of the multiple plungers
The biasing member may be provided so as to always contact the eccentric shaft portion by biasing by the biasing member.
 本発明に係るアクチュエータは、
 一方向に延びるボアであって、一方向に第一端とその反対側の第二端とを有するボアが形成されたシリンダ部と、該シリンダ部のボアの両端を閉塞する一対の閉塞部とを含むシリンダ本体と、
 先端と該先端の反対側の基端とを有するロッド部であって、一対の閉塞部のうちの一方の閉塞部に液密状態で挿通されたロッド部と、該ロッド部の基端に同心で連結されたピストン部であって、ボアに内装されたピストン部とを含むピストンロッドと、
 シリンダ本体に内装されたリターンスプリングであって、ピストン部をボアの第一端側又は第二端側の何れか一方側に付勢するリターンスプリングと、を備え、
 ピストン部を境にしたボアの第一端側又は第二端側の何れか一方側に作動油が供給されることで、ピストンロッドがボアの第一端側又は第二端側の何れか他方側に移動し、リターンスプリングの付勢で、ピストンロッドがボアの第一端側又は第二端側の何れか一方側に移動するように構成されたアクチュエータにおいて、
 一対の閉塞部のうちの他方の閉塞部に液密状態で挿通された回転軸を備え、
 ボアが丸穴で構成され、
 ボア内に作動油が充填され、
 ピストン部は、
 ロッド部に連続して設けられたピストン本体であって、回転軸の回転中心と同心をなす外周円形状のピストン本体と、
 内穴を画定した内周面を有する外輪部であって、ピストン本体の外周を包囲する環状の外輪部と、を備え、
 外輪部の内穴が回転軸の回転中心からずれた位置に中心が設定された偏心穴で構成され、
 外輪部は、
 ピストン本体と一緒に一方向に移動可能に構成されるとともに回転軸の回転中心と同心で回転可能に設けられ、
 ピストン本体には、
 外輪部の内周面に向けて開口した少なくとも一つのプランジャ穴と、
 ボアの第一端側又は第二端側の何れか他方側に向けて開口した第一流路であって、プランジャ穴に連通する第一流路と、
 ボアの第一端側又は第二端側の何れか一方側に向けて開口した第二流路であって、プランジャ穴に連通する第二流路と、が設けられ、
 プランジャ穴には、
 該プランジャ穴の穴中心方向で移動可能なプランジャと、
 プランジャを外輪部に向けて付勢する付勢部材と、が内装され、
 第一流路及び第二流路のそれぞれには、
 ボアの第一端側又は第二端側の何れか他方側からボアの第一端側又は第二端側の何れか一方側に向けての作動油の流通を許容し、ボアの第一端側又は第二端側の何れか一方側からボアの第一端側又は第二端側の何れか他方側に向けての作動油の流通を阻止する逆止弁が内装され、
 回転軸は、
 ボア内に配置されたフランジと、
 該フランジから一方の閉塞部に向けて延出するガイドバーと、を備え、
 該ガイドバーは、
 外輪部に挿通され、外輪部に対してボアの周方向の回転トルクが伝達可能に構成されるとともに、外輪部を一方向に案内可能に構成され、
 プランジャが付勢部材による付勢で外輪部の内周面に常時接触するように設けられる。
The actuator according to the present invention is
A bore extending in one direction, in which a bore having a first end and a second end opposite to the first end is formed in one direction, and a pair of closing portions closing both ends of the bore of the cylinder portion A cylinder body including
A rod portion having a distal end and a proximal end opposite to the distal end, the rod portion being inserted in a liquid-tight manner into one of the closed portions, and concentric with the proximal end of the rod portion A piston rod connected to the piston rod, the piston rod including a piston portion built in the bore;
A return spring housed in the cylinder body, comprising a return spring that urges the piston portion to either the first end side or the second end side of the bore,
When the hydraulic oil is supplied to either the first end side or the second end side of the bore with the piston portion as a boundary, the piston rod is either the first end side or the second end side of the bore. In the actuator configured such that the piston rod moves to either the first end side or the second end side of the bore by the bias of the return spring,
A rotating shaft inserted in a liquid-tight state into the other closing part of the pair of closing parts,
The bore is composed of round holes,
The bore is filled with hydraulic oil,
The piston part
A piston body continuously provided on the rod portion, and an outer circumferential circular piston body concentric with the rotation center of the rotation shaft;
An outer ring portion having an inner peripheral surface defining an inner hole, and an annular outer ring portion surrounding the outer periphery of the piston body,
The inner ring of the outer ring part is composed of an eccentric hole whose center is set at a position deviated from the rotation center of the rotating shaft,
The outer ring is
It is configured to be movable in one direction together with the piston body and is provided to be rotatable concentrically with the rotation center of the rotation shaft,
The piston body
At least one plunger hole opened toward the inner peripheral surface of the outer ring portion;
A first channel opened toward the other side of the first end side or the second end side of the bore, the first channel communicating with the plunger hole;
A second flow path opened toward either one of the first end side or the second end side of the bore, and a second flow path communicating with the plunger hole; and
In the plunger hole,
A plunger movable in the hole center direction of the plunger hole;
A biasing member that biases the plunger toward the outer ring portion,
In each of the first channel and the second channel,
The flow of hydraulic oil from either the first end side or the second end side of the bore to the one side of the first end side or the second end side of the bore is allowed, and the first end of the bore A check valve that prevents the flow of hydraulic oil from either one of the second end side or the second end side toward the other end of the first end side or the second end side of the bore,
The rotation axis is
A flange located in the bore;
A guide bar extending from the flange toward one closing portion,
The guide bar
It is inserted into the outer ring part, and is configured to be able to transmit the rotational torque in the circumferential direction of the bore to the outer ring part, and is configured to be able to guide the outer ring part in one direction,
The plunger is provided so as to be always in contact with the inner peripheral surface of the outer ring portion by urging by the urging member.
 本発明に係るアクチュエータは、
 一方向に延びるボアであって、一方向に第一端とその反対側の第二端とを有するボアが形成されたシリンダ部と、該シリンダ部のボアの両端を閉塞する一対の閉塞部であって、それぞれが互いに対向する内面と、内面の反対側の外面とを有する一対の閉塞部とを含むシリンダ本体と、
 先端と該先端の反対側の基端とを有するロッド部であって、一対の閉塞部のうちの一方の閉塞部に液密状態で挿通されたロッド部と、該ロッド部の基端に同心で連結されたピストン部であって、ボアに内装されたピストン部とを含むピストンロッドと、
 シリンダ本体に内装されたリターンスプリングであって、ピストン部をボアの第一端側又は第二端側の何れか一方側に付勢するリターンスプリングと、を備え、
 ピストン部を境にしたボアの第一端側又は第二端側の何れか一方側に作動油が供給されることで、ピストンロッドがボアの第一端側又は第二端側の何れか他方側に移動し、リターンスプリングの付勢で、ピストンロッドがボアの第一端側又は第二端側の何れか一方側に移動するように構成されたアクチュエータにおいて、
 一対の閉塞部のうちの他方の閉塞部の外面に突設された回転軸であって、ボアの中心と同心をなす回転軸と、
 他方の閉塞部の内面に一方の閉塞部に向けて延出されたガイドバーと、を備え、
 ボアが丸穴で構成され、
 ボア内に作動油が充填され、
 ピストン部は、
 ロッド部に連続して設けられたピストン本体であって、回転軸の回転中心と同心をなす外周円形状のピストン本体と、
 内穴を画定した内周面を有する外輪部であって、ピストン本体の外周を包囲する環状の外輪部と、を備え、
 外輪部の内穴が回転軸の回転中心からずれた位置に中心が設定された偏心穴で構成され、
 外輪部は、
 ピストン本体と一緒に一方向に移動可能に構成されるとともに回転軸の回転中心と同心で回転可能に設けられ、
 ピストン本体には、
 外輪部の内周面に向けて開口した少なくとも一つのプランジャ穴と、
 ボアの第一端側又は第二端側の何れか他方側に向けて開口した第一流路であって、プランジャ穴に連通する第一流路と、
 ボアの第一端側又は第二端側の何れか一方側に向けて開口した第二流路であって、プランジャ穴に連通する第二流路と、が設けられ、
 プランジャ穴には、
 該プランジャ穴の穴中心方向で移動可能なプランジャと、
 該プランジャを外輪部に向けて付勢する付勢部材と、が内装され、
 第一流路及び第二流路のそれぞれには、
 ボアの第一端側又は第二端側の何れか他方側からボアの第一端側又は第二端側の何れか一方側に向けての作動油の流通を許容し、ボアの第一端側又は第二端側の何れか一方側からボアの第一端側又は第二端側の何れか他方側に向けての作動油の流通を阻止する逆止弁が内装され、
 ガイドバーは、
 外輪部に挿通され、外輪部に対してボアの周方向の回転トルクが伝達可能に構成されるとともに、外輪部を一方向に案内可能に構成され、
 プランジャが付勢部材による付勢で外輪部の内周面に常時接触するように設けられる。
The actuator according to the present invention is
A bore extending in one direction, in which a bore having a first end in one direction and a second end opposite to the bore is formed, and a pair of closing portions closing both ends of the bore of the cylinder portion A cylinder body including a pair of closed portions each having an inner surface facing each other and an outer surface opposite to the inner surface;
A rod portion having a distal end and a proximal end opposite to the distal end, the rod portion being inserted in a liquid-tight manner into one of the closed portions, and concentric with the proximal end of the rod portion A piston rod connected to the piston rod, the piston rod including a piston portion built in the bore;
A return spring housed in the cylinder body, comprising a return spring that urges the piston portion to either the first end side or the second end side of the bore,
When the hydraulic oil is supplied to either the first end side or the second end side of the bore with the piston portion as a boundary, the piston rod is either the first end side or the second end side of the bore. In the actuator configured such that the piston rod moves to either the first end side or the second end side of the bore by the bias of the return spring,
A rotating shaft projecting from the outer surface of the other closing portion of the pair of closing portions, the rotating shaft being concentric with the center of the bore;
A guide bar extending toward the one closing portion on the inner surface of the other closing portion,
The bore is composed of round holes,
The bore is filled with hydraulic oil,
The piston part
A piston body continuously provided on the rod portion, and an outer circumferential circular piston body concentric with the rotation center of the rotation shaft;
An outer ring portion having an inner peripheral surface defining an inner hole, and an annular outer ring portion surrounding the outer periphery of the piston body,
The inner ring of the outer ring part is composed of an eccentric hole whose center is set at a position deviated from the rotation center of the rotating shaft,
The outer ring is
It is configured to be movable in one direction together with the piston body and is provided to be rotatable concentrically with the rotation center of the rotation shaft,
The piston body
At least one plunger hole opened toward the inner peripheral surface of the outer ring portion;
A first channel opened toward the other side of the first end side or the second end side of the bore, the first channel communicating with the plunger hole;
A second flow path opened toward either one of the first end side or the second end side of the bore, and a second flow path communicating with the plunger hole; and
In the plunger hole,
A plunger movable in the hole center direction of the plunger hole;
An urging member for urging the plunger toward the outer ring portion,
In each of the first channel and the second channel,
The flow of hydraulic oil from either the first end side or the second end side of the bore to the one side of the first end side or the second end side of the bore is allowed, and the first end of the bore A check valve that prevents the flow of hydraulic oil from either one of the second end side or the second end side toward the other end of the first end side or the second end side of the bore,
The guide bar
It is inserted into the outer ring part, and is configured to be able to transmit the rotational torque in the circumferential direction of the bore to the outer ring part, and is configured to be able to guide the outer ring part in one direction,
The plunger is provided so as to be always in contact with the inner peripheral surface of the outer ring portion by urging by the urging member.
 これらの場合、
 プランジャ穴は、
 ピストン本体の周方向に間隔をあけて複数設けられ、
 第一流路及び第二流路は、
 複数のプランジャ穴のそれぞれに対応して複数設けられ、
 プランジャ及び付勢部材は、
 複数のプランジャ穴のそれぞれに内装され、
 逆止弁は、
 複数の第一流路及び複数の第二流路のそれぞれに内装され、
 複数のプランジャのそれぞれは、
 付勢部材による付勢で外輪部の内周面に常時接触するように設けられる、ようにすることができる。
In these cases,
The plunger hole
A plurality of piston bodies are provided at intervals in the circumferential direction,
The first channel and the second channel are
A plurality are provided corresponding to each of the plurality of plunger holes,
The plunger and biasing member
Built in each of the multiple plunger holes,
The check valve
Each of the plurality of first flow paths and the plurality of second flow paths are internally provided,
Each of the multiple plungers
It can be arranged so as to be always in contact with the inner peripheral surface of the outer ring portion by urging by the urging member.
 本発明の一態様として、
 ピストン部を境にしたボアの第一端側と第二端側とを連通させる連通路と、
 該連通路の遮断と開放とを切り換える弁機構と、をさらに備える、ようにすることができる。
As one aspect of the present invention,
A communication path for communicating the first end side and the second end side of the bore with the piston portion as a boundary;
And a valve mechanism that switches between blocking and opening of the communication path.
 本発明の他態様として、
 ピストン部に、一方向に貫通した連通路が形成され、
 該連通路に内装された弁機構であって、該連通路に穴中心方向に移動可能に内挿された軸状弁を含む弁機構をさらに備え、
 軸状弁は、
 ボアの第一端側又は第二端側の何れか他方側に位置した状態で、連通路を遮断するとともに、ボアの第一端側又は第二端側の何れか他方側にある一端部がピストン部からボアの第一端側又は第二端側の何れか他方側にある閉塞部に向けて突出するように構成され、
 ピストン部がボアの第一端側又は第二端側の何れか他方側に設定された限界位置又は所定位置に位置した状態で、軸状弁の一端部がボアの第一端側又は第二端側の何れか他方側にある閉塞部と干渉して該軸状弁がボアの第一端側又は第二端側の何れか一方側に移動し、連通路が開放される、ようにすることができる。
As another aspect of the present invention,
A communication passage penetrating in one direction is formed in the piston part,
A valve mechanism built in the communication path, further comprising a valve mechanism including a shaft-like valve inserted in the communication path so as to be movable toward the center of the hole;
The shaft valve
In a state of being located on the other side of the first end side or the second end side of the bore, the communication path is blocked, and one end portion on the other side of the first end side or the second end side of the bore is It is configured to protrude from the piston part toward the closing part on the other side of the first end side or the second end side of the bore,
In a state where the piston portion is located at a limit position or a predetermined position set on the other end side of the first end side or the second end side of the bore, the one end portion of the shaft-like valve is located on the first end side or the second end of the bore. The shaft-shaped valve moves to either the first end side or the second end side of the bore by interfering with the blocking portion on the other side of the end side so that the communication path is opened. be able to.
図1は、本発明の第一実施形態に係るアクチュエータの全体斜視図である。FIG. 1 is an overall perspective view of the actuator according to the first embodiment of the present invention. 図2は、第一実施形態に係るアクチュエータの縦断面図である。FIG. 2 is a longitudinal sectional view of the actuator according to the first embodiment. 図3は、第一実施形態に係るアクチュエータ断面図であって、図2のI-I断面図である。FIG. 3 is a sectional view of the actuator according to the first embodiment and is a sectional view taken along the line II of FIG. 図4は、第一実施形態のアクチュエータ(ピストン部)の部分断面図であって、弁機構を含む部分断面図である。FIG. 4 is a partial cross-sectional view of the actuator (piston portion) of the first embodiment and includes a valve mechanism. 図5は、本発明の第二実施形態に係るアクチュエータの全体斜視図である。FIG. 5 is an overall perspective view of the actuator according to the second embodiment of the present invention. 図6は、第二実施形態に係るアクチュエータの縦断面図である。FIG. 6 is a longitudinal sectional view of the actuator according to the second embodiment. 図7は、第二実施形態に係るアクチュエータの断面図であって、図6のII-II断面図である。FIG. 7 is a cross-sectional view of the actuator according to the second embodiment, and is a cross-sectional view taken along the line II-II in FIG. 図8は、第二実施形態のアクチュエータ(ピストン部)の部分断面図であって、弁機構を含む部分断面図である。FIG. 8 is a partial cross-sectional view of the actuator (piston portion) of the second embodiment and includes a valve mechanism. 図9は、本発明の他実施形態に係るアクチュエータ(弁機構)の部分拡大断面図である。FIG. 9 is a partially enlarged sectional view of an actuator (valve mechanism) according to another embodiment of the present invention. 図10は、本発明の別の実施形態に係るアクチュエータの縦断面図である。FIG. 10 is a longitudinal sectional view of an actuator according to another embodiment of the present invention.
<第一実施形態>
 以下、本発明の第一実施形態に係るアクチュエータについて、図1~図4を参照しながら詳細に説明する。
<First embodiment>
Hereinafter, an actuator according to a first embodiment of the present invention will be described in detail with reference to FIGS.
 アクチュエータは、図1に示す如く、第一端面と該第一端面の反対側の第二端面とを有する外観円柱状のシリンダ本体2と、該シリンダ本体2の第一端面から突出するピストンロッド3と、シリンダ本体2の第二端面から突出する回転軸4とを備える。 As shown in FIG. 1, the actuator includes a cylinder body 2 having an outer appearance having a first end surface and a second end surface opposite to the first end surface, and a piston rod 3 protruding from the first end surface of the cylinder body 2. And a rotating shaft 4 protruding from the second end surface of the cylinder body 2.
 より具体的に説明すると、アクチュエータ1は、図2に示す如く、一方向に延びるボア20であって、一方向に第一端と第一端の反対側の第二端とを有するボア20が形成されたシリンダ部21と、シリンダ部21のボア20の両端を閉塞する一対の閉塞部22,23と、を含むシリンダ本体2と、先端と該先端の反対側の基端とを有するロッド部30であって、一対の閉塞部22,23のうちの一方の閉塞部22に液密状態で挿通されたロッド部30と、ロッド部30の基端に同心で連結されたピストン部31であって、ボア20に内装されたピストン部31と、を含むピストンロッド3と、一対の閉塞部22,23のうちの他方の閉塞部23に液密状態で挿通された回転軸4と、シリンダ本体2に内装されたリターンスプリング5であって、ピストン部31をボア20の第一端側(一方向の一方側:他方の閉塞部23側)に付勢するリターンスプリング5とを備える。 More specifically, the actuator 1 includes a bore 20 extending in one direction as shown in FIG. 2, and the bore 20 having a first end and a second end opposite to the first end in one direction. Rod portion having a cylinder body 2 including a formed cylinder portion 21 and a pair of closing portions 22 and 23 closing both ends of the bore 20 of the cylinder portion 21, and a distal end and a proximal end opposite to the distal end. 30 is a rod part 30 inserted in a liquid-tight state into one of the pair of closing parts 22, 23, and a piston part 31 concentrically connected to the proximal end of the rod part 30. A piston rod 31 including a piston portion 31 housed in the bore 20, a rotating shaft 4 inserted in a liquid-tight state into the other closing portion 23 of the pair of closing portions 22 and 23, and a cylinder body 2 is a return spring 5 built in Te, the piston unit 31 first end side of the bore 20: and a return spring 5 which urges the (one direction on one side the other of the closure part 23 side).
 シリンダ本体2のボア20内には、作動油(図示しない)が充填されている。すなわち、シリンダ本体2のピストン部31を境にしたボア20の第一端側及び第二端側(一方向の一方側の領域及び一方向の他方側の領域)の何れにも作動油が充満されている。 The inside of the bore 20 of the cylinder body 2 is filled with hydraulic oil (not shown). That is, the hydraulic oil is filled in both the first end side and the second end side (one area in one direction and the other area in one direction) of the bore 20 with the piston portion 31 of the cylinder body 2 as a boundary. Has been.
 シリンダ本体2は、ボア20が丸穴状に形成されている。より具体的には、シリンダ部21は、真円筒状に形成されている。これにより、ボア20は、シリンダ部21の内穴で構成されている。一対の閉塞部22,23のそれぞれは、第一端と該第一端の反対側の第二端とを有する嵌入部220,230であって、シリンダ部21の開口端部に嵌入される円板状の嵌入部220,230と、嵌入部220,230の第一端に連続して設けられたフランジ部221,231とを備える。 The cylinder body 2 has a bore 20 formed in a round hole shape. More specifically, the cylinder part 21 is formed in a true cylindrical shape. Thereby, the bore 20 is configured by an inner hole of the cylinder portion 21. Each of the pair of closing portions 22 and 23 is a fitting portion 220 or 230 having a first end and a second end opposite to the first end, and is a circle fitted into the opening end portion of the cylinder portion 21. Plate-like fitting portions 220 and 230 and flange portions 221 and 231 provided continuously at the first ends of the fitting portions 220 and 230 are provided.
 閉塞部22,23の嵌入部220,230の外周には、環状溝222,232が形成されている。環状溝222,232内には、環状のシール材(本実施形態においてはOリング)Sが嵌め込まれている。この状態で、閉塞部22,23は、シリンダ部21の開口端部に嵌入されている。そして、嵌入部220,230がシリンダ部21の開口端部に嵌入された状態で、フランジ部221,231がシリンダ部21の端面に固定(本実施形態においてはネジ止め)されている。これにより、シリンダ部21のボア20の両端が閉塞部22,23よって封止される。 Ring grooves 222 and 232 are formed on the outer circumferences of the fitting portions 220 and 230 of the closing portions 22 and 23. An annular sealing material (O-ring in this embodiment) S is fitted in the annular grooves 222 and 232. In this state, the closing portions 22 and 23 are fitted into the opening end portion of the cylinder portion 21. The flange portions 221 and 231 are fixed to the end surface of the cylinder portion 21 (screwed in this embodiment) in a state where the insertion portions 220 and 230 are inserted into the opening end portions of the cylinder portion 21. Thereby, both ends of the bore 20 of the cylinder portion 21 are sealed by the closing portions 22 and 23.
 一対の閉塞部22,23のうちの一方の閉塞部22(本実施形態においては、ボア20の第二端側の閉塞部22)には、ボア20の穴中心と同心をなすロッド挿通穴223が設けられている。ロッド挿通穴223を画定する内周面には、環状の溝224が形成されている。そして、この溝224内には、環状のシール材(本実施形態においてはOリング)Sが嵌め込まれている。 A rod insertion hole 223 concentric with the hole center of the bore 20 is formed in one of the pair of closing portions 22 and 23 (in the present embodiment, the closing portion 22 on the second end side of the bore 20). Is provided. An annular groove 224 is formed on the inner peripheral surface that defines the rod insertion hole 223. An annular sealing material (O-ring in this embodiment) S is fitted in the groove 224.
 これに対し、一対の閉塞部22,23のうちの他方の閉塞部23(本実施形態においては、ボア20の第一端側の閉塞部23)には、ボア20の穴中心と同心をなす回転軸挿通穴233が設けられている。回転軸挿通穴233は、外側ほど大径に設定された段付き穴で構成されている。具体的には、回転軸挿通孔233は、最も内側にある軸挿通穴233aと、最も外側にあるベアリング嵌着穴233bと、軸挿通穴233aとベアリング嵌着穴233bとの間にあるシール嵌着穴233cとで構成される。そして、シール嵌着穴233cには、環状のシール部材S1が嵌着され、ベアリング嵌着穴233bには、環状のベアリングBが嵌着される。 On the other hand, the other closing portion 23 (the closing portion 23 on the first end side of the bore 20 in this embodiment) of the pair of closing portions 22 and 23 is concentric with the hole center of the bore 20. A rotation shaft insertion hole 233 is provided. The rotating shaft insertion hole 233 is formed of a stepped hole set to have a larger diameter toward the outer side. Specifically, the rotation shaft insertion hole 233 includes the innermost shaft insertion hole 233a, the outermost bearing fitting hole 233b, and the seal fit between the shaft insertion hole 233a and the bearing fitting hole 233b. It is comprised with the hole 233c. An annular seal member S1 is fitted into the seal fitting hole 233c, and an annular bearing B is fitted into the bearing fitting hole 233b.
 ピストンロッド3のピストン部31は、軸心回りで回転不能にボア20に内装される。ピストンロッド3には、他方の閉塞部23側で開口した非貫通状態の軸挿入穴300が回転軸4の回転中心と同心で形成されている。 The piston portion 31 of the piston rod 3 is housed in the bore 20 so as not to rotate around the axis. In the piston rod 3, a non-through shaft insertion hole 300 opened on the other closing portion 23 side is formed concentrically with the rotation center of the rotation shaft 4.
 より具体的に説明すると、本実施形態に係るピストンロッド3は、第一端(一端)と第一端の反対側の第二端(他端)とを有し、第一端が閉塞した円筒状のロッド部30と、ロッド部30の第二端部に対して同心で連結された円環状のピストン部31とを備える。そして、ロッド部30の内穴とピストン部31の内穴とが連続することで、丸穴状の軸挿入穴300が形成されている。ロッド部30の外径は、ロッド挿通穴223の穴径と略同等に設定されている。ロッド部30は、ロッド挿通穴223に挿通された状態で、ロッド挿通穴223を画定する内周面上の溝224に嵌着されたシール材Sが該ロッド部30の外周全周に亘って密接するようになっている。 More specifically, the piston rod 3 according to this embodiment has a first end (one end) and a second end (the other end) opposite to the first end, and a cylinder whose first end is closed. A rod-shaped rod portion 30 and an annular piston portion 31 concentrically connected to the second end portion of the rod portion 30. And the inner hole of the rod part 30 and the inner hole of the piston part 31 continue, and the round-hole-shaped shaft insertion hole 300 is formed. The outer diameter of the rod portion 30 is set to be approximately equal to the hole diameter of the rod insertion hole 223. In the state where the rod portion 30 is inserted into the rod insertion hole 223, the sealing material S fitted in the groove 224 on the inner peripheral surface defining the rod insertion hole 223 extends over the entire outer periphery of the rod portion 30. It is getting closer.
