WO2012090622A1 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
WO2012090622A1
WO2012090622A1 PCT/JP2011/076923 JP2011076923W WO2012090622A1 WO 2012090622 A1 WO2012090622 A1 WO 2012090622A1 JP 2011076923 W JP2011076923 W JP 2011076923W WO 2012090622 A1 WO2012090622 A1 WO 2012090622A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
insulating sheet
wiring
cell module
tab
Prior art date
Application number
PCT/JP2011/076923
Other languages
French (fr)
Japanese (ja)
Inventor
修司 福持
陽介 石井
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012090622A1 publication Critical patent/WO2012090622A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a solar cell module having wiring arranged on the back side of the solar cell.
  • the solar cell module includes a plurality of solar cell strings having a plurality of electrically connected solar cells, a crossover wiring for electrically connecting the solar cell strings, and an extraction for taking out the generated power of the solar cell to the outside Wiring.
  • a conventional module an insulating sheet made of polyethylene terephthalate is interposed between the wiring material and the solar cell in order to prevent electrical contact between the wiring material and the solar cell (for example, Patent Documents). 1).
  • the insulating sheet disposed between the wiring material and the solar cell cannot prevent electrical contact between the wiring material and the solar cell, and there is a possibility that reliability is lowered.
  • An object of the present invention is to provide a solar cell module with improved reliability.
  • the present invention is a solar cell module having a wiring material disposed on the back surface of a solar cell, comprising an insulating sheet sandwiched between the wiring material and the solar cell, wherein the insulating sheet is one side of an insulating base material Or it has an adhesive layer made of an adhesive or adhesive on both sides.
  • the insulating sheet made of an adhesive or an adhesive can be thin on one or both sides of the insulating base, the insulating sheet can be sandwiched between the wiring member and the solar cell.
  • FIG. 1 It is a typical top view which shows the connection of the solar cell and wiring tab of the solar cell module concerning the 1st Embodiment of this invention. It is typical sectional drawing which shows the connection of the solar cell and wiring tab of the solar cell module concerning the 1st Embodiment of this invention. It is typical sectional drawing which shows the connection of the solar cell and wiring tab of the solar cell module concerning the 1st Embodiment of this invention. It is typical sectional drawing which shows the connection of the solar cell and wiring tab of the solar cell module concerning the 1st Embodiment of this invention. It is a top view which shows the connection of the solar cell and wiring tab of the solar cell module concerning the 1st Embodiment of this invention. FIG.
  • FIG. 11 is a sectional view taken along line AA in FIG. 10. It is typical sectional drawing which shows the solar cell module concerning the 1st Embodiment of this invention. It is typical sectional drawing which shows the connection of the solar cell and wiring tab of the solar cell module concerning the 2nd Embodiment of this invention. It is typical sectional drawing which shows the connection of the solar cell and wiring tab of the solar cell module concerning the 2nd Embodiment of this invention. It is typical sectional drawing which shows the connection of the solar cell and wiring tab of the solar cell module concerning the 2nd Embodiment of this invention. It is typical sectional drawing which shows the connection of the solar cell and wiring tab of the solar cell module concerning the 3rd Embodiment of this invention.
  • FIG. 1 is a schematic cross-sectional view showing a solar cell used in the solar cell module according to the first embodiment of the present invention
  • FIG. 2 is a schematic plan view seen from the back side.
  • the solar cell 10 according to the present embodiment, a back junction solar cell was used.
  • the solar cell 10 has a p-type region 13 and an n-type region 12 on the back side of a substrate 11 made of a semiconductor wafer such as n-type single crystal silicon (Si).
  • the p-type region 13 includes a plurality of finger portions extending in a line in one direction.
  • the p-type region 13 includes a bus bar portion provided along one end portion of the substrate 11.
  • the bus bar portion extends along a direction orthogonal to the one direction and is connected to a plurality of finger portions.
  • the n-type region 12 includes a plurality of finger portions extending in a line in one direction.
  • the n-type region 13 includes a bus bar portion provided along the other end portion of the substrate 11. The bus bar portion extends along a direction orthogonal to the one direction and is connected to a plurality of finger portions.
  • the finger part of the p-type region 13 and the finger part of the n-type region 12 are arranged in parallel to each other with a predetermined interval.
  • the p-type region 13 and the n-type region 12 are formed in the substrate 11 by the thermal diffusion method.
  • the present invention is not limited to this, and a thin film forming method is formed on the back surface of the substrate 11. It may have a p-type semiconductor layer and an n-type semiconductor layer which are formed by using.
  • Passivation films 18 and 14 are provided on the light receiving surface and the back surface of the substrate 11 in order to suppress surface recombination of carriers. These passivation films 18 and 14 are composed of a silicon oxide film or a silicon nitride film.
  • the refractive index thereof is about 2.1. It can also be used as an antireflection film (AR layer) that suppresses reflection.
  • a hole penetrating to the p region 13 or the n region 12 is provided at a predetermined position of the passivation film 14 formed on the back surface of the substrate 11.
  • the shape of the hole is not particularly limited, and a shape such as a dot shape or a line shape is used.
  • An n-side electrode 16 is provided on the n-type region 12, and a p-side electrode 17 is provided on the p-type region 13.
  • the n-side electrode 16 and the p-side electrode 17 are embedded in holes provided in the passivation film 14 and are electrically connected to the n-type region 12 and the p-type region 13, respectively.
  • the n-type electrode 16 includes a finger electrode 16f and a bus bar electrode 16b
  • the p-type electrode 17 includes a finger electrode 17f and a bus bar electrode 17b.
  • a conductive material such as silver or aluminum is used so that a current generated in the solar cell can be taken out sufficiently.
  • copper or the like may be grown on an aluminum base electrode by plating to form a low resistance electrode.
  • the bus bar electrodes 16b and 17b of the n-side electrode 16 and the p-side electrode 17 are provided with soldering regions 16a and 17a to which the wiring tabs are soldered in a row.
  • three soldering regions 16a and 17a are provided.
  • the n-type single crystal silicon substrate 11 has a square shape of 125.5 mm square, and is soldered in a rectangular shape having a width of amm and a length of bmm at the cell end at the center.
  • Region 16a (17a) is provided.
  • the width a is 5 mm to 9 mm
  • the length b is selected in the range of 6 mm to 10 mm.
  • a rectangular soldering region 16a (17a) having a width of 6 mm and a length of 7 mm is provided.
  • a soldering area 16a (17a) of the same size is provided at intervals of 40 mm to 42 mm from the central soldering area to the left and right.
  • the plurality of solar cells configured as described above are arranged linearly in one direction and are electrically connected to each other using a wiring material to constitute a solar cell string.
  • the adjacent solar cells 10 and 10 are arranged so that the soldering region 16a of one solar cell 10 and the soldering region 17a of the other solar cell face each other.
  • the solar cells 10 and 10 arranged adjacent to each other are electrically connected by a wiring member 33.
  • the wiring member 33 is connected to the soldering regions 16a and 17a by solder.
  • the wiring tab 30 connected to the soldering region 16a (17a) is connected to the crossover wiring 31, and is taken out as lead lines 32a, 32b, 32c, 32d.
  • the wiring tab 30, the transition wiring 31, and the lead lines 32 a, 32 b, 32 c, and 32 d cross over the n-type electrode 16 and the p-type electrode 17.
  • an insulating sheet 50 made of a filler or an insulating material is sandwiched between the wirings 30, 31, 32 a.
  • the interval between the solar cells 10 and 10 is 2 mm.
  • the soldering region 16 a of the n-type electrode 16 and the soldering region 17 a of the p-type electrode 17 are connected by the wiring tab 33. .
  • FIG. 6 is a plan view showing details of a connection portion between the soldering area and the wiring tab.
  • the entire back surface of the solar cell 10 is alternately arranged so that the end of the n-type electrode 16 or the p-type electrode 17 is positioned up to 1 mm or less, for example, 0.74 mm from the cell edge of the substrate 11.
  • Finger electrodes 16f and 17f are linearly formed so as to cover (see FIG. 2).
  • the soldering region 16a (17a) is formed in a rectangular shape (5 mm to 9 mm) ⁇ (6 mm to 10 mm) from the cell end. As described above, the soldering region 16a (17a) is formed with a size of, for example, 6 mm ⁇ 7 mm.
  • the area of the tab connecting portion 40a where the solder is provided is 3 mm ⁇ 3 mm, and the soldering operation is performed with a location 1.5 mm to 5.5 mm, for example, 2 or 5 mm away from the cell edge.
  • the location where the solder is provided is 3 mm ⁇ 3 mm, but considering the electrode formation error and the soldering alignment error, the soldering area 16a (17a) is at least twice as large as the location where the solder is provided. Is formed.
  • the insulating sheet 50 a sheet in which an adhesive layer such as an adhesive or an adhesive is provided on both surfaces of the insulating base 51 is used.
  • This insulating sheet 50 has adhesive layers 53 such as an adhesive and an adhesive on both surfaces of an insulating substrate 51 such as PET (polyethylene terephthalate), PVF (polyvinyl fluoride), PEN (polyethylene naphthalate), and PE (polyethylene). Is provided.