 ピストン部31の外径は、シリンダ部21のボア20の穴径と略同等に設定されている。そして、ピストン部31は、ボア20と同心で該ボア20に内装されている。なお、図示しないが、ピストン部31の外周の全周には、無端環状の溝が形成される。そして、その溝には、Oリングが嵌着されている。これにより、本実施形態に係るアクチュエータ1において、ピストン部31の一方向(ボア20の穴中心方向(ピストンロッド3の軸心方向))における移動が許容されつつ、ピストン部31の外周面とシリンダ部21の内周面との間が液密になっている。 The outer diameter of the piston part 31 is set substantially equal to the hole diameter of the bore 20 of the cylinder part 21. The piston portion 31 is concentric with the bore 20 and is provided in the bore 20. Although not shown, an endless annular groove is formed on the entire outer periphery of the piston portion 31. An O-ring is fitted in the groove. Thereby, in the actuator 1 according to the present embodiment, the movement of the piston portion 31 in one direction (the hole center direction of the bore 20 (the axial direction of the piston rod 3)) is allowed, and the outer peripheral surface of the piston portion 31 and the cylinder The space between the inner peripheral surface of the portion 21 is liquid-tight.
 ピストン部31には、軸挿入穴300に向けて開口したプランジャ穴(プランジャ内装穴)301が設けられている。プランジャ穴301は、周方向に間隔をあけて複数設けられている。そして、プランジャ穴301には、プランジャ穴301の穴中心方向で移動可能なプランジャ302と、プランジャ302を軸挿入穴300に向けて付勢する付勢部材(プランジャ付勢手段)303と、が内装されている。 The piston portion 31 is provided with a plunger hole (plunger internal hole) 301 that opens toward the shaft insertion hole 300. Plural plunger holes 301 are provided at intervals in the circumferential direction. The plunger hole 301 includes a plunger 302 that can move in the center direction of the plunger hole 301 and a biasing member (plunger biasing means) 303 that biases the plunger 302 toward the shaft insertion hole 300. Has been.
 また、ピストン部31には、ボア20の第二端側(一方向の他方側:一方の閉塞部22側)に向けて開口した第一流路304であって、プランジャ穴301に連通する第一流路304と、ボア20の第一端側(一方向の一方側:他方の閉塞部23側)に向けて開口した第二流路305であって、プランジャ穴301に連通する第二流路305とが設けられている。第一流路304及び第二流路305のそれぞれには、逆止弁306,307が内装されている。逆止弁306,307は、ボア20の第二端側からボア20の第一端側に向けての作動油の流通を許容する一方で、ボア20の第一端側からボア20の第二端側に向けての作動油の流通を阻止する。 The piston portion 31 is a first flow path 304 that opens toward the second end side of the bore 20 (the other side in one direction: the one closing portion 22 side), and is a first flow that communicates with the plunger hole 301. A second flow path 305 that opens toward the passage 304 and the first end side of the bore 20 (one side in one direction: the other closed portion 23 side), and communicates with the plunger hole 301. And are provided. Each of the first channel 304 and the second channel 305 is provided with check valves 306 and 307. The check valves 306 and 307 allow the hydraulic oil to flow from the second end side of the bore 20 toward the first end side of the bore 20, while the second end of the bore 20 from the first end side of the bore 20. Blocks hydraulic fluid from flowing toward the end.
 より具体的に説明すると、ピストン部31には、図3に示す如く、半径方向で貫通した貫通穴が軸挿入穴300回りに複数設けられている。そして、貫通穴の外側の開口部にプラグPが嵌着されている。これにより、非貫通状態のプランジャ穴301が軸挿入穴300回りに複数形成されている。本実施形態において、プランジャ穴301が五つ設けられている。5つのプランジャ穴301,…は、一カ所を除いて等間隔(60°毎)に配置されている。従って、本実施形態に係るピストン部31において、プランジャ穴301間の一カ所が120°の間隔とされ、その他の間隔が60°とされている。 More specifically, as shown in FIG. 3, the piston portion 31 is provided with a plurality of through-holes penetrating in the radial direction around the shaft insertion hole 300. And the plug P is inserted by the opening part of the outer side of a through-hole. Thereby, a plurality of plunger holes 301 in a non-penetrating state are formed around the shaft insertion hole 300. In this embodiment, five plunger holes 301 are provided. The five plunger holes 301 are arranged at regular intervals (every 60 °) except for one place. Therefore, in the piston portion 31 according to the present embodiment, one place between the plunger holes 301 is set to a 120 ° interval, and the other interval is set to 60 °.
 プランジャ穴301には、ピン状のプランジャ302と付勢部材であるコイルバネ303とが同心で内装されている。本実施形態において、プランジャ302及び付勢部材(コイルバネ)303が貫通穴に挿入され、その上で貫通穴にプラグPを嵌着されている。これにより、プランジャ302及び付勢部材(コイルバネ)303がプランジャ穴301に内装された状態になっている。なお、プラグPは、外周に形成された環状の溝(採番しない)にシール材(Oリング)S(採番しない)が嵌着されている。これにより、貫通穴の内周面と当該プラグPとの間が液密になっている。 In the plunger hole 301, a pin-shaped plunger 302 and a coil spring 303 as an urging member are concentrically housed. In this embodiment, the plunger 302 and the biasing member (coil spring) 303 are inserted into the through hole, and the plug P is fitted into the through hole. Thereby, the plunger 302 and the urging member (coil spring) 303 are in the plunger hole 301. The plug P has a sealing material (O-ring) S (not numbered) fitted in an annular groove (not numbered) formed on the outer periphery. Thereby, the space between the inner peripheral surface of the through hole and the plug P is liquid-tight.
 本実施形態に係るアクチュエータ1において、付勢部材(コイルバネ)303は、プラグPとプランジャ302の基端との間に介在している。これにより、付勢部材(コイルバネ)303は、プランジャ302を軸挿入穴300(ピストン部31の中心)に向けて付勢している。 In the actuator 1 according to the present embodiment, the urging member (coil spring) 303 is interposed between the plug P and the base end of the plunger 302. Thereby, the urging member (coil spring) 303 urges the plunger 302 toward the shaft insertion hole 300 (center of the piston portion 31).
 プランジャ302の外径は、プランジャ穴301の穴径と同径に設定されている。プランジャ302は、外周面をプランジャ穴301の内周面に摺接させた状態で自己の軸心方向に移動可能になっている。また、プランジャ302の先端部は、丸みを持った半球状に形成される。 The outer diameter of the plunger 302 is set to the same diameter as that of the plunger hole 301. The plunger 302 is movable in its own axial direction in a state where the outer peripheral surface is in sliding contact with the inner peripheral surface of the plunger hole 301. The tip of the plunger 302 is formed in a rounded hemisphere.
 付勢部材303は、プランジャ302を軸挿入穴300に向けて付勢する。これにより、付勢部材303は、プランジャ302の先端を後述する偏心軸部40の外周に常時接触させる。付勢部材303の撓み代は、プランジャ302の先端部がプランジャ穴301から軸挿入穴300内に突出した状態と該プランジャ302全体がプランジャ穴301内に押し込まれた状態とにできるように設定される。 The urging member 303 urges the plunger 302 toward the shaft insertion hole 300. Thereby, the urging member 303 always brings the tip of the plunger 302 into contact with the outer periphery of the eccentric shaft portion 40 described later. The bending allowance of the urging member 303 is set so that the tip end portion of the plunger 302 protrudes from the plunger hole 301 into the shaft insertion hole 300 and the whole plunger 302 is pushed into the plunger hole 301. The
 図2に戻り、第一流路304及び第二流路305は、プランジャ302(プランジャ穴301)毎に設けられている。従って、逆止弁306,307は、第一流路304及び第二流路305のそれぞれに設けられている。第一流路304及び第二流路305のそれぞれは、プランジャ穴301の付勢部材303が内装される領域に連通している。 2, the first flow path 304 and the second flow path 305 are provided for each plunger 302 (plunger hole 301). Therefore, the check valves 306 and 307 are provided in the first flow path 304 and the second flow path 305, respectively. Each of the first flow path 304 and the second flow path 305 communicates with a region where the urging member 303 of the plunger hole 301 is housed.
 より具体的に説明する。第一流路304は、一方向(ボア20と同方向)に延びるように形成されている。第一流路304は、途中位置に形成された大径穴部304aと、大径穴部304aの両側に形成された小径穴部304b,304bとを備える。なお、本実施形態において、第一流路304は、ピストン部31に設けられた段付き穴と該段付き穴の開口部に嵌着された筒状のプラグ(採番しない)の内穴とが連続することで形成されている。 More specific explanation. The first flow path 304 is formed to extend in one direction (the same direction as the bore 20). The first flow path 304 includes a large-diameter hole 304a formed at an intermediate position, and small- diameter holes 304b and 304b formed on both sides of the large-diameter hole 304a. In the present embodiment, the first flow path 304 has a stepped hole provided in the piston portion 31 and an inner hole of a cylindrical plug (not numbered) fitted in the opening of the stepped hole. It is formed by being continuous.
 そして、本実施形態に係るアクチュエータ1において、第一流路304の大径穴部304a内には、小径穴部304bの穴径よりも大径な球状の弁(以下、玉弁という)308と、該玉弁308をボア20の第二端側に付勢するコイルバネ309とが内装されている。これにより、第一流路304の逆止弁306が形成されている。逆止弁306は、コイルバネ309による付勢で、ボア20の第二端側にある小径穴部304bと大径穴部304aとの境界に形成される環状の段差部分に玉弁308が押し付けられることで、玉弁308が小径穴部304bを閉塞するようになっている。 In the actuator 1 according to the present embodiment, a spherical valve (hereinafter referred to as a ball valve) 308 having a larger diameter than the hole diameter of the small diameter hole 304b is disposed in the large diameter hole 304a of the first flow path 304. A coil spring 309 that urges the ball valve 308 toward the second end side of the bore 20 is provided. Thereby, the check valve 306 of the first flow path 304 is formed. The check valve 306 is biased by the coil spring 309 so that the ball valve 308 is pressed against an annular step formed at the boundary between the small diameter hole 304b and the large diameter hole 304a on the second end side of the bore 20. As a result, the ball valve 308 closes the small diameter hole 304b.
 これにより、第一流路304の逆止弁306において、ボア20の第二端側から第一流路304に作動油が流れ込もうとすると、その作動油の流体圧によって玉弁308がコイルバネ309の付勢力に抗してプランジャ穴301側に押される。これにより、作動油がボア20の第二端側からボア20の第一端側に流通可能となる。その一方で、プランジャ穴301からボア20の第二端側に作動油が流れ込もうとすると、玉弁308がコイルバネ309の付勢力で段差部分に圧接する、これにより、玉弁308は、小径穴部304bを閉塞する。従って、プランジャ穴301からボア20の第二端側にあるボア20内に作動油が流れ込むことが防止される。 As a result, in the check valve 306 of the first flow path 304, when the working oil tries to flow into the first flow path 304 from the second end side of the bore 20, the ball valve 308 is moved by the fluid pressure of the working oil to the coil spring 309. It is pushed toward the plunger hole 301 against the urging force. Thereby, the hydraulic oil can flow from the second end side of the bore 20 to the first end side of the bore 20. On the other hand, when the hydraulic oil tries to flow from the plunger hole 301 to the second end side of the bore 20, the ball valve 308 is pressed against the step portion by the urging force of the coil spring 309, whereby the ball valve 308 has a small diameter. The hole 304b is closed. Therefore, the hydraulic oil is prevented from flowing from the plunger hole 301 into the bore 20 on the second end side of the bore 20.
 第二流路305は、一方向(ボア20と同方向)に延びるように形成されている。第二流路305は、途中位置に形成された大径穴部305aと、該大径穴部305aの両側に形成された小径穴部305b,305bとを備える。なお、本実施形態において、第二流路305は、ピストン部31に穿設された段付き穴と該段付き穴の開口部に嵌着された筒状のプラグ(採番しない)の内穴とが連続することで形成されている。 The second channel 305 is formed to extend in one direction (the same direction as the bore 20). The second flow path 305 includes a large-diameter hole 305a formed at an intermediate position, and small- diameter holes 305b and 305b formed on both sides of the large-diameter hole 305a. In the present embodiment, the second flow path 305 includes a stepped hole formed in the piston portion 31 and an inner hole of a cylindrical plug (not numbered) fitted in the opening of the stepped hole. And is formed by continuation.
 そして、本実施形態に係るアクチュエータ1において、第二流路305の大径穴部305bには、小径穴部305bの穴径よりも大径な球状の弁(以下、玉弁という)310と、該玉弁310をボア20の第二端側に付勢するコイルバネ311とが内装されている。これにより、第二流路305の逆止弁307が形成されている。かかる逆止弁307は、コイルバネ311による付勢で、ボア20の第二端側にある小径穴部305bと大径穴部305aとの境界に形成される環状の段差部分に玉弁310が押し付けられることで、玉弁310が小径穴部305bを閉塞するようになっている。 In the actuator 1 according to the present embodiment, the large diameter hole 305b of the second flow path 305 includes a spherical valve (hereinafter referred to as a ball valve) 310 having a diameter larger than the diameter of the small diameter hole 305b, A coil spring 311 that urges the ball valve 310 toward the second end side of the bore 20 is housed. Thereby, the check valve 307 of the second flow path 305 is formed. The check valve 307 is biased by the coil spring 311 so that the ball valve 310 presses against an annular step formed at the boundary between the small diameter hole 305b and the large diameter hole 305a on the second end side of the bore 20. As a result, the ball valve 310 closes the small diameter hole 305b.
 これにより、第二流路305の逆止弁307は、プランジャ穴301内から第二流路305に作動油が流れ込もうとすると、その作動油の流体圧によって玉弁310がコイルバネ311の付勢力に抗してボア20の第一端側に押される。これにより、作動油がボア20の第二端側からボア20の第一端側に流通可能となる。その一方で、ボア20の第一端側から第二流路305に作動油が流れ込もうとすると、玉弁310がコイルバネ311の付勢力で段差部分に圧接する。これにより、玉弁310が小径穴部305bを閉塞する。従って、ボア20の第一端側からプランジャ穴301内に作動油が流れ込むことが防止される。 As a result, the check valve 307 of the second flow path 305 causes the ball valve 310 to be attached to the coil spring 311 by the fluid pressure of the hydraulic oil when the hydraulic oil tries to flow into the second flow path 305 from the plunger hole 301. The bore 20 is pushed toward the first end side against the force. Thereby, the hydraulic oil can flow from the second end side of the bore 20 to the first end side of the bore 20. On the other hand, when the hydraulic oil tries to flow into the second flow path 305 from the first end side of the bore 20, the ball valve 310 is pressed against the step portion by the urging force of the coil spring 311. Thereby, the ball valve 310 closes the small diameter hole 305b. Therefore, the hydraulic oil is prevented from flowing into the plunger hole 301 from the first end side of the bore 20.
 本実施形態に係るアクチュエータ1は、図3に示す如く、一方向(ピストンロッド3の軸心方向)に延びるガイドバー6であって、ピストン部31におけるプランジャ302(プランジャ穴301)を躱した位置に挿通されたガイドバー6を備える。ピストン部31は、ガイドバー6に沿って一方向(軸心方向)に移動するようになっている。ガイドバー6の両端は、一対の閉塞部22,23に連結されている。ガイドバー6は、ピストン部31における周方向で間隔をあけて配置されたプランジャ302(プランジャ穴301)間に挿通されている。本実施形態において、ガイドバー6は、二つ設けている。二つのガイドバー6,6は、軸挿入穴300を基準とした対称位置に配置されている。 As shown in FIG. 3, the actuator 1 according to the present embodiment is a guide bar 6 extending in one direction (axial center direction of the piston rod 3), and a position where the plunger 302 (plunger hole 301) in the piston portion 31 is bent. The guide bar 6 inserted in is provided. The piston portion 31 moves in one direction (axial direction) along the guide bar 6. Both ends of the guide bar 6 are connected to a pair of closing portions 22 and 23. The guide bar 6 is inserted between plungers 302 (plunger holes 301) arranged at intervals in the circumferential direction of the piston portion 31. In the present embodiment, two guide bars 6 are provided. The two guide bars 6 and 6 are disposed at symmetrical positions with respect to the shaft insertion hole 300.
 回転軸4は、図2に示す如く第一端(一端)と該第一端の反対側の第二端(他端)とを有する。回転軸4は、他方の閉塞部23に形成された回転軸挿通穴233に挿通される。回転軸4の第一端側は、シリンダ部21(ボア20)内に位置し、回転軸4の第二端側は、シリンダ部21の外部に位置している。回転軸4の第一端側は、軸挿入穴300に挿入される。回転軸4の少なくともピストン部31の移動範囲と対応する範囲には、当該回転軸4の回転中心に対して偏心した偏心軸部40が設けられる。 The rotary shaft 4 has a first end (one end) and a second end (the other end) opposite to the first end as shown in FIG. The rotating shaft 4 is inserted into a rotating shaft insertion hole 233 formed in the other closing portion 23. The first end side of the rotating shaft 4 is located in the cylinder portion 21 (bore 20), and the second end side of the rotating shaft 4 is located outside the cylinder portion 21. The first end side of the rotation shaft 4 is inserted into the shaft insertion hole 300. An eccentric shaft portion 40 that is eccentric with respect to the rotation center of the rotation shaft 4 is provided in a range corresponding to at least the movement range of the piston portion 31 of the rotation shaft 4.
 より具体的に説明すると、本実施形態に係る回転軸4は、第一端と該第一端の反対側の第二端とを有する軸本体部41であって、ベアリングBに軸支される軸本体部41と、第一端と該第一端の反対側の第二端とを有し、第一端が軸本体部41の第一端に連続する偏心軸部40であって、軸本体部41の軸心に対して偏心した偏心軸部40と、偏心軸部40の第二端に連続する先端軸部42であって、軸本体部41と同心の先端軸部42とを備えている。 More specifically, the rotating shaft 4 according to the present embodiment is a shaft main body 41 having a first end and a second end opposite to the first end, and is supported by the bearing B. The shaft body portion 41 has an eccentric shaft portion 40 having a first end and a second end opposite to the first end, the first end being continuous with the first end of the shaft body portion 41, An eccentric shaft portion 40 that is eccentric with respect to the shaft center of the main body portion 41, and a tip shaft portion 42 that is continuous with the second end of the eccentric shaft portion 40, the tip shaft portion 42 being concentric with the shaft body portion 41 ing.
 軸本体部41は、他方の閉塞部23に嵌着されたシール部材S1が外嵌されるシール部41aと、該シール部41aに連続する軸支部41bであって、ベアリングBが外嵌される軸支部41bと、軸支部41bに連続する入力部41cであって、別途モータの出力軸に対して直接的又は間接的に連結される入力部41cとを備える。シール部41a、軸支部41b、及び入力部41cは、同心で形成される。入力部41cは、当該軸本体部41が回転軸挿通穴233に挿通された状態で、他方の閉塞部23から外方に突出するように形成される。 The shaft main body 41 is a seal portion 41a to which a seal member S1 fitted to the other closing portion 23 is fitted, and a shaft support portion 41b that is continuous to the seal portion 41a. The shaft support 41b includes an input portion 41c that is continuous with the shaft support 41b and is directly or indirectly connected to the output shaft of the motor. The seal part 41a, the shaft support part 41b, and the input part 41c are formed concentrically. The input portion 41 c is formed so as to protrude outward from the other closing portion 23 in a state where the shaft main body portion 41 is inserted through the rotation shaft insertion hole 233.
 偏心軸部40は、ピストンロッド3に穿設された軸挿入穴300の穴径よりも小径に設定されている。本実施形態に係る偏心軸部40は、回転軸4の回転中心(ベアリングBに軸支された軸本体部41の軸心)に対して略平行な状態で偏心している。偏心軸部40は、回転軸4全体を回転させたときに偏心方向の最も外側にある外周面が軸挿入穴300の内周面に沿って移動する(回転する)ようになっている。そして、偏心軸部40は、ピストン部31(プランジャ302)の軸心方向の移動距離以上の長さに設定され、ピストンロッド3の軸挿入穴300に挿入されている。 The eccentric shaft portion 40 is set to have a smaller diameter than the diameter of the shaft insertion hole 300 formed in the piston rod 3. The eccentric shaft portion 40 according to the present embodiment is eccentric in a substantially parallel state with respect to the rotation center of the rotating shaft 4 (the shaft center of the shaft main body portion 41 supported by the bearing B). In the eccentric shaft portion 40, the outermost outer peripheral surface in the eccentric direction moves (rotates) along the inner peripheral surface of the shaft insertion hole 300 when the entire rotation shaft 4 is rotated. The eccentric shaft portion 40 is set to a length equal to or longer than the moving distance in the axial direction of the piston portion 31 (plunger 302) and is inserted into the shaft insertion hole 300 of the piston rod 3.
 先端軸部42は、ピストンロッド3の軸挿入穴300の穴径と略同径に設定されている。先端軸部42は、回転軸4を回転させたときに外周面が軸挿入穴300の内周面上を摺接するようになっている。本実施形態において、先端軸部42が軸本体部41と同心をなしているため、先端軸部42と偏心軸部40との境界部分に段差が形成されている。そして、先端軸部42の段差(軸本体側に向く面)部分には、一方向(軸線方向)に貫通した油抜用穴420が設けられている。 The tip shaft portion 42 is set to have a diameter substantially the same as the diameter of the shaft insertion hole 300 of the piston rod 3. The distal end shaft portion 42 is configured such that the outer peripheral surface is in sliding contact with the inner peripheral surface of the shaft insertion hole 300 when the rotary shaft 4 is rotated. In the present embodiment, since the distal end shaft portion 42 is concentric with the shaft main body portion 41, a step is formed at the boundary portion between the distal end shaft portion 42 and the eccentric shaft portion 40. An oil draining hole 420 penetrating in one direction (axial direction) is provided in the step (surface facing the shaft main body) portion of the tip shaft portion 42.
 リターンスプリング5は、圧縮コイルバネで構成されている。リターンスプリング5は、一方の閉塞部22とピストン部31との間に介設されている。本実施形態において、リターンスプリング5は、ガイドバー6に外嵌されている。リターンスプリング5は、ピストン部31を付勢する。そして、リターンスプリング5は、ピストン部31が他方の閉塞部23に接触する位置(ボア20の第一端側の限界位置)まで該ピストン部31を押すことのできる長さに設定されている。 The return spring 5 is composed of a compression coil spring. The return spring 5 is interposed between the one closing portion 22 and the piston portion 31. In the present embodiment, the return spring 5 is fitted on the guide bar 6. The return spring 5 biases the piston portion 31. The return spring 5 is set to a length capable of pushing the piston portion 31 to a position where the piston portion 31 contacts the other closing portion 23 (a limit position on the first end side of the bore 20).
 アクチュエータ1は、上記構成に加え、図3及び図4に示す如く、ピストン部31を境にしたボア20の第一端側とボア20の第二端側とを連通させる連通路320と、連通路320の遮断と開放とを切り換える弁機構7とを更に備えている。 In addition to the above configuration, the actuator 1 includes a communication path 320 that communicates the first end side of the bore 20 and the second end side of the bore 20 with the piston portion 31 as a boundary, as shown in FIGS. A valve mechanism 7 for switching between blocking and opening of the passage 320 is further provided.
 弁機構7は、図4に示す如く、連通路320に軸線方向で移動可能に内挿された軸状弁70を備える。軸状弁70は、ボア20の第二端側に位置した状態で連通路320を遮断するとともに、ボア20の第二端側にある一端部がピストン部31から一方の閉塞部22に向けて突出するように構成されている。 As shown in FIG. 4, the valve mechanism 7 includes a shaft-like valve 70 inserted in the communication path 320 so as to be movable in the axial direction. The shaft-like valve 70 blocks the communication passage 320 while being positioned on the second end side of the bore 20, and one end portion on the second end side of the bore 20 is directed from the piston portion 31 toward the one closing portion 22. It is comprised so that it may protrude.
 より具体的に説明すると、本実施形態に係る連通路320は、一方向でピストン部31を貫通するように形成されている。連通路320は、一方向の途中位置に設けられた大径穴部320aと、大径穴部320aと同心で連続し、該大径穴部320aの両側に設けられた一対の中径穴部320b,320bと、各中径穴部320bと同心で連続する一対の小径穴部320c,320cとを備える。なお、本実施形態に係る連通路320は、ピストン部31を貫通した貫通穴と該貫通穴の両端開口部に嵌着された筒状のプラグの内穴とが連続することで形成されている。 More specifically, the communication path 320 according to this embodiment is formed so as to penetrate the piston part 31 in one direction. The communication path 320 has a large-diameter hole portion 320a provided at an intermediate position in one direction and a pair of medium-diameter hole portions provided concentrically with the large-diameter hole portion 320a and provided on both sides of the large-diameter hole portion 320a. 320b, 320b, and a pair of small diameter holes 320c, 320c concentrically with each of the medium diameter holes 320b. In addition, the communication path 320 according to the present embodiment is formed by a continuous through hole that penetrates the piston portion 31 and an inner hole of a cylindrical plug that is fitted to both end openings of the through hole. .
 そして、軸状弁70は、大径穴部320aに内装される大径軸部70aと、該大径軸部70aと同心になるように該大径軸部70aの両端に延設され、前記中径穴部320b及び小径穴部320cに挿通される一対の小径軸部70b,70bとを備えている。 The shaft-like valve 70 is extended to both ends of the large-diameter shaft portion 70a so as to be concentric with the large-diameter shaft portion 70a, which is housed in the large-diameter hole portion 320a. A pair of small- diameter shaft portions 70b and 70b inserted into the medium-diameter hole portion 320b and the small-diameter hole portion 320c are provided.
 大径軸部70aの軸心方向の長さは、大径穴部320aの穴中心方向の長さよりも短く設定されている。そして、大径軸部70aは、大径穴部320a内で軸心方向にスライド可能になっている。本実施形態に係る弁機構7は、大径軸部70aがボア20の第二端側に位置した状態で、大径軸部70aの一端面が中径穴部320bと大径穴部320aとの境界に形成される段差に密接することで、連通路320を遮断するようになっている。 The length of the large-diameter shaft portion 70a in the axial center direction is set to be shorter than the length of the large-diameter hole portion 320a in the hole center direction. The large diameter shaft portion 70a is slidable in the axial direction within the large diameter hole portion 320a. In the valve mechanism 7 according to the present embodiment, the large-diameter shaft portion 70a is positioned on the second end side of the bore 20, and the one end surface of the large-diameter shaft portion 70a includes the medium-diameter hole portion 320b and the large-diameter hole portion 320a. The communication path 320 is blocked by being in close contact with the step formed at the boundary.
 一対の小径軸部70b,70bのそれぞれは、第一端部と、第一端部の反対側の第二端部であって、大径軸部70aに接続された第二端部とを有する。一対の小径軸部70b,70bのうちの少なくともボア20の第二端側にある一方の小径軸部70bの軸心方向の長さは、大径軸部70aが大径穴部320aの一端側(ボア20の第二端側)にあるときに、第一端部(先端部)がピストン部31から外方に突出するように設定されている。すなわち、一方の小径軸部70bは、大径軸部70aが連通路320を遮断した状態で、第一端部(先端部)がピストン部31から外方に突出するように軸心方向の長さが設定されている。これに対し、他方の小径軸部70bの軸心方向の長さは、大径軸部70aが連通路320を遮断した状態で、第一端部(先端)がピストン部31におけるボア20の第一端側に向く(他方の閉塞部23と対向する)面と略面一になり、大径軸部70aが連通路320を開放した状態で(大径軸部70aが大径穴部320aの他端側(ボア20の第一端側)にあるときに)、第一端部(先端部)がピストン部31から外方に突出するように設定されている。 Each of the pair of small diameter shaft portions 70b, 70b has a first end portion and a second end portion opposite to the first end portion and connected to the large diameter shaft portion 70a. . Of the pair of small diameter shaft portions 70b, 70b, the length in the axial direction of one small diameter shaft portion 70b on at least the second end side of the bore 20 is such that the large diameter shaft portion 70a is on one end side of the large diameter hole portion 320a. The first end portion (tip portion) is set so as to protrude outward from the piston portion 31 when it is on the second end side of the bore 20. That is, one small-diameter shaft portion 70b is long in the axial direction so that the first end portion (tip portion) protrudes outward from the piston portion 31 in a state where the large-diameter shaft portion 70a blocks the communication path 320. Is set. On the other hand, the length of the other small-diameter shaft portion 70b in the axial direction is such that the first end portion (tip) of the bore 20 in the piston portion 31 is in a state where the large-diameter shaft portion 70a blocks the communication path 320. In a state in which the large diameter shaft portion 70a opens the communication path 320 (the large diameter shaft portion 70a is formed on the large diameter hole portion 320a). The first end portion (tip portion) is set so as to protrude outward from the piston portion 31 on the other end side (when it is on the first end side of the bore 20).
 弁機構7は、ボア20の第一端側に作動油が供給されたときの流体圧により、軸状弁70(他方の小径軸部70bの先端面)がボア20の第二端側に押されるようになっている。これにより、大径軸部70aが連通路320を遮断する。そして、弁機構7は、ピストン部31がボア20の第二端側の限界位置に到達したときに、一方の小径軸部70bが一方の閉塞部22に接触することで、軸状弁70全体がボア20の第一端側に押されるようになっている。これにより、大径軸部70aの端面が中径穴部320bと大径穴部320aとの境界に形成される段差から離間し、連通路320を開放する。 In the valve mechanism 7, the shaft-like valve 70 (the tip surface of the other small-diameter shaft portion 70 b) is pushed to the second end side of the bore 20 by the fluid pressure when hydraulic oil is supplied to the first end side of the bore 20. It is supposed to be. Thereby, the large-diameter shaft portion 70a blocks the communication path 320. Then, when the piston portion 31 reaches the limit position on the second end side of the bore 20, the valve mechanism 7 is configured such that one small diameter shaft portion 70 b comes into contact with the one closing portion 22, so Is pushed to the first end side of the bore 20. Thereby, the end surface of the large-diameter shaft portion 70a is separated from the step formed at the boundary between the medium-diameter hole portion 320b and the large-diameter hole portion 320a, and the communication path 320 is opened.
 そして、本実施形態に係る弁機構7は、連通路320が開放された状態でピストン部31がボア20の第一端側に移動したときに、ボア20の第一端側に存在する作動油の抵抗で軸状弁70がボア20の第二端側に押し戻されるのを防止し得る。 The valve mechanism 7 according to the present embodiment is configured so that when the piston portion 31 moves to the first end side of the bore 20 with the communication path 320 opened, the hydraulic oil that exists on the first end side of the bore 20. This resistance can prevent the shaft-like valve 70 from being pushed back to the second end side of the bore 20.
 すなわち、本実施形態に係る弁機構7は、軸状弁70をボア20の第一端側に付勢する弁付勢部材(弁付勢手段)71を備えている。弁付勢部材71は、コイルバネで構成されている。弁付勢部材71は、ボア20の第二端側にある小径軸部70bに外嵌された状態で中径穴部320b内に内装されている。弁付勢部材71は、小径穴部320cと中径穴部320bとの境界に形成される段差と、大径軸部70aと小径軸部70bとの間に形成される段差とに反対向きの力を作用させるように配置される。 That is, the valve mechanism 7 according to the present embodiment includes a valve urging member (valve urging means) 71 that urges the shaft-like valve 70 toward the first end side of the bore 20. The valve urging member 71 is constituted by a coil spring. The valve urging member 71 is housed inside the medium-diameter hole portion 320b in a state of being fitted on the small-diameter shaft portion 70b on the second end side of the bore 20. The valve urging member 71 is opposite to the step formed at the boundary between the small diameter hole portion 320c and the medium diameter hole portion 320b and the step formed between the large diameter shaft portion 70a and the small diameter shaft portion 70b. Arranged to exert force.
 本実施形態に係るアクチュエータ1は、以上の通りであり、次に、上記構成のアクチュエータ1の作動について説明する。 The actuator 1 according to the present embodiment is as described above. Next, the operation of the actuator 1 having the above configuration will be described.
 本実施形態に係るアクチュエータ1において、図2及び図3に示す如く、付勢部材303の付勢によって複数のプランジャ302のそれぞれが軸挿入穴300に向けて押される。これにより、各プランジャ302の先端が偏心軸部40の外周に常時接触した状態になる。しかしながら、軸挿入穴300よりも小径である偏心軸部40は、回転軸4の回転中心(軸挿入穴300の穴心)に対して偏心している。これにより、少なくとも何れか一つのプランジャ302が偏心軸部40によってプランジャ穴301に押し込まれる(図3参照)。 In the actuator 1 according to the present embodiment, as shown in FIGS. 2 and 3, each of the plurality of plungers 302 is pushed toward the shaft insertion hole 300 by the urging of the urging member 303. Thereby, the tip of each plunger 302 is always in contact with the outer periphery of the eccentric shaft portion 40. However, the eccentric shaft portion 40 having a smaller diameter than the shaft insertion hole 300 is eccentric with respect to the rotation center of the rotation shaft 4 (hole center of the shaft insertion hole 300). Thereby, at least any one plunger 302 is pushed into the plunger hole 301 by the eccentric shaft portion 40 (see FIG. 3).
 本実施形態に係るアクチュエータ1において、モータの駆動が回転軸4に伝達される。これにより、回転軸4が回転する。しかしながら、ピストンロッド3(ピストン部31)がガイドバー6によって回り止めされた状態(非回転状態)で維持する。これに対し、偏心軸部40は、回転軸4の回転軸4を中心に回転する。これにより、偏心軸部40は、軸挿入穴300回りに配置された複数のプランジャ302のそれぞれを順々に押圧してプランジャ穴301に押し込む。そして、回転軸4の回転に伴い、偏心軸部40による押圧が解除されたプランジャ302は、付勢部材303の付勢で軸挿入穴300(偏心軸部40)側に突出する。 In the actuator 1 according to the present embodiment, the drive of the motor is transmitted to the rotating shaft 4. Thereby, the rotating shaft 4 rotates. However, the piston rod 3 (piston portion 31) is maintained in a state where it is prevented from rotating by the guide bar 6 (non-rotating state). On the other hand, the eccentric shaft portion 40 rotates around the rotation shaft 4 of the rotation shaft 4. Thereby, the eccentric shaft part 40 presses each of the plurality of plungers 302 arranged around the shaft insertion hole 300 in order and pushes them into the plunger hole 301. As the rotary shaft 4 rotates, the plunger 302 released from being pressed by the eccentric shaft portion 40 protrudes toward the shaft insertion hole 300 (eccentric shaft portion 40) by the biasing member 303.
 従って、回転軸4が回転することで、複数のプランジャ302のそれぞれがタイミングをずらしてプランジャ穴301内で往復動する。これに伴い、プランジャ穴301の空間(プランジャ302の存在しない領域)が容積変化する。これにより、ピストン部31を境にしたボア20の第二端側にある作動油がプランジャ穴301に流入してピストン部31を境にしたボア20の第一端側に押し出される。 Therefore, as the rotating shaft 4 rotates, each of the plurality of plungers 302 reciprocates within the plunger hole 301 at different timings. Accordingly, the volume of the space of the plunger hole 301 (the region where the plunger 302 does not exist) changes in volume. As a result, the hydraulic oil on the second end side of the bore 20 with the piston portion 31 as a boundary flows into the plunger hole 301 and is pushed out to the first end side of the bore 20 with the piston portion 31 as a boundary.
 具体的には、プランジャ穴301に押し込まれたプランジャ302が回転軸4側に移動するとき(空間容積が拡大するとき)に、ボア20内に充填された作動油(ピストン部31を境にしたボア20の第二端側の領域にある作動油)は、第一流路304に引き込まれる。そして、プランジャ302が最大に突出した状態で作動油の引き込みが完了する。この状態で、第一流路304内の逆止弁306の作用により、プランジャ穴301内に引き込まれた作動油が、ピストン部31を境にしたボア20の第二端側に逆流することが防止される。 Specifically, when the plunger 302 pushed into the plunger hole 301 moves to the rotating shaft 4 side (when the space volume increases), the hydraulic oil filled in the bore 20 (with the piston portion 31 as a boundary) Hydraulic oil in the region on the second end side of the bore 20 is drawn into the first flow path 304. Then, the drawing-in of the hydraulic oil is completed with the plunger 302 protruding to the maximum. In this state, the action of the check valve 306 in the first flow path 304 prevents hydraulic oil drawn into the plunger hole 301 from flowing back to the second end side of the bore 20 with the piston portion 31 as a boundary. Is done.
 これに対し、プランジャ302がプランジャ穴301に押し込まれるとき(空間容積が縮小するとき)に、プランジャ穴301内にある作動油が第二流路305を通ってピストン部31を境にしたボア20の第一端側に押し出される。そして、プランジャ302がプランジャ穴301に最大に押し込まれた状態で、ボア20の第一端側に対する作動油の押し出しが完了する。この状態で、第二流路305内の逆止弁307の作用により、ボア20の第一端側に押し出された作動油がプランジャ穴301側に逆流することが防止される。 In contrast, when the plunger 302 is pushed into the plunger hole 301 (when the spatial volume is reduced), the hydraulic oil in the plunger hole 301 passes through the second flow path 305 and the bore 20 with the piston portion 31 as a boundary. It is pushed out to the first end side. Then, in the state where the plunger 302 is pushed into the plunger hole 301 to the maximum, the extrusion of the hydraulic oil to the first end side of the bore 20 is completed. In this state, the action of the check valve 307 in the second flow path 305 prevents the hydraulic oil pushed out to the first end side of the bore 20 from flowing back to the plunger hole 301 side.
 このように、ボア20の第二端側にある作動油が、ボア20の第一端側に送られると、ボア20の第一端側が作動油で充満する。本実施形態において、軸挿入穴300が全長に亘って同径であるため、ボア20の第一端側に流入した作動油は、軸挿入穴300内にも入り込む。従って、先端軸部42の段差上に設けられた油抜用穴420から該先端軸部42よりも奥側にも作動油が流れ込むことになる。 Thus, when the hydraulic oil on the second end side of the bore 20 is sent to the first end side of the bore 20, the first end side of the bore 20 is filled with the hydraulic oil. In this embodiment, since the shaft insertion hole 300 has the same diameter over the entire length, the hydraulic oil that has flowed into the first end side of the bore 20 also enters the shaft insertion hole 300. Accordingly, hydraulic oil flows from the oil drain hole 420 provided on the step of the tip shaft portion 42 to the back side of the tip shaft portion 42.
 そして、ピストン部31を境にしたボア20の第一端側に作動油が充満した状態でさらに作動油が送り込まれると、ピストン部31を境にしたボア20の第一端側の圧力が高まる。その結果、ピストン部31がボア20の第二端側に押され、ピストンロッド3が一方向(軸線方向)に移動する。本実施形態に係るアクチュエータ1は、ピストン部31にガイドバー6が挿通されている。そのため、ピストンロッド3全体が回り止めされた状態でガイドバー6に案内され、ボア20の第二端側(一方の閉塞部22側)に移動する。 When the hydraulic oil is further fed in the state where the hydraulic oil is filled in the first end side of the bore 20 with the piston portion 31 as a boundary, the pressure on the first end side of the bore 20 with the piston portion 31 as a boundary increases. . As a result, the piston portion 31 is pushed to the second end side of the bore 20, and the piston rod 3 moves in one direction (axial direction). In the actuator 1 according to this embodiment, the guide bar 6 is inserted through the piston portion 31. Therefore, the piston rod 3 is guided by the guide bar 6 in a state in which the entire piston rod 3 is prevented from rotating, and moves to the second end side (one closing portion 22 side) of the bore 20.
 そして、ピストンロッド3がボア20の第二端側にある限界位置又は所定位置に到達した状態で、ピストン部31を境にしたボア20の第一端側にある領域(ボア20)と軸挿入穴300とが作動油で充満した状態になる。 Then, in a state where the piston rod 3 has reached a limit position or a predetermined position on the second end side of the bore 20, a region (bore 20) on the first end side of the bore 20 with the piston portion 31 as a boundary is inserted into the shaft. The hole 300 is filled with hydraulic oil.
 この状態で、ボア20の第一端側にある領域内の圧力上昇が止まる。これにより、ピストンロッド3がリターンスプリング5の付勢でボア20の第一端側に向けて移動することになる。本実施形態に係るアクチュエータ1は、弁機構7を備えている。そのため、ピストンロッド3がボア20の第二端側にある限界位置に到達した状態で、弁機構7が連通路320を開放することで、ボア20の第一端側の領域内にある作動油が、ボア20の第二端側の領域に流れ込む。これにより、ボア20の第一端側の領域(ボア20)内の圧力が低下する。 In this state, the pressure increase in the region on the first end side of the bore 20 stops. As a result, the piston rod 3 is moved toward the first end side of the bore 20 by the bias of the return spring 5. The actuator 1 according to this embodiment includes a valve mechanism 7. Therefore, when the piston rod 3 reaches the limit position on the second end side of the bore 20, the valve mechanism 7 opens the communication path 320, so that the hydraulic oil in the region on the first end side of the bore 20 is present. Flows into the region on the second end side of the bore 20. Thereby, the pressure in the area | region (bore 20) of the 1st end side of the bore 20 falls.
 すなわち、ピストン部31がボア20の第二端側の限界位置に到達すると、弁機構7の軸状弁70の一方の小径軸部70bが一方の閉塞部22の内面に当接し、他方の閉塞部23側に押される。これに伴い、連通路320が開放(連通)され、ボア20の第一端側の作動油が連通路320を介してボア20の第二端側に流れる。これにより、ボア20の第一端側の圧力が低下する。従って、リターンスプリング5の付勢力でピストン部31がボア20の第一端側に向けて迅速に移動する。 That is, when the piston portion 31 reaches the limit position on the second end side of the bore 20, one small diameter shaft portion 70 b of the shaft-like valve 70 of the valve mechanism 7 comes into contact with the inner surface of one closing portion 22 and the other closing portion is closed. It is pushed to the part 23 side. Accordingly, the communication path 320 is opened (communication), and the hydraulic oil on the first end side of the bore 20 flows to the second end side of the bore 20 through the communication path 320. As a result, the pressure on the first end side of the bore 20 decreases. Therefore, the piston portion 31 moves quickly toward the first end side of the bore 20 by the urging force of the return spring 5.
 そして、回転軸4が回転し続けた場合、連通路320を介してボア20の第一端側からボア20の第二端側に作動油が流れ込む。これにより、ボア20の第一端側の圧力が上昇しない。そのため、リターンスプリング5の付勢力は、ボア20の第一端側の圧力に勝り、ピストン部31がボア20の第一端側に迅速に押し戻される。なお、ピストン部31がボア20の第一端側に押し戻される際に、軸挿入穴300の奥側(先端軸部42よりも奥側)にある作動油は、ロッド部30の移動に伴って先端軸部42側に押されることになる。しかしながら、本実施形態に係るアクチュエータ1は、先端軸部42に軸心方向の油抜用穴420が穿設されている。そのため、ピストン部31がボア20の第一端側に移動する際、軸挿入穴300内の作動油が油抜用穴420を介してボア20の第一端側にある領域に押し出された上で、連通路320からボア20の第二端側にある領域に送り出される。 And when the rotating shaft 4 continues to rotate, hydraulic fluid flows from the first end side of the bore 20 to the second end side of the bore 20 through the communication path 320. Thereby, the pressure on the first end side of the bore 20 does not increase. Therefore, the biasing force of the return spring 5 exceeds the pressure on the first end side of the bore 20, and the piston portion 31 is quickly pushed back to the first end side of the bore 20. In addition, when the piston part 31 is pushed back to the first end side of the bore 20, the hydraulic oil in the back side of the shaft insertion hole 300 (back side from the tip end shaft part 42) is accompanied by the movement of the rod part 30. It will be pushed to the tip shaft part 42 side. However, in the actuator 1 according to the present embodiment, the oil drain hole 420 in the axial direction is formed in the distal end shaft portion 42. Therefore, when the piston portion 31 moves to the first end side of the bore 20, the hydraulic oil in the shaft insertion hole 300 is pushed out to the region on the first end side of the bore 20 through the oil draining hole 420. Then, the air is sent out from the communication path 320 to the area on the second end side of the bore 20.
 そして、ピストン部31がボア20の第一端側に設定された限界位置に到達すると、弁機構7の他方の小径軸部70bが他方の閉塞部23に当接する。これにより、軸状弁70全体がボア20の第二端側に押され、連通路320が遮断される。これに伴い、ボア20の第一端側に作動油が供給されたときに、当該領域が圧力上昇できる状態になる。 When the piston portion 31 reaches the limit position set on the first end side of the bore 20, the other small-diameter shaft portion 70 b of the valve mechanism 7 comes into contact with the other closing portion 23. As a result, the entire shaft-like valve 70 is pushed to the second end side of the bore 20, and the communication path 320 is blocked. Along with this, when the hydraulic oil is supplied to the first end side of the bore 20, the region is in a state where the pressure can be increased.
 従って、上記アクチュエータ1において、上記動作が繰り返されることでピストンロッド3のロッドが軸線方向で往復動する。 Therefore, in the actuator 1, the above operation is repeated, so that the rod of the piston rod 3 reciprocates in the axial direction.
 以上のように、上記構成のアクチュエータ1は、シリンダ本体2内(ボア20内)のピストン部31に作動油の流体圧を作用させてピストンロッド3を移動させる。これにより、アクチュエータ1は、油圧シリンダと同等の性能を発揮することができる。また、アクチュエータ1は、シリンダ本体2内のみで作動油を流動させるとともに、シリンダ本体2内に作動油を流動させる構成が内装される。これにより、アクチュエータ1は、小型化及び軽量化したものになる。 As described above, the actuator 1 configured as described above moves the piston rod 3 by applying the fluid pressure of the hydraulic oil to the piston portion 31 in the cylinder body 2 (in the bore 20). Thereby, the actuator 1 can exhibit the performance equivalent to a hydraulic cylinder. In addition, the actuator 1 includes a configuration in which the hydraulic oil flows only in the cylinder body 2 and the hydraulic oil flows in the cylinder body 2. Thereby, the actuator 1 is reduced in size and weight.
<第二実施形態>
 次に、本発明の第二実施形態に係るアクチュエータについて、図5~図8を参照して詳細に説明する。なお、以下の説明において、第一実施形態で説明した構成と共通する構成或いは相当する構成については、第一実施形態と同一名称及び同一符号を付すこととする。
<Second embodiment>
Next, an actuator according to a second embodiment of the present invention will be described in detail with reference to FIGS. In addition, in the following description, the same name and the same code | symbol as 1st embodiment shall be attached | subjected about the structure which is common in the structure demonstrated in 1st embodiment, or a structure corresponding to it.
 アクチュエータ1は、図5に示す如く、第一端面と該第一端面の反対側の第二端面とを有する外観円柱状のシリンダ本体2と、該シリンダ本体2の第一端面から突出するピストンロッド3と、シリンダ本体2の第二端面から突出する回転軸4とを備える。 As shown in FIG. 5, the actuator 1 includes an external cylindrical cylinder body 2 having a first end face and a second end face opposite to the first end face, and a piston rod protruding from the first end face of the cylinder body 2. 3 and a rotating shaft 4 protruding from the second end face of the cylinder body 2.
 より具体的に説明すると、アクチュエータ1は、図6に示す如く、一方向に延びるボア20であって、一方向に第一端と第一端の反対側の第二端とを有するボア20が形成されたシリンダ部21と、シリンダ部21のボア20の両端を閉塞する一対の閉塞部22,23と、を含むシリンダ本体2と、先端と該先端の反対側の基端とを有するロッド部30であって、一対の閉塞部22,23のうちの一方の閉塞部22に液密状態で挿通されたロッド部30と、ロッド部30の基端に同心で連結されたピストン部31であって、ボア20に内装されたピストン部31と、を含むピストンロッド3と、一対の閉塞部22,23のうちの他方の閉塞部23に液密状態で挿通された回転軸4と、シリンダ本体2に内装されたリターンスプリング5であって、ピストン部31をボア20の第一端側(一方向の一方側:他方の閉塞部23側)に付勢するリターンスプリング5とを備える。 More specifically, the actuator 1 includes a bore 20 extending in one direction as shown in FIG. 6, and the bore 20 having a first end and a second end opposite to the first end in one direction. Rod portion having a cylinder body 2 including a formed cylinder portion 21 and a pair of closing portions 22 and 23 closing both ends of the bore 20 of the cylinder portion 21, and a distal end and a proximal end opposite to the distal end. 30 is a rod part 30 inserted in a liquid-tight state into one of the pair of closing parts 22, 23, and a piston part 31 concentrically connected to the proximal end of the rod part 30. A piston rod 31 including a piston portion 31 housed in the bore 20, a rotating shaft 4 inserted in a liquid-tight state into the other closing portion 23 of the pair of closing portions 22 and 23, and a cylinder body 2 is a return spring 5 built in Te, the piston unit 31 first end side of the bore 20: and a return spring 5 which urges the (one direction on one side the other of the closure part 23 side).
 シリンダ本体2のボア20内には、作動油(図示しない)が充填されている。すなわち、本実施形態においても、シリンダ本体2のピストン部31を境にしたボア20の第一端側及び第二端側(ボア20の第一端側の領域及びボア20の第二端側の領域)の何れにも作動油が充満されている。 The inside of the bore 20 of the cylinder body 2 is filled with hydraulic oil (not shown). That is, also in this embodiment, the first end side and the second end side of the bore 20 with the piston portion 31 of the cylinder body 2 as a boundary (the region on the first end side of the bore 20 and the second end side of the bore 20). (Area) is filled with hydraulic oil.
 シリンダ本体2は、ボア20が丸穴状に形成されている。より具体的には、シリンダ部21は、真円筒状に形成されている。これにより、ボア20は、シリンダ本体2の内穴で構成されている。一対の閉塞部22,23のそれぞれは、第一端と第一端の反対側の第二端とを有する嵌入部220,230であって、シリンダ部21の開口端部に嵌入される円板状の嵌入部220,230と、嵌入部220,230の第一端に連続して設けられたフランジ部221,231とを備えている。 The cylinder body 2 has a bore 20 formed in a round hole shape. More specifically, the cylinder part 21 is formed in a true cylindrical shape. Thereby, the bore 20 is configured by the inner hole of the cylinder body 2. Each of the pair of closing portions 22 and 23 is a fitting portion 220 and 230 having a first end and a second end opposite to the first end, and is a disc fitted into the opening end portion of the cylinder portion 21. Shaped fitting portions 220 and 230, and flange portions 221 and 231 provided continuously at the first ends of the fitting portions 220 and 230.