  • the material of the adhesive layer 53 is preferably one that does not have adhesiveness at room temperature and has adhesiveness in the temperature range during lamination.
  • EVA ethylene / vinyl acetate copolymer
  • EEA ethylene ethyl acrylate
  • PVB polyvinyl butyral
  • olefin resin ethylene / vinyl acetate copolymer
  • an acrylic adhesive, a silicon adhesive, a rubber adhesive, or a urethane adhesive can be used.
  • the insulating base 51 has a thickness of 50 ⁇ m to 75 ⁇ m
  • the adhesive layer 53 has a thickness of 25 ⁇ m to 45 ⁇ m.
  • the insulating sheet 50 is provided with an adhesive layer 53 made of non-crosslinked EVA or EEA thermoreversible resin used as a sealing material for the solar cell module on both surfaces of the insulating base 51.
  • the insulating sheet 50 has a thickness of 100 ⁇ m to 165 ⁇ m, including the insulating base 51 and both adhesive layers 53.
  • the thickness of the insulating material 52 made of a conventional filler such as EVA is about 600 ⁇ m, and the insulating sheet 50 of this embodiment can be made as thin as about 1 ⁇ 4 to 1 / compared to the conventional thickness. This is because by forming a film of the adhesive layer 53 such as an adhesive or an adhesive on the insulating base material 52, the adhesiveness and the insulation can be ensured, so that the film thickness can be reduced.
  • the film thickness of the insulating sheet 50 can be reduced, the insulating sheet 50 can be sandwiched up to the vicinity of the connection portion of the solar cell 10 and the wiring tab 30 by the solder 40. Further, since the adhesive layer 53 does not have adhesiveness at room temperature, the insulating sheet 50 can be easily sandwiched to the vicinity of the connection portion by the solder 40 between the solar cell 10 and the wiring tab 30.
  • the insulating sheet 50 is disposed under the wiring tab 30.
  • the wiring tab 30 is connected to the soldering region 16 a (17 a) of the solar cell 10 by the solder 40.
  • the insulating sheet 50 is inserted to the vicinity of the solar cell 10 and the wiring tab 30.
  • the thickness of the insulating sheet 50 can be reduced to about 1/4 to 1/6 as compared with the conventional sheet, the burden on the solar cell 10 and the wiring tab 30 can be reduced, and the solar cell can be reduced. 10 and the vicinity of the wiring tab 30 can be inserted.
  • the wiring tab 50 is adhered on the insulating sheet 50, and the insulating sheet 50 is extremely thin as compared with the conventional case, so that there is a space between the solder connection portion of the solar cell 10 and the wiring tab 30. It can be almost eliminated.
  • the insulating sheet 50 can be inserted to the vicinity where the wiring tab 30 is connected by the solder 40 or to a close position. For this reason, the insulation of the connection part vicinity between the solar cell 10 and the wiring tab 30 can be ensured.
  • the wiring tab 20 is connected to the three soldering regions 16 a provided in the solar cell 10 by solder, and the wiring tab 30 and the transition wiring connected to the wiring tab 30 are connected.
  • An insulating sheet 50 is sandwiched between 31 and the solar cell 10 in the vicinity of the connection portion of the wiring tab 30. As shown in FIG. 11 showing a cross section taken along line AA of FIG.
  • the insulating sheet 50 is close to the connection portion by the solder 40, and the insulating sheet 50 is disposed on the n-type electrode 16 and the p-type electrode 17. Therefore, a short circuit due to the wiring tab 30 and the crossover wiring 31 is prevented.
  • the wiring tab 30 in the present embodiment has a thickness of about 100 ⁇ m to 300 ⁇ m, and its width is smaller than the width 6 mm of the soldering region 16 a (17 a) and wider than the width 3 mm of the solder connection portion.
  • the length is shorter than the width of the insulating sheet 50. In this embodiment, since the width of the insulating sheet 50 is 40 mm, the length of the wiring tab 30 is shorter than 40 mm.
  • the solar cell module electrically connects the p-side electrode 17 of one solar cell 10 and the n-side electrode 16 of the other solar cell 10 using the wiring tab 30 and the crossover wiring 31 to form a string shape. Further, as shown in FIG. 4, the wiring 31 is connected to output wirings 32a, 32b, 32c, and 32d for taking out the output to the outside of the module.
  • the output wirings 32a, 32b, 32c, and 32d are connected to the electrical output from the solar cell 10 with, for example, terminals of a terminal box (not shown).
  • the output wirings 32a, 32b, 32c, and 32d are obtained by cutting a copper foil having a thickness of about 100 ⁇ m to 300 ⁇ m and a width of about 6 mm into a predetermined length and soldering it to a wiring tab or the like. ing. The surface of the output wiring is covered with an insulating film.
  • the insulating sheet 50 can be easily sandwiched because it does not adhere at room temperature. Then, the thermoreversible resin to be used is softened at a laminating process or a curing temperature, which will be described later, and bonded to the solar cell 10 or the wiring tab 30.
  • the solar cell module includes a plurality of solar cells 10 connected from the light receiving surface side by a surface protecting member 20 such as glass, a light-transmitting sealing material 20 such as EVA, a wiring tab 30, a crossover wiring 31, and the like.
  • the back surface side sealing member 20 and the back surface protection member 21 made of a back sheet and the like are stacked in this order, laminated and integrated.
  • the adhesive layers 53 provided on both surfaces of the insulating sheet 50 are cross-linked and integrated with the solar cell 10 and the wiring tab 30 being connected.
  • the solar cell 10, the insulating sheet 50, the wiring tab 30, the transition wiring 31, and the like are brought into close contact with each other so that no bubbles or the like are generated.
  • the insulating sheet 50 is integrated in the vicinity of the connection portion where the solar cell 10 and the wiring tab 30 are connected and insulation can be ensured, the electrode 16 (17) of the solar cell 10 is connected to the vicinity of the connection portion. It can be extended and contributes to the improvement of output. Further, the insulating sheet 50 can be installed in the vicinity of the connection portion between the wiring tab 30 and the solar cell 10 without applying a load to the solar cell 10. For this reason, since the load is not applied to the solar cell 10, it is possible to prevent the solar cell 10 from being cracked, and to improve the yield and reliability.
  • the adhesive layer 53 on both surfaces of the insulating base material 51 is used as the insulating sheet 50
  • adhesive layers such as an adhesive material and an adhesive agent, are provided in one side.
  • an insulating sheet may be used.
  • the insulating sheet 50 according to the second embodiment shown in FIGS. 13 to 15 is provided with an adhesive layer 53 such as an adhesive or an adhesive on one side of an insulating base 51 such as PET, PVF, PEN, PE or the like.
  • an adhesive layer 53 such as an adhesive or an adhesive on one side of an insulating base 51 such as PET, PVF, PEN, PE or the like.
  • the resin material for the adhesive material EVA, EEA, PVB, olefin resin can be used.
  • an acrylic adhesive, a silicon adhesive, a rubber adhesive, or a urethane adhesive can be used.
  • the insulating substrate 51 has a thickness of 50 ⁇ m to 75 ⁇ m
  • the adhesive layer 53 has a thickness of 25 ⁇ m to 45 ⁇ m.
  • the adhesive layer 53 is disposed facing the solar cell 10 side, and the insulating base material 51 is attached to the solar cell 10 with the adhesive layer 53.
  • an adhesive layer 53 made of a thermoreversible resin such as non-crosslinked EVA or EEA is provided on one surface of an insulating base 51.
  • the wiring tab 30 is connected to the soldering region 16 a (17 a) of the solar cell 10 by the solder 40.
  • the insulating sheet 50 is inserted up to the vicinity of the solar cell 10 and the wiring tab 30.
  • the insulating sheet 50 can be made thinner than in the first embodiment, it can be inserted while reducing the burden on the solar cell 10 and the wiring tab 30.
  • the wiring tab 50 is brought into close contact with the insulating sheet 50. Since the insulating sheet 50 is extremely thin as compared with the conventional case, the space between the solder connection portion of the solar cell 10 and the wiring tab 30 can be almost eliminated.
  • the adhesive layer 53 does not exist on the wiring tab 30 side of the insulating sheet 50, but the insulating tab 30 is attached to the insulating sheet 50 by EVA as a sealing material in the next laminating step. It is done.
  • the insulating sheet 50 can be smoothly inserted into the space portion because it does not adhere to the solar cell 10 and the wiring tab 30 until the heat treatment at the time of lamination. Good workability.
  • the insulating sheet 50 is first attached to the predetermined position of the solar cell 10 with the adhesive layer 53, and the insulating sheet is used as a positioning, and the wiring tab 50 is positioned. May be connected to the soldering region 16 a (17 a) of the solar cell 10 by the solder 40.
  • the shape of the wiring tab 30 is formed in consideration of the thickness of the insulating sheet 50 made of a filler or an insulating material sandwiched between the wiring tab 30 and the substrate 11. .
  • the flat portion 30a corresponding to the size of the tab connection portion 40a (see FIG. 7), the rising portion 30b rising from the flat portion 30a corresponding to the thickness of the insulating sheet 50, and the rising portion 30b being parallel to the flat portion 30a.