 閉塞部22,23の嵌入部220,230の外周には、環状溝222,232が形成されている。環状溝222,232内には、環状のシール材(本実施形態においてはOリング)Sが嵌め込まれている。この状態で、閉塞部22,23は、シリンダ部21の開口端部に嵌入されている。そして、嵌入部220,230がシリンダ部21の開口端部に嵌入された状態で、フランジ部221,231がシリンダ部21の端面に固定(本実施形態においてはネジ止め)されている。これにより、シリンダ部21のボア20の両端が閉塞部22,23よって封止されている。 Ring grooves 222 and 232 are formed on the outer circumferences of the fitting portions 220 and 230 of the closing portions 22 and 23. An annular sealing material (O-ring in this embodiment) S is fitted in the annular grooves 222 and 232. In this state, the closing portions 22 and 23 are fitted into the opening end portion of the cylinder portion 21. The flange portions 221 and 231 are fixed to the end surface of the cylinder portion 21 (screwed in this embodiment) in a state where the insertion portions 220 and 230 are inserted into the opening end portions of the cylinder portion 21. Thereby, both ends of the bore 20 of the cylinder portion 21 are sealed by the closing portions 22 and 23.
 一対の閉塞部22,23のうちの一方の閉塞部22(本実施形態においては、ボア20の第二端側の閉塞部22)には、ピストンロッド3のロッド部30を挿通するための貫通穴がボア20の穴中心と同心で設けられている。より具体的に説明すると、一方の閉塞部22には、ボア20の穴中心と同心をなす丸穴状のロッド挿通穴223と、該ロッド挿通穴223に同心で連続する非円形状の案内用穴225とが形成されている。ロッド挿通穴223は、閉塞部22の外面側に配置されて外側に向けて開口する。案内用穴225は、閉塞部22(嵌入部220)の内面側に配置されてボア20に向けて開口する。 A through hole for inserting the rod portion 30 of the piston rod 3 into one of the pair of blocking portions 22 and 23 (in the present embodiment, the blocking portion 22 on the second end side of the bore 20). A hole is provided concentrically with the hole center of the bore 20. More specifically, one closed portion 22 has a round hole-shaped rod insertion hole 223 concentric with the hole center of the bore 20, and a non-circular guide for concentric continuous with the rod insertion hole 223. A hole 225 is formed. The rod insertion hole 223 is disposed on the outer surface side of the blocking portion 22 and opens outward. The guide hole 225 is disposed on the inner surface side of the blocking portion 22 (insertion portion 220) and opens toward the bore 20.
 案内用穴225を画定する内周面上には、穴中心を挟んで互いに対向する一対のガイド面226,226が形成されている。ガイド面226,226は、平面で構成される。ガイド面226,226は、案内用穴225の穴中心方向の全長に亘って形成されている。 A pair of guide surfaces 226 and 226 facing each other across the hole center are formed on the inner peripheral surface that defines the guide hole 225. The guide surfaces 226 and 226 are configured as flat surfaces. The guide surfaces 226 and 226 are formed over the entire length of the guide hole 225 in the hole center direction.
 一方の閉塞部22におけるロッド挿通穴223を画定する内周面には、環状の溝224が形成されている。この溝224内には、環状のシール材(本実施形態においてはOリング)Sが嵌め込まれている。 An annular groove 224 is formed on the inner peripheral surface that defines the rod insertion hole 223 in one closing portion 22. An annular seal material (O-ring in this embodiment) S is fitted in the groove 224.
 これに対し、一対の閉塞部22,23のうちの他方の閉塞部23(本実施形態においては、ボア20の第一端側の閉塞部23)には、ボア20の穴中心と同心をなす回転軸挿通穴233が設けられる。回転軸挿通穴233は、外側ほど大径に設定された段付き穴で構成されている。より具体的には、回転軸挿通穴233は、最も内側にある軸挿通穴233aと、最も外側にあるベアリング嵌着穴233bと、軸挿通穴233aとベアリング嵌着穴233bとの間にあるシール嵌着穴233cとで構成される。シール嵌着穴233cには、環状のシール部材S1が嵌着される。ベアリング嵌着穴233bには、環状のベアリングBが嵌着される。 On the other hand, the other closing portion 23 (the closing portion 23 on the first end side of the bore 20 in this embodiment) of the pair of closing portions 22 and 23 is concentric with the hole center of the bore 20. A rotation shaft insertion hole 233 is provided. The rotating shaft insertion hole 233 is formed of a stepped hole set to have a larger diameter toward the outer side. More specifically, the rotation shaft insertion hole 233 includes an innermost shaft insertion hole 233a, an outermost bearing fitting hole 233b, and a seal between the shaft insertion hole 233a and the bearing fitting hole 233b. It is comprised with the fitting hole 233c. An annular seal member S1 is fitted into the seal fitting hole 233c. An annular bearing B is fitted into the bearing fitting hole 233b.
 ピストンロッド3のロッド部30及びピストン部31が回転軸4の回転中心と同心になるように、ピストンロッド3のピストン部31がシリンダ部21内に配置された状態で、ピストンロッド3のロッド部30が一方の閉塞部22に挿通されている。 The rod portion of the piston rod 3 in a state where the piston portion 31 of the piston rod 3 is disposed in the cylinder portion 21 so that the rod portion 30 and the piston portion 31 of the piston rod 3 are concentric with the rotation center of the rotating shaft 4. 30 is inserted through one of the closed portions 22.
 より具体的に説明すると、本実施形態に係るピストンロッド3は、軸状のロッド部30と、ロッド部30に対して同心で連結されたピストン部31とを備える。ロッド部30は、第一端と該第一端の反対側の第二端とを有するロッド本体30aであって、丸棒状のロッド本体30aと、ロッド本体30aと同心をなすように、ロッド本体30aの第一端に連設された断面非円形の回止用軸部30bとで構成されている。 More specifically, the piston rod 3 according to this embodiment includes an axial rod portion 30 and a piston portion 31 concentrically connected to the rod portion 30. The rod portion 30 is a rod main body 30a having a first end and a second end opposite to the first end, and the rod main body 30a and the rod main body 30a are concentric with the rod main body 30a. It is comprised by the shaft part 30b for non-rotation of a non-circular cross section provided in a row by the 1st end of 30a.
 ロッド本体30aの外径は、一方の閉塞部22に穿設されたロッド挿通穴223の穴径と略同等に設定されている。ロッド本体30aは、ロッド挿通穴223に挿通された状態で、ロッド挿通穴223を画定する内周面上の溝224に嵌着されたシール材Sが外周全周に亘って密接するようになっている。 The outer diameter of the rod main body 30a is set to be approximately equal to the hole diameter of the rod insertion hole 223 formed in one of the closed portions 22. When the rod body 30a is inserted into the rod insertion hole 223, the sealing material S fitted in the groove 224 on the inner peripheral surface that defines the rod insertion hole 223 comes into close contact with the entire outer periphery. ing.
 回止用軸部30bには、軸線方向に延びる一対の平面部350,350が当該回転用軸部30bの軸心を挟んで形成されている。回止軸部30bは、一方の閉塞部22に形成された案内用穴225に挿入されている。すなわち、案内用穴225を画定する内周面上にある一対のガイド面226,226に対して平面部350,350のそれぞれが摺接状態になるように、回止用軸部30bが案内用穴225に挿入されている。そして、ピストン部31が前記ボア20の第一端側の限界位置に位置した状態で、ロッド本体30a側の一部が案内用穴225内に位置するように、回止用軸部30bの長さが設定されている。 A pair of flat surface portions 350, 350 extending in the axial direction are formed on the rotation shaft portion 30b with the axis of the rotation shaft portion 30b interposed therebetween. The rotation shaft portion 30 b is inserted into a guide hole 225 formed in the one closing portion 22. That is, the rotation shaft portion 30b is for guiding so that the flat portions 350 and 350 are in sliding contact with the pair of guide surfaces 226 and 226 on the inner peripheral surface that defines the guide hole 225. It is inserted into the hole 225. Then, in the state where the piston portion 31 is located at the limit position on the first end side of the bore 20, the length of the rotation shaft portion 30b is such that a part on the rod body 30a side is located in the guide hole 225. Is set.
 ピストン部31の外径は、ボア20の穴径と略同等に設定されている。ピストン部31は、ボア20と同心をなすように、該ボア20に内装されている。より具体的に説明すると、本実施形態に係るピストン部31は、ロッド部30に連続して設けられたピストン本体31aであって、回転軸4と同心をなす外周円形状のピストン本体31aと、内穴を画定した内周面を有する外輪部(ピストン外輪部)31bであって、ピストン本体31aの外周を包囲する環状の外輪部31bとを備える。 The outer diameter of the piston portion 31 is set substantially equal to the hole diameter of the bore 20. The piston portion 31 is housed in the bore 20 so as to be concentric with the bore 20. More specifically, the piston part 31 according to the present embodiment is a piston body 31 a provided continuously to the rod part 30, and has an outer circumferential circular piston body 31 a concentric with the rotating shaft 4; An outer ring part (piston outer ring part) 31b having an inner peripheral surface defining an inner hole, and an annular outer ring part 31b surrounding the outer periphery of the piston body 31a.
 ピストン本体31aには、外輪部31bの内周面(外側)に向けて開口したプランジャ穴(プランジャ内装穴)301が設けられている。プランジャ穴301には、プランジャ穴301の穴中心方向で移動可能なプランジャ302と、プランジャ302を外輪部31b(径方向外側)に向けて付勢する付勢部材(プランジャ付勢手段)303と、が内装されている。 The piston body 31a is provided with a plunger hole (plunger internal hole) 301 that opens toward the inner peripheral surface (outside) of the outer ring portion 31b. The plunger hole 301 includes a plunger 302 that can move in the center direction of the plunger hole 301, a biasing member (plunger biasing means) 303 that biases the plunger 302 toward the outer ring portion 31 b (radially outward), Is decorated.
 また、ピストン本体31aには、ボア20の第二端側(一方向の他方側:一方の閉塞部22側)に向けて開口した第一流路304であって、プランジャ穴301に連通する第一流路304と、ボア20の第一端側(一方向の一方側:他方の閉塞部23側)に向けて開口した第二流路305であって、プランジャ穴301に連通する第二流路305とが設けられている。第一流路304及び第二流路305のそれぞれには、逆止弁306,307が内装されている。逆止弁306,307は、ボア20の第二端側からボア20の第一端側に向けての作動油の流通を許容する一方で、ボア20の第一端側からボア20の第二端側に向けての作動油の流通を阻止する。 The piston main body 31 a has a first flow path 304 that opens toward the second end side of the bore 20 (the other side in one direction: the one closed portion 22 side), and is in communication with the plunger hole 301. A second flow path 305 that opens toward the passage 304 and the first end side of the bore 20 (one side in one direction: the other closed portion 23 side), and communicates with the plunger hole 301. And are provided. Each of the first channel 304 and the second channel 305 is provided with check valves 306 and 307. The check valves 306 and 307 allow the hydraulic oil to flow from the second end side of the bore 20 toward the first end side of the bore 20, while the second end of the bore 20 from the first end side of the bore 20. Blocks hydraulic fluid from flowing toward the end.
 より具体的に説明すると、本実施形態に係るピストン本体31aには、図7に示す如く、外周面上で開口した非貫通状態のプランジャ穴301が周方向に間隔をあけて複数設けられている。本実施形態において、プランジャ穴301は、六つ設けられており、それぞれ等間隔(60°毎)に配置されている。 More specifically, as shown in FIG. 7, the piston main body 31a according to the present embodiment is provided with a plurality of non-penetrating plunger holes 301 that are opened on the outer peripheral surface at intervals in the circumferential direction. . In the present embodiment, six plunger holes 301 are provided, and are arranged at equal intervals (every 60 °).
 プランジャ穴301には、外観ピン状のプランジャ302と付勢部材であるコイルバネ303とが同心で内装されている。 In the plunger hole 301, an external pin-shaped plunger 302 and a coil spring 303 as an urging member are concentrically housed.
 プランジャ302の外径は、プランジャ穴301の穴径と同径に設定されている。これにより、プランジャ302の外周面がプランジャ穴301の内周面と摺接した状態で、当該プランジャ302が自己の軸心方向に移動可能になっている。プランジャ302の先端部は、丸みを持った半球状に形成されている。 The outer diameter of the plunger 302 is set to the same diameter as that of the plunger hole 301. Accordingly, the plunger 302 can move in the axial direction of the plunger 302 in a state where the outer peripheral surface of the plunger 302 is in sliding contact with the inner peripheral surface of the plunger hole 301. The tip of the plunger 302 is formed in a rounded hemisphere.
 付勢部材303は、プランジャ302を外側(外輪部31b)に向けて付勢する。これにより、付勢部材303は、プランジャ302の先端を外輪部31bの内周面に常時接触させる。また、プランジャ302の先端部がプランジャ穴301から外側に突出した状態と、プランジャ302全体がプランジャ穴301内に押し込まれた状態とにできるように、付勢部材303の撓み代が設定されている。なお、プランジャ穴301の奥側は、小径穴になっている。これにより、プランジャ穴301の穴径の変更に伴って形成される段差部が、付勢部材303を支持する。 The urging member 303 urges the plunger 302 toward the outside (outer ring portion 31b). Thereby, the urging member 303 always brings the tip of the plunger 302 into contact with the inner peripheral surface of the outer ring portion 31b. Further, the bending allowance of the urging member 303 is set so that the distal end portion of the plunger 302 protrudes outward from the plunger hole 301 and the entire plunger 302 is pushed into the plunger hole 301. . The back side of the plunger hole 301 is a small diameter hole. Thereby, the step part formed with the change of the hole diameter of the plunger hole 301 supports the urging member 303.
 第一流路304及び第二流路305は、プランジャ302(プランジャ穴301)毎に設けられている。従って、逆止弁306,307は、第一流路304及び第二流路305のそれぞれに設けられている。 The first flow path 304 and the second flow path 305 are provided for each plunger 302 (plunger hole 301). Therefore, the check valves 306 and 307 are provided in the first flow path 304 and the second flow path 305, respectively.
 より具体的に説明する。第一流路304は、図6に示す如く、一方向(ボア20と同方向)に延びるように形成されている。第一流路304は、プランジャ穴301側に形成された大径穴部304aと、ボア20の第二端側(一方の閉塞部22側)で大径穴部304aと連続する小径穴部304bとを備える。なお、本実施形態において、第一流路304(小径穴部304b)は、プランジャ穴301の奥側にある小径穴に連通している。 More specific explanation. As shown in FIG. 6, the first flow path 304 is formed to extend in one direction (the same direction as the bore 20). The first flow path 304 includes a large-diameter hole portion 304a formed on the plunger hole 301 side, and a small-diameter hole portion 304b continuous with the large-diameter hole portion 304a on the second end side of the bore 20 (on the one closing portion 22 side). Is provided. In the present embodiment, the first flow path 304 (small diameter hole portion 304b) communicates with a small diameter hole on the back side of the plunger hole 301.
 本実施形態に係るアクチュエータ1において、第一流路304の大径穴部304aには、小径穴部304bの穴径よりも大径な球状の弁(以下、玉弁という)308と、玉弁308を前記ボア20の第二端側に付勢するコイルバネ309とが内装されている。これにより、第一流路304の逆止弁306が形成されている。逆止弁306は、コイルバネ309による付勢よって、ボア20の第二端側にある小径穴部304bと大径穴部304aとの境界に形成される環状の段差部分に玉弁308が押し付けられることで、玉弁308が小径穴部304bを閉塞するようになっている。 In the actuator 1 according to the present embodiment, the large-diameter hole 304a of the first flow path 304 includes a spherical valve (hereinafter referred to as a ball valve) 308 having a diameter larger than that of the small-diameter hole 304b, and a ball valve 308. And a coil spring 309 that urges the bore 20 toward the second end side of the bore 20. Thereby, the check valve 306 of the first flow path 304 is formed. The check valve 306 is urged by the coil spring 309 so that the ball valve 308 is pressed against an annular step formed at the boundary between the small diameter hole 304b and the large diameter hole 304a on the second end side of the bore 20. As a result, the ball valve 308 closes the small diameter hole 304b.
 これにより、第一流路304の逆止弁306において、ボア20の第二端側から第一流路304に作動油が流れ込もうとすると、その作動油の流体圧によって玉弁308がコイルバネ309の付勢力に抗してプランジャ穴301側に押される。これにより、作動油がボア20の第二端側からボア20の第一端側に流通可能となる。その一方で、プランジャ穴301からボア20の第二端側に作動油が流れ込もうとすると、玉弁308がコイルバネ309の付勢力で段差部分に圧接する。これにより、玉弁308は、小径穴部304bを閉塞する。従って、プランジャ穴301からボア20の第二端側に作動油が流れ込むことが防止される。 As a result, in the check valve 306 of the first flow path 304, when the working oil tries to flow into the first flow path 304 from the second end side of the bore 20, the ball valve 308 is moved by the fluid pressure of the working oil to the coil spring 309. It is pushed toward the plunger hole 301 against the urging force. Thereby, the hydraulic oil can flow from the second end side of the bore 20 to the first end side of the bore 20. On the other hand, when hydraulic oil tries to flow from the plunger hole 301 to the second end side of the bore 20, the ball valve 308 is pressed against the stepped portion by the biasing force of the coil spring 309. Thereby, the ball valve 308 closes the small diameter hole 304b. Accordingly, the hydraulic oil is prevented from flowing from the plunger hole 301 to the second end side of the bore 20.
 第二流路305は、一方向に延びるように形成されている。第二流路305は、途中位置に形成された大径穴部305aと、該大径穴部305aの両側に形成された小径穴部305b,305bとを備える。なお、本実施形態において、第二流路305は、ピストン部31に穿設された段付き穴と該段付き穴の開口部に嵌着された筒状のプラグ(採番しない)の内穴とが連続することで形成されている。 The second flow path 305 is formed to extend in one direction. The second flow path 305 includes a large-diameter hole 305a formed at an intermediate position, and small- diameter holes 305b and 305b formed on both sides of the large-diameter hole 305a. In the present embodiment, the second flow path 305 includes a stepped hole formed in the piston portion 31 and an inner hole of a cylindrical plug (not numbered) fitted in the opening of the stepped hole. And is formed by continuation.
 そして、本実施形態に係るアクチュエータ1において、第二流路305の大径穴部305aには、小径穴部305bの穴径よりも大径な球状の弁(以下、玉弁という)310と、該玉弁310をボア20の第二端側に付勢するコイルバネ311とが内装されている。これにより、第二流路305の逆止弁307が形成されている。逆止弁307は、コイルバネ311による付勢で、ボア20の第二端側にある小径穴部305bと大径穴部305aとの境界に形成される環状の段差部分に玉弁310が押し付けられることで、玉弁310が小径穴部305bを閉塞するようになっている。 In the actuator 1 according to the present embodiment, the large-diameter hole 305a of the second flow path 305 includes a spherical valve (hereinafter referred to as a ball valve) 310 having a diameter larger than that of the small-diameter hole 305b. A coil spring 311 that urges the ball valve 310 toward the second end side of the bore 20 is housed. Thereby, the check valve 307 of the second flow path 305 is formed. The check valve 307 is biased by the coil spring 311, and the ball valve 310 is pressed against an annular step formed at the boundary between the small diameter hole 305 b and the large diameter hole 305 a on the second end side of the bore 20. Thus, the ball valve 310 closes the small diameter hole 305b.
 これにより、第二流路305の逆止弁307は、プランジャ穴301内から第二流路305に作動油が流れ込もうとすると、その作動油の流体圧によって玉弁310がコイルバネ311の付勢力に抗してボア20の第一端側に押される。これにより、作動油がボア20の第二端側からボア20の第一端側に流通可能となる。その一方で、ボア20の第一端側から第二流路305に作動油が流れ込もうとすると、玉弁310がコイルバネ311の付勢力で段差部分に圧接する。これにより、玉弁310が小径穴部305bを閉塞する。従って、ボア20の第一端側からプランジャ穴301内に作動油が流れ込むことが防止される。 As a result, the check valve 307 of the second flow path 305 causes the ball valve 310 to be attached to the coil spring 311 by the fluid pressure of the hydraulic oil when the hydraulic oil tries to flow into the second flow path 305 from the plunger hole 301. The bore 20 is pushed toward the first end side against the force. Thereby, the hydraulic oil can flow from the second end side of the bore 20 to the first end side of the bore 20. On the other hand, when the hydraulic oil tries to flow into the second flow path 305 from the first end side of the bore 20, the ball valve 310 is pressed against the step portion by the urging force of the coil spring 311. Thereby, the ball valve 310 closes the small diameter hole 305b. Therefore, the hydraulic oil is prevented from flowing into the plunger hole 301 from the first end side of the bore 20.
 なお、本実施形態に係るアクチュエータ1において、第二流路305のプランジャ穴301側にある小径穴部305bは、第一流路304の大径穴部304aと同径及び同心に形成され、プランジャ穴301の奥側にある小径穴に連通している。これに伴い、第二流路305の小径穴部305bと第一流路304の大径穴部304aとが連続穴を構成する。そのため、第一流路304の逆止弁306のコイルバネ309は、当該第一流路304の逆止弁306の玉弁308と第二流路305の逆止弁307の玉弁310との間に介装されている。 In the actuator 1 according to the present embodiment, the small diameter hole 305b on the plunger hole 301 side of the second flow path 305 is formed to have the same diameter and concentricity as the large diameter hole 304a of the first flow path 304, and the plunger hole It communicates with a small-diameter hole on the back side of 301. Accordingly, the small diameter hole 305b of the second flow path 305 and the large diameter hole 304a of the first flow path 304 constitute a continuous hole. Therefore, the coil spring 309 of the check valve 306 of the first flow path 304 is interposed between the ball valve 308 of the check valve 306 of the first flow path 304 and the ball valve 310 of the check valve 307 of the second flow path 305. It is disguised.
 外輪部31bの外径は、ボア20の穴径と略同等に設定されている。外輪部31bは、ピストン本体31aと一緒に一方向に移動可能に構成される。また、外輪部31bは、回転軸4の軸心を回転中心とし、ピストン本体31a周りで回転可能に設けられる。 The outer diameter of the outer ring portion 31b is set substantially equal to the hole diameter of the bore 20. The outer ring portion 31b is configured to be movable in one direction together with the piston main body 31a. The outer ring portion 31b is provided to be rotatable around the piston body 31a with the axis of the rotation shaft 4 as the center of rotation.
 より具体的に説明すると、外輪部31bは、ピストン本体31aの中心(回転軸4の回転中心)回りで回転可能に設けられている。そして、外輪部31bの内穴は、図7に示す如く、回転軸4の回転中心からずれた位置に中心が設定された偏心穴で構成される。本実施形態に係る外輪部31bの内穴(偏心穴)は、丸穴状に形成されている。外輪部31bの内穴の中心線は、回転軸4の回転中心(ベアリングBに軸支された軸本体部の軸心)に対して略平行な状態で偏心している。これにより、外輪部31bは、回転軸4の回転中心にして回転したときに、偏心方向とは反対側の内周面の一部がピストン本体31aの外周面に沿って移動する(回転する)ようになっている。 More specifically, the outer ring portion 31b is provided to be rotatable around the center of the piston main body 31a (the rotation center of the rotation shaft 4). And the inner hole of the outer ring | wheel part 31b is comprised by the eccentric hole by which the center was set in the position shifted | deviated from the rotation center of the rotating shaft 4, as shown in FIG. The inner hole (eccentric hole) of the outer ring portion 31b according to the present embodiment is formed in a round hole shape. The center line of the inner hole of the outer ring portion 31b is eccentric in a state of being substantially parallel to the rotation center of the rotation shaft 4 (the axis center of the shaft main body portion supported by the bearing B). As a result, when the outer ring portion 31b rotates around the rotation center of the rotary shaft 4, a part of the inner peripheral surface opposite to the eccentric direction moves (rotates) along the outer peripheral surface of the piston body 31a. It is like that.
 本実施形態において、外輪部31bは、図6に示す如く、一方向の両端に一対の環状部330,330が設けられている。一対の環状部330,330は、径方向内側に延出している。一対の環状部330,330間には、ピストン本体31aが介装されている。本実施形態に係る外輪部31bは、ピストン本体31a回りで回転したときに、一対の環状部330,330がピストン本体31aの軸心方向の両面に摺接するようになっている。これにより、本実施形態に係る外輪部31bは、ピストン本体31a回りで単独で回転しつつも、ピストン本体31aと一緒に一方向に移動できようになっている。 In the present embodiment, as shown in FIG. 6, the outer ring portion 31b is provided with a pair of annular portions 330 and 330 at both ends in one direction. The pair of annular portions 330 and 330 extend radially inward. A piston main body 31 a is interposed between the pair of annular portions 330 and 330. When the outer ring portion 31b according to the present embodiment rotates around the piston main body 31a, the pair of annular portions 330, 330 are in sliding contact with both axial surfaces of the piston main body 31a. Thereby, the outer ring portion 31b according to the present embodiment can move in one direction together with the piston main body 31a while rotating independently around the piston main body 31a.
 なお、図示しないが、ピストン部31(外輪部31b)の外周の全周には、無端環状の溝が形成される。そして、その溝には、Oリングが嵌着される。これにより、本実施形態に係るアクチュエータ1において、ピストン部31の一方向(ピストンロッド3の軸心方向)における移動が許容されつつ、ピストン部31の外周面とシリンダ部21の内周面との間が液密になっている。 Although not shown, an endless annular groove is formed on the entire outer periphery of the piston portion 31 (outer ring portion 31b). Then, an O-ring is fitted into the groove. Thereby, in the actuator 1 according to the present embodiment, the movement of the piston portion 31 in one direction (the axial center direction of the piston rod 3) is allowed, and the outer peripheral surface of the piston portion 31 and the inner peripheral surface of the cylinder portion 21 are allowed to move. The space is liquid-tight.