  • the forming process is performed on the extending portion 30c that bends.
  • the thickness of the wiring tab 30 is about 100 ⁇ m to 300 ⁇ m, and the width thereof is narrower than the width of 5 mm to 9 mm of the soldering region 16a (17a) and wider than the width of 3 mm of the solder connection portion.
  • the length is shorter than the width of the insulating sheet 50.
  • the width of the insulating sheet 50 is 40 mm, the width from the front end of the flat portion 30a to the rear end of the extending portion 30c is 40 mm.
  • the insulating sheet 50 uses what provided the contact bonding layer 53 which consists of a thermoreversible resin of non-bridge
  • the insulating sheet 50 has a thickness of 100 ⁇ m to 165 ⁇ m, including the insulating base 51 and both adhesive layers 53.
  • the flat portion 30a is formed to be longer than the 3 mm length of the tab connection portion 40a by an amount including an alignment error.
  • the height of the rising portion 30b is slightly larger than the thickness obtained by subtracting the solder thickness from the thickness of the insulating sheet 50 so that the insulating sheet 50 is sandwiched therebetween after soldering. For example, when the thickness of the solder 40 is 40 ⁇ m and the thickness of the insulating sheet 50 is 165 ⁇ m, the height x is slightly wider than 125 ⁇ m.
  • the thickness of the insulating sheet 50 may be set equal to the height of the insulating sheet 50 without reducing the thickness of the solder 40.
  • the flat portion 30 a of the wiring tab 30 is bonded to the soldering region 16 a (17 a) of the solar cell 10 with solder 40.
  • a space corresponding to the thickness of the insulating sheet 50 is formed between the extending portion 30c and the solar cell 10 by the rising portion 30b.
  • an insulating sheet 50 in which an adhesive layer 53 made of a thermoreversible resin such as non-crosslinked EVA or EEA is provided on both surfaces of the insulating base 51 is interposed between the extending portion 30 c and the solar cell 10. Sandwich. Since a space corresponding to the thickness of the insulating sheet 50 is formed between the extending portion 30 c and the solar cell 10, the insulating sheet 50 extends to the vicinity where the wiring tab 30 is connected by the solder 40 or close to the portion. Can be inserted. For this reason, the insulation of the connection part vicinity between the solar cell 10 and the wiring tab 30 can be ensured.
  • the solder connection between the wiring tab 30 and the solar cell 10 is performed by bonding the insulating sheet 50 to the solar cell 10 with the adhesive layer 53, and then soldering the region 16 a between the wiring tab 50 and the solar cell 10. It is also possible to connect to (17a) with the solder 40.
  • the insulating sheet 50 can be smoothly inserted into the space portion because it does not adhere to the solar cell 10 and the wiring tab 30 until the heat treatment at the time of lamination. Good workability.
  • the insulating sheet 50 is first pasted to the predetermined position of the solar cell 10 by the adhesive layer 53, and the insulating sheet is used as a positioning wire.
  • the tab 50 may be connected to the soldering area 16 a (17 a) of the solar cell 10 by the solder 40.
  • the present invention is not limited to this, and is also applicable to a solar cell module using a solar cell made of a semiconductor wafer. Can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention addresses the problem of providing a solar cell module with improved reliability. Provided is a solar cell module with a wiring material arranged on top of the rear surface of a solar cell and comprising: a wiring tab (30) connected to a soldered area (16a (17a)) in an electrode section of the solar cell (10); and an insulating sheet (50) sandwiched between the wiring material tab (30) and the solar cell (10). The insulating sheet (50) has an adhesive layer (53) comprising a heat reversible resin disposed on both surfaces of an insulating base material (51).

Description

太陽電池モジュールSolar cell module
 本発明は、太陽電池の裏面側に配された配線を有する太陽電池モジュールに関するものである。 The present invention relates to a solar cell module having wiring arranged on the back side of the solar cell.
 太陽電池モジュールは、電気的に接続された複数の太陽電池を有する複数の太陽電池ストリング、太陽電池ストリング同士の電気的な接続を行う渡り配線と、太陽電池の発電電力を外部に取出すための取出し配線とを有している。従来から太陽電池モジュール内の太陽電池素子の充填率を高くし、太陽電池モジュールの発電効率を高めることが検討されている。かかる従来のモジュールでは、配線材と太陽電池との間の電気的接触を防止するために、配線材と太陽電池との間に、ポリエチレンテレフタレートからなる絶縁シートを介在させている(例えば、特許文献1参照)。  The solar cell module includes a plurality of solar cell strings having a plurality of electrically connected solar cells, a crossover wiring for electrically connecting the solar cell strings, and an extraction for taking out the generated power of the solar cell to the outside Wiring. Conventionally, it has been studied to increase the filling rate of the solar cell elements in the solar cell module and increase the power generation efficiency of the solar cell module. In such a conventional module, an insulating sheet made of polyethylene terephthalate is interposed between the wiring material and the solar cell in order to prevent electrical contact between the wiring material and the solar cell (for example, Patent Documents). 1).
特開2010-232701号公報JP 2010-232701 A
 従来の技術では配線材と太陽電池との間に配置した絶縁シートでは、配線材と太陽電池との間の電気的接触を防止できず、信頼性が低下するおそれがあった。 In the conventional technology, the insulating sheet disposed between the wiring material and the solar cell cannot prevent electrical contact between the wiring material and the solar cell, and there is a possibility that reliability is lowered.
 本発明は、信頼性の向上した太陽電池モジュールを提供することを目的とする。 An object of the present invention is to provide a solar cell module with improved reliability.
 本発明は、太陽電池の裏面上に配された配線材を有する太陽電池モジュールであって、前記配線材と太陽電池の間に挟み込まれる絶縁シート、を備え、前記絶縁シートは絶縁基材の片面または両面に粘着材または接着剤からなる接着層を有する。 The present invention is a solar cell module having a wiring material disposed on the back surface of a solar cell, comprising an insulating sheet sandwiched between the wiring material and the solar cell, wherein the insulating sheet is one side of an insulating base material Or it has an adhesive layer made of an adhesive or adhesive on both sides.
 本発明によれば、絶縁基材の片面または両面に粘着材または接着剤からなる絶縁シートは厚みが薄くできるので、配線材と太陽電池との接続部に近接させて絶縁シート挟み込むことができる。 According to the present invention, since the insulating sheet made of an adhesive or an adhesive can be thin on one or both sides of the insulating base, the insulating sheet can be sandwiched between the wiring member and the solar cell.
本発明の第1の実施形態にかかる太陽電池モジュールで用いられる太陽電池を示す模式的断面図である。It is typical sectional drawing which shows the solar cell used with the solar cell module concerning the 1st Embodiment of this invention. 本発明の第1の実施形態にかかる太陽電池モジュールで用いられる太陽電池を裏面側から見た模式的平面図である。It is the typical top view which looked at the solar cell used with the solar cell module concerning the 1st Embodiment of this invention from the back surface side. 本発明の第1の実施形態にかかる太陽電池モジュールにおける太陽電池の配列の一例を示す模式的平面図である。It is a schematic plan view which shows an example of the arrangement | sequence of the solar cell in the solar cell module concerning the 1st Embodiment of this invention. 本発明の第1の実施形態にかかる太陽電池モジュールの太陽電池と配線タブとの接続を示す模式的平面図である。It is a typical top view which shows the connection of the solar cell and wiring tab of the solar cell module concerning the 1st Embodiment of this invention. 本発明の第1の実施形態にかかる太陽電池モジュールの太陽電池と配線タブとの接続を示す模式的平面図である。It is a typical top view which shows the connection of the solar cell and wiring tab of the solar cell module concerning the 1st Embodiment of this invention. 本発明の第1の実施形態にかかる太陽電池モジュールの太陽電池と配線タブとの接続を示す模式的平面図である。It is a typical top view which shows the connection of the solar cell and wiring tab of the solar cell module concerning the 1st Embodiment of this invention. 本発明の第1の実施形態にかかる太陽電池モジュールの太陽電池と配線タブとの接続を示す模式的断面図である。It is typical sectional drawing which shows the connection of the solar cell and wiring tab of the solar cell module concerning the 1st Embodiment of this invention. 本発明の第1の実施形態にかかる太陽電池モジュールの太陽電池と配線タブとの接続を示す模式的断面図である。It is typical sectional drawing which shows the connection of the solar cell and wiring tab of the solar cell module concerning the 1st Embodiment of this invention. 本発明の第1の実施形態にかかる太陽電池モジュールの太陽電池と配線タブとの接続を示す模式的断面図である。It is typical sectional drawing which shows the connection of the solar cell and wiring tab of the solar cell module concerning the 1st Embodiment of this invention. 本発明の第1の実施形態にかかる太陽電池モジュールの太陽電池と配線タブとの接続を示す平面図である。It is a top view which shows the connection of the solar cell and wiring tab of the solar cell module concerning the 1st Embodiment of this invention. 図10のA-A線断面図である。FIG. 11 is a sectional view taken along line AA in FIG. 10. 本発明の第1の実施形態にかかる太陽電池モジュールを示す模式的断面図である。It is typical sectional drawing which shows the solar cell module concerning the 1st Embodiment of this invention. 本発明の第2の実施形態にかかる太陽電池モジュールの太陽電池と配線タブとの接続を示す模式的断面図である。It is typical sectional drawing which shows the connection of the solar cell and wiring tab of the solar cell module concerning the 2nd Embodiment of this invention. 本発明の第2の実施形態にかかる太陽電池モジュールの太陽電池と配線タブとの接続を示す模式的断面図である。It is typical sectional drawing which shows the connection of the solar cell and wiring tab of the solar cell module concerning the 2nd Embodiment of this invention. 本発明の第2の実施形態にかかる太陽電池モジュールの太陽電池と配線タブとの接続を示す模式的断面図である。It is typical sectional drawing which shows the connection of the solar cell and wiring tab of the solar cell module concerning the 2nd Embodiment of this invention. 本発明の第3の実施形態にかかる太陽電池モジュールの太陽電池と配線タブとの接続を示す模式的断面図である。It is typical sectional drawing which shows the connection of the solar cell and wiring tab of the solar cell module concerning the 3rd Embodiment of this invention. 本発明の第3の実施形態にかかる太陽電池モジュールの太陽電池と配線タブとの接続を示す模式的断面図である。It is typical sectional drawing which shows the connection of the solar cell and wiring tab of the solar cell module concerning the 3rd Embodiment of this invention. 本発明の第3の実施形態にかかる太陽電池モジュールの太陽電池と配線タブとの接続を示す模式的断面図である。It is typical sectional drawing which shows the connection of the solar cell and wiring tab of the solar cell module concerning the 3rd Embodiment of this invention.