 回転軸4は、他方の閉塞部23に形成された回転軸挿通穴233に挿通される。回転軸4の一端側は、シリンダ部21(ボア20)内に位置し、回転軸4の他端側は、外部に位置している。そして、本実施形態に係る回転軸4は、ボア20内に配置されたフランジ43と、フランジ43から一方の閉塞部22に向けて延出するガイドバー6とを備えている。 The rotary shaft 4 is inserted into a rotary shaft insertion hole 233 formed in the other closing portion 23. One end side of the rotating shaft 4 is located in the cylinder part 21 (bore 20), and the other end side of the rotating shaft 4 is located outside. The rotating shaft 4 according to the present embodiment includes a flange 43 disposed in the bore 20 and a guide bar 6 extending from the flange 43 toward the one closing portion 22.
 より具体的に説明すると、本実施形態に係る回転軸4は、ベアリングBに軸支される軸本体部41と、軸本体部41の一端に連設されたフランジ43であって、軸本体部41の軸心と同心のフランジ43と、フランジ43の外周部から一方の閉塞部22に向けて延出するガイドバー6とを備えている。 More specifically, the rotating shaft 4 according to the present embodiment includes a shaft main body portion 41 that is pivotally supported by the bearing B, and a flange 43 that is connected to one end of the shaft main body portion 41. A flange 43 concentric with the shaft center 41 and a guide bar 6 extending from the outer peripheral portion of the flange 43 toward the one closed portion 22 are provided.
 軸本体部41は、他方の閉塞部23に嵌合されたシール部材S1が外嵌されるシール部41aと、シール部41aに連続して設けられた軸支部41bであって、ベアリングBが外嵌される軸支部41bと、軸支部41bに連続して設けられた入力部41cであって、別途モータの出力軸に対して直接的又は間接的に連結される入力部41cとを備えている。シール部41a、軸支部41b、及び入力部41cは、同心で形成される。そして、軸本体部41は、回転軸挿通穴233に挿通された状態で、入力部41cが他方の閉塞部23から外方に突出するように形成されている。 The shaft main body 41 includes a seal portion 41a to which a seal member S1 fitted to the other closing portion 23 is fitted, and a shaft support portion 41b that is provided continuously to the seal portion 41a. A shaft support part 41b to be fitted, and an input part 41c provided continuously to the shaft support part 41b, and separately provided with an input part 41c directly or indirectly connected to the output shaft of the motor. . The seal part 41a, the shaft support part 41b, and the input part 41c are formed concentrically. The shaft main body 41 is formed such that the input portion 41 c protrudes outward from the other closing portion 23 in a state where the shaft main body 41 is inserted through the rotary shaft insertion hole 233.
 フランジ43は、円板状に形成されている。フランジ43は、他方の閉塞部23の内面に沿うように配置されている。フランジ43は、ボア20内で該ボア20の穴心を回転中心にして回転可能になっている。 The flange 43 is formed in a disc shape. The flange 43 is disposed along the inner surface of the other closing portion 23. The flange 43 is rotatable in the bore 20 with the hole center of the bore 20 as the center of rotation.
 ガイドバー6は、先端と該先端の反対側の基端であって、フランジ43に連結された基端とを有する。ガイドバー6は、フランジ43の周方向に間隔をあけて一対設けられている。一対のガイドバー6は、外輪部31bの二カ所に挿通されている(図7参照)。本実施形態に係るアクチュエータ1において、シリンダ本体2には、ガイドバー6の先端を支持するための環状のガイドリング44が内装されている。ガイドリング44は、ボア20の第二端側で一方の閉塞部22に沿うように配置されている。ガイドリング44の外周は、シリンダ部21の内周面に案内されている。これにより、ガイドリング44は、ボア20の穴中心(回転軸4の回転中心)を回転中心にして回転可能になっている。そして、ガイドバー6の先端は、ガイドリング44に連結されている。すなわち、ガイドバー6は、回転軸4のフランジ43とガイドリング44によって両端が支持されている。これにより、回転軸4が回転したときのガイドバー6の撓み(ぶれ)の発生が防止される。 The guide bar 6 has a distal end and a proximal end opposite to the distal end and connected to the flange 43. A pair of guide bars 6 are provided at intervals in the circumferential direction of the flange 43. The pair of guide bars 6 are inserted through two locations of the outer ring portion 31b (see FIG. 7). In the actuator 1 according to the present embodiment, the cylinder body 2 is provided with an annular guide ring 44 for supporting the tip of the guide bar 6. The guide ring 44 is disposed along the one closed portion 22 on the second end side of the bore 20. The outer periphery of the guide ring 44 is guided by the inner peripheral surface of the cylinder part 21. As a result, the guide ring 44 is rotatable about the hole center of the bore 20 (the rotation center of the rotation shaft 4) as the rotation center. The tip of the guide bar 6 is connected to the guide ring 44. That is, both ends of the guide bar 6 are supported by the flange 43 and the guide ring 44 of the rotating shaft 4. Thereby, generation | occurrence | production of the bending (blurring) of the guide bar 6 when the rotating shaft 4 rotates is prevented.
 リターンスプリング5は、圧縮コイルバネで構成されている。リターンスプリング5は、一方の閉塞部22とピストン部31との間に介設されている。本実施形態に係るリターンスプリング5は、ガイドバー6に外嵌されている。リターンスプリング5は、ピストン部31を付勢する。そして、リターンスプリング5は、ピストン部31が他方の閉塞部23に接触する位置(ボア20の第一端側の限界位置)まで該ピストン部31を押すことのできる長さに設定されている。 The return spring 5 is composed of a compression coil spring. The return spring 5 is interposed between the one closing portion 22 and the piston portion 31. The return spring 5 according to this embodiment is fitted on the guide bar 6. The return spring 5 biases the piston portion 31. The return spring 5 is set to a length capable of pushing the piston portion 31 to a position where the piston portion 31 contacts the other closing portion 23 (a limit position on the first end side of the bore 20).
 アクチュエータ1は、上記構成に加え、図7及び図8に示す如く、ピストン部31を境にしたボア20の第一端側とボア20の第二端側とを連通させる連通路320と、連通路320の遮断と開放とを切り換える弁機構7とを更に備えている。 In addition to the above configuration, the actuator 1 includes a communication passage 320 that communicates the first end side of the bore 20 and the second end side of the bore 20 with the piston portion 31 as a boundary, as shown in FIGS. A valve mechanism 7 for switching between blocking and opening of the passage 320 is further provided.
 弁機構7は、図8に示す如く、連通路320に軸線方向で移動可能に内挿された軸状弁70を備える。軸状弁70は、ボア20の第二端側に位置した状態で連通路320を遮断するとともに、ボア20の第二端側にある一端部がピストン部31から一方の閉塞部22に向けて突出するように構成されている。 As shown in FIG. 8, the valve mechanism 7 includes a shaft-like valve 70 inserted in the communication path 320 so as to be movable in the axial direction. The shaft-like valve 70 blocks the communication passage 320 while being positioned on the second end side of the bore 20, and one end portion on the second end side of the bore 20 is directed from the piston portion 31 toward the one closing portion 22. It is comprised so that it may protrude.
 より具体的に説明すると、本実施形態に係る連通路320は、一方向でピストン部31(外輪部31b)を貫通するように形成されている。連通路320は、一方向の途中位置に設けられた大径穴部320aと、大径穴部320aと同心で連続し、該大径穴部320aの一端側(ボア20の第二端側)に設けられた中径穴部320bと、中径穴部320bと同心で連続する小径穴部320cと、大径穴部320aと同心で連続し、大径穴部320aの他端側(ボア20の第一端側)に設けられた小径穴部320cとを備える。 More specifically, the communication path 320 according to the present embodiment is formed so as to penetrate the piston portion 31 (outer ring portion 31b) in one direction. The communication path 320 is concentrically continuous with the large-diameter hole portion 320a provided in the middle of one direction and the large-diameter hole portion 320a, and one end side of the large-diameter hole portion 320a (the second end side of the bore 20). The medium diameter hole 320b provided in the inner diameter hole, the small diameter hole 320c concentrically continuous with the medium diameter hole 320b, the concentric continuous with the large diameter hole 320a, and the other end side of the large diameter hole 320a (bore 20). A small-diameter hole portion 320c provided on the first end side).
 軸状弁70は、大径軸部70aと、大径軸部70aの両端から延出した一対の小径軸部70b,70bとを備える。 The shaft valve 70 includes a large diameter shaft portion 70a and a pair of small diameter shaft portions 70b and 70b extending from both ends of the large diameter shaft portion 70a.
 大径軸部70aは、大径穴部320aに内装される。大径軸部70aの軸心方向の長さは、大径穴部320aの穴中心方向の長さよりも短く設定されている。大径軸部70aは、大径穴部320a内で軸心方向にスライド可能になっている。本実施形態に係る弁機構7は、大径軸部70aがボア20の第二端側に位置した状態で、大径軸部70aの端面が中径穴部320bと大径穴部320aとの境界に形成される段差に密接することで、連通路320を遮断するようになっている。 The large diameter shaft portion 70a is internally provided in the large diameter hole portion 320a. The length of the large-diameter shaft portion 70a in the axial center direction is set shorter than the length of the large-diameter hole portion 320a in the hole center direction. The large diameter shaft portion 70a is slidable in the axial direction within the large diameter hole portion 320a. In the valve mechanism 7 according to the present embodiment, the end surface of the large-diameter shaft portion 70a is formed between the medium-diameter hole portion 320b and the large-diameter hole portion 320a with the large-diameter shaft portion 70a positioned on the second end side of the bore 20. The communication path 320 is blocked by being in close contact with the step formed at the boundary.
 一対の小径軸部70b,70bは、大径軸部70aと同心で設けられる。一対の小径軸部70b,70bは、小径穴部320cに挿通されている。一対の小径軸部70b,70bのうち、少なくともボア20の第二端側にある一方の小径軸部70bの軸心方向の長さは、大径軸部70aが大径穴部320aの一端側(ボア20の第二端側)にあるときに、先端部がピストン部31から外方に突出するように設定される。すなわち、一方の小径軸部70bの軸心方向の長さは、大径軸部70aが連通路320を遮断した状態で、先端部がピストン部31から外方に突出するように設定される。これに対し、他方の小径軸部70bの軸心方向の長さは、大径軸部70aが連通路320を遮断した状態で先端がピストン部31の一方向における一方側に向く(他方の閉塞部23と対向する)面と略面一になり、且つ、大径軸部70aが連通路320を開放した状態で(大径軸部70aが大径穴部320aの他端側(ボア20の第一端側)にあるときに)ピストン部31から外方に突出するように設定される。 The pair of small diameter shaft portions 70b and 70b are provided concentrically with the large diameter shaft portion 70a. The pair of small diameter shaft portions 70b and 70b are inserted through the small diameter hole portion 320c. Of the pair of small diameter shaft portions 70b, 70b, the length in the axial direction of at least one small diameter shaft portion 70b on the second end side of the bore 20 is such that the large diameter shaft portion 70a is on one end side of the large diameter hole portion 320a. The tip portion is set so as to protrude outward from the piston portion 31 when it is on the second end side of the bore 20. That is, the length in the axial direction of one small-diameter shaft portion 70b is set so that the tip portion protrudes outward from the piston portion 31 in a state where the large-diameter shaft portion 70a blocks the communication path 320. On the other hand, the length of the other small-diameter shaft portion 70b in the axial direction is such that the tip is directed to one side in one direction of the piston portion 31 with the large-diameter shaft portion 70a blocking the communication path 320 (the other obstruction) In the state where the large diameter shaft portion 70a opens the communication path 320 (the large diameter shaft portion 70a is the other end side of the large diameter hole portion 320a (the bore 20). It is set so as to protrude outward from the piston portion 31) when it is on the first end side).
 弁機構7は、ボア20の第一端側に作動油が供給されたときの流体圧で軸状弁70(他方の小径軸部70bの先端面)がボア20の第二端側に押されることで、大径軸部70aが連通路320を遮断するようになっている。そして、弁機構7は、ピストン部31が前記ボア20の第二端側の限界位置に到達したときに、一方の小径軸部70bが一方の閉塞部22に接触することで軸状弁70全体がボア20の第一端側に押され、大径軸部70aの端面が中径穴部320bと大径穴部320aとの境界に形成される段差から離間することで、連通路320を開放するようになっている。 In the valve mechanism 7, the shaft-like valve 70 (the tip surface of the other small-diameter shaft portion 70 b) is pushed toward the second end side of the bore 20 by the fluid pressure when hydraulic oil is supplied to the first end side of the bore 20. Thus, the large-diameter shaft portion 70a blocks the communication path 320. Then, when the piston portion 31 reaches the limit position on the second end side of the bore 20, the valve mechanism 7 is configured such that one small-diameter shaft portion 70 b comes into contact with the one closing portion 22 so that the entire shaft-shaped valve 70 is disposed. Is pushed to the first end side of the bore 20, and the end surface of the large-diameter shaft portion 70a is separated from the step formed at the boundary between the medium-diameter hole portion 320b and the large-diameter hole portion 320a, thereby opening the communication path 320. It is supposed to be.
 弁機構7は、連通路320を開放した状態でピストン部31をボア20の第一端側に移動させたときに、ボア20の第一端側に存在する作動油の抵抗で軸状弁70がボア20の第二端側に押し戻されるのを防止できるようになっている。すなわち、弁機構7は、軸状弁70をボア20の第一端側に付勢する弁付勢部材(弁付勢手段)71を備える。弁付勢部材71は、コイルバネで構成されている。弁付勢部材71は、ボア20の第二端側にある小径軸部70bに外嵌された状態で中径穴部320bに内装される。弁付勢部材71は、小径穴部320cと中径穴部320bとの境界に形成される段差と、大径軸部70aと小径軸部70bとの間に形成される段差とに反対向きの力を作用させるように配置されている。 When the piston mechanism 31 is moved to the first end side of the bore 20 with the communication path 320 opened, the valve mechanism 7 is driven by the resistance of the hydraulic oil existing on the first end side of the bore 20. Can be prevented from being pushed back to the second end side of the bore 20. That is, the valve mechanism 7 includes a valve urging member (valve urging means) 71 that urges the shaft-like valve 70 toward the first end side of the bore 20. The valve urging member 71 is constituted by a coil spring. The valve urging member 71 is housed in the medium-diameter hole portion 320b in a state of being fitted on the small-diameter shaft portion 70b on the second end side of the bore 20. The valve urging member 71 is opposite to the step formed at the boundary between the small diameter hole portion 320c and the medium diameter hole portion 320b and the step formed between the large diameter shaft portion 70a and the small diameter shaft portion 70b. It is arranged to apply force.
 本実施形態に係るアクチュエータ1は、以上の通りであり、次に、上記構成のアクチュエータ1の作動について説明する。 The actuator 1 according to the present embodiment is as described above. Next, the operation of the actuator 1 having the above configuration will be described.
 本実施形態に係るアクチュエータ1において、図6及び図7に示す如く、付勢部材303の付勢によって複数のプランジャ302のそれぞれが外輪部31bに向けて押される。これにより、各プランジャ302の先端が外輪部31bの内周面に常時接触した状態になる。しかしながら、外輪部31bの偏心穴(内穴)が回転軸4の回転中心に対して偏心している。これにより、少なくとも何れか一つのプランジャ302が外輪部31bの内周面によってプランジャ穴301に押し込まれる(図7参照)。 In the actuator 1 according to this embodiment, as shown in FIGS. 6 and 7, each of the plurality of plungers 302 is pushed toward the outer ring portion 31 b by the urging of the urging member 303. Thereby, the tip of each plunger 302 is always in contact with the inner peripheral surface of the outer ring portion 31b. However, the eccentric hole (inner hole) of the outer ring portion 31 b is eccentric with respect to the rotation center of the rotating shaft 4. Thereby, at least any one plunger 302 is pushed into the plunger hole 301 by the inner peripheral surface of the outer ring portion 31b (see FIG. 7).
 本実施形態に係るアクチュエータ1において、モータの駆動が回転軸4に伝達される。これにより、回転軸4が回転する。そうすると、回転軸4のフランジ43に延設されたガイドバー6を介して外輪部31bに回転トルクが伝達される。外輪部31bは、回転軸4を回転中心にして回転し、ピストン本体31aに配置された複数のプランジャ302のそれぞれを順々に押圧してプランジャ穴301に押し込む。そして、回転軸4の回転に伴い、外輪部31bによる押圧が解除されたプランジャ302は、付勢部材303の付勢で外側(外輪部31bの内周面側)に突出する。 In the actuator 1 according to the present embodiment, the drive of the motor is transmitted to the rotating shaft 4. Thereby, the rotating shaft 4 rotates. If it does so, rotational torque will be transmitted to the outer ring | wheel part 31b via the guide bar 6 extended in the flange 43 of the rotating shaft 4. FIG. The outer ring portion 31b rotates around the rotation shaft 4 and presses each of the plurality of plungers 302 arranged on the piston main body 31a in sequence into the plunger hole 301. As the rotary shaft 4 rotates, the plunger 302 released from pressing by the outer ring portion 31b protrudes outward (inner peripheral surface side of the outer ring portion 31b) by the biasing member 303.
 従って、上記構成のアクチュエータ1においても、回転軸4を回転させることで、複数のプランジャ302のそれぞれがタイミングをずらしてプランジャ穴301内で往復動する。これに伴い、プランジャ穴301の空間(プランジャ302の存在しない領域)が容積変化する。これにより、ピストン部31を境にしたボア20の第二端側にある作動油がプランジャ穴301に流入し、ピストン部31を境にしたボア20の第一端側に押し出される。 Therefore, also in the actuator 1 having the above-described configuration, each of the plurality of plungers 302 reciprocates within the plunger hole 301 by shifting the timing by rotating the rotating shaft 4. Accordingly, the volume of the space of the plunger hole 301 (the region where the plunger 302 does not exist) changes in volume. As a result, the hydraulic oil on the second end side of the bore 20 with the piston portion 31 as a boundary flows into the plunger hole 301 and is pushed out to the first end side of the bore 20 with the piston portion 31 as a boundary.
 具体的には、プランジャ穴301に押し込まれたプランジャ302が外側(外輪部31b側)に移動するとき(空間容積が拡大するとき)に、ボア20内に充填された作動油(ピストン部31を境にしたボア20の第二端側にある作動油)が第一流路304に引き込まれる。そして、プランジャ302が最大に突出した状態で作動油の引き込みが完了する。この状態で、第一流路304内の逆止弁306の作用により、プランジャ穴301内に引き込まれた作動油がピストン部31を境にしたボア20の第二端側に逆流することが防止された状態になる。 Specifically, when the plunger 302 pushed into the plunger hole 301 moves to the outside (outer ring portion 31b side) (when the space volume increases), the hydraulic oil (piston portion 31 is filled in the bore 20). Hydraulic fluid on the second end side of the bore 20 at the boundary) is drawn into the first flow path 304. Then, the drawing-in of the hydraulic oil is completed with the plunger 302 protruding to the maximum. In this state, the check valve 306 in the first flow path 304 prevents the working oil drawn into the plunger hole 301 from flowing back to the second end side of the bore 20 with the piston portion 31 as a boundary. It becomes a state.
 これに対し、プランジャ302がプランジャ穴301に押し込まれるとき(空間容積が縮小するとき)に、プランジャ穴301内にある作動油が第二流路305を通ってピストン部31を境にしたボア20の第一端側に押し出される。そして、プランジャ302がプランジャ穴301に最大に押し込まれた状態で、ボア20の第一端側に対する作動油の押し出しが完了する。この状態で、第二流路305内の逆止弁307の作用により、ボア20の第一端側に押し出された作動油がプランジャ穴301側に逆流することが防止される。 In contrast, when the plunger 302 is pushed into the plunger hole 301 (when the spatial volume is reduced), the hydraulic oil in the plunger hole 301 passes through the second flow path 305 and the bore 20 with the piston portion 31 as a boundary. It is pushed out to the first end side. Then, in the state where the plunger 302 is pushed into the plunger hole 301 to the maximum, the extrusion of the hydraulic oil to the first end side of the bore 20 is completed. In this state, the action of the check valve 307 in the second flow path 305 prevents the hydraulic oil pushed out to the first end side of the bore 20 from flowing back to the plunger hole 301 side.
 このように、ボア20の第二端側にある作動油がボア20の第一端側に送られると、ボア20の第一端側が作動油で充満する。そして、ピストン部31を境にしたボア20の第一端側に作動油が充満した状態でさらに作動油が送り込まれると、ピストン部31を境にしたボア20の第一端側の圧力が高まる。その結果、ピストン部31がボア20の第二端側に押されてピストンロッド3が軸線方向に移動する。本実施形態に係るアクチュエータ1において、外輪部31bにガイドバー6が挿通されているため、外輪部31bは回転軸4の軸心を回転中心に回転しつつガイドバー6に沿って移動する。しかし、ロッド部30の回止用軸部30bが案内用穴225に挿入されている。そのため、ロッド部30及びピストン本体31aは、回転軸4の軸線回りで回転することなく、外輪部31bに押されて軸心方向にのみ移動する。 Thus, when the hydraulic oil on the second end side of the bore 20 is sent to the first end side of the bore 20, the first end side of the bore 20 is filled with the hydraulic oil. When the hydraulic oil is further fed in the state where the hydraulic oil is filled in the first end side of the bore 20 with the piston portion 31 as a boundary, the pressure on the first end side of the bore 20 with the piston portion 31 as a boundary increases. . As a result, the piston portion 31 is pushed to the second end side of the bore 20 and the piston rod 3 moves in the axial direction. In the actuator 1 according to this embodiment, since the guide bar 6 is inserted through the outer ring portion 31b, the outer ring portion 31b moves along the guide bar 6 while rotating about the axis of the rotation shaft 4. However, the rotation shaft portion 30 b of the rod portion 30 is inserted into the guide hole 225. Therefore, the rod part 30 and the piston main body 31 a are pushed by the outer ring part 31 b and move only in the axial direction without rotating around the axis of the rotary shaft 4.
 そして、ピストンロッド3がボア20の第二端側にある限界位置又は所定位置に到達した状態で、ピストン部31を境にしたボア20の第一端側にある領域(ボア20)が作動油で充満した状態になる。 Then, in a state where the piston rod 3 has reached a limit position or a predetermined position on the second end side of the bore 20, a region (bore 20) on the first end side of the bore 20 with the piston portion 31 as a boundary is hydraulic oil. It will be in a full state.
 この状態で、ボア20の第一端側にある領域内の圧力上昇が止まる。そのため、ピストンロッド3がリターンスプリング5の付勢でボア20の第一端側に向けて移動する。アクチュエータ1は、弁機構7を備えている。そのため、ピストンロッド3がボア20の第二端側にある限界位置に到達した状態で、弁機構7が連通路320を開放することで、ボア20の第一端側の領域内にある作動油がボア20の第二端側の領域に流れ込んでボア20の第一端側の領域(ボア20)内の圧力が低下する。 In this state, the pressure increase in the region on the first end side of the bore 20 stops. Therefore, the piston rod 3 moves toward the first end side of the bore 20 by the bias of the return spring 5. The actuator 1 includes a valve mechanism 7. Therefore, when the piston rod 3 reaches the limit position on the second end side of the bore 20, the valve mechanism 7 opens the communication path 320, so that the hydraulic oil in the region on the first end side of the bore 20 is present. Flows into the region on the second end side of the bore 20 and the pressure in the region on the first end side of the bore 20 (bore 20) decreases.
 すなわち、アクチュエータ1は、ピストン部31がボア20の第二端側の限界位置に到達すると、弁機構7の軸状弁70の一方の小径軸部70bが一方の閉塞部22の内面に当接して他方の閉塞部23側に押されて連通路320が開放(連通)する。これにより、ボア20の第一端側の作動油が連通路320を介してボア20の第二端側に流れ、一方側のボア20の圧力が低下する。これに伴い、リターンスプリング5の付勢力でピストン部31がボア20の第一端側に向けて迅速に移動する。 That is, in the actuator 1, when the piston portion 31 reaches the limit position on the second end side of the bore 20, one small-diameter shaft portion 70 b of the shaft-like valve 70 of the valve mechanism 7 comes into contact with the inner surface of the one closing portion 22. Then, the communication passage 320 is pushed (communication) by being pushed toward the other closing portion 23 side. As a result, the hydraulic oil on the first end side of the bore 20 flows to the second end side of the bore 20 via the communication path 320, and the pressure of the bore 20 on one side decreases. Along with this, the piston portion 31 quickly moves toward the first end side of the bore 20 by the urging force of the return spring 5.
 そして、回転軸4を回転させ続けても、連通路320を介してボア20の第一端側からボア20の第二端側に作動油が流れ込み、ボア20の第一端側の圧力が上昇しない。そのため、リターンスプリング5の付勢力がボア20の第一端側の圧力に勝り、ピストン部31がボア20の第一端側に迅速に押し戻される。 Even if the rotating shaft 4 continues to rotate, the hydraulic fluid flows from the first end side of the bore 20 to the second end side of the bore 20 through the communication path 320, and the pressure on the first end side of the bore 20 increases. do not do. Therefore, the biasing force of the return spring 5 overcomes the pressure on the first end side of the bore 20, and the piston portion 31 is quickly pushed back to the first end side of the bore 20.