 本発明の第1の実施形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付し、説明の重複を避けるためにその説明は繰返さない。 The first embodiment of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will not be repeated in order to avoid duplication of description.
 図1は、本発明の第1の実施形態にかかる太陽電池モジュールで用いられる太陽電池を示す模式的断面図であり、図2は裏面側から見た模式的平面図である。本実施形態に係る太陽電池10としては、裏面接合型太陽電池を用いた。太陽電池10は、n型単結晶シリコン(Si)等の半導体ウエハからなる基板11の裏面側にp型領域13およびn型領域12を有している。 FIG. 1 is a schematic cross-sectional view showing a solar cell used in the solar cell module according to the first embodiment of the present invention, and FIG. 2 is a schematic plan view seen from the back side. As the solar cell 10 according to the present embodiment, a back junction solar cell was used. The solar cell 10 has a p-type region 13 and an n-type region 12 on the back side of a substrate 11 made of a semiconductor wafer such as n-type single crystal silicon (Si).
 p型領域13は、一の方向にライン状に延びるフィンガー部を複数含んでいる。またp型領域13は、基板11の一端部に沿って設けられたバスバー部を含んでいる。バスバー部は前記一の方向と直交する方向に沿って延び、複数のフィンガー部と接続する。 The p-type region 13 includes a plurality of finger portions extending in a line in one direction. The p-type region 13 includes a bus bar portion provided along one end portion of the substrate 11. The bus bar portion extends along a direction orthogonal to the one direction and is connected to a plurality of finger portions.
 n型領域12は、一の方向にライン状に延びるフィンガー部を複数含んでいる。またn型領域13は、基板11の他端部に沿って設けられたバスバー部を含んでいる。バスバー部は前記一の方向と直交する方向に沿って延び、複数のフィンガー部と接続する。 The n-type region 12 includes a plurality of finger portions extending in a line in one direction. The n-type region 13 includes a bus bar portion provided along the other end portion of the substrate 11. The bus bar portion extends along a direction orthogonal to the one direction and is connected to a plurality of finger portions.
 p型領域13のフィンガー部及びn型領域12のフィンガー部は、所定の間隔を隔てて互いに平行に配列されている。尚、図1は、p型領域13及びn型領域12を熱拡散法によって基板11内に作製したものであるが、本発明はこれに限るものではなく、基板11の裏面上に薄膜形成法を用いて形成されたp型半導体層及びn型半導体層を有するものであっても良い。 The finger part of the p-type region 13 and the finger part of the n-type region 12 are arranged in parallel to each other with a predetermined interval. In FIG. 1, the p-type region 13 and the n-type region 12 are formed in the substrate 11 by the thermal diffusion method. However, the present invention is not limited to this, and a thin film forming method is formed on the back surface of the substrate 11. It may have a p-type semiconductor layer and an n-type semiconductor layer which are formed by using.
 基板11の受光面上および裏面上には、キャリアの表面再結合を抑制するために、パッシベーション膜18、、14が設けられている。これらのパッシベーション膜18、14は、シリコン酸化膜或いはシリコン窒化膜から構成される。 Passivation films 18 and 14 are provided on the light receiving surface and the back surface of the substrate 11 in order to suppress surface recombination of carriers. These passivation films 18 and 14 are composed of a silicon oxide film or a silicon nitride film.
 基板11の受光面上に形成されるパッシベーション膜18として、シリコン窒化膜を用いた場合には、その屈折率が2.1程度となるため、シリコン窒化膜は基板1の受光面における太陽光の反射を抑制する反射防止膜(AR層)としても用いることができる。 When a silicon nitride film is used as the passivation film 18 formed on the light receiving surface of the substrate 11, the refractive index thereof is about 2.1. It can also be used as an antireflection film (AR layer) that suppresses reflection.
 基板11の裏面上に形成されるパッシベーション膜14の所定箇所には、p領域13またはn領域12まで貫通する孔が設けられている。この孔の形状は特に限定されず、ドット状、ライン状等の形状が用いられる。 A hole penetrating to the p region 13 or the n region 12 is provided at a predetermined position of the passivation film 14 formed on the back surface of the substrate 11. The shape of the hole is not particularly limited, and a shape such as a dot shape or a line shape is used.
 n型領域12上にはn側電極16、p型領域13上にはp側電極17が設けられている。n側電極16およびp側電極17は、パッシベーション膜14に設けられた孔の中を埋設し、n型領域12及びp型領域13に夫々電気的に接続する。n型電極16は、フィンガー電極16f、バスバー電極16b、p型電極17は、フィンガー電極17f、バスバー電極17bで構成される。 An n-side electrode 16 is provided on the n-type region 12, and a p-side electrode 17 is provided on the p-type region 13. The n-side electrode 16 and the p-side electrode 17 are embedded in holes provided in the passivation film 14 and are electrically connected to the n-type region 12 and the p-type region 13, respectively. The n-type electrode 16 includes a finger electrode 16f and a bus bar electrode 16b, and the p-type electrode 17 includes a finger electrode 17f and a bus bar electrode 17b.
 電極16、17の材料としては、太陽電池に発生する電流を外部に十分に取り出すことができるように、銀又はアルミニウムなどの導電材料が用いられる。さらに、メッキにより銅などをアルミニウムの下地電極上に成長させ、低抵抗の電極を形成しても良い。 As the material of the electrodes 16 and 17, a conductive material such as silver or aluminum is used so that a current generated in the solar cell can be taken out sufficiently. Further, copper or the like may be grown on an aluminum base electrode by plating to form a low resistance electrode.
 後述するように、n側電極16及びp側電極17のバスバー電極16b、17bには、配線タブが半田付けされる半田付け領域16a、17aが電極と連なって設けられている。半田付け領域16a、17aが本実施形態では、それぞれ3箇所ずつ設けられている。本実施形態は、図3に示すように、n型単結晶シリコン基板11は、125.5mm角の正方形状で、その中央部分のセル端部に幅amm、長さbmmの矩形状の半田付け領域16a(17a)が設けられる。本実施形態では、幅aは、5mm~9mmであり、長さbは6mm~10mmの範囲で選択され、例えば、幅6mm、長さ7mmの矩形状の半田付け領域16a(17a)が設けられる。そして、その中央の半田付け領域から左右にそれぞれ40mm~42mmの間隔を開けて、同様の大きさの半田付け領域16a(17a)が設けられている。 As will be described later, the bus bar electrodes 16b and 17b of the n-side electrode 16 and the p-side electrode 17 are provided with soldering regions 16a and 17a to which the wiring tabs are soldered in a row. In this embodiment, three soldering regions 16a and 17a are provided. In this embodiment, as shown in FIG. 3, the n-type single crystal silicon substrate 11 has a square shape of 125.5 mm square, and is soldered in a rectangular shape having a width of amm and a length of bmm at the cell end at the center. Region 16a (17a) is provided. In the present embodiment, the width a is 5 mm to 9 mm, and the length b is selected in the range of 6 mm to 10 mm. For example, a rectangular soldering region 16a (17a) having a width of 6 mm and a length of 7 mm is provided. . A soldering area 16a (17a) of the same size is provided at intervals of 40 mm to 42 mm from the central soldering area to the left and right.