 そして、ピストン部31がボア20の第一端側に設定された限界位置に到達すると、軸状弁70の他方の小径軸部70bが他方の閉塞部23に当接する。これに伴い、軸状弁70全体がボア20の第二端側に押され、連通路320が遮断される。これにより、ボア20の第一端側に作動油が供給されたときに、当該領域が圧力上昇できる状態になる。 When the piston portion 31 reaches the limit position set on the first end side of the bore 20, the other small-diameter shaft portion 70 b of the shaft-like valve 70 comes into contact with the other closing portion 23. Accordingly, the entire shaft-like valve 70 is pushed to the second end side of the bore 20, and the communication path 320 is blocked. As a result, when the hydraulic oil is supplied to the first end side of the bore 20, the region can be in a state where the pressure can be increased.
 従って、アクチュエータ1は、上記動作が繰り返されることで、ピストンロッド3のロッドが軸線方向で往復動する。 Therefore, the actuator 1 reciprocates in the axial direction of the rod of the piston rod 3 by repeating the above operation.
 以上のように、上記構成のアクチュエータ1は、シリンダ本体2内(ボア20内)のピストン部31に作動油の流体圧を作用させてピストンロッド3を移動させる。これにより、アクチュエータ1は、油圧シリンダと同等の性能を発揮することができる。また、アクチュエータ1は、シリンダ本体2内のみで作動油を流動させるとともに、シリンダ本体2内に作動油を流動させる構成が内装される。これにより、アクチュエータ1は、小型化及び軽量化したものになる。 As described above, the actuator 1 configured as described above moves the piston rod 3 by applying the fluid pressure of the hydraulic oil to the piston portion 31 in the cylinder body 2 (in the bore 20). Thereby, the actuator 1 can exhibit the performance equivalent to a hydraulic cylinder. In addition, the actuator 1 includes a configuration in which the hydraulic oil flows only in the cylinder body 2 and the hydraulic oil flows in the cylinder body 2. Thereby, the actuator 1 is reduced in size and weight.
 なお、本発明は、上記各実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変換を加え得ることは勿論である。 It should be noted that the present invention is not limited to the above-described embodiments, and it is needless to say that appropriate conversion can be added without departing from the gist of the present invention.
 上記各実施形態において、複数のプランジャ穴301が形成され、これらにプランジャ302と付勢部材303とが内装されたが、これに限定されるものではない。例えば、一つのプランジャ穴301が形成され、これにプランジャ302と付勢部材303とが内装されてもよい。この場合、これに対応して逆止弁306,307の内装された第一流路304及び第二流路305が設けられる。このようにしてもプランジャ302がプランジャ穴301内で往復動する。従って、ボア20の第二端側からボア20の第一端側に作動油が送り込まれ、ピストンロッド3が一方向(軸心方向)で移動する。なお、ピストンロッド3の移動速度を速めるには、上記各実施形態と同様に複数のプランジャ穴301を形成し、これらにプランジャ302と付勢部材303を内装するとともに、それぞれに対応して逆止弁306,307の内装された第一流路304及び第二流路305が設けられればよい。 In each of the above embodiments, a plurality of plunger holes 301 are formed, and a plunger 302 and an urging member 303 are internally provided therein. However, the present invention is not limited to this. For example, a single plunger hole 301 may be formed, and a plunger 302 and a biasing member 303 may be housed therein. In this case, a first flow path 304 and a second flow path 305 in which check valves 306 and 307 are installed are provided correspondingly. Even in this way, the plunger 302 reciprocates in the plunger hole 301. Accordingly, the hydraulic oil is fed from the second end side of the bore 20 to the first end side of the bore 20, and the piston rod 3 moves in one direction (axial direction). In order to increase the moving speed of the piston rod 3, a plurality of plunger holes 301 are formed in the same manner as in the above embodiments, and a plunger 302 and a biasing member 303 are housed in these holes. What is necessary is just to provide the 1st flow path 304 and the 2nd flow path 305 by which the valves 306 and 307 were equipped.
 上記各実施形態において、ボア20の第一端側に作動油が供給されることで、ピストン部31(ピストンロッド3)がボア20の第二端側に移動するとともに、リターンスプリング5の付勢力でピストン部31(ピストンロッド3)がボア20の第一端側に押し戻されるようにしたが、これに限定されるものではない。例えば、ボア20の第二端側に作動油が供給されることで、ピストン部31(ピストンロッド3)がボア20の第一端側に移動するとともに、リターンスプリング5の付勢力でピストン部31(ピストンロッド3)がボア20の第二端側に押し戻されるようにしてもよい。この場合、リターンスプリング5がシリンダ本体2のボア20の第一端側に内装される。また、ボア20の第一端側に向けて開口してプランジャ穴301に連通する第一流路304、及び前記ボア20の第二端側に向けて開口してプランジャ穴301に連通する第二流路305がプランジャ穴301に対応して設けられる。そして、第一流路304及び第二流路305のそれぞれに前記ボア20の第一端側からボア20の第二端側に向けての作動油の流通を許容する一方で、ボア20の第二端側からボア20の第一端側に向けての作動油の流通を阻止する逆止弁306.307が内装される。 In each of the above embodiments, the hydraulic oil is supplied to the first end side of the bore 20, whereby the piston portion 31 (piston rod 3) moves to the second end side of the bore 20 and the urging force of the return spring 5. The piston portion 31 (piston rod 3) is pushed back to the first end side of the bore 20, but is not limited to this. For example, when hydraulic oil is supplied to the second end side of the bore 20, the piston portion 31 (piston rod 3) moves to the first end side of the bore 20 and the urging force of the return spring 5 causes the piston portion 31 to move. The (piston rod 3) may be pushed back to the second end side of the bore 20. In this case, the return spring 5 is provided on the first end side of the bore 20 of the cylinder body 2. Also, a first flow path 304 that opens toward the first end side of the bore 20 and communicates with the plunger hole 301, and a second flow that opens toward the second end side of the bore 20 and communicates with the plunger hole 301. A path 305 is provided corresponding to the plunger hole 301. While allowing the hydraulic fluid to flow from the first end side of the bore 20 toward the second end side of the bore 20 in each of the first flow path 304 and the second flow path 305, A check valve 306.307 is provided to prevent the flow of hydraulic oil from the end side toward the first end side of the bore 20.
 また、この場合においても、弁機構7が設けられ得る。かかる弁機構7において、軸状弁70は、ボア20の第一端側に位置した状態で連通路を遮断するとともに、ボア20の第一端側にある一端部がピストン部31から一方側にある閉塞部に向けて突出するように構成される。また、軸状弁70は、ピストン部31がボア20の第一端側に設定された限界位置又は所定位置に位置した状態で、軸状弁の一端部が一方側にある閉塞部と干渉して該軸状弁がボア20の第二端側に移動し、連通路が開放されるように構成される。 Also in this case, the valve mechanism 7 can be provided. In such a valve mechanism 7, the shaft-like valve 70 blocks the communication path while being positioned on the first end side of the bore 20, and the one end portion on the first end side of the bore 20 extends from the piston portion 31 to the one side. It is comprised so that it may protrude toward a certain obstruction | occlusion part. In addition, the shaft-like valve 70 is in a state where the piston portion 31 is located at a limit position or a predetermined position set on the first end side of the bore 20, and one end portion of the shaft-like valve interferes with a closing portion on one side. Thus, the shaft-like valve is configured to move to the second end side of the bore 20 to open the communication path.
 上記各実施形態において、ピストン部31を境にしたボア20の第一端側とボア20の第二端側とを連通させる連通路320がピストン部31に貫通して設けられ、連通路320に弁機構7が内装されたが、これに限定されない。例えば、ピストン部31を境にしたボア20の第一端側とボア20の第二端側とを連通させる連通路320のみがピストン部31に設けられてもよい。このようにしても、ピストン部31がボア20の第二端側にある限界位置に来ると、ボア20内の作動油の略全量がボア20の第一端側にある。そのため、圧力上昇が止まり、ボア20の第一端側にある作動油が、連通路320からボア20の第二端側に流れる。従って、リターンスプリング5の付勢力により、ピストン部31がボア20の第一端側に押し戻される。 In each of the above embodiments, the communication passage 320 that communicates the first end side of the bore 20 and the second end side of the bore 20 with the piston portion 31 as a boundary is provided to penetrate the piston portion 31. Although the valve mechanism 7 is built in, it is not limited to this. For example, only the communication path 320 that communicates the first end side of the bore 20 and the second end side of the bore 20 with the piston portion 31 as a boundary may be provided in the piston portion 31. Even if it does in this way, when the piston part 31 comes to the limit position which exists in the 2nd end side of the bore 20, the substantially whole quantity of the hydraulic fluid in the bore 20 will exist in the 1st end side of the bore 20. FIG. Therefore, the pressure increase stops and the hydraulic oil on the first end side of the bore 20 flows from the communication path 320 to the second end side of the bore 20. Accordingly, the piston portion 31 is pushed back to the first end side of the bore 20 by the urging force of the return spring 5.
 また、ロッド部30が外方に突出した状態で、回転軸4の回転を止めるようにすれば、ボア20の第一端側の圧力が上昇することがない。そのため、連通路320を設けなくても、リターンスプリング5の付勢力でピストン部31がボア20の第一端側に押し戻され得る。 Further, if the rotation of the rotating shaft 4 is stopped in a state where the rod portion 30 protrudes outward, the pressure on the first end side of the bore 20 does not increase. Therefore, the piston portion 31 can be pushed back to the first end side of the bore 20 by the urging force of the return spring 5 without providing the communication path 320.
 上記各実施形態において、ピストン部31に第一流路304及び第二流路305が形成されるとともに、第一流路304及び第二流路305のそれぞれに玉弁308,310及びコイルバネ309,311が内装され、これらが逆止弁306,307を構成したが、これに限定されるものではない。例えば、独立した逆止弁306,307(ユニットとして組み立てられた逆止弁306,307)が第一流路304及び第二流路305に内装されても勿論よい。 In each of the above embodiments, the first flow path 304 and the second flow path 305 are formed in the piston portion 31, and the ball valves 308 and 310 and the coil springs 309 and 311 are provided in the first flow path 304 and the second flow path 305, respectively. Although these are built in and constitute the check valves 306 and 307, they are not limited thereto. For example, of course, independent check valves 306 and 307 ( check valves 306 and 307 assembled as a unit) may be incorporated in the first flow path 304 and the second flow path 305.
 上記各実施形態において、ピストン部31を境にしたボア20の第一端側とボア20の第二端側とを連通させる連通路320がピストン部31に形成されたが、これに限定されるものではない。例えば、シリンダ部21の外側に配置した配管を介し、ピストン部31を境にしたボア20の第一端側とボア20の第二端側とが連通されてもよい。この場合、配管上に仕切弁等の弁機構が設けられ、ボア20内の圧力を開放できるようにしてもよい。このようにすれば、上記実施形態と同様に、ピストン部31(ピストンロッド3)が迅速に押し戻され得る。 In each of the above embodiments, the communication passage 320 that connects the first end side of the bore 20 and the second end side of the bore 20 with the piston portion 31 as a boundary is formed in the piston portion 31, but is not limited thereto. It is not a thing. For example, the first end side of the bore 20 and the second end side of the bore 20 may be communicated with each other via a pipe disposed outside the cylinder portion 21. In this case, a valve mechanism such as a gate valve may be provided on the pipe so that the pressure in the bore 20 can be released. If it does in this way, piston part 31 (piston rod 3) can be pushed back rapidly like the above-mentioned embodiment.
 また、弁機構7は、上記各実施形態で説明したものに限定されるものではない。例えば、弁機構7は、図9(a)及び図9(b)に示す如く、加圧側のボア20(上記実施形態においてはボア20の第一端側)と連通するバイパス流路321が連通路320の途中位置に接続されるとともに、軸状弁70の途中位置に大径軸部70aが形成され、該大径軸部70aの外周面が連通路320の内周面上を摺接しつつ軸心方向に移動するようにしてもよい。 Further, the valve mechanism 7 is not limited to those described in the above embodiments. For example, as shown in FIGS. 9A and 9B, the valve mechanism 7 has a bypass flow path 321 communicating with the pressure side bore 20 (in the above embodiment, the first end side of the bore 20). A large-diameter shaft portion 70a is formed at an intermediate position of the shaft-like valve 70 while being connected to an intermediate position of the passage 320, and an outer peripheral surface of the large-diameter shaft portion 70a is in sliding contact with an inner peripheral surface of the communication passage 320. You may make it move to an axial direction.
 この場合、大径軸部70aがバイパス流路321の接続位置よりも負圧側のボア20側に変位したときに、バイパス流路321が加圧側のボア20(領域)と連通する。これに対し、大径軸部70aがバイパス流路321の接続位置よりも加圧側のボア20側に変位したときに、バイパス流路321が負圧側のボア20と連通する。 In this case, when the large-diameter shaft portion 70a is displaced toward the bore 20 on the negative pressure side with respect to the connection position of the bypass flow path 321, the bypass flow path 321 communicates with the bore 20 (region) on the pressurization side. On the other hand, when the large-diameter shaft portion 70a is displaced to the pressure side bore 20 side relative to the connection position of the bypass flow path 321, the bypass flow path 321 communicates with the negative pressure side bore 20.
 従って、上記構成の弁機構7をピストン部31に内装する場合、大径軸部70aに対して負圧側のボア20(上記実施形態においてはボア20の第二端側)に向けて突出する小径軸部70bが設けられ、ピストン部31が負圧側の限界位置に到達したときに小径軸部70bがシリンダ本体2(閉塞部22)に接触し、大径軸部70a)を加圧側のボア20に向けて移動させるようにすれば、上記実施形態と同様の作用及び効果を奏することができる。 Therefore, when the valve mechanism 7 having the above-described configuration is housed in the piston portion 31, the small diameter projecting toward the bore 20 on the negative pressure side (the second end side of the bore 20 in the above embodiment) with respect to the large-diameter shaft portion 70a. A shaft portion 70b is provided, and when the piston portion 31 reaches the limit position on the negative pressure side, the small diameter shaft portion 70b comes into contact with the cylinder body 2 (blocking portion 22), and the large diameter shaft portion 70a) is connected to the bore 20 on the pressure side. If it is made to move toward, the same operations and effects as in the above embodiment can be obtained.
 上記第二実施形態において、回転軸4が、他方の閉塞部23に挿通される軸本体部41、シリンダ本体2内に配置されるフランジ43、及びフランジ43に延設されたガイドバー6で構成され、該ガイドバー6が外輪部31bに挿通されたが、これに限定されない。例えば、図10に示す態様にすることもできる。 In the second embodiment, the rotary shaft 4 is constituted by the shaft main body portion 41 inserted into the other closing portion 23, the flange 43 disposed in the cylinder main body 2, and the guide bar 6 extended to the flange 43. Although the guide bar 6 is inserted through the outer ring portion 31b, the present invention is not limited to this. For example, the embodiment shown in FIG.
 具体的には、図10に示すアクチュエータ1は、ピストン部31を第二実施形態と同様に構成することを前提としている。従って、ここではピストン部31の説明は、第二実施形態の説明が代用される。そして、ピストンロッド3のロッド部30がシリンダ本体2(一方の閉塞部22)に対して軸心回りで回転可能に挿通される。他方の閉塞部23の外面には、ボア20の中心と同心をなす回転軸4が設けられる。また、他方の閉塞部23の内面には、一方の閉塞部22に向けて延出するガイドバー6が設けられる。ガイドバー6は、外輪部31bに挿通される。なお、図10において、リターンスプリング5は、ロッド部30に外嵌されている。しかしながら、リターンスプリング5は、ピストン部31を付勢できればよく、ガイドバー6に外嵌してもよいし、その他の箇所に配置してもよい。 Specifically, the actuator 1 shown in FIG. 10 is based on the premise that the piston portion 31 is configured in the same manner as in the second embodiment. Therefore, here, the description of the piston part 31 is substituted for the description of the second embodiment. Then, the rod portion 30 of the piston rod 3 is inserted into the cylinder body 2 (one closing portion 22) so as to be rotatable around the axis. A rotating shaft 4 that is concentric with the center of the bore 20 is provided on the outer surface of the other closing portion 23. Further, a guide bar 6 extending toward the one closing portion 22 is provided on the inner surface of the other closing portion 23. The guide bar 6 is inserted through the outer ring portion 31b. In FIG. 10, the return spring 5 is fitted on the rod portion 30. However, the return spring 5 only needs to be able to urge the piston portion 31, and may be externally fitted to the guide bar 6 or may be disposed at other locations.
 このようにすれば、モータの駆動が伝達され、回転軸4が回転すると、回転軸4とともにシリンダ本体2が回転軸4と同心で回転する。従って、シリンダ本体2を構成する他方の閉塞部23から延出するガイドバー6も回転軸4と同心で回転する。 In this way, when the drive of the motor is transmitted and the rotating shaft 4 rotates, the cylinder body 2 rotates concentrically with the rotating shaft 4 together with the rotating shaft 4. Accordingly, the guide bar 6 extending from the other closing portion 23 constituting the cylinder body 2 also rotates concentrically with the rotating shaft 4.
 これに伴い、ガイドバー6を介して外輪部31bに回転トルクが伝達され、該外輪部31bが回転軸4と同心で回転する。そうすると、外輪部31bの内周面がプランジャ302を押圧する状態とプランジャ302を押圧しない状態とに交互に切り替わる。 Accordingly, rotational torque is transmitted to the outer ring portion 31b via the guide bar 6, and the outer ring portion 31b rotates concentrically with the rotating shaft 4. Then, the inner peripheral surface of the outer ring portion 31b is alternately switched between a state where the plunger 302 is pressed and a state where the plunger 302 is not pressed.
 その結果、プランジャ302は、外輪部31bの内周面による押圧でプランジャ穴301に押し込まれた状態と、付勢部材303の付勢でプランジャ穴301から外側に突出した状態とに切り変わる。そうすると、プランジャ302の出退に伴い、プランジャ穴301の空間(付勢部材303の内装された領域)が容積変化することになる。従って、ピストン部31を境にしたボア20の第二端側にある作動油がプランジャ穴301に流入してピストン部31を境にしたボア20の第一端側に押し出される。これにより、ボア20の第一端側が圧力上昇し、ピストンロッド3がボア20の第二端側に移動する。 As a result, the plunger 302 is switched between a state in which the plunger 302 is pushed into the plunger hole 301 by pressing by the inner peripheral surface of the outer ring portion 31b and a state in which the plunger 302 protrudes outward from the plunger hole 301 by urging of the urging member 303. Then, as the plunger 302 moves in and out, the space of the plunger hole 301 (the region in which the urging member 303 is housed) changes in volume. Accordingly, the hydraulic oil on the second end side of the bore 20 with the piston portion 31 as a boundary flows into the plunger hole 301 and is pushed out to the first end side of the bore 20 with the piston portion 31 as a boundary. Thereby, the pressure at the first end of the bore 20 increases, and the piston rod 3 moves to the second end of the bore 20.
 そして、第二実施形態と同様に、ピストン部31がボア20の第二端側にある限界位置又は所定位置に到達したときに、ボア20の第一端側の圧力上昇が止まるため、リターンスプリング5による付勢力でピストンロッド3がボア20の第一端側に押し戻される。特に、図10に示すアクチュエータ1においても、連通路320及び弁機構7を備えるため、弁機構7が連通路320を開放することで、リターンスプリング5による付勢力でピストンロッド3が高速でボア20の第一端側に押し戻される。従って、上記構成のアクチュエータ1においても、上記動作を繰り返すことで、ピストンロッド3が一方向に往復動する。 As in the second embodiment, when the piston portion 31 reaches the limit position or the predetermined position on the second end side of the bore 20, the pressure increase on the first end side of the bore 20 stops, so that the return spring The piston rod 3 is pushed back to the first end side of the bore 20 by the urging force of 5. In particular, since the actuator 1 shown in FIG. 10 also includes the communication path 320 and the valve mechanism 7, the valve mechanism 7 opens the communication path 320, so that the piston rod 3 is bored at a high speed by the urging force of the return spring 5. Is pushed back to the first end side. Therefore, also in the actuator 1 having the above configuration, the piston rod 3 reciprocates in one direction by repeating the above operation.
 上記第二実施形態において、弁機構7を外輪部31bに内装したが、これに限定されるものではない。例えば、ピストン本体31aに連通路320が形成され、連通路320内に弁機構7が内装されても勿論よい。 In the second embodiment, the valve mechanism 7 is provided in the outer ring portion 31b, but the present invention is not limited to this. For example, the communication passage 320 may be formed in the piston body 31a, and the valve mechanism 7 may be built in the communication passage 320.
 上記第二実施形態において、ガイドバー6を支持するためのガイドリング44が設けられたが、これに限定されるものではない。例えば、ガイドバー6が回転軸4のフランジ43のみに支持されてよい。また、ガイドバー6が二つ設けられたものに限定されるものではない。例えば、ガイドバー6が一つ又は三つ以上設けられたものであっても勿論よい。 In the second embodiment, the guide ring 44 for supporting the guide bar 6 is provided, but the present invention is not limited to this. For example, the guide bar 6 may be supported only by the flange 43 of the rotating shaft 4. Moreover, it is not limited to the one provided with two guide bars 6. For example, the guide bar 6 may be provided with one or three or more guide bars.
 上記各実施形態では言及しなかったが、本発明に係るアクチュエータは、モータが一体的に組み込まれたものや、減速機とモータとが一体的に組み込まれたものであってもよい。また、シリンダ本体は、機器のケースと一体的に形成され、その機器と分離不能に構成されてもよい。そして、本発明に係るアクチュエータは、手持ち工具の分野以外にも自動車分野、産業機械分野等、各種機械分野に採用することができる。 Although not mentioned in the above embodiments, the actuator according to the present invention may be one in which a motor is integrated, or one in which a speed reducer and a motor are integrated. Further, the cylinder body may be formed integrally with a case of the device and configured so as not to be separated from the device. The actuator according to the present invention can be employed not only in the field of hand-held tools but also in various machine fields such as the automobile field and the industrial machine field.
 1…アクチュエータ、2…シリンダ本体、3…ピストンロッド、4…回転軸、5…リターンスプリング、6…ガイドバー、7…弁機構、20…ボア、21…シリンダ部、22,23…閉塞部、30…ロッド部、30a…ロッド本体、30b…回止用軸部、31…ピストン部、31a…ピストン本体、31b…外輪部(ピストン外輪部)、40…偏心軸部、41…軸本体部、41a…シール部、41b…軸支部、41c…入力部、42…先端軸部、43…フランジ、44…ガイドリング、70…軸状弁、70a…大径軸部、70b…小径軸部、71…弁付勢部材(弁付勢手段)、220,230…嵌入部、221,231…フランジ部、222,232…環状溝、223…ロッド挿通穴、224…溝、225…案内用穴、226…ガイド面、233…回転軸挿通穴、233a…軸挿通穴、233b…ベアリング嵌着穴、233c…シール嵌着穴、300…軸穴、301…プランジャ穴(プランジャ内装穴)、302…プランジャ、303…付勢部材(コイルバネ:プランジャ付勢手段)、304…第一流路、304a…大径穴部、304b…小径穴部、305…第二流路、305a…大径穴部、305b…小径穴部、306,307…逆止弁、308,310…玉弁、309,311…コイルバネ、320…連通路、320a…大径穴部、320b…中径穴部、320c…小径穴部、321…バイパス流路、330…環状部、350…平面部、420…油抜用穴、B…ベアリング、P…プラグ、S…シール材、S1…シール部材 DESCRIPTION OF SYMBOLS 1 ... Actuator, 2 ... Cylinder body, 3 ... Piston rod, 4 ... Rotary shaft, 5 ... Return spring, 6 ... Guide bar, 7 ... Valve mechanism, 20 ... Bore, 21 ... Cylinder part, 22, 23 ... Closure part, DESCRIPTION OF SYMBOLS 30 ... Rod part, 30a ... Rod main body, 30b ... Shaft part for rotation, 31 ... Piston part, 31a ... Piston main body, 31b ... Outer ring part (piston outer ring part), 40 ... Eccentric shaft part, 41 ... Shaft main body part, 41a ... seal part, 41b ... shaft support part, 41c ... input part, 42 ... tip shaft part, 43 ... flange, 44 ... guide ring, 70 ... shaft valve, 70a ... large diameter shaft part, 70b ... small diameter shaft part, 71 ... Valve urging member (valve urging means), 220, 230 ... insertion part, 221, 231 ... flange part, 222, 232 ... annular groove, 223 ... rod insertion hole, 224 ... groove, 225 ... guide hole, 226 ... guide surface, 33 ... Rotating shaft insertion hole, 233a ... Shaft insertion hole, 233b ... Bearing fitting hole, 233c ... Seal fitting hole, 300 ... Shaft hole, 301 ... Plunger hole (plunger internal hole), 302 ... Plunger, 303 ... Energizing Member (coil spring: plunger urging means) 304 ... first flow path 304a ... large diameter hole 304b ... small diameter hole 305 ... second flow path 305a ... large diameter hole 305b ... small diameter hole 306 307: Check valve, 308, 310 ... Ball valve, 309, 311 ... Coil spring, 320 ... Communication path, 320a ... Large diameter hole, 320b ... Medium diameter hole, 320c ... Small diameter hole, 321 ... Bypass flow path , 330 ... annular part, 350 ... flat part, 420 ... oil draining hole, B ... bearing, P ... plug, S ... sealing material, S1 ... sealing member

Claims (7)

  1.  一方向に延びるボアであって、前記一方向に第一端とその反対側の第二端とを有するボアが形成されたシリンダ部と、該シリンダ部の前記ボアの両端を閉塞する一対の閉塞部とを含むシリンダ本体と、
     先端と該先端の反対側の基端とを有するロッド部であって、前記一対の閉塞部のうちの一方の閉塞部に液密状態で挿通されたロッド部と、該ロッド部の基端に同心で連結されたピストン部であって、前記ボアに内装されたピストン部とを含むピストンロッドと、
     前記シリンダ本体に内装されたリターンスプリングであって、前記ピストン部を前記ボアの前記第一端側又は前記第二端側の何れか一方側に付勢するリターンスプリングと、を備え、
     前記ピストン部を境にした前記ボアの前記第一端側又は前記第二端側の何れか一方側に作動油が供給されることで、前記ピストンロッドが前記ボアの前記第一端側又は前記第二端側の何れか他方側に移動し、前記リターンスプリングの付勢で、前記ピストンロッドが前記ボアの前記第一端側又は前記第二端側の何れか一方側に移動するように構成されたアクチュエータにおいて、
     前記一対の閉塞部のうちの他方の閉塞部に液密状態で挿通された回転軸を備え、
     前記ボア内に前記作動油が充填され、
     前記ピストンロッドの前記ピストン部が軸心回りで回転不能に前記ボアに内装され、
     前記ピストンロッドには、
     前記他方の閉塞部側で開口した非貫通状態の軸挿入穴が前記回転軸の回転中心と同心で形成され、
     前記ピストン部には、
     前記軸挿入穴に向けて開口した少なくとも一つのプランジャ穴と、
     前記ボアの前記第一端側又は前記第二端側の何れか他方側に向けて開口した第一流路であって、前記プランジャ穴に連通する第一流路と、
     前記ボアの前記第一端側又は前記第二端側の何れか一方側に向けて開口した第二流路であって、前記プランジャ穴に連通する第二流路と、が設けられ、
     前記プランジャ穴には、
     該プランジャ穴の穴中心方向で移動可能なプランジャと、
     該プランジャを前記軸挿入穴に向けて付勢する付勢部材と、が内装され、
     前記第一流路及び前記第二流路のそれぞれには、
     前記ボアの前記第一端側又は前記第二端側の何れか他方側から前記ボアの前記第一端側又は前記第二端側の何れか一方側に向けての前記作動油の流通を許容し、前記ボアの前記第一端側又は前記第二端側の何れか一方側から前記ボアの前記第一端側又は前記第二端側の何れか他方側に向けての前記作動油の流通を阻止する逆止弁が内装され、
     前記回転軸は、
     前記軸挿入穴に挿入され、少なくとも前記ピストン部の移動範囲と対応する範囲に当該回転軸の回転中心に対して偏心した偏心軸部を備え、
     前記プランジャが前記付勢部材による付勢で前記偏心軸部に常時接触するように設けられる
     アクチュエータ。
    A cylinder portion having a bore extending in one direction, the bore having a first end in the one direction and a second end opposite thereto, and a pair of closures closing both ends of the bore of the cylinder portion A cylinder body including a portion,
    A rod portion having a distal end and a proximal end opposite to the distal end, the rod portion inserted in a liquid-tight state into one of the pair of closed portions, and a proximal end of the rod portion A piston portion concentrically connected to the piston rod, the piston rod including a piston portion built in the bore;
    A return spring housed in the cylinder body, comprising a return spring that urges the piston portion to either the first end side or the second end side of the bore,
    When the hydraulic oil is supplied to either the first end side or the second end side of the bore with the piston portion as a boundary, the piston rod is connected to the first end side of the bore or the The piston rod is moved to either the first end side or the second end side of the bore by the biasing of the return spring. In the actuated actuator,
    A rotating shaft inserted in a liquid-tight state into the other closing part of the pair of closing parts,
    The hydraulic oil is filled in the bore,
    The piston portion of the piston rod is built in the bore so as not to rotate around the axis,
    In the piston rod,
    A shaft insertion hole in a non-penetrating state opened on the other closing portion side is formed concentrically with the rotation center of the rotation shaft,
    In the piston part,
    At least one plunger hole opened toward the shaft insertion hole;
    A first flow path that opens toward the other side of the first end side or the second end side of the bore, the first flow path communicating with the plunger hole;
    A second flow path that opens toward either one of the first end side or the second end side of the bore, and a second flow path that communicates with the plunger hole; and
    In the plunger hole,
    A plunger movable in the hole center direction of the plunger hole;
    An urging member that urges the plunger toward the shaft insertion hole;
    In each of the first channel and the second channel,
    Allow the hydraulic fluid to flow from either the first end side or the second end side of the bore toward the first end side or the second end side of the bore. And the flow of the hydraulic oil from either the first end side or the second end side of the bore toward the other side of the first end side or the second end side of the bore. Check valve is installed to prevent
    The rotation axis is
    An eccentric shaft portion that is inserted into the shaft insertion hole and is eccentric with respect to the rotation center of the rotation shaft at least in a range corresponding to the movement range of the piston portion,
    An actuator provided such that the plunger is always in contact with the eccentric shaft portion by urging by the urging member.
  2.  一方向に延びるボアであって、前記一方向に第一端とその反対側の第二端とを有するボアが形成されたシリンダ部と、該シリンダ部の前記ボアの両端を閉塞する一対の閉塞部とを含むシリンダ本体と、
     先端と該先端の反対側の基端とを有するロッド部であって、前記一対の閉塞部のうちの一方の閉塞部に液密状態で挿通されたロッド部と、該ロッド部の基端に同心で連結されたピストン部であって、前記ボアに内装されたピストン部とを含むピストンロッドと、
     前記シリンダ本体に内装されたリターンスプリングであって、前記ピストン部を前記ボアの前記第一端側又は前記第二端側の何れか一方側に付勢するリターンスプリングと、を備え、
     前記ピストン部を境にした前記ボアの前記第一端側又は前記第二端側の何れか一方側に作動油が供給されることで、前記ピストンロッドが前記ボアの前記第一端側又は前記第二端側の何れか他方側に移動し、前記リターンスプリングの付勢で、前記ピストンロッドが前記ボアの前記第一端側又は前記第二端側の何れか一方側に移動するように構成されたアクチュエータにおいて、
     前記一対の閉塞部のうちの他方の閉塞部に液密状態で挿通された回転軸を備え、
     前記ボアが丸穴で構成され、
     前記ボア内に前記作動油が充填され、
     前記ピストン部は、
     前記ロッド部に連続して設けられたピストン本体であって、前記回転軸の回転中心と同心をなす外周円形状のピストン本体と、
     内穴を画定した内周面を有する外輪部であって、前記ピストン本体の外周を包囲する環状の外輪部と、を備え、
     前記外輪部の前記内穴が前記回転軸の回転中心からずれた位置に中心が設定された偏心穴で構成され、
     前記外輪部は、
     前記ピストン本体と一緒に一方向に移動可能に構成されるとともに前記回転軸の回転中心と同心で回転可能に設けられ、
     前記ピストン本体には、
     前記外輪部の前記内周面に向けて開口した少なくとも一つのプランジャ穴と、
     前記ボアの前記第一端側又は前記第二端側の何れか他方側に向けて開口した第一流路であって、前記プランジャ穴に連通する第一流路と、
     前記ボアの前記第一端側又は前記第二端側の何れか一方側に向けて開口した第二流路であって、前記プランジャ穴に連通する第二流路と、が設けられ、
     前記プランジャ穴には、
     該プランジャ穴の穴中心方向で移動可能なプランジャと、
     前記プランジャを前記外輪部に向けて付勢する付勢部材と、が内装され、
     前記第一流路及び前記第二流路のそれぞれには、
     前記ボアの前記第一端側又は前記第二端側の何れか他方側から前記ボアの前記第一端側又は前記第二端側の何れか一方側に向けての前記作動油の流通を許容し、前記ボアの前記第一端側又は前記第二端側の何れか一方側から前記ボアの前記第一端側又は前記第二端側の何れか他方側に向けての前記作動油の流通を阻止する逆止弁が内装され、
     前記回転軸は、
     前記ボア内に配置されたフランジと、
     該フランジから前記一方の閉塞部に向けて延出するガイドバーと、を備え、
     該ガイドバーは、
     前記外輪部に挿通され、前記外輪部に対して前記ボアの周方向の回転トルクが伝達可能に構成されるとともに、前記外輪部を一方向に案内可能に構成され、
     前記プランジャが前記付勢部材による付勢で前記外輪部の内周面に常時接触するように設けられる
     アクチュエータ。
    A cylinder portion having a bore extending in one direction, the bore having a first end in the one direction and a second end opposite thereto, and a pair of closures closing both ends of the bore of the cylinder portion A cylinder body including a portion,
    A rod portion having a distal end and a proximal end opposite to the distal end, the rod portion inserted in a liquid-tight state into one of the pair of closed portions, and a proximal end of the rod portion A piston portion concentrically connected to the piston rod, the piston rod including a piston portion built in the bore;
    A return spring housed in the cylinder body, comprising a return spring that urges the piston portion to either the first end side or the second end side of the bore,
    When the hydraulic oil is supplied to either the first end side or the second end side of the bore with the piston portion as a boundary, the piston rod is connected to the first end side of the bore or the The piston rod is moved to either the first end side or the second end side of the bore by the biasing of the return spring. In the actuated actuator,
    A rotating shaft inserted in a liquid-tight state into the other closing part of the pair of closing parts,
    The bore comprises a round hole;
    The hydraulic oil is filled in the bore,
    The piston part is
    A piston main body provided continuously to the rod portion, and an outer peripheral circular piston main body concentric with the rotation center of the rotation shaft;
    An outer ring portion having an inner peripheral surface defining an inner hole, and an annular outer ring portion surrounding the outer periphery of the piston body,
    The inner hole of the outer ring portion is composed of an eccentric hole whose center is set at a position shifted from the rotation center of the rotating shaft,
    The outer ring portion is
    It is configured to be movable in one direction together with the piston body and is provided to be rotatable concentrically with the rotation center of the rotation shaft,
    In the piston body,
    At least one plunger hole opened toward the inner peripheral surface of the outer ring portion;
    A first flow path that opens toward the other side of the first end side or the second end side of the bore, the first flow path communicating with the plunger hole;
    A second flow path that opens toward either one of the first end side or the second end side of the bore, and a second flow path that communicates with the plunger hole; and
    In the plunger hole,
    A plunger movable in the hole center direction of the plunger hole;
    An urging member that urges the plunger toward the outer ring portion; and
    In each of the first channel and the second channel,
    Allow the hydraulic fluid to flow from either the first end side or the second end side of the bore toward the first end side or the second end side of the bore. And the flow of the hydraulic oil from either the first end side or the second end side of the bore toward the other side of the first end side or the second end side of the bore. Check valve is installed to prevent
    The rotation axis is
    A flange disposed in the bore;
    A guide bar extending from the flange toward the one closing portion,
    The guide bar
    It is inserted into the outer ring portion, and is configured to be able to transmit the rotational torque in the circumferential direction of the bore to the outer ring portion, and is configured to be able to guide the outer ring portion in one direction,
    An actuator provided such that the plunger is always in contact with the inner peripheral surface of the outer ring portion by urging by the urging member.
  3.  一方向に延びるボアであって、前記一方向に第一端とその反対側の第二端とを有するボアが形成されたシリンダ部と、該シリンダ部の前記ボアの両端を閉塞する一対の閉塞部であって、それぞれが互いに対向する内面と、内面の反対側の外面とを有する一対の閉塞部とを含むシリンダ本体と、
     先端と該先端の反対側の基端とを有するロッド部であって、前記一対の閉塞部のうちの一方の閉塞部に液密状態で挿通されたロッド部と、該ロッド部の基端に同心で連結されたピストン部であって、前記ボアに内装されたピストン部とを含むピストンロッドと、
     前記シリンダ本体に内装されたリターンスプリングであって、前記ピストン部を前記ボアの前記第一端側又は前記第二端側の何れか一方側に付勢するリターンスプリングと、を備え、
     前記ピストン部を境にした前記ボアの前記第一端側又は前記第二端側の何れか一方側に作動油が供給されることで、前記ピストンロッドが前記ボアの前記第一端側又は前記第二端側の何れか他方側に移動し、前記リターンスプリングの付勢で、前記ピストンロッドが前記ボアの前記第一端側又は前記第二端側の何れか一方側に移動するように構成されたアクチュエータにおいて、
     前記一対の閉塞部のうちの他方の閉塞部の前記外面に突設された回転軸であって、前記ボアの中心と同心をなす回転軸と、
     前記他方の閉塞部の前記内面に前記一方の閉塞部に向けて延出されたガイドバーと、を備え、
     前記ボアが丸穴で構成され、
     前記ボア内に前記作動油が充填され、
     前記ピストン部は、
     前記ロッド部に連続して設けられたピストン本体であって、前記回転軸の回転中心と同心をなす外周円形状のピストン本体と、
     内穴を画定した内周面を有する外輪部であって、前記ピストン本体の外周を包囲する環状の外輪部と、を備え、
     前記外輪部の内穴が前記回転軸の回転中心からずれた位置に中心が設定された偏心穴で構成され、
     前記外輪部は、
     前記ピストン本体と一緒に一方向に移動可能に構成されるとともに前記回転軸の回転中心と同心で回転可能に設けられ、
     前記ピストン本体には、
     前記外輪部の前記内周面に向けて開口した少なくとも一つのプランジャ穴と、
     前記ボアの前記第一端側又は前記第二端側の何れか他方側に向けて開口した第一流路であって、前記プランジャ穴に連通する第一流路と、
     前記ボアの前記第一端側又は前記第二端側の何れか一方側に向けて開口した第二流路であって、前記プランジャ穴に連通する第二流路と、が設けられ、
     前記プランジャ穴には、
     該プランジャ穴の穴中心方向で移動可能なプランジャと、
     該プランジャを前記外輪部に向けて付勢する付勢部材と、が内装され、
     前記第一流路及び前記第二流路のそれぞれには、
     前記ボアの前記第一端側又は前記第二端側の何れか他方側から前記ボアの前記第一端側又は前記第二端側の何れか一方側に向けての前記作動油の流通を許容し、前記ボアの前記第一端側又は前記第二端側の何れか一方側から前記ボアの前記第一端側又は前記第二端側の何れか他方側に向けての前記作動油の流通を阻止する逆止弁が内装され、
     前記ガイドバーは、
     前記外輪部に挿通され、前記外輪部に対して前記ボアの周方向の回転トルクが伝達可能に構成されるとともに、前記外輪部を一方向に案内可能に構成され、
     前記プランジャが前記付勢部材による付勢で外輪部の内周面に常時接触するように設けられる
     アクチュエータ。
    A cylinder portion having a bore extending in one direction, the bore having a first end in the one direction and a second end opposite thereto, and a pair of closures closing both ends of the bore of the cylinder portion A cylinder body including a pair of closed portions each having an inner surface facing each other and an outer surface opposite to the inner surface;
    A rod portion having a distal end and a proximal end opposite to the distal end, the rod portion inserted in a liquid-tight state into one of the pair of closed portions, and a proximal end of the rod portion A piston portion concentrically connected to the piston rod, the piston rod including a piston portion built in the bore;
    A return spring housed in the cylinder body, comprising a return spring that urges the piston portion to either the first end side or the second end side of the bore,
    When the hydraulic oil is supplied to either the first end side or the second end side of the bore with the piston portion as a boundary, the piston rod is connected to the first end side of the bore or the The piston rod is moved to either the first end side or the second end side of the bore by the biasing of the return spring. In the actuated actuator,
    A rotary shaft projecting from the outer surface of the other closed portion of the pair of closed portions, the rotary shaft being concentric with the center of the bore;
    A guide bar extending toward the one closing part on the inner surface of the other closing part,
    The bore comprises a round hole;
    The hydraulic oil is filled in the bore,
    The piston part is
    A piston main body provided continuously to the rod portion, and an outer peripheral circular piston main body concentric with the rotation center of the rotation shaft;
    An outer ring portion having an inner peripheral surface defining an inner hole, and an annular outer ring portion surrounding the outer periphery of the piston body,
    The inner ring of the outer ring portion is composed of an eccentric hole whose center is set at a position deviated from the rotation center of the rotating shaft,
    The outer ring portion is
    It is configured to be movable in one direction together with the piston body and is provided to be rotatable concentrically with the rotation center of the rotation shaft,
    In the piston body,
    At least one plunger hole opened toward the inner peripheral surface of the outer ring portion;
    A first flow path that opens toward the other side of the first end side or the second end side of the bore, the first flow path communicating with the plunger hole;
    A second flow path that opens toward either one of the first end side or the second end side of the bore, and a second flow path that communicates with the plunger hole; and
    In the plunger hole,
    A plunger movable in the hole center direction of the plunger hole;
    An urging member that urges the plunger toward the outer ring portion;
    In each of the first channel and the second channel,
    Allow the hydraulic fluid to flow from either the first end side or the second end side of the bore toward the first end side or the second end side of the bore. And the flow of the hydraulic oil from either the first end side or the second end side of the bore toward the other side of the first end side or the second end side of the bore. Check valve is installed to prevent
    The guide bar is
    It is inserted into the outer ring portion, and is configured to be able to transmit the rotational torque in the circumferential direction of the bore to the outer ring portion, and is configured to be able to guide the outer ring portion in one direction,
    An actuator provided such that the plunger is always in contact with the inner peripheral surface of the outer ring portion by urging by the urging member.
  4.  前記プランジャ穴は、
     前記ピストン部の周方向に間隔をあけて複数設けられ、
     前記第一流路及び前記第二流路は、
     前記複数のプランジャ穴のそれぞれに対応して複数設けられ、
     前記プランジャ及び前記付勢部材は、
     前記複数のプランジャ穴のそれぞれに内装され、
     前記逆止弁は、
     前記複数の第一流路及び前記複数の第二流路のそれぞれに内装され、
     前記複数のプランジャのそれぞれは、
     前記付勢部材による付勢で前記偏心軸部に常時接触するように設けられる
     請求項1に記載のアクチュエータ。
    The plunger hole is
    A plurality of piston portions are provided at intervals in the circumferential direction,
    The first channel and the second channel are
    A plurality of plunger holes are provided corresponding to each of the plurality of plunger holes,
    The plunger and the biasing member are
    Each of the plurality of plunger holes is internally provided,
    The check valve is
    Each of the plurality of first flow paths and the plurality of second flow paths are internally provided,
    Each of the plurality of plungers is
    The actuator according to claim 1, wherein the actuator is provided so as to always contact the eccentric shaft portion by urging by the urging member.
  5.  前記プランジャ穴は、
     前記ピストン本体の周方向に間隔をあけて複数設けられ、
     前記第一流路及び前記第二流路は、
     前記複数のプランジャ穴のそれぞれに対応して複数設けられ、
     前記プランジャ及び前記付勢部材は、
     前記複数のプランジャ穴のそれぞれに内装され、
     前記逆止弁は、
     前記複数の第一流路及び前記複数の第二流路のそれぞれに内装され、
     前記複数のプランジャのそれぞれは、
     前記付勢部材による付勢で前記外輪部の内周面に常時接触するように設けられる
     請求項2又は3に記載のアクチュエータ。
    The plunger hole is
    A plurality are provided at intervals in the circumferential direction of the piston body,
    The first channel and the second channel are
    A plurality of plunger holes are provided corresponding to each of the plurality of plunger holes,
    The plunger and the biasing member are
    Each of the plurality of plunger holes is internally provided,
    The check valve is
    Each of the plurality of first flow paths and the plurality of second flow paths are internally provided,
    Each of the plurality of plungers is
    The actuator according to claim 2, wherein the actuator is provided so as to always contact the inner peripheral surface of the outer ring portion by urging by the urging member.
  6.  前記ピストン部を境にした前記ボアの前記第一端側と前記第二端側とを連通させる連通路と、
     該連通路の遮断と開放とを切り換える弁機構と、をさらに備える
     請求項1乃至5の何れか1項に記載のアクチュエータ。
    A communication path for communicating the first end side and the second end side of the bore with the piston portion as a boundary;
    The actuator according to claim 1, further comprising: a valve mechanism that switches between blocking and opening of the communication path.
  7.  前記ピストン部に、一方向に貫通した連通路が形成され、
     該連通路に内装された弁機構であって、該連通路に穴中心方向に移動可能に内挿された軸状弁を含む弁機構をさらに備え、
     前記軸状弁は、
     前記ボアの前記第一端側又は前記第二端側の何れか他方側に位置した状態で、前記連通路を遮断するとともに、前記ボアの前記第一端側又は前記第二端側の何れか他方側にある一端部が前記ピストン部から前記ボアの前記第一端側又は前記第二端側の何れか他方側にある前記閉塞部に向けて突出するように構成され、
     前記ピストン部が前記ボアの前記第一端側又は前記第二端側の何れか他方側に設定された限界位置又は所定位置に位置した状態で、前記軸状弁の一端部が前記ボアの前記第一端側又は前記第二端側の何れか他方側にある前記閉塞部と干渉して該軸状弁が前記ボアの前記第一端側又は前記第二端側の何れか一方側に移動し、前記連通路が開放される
     請求項6に記載のアクチュエータ。
    A communication passage penetrating in one direction is formed in the piston portion,
    A valve mechanism built in the communication path, further comprising a valve mechanism including a shaft-like valve inserted in the communication path so as to be movable toward the center of the hole;
    The shaft valve is
    In the state where it is located on the other side of the first end side or the second end side of the bore, the communication path is blocked, and either the first end side or the second end side of the bore One end portion on the other side is configured to protrude from the piston portion toward the closing portion on the other side of the first end side or the second end side of the bore,
    In a state where the piston portion is located at a limit position or a predetermined position set on the other end side of the first end side or the second end side of the bore, one end portion of the shaft-like valve is located on the bore side. The shaft-shaped valve moves to either the first end side or the second end side of the bore by interfering with the closing portion on the other side of the first end side or the second end side. The actuator according to claim 6, wherein the communication path is opened.
PCT/JP2011/079644 2010-12-27 2011-12-21 Actuator WO2012090820A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-290868 2010-12-27
JP2010290868A JP4918614B1 (en) 2010-12-27 2010-12-27 Actuator

Publications (1)

Publication Number Publication Date
WO2012090820A1 true WO2012090820A1 (en) 2012-07-05

Family

ID=46243787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079644 WO2012090820A1 (en) 2010-12-27 2011-12-21 Actuator

Country Status (3)

Country Link
JP (1) JP4918614B1 (en)
TW (1) TWI517917B (en)
WO (1) WO2012090820A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103089740A (en) * 2012-12-31 2013-05-08 蚌埠液力机械有限公司 Unloading valve and unloading valve oil cylinder

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107497970B (en) * 2017-08-10 2024-03-26 浙江工业大学 Light steel bar quick breaker
CN113007172B (en) * 2021-03-12 2022-04-12 燕山大学 Integrated plunger motor type double-power hydraulic cylinder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487928A (en) * 1987-09-28 1989-04-03 Toyoda Machine Works Ltd Hydraulic controller
JPH04128120U (en) * 1991-05-15 1992-11-24 日東工器株式会社 hydraulic actuator
JPH07223113A (en) * 1994-02-03 1995-08-22 Robutetsukusu:Kk Working mechanism of reciprocating working mechanism in electro-hydraulic working tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487928A (en) * 1987-09-28 1989-04-03 Toyoda Machine Works Ltd Hydraulic controller
JPH04128120U (en) * 1991-05-15 1992-11-24 日東工器株式会社 hydraulic actuator
JPH07223113A (en) * 1994-02-03 1995-08-22 Robutetsukusu:Kk Working mechanism of reciprocating working mechanism in electro-hydraulic working tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103089740A (en) * 2012-12-31 2013-05-08 蚌埠液力机械有限公司 Unloading valve and unloading valve oil cylinder
CN103089740B (en) * 2012-12-31 2015-07-15 蚌埠液力机械有限公司 Unloading valve and unloading valve oil cylinder

Also Published As

Publication number Publication date
JP4918614B1 (en) 2012-04-18
JP2012137161A (en) 2012-07-19
TWI517917B (en) 2016-01-21
TW201302355A (en) 2013-01-16

Similar Documents

Publication Publication Date Title
US6793194B1 (en) Rotary valve actuator
EP2740977B1 (en) Switching valve
RU2005125922A (en) ROTARY VALVE AND SEAL ASSEMBLY
EP3212977B1 (en) Flow control valve having a motion conversion device
KR20160140669A (en) Gearbox control system
EP2999867B1 (en) A connecting rod, a big end bearing and an arrangement for changing the effective length of a connecting rod for an internal combustion piston engine
EP3093521B1 (en) Vibration damping device for vehicle body
US9476433B2 (en) Rotary actuator
WO2012090820A1 (en) Actuator
JP5700449B2 (en) Switching valve device
JP5170326B2 (en) Seal structure
CN106979372B (en) Flow control valve with motion conversion device
US8683883B2 (en) Ball and piston rotary actuator mechanism
EP1613884B1 (en) Rotary valve actuator
WO2004102020A8 (en) Clutches
WO2004007932A1 (en) Compression ratio variable device of internal combustion engine
JP4640357B2 (en) Thrust piston pump device
JP2008296347A (en) Rotation indexing device
US9863215B2 (en) Shear valve system and methodology
JP5458119B2 (en) Actuator
KR100811611B1 (en) Clutch power transmission device of automatic transmission
JP6796291B2 (en) Air cylinder
JP4640358B2 (en) Electric thrust piston pump device
KR100564829B1 (en) Chuck assembly with a sealing member
KR20080100993A (en) The piston ring which is affixed in steering gear-box

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853956

Country of ref document: EP

Kind code of ref document: A1