 以上のように構成された複数の太陽電池は、一の方向に直線状に配列され、配線材を用いて互いに電気的に接続され、太陽電池ストリングを構成する。図3に示すように、隣り合う太陽電池10、10は、一方の太陽電池10の半田付け領域16aと他方の太陽電池の半田付け領域17aとが互いに対向するように配列される。図4に示すように、隣り合って配列された太陽電池10、10は、配線材33によって電気的に接続される。尚、配線材33は半田によって半田付け領域16a、17aに夫々接続される。 The plurality of solar cells configured as described above are arranged linearly in one direction and are electrically connected to each other using a wiring material to constitute a solar cell string. As shown in FIG. 3, the adjacent solar cells 10 and 10 are arranged so that the soldering region 16a of one solar cell 10 and the soldering region 17a of the other solar cell face each other. As shown in FIG. 4, the solar cells 10 and 10 arranged adjacent to each other are electrically connected by a wiring member 33. The wiring member 33 is connected to the soldering regions 16a and 17a by solder.
 また、図5に示すように、半田付け領域16a(17a)に接続した配線タブ30が渡り配線31に接続され、そして、引き出し線32a、32b、32c、32dとして取り出される。このように、配線タブ30、渡り配線31、引き出し線32a、32b、32c、32dがn型電極16、p型電極17の上を横切ることになる。このような場合には、配線による短絡を防止するために、充填材または絶縁材等からなる絶縁シート50が配線30、31、32a…と太陽電池10との間に挟み込まれる。  Further, as shown in FIG. 5, the wiring tab 30 connected to the soldering region 16a (17a) is connected to the crossover wiring 31, and is taken out as lead lines 32a, 32b, 32c, 32d. As described above, the wiring tab 30, the transition wiring 31, and the lead lines 32 a, 32 b, 32 c, and 32 d cross over the n-type electrode 16 and the p-type electrode 17. In such a case, an insulating sheet 50 made of a filler or an insulating material is sandwiched between the wirings 30, 31, 32 a.
 なお、本実施形態では、太陽電池10、10間の間隔は2mmである。そして、図4に示すように、太陽電池10、10を直列に接続する場合には、n型電極16の半田付け領域16aとp型電極17の半田付け領域17aが配線タブ33で接続される。 In this embodiment, the interval between the solar cells 10 and 10 is 2 mm. As shown in FIG. 4, when the solar cells 10 and 10 are connected in series, the soldering region 16 a of the n-type electrode 16 and the soldering region 17 a of the p-type electrode 17 are connected by the wiring tab 33. .
 図6は、半田付け領域と配線タブの接続部の詳細を示す平面図である。図6に示すように、基板11のセル端部から1mm以下、例えば、0.74mmの箇所までn型電極16またはp型電極17の端が位置するように、交互に太陽電池10の裏面全体を覆うように直線状にフィンガー電極16f、17fが形成されている(図2参照)。そして、半田付け領域16a(17a)は、セル端から(5mm~9mm)×(6mm~10mm)の矩形形状で形成されている。前述したように、半田付け領域16a(17a)は、例えば6mm×7mmの大きさで形成される。半田が設けられるタブ接続箇所40aの面積は、3mm×3mmで、セル端から1.5mm~5.5mm、例えば、2、5mm離れた箇所を目処として半田付け作業が行われる。ここで、半田が設けられる箇所は3mm×3mmであるが、電極形成誤差、半田付けの位置合わせ誤差を考慮して、半田付け領域16a(17a)は半田が設けられる箇所の倍以上の大きさに形成されている。 FIG. 6 is a plan view showing details of a connection portion between the soldering area and the wiring tab. As shown in FIG. 6, the entire back surface of the solar cell 10 is alternately arranged so that the end of the n-type electrode 16 or the p-type electrode 17 is positioned up to 1 mm or less, for example, 0.74 mm from the cell edge of the substrate 11. Finger electrodes 16f and 17f are linearly formed so as to cover (see FIG. 2). The soldering region 16a (17a) is formed in a rectangular shape (5 mm to 9 mm) × (6 mm to 10 mm) from the cell end. As described above, the soldering region 16a (17a) is formed with a size of, for example, 6 mm × 7 mm. The area of the tab connecting portion 40a where the solder is provided is 3 mm × 3 mm, and the soldering operation is performed with a location 1.5 mm to 5.5 mm, for example, 2 or 5 mm away from the cell edge. Here, the location where the solder is provided is 3 mm × 3 mm, but considering the electrode formation error and the soldering alignment error, the soldering area 16a (17a) is at least twice as large as the location where the solder is provided. Is formed.
 さて、本実施形態は、図7ないし図9に示すように、絶縁シート50として、絶縁基材51の両面に粘着材や接着剤等の接着層を設けたシートを用いている。この絶縁シート50は、PET(ポリエチレンテレフタレート)、PVF(ポリビニルフロライド)、PEN(ポリエチレンナフタレート)、PE(ポリエチレン)などの絶縁基材51の両面に粘着材や接着剤等の接着層53が設けられている。接着層53の材料は、常温では接着性を有さず、ラミネート時の温度範囲で接着性を有するものが好ましい。粘着材用樹脂材料としては、EVA(エチレン・酢酸ビニル共重合体)、EEA(エチレンエチルアクリレート)、PVB(ポリビニルブチラール)、オレフィン系樹脂を用いることができる。また、接着剤としては、アクリル系接着剤、シリコン系接着剤、ゴム系接着剤、ウレタン系接着剤を用いることができる。上記した絶縁基材51の厚みは、50μm~75μm、接着層53の厚みは25μm~45μmである。 In the present embodiment, as shown in FIGS. 7 to 9, as the insulating sheet 50, a sheet in which an adhesive layer such as an adhesive or an adhesive is provided on both surfaces of the insulating base 51 is used. This insulating sheet 50 has adhesive layers 53 such as an adhesive and an adhesive on both surfaces of an insulating substrate 51 such as PET (polyethylene terephthalate), PVF (polyvinyl fluoride), PEN (polyethylene naphthalate), and PE (polyethylene). Is provided. The material of the adhesive layer 53 is preferably one that does not have adhesiveness at room temperature and has adhesiveness in the temperature range during lamination. As the resin material for the adhesive, EVA (ethylene / vinyl acetate copolymer), EEA (ethylene ethyl acrylate), PVB (polyvinyl butyral), and olefin resin can be used. As the adhesive, an acrylic adhesive, a silicon adhesive, a rubber adhesive, or a urethane adhesive can be used. The insulating base 51 has a thickness of 50 μm to 75 μm, and the adhesive layer 53 has a thickness of 25 μm to 45 μm.
 本実施形態は、絶縁シート50は、絶縁基材51の両面に太陽電池モジュールの封止材料として用いられる非架橋EVAやEEAの熱可逆性樹脂からなる接着層53を設けている。この絶縁シート50の厚みは、絶縁基材51と両接着層53を合わせて、100μm~165μmである。従来のEVA等の充填材からなる絶縁材52の厚みは600μm程度であり、本実施形態の絶縁シート50は、従来に比べて厚みが1/4~1/6程度と薄くできる。これは、絶縁基材52に粘着材や接着剤等の接着層53の皮膜を形成することで、接着性と絶縁性が確保できるからその膜厚を薄くできるからである。 In this embodiment, the insulating sheet 50 is provided with an adhesive layer 53 made of non-crosslinked EVA or EEA thermoreversible resin used as a sealing material for the solar cell module on both surfaces of the insulating base 51. The insulating sheet 50 has a thickness of 100 μm to 165 μm, including the insulating base 51 and both adhesive layers 53. The thickness of the insulating material 52 made of a conventional filler such as EVA is about 600 μm, and the insulating sheet 50 of this embodiment can be made as thin as about ¼ to 1 / compared to the conventional thickness. This is because by forming a film of the adhesive layer 53 such as an adhesive or an adhesive on the insulating base material 52, the adhesiveness and the insulation can be ensured, so that the film thickness can be reduced.
 このように、絶縁シート50の膜厚が薄くできるので、太陽電池10と配線タブ30との半田40による接続部の近傍まで絶縁シート50を挟み込むことができる。また、接着層53が常温では接着性を有さないので、太陽電池10と配線タブ30との半田40による接続部の近傍まで容易に絶縁シート50を挟み込むことができる。 Thus, since the film thickness of the insulating sheet 50 can be reduced, the insulating sheet 50 can be sandwiched up to the vicinity of the connection portion of the solar cell 10 and the wiring tab 30 by the solder 40. Further, since the adhesive layer 53 does not have adhesiveness at room temperature, the insulating sheet 50 can be easily sandwiched to the vicinity of the connection portion by the solder 40 between the solar cell 10 and the wiring tab 30.
 この絶縁シート50を配線タブ30の下に配置する一例につき説明する。まず、図7に示すように、配線タブ30を太陽電池10の半田付け領域16a(17a)に半田40により接続する。そして、図8に示すように、太陽電池10と配線タブ30の近傍まで絶縁シート50を差し込む。この時、絶縁シート50は、厚みが従来のものに比して1/4~1/6程度に薄くすることができるので、太陽電池10、配線タブ30への負担を低減して、太陽電池10と配線タブ30の近傍まで、挿入することができる。 An example in which the insulating sheet 50 is disposed under the wiring tab 30 will be described. First, as shown in FIG. 7, the wiring tab 30 is connected to the soldering region 16 a (17 a) of the solar cell 10 by the solder 40. Then, as shown in FIG. 8, the insulating sheet 50 is inserted to the vicinity of the solar cell 10 and the wiring tab 30. At this time, since the thickness of the insulating sheet 50 can be reduced to about 1/4 to 1/6 as compared with the conventional sheet, the burden on the solar cell 10 and the wiring tab 30 can be reduced, and the solar cell can be reduced. 10 and the vicinity of the wiring tab 30 can be inserted.
 図9に示すように、絶縁シート50上に配線タブ50を接着させて、絶縁シート50は従来に比して極めて薄いので、太陽電池10の半田接続部と配線タブ30との間に空間が殆どなくすことができる。 As shown in FIG. 9, the wiring tab 50 is adhered on the insulating sheet 50, and the insulating sheet 50 is extremely thin as compared with the conventional case, so that there is a space between the solder connection portion of the solar cell 10 and the wiring tab 30. It can be almost eliminated.
 また、絶縁シート50の両面で接着するので、配線タブ30が接着していない箇所が無くなり、配線タブ30の剥離が防止できる。また、太陽電池10と配線タブ30とのずれを防止できる。 Further, since the both sides of the insulating sheet 50 are adhered, there are no places where the wiring tab 30 is not adhered, and the separation of the wiring tab 30 can be prevented. Moreover, the shift | offset | difference with the solar cell 10 and the wiring tab 30 can be prevented.
 上記のように、絶縁シート50は、配線タブ30が半田40で接続されている近傍または密接する箇所まで挿入できる。このため、太陽電池10と配線タブ30との間の接続部近傍の絶縁が確保することができる。本実施形態においては、図10に示すように、太陽電池10に設けられた3箇所の半田付け領域16aに配線タブ20が半田で接続され、配線タブ30並びに配線タブ30と接続された渡り配線31と太陽電池10との間には、配線タブ30の接続部に近接して絶縁シート50が挟み込まれている。図10のA-A線断面を示す図11のように、絶縁シート50が半田40による接続部に近接し、そして、n型電極16、p型電極17の上に絶縁シート50が配置されているので、配線タブ30、渡り配線31による短絡は防止されている。 As described above, the insulating sheet 50 can be inserted to the vicinity where the wiring tab 30 is connected by the solder 40 or to a close position. For this reason, the insulation of the connection part vicinity between the solar cell 10 and the wiring tab 30 can be ensured. In the present embodiment, as shown in FIG. 10, the wiring tab 20 is connected to the three soldering regions 16 a provided in the solar cell 10 by solder, and the wiring tab 30 and the transition wiring connected to the wiring tab 30 are connected. An insulating sheet 50 is sandwiched between 31 and the solar cell 10 in the vicinity of the connection portion of the wiring tab 30. As shown in FIG. 11 showing a cross section taken along line AA of FIG. 10, the insulating sheet 50 is close to the connection portion by the solder 40, and the insulating sheet 50 is disposed on the n-type electrode 16 and the p-type electrode 17. Therefore, a short circuit due to the wiring tab 30 and the crossover wiring 31 is prevented.
 本実施形態における配線タブ30は、厚さ100μm~300μm程度、その幅は、半田付け領域16a(17a)の幅6mmより狭く半田接続箇所の幅3mmより広く形成されている。長さは、絶縁シート50の幅より短く形成されている。本実施形態では、絶縁シート50の幅は40mmであるので、配線タブ30の長さは40mmより短くしている。 The wiring tab 30 in the present embodiment has a thickness of about 100 μm to 300 μm, and its width is smaller than the width 6 mm of the soldering region 16 a (17 a) and wider than the width 3 mm of the solder connection portion. The length is shorter than the width of the insulating sheet 50. In this embodiment, since the width of the insulating sheet 50 is 40 mm, the length of the wiring tab 30 is shorter than 40 mm.
 太陽電池モジュールは、一方の太陽電池10のp側電極17と他方の太陽電池10のn側電極16とを配線タブ30、渡り配線31を用いて電気的に接続し、ストリング状にする。さらに、図4に示すように、配線31は、モジュール外部に出力を取り出す出力配線32a、32b、32c、32dと接続されている。出力配線32a、32b、32c、32dは、太陽電池10からの電気出力を例えば、端子ボックス(図示しない)の端子と接続される。通常、出力配線32a、32b、32c、32dは、厚さ100μm~300μm程度、幅6mm程度の銅箔にその全面を半田コートしたものを所定の長さに切断し、配線タブ等に半田付けされている。また、出力配線の表面は、絶縁フィルムによって被覆されている。 The solar cell module electrically connects the p-side electrode 17 of one solar cell 10 and the n-side electrode 16 of the other solar cell 10 using the wiring tab 30 and the crossover wiring 31 to form a string shape. Further, as shown in FIG. 4, the wiring 31 is connected to output wirings 32a, 32b, 32c, and 32d for taking out the output to the outside of the module. The output wirings 32a, 32b, 32c, and 32d are connected to the electrical output from the solar cell 10 with, for example, terminals of a terminal box (not shown). Usually, the output wirings 32a, 32b, 32c, and 32d are obtained by cutting a copper foil having a thickness of about 100 μm to 300 μm and a width of about 6 mm into a predetermined length and soldering it to a wiring tab or the like. ing. The surface of the output wiring is covered with an insulating film.
 上記した絶縁シート50の接着層53として、非架橋EVAやEEAを用いると、常温時には、接着しないため、絶縁シート50の挟み込み作業が容易に行える。そして、使用する熱可逆性樹脂は、後述するラミネート工程やキュアの温度で軟化して、太陽電池10や配線タブ30と接着する。 When the non-crosslinked EVA or EEA is used as the adhesive layer 53 of the insulating sheet 50 described above, the insulating sheet 50 can be easily sandwiched because it does not adhere at room temperature. Then, the thermoreversible resin to be used is softened at a laminating process or a curing temperature, which will be described later, and bonded to the solar cell 10 or the wiring tab 30.
 そして、太陽電池モジュールは、受光面側からガラス等の表面保護部材20、EVA等の透光性を有する封止材20、配線タブ30、渡り配線31等で接続された複数の太陽電池10、裏面側の透光性の封止材20、バックシートなどからなる裏面保護部材21をこの順序で積み重ね、ラミネートされて一体化される。このラミネート処理により、図12に示すように、絶縁シート50の両面に設けられた接着層53は架橋され、太陽電池10と配線タブ30とが接続された状態で一体化される。図12に示すように、太陽電池10、絶縁シート50、配線タブ30、渡り配線31等は、密着して一体化されるので、気泡等の発生は無い。 The solar cell module includes a plurality of solar cells 10 connected from the light receiving surface side by a surface protecting member 20 such as glass, a light-transmitting sealing material 20 such as EVA, a wiring tab 30, a crossover wiring 31, and the like. The back surface side sealing member 20 and the back surface protection member 21 made of a back sheet and the like are stacked in this order, laminated and integrated. By this laminating process, as shown in FIG. 12, the adhesive layers 53 provided on both surfaces of the insulating sheet 50 are cross-linked and integrated with the solar cell 10 and the wiring tab 30 being connected. As shown in FIG. 12, the solar cell 10, the insulating sheet 50, the wiring tab 30, the transition wiring 31, and the like are brought into close contact with each other so that no bubbles or the like are generated.
 このように、太陽電池10と配線タブ30とが接続される接続部に近接して絶縁シート50が一体化され、絶縁を確保できるので、太陽電池10の電極16(17)を接続部近傍まで伸ばすことが可能となり、出力の向上に寄与する。また、配線タブ30と太陽電池10間の接続部近傍で、太陽電池10に負荷をかけることなく、絶縁シート50を設置することができる。このため、太陽電池10に負荷がかからなくなるので、太陽電池10の割れなどが防げ、歩留まりや信頼性を向上させることができる。 Thus, since the insulating sheet 50 is integrated in the vicinity of the connection portion where the solar cell 10 and the wiring tab 30 are connected and insulation can be ensured, the electrode 16 (17) of the solar cell 10 is connected to the vicinity of the connection portion. It can be extended and contributes to the improvement of output. Further, the insulating sheet 50 can be installed in the vicinity of the connection portion between the wiring tab 30 and the solar cell 10 without applying a load to the solar cell 10. For this reason, since the load is not applied to the solar cell 10, it is possible to prevent the solar cell 10 from being cracked, and to improve the yield and reliability.
 上記実施形態においては、絶縁シート50として、絶縁基材51の両面に接着層53を設けたものを用いているが、絶縁シート50としては、片面に粘着材や接着剤等の接着層を設けた絶縁シートを用いてもよい。 In the said embodiment, although what provided the adhesive layer 53 on both surfaces of the insulating base material 51 is used as the insulating sheet 50, as the insulating sheet 50, adhesive layers, such as an adhesive material and an adhesive agent, are provided in one side. Alternatively, an insulating sheet may be used.
 図13ないし図15に示す第2の実施形態にかかる絶縁シート50は、PET、PVF、PEN、PEなどの絶縁基材51の片面に粘着材や接着剤等の接着層53が設けられている。粘着材用樹脂材料としては、EVA、EEA、PVB、オレフィン系樹脂を用いることができる。また、接着剤としては、アクリル系接着剤、シリコン系接着剤、ゴム系接着剤、ウレタン系接着剤を用いることができる。絶縁基材51の厚みは50μm~75μm、接着層53の厚みは25μm~45μmである。本実施形態では、接着層53を太陽電池10側に面して配置し、太陽電池10に接着層53で絶縁基材51を貼り付ける。この第2の実施形態の絶縁シート50は、絶縁基材51の片面に非架橋EVAやEEAの熱可逆性樹脂からなる接着層53を設けている。 The insulating sheet 50 according to the second embodiment shown in FIGS. 13 to 15 is provided with an adhesive layer 53 such as an adhesive or an adhesive on one side of an insulating base 51 such as PET, PVF, PEN, PE or the like. . As the resin material for the adhesive material, EVA, EEA, PVB, olefin resin can be used. As the adhesive, an acrylic adhesive, a silicon adhesive, a rubber adhesive, or a urethane adhesive can be used. The insulating substrate 51 has a thickness of 50 μm to 75 μm, and the adhesive layer 53 has a thickness of 25 μm to 45 μm. In the present embodiment, the adhesive layer 53 is disposed facing the solar cell 10 side, and the insulating base material 51 is attached to the solar cell 10 with the adhesive layer 53. In the insulating sheet 50 of the second embodiment, an adhesive layer 53 made of a thermoreversible resin such as non-crosslinked EVA or EEA is provided on one surface of an insulating base 51.
 この絶縁シート50を配線タブ30の下に配置する方法につき説明する。まず、図13に示すように、配線タブ30を太陽電池10の半田付け領域16a(17a)に半田40により接続する。そして、図14に示すように、太陽電池10と配線タブ30の近傍までは、絶縁シート50を差し込む。この時、絶縁シート50は、第1の実施形態より更に厚みを薄くすることができるので、太陽電池10、配線タブ30への負担を低減して、挿入することができる。 A method for arranging the insulating sheet 50 under the wiring tab 30 will be described. First, as shown in FIG. 13, the wiring tab 30 is connected to the soldering region 16 a (17 a) of the solar cell 10 by the solder 40. Then, as shown in FIG. 14, the insulating sheet 50 is inserted up to the vicinity of the solar cell 10 and the wiring tab 30. At this time, since the insulating sheet 50 can be made thinner than in the first embodiment, it can be inserted while reducing the burden on the solar cell 10 and the wiring tab 30.
 図15に示すように、絶縁シート50上に配線タブ50を密着させる。絶縁シート50は従来に比して極めて薄いので、太陽電池10の半田接続部と配線タブ30との間の空間が殆どなくすことができる。 As shown in FIG. 15, the wiring tab 50 is brought into close contact with the insulating sheet 50. Since the insulating sheet 50 is extremely thin as compared with the conventional case, the space between the solder connection portion of the solar cell 10 and the wiring tab 30 can be almost eliminated.
 尚、本実施形態においては、絶縁シート50の配線タブ30側には、接着層53が存在しないが、次のラミネート工程で封止材としてのEVAにより、絶縁タブ30が絶縁シート50に貼り付けられる。 In this embodiment, the adhesive layer 53 does not exist on the wiring tab 30 side of the insulating sheet 50, but the insulating tab 30 is attached to the insulating sheet 50 by EVA as a sealing material in the next laminating step. It is done.
 また、接着層53として、EVA等の熱可逆性樹脂を用いると、ラミネート時の熱処理まで太陽電池10、配線タブ30と接着しないので、スムーズに空間部に絶縁シート50を挿入させることができ、作業性が良い。 Further, when a thermoreversible resin such as EVA is used as the adhesive layer 53, the insulating sheet 50 can be smoothly inserted into the space portion because it does not adhere to the solar cell 10 and the wiring tab 30 until the heat treatment at the time of lamination. Good workability.
 接着層53が常温で粘着性を有するものである場合には、先に太陽電池10の所定の位置に接着層53により絶縁シート50を貼り付けておき、その絶縁シートを位置決めとして、配線タブ50を太陽電池10の半田付け領域16a(17a)に半田40により接続しても良い。 When the adhesive layer 53 is sticky at room temperature, the insulating sheet 50 is first attached to the predetermined position of the solar cell 10 with the adhesive layer 53, and the insulating sheet is used as a positioning, and the wiring tab 50 is positioned. May be connected to the soldering region 16 a (17 a) of the solar cell 10 by the solder 40.
 次に、第3の実施形態につき説明する。本実施形態は図16に示す様に、配線タブ30の形状が、配線タブ30と基板11との間に挟み込む充填材または絶縁材からなる絶縁シート50の厚みを考慮してフォーミング加工されている。タブ接続箇所40a(図7参照)の大きさに対応する平坦部30aと、平坦部30aから絶縁シート50の厚みに対応して立ち上がる立ち上がり部30bと、立ち上がり部30bから平坦部30aと平行になるように折れ曲がる延伸部30cと、にフォーミング加工されている。 Next, a third embodiment will be described. In this embodiment, as shown in FIG. 16, the shape of the wiring tab 30 is formed in consideration of the thickness of the insulating sheet 50 made of a filler or an insulating material sandwiched between the wiring tab 30 and the substrate 11. . The flat portion 30a corresponding to the size of the tab connection portion 40a (see FIG. 7), the rising portion 30b rising from the flat portion 30a corresponding to the thickness of the insulating sheet 50, and the rising portion 30b being parallel to the flat portion 30a. Thus, the forming process is performed on the extending portion 30c that bends.
 配線タブ30の厚さ100μm~300μm程度、その幅は、半田付け領域16a(17a)の幅5mm~9mmより狭く半田接続箇所の幅3mmより広く形成されている。長さは、絶縁シート50の幅より短く形成されている。本実施形態では、絶縁シート50の幅は40mmであるので、平坦部30aの先端から延伸部30cの後端まで40mmとしている。また、絶縁シート50は、絶縁基材51の両面に非架橋EVAやEEAの熱可逆性樹脂からなる接着層53を設けたものを用いている。絶縁シート50の厚みは、絶縁基材51と両接着層53を合わせて、100μm~165μmである。 The thickness of the wiring tab 30 is about 100 μm to 300 μm, and the width thereof is narrower than the width of 5 mm to 9 mm of the soldering region 16a (17a) and wider than the width of 3 mm of the solder connection portion. The length is shorter than the width of the insulating sheet 50. In the present embodiment, since the width of the insulating sheet 50 is 40 mm, the width from the front end of the flat portion 30a to the rear end of the extending portion 30c is 40 mm. Moreover, the insulating sheet 50 uses what provided the contact bonding layer 53 which consists of a thermoreversible resin of non-bridge | crosslinked EVA and EEA on both surfaces of the insulating base material 51. FIG. The insulating sheet 50 has a thickness of 100 μm to 165 μm, including the insulating base 51 and both adhesive layers 53.
 平坦部30aは、タブ接続箇所40aの長さ3mmより位置合わせの誤差を含めた分、長く形成されている。立ち上がり部30bの高さは、半田付けをした後に、絶縁シート50が間に挟め込まれるように、絶縁シート50の厚みから半田の厚みを引いた厚みより若干広くしている。例えば、半田40の厚みが40μm、絶縁シート50の厚みが165μmの場合、この高さxは125μmより若干広くしている。なお、半田40の厚みを引かずに、絶縁シート50の厚み分の高さと同等に設定しても良い。 The flat portion 30a is formed to be longer than the 3 mm length of the tab connection portion 40a by an amount including an alignment error. The height of the rising portion 30b is slightly larger than the thickness obtained by subtracting the solder thickness from the thickness of the insulating sheet 50 so that the insulating sheet 50 is sandwiched therebetween after soldering. For example, when the thickness of the solder 40 is 40 μm and the thickness of the insulating sheet 50 is 165 μm, the height x is slightly wider than 125 μm. The thickness of the insulating sheet 50 may be set equal to the height of the insulating sheet 50 without reducing the thickness of the solder 40.
 図17に示すように、太陽電池10の半田付け領域16a(17a)に、配線タブ30の平坦部30aを半田40にて接着する。太陽電池10に半田で取り付けられた配線タブ30は、立ち上がり部30bにより、延伸部30cと太陽電池10の間には、絶縁シート50の厚みに相当する空間が形成されている。 As shown in FIG. 17, the flat portion 30 a of the wiring tab 30 is bonded to the soldering region 16 a (17 a) of the solar cell 10 with solder 40. In the wiring tab 30 attached to the solar cell 10 with solder, a space corresponding to the thickness of the insulating sheet 50 is formed between the extending portion 30c and the solar cell 10 by the rising portion 30b.
 図16、図17に示すように、絶縁基材51の両面に非架橋EVAやEEAの熱可逆性樹脂からなる接着層53を設けた絶縁シート50を延伸部30cと太陽電池10との間に挟み込む。延伸部30cと太陽電池10の間には、絶縁シート50の厚みに相当する空間が形成されているので、絶縁シート50は、配線タブ30が半田40で接続されている近傍または密接する箇所まで挿入できる。このため、太陽電池10と配線タブ30との間の接続部近傍の絶縁が確保することができる。 As shown in FIGS. 16 and 17, an insulating sheet 50 in which an adhesive layer 53 made of a thermoreversible resin such as non-crosslinked EVA or EEA is provided on both surfaces of the insulating base 51 is interposed between the extending portion 30 c and the solar cell 10. Sandwich. Since a space corresponding to the thickness of the insulating sheet 50 is formed between the extending portion 30 c and the solar cell 10, the insulating sheet 50 extends to the vicinity where the wiring tab 30 is connected by the solder 40 or close to the portion. Can be inserted. For this reason, the insulation of the connection part vicinity between the solar cell 10 and the wiring tab 30 can be ensured.
 配線タブ30と太陽電池10との間の半田接続は、図18に示すように、接着層53で太陽電池10に絶縁シート50を接着した後、配線タブ50と太陽電池10の半田付け領域16a(17a)に、半田40により接続することもできる。 As shown in FIG. 18, the solder connection between the wiring tab 30 and the solar cell 10 is performed by bonding the insulating sheet 50 to the solar cell 10 with the adhesive layer 53, and then soldering the region 16 a between the wiring tab 50 and the solar cell 10. It is also possible to connect to (17a) with the solder 40.
 また、接着層53として、EVA等の熱可逆性樹脂を用いると、ラミネート時の熱処理まで太陽電池10、配線タブ30と接着しないので、スムーズに空間部に絶縁シート50を挿入させることができ、作業性が良い。 Further, when a thermoreversible resin such as EVA is used as the adhesive layer 53, the insulating sheet 50 can be smoothly inserted into the space portion because it does not adhere to the solar cell 10 and the wiring tab 30 until the heat treatment at the time of lamination. Good workability.
 また、接着層53が常温で粘着性を有するものである場合には、先に太陽電池10の所定の位置に接着層53により絶縁シート50を貼り付けておき、その絶縁シートを位置決めとして、配線タブ50を太陽電池10の半田付け領域16a(17a)に半田40により接続しても良い。 Further, when the adhesive layer 53 is sticky at normal temperature, the insulating sheet 50 is first pasted to the predetermined position of the solar cell 10 by the adhesive layer 53, and the insulating sheet is used as a positioning wire. The tab 50 may be connected to the soldering area 16 a (17 a) of the solar cell 10 by the solder 40.
 例えば、上記実施形態では裏面接合型の太陽電池を用いた太陽電池モジュールについて説明したが、本発明はこれに限るものではなく、半導体ウエハからなる太陽電池を用いた太陽電池モジュールにも適用することができる。 For example, although the solar cell module using the back junction solar cell has been described in the above embodiment, the present invention is not limited to this, and is also applicable to a solar cell module using a solar cell made of a semiconductor wafer. Can do.
 今回開示された各実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 Each embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiment but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 10 太陽電池
 11 基板
 12 n型領域
 13 p型領域
 16 n型電極
 17 p型電極
 16a、17a 半田付け領域
 30 配線タブ
 30a 平坦部
 30b 立ち上がり部
 30c 延伸部
 50 絶縁シート
 51 絶縁基材
 53 接着層
DESCRIPTION OF SYMBOLS 10 Solar cell 11 Board | substrate 12 n-type area | region 13 p-type area | region 16 n-type electrode 17 p- type electrode 16a, 17a Soldering area | region 30 Wiring tab 30a Flat part 30b Standing part 30c Extending part 50 Insulating sheet 51 Insulating base material 53 Adhesive layer

Claims (5)

  1.  太陽電池の裏面上に配された配線材を有する太陽電池モジュールであって、
     前記配線材と太陽電池の間に挟み込まれる絶縁シート、を備え、
     前記絶縁シートは絶縁基材の片面または両面に粘着材または接着剤からなる接着層を有する、太陽電池モジュール。
    A solar cell module having a wiring material arranged on the back surface of the solar cell,
    An insulating sheet sandwiched between the wiring material and the solar cell,
    The said insulating sheet is a solar cell module which has the contact bonding layer which consists of an adhesive material or an adhesive agent in the single side | surface or both surfaces of an insulation base material.
  2.  前記絶縁シートは、絶縁基材の両面に熱可逆性樹脂からなる接着層を有する、請求項1に記載の太陽電池モジュール。 The solar cell module according to claim 1, wherein the insulating sheet has an adhesive layer made of a thermoreversible resin on both surfaces of the insulating base.
  3.  前記熱可逆性樹脂は、太陽電池モジュールの封止材として用いられる材料である、請求項2に記載の太陽電池モジュール。 The solar cell module according to claim 2, wherein the thermoreversible resin is a material used as a sealing material for the solar cell module.
  4.  前記配線材は、半田付けされる領域に対応する平坦部と、平坦部から絶縁シートの厚みに対応して立ち上がる立ち上がり部と、立ち上がり部から平坦部と平行になるように折れ曲がる延伸部と、を有する、請求項1に記載の太陽電池モジュール。 The wiring material includes a flat portion corresponding to a region to be soldered, a rising portion rising from the flat portion corresponding to the thickness of the insulating sheet, and an extending portion bending from the rising portion so as to be parallel to the flat portion. The solar cell module according to claim 1.
  5.  前記太陽電池は裏面接合型の太陽電池である、請求項1乃至4のいずれかに記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 4, wherein the solar cell is a back junction solar cell.
PCT/JP2011/076923 2010-12-28 2011-11-22 Solar cell module WO2012090622A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010292996 2010-12-28
JP2010-292996 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012090622A1 true WO2012090622A1 (en) 2012-07-05

Family

ID=46382742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076923 WO2012090622A1 (en) 2010-12-28 2011-11-22 Solar cell module

Country Status (2)

Country Link
TW (1) TW201236173A (en)
WO (1) WO2012090622A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021162009A1 (en) * 2020-02-12 2021-08-19 株式会社カネカ Solar cell module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000332284A (en) * 1999-05-24 2000-11-30 Kyocera Corp Solar cell module
JP2007294866A (en) * 2006-03-31 2007-11-08 Sanyo Electric Co Ltd Photovoltaic module
JP2008235819A (en) * 2007-03-23 2008-10-02 Sanyo Electric Co Ltd Solar cell module
JP2009021288A (en) * 2007-07-10 2009-01-29 Sanyo Electric Co Ltd Solar cell module
JP2009206366A (en) * 2008-02-28 2009-09-10 Sanyo Electric Co Ltd Solar cell module
JP2009224598A (en) * 2008-03-17 2009-10-01 Sharp Corp Solar cell module, and manufacturing method of solar cell module
JP2010232701A (en) * 2010-07-20 2010-10-14 Kyocera Corp Solar cell module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000332284A (en) * 1999-05-24 2000-11-30 Kyocera Corp Solar cell module
JP2007294866A (en) * 2006-03-31 2007-11-08 Sanyo Electric Co Ltd Photovoltaic module
JP2008235819A (en) * 2007-03-23 2008-10-02 Sanyo Electric Co Ltd Solar cell module
JP2009021288A (en) * 2007-07-10 2009-01-29 Sanyo Electric Co Ltd Solar cell module
JP2009206366A (en) * 2008-02-28 2009-09-10 Sanyo Electric Co Ltd Solar cell module
JP2009224598A (en) * 2008-03-17 2009-10-01 Sharp Corp Solar cell module, and manufacturing method of solar cell module
JP2010232701A (en) * 2010-07-20 2010-10-14 Kyocera Corp Solar cell module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021162009A1 (en) * 2020-02-12 2021-08-19 株式会社カネカ Solar cell module

Also Published As

Publication number Publication date
TW201236173A (en) 2012-09-01

Similar Documents

Publication Publication Date Title
EP2911206B1 (en) Solar cell module and method for manufacturing the same
US20120048335A1 (en) Wiring sheet, wiring sheet-equipped solar cells, and solar cell module
CN111615752B (en) Solar cell module
US9741885B2 (en) Solar cell module
EP2600419B1 (en) Solar cell module
US20090266402A1 (en) Solar cell module
US20130104961A1 (en) Solar cell module and solar cell
KR20160001227A (en) Solar cell module
JP2010129853A (en) Solar cell module and method of manufacturing the same
JP2010056251A (en) Solar cell module
JP5203176B2 (en) Wiring sheet, solar cell with wiring sheet and solar cell module
US20140202518A1 (en) Solar module
JP4958525B2 (en) Solar cell module and method for manufacturing solar cell module
WO2012090694A1 (en) Solar cell module
US9373738B2 (en) Solar module
EP3403283B1 (en) Method for interconnecting solar cells
JP2010258158A (en) Wiring sheet, solar cell with wiring sheet, and solar cell module
WO2012090622A1 (en) Solar cell module
KR101788160B1 (en) Solar cell module
JP4883891B2 (en) Solar cell module
JP2018198285A (en) Solar battery module and solar battery module manufacturing method
EP3203532A1 (en) Solar cell module and method for manufacturing solar cell module
KR101806972B1 (en) Solar cell module
JP7483382B2 (en) Solar Cell Module
KR20180105838A (en) Solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP