WO2012090443A1 - Display device and video viewing system - Google Patents

Display device and video viewing system Download PDF

Info

Publication number
WO2012090443A1
WO2012090443A1 PCT/JP2011/007160 JP2011007160W WO2012090443A1 WO 2012090443 A1 WO2012090443 A1 WO 2012090443A1 JP 2011007160 W JP2011007160 W JP 2011007160W WO 2012090443 A1 WO2012090443 A1 WO 2012090443A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminance
unit
image signal
signal
frame image
Prior art date
Application number
PCT/JP2011/007160
Other languages
French (fr)
Japanese (ja)
Inventor
小林 隆宏
善雄 梅田
Original Assignee
パナソニック液晶ディスプレイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック液晶ディスプレイ株式会社 filed Critical パナソニック液晶ディスプレイ株式会社
Publication of WO2012090443A1 publication Critical patent/WO2012090443A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0407Resolution change, inclusive of the use of different resolutions for different screen areas

Definitions

  • the present invention relates to a display device and a video viewing system for displaying video.
  • a display device that displays a stereoscopically perceived image includes a left eye frame image (hereinafter referred to as an L frame image) for viewing with the left eye and a right eye for viewing with the right eye.
  • the frame images for use (hereinafter referred to as R frame images) are alternately displayed at a predetermined cycle (for example, a field cycle).
  • the displayed L frame image and R frame image include different contents by the amount of parallax.
  • a viewer views an L frame image and an R frame image through an eyeglass device including a liquid crystal shutter that is driven in synchronization with the display cycle of the L frame image and the R frame image (see, for example, Patent Document 1 and Patent Document 2). ).
  • the viewer perceives the object expressed in the L frame image and the R frame image in three dimensions.
  • FIG. 51 is a block diagram of a conventional video viewing system.
  • the video viewing system shown in FIG. 51 receives 60 Hz video signals (left-eye video signal and right-eye video signal).
  • the video viewing system 900 includes a video signal processing unit 901 to which 60 Hz video signals (left-eye video signal and right-eye video signal) are input.
  • the video signal processing unit 901 converts the input video signal into a 120 Hz left-eye video signal and a right-eye video signal.
  • the converted left-eye video signal and right-eye video signal are output to the liquid crystal driving unit 902 and the backlight control unit 903.
  • the liquid crystal driver 902 converts the 120 Hz left-eye video signal and the right-eye video signal into a format that can be displayed on the liquid crystal panel 904.
  • the left-eye video signal and the right-eye video signal converted by the liquid crystal driving unit 902 are output to the liquid crystal panel 904.
  • the backlight control unit 903 outputs a light emission control signal to the backlight 905.
  • the backlight 905 irradiates the liquid crystal panel 904 with light from the back surface of the liquid crystal panel 904 by a light emission control signal.
  • the L frame image and the R frame image are alternately displayed on the liquid crystal panel 904 at 120 Hz.
  • the eyeglass device 950 includes a left eye shutter 951 and a right eye shutter 952.
  • the shutter control circuit 906 for the left eye shutter 951 and the shutter control circuit 907 for the right eye shutter 952 are based on the 120 Hz left eye video signal and right eye video signal converted by the video signal processing unit 901.
  • the left eye shutter 951 and the right eye shutter 952 are synchronously controlled.
  • FIG. 52 is a control timing chart of the conventional video viewing system 900.
  • the section (A) in FIG. 52 shows the scanning timing of the L frame image and the R frame image of the liquid crystal panel 904.
  • the section (B) in FIG. 52 shows the lighting timing of the backlight 905.
  • the section (C) in FIG. 52 shows opening / closing timings of the shutters 951 and 952 of the eyeglass device 950.
  • a conventional video viewing system 900 will be described with reference to FIGS. 51 and 52.
  • the left-eye video signal and the right-eye video signal are sequentially written on the liquid crystal panel 904. During this time, the backlight 905 is always on.
  • the shutter control circuits 906 and 907 control the shutters 951 and 952.
  • the shutters 951 and 952 are opened and closed under the control of the shutter control circuits 906 and 907 so that the shutter open period becomes half of the respective video periods after the alternate left and right writing scan to the liquid crystal panel 904.
  • the L frame image and the R frame image viewed through the shutters 951 and 952 are viewed by the viewer's left and right eyes, respectively. As a result, the viewer generates a visual stereoscopic image in the brain.
  • the viewer In the video viewing system that operates at the control timing shown in FIG. 52, the viewer is an L frame image only during a period in which the shutters 951 and 952 are open (a period sufficient to view a video necessary for generating a stereoscopic image). Or, view the R frame image.
  • the backlight 905 is always lit even in a period other than the period in which the shutters 951 and 952 are opened. Therefore, the video viewing system that operates at the control timing shown in FIG. 52 is not preferable from the viewpoint of power saving.
  • FIG. 53 is another control timing chart of the conventional video viewing system 900.
  • the section (A) in FIG. 53 shows the scanning timing of the L frame image and the R frame image of the liquid crystal panel 904.
  • the section (B) in FIG. 53 shows the lighting timing of the backlight 905.
  • a section (C) in FIG. 53 shows opening / closing timings of the shutters 951 and 952 of the eyeglass device 950.
  • the conventional video viewing system 900 will be further described with reference to FIGS.
  • Patent Document 2 discloses control in which the backlight 905 is turned on only during a period in which an L frame image or an R frame image is viewed.
  • the backlight 905 emits light only during a period in which the L frame image or the R frame image is viewed. Therefore, the control shown in FIG. 53 is superior to the control shown in FIG. 52 in terms of power saving.
  • the left-eye shutter 951 is opened after displaying the L frame image created so that the liquid crystal panel 904 can be viewed with the left eye and before the right-eye video signal for displaying the R frame image is scanned.
  • the right eye shutter 952 displays the R frame image created so that the liquid crystal panel 904 can be viewed with the right eye and before the left eye video signal for displaying the L frame image is scanned. To be opened.
  • the left-eye video signal and / or the right-eye video signal are scanned from above the liquid crystal panel 904. Therefore, the scanning of the left-eye video signal and / or the right-eye video signal at the lower part of the liquid crystal panel 904 is delayed with respect to the upper part of the liquid crystal panel 904.
  • the response of the liquid crystal based on the left-eye video signal and / or the right-eye video signal requires time corresponding to the type of video to be displayed. For example, when there is a difference in size between the luminance of a pixel representing a frame image displayed in advance and the luminance of a pixel representing a frame image displayed later, the response time of a relatively long liquid crystal Required.
  • the amount of the preceding frame image (L frame image or R frame image) is The size is particularly large at the bottom of the liquid crystal panel 904. Therefore, it is difficult for the viewer to perceive the frame image displayed at the lower part of the liquid crystal panel 904 in a three-dimensional manner.
  • the above-mentioned crosstalk problem is particularly noticeable in the display of stereoscopic images in which L frame images and R frame images representing different contents by the amount of parallax are displayed alternately in time. It is a problem. If there is a region having a large luminance difference between the frame image displayed in advance and the subsequent frame image, the viewer can easily perceive crosstalk. In particular, if an area with a large luminance difference is scanned relatively slowly, the viewer can more easily perceive crosstalk.
  • a display device includes a liquid crystal panel including a display surface on which a frame image is displayed, and a plurality of writings representing images having different resolutions based on the frame image signal for displaying the frame image.
  • a generating unit that generates an image signal; and a liquid crystal that drives the liquid crystal panel by performing N times (N is an integer of 2 or more) of scanning the plurality of writing image signals over the display surface.
  • the write image signal scanned by the scanning operation n times (n is an integer of 1 or more and less than N), the written image signal scanned by the (n + 1) th scanning operation.
  • a video viewing system displays a left-eye frame image created to be viewed with the left eye and a right-eye frame image created to be viewed with the right eye.
  • a display device that provides a stereoscopically perceived image; a left-eye filter that adjusts the amount of light reaching the left eye so that the left-eye frame image is viewed; and the right-eye frame image is viewed
  • a right eye filter that adjusts the amount of light that reaches the right eye, and the display device displays the left eye frame image and the right eye frame image as a time.
  • the liquid crystal panel to be displayed alternately on the display surface, and the scanning operation of N times (N is an integer of 2 or more) for scanning the plurality of writing image signals across the display surface,
  • a liquid crystal driving unit for driving the liquid crystal panel.
  • the written image signal scanned by the scanning operation n times (n is an integer of 1 or more and less than N) has a lower resolution than the written image signal scanned by the (n + 1) th scanning operation. It includes at least one written image signal representing an image.
  • the display device and the video viewing system according to the present invention can suppress crosstalk.
  • FIG. 1 is a block diagram schematically showing configurations of a video viewing system and a display device according to a first embodiment.
  • FIG. 2 is a schematic diagram schematically showing the video viewing system shown in FIG. 1.
  • FIG. 2 is a schematic block diagram of a video signal processing unit of the display device shown in FIG. 1.
  • It is a conceptual diagram of the averaging process which the video signal process part shown by FIG. 3 performs.
  • FIG. 4 is an output diagram of signals in the video signal processing unit shown in FIG. 3. It is a schematic block diagram showing the signal which the video signal processing part shown by FIG. 3 outputs in a 1st scanning period.
  • FIG. 4 shows luminance data included in a signal output in the first scanning period in the video signal processing unit shown in FIG. 4 shows luminance data included in a signal output in the second scanning period in the video signal processing unit shown in FIG. 20 is a schematic timing chart showing a change in luminance of a pixel based on the signal processing shown in FIGS. 18 and 19. It is a block diagram which shows roughly the structure of the video viewing system and display apparatus which concern on 2nd Embodiment. It is a schematic block diagram of the video signal processing part of the display apparatus shown by FIG.
  • FIG. 22 It is a schematic block diagram of the 1st equivalent part of the video signal processing part shown by FIG. It is a schematic block diagram of the 2nd equivalent part of the video signal processing part shown by FIG. It is a conceptual diagram of the equivalent process which the 1st equivalent part and 2nd equivalent part of a video signal processing part shown by FIG. 22 perform. It is a conceptual diagram which shows schematically the production
  • FIG. 42 is a schematic diagram schematically illustrating a scanning operation of a liquid crystal driving unit of the display device illustrated in FIG. 41. It is a conceptual diagram which shows roughly the difference of the object perceived by a viewer. It is a conceptual diagram which shows roughly the difference of the object perceived by a viewer.
  • FIG. 42 is a schematic diagram schematically illustrating a scanning operation of a liquid crystal driving unit of the display device illustrated in FIG. 41. It is a conceptual diagram which shows roughly the difference of the object perceived by a viewer. It is a conceptual diagram which shows roughly the difference of the object perceived by a viewer.
  • FIG. 42 is a schematic diagram schematically illustrating another scanning operation of the liquid crystal driving unit of the display device illustrated in FIG. 41. It is a block diagram which shows roughly the structure of the video viewing system and display apparatus which concern on 4th Embodiment.
  • FIG. 46 is a schematic block diagram of a video signal processing unit of the display device shown in FIG. 45. It is a schematic block diagram of the 1st equivalent part of the video signal processing part shown by FIG. It is a schematic block diagram of the 2nd equivalent part of the video signal processing part shown by FIG. It is a schematic block diagram of the 1st equivalent part of the video signal processing part shown by FIG. It is a schematic block diagram of the 2nd equivalent part of the video signal processing part shown by FIG.
  • FIG. 1 It is a conceptual diagram which shows roughly the production
  • FIG. 1 is a block diagram schematically showing the configuration of the video viewing system according to the first embodiment.
  • FIG. 2 is a schematic diagram schematically showing the video viewing system shown in FIG. A schematic configuration of the video viewing system will be described with reference to FIGS. 1 and 2.
  • the video viewing system 100 includes a left-eye frame image (hereinafter referred to as an L frame image) created so as to be viewed with the left eye, and a right-eye frame created so as to be viewed with the right eye.
  • a display device 200 that displays a frame image including an image (hereinafter referred to as an R frame image) and an eyeglass device 300 that assists viewing of the L frame image and the R frame image displayed by the display device 200 are provided.
  • the eyeglass device 300 is a stereoscopic assistance operation synchronized with the display of the L frame image and the R frame image by the display device 200 so that the viewer views the L frame image with the left eye and the R frame image with the right eye. I do.
  • the viewer perceives three-dimensionally the frame images (L frame image and R frame image) displayed on the display device 200 through the eyeglass device 300 (the viewer expresses them in the L frame image and the R frame image).
  • the detected object is perceived as popping out or retracting with respect to the display surface on which the L frame image and the R frame image are projected.
  • An eyeglass device 300 having the same shape as eyesight correction glasses includes an optical system including a left-eye shutter 311 disposed in front of the viewer's left eye and a right-eye shutter 312 disposed in front of the viewer's right eye.
  • a shutter unit 310 is provided.
  • the left eye shutter 311 is opened when the display device 200 is displaying an L frame image, and is closed when the display device 200 is displaying an R frame image.
  • the right eye shutter 312 is closed when the display device 200 is displaying an L frame image, and is opened when the display device 200 is displaying an R frame image.
  • the display device 200 displays an L frame image
  • an optical path that passes from the L frame image to the viewer's left eye is opened, while an optical path that passes from the L frame image to the viewer's right eye is closed. Therefore, the viewer views the L frame image only with the left eye.
  • the display device 200 displays an R frame image
  • an optical path that is transmitted from the R frame image to the viewer's right eye is opened, while an optical path that is transmitted from the R frame image to the viewer's left eye. Is closed, the viewer views the R frame image only with the right eye.
  • the left eye shutter 311 is exemplified as a left eye filter.
  • the right eye shutter 312 is exemplified as a right eye filter.
  • the left eye filter and the right eye filter As the left eye filter and the right eye filter, the amount of light reaching the viewer's left eye from the image displayed on the display device 200 (hereinafter referred to as the left eye light amount) and the light reaching the viewer's right eye Other optical elements formed so that the amount (hereinafter referred to as right eye light amount) can be adjusted may be used.
  • a deflecting element for example, a liquid crystal filter
  • the left eye filter is controlled to increase the left eye light amount in synchronization with the display of the L frame image, while reducing the left eye light amount in synchronization with the display of the R frame image.
  • the right eye filter is controlled to increase the right eye light amount in synchronization with the display of the R frame image, while reducing the right eye light amount in synchronization with the display of the L frame image.
  • the display device 200 includes a video signal processing unit 210, a liquid crystal driving unit 220, a display unit 230, a first control unit 250, and a second control unit 240.
  • the video signal processor 210 receives a video signal (a left-eye video signal and a right-eye video signal) having a basic vertical synchronization frequency.
  • the video signal processing unit 210 uses the input left-eye video signal (hereinafter referred to as an L signal) and the right-eye video signal (hereinafter referred to as an R signal) as a basic vertical synchronization frequency.
  • K is a natural number.
  • an input 60 Hz video signal is converted into a 120 Hz L signal and an R signal.
  • the L signal and R signal obtained through the conversion are output to the liquid crystal driving unit 220.
  • the video signal processing unit 210 outputs a control signal to the first control unit 250 in synchronization with the output of the L signal and the R signal.
  • the display unit 230 includes a backlight 232.
  • the first control unit 250 controls the backlight 232 of the display unit 230 based on the control signal from the video signal processing unit 210.
  • the video signal processing unit 210 outputs a control signal for controlling the second control unit 240 in synchronization with the output of the L signal and the R signal.
  • the second control unit 240 controls the optical shutter unit 310 based on the control signal from the video signal processing unit 210.
  • the control signal output to the first control unit 250 and / or the second control unit 240 may be the L signal and / or the R signal itself after conversion by the video signal processing unit 210. Alternatively, a 120 Hz vertical synchronization signal of the L signal and / or the R signal may be used.
  • a video signal including video information between one vertical synchronization signal included in the L signal and a subsequent vertical synchronization signal input subsequent to the one vertical synchronization signal is an L frame image signal. It is called.
  • a video signal including video information between one vertical synchronization signal included in the R signal and a subsequent vertical synchronization signal input subsequent to the one vertical synchronization signal is an R frame in the following description. This is called an image signal.
  • the L frame image signal is used to represent an L frame image.
  • the R frame image signal is used to represent the R frame image.
  • the L frame image signal and / or the R frame image signal are exemplified as the frame image signal.
  • the display unit 230 uses a liquid crystal to alternately switch an L frame image and an R frame image temporally to display a stereoscopically perceived image on the display surface.
  • the backlight 232 irradiates the liquid crystal panel 231 with light based on a control signal from the video signal processing unit 210.
  • the liquid crystal driving unit 220 scans the frame image signal (L frame image signal or R frame image signal) in the main scanning direction and the sub scanning direction, and drives the liquid crystal of the liquid crystal panel 231. As shown in FIG. 2, the width direction of the liquid crystal panel 231 is exemplified as the main scanning direction of the frame image signal.
  • the vertical direction of the liquid crystal panel 231 is exemplified as the sub-scanning direction of the frame image signal.
  • a section in the sub-scanning direction (a section from the upper edge to the lower edge of the liquid crystal panel 231) used for frame image display is referred to as a sub-scan section S.
  • the liquid crystal driver 220 scans the L frame image signal and the R frame image signal alternately. As a result, the L frame image and the R frame image are alternately displayed on the liquid crystal panel 231 in terms of time.
  • the video signal processing unit 210 outputs a first image signal and a second image signal subsequent to the first image signal to the liquid crystal driving unit 220 corresponding to one L frame image. Similarly, the video signal processing unit 210 outputs a first image signal and a second image signal subsequent to the first image signal to the liquid crystal driving unit 220 corresponding to one R frame image.
  • the first image signal represents an image having a lower resolution than the frame image signals (L frame image signal and R frame image signal) input to the video signal processing unit 210.
  • the second image signal represents an image having a higher resolution than the first image signal.
  • the video signal processing unit 210 that generates the first image signal and the second image signal based on the frame image signal is exemplified as the generation unit.
  • each of the first image signal and the second image signal representing images having different resolutions is exemplified as a writing image signal.
  • the first image signal and the second image signal are input to the liquid crystal driving unit 220, respectively.
  • the liquid crystal driving unit 220 drives the liquid crystal over the display surface of the liquid crystal panel 231 based on the first image signal, and the liquid crystal over the display surface of the liquid crystal panel 231 based on the second image signal. And a second scanning operation to be driven. Note that the second scanning operation is executed after the first scanning operation.
  • the liquid crystal driving unit 220 can execute the first scanning operation in a shorter period of time than the second scanning operation. As a result, even after the first scanning operation is executed, a sufficiently long time for the second scanning operation executed before the left eye shutter 311 is opened or before the right eye shutter 312 is closed is secured.
  • the Rukoto is described above, since the first image signal represents an image having a relatively low resolution, the liquid crystal driving unit 220 can execute the first scanning operation in a shorter period of time than the second scanning operation.
  • the video signal processing unit generates and outputs first to third image signals representing different resolution images based on the frame image signal as write image signals.
  • the video signal processing unit generates and outputs first to Nth image signals representing images of different resolutions as write image signals based on the frame image signal.
  • the liquid crystal driver performs N scanning operations based on the first to Nth image signals.
  • N is an integer equal to or greater than 2, and the liquid crystal driving unit may execute, for example, four or more scanning operations.
  • N means the total number of scanning operations of the liquid crystal driving unit.
  • N means an integer of 1 or more and less than N.
  • the first image signal used for the first scanning operation represents an image having a lower resolution than the image represented by the second image signal used for the second scanning operation.
  • the first image signal used for the first scanning operation is an image having a lower resolution than the image represented by the second image signal used for the second scanning operation.
  • the second image signal used for the second scanning operation represents an image having a lower resolution than the image represented by the third image signal used for the third scanning operation. If necessary, the first image signal and the second image signal may represent images of equal resolution. Further, the second image signal and the third image signal may represent images having the same resolution.
  • the liquid crystal driver 220 converts the first image signal and the second image signal into a format that the liquid crystal panel 231 can display according to the vertical synchronization signal and the horizontal synchronization signal included in the first image signal and the second image signal. .
  • the liquid crystal driving unit 220 performs a first scanning operation and a second scanning operation using the frame image signals of the first image signal and the second image signal converted for each display of the frame image on the liquid crystal panel 231. To do.
  • the liquid crystal panel 231 modulates light incident from the back according to the input first image signal and second image signal by driving the liquid crystal by the liquid crystal driving unit 220 described above. As a result, the liquid crystal panel 231 alternately displays an L frame image created to be viewed with the left eye and an R frame image created to be viewed with the right eye.
  • various driving methods such as an IPS (In-Plane-Switching) method, a VA (Vertical-Alignment) method, and a TN (Twisted-Nematic) method are suitably applied.
  • the backlight 232 irradiates light from the back surface of the liquid crystal panel 231 toward the display surface of the liquid crystal panel 231.
  • a plurality of light emitting diodes (LEDs) (not shown) that are two-dimensionally arranged so as to emit light are used as the backlight 232.
  • a plurality of fluorescent tubes arranged to emit light may be used as the backlight 232.
  • a light emitting diode or a fluorescent tube used as the backlight 232 may be disposed at the edge of the liquid crystal panel 231 to cause surface light emission (edge type).
  • the first control unit 250 outputs a light emission control signal based on the 120 Hz control signal output from the video signal processing unit 210.
  • the backlight 232 can blink based on the light emission control signal.
  • the second control unit 240 controls the optical shutter unit 310 of the eyeglass device 300 according to the display period of the L frame image and the R frame image.
  • the second control unit 240 includes a left-eye filter control unit 241 for controlling the left-eye shutter 311 (hereinafter referred to as an L filter control unit 241) and a right-eye for controlling the right-eye shutter 312.
  • Filter control unit 242 (hereinafter referred to as R filter control unit 242).
  • R filter control unit 242 controls the eyeglass device 300 so that the right eye shutter 312 adjusts (increases or decreases) the right eye light amount at a cycle of 60 Hz.
  • the display device 200 includes a first transmission unit 243 that transmits a first synchronization signal that is synchronized with the display of an L frame image, and a second synchronization that is synchronized with the display of an R frame image. And a second transmission unit 244 that transmits a signal.
  • the eyeglass device 300 includes a receiving unit 320 disposed between the left eye shutter 311 and the right eye shutter 312. The receiving unit 320 receives the first synchronization signal and the second synchronization signal.
  • the waveform of the first synchronization signal is preferably different from the waveform of the second synchronization signal.
  • the receiving unit 320 identifies the first synchronization signal and the second synchronization signal based on the waveform of the received synchronization signal.
  • the eyeglass device 300 operates the left eye shutter 311 based on the first synchronization signal.
  • the eyeglass device 300 operates the right eye shutter 312 based on the second synchronization signal.
  • wireless communication of a synchronization signal between the display device 200 and the eyeglass device 300 and internal processing of the synchronization signals (first synchronization signal and second synchronization signal) by the eyeglass device 300 other known communication techniques and known Other signal processing techniques may be used.
  • communication of synchronization signals (first synchronization signal and second synchronization signal) between the display device 200 and the eyeglass device 300 may be performed in a wired manner.
  • the first transmission unit 243 that transmits the first synchronization signal that is synchronized with the display of the left-eye video and the second transmission unit 244 that transmits the second synchronization signal that is synchronized with the display of the right-eye video are shared.
  • One transmitter may be used.
  • the display of the left-eye video and the display of the right-eye video may be alternately synchronized with the rising edge of the common synchronization signal.
  • the L filter control unit 241 and the R filter control unit 242 use the control signal from the video signal processing unit 210 as a reference, and the phase of the increase / decrease period of the left eye light amount by the left eye shutter 311 and the increase / decrease of the right eye light amount by the right eye shutter 312. Determine the phase of the period.
  • the L filter control unit 241 and the R filter control unit 242 output the first synchronization signal and the second synchronization signal according to the determined phase.
  • Each of the left eye shutter 311 and the right eye shutter 312 increases or decreases the left eye light amount and the right eye light amount in synchronization with the display of the L frame image and the display of the R frame image based on the first synchronization signal and the second synchronization signal. .
  • the first control unit 250 that operates based on the 120 Hz control signal of the video signal processing unit 210 outputs a light emission control signal that causes the backlight 232 to emit light in synchronization with the light amount adjustment operation by the left eye shutter 311 and the right eye shutter 312. To do.
  • the backlight 232 can blink based on the light emission control signal.
  • the backlight 232 is always lit under the control of the first control unit 250. Therefore, the timing and length of the viewing period during which the viewer can view the frame image is determined by the operation of the optical shutter unit 310 of the eyeglass device 300.
  • the first control unit turns on the backlight during a part of the light amount increase period adjusted by the second control unit or a period substantially coincident with the light amount increase period, and the backlight in other periods. May be turned off. Under such backlight blinking control by the first control unit, the timing and length of the viewing period during which the viewer can view the frame image is determined by the backlight blinking operation.
  • FIG. 3 is a block diagram schematically showing a functional configuration of the video signal processing unit 210 of the display device 200 according to the present embodiment.
  • the video signal processing unit 210 will be described with reference to FIGS. 1 and 3.
  • the video signal processing unit 210 includes a first equivalent unit 211, a first selection unit 212, a first delay unit 213, a second equivalent unit 214, a second delay unit 215, a third delay unit 216, a first correction unit 217, 2 correction unit 218, second selection unit 219, and output unit 221.
  • the first equivalent unit 211 and the second equivalent unit 214 perform equivalent processing described later.
  • the liquid crystal drive unit 220 scans the first image signal obtained through the equivalent process over the display surface of the liquid crystal panel 231 in a relatively short period of time.
  • the first delay unit 213, the second delay unit 215, and the third delay unit 216 respectively delay the input signal and output the delayed signal.
  • the first correction unit 217 and the second correction unit 218 perform an overdrive process described later. By the overdrive process, the luminance of the pixel changes in a relatively short period.
  • the first selection unit 212 and the second selection unit 219 match a plurality of input signals with a scanning period (a first scanning period in which the first image signal is scanned and a second scanning period in which the second image signal is scanned). Selectively output.
  • the output unit 221 outputs the first image signal and the second image signal to the liquid crystal driving unit 220.
  • FIG. 4 is a schematic diagram schematically showing a part of the liquid crystal panel 231.
  • FIG. 5 shows the luminance change of the pixels set through the averaging process exemplified as the equivalent process. The averaging process is described with reference to FIGS. 1, 3 to 5.
  • the liquid crystal panel 231 includes a plurality of gate lines extending in the main scanning direction and a plurality of data lines extending in the sub-scanning direction.
  • FIG. 4 shows gate lines L 1 to L 16 aligned in the sub-scanning direction and data lines M 1 to M 32 aligned in the main scanning direction.
  • a pixel P and a liquid crystal (not shown) corresponding to the pixel P are respectively assigned to the intersections of the gate lines L 1 to L 16 and the data lines M 1 to M 32 .
  • the driving amount of the liquid crystal is determined according to the voltage applied to each of the gate lines L 1 to L 16 and each of the data lines M 1 to M 32 .
  • a frame image signal (L frame image signal and R frame image signal) is directly input to the first equivalent unit 211.
  • the frame image signal is input to the second equivalent unit 214 via the first delay unit 213.
  • the first equivalent unit 211 and the second equivalent unit 214 set a pixel group (a group of pixels surrounded by a dotted line in FIG. 5) including a plurality of pixels aligned in the sub-scanning direction.
  • pixel group includes a set of pixel P3, P4 aligned on the data lines M 1 G2
  • the data line M 2 above pixel group G4 including a set of pixels P7, P8 aligned on the pixel group G3 and the data lines M 2 comprises a set of pixels P5, P6 aligned is shown in.
  • the numerical value shown in each pixel in FIG. 5 indicates the luminance assigned to the pixel.
  • the frame image signal defines, for example, a luminance of “40” for the pixels P1 and P3, a luminance of “60” for the pixels P2, P4, P6, and P8, and the pixels P5 and P7.
  • a luminance of “80” is defined.
  • the first equivalent unit 211 and the second equivalent unit 214 average the luminance within each pixel group G1, G2, G3, G4.
  • the first equivalent unit 211 and the second equivalent unit 214 average the luminance of “40” and the luminance of “60” defined for the pixels P1 and P2 in the pixel group G1, and obtain the luminance of “50”.
  • the first equivalent unit 211 and the second equivalent unit 214 average the luminance of “40” and the luminance of “60” defined for the pixels P3 and P4 in the pixel group G2, and obtain the luminance of “50”.
  • the first equivalent unit 211 and the second equivalent unit 214 average the luminance of “80” and the luminance of “60” defined for the pixels P5 and P6 in the pixel group G3, and obtain the luminance of “70”.
  • the first equivalent unit 211 and the second equivalent unit 214 average the luminance of “80” and the luminance of “60” defined for the pixels P7 and P8 in the pixel group G4 to obtain the luminance of “70”.
  • the above-described averaging process is executed for all the pixels P corresponding to the intersections of the gate lines L 1 to L 16 and the data lines M 1 to M 32 .
  • the luminance defined by the frame image signal for each pixel P is exemplified as the target luminance.
  • the average value of the target luminance defined by the frame image signal for the pixels in the pixel group is exemplified as the average luminance.
  • FIG. 6 is a schematic diagram schematically showing a part of the liquid crystal panel 231.
  • FIG. 7 shows the luminance change of the pixel set through the selection process exemplified as the equivalent process. The averaging process is described with reference to FIGS. 1, 3, 6, and 7.
  • the liquid crystal panel 231 includes a plurality of gate lines extending in the main scanning direction and a plurality of data lines extending in the sub-scanning direction.
  • FIG. 6 shows gate lines L 1 to L 16 aligned in the sub-scanning direction and data lines M 1 to M 32 aligned in the main scanning direction.
  • a pixel P and a liquid crystal (not shown) corresponding to the pixel P are respectively assigned to the intersections of the gate lines L 1 to L 16 and the data lines M 1 to M 32 .
  • the driving amount of the liquid crystal is determined according to the voltage applied to each of the gate lines L 1 to L 16 and each of the data lines M 1 to M 32 .
  • the first equivalent unit 211 and the second equivalent unit 214 set a pixel group (a group of pixels surrounded by a dotted line in FIG. 7) including a plurality of pixels aligned in the sub-scanning direction.
  • pixel group G2 includes a set of pixel P3, P4 aligned on the data lines M 1
  • the upper data line M 2 pixel group G4 including a set of pixels P7, P8 aligned on the pixel group G3 and the data lines M 2 comprises a set of pixels P5, P6 aligned is shown in.
  • the numerical values shown in each of the pixels P1 to P8 in FIG. 7 indicate the luminance assigned to each of the pixels P1 to P8.
  • the frame image signal defines, for example, a luminance of “40” for the pixels P1 and P3, a luminance of “60” for the pixels P2, P4, P6, and P8, and the pixels P5 and P7.
  • a luminance of “80” is defined.
  • the first equivalent unit 211 and the second equivalent unit 214 select luminance within each pixel group G1, G2, G3, G4.
  • the first equivalent unit 211 and the second equivalent unit 214 select the luminance defined for the pixels P1, P3, P5, and P7 on the odd-numbered gate lines, and the others in the pixel groups G1, G2, G3, and G4.
  • the selection process described above is executed for all pixels P corresponding to the intersections of the gate lines L 1 to L 16 and the data lines M 1 to M 32 .
  • the luminance selected by the first equivalent unit 211 and the second equivalent unit 214 is exemplified as the selected luminance.
  • the first equivalent unit 211 and the second equivalent unit 214 perform the above-described averaging process on the frame image signal and output an average signal. Or the 1st equivalent part 211 and the 2nd equivalent part 214 perform the above-mentioned selection process with respect to a frame image signal, and output a selection signal.
  • the averaged signal or the selection signal is input to the first selection unit 212, the first correction unit 217, and the second correction unit 218.
  • the first correction unit 217 outputs a correction signal that defines a correction value for the above-described average luminance or selection luminance to the second selection unit 219.
  • the second correction unit 218 outputs a correction signal that defines a correction value for the target luminance defined by the frame image signal to the second selection unit 219.
  • the principle of this embodiment and a series of other embodiments shown below is characterized in that a relatively short scanning operation is performed one or more times using the signal obtained by the above-described equivalent processing.
  • the characteristic principle can be achieved with a simplified configuration than the block diagram of FIG.
  • the first delay unit, the second equivalent unit, the second delay unit, the third delay unit, the first correction unit, the second correction unit, and the second selection unit may be omitted.
  • the first equivalent unit sets a pixel group according to the number of scans, and outputs an average signal or a selection signal to the first selection unit.
  • the first selection unit outputs an average signal, a selection signal, an R frame image signal, or an L frame image signal to the liquid crystal drive unit via the output unit according to the number of scans.
  • multiple scanning operations are performed under relatively simplified signal processing.
  • FIG. 8A and 8B schematically show processing of the output unit 221.
  • FIG. The processing of the output unit 221 will be described with reference to FIGS. 3, 8A, and 8B.
  • 8A and 8B show the process of the output unit 221 for the selection signal generated by the selection process described with reference to FIG.
  • the principle of the processing of the output unit 221 described with reference to FIGS. 8A and 8B is the same as the processing of the output unit 221 with respect to the averaged signal generated by the averaging processing described with reference to FIG. Applied.
  • FIG. 8A shows processing of the output unit 221 that outputs the first image signal.
  • FIG. 8B shows processing of the output unit 221 that outputs the second image signal.
  • the first selection unit 212 In the first scanning period in which scanning of the first image signal is performed, the first selection unit 212 outputs a selection signal to the output unit 221, and the second selection unit 219 generates a correction signal generated by the first correction unit 217. Is output to the output unit 221.
  • the output unit 221 adds the selection luminance specified by the selection signal and the correction value specified by the correction signal generated by the first correction unit 217.
  • the correction signal generated by the first correction unit 217 defines equal correction values for the pixels in the pixel groups G1, G2, G3, and G4.
  • a correction value of “C1” is defined for the pixels P1 and P2 in the pixel group G1.
  • a correction value “C2” is defined for the pixels P3 and P4 in the pixel group G2.
  • a correction value of “C3” is defined for the pixels P5 and P6 in the pixel group G3.
  • a correction value of “C4” is defined for the pixels P7 and P8 in the pixel group G4.
  • the output unit 221 generates a first image signal that defines the equivalent luminance common to the pixels in the pixel groups G1, G2, G3, and G4.
  • the first image signal is exemplified as an equivalent signal. Further, the luminance defined by adding the average luminance or the selected luminance and the correction value defined by the correction signal generated by the first correction unit 217 is exemplified as equivalent luminance.
  • the frame image signal is input to the first selection unit 212 and the second correction unit 218.
  • the second correction unit 218 sets a correction value for each pixel individually. As shown in FIG. 8B, correction values “D1” to “D8” are defined for the pixels P1 to P8, respectively. The correction values “D1” to “D8” may be different brightness values.
  • the second correction unit 218 outputs a correction signal that defines the correction values “D1” to “D8” to the second selection unit 219.
  • the first selection unit 212 outputs the frame image signal to the output unit 221, and the second selection unit 219 corrects the correction generated by the second correction unit 218.
  • the signal is output to the output unit 221.
  • the output unit 221 adds the target luminance defined by the frame image signal and the correction value defined by the correction signal generated by the first correction unit 217. Therefore, unlike the first image signal, the second image signal may define different luminance for each pixel.
  • the brightness values shown in the pixels P1 to P8 shown in FIGS. 8A and 8B are exemplified as the drive brightness in the first scanning period and the second scanning period.
  • FIGS. 9A and 9B are schematic graphs showing a scanning operation performed by the liquid crystal driving unit 220.
  • FIG. FIG. 9A shows a first scanning operation based on the first image signal.
  • FIG. 9B shows a second scanning operation based on the second image signal.
  • 9A and 9B show the scanning operation from the gate lines L 1 to L 12 .
  • the horizontal axis in FIGS. 9A and 9B is a time axis during which the scanning operation from the gate lines L 1 to L 12 is performed.
  • the vertical axis in FIGS. 9A and 9B represents the position of the liquid crystal panel 231 in the sub-scanning direction.
  • the first scanning operation and the second scanning operation are described with reference to FIGS. 1 and 8A to 9B.
  • the first image signal defines equal luminance for the pixels in the pixel groups G1, G2, G3, and G4 including the pixels aligned in the sub-scanning direction. Accordingly, the liquid crystal driver 220 can simultaneously write the first image signal on the gate lines L 2t ⁇ 1 and L 2t . As a result, the liquid crystals corresponding to the pixels on the gate lines L 2t-1 and L 2t are driven simultaneously.
  • the second image signal potentially defines a different brightness for each pixel, as described in connection with FIG. 8B.
  • the liquid crystal driver 220 toward the gate line L 1 to the gate line of the lower end, sequentially writes the second image signal.
  • the liquid crystal driving unit 220 that performs the first scanning operation simultaneously writes the first image signal to the pair of the two gate lines L 2t ⁇ 1 and L 2t , so that the writing up to the gate line L 12 is performed.
  • period of the first scan operation to complete T1 is half of the period T2 of the second scanning operation to complete writing to the gate line L 12.
  • the first scanning operation performed in a relatively short period of time starts driving the liquid crystal of the liquid crystal panel 231 at an early stage over the entire display surface, thereby reducing crosstalk particularly in the lower region of the display surface.
  • the video signal processing unit for example, generates the first image signal used in the first scanning operation. Defines a group of pixels including four pixels aligned with each other. In order to generate the second image signal used for the second scanning operation, the video signal processing unit defines a pixel group including two pixels aligned in the sub-scanning direction. Further, in order to generate the third image signal used for the third scanning operation, the video signal processing unit defines a pixel group including a single pixel. As a result, the first scanning period during which the first image signal is scanned is half the length of the second scanning period during which the second image signal is scanned. The second scanning period is half the length of the third scanning period during which the third image signal is scanned.
  • the video signal processing unit for example, generates eight pixels aligned in the sub-scanning direction in order to generate a first image signal used for the first scanning operation.
  • the pixel group to include.
  • the video signal processing unit defines a pixel group including four pixels aligned in the sub-scanning direction.
  • the video signal processing unit defines a pixel group including two pixels aligned in the sub-scanning direction.
  • the video signal processing unit defines a pixel group including a single pixel.
  • the first scanning period during which the first image signal is scanned is half the length of the second scanning period during which the second image signal is scanned.
  • the second scanning period is half the length of the third scanning period during which the third image signal is scanned.
  • the third scanning period is half the length of the fourth scanning period during which the fourth image signal is scanned. That is, the write image signal representing an image having a lower resolution than the write image signal scanned by the (n + 1) -th scanning operation is (n + 1) according to the principle described with reference to FIGS. 9A and 9B. Writing is performed in a shorter time than the writing image signal scanned by the second scanning operation.
  • the writing image signal scanned by the (n + 1) th scanning operation is used to generate a writing image signal representing an image having a lower resolution than the writing image signal scanned by the (n + 1) th scanning operation.
  • the pixel group is generated using a pixel group including a smaller number of pixels than the number of pixels of the used pixel group.
  • FIG. 10 is an output diagram of signals in the video signal processing unit 210.
  • FIG. 11 is a schematic block diagram showing output of signals in the video signal processing unit 210 in the first scanning period.
  • FIG. 12 is a schematic block diagram showing output of signals in the video signal processing unit 210 in the second scanning period. The signal output in the video signal processing unit 210 will be described with reference to FIGS. 4 to 8B and FIGS.
  • FIG. 10 shows a left eye period for displaying the Xth L frame image, a right eye period for displaying the Xth R frame image, and a left eye for displaying the (X + 1) th L frame image.
  • a period and a right eye period for displaying the (X + 1) th R frame image are shown.
  • output of a signal in the right eye period for displaying the Xth R frame image will be described.
  • the principle of signal output in the right eye period for displaying the Xth R frame image is similarly applied.
  • the Xth L frame image is exemplified as the preceding frame image.
  • the Xth R frame image is exemplified as the subsequent frame image.
  • the first equivalent unit 211 when the Xth R frame image signal SRx (2) is input to the video signal processing unit 210, the first equivalent unit 211 relates to FIGS. 6 and 7 in the first scanning period.
  • the selection process described above is executed, and the selection signal SRx (1) is generated and output.
  • the selection signal SRx (1) is input to the first selection unit 212, the first correction unit 217, and the second delay unit 215.
  • the first equivalent unit 211 and the second equivalent unit 214 perform the selection process described with reference to FIGS. 6 and 7.
  • the first equivalent unit 211 and the second equivalent unit 214 may perform the averaging process described with reference to FIGS. 4 and 5.
  • the first delay unit 213 acquires the Xth L frame image signal SLx (2) in the left eye period for displaying the immediately previous Xth L frame image.
  • the first delay unit 213 delays the L frame image signal SLx (2) and performs the second equivalent unit 214 and the second correction in the first scanning period of the right eye period for displaying the subsequent Xth R frame image.
  • the L frame image signal SLx (2) for displaying the Xth L frame image is exemplified as the preceding frame image signal.
  • the R frame image signal SRx (2) for displaying the Xth R frame image is exemplified as the subsequent frame image signal.
  • the second equivalent unit 214 executes the selection process described with reference to FIGS. 6 and 7, and generates and outputs the selection signal SLx (1).
  • the selection signal SLx (1) is input to the first correction unit 217 and the third delay unit 216.
  • the first correction unit 217 generates the first correction signal CRx (1) based on the selection signal SRx (1) and the selection signal SLx (1). As described with reference to FIGS. 8A and 8B, the correction values defined by the first correction signal CRx (1) for the pixels in the pixel group are equal.
  • the first correction signal CRx (1) is output to the second selection unit 219.
  • the first selection unit 212 and the second selection unit 219 output the selection signal SRx (1) and the first correction signal CRx (1) to the output unit 221 in synchronization. As described with reference to FIGS. 8A and 8B, the output unit 221 adds the selected luminance defined by the selection signal SRx (1) and the correction value defined by the first correction signal CRx (1), One image signal IRx (1) is generated. The first image signal IRx (1) is output to the liquid crystal driving unit 220.
  • the Xth R frame image signal SRx (2) is input not only to the first equivalent unit 211 but also to the first selection unit 212.
  • the first selection unit 212 outputs the R frame image signal SRx (2).
  • the Xth R frame image signal SRx (2) is further input to the second correction unit 218.
  • the second delay unit 215 delays the selection signal SRx (1) acquired in the first scanning period, and outputs the selection signal SRx (1d) delayed in the second scanning period to the second correction unit 218.
  • the third delay unit 216 delays the selection signal SLx (1) acquired in the first scanning period, and outputs the delayed selection signal SLx (1d) to the second correction unit 218 in the second scanning period.
  • the second correction unit 218 further receives the L frame image signal SLx (2) from the first delay unit 213.
  • the second correction unit 218 uses the R frame image signal SRx (2), the L frame image signal SLx (2), the selection signal SRx (1d), and the selection signal SLx (1d) to relate to FIGS. 8A and 8B.
  • the second correction signal CRx (2) is output to the second selection unit 219.
  • the first selection unit 212 and the second selection unit 219 output the R frame image signal SRx (2) and the second correction signal CRx (2) to the output unit 221 in synchronization with each other.
  • the output unit 221 adds the target luminance defined by the R frame image signal SRx (2) and the correction value defined by the second correction signal CRx (2).
  • the second image signal IRx (2) is generated.
  • the second image signal IRx (2) is output to the liquid crystal driving unit 220.
  • Overdrive processing Calculation of correction values by the first correction unit 217 and the second correction unit 218 and addition processing by the output unit 221 are exemplified as overdrive processing.
  • the first correction unit 217 contributes to the overdrive process in the first scanning period in which the first image signal IRx (1) is scanned.
  • the second correction unit 218 contributes to the overdrive process in the second scanning period in which the scanning of the second image signal IRx (2) is performed.
  • FIG. 13 is a conceptual diagram of a first correction table stored in the first correction unit 217.
  • the first correction unit 217 is described with reference to FIGS. 1, 7, 8 ⁇ / b> A, 8 ⁇ / b> B, 11, and 13.
  • the first equivalent unit 211 and the second equivalent unit 214 perform selection processing.
  • the first equivalent unit 211 and the second equivalent unit 214 may perform an averaging process.
  • the first correction unit 217 stores a first correction table 222 for generating the first correction signal CRx (1).
  • the selection signal SRx (1) from the first equivalent unit 211 and the selection signal SLx (1) from the second equivalent unit 214 are input to the first correction unit 217.
  • the second equivalent unit 214 outputs the selection signal SLx (1) based on the frame image signal delayed by the first delay unit 213.
  • the coordinate axis corresponding to the input from the first equivalent unit 211 in the first correction table 222 shown in FIG. 13 indicates the current selected luminance defined by the selection signal SRx (1) from the first equivalent unit 211.
  • the coordinate axis corresponding to the input from the second equivalent unit 214 in the first correction table 222 indicates the preceding selection luminance defined by the selection signal SLx (1) from the second equivalent unit 214.
  • the first correction unit 217 includes the current selection luminance defined by the selection signal SRx (1) from the first equivalent unit 211 and the preceding selection luminance defined by the selection signal SLx (1) from the second equivalent unit 214. , The first correction value is determined for each of the pixels P1 to P8, and the first correction signal CRx (1) including the information of the first correction value is output to the second selection unit 219. As described with reference to FIGS. 8A and 8B, the first correction unit 217 defines first correction values having equal values for the pixels in the pixel groups G1, G2, G3, and G4. For example, the absolute value of the first correction value is set so as to increase as the difference between the current selection luminance and the preceding selection luminance increases.
  • the first correction value is set to a positive value. If the current selection luminance is smaller than the previous selection luminance, the first correction value is set to a negative value. As will be described later, the luminance of the pixels P1 to P8 achieved during the first scanning period varies according to the selected first correction value.
  • the output unit 221 includes the selection signal SRx (1) generated by the first equivalent unit 211 and the first correction signal CRx ( 1) is input.
  • the output unit 221 adds the current selected luminance defined by the selection signal SRx (1) generated by the first equivalent unit 211 and the first correction value defined by the first correction signal CRx (1). As described above, if the current selection luminance is larger than the previous selection luminance, the first correction value is set to a positive value, so that the added value calculated by the output unit 221 is larger than the current selection luminance. . If the current selected luminance is smaller than the previous selected luminance, the first correction value is set to a negative value, so that the added value calculated by the output unit 221 is smaller than the current selected luminance. As described above, the first equivalent unit 211 defines the current selected luminance with an equal value for the pixels in the pixel groups G1, G2, G3, and G4.
  • the first correction unit 217 defines the first correction value having the same value for the pixels in the pixel groups G1, G2, G3, and G4. Therefore, the added value of the current selected luminance in the pixel groups G1, G2, G3, and G4 and the first correction value are equal.
  • the output unit 221 outputs the first image signal IRx (1) including information on the calculated addition value to the liquid crystal driving unit 220.
  • the added value of the current selected luminance and the first correction value is exemplified as the driving luminance in the first scanning period.
  • the current equivalent luminance defined by the average signal output by the first equivalent unit 211 and the second equivalent luminance are defined.
  • the first correction value is determined based on the average luminance defined by the averaged signal output from the unit 214.
  • the drive brightness is determined based on the first correction value and the current average brightness.
  • the liquid crystal driver 220 drives the liquid crystal of the liquid crystal panel 231 based on the first image signal IRx (1). As described above, the drive luminances defined by the first image signal IRx (1) for the pixels in the pixel groups G1, G2, G3, and G4 are equal values. In the first scanning period, the liquid crystal driver 220 simultaneously drives the liquid crystals corresponding to the pixels P1 and P2 toward the drive luminance set equally in the pixel group G1. In addition, the liquid crystal drive unit 220 drives the liquid crystals corresponding to the pixels P5 and P6 at the same time toward the drive luminance set equally in the pixel group G3.
  • the driving of the liquid crystal is started for the pixels corresponding to the gate line L 1, L 2.
  • the liquid crystal driving unit 220 simultaneously drives the liquid crystals corresponding to the pixels P3 and P4 toward the driving luminance set equally in the pixel group G2.
  • the liquid crystal drive unit 220 drives the liquid crystals corresponding to the pixels P7 and P8 at the same time toward the drive luminance set equally in the pixel group G4.
  • the drive luminance determined based on the first correction value and the current average luminance is exemplified as equivalent luminance.
  • FIG. 14 is a conceptual diagram of a second correction table stored in the second correction unit 218.
  • the second correction unit 218 will be described with reference to FIGS. 1, 12 to 14.
  • the first equivalent unit 211 and the second equivalent unit 214 perform selection processing.
  • the first equivalent unit 211 and the second equivalent unit 214 may perform an averaging process.
  • the second correction unit 218 stores a second correction table 223 for generating a second correction signal.
  • the second correction table 223 is based on the expected value table 224 for determining the expected value for the luminance achieved by the pixel when the second scanning operation is started, and the second correction table 223 based on the expected value and the frame image signal.
  • a determination table 225 for determining drive luminance when scanning is performed.
  • the expected value table 224 includes the L frame image signal SLx (2) from the first delay unit 213, the selection signal SRx (1d) from the second delay unit 215, and the selection signal SLx (1d) from the third delay unit 216.
  • An input table 226 to be input and an adjustment table 227 for adjusting an output value from the input table 226 based on the position in the sub-scanning direction of the pixel for which drive luminance is determined are included.
  • the input table 226 includes the L frame image signal SLx (2) from the first delay unit 213, the selection signal SRx (1d) from the second delay unit 215, and the selection signal SLx from the third delay unit 216. (1d) is input.
  • the coordinate axis corresponding to the input from the second delay unit 215 in the input table 226 shown in FIG. 14 indicates the current selection luminance defined by the selection signal SRx (1d) from the second delay unit 215.
  • the coordinate axis corresponding to the input from the third delay unit 216 in the input table 226 indicates the pre-selected luminance defined by the selection signal SLx (1d) from the third delay unit 216.
  • the current selection luminance defined by the selection signal SRx (1d) from the second delay unit 215 and the preceding selection luminance defined by the selection signal SLx (1d) from the third delay unit 216 will be described with reference to FIG. The same value as the current selected luminance and the previous selected luminance.
  • FIG. 15 schematically shows the influence of the difference between the target luminance defined by the preceding L frame image signal SLx (2) and the target luminance defined by the subsequent R frame image signal SRx (2) on the luminance change of the pixel. It is a graph to show.
  • the input table 226 is further described with reference to FIGS. 7, 14, and 15.
  • a straight line HL extending in the horizontal direction indicates the target luminance defined by the R frame image signal SRx (2).
  • a curve CV1 in FIG. 15 indicates a change in luminance of the pixel when the difference between the target luminance defined by the preceding L frame image signal SLx (2) and the target luminance defined by the subsequent R frame image signal SRx (2) is small.
  • a curve CV2 in FIG. 15 indicates a change in luminance of a pixel when the difference between the target luminance defined by the preceding L frame image signal SLx (2) and the target luminance defined by the subsequent R frame image signal SRx (2) is large. Represents.
  • the values of the curves CV1 and CV2 at time “0” correspond to the target luminance defined by the preceding L frame image signal SLx (2), respectively.
  • the luminance of the pixel is The target luminance defined by the R frame image signal SRx (2) is reached relatively early.
  • the luminance of the pixel is the R frame image signal SRx ( The period until the target luminance of 2) is reached becomes longer.
  • the input table 226 includes coordinate axes corresponding to the target luminance defined by the preceding L frame image signal SLx (2) input from the first delay unit 213.
  • the second correction unit 218 includes a target luminance defined by the L frame image signal SLx (2) input from the first delay unit 213, a current selection luminance defined by the selection signal SRx (1d) from the second delay unit 215, and Based on the preceding selection luminance defined by the selection signal SLx (1d) from the third delay unit 216, a provisional expected value is determined for each of the pixels P1 to P8.
  • FIG. 16 is a schematic diagram for schematically explaining the difference in the scanning operation caused by the position of the pixel. Differences in scanning operations caused by pixel positions are described with reference to FIGS. 1, 9A, 9B, 12, 13, and 16. FIG.
  • the first scanning operation is performed in a shorter period of time than the second scanning operation.
  • the liquid crystal is driven toward the driving luminance (equivalent luminance) described with reference to FIGS.
  • FIG. 16 shows periods SP1 and SP2 in which the liquid crystal is driven toward the equivalent luminance.
  • the period SP1 indicates a period in which the liquid crystal in the upper part of the liquid crystal panel 231 that is driven relatively early is driven toward the equivalent luminance.
  • the period SP2 indicates a period in which the liquid crystal below the liquid crystal panel 231 that is driven relatively slowly is driven toward the equivalent luminance. As shown in FIG. 16, the period SP2 is longer than the period SP1.
  • FIG. 17 is a graph schematically showing the influence of the pixel position on the luminance change of the pixel.
  • the input table 226 is further described with reference to FIGS. 1, 8A, 8B, 12 to 14, 16 and 17.
  • FIG. 1 is a graph schematically showing the influence of the pixel position on the luminance change of the pixel.
  • the input table 226 is further described with reference to FIGS. 1, 8A, 8B, 12 to 14, 16 and 17.
  • FIG. 1 is a graph schematically showing the influence of the pixel position on the luminance change of the pixel.
  • a straight line HL extending in the horizontal direction indicates equivalent luminance.
  • a curve CV in FIG. 17 represents the luminance of a pixel that varies toward the equivalent luminance described with reference to FIGS. 12 and 13.
  • the liquid crystal in the upper part of the liquid crystal panel 231 is driven toward the equivalent luminance during the period SP1.
  • the upper pixel of the liquid crystal panel 231 achieves a luminance of “AB1”.
  • the liquid crystal below the liquid crystal panel 231 is driven toward the equivalent luminance during the period SP2.
  • the lower pixel of the liquid crystal panel 231 achieves a luminance of “AB2”.
  • the lower pixel of the liquid crystal panel 231 has a value closer to the equivalent luminance than the upper pixel of the liquid crystal panel 231.
  • the expected value table 224 includes an adjustment table 227.
  • the second correction unit 218 uses the adjustment table 227 to adjust the provisional expected value so as to reduce the difference in the achieved luminance due to the pixel position described with reference to FIG. 17 and determine the expected value. .
  • the second correction unit 218 determines an expected value based on the selection luminance defined by the first equivalent unit 211 and the second equivalent unit 214, the target luminance defined by the preceding frame image signal, and the position of the pixel. To do.
  • the second correction unit 218 may determine the expected value based on the average luminance defined by the first equivalent unit 211 and the second equivalent unit 214 instead of the selected luminance.
  • the second correction unit may alternatively determine the expected value based on another factor that affects the luminance of the pixel (for example, the temperature distribution of the liquid crystal panel 231).
  • the determination table 225 stores second correction value data output in the second scanning period.
  • the coordinate axis corresponding to the input of the frame image signal (R frame image signal SRx (2)) in the determination table 225 indicates the target luminance defined by the frame image signal (R frame image signal SRx (2)).
  • the coordinate axis corresponding to the input from the expected value table 224 in the determination table 225 indicates the expected brightness value extracted from the expected value table 224 (that is, the brightness of the pixel expected to be achieved during the first scanning period).
  • the second correction unit 218 determines a second correction value for each of the pixels P1 to P8 based on the target luminance and the expected luminance value, and generates a second correction signal CRx (including information on the second correction value). 2) is output to the second selection unit 219.
  • the R frame image signal SRx (2) and the second correction signal CRx (2) generated by the second correction unit 218 are input to the output unit 221.
  • the output unit 221 adds the target luminance defined by the R frame image signal SRx (2) and the second correction value defined by the second correction signal CRx (2), and drives the luminance used in the second scanning period. To decide. In the second scanning period in which the second scanning operation is performed, the output unit 221 outputs the second image signal IRx (2) including the calculated driving luminance information to the liquid crystal driving unit 220.
  • the liquid crystal driver 220 drives the liquid crystal of the liquid crystal panel 231 based on the second image signal IRx (2). As a result of driving the liquid crystal based on the second image signal IRx (2), the luminance of the pixels P1 to P8 varies toward the driving luminance.
  • FIG. 18 shows luminance data included in a signal output in the first scanning period. Changes in luminance data during the first scanning period will be described with reference to FIGS. 7, 13, and 18.
  • the table in FIG. 18 represents the luminance of the pixels aligned along the data line M.
  • the first equivalent unit 211 and the second equivalent unit 214 perform selection processing. Alternatively, the first equivalent unit 211 and the second equivalent unit 214 may perform an averaging process.
  • the X-th R frame image signal SRx (2) input to the first equivalent unit 211 is “with respect to the pixels corresponding to the odd-numbered gate lines L 1 , L 3 ,. 80 ".
  • the R frame image signal SRx (2) indicates a luminance of “60” for the pixels corresponding to the even-numbered gate lines L 2 , L 4 ,..., L 2t .
  • the first equivalent unit 211 performs the selection process described with reference to FIG. 7 based on the luminance of the pixels corresponding to the odd-numbered gate lines L 1 , L 3 ,..., L 2t ⁇ 1 .
  • a selection signal SRx (1) is generated.
  • the selection signal SRx (1) is supplied to the pixels corresponding to the odd-numbered gate lines L 1 , L 3 ,..., L 2t ⁇ 1 and the even-numbered gate lines L 2 , L 4 ,.
  • a luminance of “80” is indicated for both of the pixels corresponding to L 2t .
  • the selection signal SRx (1) is output to the first selection unit 212 and the first correction unit 217.
  • the first selection unit 212 outputs the selection signal SRx (1) to the output unit 221.
  • the first delay unit 213 acquires the L frame acquired in the left eye period in order to display the immediately previous Xth L frame image.
  • the image signal SLx (2) is output.
  • the L frame image signal SLx (2) indicates a luminance of “40” for the pixels corresponding to the odd-numbered gate lines L 1 , L 3 ,..., L 2t ⁇ 1 .
  • the L frame image signal SLx (2) indicates “0” brightness for the pixels corresponding to the even-numbered gate lines L 2 , L 4 ,..., L 2t .
  • the L frame image signal SLx (2) is input to the second equivalent unit 214.
  • the second equivalent unit 214 performs the selection process described with reference to FIG. 7 based on the luminance of the pixels corresponding to the odd-numbered gate lines L 1 , L 3 ,..., L 2t ⁇ 1 .
  • a selection signal SLx (1) is generated.
  • the selection signal SLx (1) is supplied to the pixels corresponding to the odd-numbered gate lines L 1 , L 3 ,..., L 2t ⁇ 1 and the even-numbered gate lines L 2 , L 4 ,.
  • a luminance of “40” is shown for both pixels corresponding to L 2t .
  • the selection signal SLx (1) is output to the first correction unit 217.
  • the first correction unit 217 uses the first correction table 222 to generate the first correction signal CRx (1) based on the selection signals SRx (1) and SLx (1). Generate.
  • the first correction unit 217 determines a first correction value for each pixel based on the current selection luminance indicated by the selection signal SRx (1) and the preceding selection luminance indicated by the selection signal SLx (1).
  • the selection signal SRx (1) shown in FIG. 18 indicates the current selection luminance of “80” for all pixels along the data line M, and the selection signal SLx (1) indicates all pixels along the data line M.
  • the first correction unit 217 determines the first correction value of “5” for all pixels along the data line M, and the first correction signal CRx. (1) is generated.
  • the first correction signal CRx (1) is then output to the output unit 221 via the second selection unit 219.
  • the output unit 221 adds the luminance indicated by the selection signal SRx (1) and the first correction value indicated by the first correction signal CRx (1) for each pixel.
  • the selection signal SRx (1) shown in FIG. 18 indicates a luminance of “80” for all pixels along the data line M, and the first correction signal CRx (1) is all pixels along the data line M.
  • the first image signal IRx (1) output from the output unit 221 has a luminance of “85” for all the pixels along the data line M. Is specified.
  • FIG. 19 shows luminance data included in a signal output in the second scanning period. Changes in luminance data during the second scanning period will be described with reference to FIGS.
  • the table in FIG. 19 represents the luminance of the pixels aligned along the data line M.
  • the first equivalent unit 211 and the second equivalent unit 214 perform selection processing. Alternatively, the first equivalent unit 211 and the second equivalent unit 214 may perform an averaging process.
  • the Xth R frame image signal SRx (2) is input to the first selection unit 212 and the second correction unit 218.
  • the first selection unit 212 outputs the R frame image signal SRx (2) to the output unit 221 during the second scanning period.
  • the selection signal SRx (1) output from the first equivalent unit 211 is input to the second delay unit 215.
  • the second delay unit 215 delays the selection signal SRx (1) and outputs it as the selection signal SRx (1d) in the second scanning period. Note that the luminance defined by the selection signal SRx (1) for each pixel is equal to the luminance defined by the selection signal SRx (1d) for each pixel.
  • the selection signal SLx (1) output from the second equivalent unit 214 is input to the third delay unit 216.
  • the third delay unit 216 delays the selection signal SLx (1) and outputs it as the selection signal SLx (1d) in the second scanning period. Note that the luminance defined by the selection signal SLx (1) for each pixel and the luminance defined by the selection signal SLx (1d) for each pixel are equal.
  • the second delay unit 215 outputs the selection signal SRx (1d) to the second correction unit 218.
  • the selection signal SRx (1d) is applied to the pixels corresponding to the odd-numbered gate lines L 1 , L 3 ,..., L 2t ⁇ 1 and the even-numbered gate lines L 2 , L 4 ,.
  • a luminance of “80” is shown for the corresponding pixel.
  • the third delay unit 216 outputs the selection signal SLx (1d) to the second correction unit 218.
  • the selection signal SLx (1d) is applied to the pixels corresponding to the odd-numbered gate lines L 1 , L 3 ,..., L 2t ⁇ 1 and the even-numbered gate lines L 2 , L 4 ,.
  • a luminance of “40” is shown for the corresponding pixel.
  • the first delay unit 213 outputs the Xth L frame image signal SLx (2) to the second correction unit 218 in the second scanning period.
  • the L frame image signal SLx (2) defines a luminance of “40” for pixels on odd-numbered gate lines L 1 , L 3 ,..., L 2t ⁇ 1 (t is a natural number)
  • a luminance of “0” is defined for pixels on even-numbered gate lines L 2 , L 4 ,..., L 2t (t is a natural number).
  • the second correction unit 218 places the selected luminance defined by the first equivalent unit 211 and the second equivalent unit 214, the target luminance defined by the preceding frame image signal, and the pixel position. Based on the expected value.
  • the luminance defined for the pixels on the gate lines L 2 , L 4 ,..., L 2t (t is a natural number) by which the L frame image signal SLx (2) is an even number is L frame image signal SLx (2).
  • L 2t ⁇ 1 (where t is a natural number) is much lower than the pixel defined for the odd-numbered gate lines L 1 , L 3 ,..., L 2t ⁇ 1, so that the even-numbered gate lines L 2 , L 4 , .., L 2t (t is a natural number), the luminance achieved by the pixels at the start of the second scanning operation is the odd-numbered gate lines L 1 , L 3 ,..., L 2t ⁇ 1 (t Is a natural number) and is expected to be lower than the luminance achieved at the start of the second scanning operation.
  • the second correction unit 218 has an expected value smaller than the expected value determined for the pixels on the odd-numbered gate lines L 1 , L 3 ,..., L 2t ⁇ 1 (t is a natural number). It is determined for pixels on even-numbered gate lines L 2 , L 4 ,..., L 2t (t is a natural number).
  • the second correction unit 218 performs adjustment on the expected value according to the position of the pixel as described with reference to FIG. Accordingly, the second correction unit 218 sets an expected value of “50” for the pixels on the even-numbered gate line L 2 located at the upper part of the liquid crystal panel 231, and the even-numbered number located at the lower part of the liquid crystal panel 231. An expected value of “65” is set for the pixel on the gate line L 2t . In the present embodiment, for the sake of clarity of explanation, the second correction unit 218 applies all the pixels on the odd-numbered gate lines L 1 , L 3 ,..., L 2t ⁇ 1 (t is a natural number). On the other hand, an expected value of “75” is set. The second correction unit 218 may perform adjustment according to the position of the pixel on the odd-numbered gate lines L 1 , L 3 ,..., L 2t ⁇ 1 (t is a natural number). Good.
  • the R frame image signal SRx (2) defines a luminance of “60” for pixels on even-numbered gate lines L 2 , L 4 ,..., L 2t (t is a natural number). is doing.
  • the second correction unit 218 sets an expected value of “50” for the pixels on the even-numbered gate line L 2 located at the top of the liquid crystal panel 231. Therefore, the second correction unit 218 compares the luminance of “60” with the expected value of “50”, and determines the second correction value of “+5” as the even-numbered gate line L positioned at the upper part of the liquid crystal panel 231. Determine for the pixel above 2 .
  • the second correction unit 218 sets an expected value of “65” for the pixels on the even-numbered gate line L2t located below the liquid crystal panel 231. Therefore, the second correction unit 218 compares the luminance of “60” with the expected value of “65”, and sets the second correction value of “ ⁇ 5” to the even-numbered gate line located at the upper part of the liquid crystal panel 231. determined for the pixels on L 2.
  • the second correction unit 218 outputs the second correction signal CRx (2) including the information on the second correction value to the second selection unit 219 via the second selection unit 219.
  • the output unit 221 adds the luminance indicated by the R frame image signal SRx (2) and the second correction value indicated by the second correction signal CRx (2) for each pixel, and outputs the second image signal IRx (2). Generate and output.
  • the generated second image signal IRx (2) is “80” driven for all the pixels on the odd-numbered gate lines L 1 , L 3 ,..., L 2t ⁇ 1 (t is a natural number). Specifies the brightness.
  • the second image signals IRx (2) defines the driving luminance of "65” for the pixels on the even-numbered gate line L 2 located on the upper portion of the liquid crystal panel 231. Moreover, the second image signal IRx (2) defines the driving luminance of "55” for the pixels on the gate lines L 2t even-numbered positioned on the lower portion of the liquid crystal panel 231.
  • FIG. 20 is a schematic timing chart showing changes in pixel luminance based on the signal processing described with reference to FIGS. 18 and 19. The change in luminance of the pixel is described with reference to FIGS. 1, 7 to 9B, and FIGS. 18 to 20.
  • the section (A) of FIG. 20 includes a left eye period for displaying the Xth L frame image, a right eye period for displaying the Xth R frame image, and a display of the (X + 1) th L frame image.
  • the left eye period for is shown.
  • the luminance change of the pixel in the right eye period will be described.
  • Section (B) in FIG. 20 shows the first scanning operation and the second scanning operation.
  • the liquid crystal driving unit 220 performs the first scanning operation using the first image signal IRx (1).
  • the liquid crystal driving unit 220 includes one pixel corresponding to one odd-numbered gate line and one liquid crystal corresponding to one even-numbered gate line. Drive as a pair at the same time.
  • the first image signal IRx (1) includes a set of gate lines (L 1 , L 2 ), a set of gate lines (L 3 , L 4 ),..., A gate line (L 2t ⁇ 1 , L 25 ) are sequentially written.
  • the liquid crystal driving unit 220 performs the second scanning operation using the second image signal IRx (2). As described with reference to FIGS. 9A and 9B, the liquid crystal driving unit 220 sequentially applies the second image to the gate lines L 1 , L 2 , L 3 , L 4 ,... L 2t ⁇ 1 , L 25. Write signal IRx (2).
  • the liquid crystal driving unit 220 since the liquid crystal driving unit 220 performs the scanning operation twice, the liquid crystal driving unit 220 that performs the second scanning operation supplies the liquid crystal corresponding to the pixels in the pixel groups G1, G2, G3, and G4. Drive sequentially. If the liquid crystal driver performs N scanning operations, the liquid crystal driver that performs the Nth scanning operation may sequentially drive the liquid crystals corresponding to the pixels in the pixel group.
  • the left eye shutter 311 opens in a period after the completion of the second scanning operation and before the start of the right eye period. Further, the right eye shutter 312 is opened during a period after the second scanning operation is completed and before the left eye period is started.
  • Section of FIG. 20 (D) represents a change in luminance of the pixel positioned at the intersection of the gate line L 1 and the data line M.
  • Section of FIG. 20 (E) represents the change in the luminance of the pixel positioned at the intersection of the gate line L 2 and the data line M of the even-numbered positioned on the upper portion of the liquid crystal panel 231.
  • a section (F) in FIG. 20 represents a change in luminance of a pixel located at the intersection of the even-numbered gate line L 2 t located at the lower part of the liquid crystal panel 231 and the data line M.
  • the L frame image signal SLx (2) used for displaying the L frame image in the immediately preceding left eye period is the odd-numbered gate lines L 1 , L 3 , ..., a target luminance of "40" is defined for the pixel corresponding to L 2t-1 . Therefore, the luminance of the pixel shown in the section (D) starts to change from “40”.
  • the L frame image signal SLx (2) defines a target luminance of “0” for the pixels corresponding to the even-numbered gate lines L 2 , L 4 ,..., L 2t . Therefore, the luminance of the pixels shown in the section (E) and the section (F) starts to vary from “0”.
  • the first image signal IRx (1) sets a drive luminance of “85” for all the pixels along the data line M. Therefore, when the first scanning operation is performed, the luminance of the pixels along the data line M starts to fluctuate toward the driving luminance of “85”.
  • the liquid crystal corresponding to the pixels on the even-numbered gate line L 2 t positioned below the liquid crystal panel 231 is more liquid crystal than the liquid crystal corresponding to the pixels on the even-numbered gate line L 2 positioned above the liquid crystal panel 231. Since the pixel is driven toward the driving luminance of “85” over a long period, the pixels on the even-numbered gate line L 2t located at the lower part of the liquid crystal panel 231 are displayed when the second scanning operation is started. A driving brightness of 65 "is achieved.
  • the luminance of the pixels corresponding to the odd-numbered gate lines L 1 , L 3 ,..., L 2t ⁇ 1 is the target defined by the R frame image signal SRx (2) as a result of the first scanning operation. Since the brightness is sufficiently close, the target brightness is reached when the right eye shutter 312 is opened.
  • Second image signals IRx (2) Since defines the drive luminance values of "65" for the pixels on the even-numbered gate line L 2 located on the upper portion of the liquid crystal panel 231, the upper portion of the liquid crystal panel 231 the pixels on the gate lines L 2 position to an even number, in the second scanning period, to increase the brightness. As a result, the pixels on the even-numbered gate line L 2 located on the upper portion of the liquid crystal panel 231 approaches the target brightness "60" to R frame image signal SRx (2) defines.
  • Second image signals IRx (2) Since defines the drive luminance values of "55" for the pixels on the gate lines L 2t even-numbered positioned on the lower portion of the liquid crystal panel 231, the lower portion of the liquid crystal panel 231 The pixels on the even-numbered gate lines L2t that are positioned reduce the luminance in the second scanning period. As a result, the pixels on the even-numbered gate line L2t located below the liquid crystal panel 231 approach the target luminance “60” defined by the R frame image signal SRx (2).
  • FIG. 21 is a block diagram schematically showing the configuration of the video viewing system according to the second embodiment.
  • the schematic configuration of the video viewing system according to the second embodiment will be described with reference to FIG.
  • symbol is attached
  • differences from the first embodiment will be mainly described.
  • the description relevant to 1st Embodiment is used with respect to the characteristic similar to 1st Embodiment.
  • the video viewing system 100A includes a display device 200A in addition to the eyeglass device 300 described in relation to the first embodiment.
  • the display device 200A alternately displays the L frame image and the R frame image, similarly to the display device 200 described in relation to the first embodiment.
  • the display device 200A includes a video signal processing unit 210A and a liquid crystal driving unit 220A in addition to the display unit 230, the first control unit 250, and the second control unit 240 described in relation to the first embodiment.
  • the video signal processing unit 210A includes a video signal having a basic vertical synchronization frequency (a video signal for the left eye and a video signal for the right eye). ) Is entered.
  • the output processing of the control signal from the video signal processing unit 210A to the first control unit 250 and the second control unit 240 is the same as the signal processing described in relation to the first embodiment.
  • the video signal processing unit 210A sequentially outputs the first image signal, the second image signal, and the third image signal to the liquid crystal driving unit 220A.
  • the liquid crystal driver 220 ⁇ / b> A sequentially scans the first image signal, the second image signal, and the third image signal across the display surface of the liquid crystal panel 231.
  • the scanning operation of the liquid crystal driving unit 220A using the first image signal is referred to as a first scanning operation.
  • the scanning operation of the liquid crystal driving unit 220A using the second image signal is referred to as a second scanning operation.
  • the scanning operation of the liquid crystal driving unit 220A using the third image signal is referred to as a third scanning operation.
  • a period during which the liquid crystal driving unit 220A performs the first scanning operation is referred to as a first scanning period.
  • the period during which the liquid crystal driving unit 220A performs the second scanning operation is referred to as a second scanning period.
  • a period during which the liquid crystal driving unit 220A performs the third scanning operation is referred to as a third scanning period.
  • FIG. 22 is a block diagram schematically showing a functional configuration of the video signal processing unit 210A of the display device 200A according to the present embodiment.
  • the video signal processing unit 210A is described with reference to FIGS.
  • the video signal processing unit 210A includes a first equivalent unit 211A, a first selection unit 212A, and a second equivalent unit 214A, in addition to the first delay unit 213 and the first correction unit 217 described in relation to the first embodiment. , A second delay unit 215A, a third delay unit 216A, a second correction unit 218A, a second selection unit 219A, and an output unit 221A.
  • FIG. 23 is a schematic block diagram of the first equivalent unit 211A.
  • FIG. 24 is a schematic block diagram of the second equivalent unit 214A. The first equivalent part 211A and the second equivalent part 214A are described with reference to FIGS. 5, 7, and 22 to 24.
  • FIG. 23 is a schematic block diagram of the first equivalent unit 211A.
  • FIG. 24 is a schematic block diagram of the second equivalent unit 214A. The first equivalent part 211A and the second equivalent part 214A are described with reference to FIGS. 5, 7, and 22 to 24.
  • a frame image signal is input to the first equivalent unit 211A.
  • the X-th R frame image signal SRx (3) is input to the first equivalent unit 211A as the frame image signal.
  • the first equivalent unit 211A includes an equivalent calculation unit 261 and a counter 262.
  • the R frame image signal SRx (3) is input to the equivalent calculation unit 261.
  • the equivalent calculation unit 261 executes the averaging process or the selection process described with reference to FIGS. 5 and 7.
  • the counter 262 counts the number of calculations of the equivalent calculation unit 261.
  • a frame image signal is input to the second equivalent unit 214A.
  • an Xth L frame image signal SLx (3) is input to the second equivalent unit 214A as a frame image signal.
  • the first delay unit 213 holds the Xth L frame image signal SLx (3) preceding the Xth R frame image signal SRx (3). . As shown in FIG. 24, in the first scanning period for displaying the Xth R frame image, the first delay unit 213 outputs the L frame image signal SLx (3) to the second equivalent unit 214A.
  • the second equivalent unit 214A includes an equivalent operation unit 263 and a counter 264.
  • the R frame image signal SRx (3) is input to the equivalent calculation unit 263.
  • the equivalent calculation unit 263 performs the averaging process or the selection process described with reference to FIGS. 5 and 7.
  • the counter 264 counts the number of calculations of the equivalent calculation unit 263.
  • FIG. 25 is a conceptual diagram of equivalent processing performed by the first equivalent unit 211A and the second equivalent unit 214A.
  • the equivalent process performed by the first equivalent unit 211A and the second equivalent unit 214A will be described with reference to FIGS. 5, 7, and 22 to 25.
  • Figure 25 is a pixel P1 to P4 is aligned on the data lines M 1 is shown.
  • Pixel P1 is located at the intersection of the gate line L 1 and the data line M 1.
  • Pixel P2 is located at the intersection of the gate line L 2 and the data lines M 1.
  • Pixel P3 is located at the intersection of the gate line L 3 and the data lines M 1.
  • Pixel P4 is located at the intersection of the gate line L 4 and the data lines M 1.
  • the default value of the counters 262 and 264 is set to “0”, for example.
  • the equivalent calculation units 261 and 263 refer to the count values of the counters 262 and 264, and if the count value is “0”, sets the pixel group G11 including the four pixels P1 to P4 aligned in the sub-scanning direction. Thereafter, the equivalent calculation unit 261 performs an equivalent process on the luminances defined by the R frame image signal SRx (3) for the pixels P1 to P4 in the set pixel group G11. Further, the equivalent calculation unit 263 performs an equivalent process on the luminances defined by the L frame image signal SLx (3) for the pixels P1 to P4 in the set pixel group G11. The equivalent process follows the principle of the averaging process or the selection process described with reference to FIGS.
  • the equivalent calculation unit 261 outputs an average signal or a selection signal used in the first scanning period based on the equivalent process performed on the pixel group G11.
  • FIG. 23 shows the selection signal SRx (1) output from the equivalent calculation unit 261.
  • the equivalent calculation unit 263 outputs an average signal or a selection signal used in the first scanning period based on the equivalent process performed on the pixel group G11.
  • FIG. 24 shows the selection signal SLx (1) output from the equivalent calculation unit 261.
  • the counters 262 and 264 increment the count value from “0” to “1” when the equivalent operation units 261 and 263 finish the equivalent process for the pixel group G11.
  • the equivalent calculation units 261 and 263 refer to the count values of the counters 262 and 264, and if the count value is “1”, the pixel group G21 including two pixels P1 and P2 aligned in the sub-scanning direction and the sub-scanning direction A pixel group G22 including two aligned pixels P3 and P4 is set. Thereafter, the equivalent calculation unit 261 performs an equivalent process on the luminances defined by the R frame image signal SRx (3) for the pixels P1 and P2 in the set pixel group G21. In addition, the equivalent calculation unit 261 performs an equivalent process on the luminances defined by the R frame image signal SRx (3) for the pixels P3 and P4 in the set pixel group G22.
  • the equivalent calculation unit 263 performs an equivalent process on the luminances defined by the L frame image signal SLx (3) for the pixels P1 and P2 in the set pixel group G21. Further, the equivalent calculation unit 263 performs an equivalent process on the luminances defined by the L frame image signal SLx (3) for the pixels P3 and P4 in the set pixel group G22.
  • the equivalent process follows the principle of the averaging process or the selection process described with reference to FIGS.
  • the equivalent calculation unit 261 outputs an average signal or a selection signal used in the second scanning period based on the equivalent processing performed on the pixel groups G21 and G22.
  • FIG. 23 shows the selection signal SRx (2) output from the equivalent calculation unit 261.
  • the equivalent calculation unit 263 outputs an average signal or a selection signal used in the second scanning period based on the equivalent process performed on the pixel groups G21 and G22.
  • FIG. 24 shows the selection signal SLx (2) output from the equivalent calculation unit 261.
  • the counters 262 and 264 lower the count value from “1” to “0” when the equivalent operation units 261 and 263 finish the equivalent processing for the pixel groups G21 and G22.
  • both the first equivalent unit 211A and the second equivalent unit 214A perform selection processing as equivalent processing, and select signals SRx (1), SRx (2), SLx (1), SLx (2). Output.
  • both the first equivalent unit 211A and the second equivalent unit 214A may perform an averaging process and output an average signal as an equivalent process.
  • the R frame image signal SRx (3) is input to the first selection unit 212A. Further, selection signals SRx (1) and SRx (2) are sequentially input from the first equivalent unit 211A to the first selection unit 212A.
  • the first selection unit 212A outputs the selection signal SRx (1) in the first scanning period. In the second scanning period subsequent to the first scanning period, the first selection unit 212A outputs the selection signal SRx (2). In the third scanning period subsequent to the second scanning period, the first selection unit 212A outputs the R frame image signal SRx (3).
  • the first selection unit 212A can sequentially output the selection signals SRx (1), SRx (2) and the R frame image signal SRx (3) to the output unit 221A according to the scanning period.
  • the selection signals SRx (1) and SRx (2) are sequentially input from the first equivalent unit 211A to the second delay unit 215A.
  • the second delay unit 215A holds the selection signals SRx (1) and SRx (2) for a predetermined period.
  • the second delay unit 215A outputs the selection signal SRx (1d) to the second correction unit 218A in the second scanning period subsequent to the first scanning period.
  • the second delay unit 215A outputs the selection signal SRx (2d) to the second correction unit 218A in the third scanning period subsequent to the second scanning period.
  • the luminance data held by the selection signal SRx (1d) is equal to the luminance data held by the selection signal SRx (1).
  • the luminance data held by the selection signal SRx (2d) is equal to the luminance data held by the selection signal SRx (2).
  • the selection signals SLx (1) and SLx (2) are sequentially input from the second equivalent unit 214A to the third delay unit 216A.
  • the third delay unit 216A holds the selection signals SLx (1) and SLx (2) for a predetermined period.
  • the third delay unit 216A outputs the selection signal SLx (1) to the second correction unit 218A in the second scanning period subsequent to the first scanning period.
  • the third delay unit 216A outputs the selection signal SLx (2) to the second correction unit 218A in the third scanning period subsequent to the second scanning period.
  • the luminance data held by the selection signal SLx (1d) is equal to the luminance data held by the selection signal SLx (1).
  • the luminance data held by the selection signal SLx (2d) is equal to the luminance data held by the selection signal SLx (2).
  • the equivalent calculation unit 261 of the first equivalent unit 211A outputs the selection signal SRx (1) to the first correction unit 217, but does not output the selection signal SRx (2) to the first correction unit 217.
  • the equivalent calculation unit 263 of the second equivalent unit 214A outputs the selection signal SLx (1) to the first correction unit 217, but does not output the selection signal SLx (2) to the first correction unit 217.
  • the switching of the signal output of the equivalent arithmetic units 261 and 263 may be based on the count values of the counters 262 and 264, for example.
  • the first correction unit 217 sets the drive luminance (equivalent luminance) common to the pixels in the pixel group G11 based on the selection signals SRx (1) and SLx (1) according to the principle described with reference to FIG. decide. Thereafter, the first correction unit 217 outputs the first correction signal CRx (1).
  • the equivalent calculation unit 261 of the first equivalent unit 211A outputs the selection signal SRx (2) to the second correction unit 218A, but does not output the selection signal SRx (1) to the second correction unit 218A.
  • the equivalent operation unit 263 of the second equivalent unit 214A outputs the selection signal SLx (2) to the second correction unit 218A, but does not output the selection signal SLx (1) to the second correction unit 218A.
  • the switching of the signal output of the equivalent arithmetic units 261 and 263 may be based on the count values of the counters 262 and 264, for example.
  • FIG. 26 and 27 are conceptual diagrams of the second correction table stored in the second correction unit 218A.
  • FIG. 26 shows a second correction table in the second scanning period.
  • FIG. 27 shows the second correction table in the third scanning period.
  • the second correction unit 218A is described with reference to FIGS. 14, 22 to 24, 26 and 27.
  • FIG. in the following description, the first equivalent unit 211A and the second equivalent unit 214A perform selection processing. Alternatively, the first equivalent unit 211A and the second equivalent unit 214A may perform an averaging process.
  • the second correction unit 218A stores a second correction table 223A for generating a second correction signal.
  • the second correction table 223A includes an expected value table 224A for determining expected values for the luminance achieved by the pixels when the second scanning operation and the third scanning operation are started, and the expected value and frame image signal. And a determination table 225A for determining drive luminance when the second scan is performed.
  • the expected value table 224A includes an input table 226A in addition to the adjustment table 227 similar to that of the first embodiment.
  • the second correction unit 218A includes a counter 265.
  • the input table 226A and the determination table 225A perform coordinate axis switching based on the count value of the counter 265.
  • the default value of the counter 265 is set to “0”, for example. Therefore, the count value of the counter 265 when the second correction signal CRx (2) output in the second scanning period is generated is set to “0”.
  • the second correction unit 218A selects the first coordinate axis AX1 of the input table 226A configured as a three-dimensional matrix directly from the second equivalent unit 214A. Corresponding to the signal SLx (2). The second correction unit 218A associates the second coordinate axis AX2 of the input table 226A with the selection signal SRx (1d) output from the second delay unit 215A. Further, the second correction unit 218A associates the third coordinate axis AX3 of the input table 226A with the selection signal SLx (1d) output from the third delay unit 216A.
  • the second correction unit 218A determines a provisional expected value using the input table 226A according to the principle described in relation to FIG. Thereafter, the second correction unit 218A uses the adjustment table 227 to adjust the temporary expected value according to the position of the pixel and determine the expected value.
  • the determination table 225A includes a first coordinate axis BX1 and a second coordinate axis BX2.
  • the first coordinate axis BX1 corresponds exclusively to the expected value determined using the expected value table 224A.
  • the second correction unit 218A associates the second coordinate axis BX2 of the determination table 225A with the selection signal SRx (2) output directly from the first equivalent unit 211A. .
  • the second correction unit 218A determines a second correction value using the determination table 225A according to the principle described in relation to FIG. 14, and outputs a second correction signal CRx (2).
  • the counter 265 increments the count value from “0” to “1” when the second correction unit 218A outputs the second correction signal CRx (2).
  • the second coordinate axis AX2 and the third coordinate axis AX3 of the input table 226A correspond exclusively to the outputs from the second delay unit 215A and the third delay unit 216A, respectively. Therefore, when the count value of the counter 265 is “1” (that is, in the third scanning period), the selection signal SRx (2d) is input to the second coordinate axis AX2 following the selection signal SRx (1d). The selection signal SLx (2d) is input to the third coordinate axis AX3 following the selection signal SLx (1d). Further, the second coordinate axis AX2 holds the data of the selection signal SRx (1d) inputted last time. The third coordinate axis AX3 holds the selection signal SLx (1d) input last time.
  • the second correction unit 218A switches the first coordinate axis AX1 of the input table 226A and corresponds to the L frame image signal SLx (3) output from the first delay unit 213. Let The second correction unit 218A determines a provisional expected value using the input table 226A according to the principle described with reference to FIG. Thereafter, the second correction unit 218A uses the adjustment table 227 to adjust the temporary expected value according to the position of the pixel and determine the expected value.
  • the second correction unit 218A switches the second coordinate axis BX2 of the determination table 225A to correspond to the R frame image signal SRx (3).
  • the second correction unit 218A determines the second correction value using the determination table 225A according to the principle described in relation to FIG. 14, and outputs the third correction signal CRx (3).
  • the first selection unit 212A, the second selection unit 219A, and the output unit 221A are described with reference to FIGS.
  • the selection signals SRx (1), SRx (2) and R frame image signal SRx (3) output from the first equivalent unit 211A are input to the first selection unit 212A.
  • the first selection unit 212A outputs the selection signal SRx (1) to the output unit 221A during the first scanning period.
  • the first selection unit 212A outputs the selection signal SRx (2) to the output unit 221A during the second scanning period.
  • the first selection unit 212A outputs the R frame image signal SRx (3) to the output unit 221A during the third scanning period.
  • the second selection unit 219A includes a first correction signal CRx (1) output from the first correction unit 217, a second correction signal CRx (2) output from the second correction unit 218A, and a third correction signal CRx ( 3) is input.
  • the second selection unit 219A outputs the first correction signal CRx (1) to the output unit 221A during the first scanning period.
  • the second selection unit 219A outputs the second correction signal CRx (2) to the output unit 221A during the second scanning period.
  • the second selection unit 219A outputs the third correction signal CRx (3) to the output unit 221A during the third scanning period.
  • the output unit 221A adds the luminance data of the selection signal SRx (1) output from the first selection unit 212A and the correction data of the first correction signal CRx (1) in the first scanning period, and adds the first image signal. Is generated.
  • the first image signal is output to the liquid crystal driving unit 220A.
  • the output unit 221A adds the luminance data of the selection signal SRx (2) output from the first selection unit 212A and the correction data of the second correction signal CRx (2) to generate the second image signal. Is generated.
  • the second image signal is output to the liquid crystal driving unit 220A.
  • the output unit 221A adds the luminance data of the R frame image signal SRx (3) output from the first selection unit 212A and the correction data of the third correction signal CRx (3) in the third scanning period, An image signal is generated.
  • the third image signal is output to the liquid crystal driving unit 220A.
  • the liquid crystal driver 220A scans the first image signal in the first scanning period.
  • the liquid crystal driver 220A scans the second image signal in the second scanning period.
  • the liquid crystal driver 220A scans the third image signal in the third scanning period.
  • three scanning operations are performed corresponding to the R frame image signal SRx (3).
  • FIG. 28 exemplifies a change in luminance data due to the selection process by the first equivalent unit 211A.
  • FIG. 29 exemplifies a change in luminance data by the selection process by the second equivalent unit 214A. Changes in luminance data are described with reference to FIGS. 22 to 24 and FIGS. 28 and 29.
  • Pixel P1 to P4 is aligned on the data lines M 1 is shown.
  • Pixel P1 is located at the intersection of the gate line L 1 and the data line M 1.
  • Pixel P2 is located at the intersection of the gate line L 2 and the data lines M 1.
  • Pixel P3 is located at the intersection of the gate line L 3 and the data lines M 1.
  • Pixel P4 is located at the intersection of the gate line L 4 and the data lines M 1.
  • the Xth R frame image signal SRx (3) defines a luminance of “80” for the pixel P1.
  • the R frame image signal SRx (3) defines a luminance of “70” for the pixel P2.
  • the R frame image signal SRx (3) defines a luminance of “60” for the pixel P3.
  • the R frame image signal SRx (3) defines a luminance of “50” for the pixel P4.
  • the first equivalent unit 211A sets a pixel group G11 including the pixels P1 to P4.
  • the first equivalent unit 211A selects the luminance of “80” defined by the R frame image signal SRx (3) for the pixel P1, and the luminance of “80” for all the pixels P1 to P4 in the pixel group G11.
  • the first equivalent unit 211A outputs the selection signal SRx (1) that defines the luminance of “80” to the pixels P1 to P4 in the pixel group G11.
  • the first equivalent unit 211A sets a pixel group G21 including the pixel P1 and the pixel P2.
  • the first equivalent unit 211A selects the luminance of “80” defined by the R frame image signal SRx (3) for the pixel P1, and the luminance of “80” for the pixel P1 and the pixel P2 in the pixel group G21.
  • the first equivalent unit 211A sets a pixel group G22 including the pixel P3 and the pixel P4.
  • the first equivalent unit 211A selects the luminance of “60” defined by the R frame image signal SRx (3) for the pixel P3, and the luminance of “60” for the pixel P3 and the pixel P4 in the pixel group G22.
  • the first equivalent section 211A defines a luminance of “80” for the pixels P1 and P2 in the pixel group G21 and defines a luminance of “60” for the pixels P3 and P4 in the pixel group G22.
  • the selection signal SRx (2) to be output is output.
  • the Xth L frame image signal SLx (3) defines a luminance of “30” for the pixel P1.
  • the L frame image signal SLx (3) defines a luminance of “40” for the pixel P2.
  • the L frame image signal SLx (3) defines a luminance of “70” for the pixel P3.
  • the L frame image signal SLx (3) defines a luminance of “80” for the pixel P4.
  • the second equivalent unit 214A sets a pixel group G11 including the pixels P1 to P4.
  • the second equivalent unit 214A selects the luminance of “30” defined by the L frame image signal SLx (3) for the pixel P1, and the luminance of “30” for all the pixels P1 to P4 in the pixel group G11. Set.
  • the second equivalent unit 214A outputs the selection signal SLx (1) that defines the luminance of “30” to the pixels P1 to P4 in the pixel group G11.
  • the second equivalent unit 214A sets a pixel group G21 including the pixel P1 and the pixel P2.
  • the second equivalent unit 214A selects the luminance of “30” defined by the L frame image signal SLx (3) for the pixel P1, and the luminance of “30” for the pixel P1 and the pixel P2 in the pixel group G21.
  • the second equivalent unit 214A sets a pixel group G22 including the pixel P3 and the pixel P4.
  • the second equivalent unit 214A selects the luminance of “70” defined by the L frame image signal SLx (3) for the pixel P3, and the luminance of “70” for the pixel P3 and the pixel P4 in the pixel group G22.
  • the first equivalent section 211A defines a luminance of “30” for the pixels P1 and P2 in the pixel group G21 and defines a luminance of “70” for the pixels P3 and P4 in the pixel group G22.
  • the selection signal SRx (2) to be output is output.
  • FIG. 30 shows a change in luminance in the first correction unit 217.
  • the luminance change in the first correction unit 217 will be described with reference to FIGS. 22 to 24 and FIG.
  • Figure 30 is a pixel P1 to P4 is aligned on the data lines M 1 is shown.
  • Pixel P1 is located at the intersection of the gate line L 1 and the data line M 1.
  • Pixel P2 is located at the intersection of the gate line L 2 and the data lines M 1.
  • Pixel P3 is located at the intersection of the gate line L 3 and the data lines M 1.
  • Pixel P4 is located at the intersection of the gate line L 4 and the data lines M 1.
  • the first correction unit 217 compares the selection signal SRx (1) output from the first equivalent unit 211A with the selection signal SLx (1) output from the second equivalent unit 214A. As described above, the luminance defined by the selection signal SRx (1) for the pixels P1 to P4 in the pixel group G11 is “80”, and the selection signal SLx (1) is defined for the pixels P1 to P4 in the pixel group G11. Since the luminance is “30”, the first correction unit 217 determines, for example, the first correction value “10” and sets the first correction value “10” for the pixels P1 to P4 in the pixel group G11. The first correction signal CRx (1) that defines the above is output.
  • the output unit 221A includes the luminance data defined by the selection signal SRx (1) output from the first selection unit 212A and the first correction defined by the first correction signal CRx (1) output from the second selection unit 219A. Add the value data.
  • the luminance specified by the selection signal SRx (1) for the pixels P1 to P4 in the pixel group G11 is “80”
  • the first correction signal CRx (1) is supplied to the pixels P1 to P4 in the pixel group G11. Since the first correction value defined for the pixel group is “10”, the output unit 221A defines the first image signal that defines the drive luminance (equivalent luminance) of “90” for the pixels P1 to P4 in the pixel group G11.
  • IRx (1) is output.
  • FIG. 31 is a conceptual diagram of an expected value calculation process in the second scanning period. The expected value calculation process in the second scanning period will be described with reference to FIGS.
  • Figure 31 is a pixel P1 to P4 is aligned on the data lines M 1 is shown.
  • Pixel P1 is located at the intersection of the gate line L 1 and the data line M 1.
  • Pixel P2 is located at the intersection of the gate line L 2 and the data lines M 1.
  • Pixel P3 is located at the intersection of the gate line L 3 and the data lines M 1.
  • Pixel P4 is located at the intersection of the gate line L 4 and the data lines M 1.
  • the input table 226A of the second correction unit 218A includes a selection signal SRx (1d) output from the second delay unit 215A, a selection signal SLx (1d) output from the third delay unit 216A, and The selection signal SLx (2) output from the second equivalent unit 214A is input.
  • the selection signal SRx (1d) since the luminance data of the selection signal SRx (1d) is equal to the luminance data of the selection signal SRx (1), the selection signal SRx (1d) has a luminance of “80” with respect to the pixels P1 to P4. It prescribes.
  • the selection signal SLx (1d) defines a luminance of “30” for the pixels P1 to P4. ing.
  • the selection signal SLx (2) output from the second equivalent unit 214A defines a luminance of “30” for the pixels P1 and P2 included in the pixel group G21.
  • the selection signal SLx (2) defines a luminance of “70” for the pixels P3 and P4 included in the pixel group G22.
  • the second correction unit 218A determines that the pixels P1 and P2 in the pixel group G21 have a luminance of “30” at the start of the first scanning period based on the luminance data of the selection signal SLx (2). Further, the second scanning is performed based on the luminance difference between the pixels P1 and P2 between the selection signals SRx (1d) and SLx (1d) and the luminances of the pixels P1 and P2 at the start of the first scanning period (“30” luminance). When the period starts, the second correction unit 218A determines that the luminance of the pixels P1 and P2 in the pixel group G21 achieves a luminance of “65”, for example. Accordingly, the second correction unit 218A determines a temporary expected value of “65” for the pixels P1 and P2 in the pixel group G21.
  • the second correction unit 218A determines that the pixels P3 and P4 in the pixel group G22 have a luminance of “70” at the start of the first scanning period based on the luminance data of the selection signal SLx (2). Further, the second scan is performed based on the luminance difference between the pixels P3 and P4 between the selection signals SRx (1d) and SLx (1d) and the luminance of the pixels P3 and P4 at the start of the first scanning period (“70” luminance). When the period starts, the second correction unit 218A determines that the luminance of the pixels P3 and P4 in the pixel group G22 achieves the luminance of “85”, for example. Therefore, the second correction unit 218A determines a temporary expected value of “85” for the pixels P3 and P4 in the pixel group G22.
  • the pixels P1 to P4 are scanned relatively early, and the adjustment amount of the temporary expected value by the adjustment table 227 is “0”. Therefore, the value of the temporary expected value is the same as the expected value.
  • FIG. 32 is a conceptual diagram of the generation process of the second correction signal CRx (2).
  • the generation process of the second correction signal CRx (2) will be described with reference to FIGS.
  • Figure 32 is a pixel P1 to P4 is aligned on the data lines M 1 is shown.
  • Pixel P1 is located at the intersection of the gate line L 1 and the data line M 1.
  • Pixel P2 is located at the intersection of the gate line L 2 and the data lines M 1.
  • Pixel P3 is located at the intersection of the gate line L 3 and the data lines M 1.
  • Pixel P4 is located at the intersection of the gate line L 4 and the data lines M 1.
  • the second correction unit 218A compares the selection signal SRx (2) output from the first equivalent unit 211A with the expected value acquired using the expected value table 224A. As described above, the luminance defined by the selection signal SRx (2) for the pixels P1 and P2 in the pixel group G21 is “80”, and the expectation for the luminance achieved by the pixels P1 and P2 at the start of the second scanning period. Since the value is “65”, the second correction unit 218A determines a second correction value of “10”, for example.
  • the luminance defined by the selection signal SRx (2) for the pixels P3 and P4 in the pixel group G22 is “60”, and the expected value for the luminance achieved by the pixels P3 and P4 at the start of the second scanning period is , “85”, the second correction unit 218A determines, for example, a second correction value of “ ⁇ 10”.
  • the second correction unit 218A defines the second correction value “10” for the pixels P1 and P2 in the pixel group G21, and “ ⁇ 10” for the pixels P3 and P4 in the pixel group G22.
  • a second correction signal CRx (2) that defines the second correction value is output.
  • the output unit 221A includes the luminance data defined by the selection signal SRx (2) output from the first selection unit 212A and the second correction defined by the second correction signal CRx (2) output from the second selection unit 219A. Add the value data.
  • the luminance specified by the selection signal SRx (2) for the pixels P1 and P2 in the pixel group G21 is “80”
  • the first correction signal CRx (1) is supplied to the pixels P1 and P2 in the pixel group G21. Since the second correction value specified for the pixel group is “10”, the output unit 221A sets the second image signal that specifies the drive luminance (equivalent luminance) of “90” for the pixels P1 and P2 in the pixel group G21.
  • IRx (2) is output.
  • FIG. 33 to 36 are graphs for explaining setting of drive luminance in the third scanning period.
  • FIG. 33 is a graph showing the luminance variation of the pixel P1.
  • FIG. 34 is a graph showing the luminance variation of the pixel P2.
  • FIG. 35 is a graph showing the luminance variation of the pixel P3.
  • FIG. 36 is a graph showing the luminance variation of the pixel P4. The setting of drive luminance in the third scanning period is described with reference to FIGS. 21, 23 and 24, FIGS. 27 to 29, and FIGS. 33 to 36.
  • FIG. 33 is a graph showing the luminance variation of the pixel P1.
  • the input table 226A holds the data of the selection signals SRx (1d) and SLx (1d) input in the second scanning period. Further, the input table 226A includes the L frame image signal SLx (3) from the first delay unit 213, the selection signal SRx (2d) from the second delay unit 215A, and the third delay unit 216A in the third scanning period. Selection signal SLx (2d) is input. Based on these signals (selection signals SRx (1d), SLx (1d), SRx (2d), SLx (2d) and L frame image signal SLx (3)), the second correction unit 218A performs the first scanning period. In addition, it is possible to grasp the luminance variation of the pixels P1 to P4 in the second scanning period.
  • the second correction unit 218A is based on the data included in the selection signals SRx (1d), SLx (1d), SRx (2d), SLx (2d) and the L frame image signal SLx (3).
  • the pixel P1 is estimated to change the luminance from “30” to “65” in the first scanning period, and then change the luminance from “65” to “85” in the second scanning period.
  • the expected value table 224A outputs an expected value of “85”.
  • the R frame image signal SRx (3) is input to the determination table 225A. As shown in FIG. 28, the R frame image signal SRx (3) defines a target luminance of “80” for the pixel P1.
  • the second correction unit 218A compares the expected value of “85” with the target luminance of “80” and determines the third correction value so that the third image signal defines the drive luminance of “75”. .
  • the third correction signal CRx (3) defines a correction value of “ ⁇ 5” for the pixel P1.
  • the second correction unit 218A is based on the data included in the selection signals SRx (1d), SLx (1d), SRx (2d), SLx (2d) and the L frame image signal SLx (3).
  • the pixel P2 is assumed to change the luminance from “40” to “65” in the first scanning period, and then change the luminance from “65” to “85” in the second scanning period.
  • the expected value table 224A outputs an expected value of “85”.
  • the R frame image signal SRx (3) is input to the determination table 225A. As shown in FIG. 28, the R frame image signal SRx (3) defines a target luminance of “70” for the pixel P2.
  • the second correction unit 218A compares the expected value of “85” with the target luminance of “70”, and determines the third correction value so that the third image signal defines the drive luminance of “60”. .
  • the third correction signal CRx (3) defines a correction value of “ ⁇ 10” for the pixel P2.
  • the second correction unit 218A is based on data included in the selection signals SRx (1d), SLx (1d), SRx (2d), SLx (2d) and the L frame image signal SLx (3).
  • the pixel P3 is estimated to change the luminance from “70” to “85” in the first scanning period, and then change the luminance from “85” to “65” in the second scanning period.
  • the expected value table 224A outputs an expected value of luminance of “65”.
  • the R frame image signal SRx (3) is input to the decision table 225A. As shown in FIG. 28, the R frame image signal SRx (3) defines a target luminance of “60” for the pixel P3.
  • the second correction unit 218A compares the expected value of “65” with the target luminance of “60” and determines the third correction value so that the third image signal defines the driving luminance of “60”. .
  • the third correction signal CRx (3) defines a correction value of “0” for the pixel P3.
  • the second correction unit 218A is based on data included in the selection signals SRx (1d), SLx (1d), SRx (2d), SLx (2d) and the L frame image signal SLx (3).
  • the pixel P4 is assumed to change the luminance from “80” to “85” in the first scanning period, and then change the luminance from “85” to “65” in the second scanning period.
  • the expected value table 224A outputs an expected value of luminance of “65”.
  • the R frame image signal SRx (3) is input to the decision table 225A. As shown in FIG. 28, the R frame image signal SRx (3) defines a target luminance of “50” for the pixel P4.
  • the second correction unit 218A compares the expected value of “65” with the target luminance of “50”, and determines the third correction value so that the third image signal defines the drive luminance of “45”. .
  • the third correction signal CRx (3) defines a correction value of “ ⁇ 5” for the pixel P4.
  • the luminance of the pixels P1 to P4 becomes a value that approximates the target luminance defined by the R frame image signal SRx (3).
  • the right eye shutter 312 is opened.
  • the viewer can view a video with little crosstalk.
  • FIG. 37 is a graph schematically showing a spatial spectrum obtained by the first scanning operation, the second scanning operation, and the third scanning operation.
  • 38A to 38C illustrate objects drawn by the first scanning operation, the second scanning operation, and the third scanning operation.
  • FIG. 38A shows an object drawn by the first scanning operation.
  • FIG. 38B shows an object drawn by the first scanning operation.
  • FIG. 38C shows an object drawn by the first scanning operation.
  • the principle common to the first embodiment and the second embodiment is characterized in that the resolution of an object drawn by a subsequent scanning operation is higher than that of an object drawn in advance. If the resolution of the object is high, the spatial frequency will be high. If the resolution of the object is low, the spatial frequency will be low.
  • the drawing of the low spatial frequency region is achieved by the first scanning operation that is performed early.
  • the subsequent second scanning operation and third scanning operation drawing of a high spatial frequency region is sequentially performed. Therefore, even if the response of the liquid crystal is insufficient, the drawing of the region where the crosstalk is easily perceived is completed at an early stage, so that the viewer hardly perceives the crosstalk.
  • driving of the liquid crystal panel 231 that hardly causes crosstalk is achieved.
  • FIG. 39 shows a change in luminance obtained from a single scanning operation similar to the prior art.
  • FIG. 40 shows luminance changes obtained from the three scanning operations described in the context of the second embodiment.
  • the section (a) in FIGS. 39 and 40 shows the scanning operation for displaying the R frame image and the open period of the right eye shutter.
  • the section (b) in FIGS. 39 and 40 shows the luminance change of the pixel group at the top of the liquid crystal panel.
  • the section (c) of FIGS. 39 and 40 shows the luminance change of the pixel group at the bottom of the liquid crystal panel.
  • the L frame image signal defines a luminance of “0” for each pixel in the pixel group.
  • the R frame image signal defines a target luminance of “100” for the uppermost pixel in the pixel group, and a target luminance of “90” for the pixel located second upward.
  • the target luminance of “80” is defined for the pixel located at the uppermost position, and the target luminance of “70” is defined for the lowest pixel.
  • the pixels in the upper pixel group reach the target luminance defined by the R frame image signal before the right eye shutter is opened. Has almost reached.
  • the scanning operation for the lower pixel group is too slow in a single scanning operation, the luminance of the lower pixel group deviates greatly from the target luminance.
  • the driving of the liquid crystal corresponding to the lower pixel group is started immediately before the second scanning operation is started, so the luminance of the lower pixel group approximates the target luminance. It becomes the value. Accordingly, crosstalk perceived by the viewer as a result of the multiple scanning operations is reduced.
  • FIG. 41 is a block diagram schematically showing the configuration of the video viewing system according to the third embodiment.
  • the schematic configuration of the video viewing system according to the third embodiment will be described with reference to FIG.
  • symbol is attached
  • differences from the first embodiment and the second embodiment will be mainly described.
  • the description relevant to 1st Embodiment and 2nd Embodiment is used with respect to the characteristic similar to 1st Embodiment and 2nd Embodiment.
  • the video viewing system 100B includes a display device 200B in addition to the eyeglass device 300 described in relation to the first embodiment.
  • the display device 200B alternately displays the L frame image and the R frame image, similarly to the display device 200A described in relation to the second embodiment.
  • the display device 200B includes a display unit 230, a first control unit 250, a second control unit 240, and a video signal processing unit 210A, similar to the display device 200A described in relation to the second embodiment.
  • the display device 200B further includes a liquid crystal driving unit 220B.
  • the video signal processing unit 210A sequentially outputs the first image signal, the second image signal, and the third image signal.
  • the liquid crystal driver 220 ⁇ / b> B sequentially scans the first image signal, the second image signal, and the third image signal across the display surface of the liquid crystal panel 231.
  • the scanning operation of the liquid crystal driving unit 220B using the first image signal is referred to as a first scanning operation.
  • the scanning operation of the liquid crystal driving unit 220B using the second image signal is referred to as a second scanning operation.
  • the scanning operation of the liquid crystal driving unit 220B using the third image signal is referred to as a third scanning operation.
  • a period during which the liquid crystal driving unit 220B performs the first scanning operation is referred to as a first scanning period.
  • a period during which the liquid crystal driving unit 220B performs the second scanning operation is referred to as a second scanning period.
  • the period during which the liquid crystal driving unit 220B performs the third scanning operation is referred to as a third scanning period.
  • FIG. 42 schematically shows the scanning operation of the liquid crystal driver 220B. The scanning operation of the liquid crystal driving unit 220B will be described with reference to FIGS.
  • the liquid crystal driving unit 220B performs a sub-scanning operation for sub-scanning the image signal downward and a sub-scanning operation for sub-scanning the image signal upward. As shown in FIG. 42, for example, the liquid crystal driver 220B sub-scans the image signal downward in the first scanning period and the third scanning period, and the image signal upward in the second scanning period. May be sub-scanned. Alternatively, if the liquid crystal driver 220B sub-scans the image signal (third image signal) downward in the third scanning period, at least one of the first scanning period and the second scanning period In this case, the liquid crystal driver 220B may sub-scan the image signal (first image signal and / or second image signal) upward.
  • the liquid crystal driving unit 220B sub-scans the image signal (third image signal) upward in the third scanning period, the liquid crystal driving is performed in at least one of the first scanning period and the second scanning period.
  • the unit 220B may sub-scan the image signal (first image signal and / or second image signal) downward.
  • the direction of the sub-scanning operation of the liquid crystal driver 220B in the third scanning period is exemplified as the first direction.
  • the direction of the sub-scanning operation opposite to the direction of the sub-scanning operation of the liquid crystal driving unit 220B in the third scanning period is exemplified as the second direction.
  • the period in which the sub-scanning operation opposite to the direction of the sub-scanning operation of the liquid crystal driving unit 220B in the third scanning period is exemplified as the reverse sub-scanning period.
  • the second scanning period shown in FIG. 42 is exemplified as the reverse sub-scanning period.
  • FIGS. 21, 41 to 43B are conceptual diagrams schematically showing differences in objects perceived by the viewer.
  • FIG. 43A illustrates an object that is drawn and perceived by a viewer in accordance with the principles of the present embodiment.
  • FIG. 43B illustrates an object that is drawn and perceived by the viewer in accordance with the principles of the second embodiment. The difference of objects perceived by the viewer will be described with reference to FIGS. 21, 41 to 43B.
  • the liquid crystal driver 220A of the display device 200A of the second embodiment performs a sub-scanning operation downward through the first scanning period, the second scanning period, and the third scanning period.
  • the liquid crystal driver 220B of the display device 200B of the third embodiment performs sub-scanning of the first image signal and the third image signal downward in the first scanning period and the third scanning period, and performs the second scanning period.
  • the second image signal is sub-scanned upward.
  • the lower region of the liquid crystal panel 231 is scanned with an image signal with a delay through the first scanning period, the second scanning period, and the third scanning period.
  • crosstalk in the lower region of the liquid crystal panel 231 is more easily perceived than crosstalk in the upper region of the liquid crystal panel 231.
  • the resolution of the object in the lower area of the liquid crystal panel 231 tends to be lower than the resolution of the object in the upper area of the liquid crystal panel 231.
  • the region where the scanning operation of the liquid crystal driving unit 220B is delayed varies.
  • the difference in image quality between the upper region and the lower region of the liquid crystal panel 231 is relatively small.
  • FIG. 44 is a conceptual diagram schematically showing another scanning operation of the liquid crystal driving unit 220B. Another scanning operation of the liquid crystal driving unit 220B will be described with reference to FIGS.
  • the display surface of the liquid crystal panel 231 on which the scanning operation of the liquid crystal driving unit 220B is performed may be conceptualized by being divided into an upper region and a lower region. In each scanning period, the liquid crystal driver 220B performs a scanning operation on one of the upper region and the lower region, and then performs a scanning operation on the other region. For the scanning operation on the upper region, preferably at least one reverse scanning period is set. Similarly, at least one reverse sub-scanning period is preferably set for the scanning operation for the lower region.
  • FIG. 45 is a block diagram schematically showing the configuration of the video viewing system according to the fourth embodiment.
  • a schematic configuration of the video viewing system according to the fourth embodiment will be described with reference to FIG.
  • symbol is attached
  • an extension method of the principle of the above-described series of embodiments will be mainly described. For features similar to the series of embodiments described above, the description associated with the series of embodiments described above is incorporated.
  • the video viewing system 100C includes a display device 200C in addition to the eyeglass device 300 described in relation to the first embodiment.
  • the display device 200C displays the L frame image and the R frame image alternately, similarly to the display device 200 described in relation to the first embodiment.
  • the display device 200C includes a video signal processing unit 210C and a liquid crystal driving unit 220C in addition to the display unit 230, the first control unit 250, and the second control unit 240 described in relation to the first embodiment.
  • the video signal processing unit 210C includes a video signal having a basic vertical synchronization frequency (a video signal for the left eye and a video signal for the right eye). ) Is entered.
  • the output processing of the control signal from the video signal processing unit 210C to the first control unit 250 and the second control unit 240 is the same as the signal processing described in relation to the first embodiment.
  • the video signal processing unit 210C sequentially outputs the first to Nth image signals to the liquid crystal driving unit 220C for one frame image signal (N is an integer of 2 or more).
  • the liquid crystal driving unit 220C sequentially scans the first image signal to the Nth image signal over the display surface of the liquid crystal panel 231.
  • the scanning operation of the liquid crystal driving unit 220C using the nth image signal is referred to as an nth scanning operation (n is an integer greater than or equal to 1 and less than N).
  • the scanning operation of the liquid crystal driving unit 220A using the Nth image signal is referred to as an Nth scanning operation.
  • the period during which the liquid crystal driving unit 220A performs the nth scanning operation is referred to as the nth scanning period.
  • the period during which the liquid crystal driving unit 220A performs the Nth scanning operation is referred to as the Nth scanning period.
  • the liquid crystal driver 220C may perform an upward subscanning in the nth scanning period. Further, if the liquid crystal driver 220C performs an upward scanning operation in the Nth scanning period, it may perform a downward subscanning in the nth scanning period.
  • FIG. 46 is a block diagram schematically showing a functional configuration of the video signal processing unit 210C of the display device 200C according to the present embodiment.
  • the video signal processing unit 210C is described with reference to FIGS. 45 and 46.
  • FIG. 45 and 46 The video signal processing unit 210C is described with reference to FIGS. 45 and 46.
  • FIG. 45 and 46 The video signal processing unit 210C is described with reference to FIGS. 45 and 46.
  • the video signal processing unit 210C includes a first equivalent unit 211C, a first selection unit 212C, and a second equivalent unit 214C.
  • 47A to 48B are schematic block diagrams of the first equivalent unit 211C and the second equivalent unit 214C.
  • 47A and 48A are block diagrams of the first equivalent section 211C.
  • 47B and 48B are block diagrams of the second equivalent section 214C.
  • the first equivalent unit 211C and the second equivalent unit 214C output an averaged signal.
  • the first equivalent unit 211C and the second equivalent unit 214C shown in FIGS. 48A and 48B output an averaged signal.
  • the generation of the average signal and the selection signal follows the principle described in relation to the first embodiment and the second embodiment.
  • the liquid crystal driving unit 220C can execute the scanning operation based on the equivalent signal set based on the average luminance and the equivalent signal set based on the selected luminance.
  • the first equivalent unit 211C includes an equivalent calculation unit 261C and a counter 262C.
  • the second equivalent unit 214C includes an equivalent calculation unit 263C and a counter 264C.
  • Counters 262C and 264C count the number of computations of equivalent computation units 261C and 263C.
  • the equivalent calculation units 261C and 263C may selectively perform the averaging process and the selection process according to the count values of the counters 262C and 264C. Alternatively, the equivalent calculation units 261C and 263C may switch between the averaging process and the selection process according to other conditions (conditions such as variations in luminance defined by the input frame image signal).
  • the resolution of the image drawn on the liquid crystal panel 231 varies depending on the number of pixels used in the averaging process and the selection process.
  • the resolution of an image drawn during the first scanning period to the Nth scanning period does not always need to increase.
  • the resolution of the image drawn in the (n + 1) th scanning period may be equal to the resolution of the image drawn in the nth scanning period.
  • the first equivalent unit 211C and the second equivalent unit 214C may switch the output destination of the average signal or the selection signal according to the count values of the counters 262C and 264C in accordance with the principle described in relation to the second embodiment. .
  • the output signal (average signal or selection signal) from the first equivalent unit 211C is sequentially input to the second delay unit 215C.
  • the second delay unit 215C outputs the output signal output from the first equivalent unit 211C during the nth scanning period during the (n + 1) th scanning period.
  • the output signal (average signal or selection signal) from the second equivalent unit 214C is sequentially input to the third delay unit 216C.
  • the third delay unit 216C outputs the output signal output from the second equivalent unit 214C during the nth scanning period during the (n + 1) th scanning period.
  • the first correction unit 217 Similar to the series of embodiments described above, the first correction unit 217 generates a first correction signal for generating a first image signal used in the first scanning period.
  • FIG. 49 shows a second correction table 223A included in the second correction unit 218C. The generation of the correction signal in the second to (N-1) th scanning period will be described with reference to FIGS.
  • the generation of the second to (N ⁇ 1) th correction signals in the second to Nth scanning periods follows the principle of the second correction unit 218A described in relation to the second embodiment. Similar to the second correction unit 218A of the second embodiment, the second correction unit 218C of the present embodiment includes a second correction table 223A.
  • the input table 226A sequentially stores information included in the signals input from the second delay unit 215C and the third delay unit 216C until the n-th scanning period.
  • the (n + 1) th output signal is received from the second equivalent unit 214C in the (n + 1) th scanning period, it is based on the information accumulated until the nth scanning period and the information input in the (n + 1) th scanning period.
  • the expected value table 224A outputs an expected value.
  • the second correction unit 218C sequentially outputs second to (n + 1) th correction signals using the determination table 225A.
  • the input table may not store all the signals input from the second delay unit 215C and the third delay unit 216C by the n-th scanning period.
  • the second correction unit may set the driving luminance for the (n + 1) th scanning operation.
  • FIG. 50 shows a second correction table 223A included in the second correction unit 218C. The generation of the correction signal in the Nth scanning period is described with reference to FIGS. 46 and 50.
  • FIG. 50 shows a second correction table 223A included in the second correction unit 218C. The generation of the correction signal in the Nth scanning period is described with reference to FIGS. 46 and 50.
  • FIG. 50 shows a second correction table 223A included in the second correction unit 218C. The generation of the correction signal in the Nth scanning period is described with reference to FIGS. 46 and 50.
  • the generation of the Nth correction signal in the Nth scanning period follows the principle of the second correction unit 218A described in relation to the second embodiment. Similar to the second correction unit 218A of the second embodiment, the second correction unit 218C of the present embodiment includes a second correction table 223A.
  • the input table 226A sequentially stores information included in signals input from the second delay unit 215C and the third delay unit 216C until the (N ⁇ 1) th scanning period. To do.
  • a preceding frame image signal representing a frame image displayed in advance is received from the first delay unit 213 in the Nth scanning period, the information accumulated up to the (N ⁇ 1) th scanning period and the Nth scanning period
  • the expected value table 224A outputs an expected value.
  • the second correction unit 218C outputs the Nth correction signal using the determination table 225A.
  • the first selection unit 212C and the second selection unit 219C will be described with reference to FIG.
  • the frame signal and the average signal or selection signal generated by the first equivalent unit 211C are input to the first selection unit 212C.
  • the first selection unit 212C outputs the first averaged signal or the selection signal (the signal generated by the first equivalent unit 211C during the first scanning period) during the first scanning period, and the nth scanning period during the nth scanning period.
  • An average signal or a selection signal (a signal generated by the first equivalent unit 211C during the n-th scanning period) is output.
  • a frame image signal is output in the Nth scanning period.
  • the correction signal from the first correction unit 217 and the correction signal from the second correction unit 218C are input to the second selection unit 219C.
  • the second selection unit 219C outputs the correction signal generated by the first correction unit 217 during the first scanning period.
  • the second selection unit 219C sequentially outputs the correction signals generated by the second correction unit 218C during the second to Nth scanning periods.
  • the first selection unit 212C and the second selection unit 219C sequentially input signals to the output unit 221C.
  • the output unit adds the luminance data included in the average signal or selection signal generated by the first equivalent unit 211C and the correction value data included in the correction signal generated by the first correction unit 217.
  • the first image signal (equivalent signal) is generated.
  • the output unit 221C includes the luminance data included in the average signal or the selection signal generated by the first equivalent unit 211C and the correction signal generated by the second correction unit 218C.
  • the second to (N-1) th image signals are sequentially generated.
  • the output unit 221C adds the frame image signal and the correction value data included in the correction signal generated by the second correction unit 218C to generate the Nth image signal.
  • the output unit 221C sequentially outputs the first to Nth image signals to the liquid crystal driving unit 220C.
  • the liquid crystal driving unit sequentially scans the first to Nth image signals.
  • the driving luminance for driving the liquid crystal is set based on various factors such as the luminance level of the preceding frame image and the pixel position.
  • factors such as the luminance level of the preceding frame image and the pixel position.
  • other factors may be considered. For example, other factors that affect the temperature distribution of the liquid crystal panel and / or the response speed of the liquid crystal and the luminance of the pixels may be used to set the driving luminance.
  • the drive luminance is set based on the overdrive process.
  • the drive brightness may be set without performing overdrive processing.
  • the first delay unit, the second equivalent unit, the second delay unit, the third delay unit, the first correction unit, the second correction unit, and the second selection unit used for the overdrive process are It may be omitted.
  • the first equivalent unit sets a pixel group according to the number of scans, and outputs an average signal or a selection signal to the first selection unit.
  • the first selection unit outputs an average signal, a selection signal, an R frame image signal, or an L frame image signal to the liquid crystal drive unit via the output unit according to the number of scans.
  • crosstalk of a stereoscopic video in which L frame images and R frame images are alternately displayed has been described.
  • the principle described in relation to the above-described series of embodiments is also applied to a plurality of frame images for allowing a two-dimensional image to be perceived.
  • Crosstalk on the 2D video due to the luminance difference between the preceding frame image and the subsequent frame image is preferably reduced by the principles described in connection with the above-described series of embodiments.
  • the embodiment described above mainly includes the following features.
  • a display device includes a liquid crystal panel including a display surface on which a frame image is displayed, and a plurality of images representing different resolution images based on a frame image signal for displaying the frame image.
  • a generation unit that generates a writing image signal; and N times (N is an integer of 2 or more) of scanning the plurality of writing image signals across the display surface to drive the liquid crystal panel
  • the writing image signal scanned by the scanning operation n times (n is an integer less than or equal to 1 and less than N) is scanned by the (n + 1) th scanning operation. It includes at least one written image signal representing an image having a lower resolution than the image signal.
  • the liquid crystal panel displays the frame image on the display surface.
  • the generation unit generates a plurality of write image signals representing images having different resolutions based on the frame image signal for displaying the frame image.
  • the liquid crystal driving unit performs a scanning operation N times on the display surface for the plurality of write image signals to drive the liquid crystal panel.
  • the written image signal scanned by the n scanning operations includes at least one written image signal representing an image having a lower resolution than the written image signal scanned by the (n + 1) th scanning operation.
  • crosstalk in an image area where the frequency of luminance fluctuation in the sub-scanning direction is low is easily perceived by the viewer
  • crosstalk in an image area where the frequency of luminance fluctuation in the sub-scanning direction is high is perceived by the viewer.
  • the writing image signal scanned by the n scanning operations is at least one writing image signal representing an image having a lower resolution than the writing image signal scanned by the (n + 1) th scanning operation. Therefore, an image region having a low frequency of luminance fluctuation in the sub-scanning direction is drawn relatively early. Therefore, the viewer is less likely to perceive crosstalk even in the area of the display surface where the scanning operation is performed relatively slowly.
  • the frame image includes a left-eye frame image created to be viewed with the left eye and a right-eye frame image created to be viewed with the right eye, and the liquid crystal panel
  • the left-eye frame image and the right-eye frame image are alternately switched in time to display a stereoscopically perceived image on the display surface.
  • the liquid crystal panel temporally alternates the left-eye frame image created to be viewed with the left eye and the right-eye frame image created to be viewed with the right eye.
  • the viewer can view a stereoscopic image with reduced crosstalk in a region of the display surface where the second scanning operation is performed relatively late.
  • the liquid crystal driving unit writes the at least one write image signal in a period shorter than a period in which the (n + 1) th write image signal is written.
  • the liquid crystal driving unit writes at least one write image signal in a period shorter than the period for writing the (n + 1) th write image signal. A period is easily secured.
  • N is preferably an integer of 2 to 4.
  • the liquid crystal driving unit is formed so as to selectively perform sub-scanning in a first direction and a second direction opposite to the first direction, and in the period when the N-th scanning operation is performed, If sub-scanning in the first direction is performed, it is preferable that the period in which the n scanning operations are performed includes at least one reverse sub-scanning period in which sub-scanning in the second direction is performed.
  • the liquid crystal driving unit selectively performs sub-scanning in the first direction and second sub-scanning in the direction opposite to the first direction. If sub-scanning in the first direction is performed in the period in which the Nth scanning operation is performed, at least one reverse sub-scan in which sub-scanning in the second direction is performed in the period in which n scanning operations are performed. Includes scanning period. In the period in which the N-th scanning operation is performed, the region on the display surface where the scanning operation is performed relatively slowly receives the preliminary scanning operation relatively quickly in the reverse sub-scanning period. Since the region where the timing of the scanning operation is late fluctuates, the viewer can view a relatively homogeneous image from the viewpoint of crosstalk.
  • the display surface includes a pixel group including a plurality of pixels aligned in the sub-scanning direction, and the writing image signal scanned by the n-th scanning operation is applied to the pixels in the pixel group.
  • a liquid crystal driving unit that includes an equivalent signal that defines a common equivalent luminance and that performs the n-th scanning operation simultaneously drives each of the liquid crystals corresponding to the pixels in the pixel group toward the equivalent luminance. Is preferred.
  • the display surface includes a pixel group including a plurality of pixels aligned in the sub-scanning direction.
  • the writing image signal scanned by the n-th scanning operation includes an equivalent signal that defines equivalent luminance common to the pixels in the pixel group. Since the liquid crystal driving unit that performs the n-th scanning operation simultaneously drives each of the liquid crystals corresponding to the pixels in the pixel group toward equivalent luminance, the period during which the n-th scanning operation is performed is relatively short. .
  • the equivalent luminance is selected from an average luminance obtained by averaging the target luminance defined by the frame image signal for each of the pixels in the pixel group or the target luminance for each of the pixels in the pixel group. It is preferable to set based on the selected luminance.
  • the equivalent luminance is the selected luminance selected from the average luminance obtained by averaging the target luminance defined by the frame image signal for each pixel in the pixel group or the target luminance for each pixel in the pixel group. Therefore, drawing of an image region having a low frequency of luminance fluctuation in the sub-scanning direction is appropriately performed.
  • the generation unit includes the pixels corresponding to the at least one written image signal representing an image having a lower resolution than the written image signal scanned by the (n + 1) th scanning operation. Based on the pixel group including a smaller number of pixels than the group, a driving luminance used for generating the writing image signal scanned by the (n + 1) th scanning operation is set, and the liquid crystal driving unit Preferably, the liquid crystal corresponding to the pixel is driven toward the driving luminance.
  • the generation unit is smaller than the pixel group corresponding to at least one write image signal representing an image having a lower resolution than the write image signal scanned by the (n + 1) -th scanning operation.
  • a driving luminance used for generating a writing image signal scanned by the (n + 1) th scanning operation is set. Since the liquid crystal driving unit drives the liquid crystal corresponding to the pixels toward the driving luminance set based on the reduced number of pixels, the resolution of the image drawn by the (n + 1) th scanning operation is relatively high. Become.
  • the n-th scanning operation includes a scanning operation for scanning the equivalent signal set based on the average luminance over the display surface, and the equivalent signal set based on the selected luminance as the display surface. It is preferable that one of the scanning operations for scanning over the entire area.
  • the equivalent signal set based on the average luminance is scanned over the display surface, and the equivalent signal set based on the selected luminance is scanned over the display surface. Since it is one of the scanning operations, an appropriate scanning operation is executed according to the number of scanning operations.
  • the frame image signal includes a preceding image signal for displaying a preceding frame image displayed in advance, and a succeeding image signal for displaying a subsequent frame image displayed after the preceding frame image.
  • the generation unit includes the drive based on the average luminance or the selected luminance set based on the preceding image signal and the average luminance or the selected luminance set based on the subsequent image signal.
  • the luminance is set, and the liquid crystal driving unit drives the liquid crystal toward the driving luminance, and the average luminance or the selected luminance set based on the preceding image signal is set based on the subsequent image signal.
  • the drive luminance is equal to the average luminance or the selected luminance set based on the subsequent image signal. If the average luminance or the selected luminance set based on the preceding image signal is smaller than the average luminance or the selected luminance set based on the subsequent image signal, the driving is performed.
  • the luminance is preferably determined to be larger than the average luminance or the selected luminance set based on the subsequent image signal.
  • the frame image signal includes a preceding image signal for displaying a preceding frame image displayed in advance, and a subsequent image signal for displaying a subsequent frame image displayed after the preceding frame image.
  • the generation unit sets the drive luminance based on the average luminance or selected luminance set based on the preceding image signal and the average luminance or selected luminance set based on the subsequent image signal.
  • the liquid crystal driving unit drives the liquid crystal toward the driving luminance. If the average brightness or selected brightness set based on the preceding image signal is greater than the average brightness or selected brightness set based on the subsequent image signal, the drive brightness is set to the average brightness or selection set based on the subsequent image signal. It is determined to be smaller than the luminance. If the average luminance or the selected luminance set based on the subsequent image signal is smaller, the driving luminance is determined to be larger than the average luminance or the selected luminance set based on the subsequent image signal. Therefore, the pixel can approach the target brightness relatively quickly.
  • the generation unit includes an expectation value table that stores expectation value data relating to an expectation value for the brightness achieved by the pixel when the (n + 1) -th scanning operation is started, and the drive brightness is It is preferable that the expected value for setting the driving luminance is determined based on the average luminance or the selected luminance set during the n-th scanning operation.
  • the generation unit includes the expected value table that stores the expected value data regarding the expected value for the luminance achieved by the pixel when the (n + 1) th scanning operation is started.
  • the expected value for setting the drive brightness is determined based on the average brightness or the selected brightness set during the n-th scanning operation.
  • the liquid crystal is appropriately driven by the (n + 1) th scanning operation in which the driving luminance is set in consideration of the luminance achieved by the pixel when the (n + 1) th scanning operation is started.
  • the liquid crystal driving unit that performs the N-th scanning operation sequentially drives the liquid crystals corresponding to the pixels of the pixel group.
  • a relatively high resolution image is drawn on the display surface by the Nth scanning operation of sequentially driving the liquid crystals corresponding to the pixels of the pixel group.
  • the video viewing system includes a left-eye frame image created to be viewed with the left eye and a right-eye frame image created to be viewed with the right eye.
  • a display device for displaying and providing a stereoscopically perceived image; a left-eye filter for adjusting the amount of light reaching the left eye so that the left-eye frame image is viewed; and the right-eye frame image
  • a right eye filter that adjusts the amount of light that reaches the right eye so that the viewer can view the image, and the display device includes the left eye frame image and the right eye frame image.
  • N times (N is an integer equal to or greater than 2) scanning operation is performed in which the liquid crystal panel displayed on the display surface and the plurality of writing image signals are scanned over the display surface by alternately switching in time.
  • a liquid crystal driving unit for driving the liquid crystal panel The writing image signal scanned by the scanning operation n times (n is an integer of 1 or more and less than N) is compared with the writing image signal scanned by the (n + 1) th scanning operation. It includes at least one said written image signal representing a low resolution image.
  • the display device displays the left-eye frame image created to be viewed with the left eye and the right-eye frame image created to be viewed with the right eye.
  • the left eye filter of the eyeglass device adjusts the amount of light reaching the left eye so that the left eye frame image is viewed.
  • the right eye filter of the eyeglass device adjusts the amount of light reaching the right eye so that the right eye frame image is viewed.
  • the liquid crystal panel switches the left-eye frame image created for viewing with the left eye and the right-eye frame image created for viewing with the right eye alternately on the display surface in time. indicate. Therefore, the viewer can perceive the image provided by the display device in three dimensions.
  • the generating unit generates a plurality of writing image signals representing images of different resolutions based on a frame image signal for displaying a left-eye frame image or a right-eye frame image.
  • the liquid crystal driving unit performs a scanning operation N times on the display surface for the plurality of write image signals to drive the liquid crystal panel.
  • the written image signal scanned by the n scanning operations includes at least one written image signal representing an image having a lower resolution than the written image signal scanned by the (n + 1) th scanning operation.
  • crosstalk in an image area where the frequency of luminance fluctuation in the sub-scanning direction is low is easily perceived by the viewer
  • crosstalk in an image area where the frequency of luminance fluctuation in the sub-scanning direction is high is perceived by the viewer.
  • the writing image signal scanned by the n scanning operations is at least one writing image signal representing an image having a lower resolution than the writing image signal scanned by the (n + 1) th scanning operation. Therefore, an image region having a low frequency of luminance fluctuation in the sub-scanning direction is drawn relatively early. Therefore, the viewer hardly perceives the crosstalk even in the area of the display surface where the scanning operation is executed relatively late.
  • the principle of this embodiment is suitable for a display device and a video viewing system that can reduce crosstalk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

The purpose of the present invention is to provide a video viewing system and a display device capable of suppressing crosstalk. This display device (10) is provided with: a liquid crystal panel (231), which includes a display surface whereon a frame image is displayed; a generation unit (210) which, on the basis of a frame image signal for displaying the frame image, generates a plurality of write-image signals which represent images of different resolutions; and a liquid crystal drive unit (220) which carries out N repetitions (N is an integer of 2 or more) of a scanning operation which scans the plurality of write-image signals across the display surface, and drives the liquid crystal panel. The write-image signals which have been scanned by n (n is an integer which is at least equal to 1 but is less than N) repetitions of the scanning operation comprise at least one write-image signal which represents an image having a low resolution in comparison with a write-image signal which has been scanned by the (n+1)th scanning operation.

Description

表示装置及び映像視聴システムDisplay device and video viewing system
 本発明は、映像を表示する表示装置及び映像視聴システムに関する。 The present invention relates to a display device and a video viewing system for displaying video.
 立体的に知覚される映像を表示する表示装置は、左眼で視聴されるための左眼用フレーム画像(以下、Lフレーム画像と称される)と、右眼で視聴されるための右眼用フレーム画像(以下、Rフレーム画像と称される)とを所定周期(例えば、フィールド周期)で交互に表示する。表示されるLフレーム画像及びRフレーム画像は、視差の分だけ異なる内容を含む。視聴者は、Lフレーム画像及びRフレーム画像の表示周期に同期して駆動される液晶シャッタを備える眼鏡装置を通じて、Lフレーム画像及びRフレーム画像を視聴する(例えば、特許文献1及び特許文献2参照)。この結果、視聴者は、Lフレーム画像及びRフレーム画像に表現されたオブジェクトを立体的に知覚する。 A display device that displays a stereoscopically perceived image includes a left eye frame image (hereinafter referred to as an L frame image) for viewing with the left eye and a right eye for viewing with the right eye. The frame images for use (hereinafter referred to as R frame images) are alternately displayed at a predetermined cycle (for example, a field cycle). The displayed L frame image and R frame image include different contents by the amount of parallax. A viewer views an L frame image and an R frame image through an eyeglass device including a liquid crystal shutter that is driven in synchronization with the display cycle of the L frame image and the R frame image (see, for example, Patent Document 1 and Patent Document 2). ). As a result, the viewer perceives the object expressed in the L frame image and the R frame image in three dimensions.
 図51は、従来の映像視聴システムのブロック図である。尚、図51に示される映像視聴システムには、60Hzの映像信号(左眼用映像信号及び右眼用映像信号)が入力される。 FIG. 51 is a block diagram of a conventional video viewing system. The video viewing system shown in FIG. 51 receives 60 Hz video signals (left-eye video signal and right-eye video signal).
 映像視聴システム900は、60Hzの映像信号(左眼用映像信号及び右眼用映像信号)が入力される映像信号処理部901を備える。映像信号処理部901は、入力された映像信号を120Hzの左眼用映像信号と右眼用映像信号とに変換する。変換された左眼用映像信号及び右眼用映像信号は、液晶駆動部902及びバックライト制御部903へ出力される。液晶駆動部902は、120Hzの左眼用映像信号及び右眼用映像信号を液晶パネル904で表示可能な形式に変換する。液晶駆動部902によって変換された左眼用映像信号及び右眼用映像信号は液晶パネル904に出力される。バックライト制御部903は、バックライト905に発光制御信号を出力する。バックライト905は、発光制御信号により液晶パネル904に対し、液晶パネル904の背面から光を照射する。この結果、液晶パネル904に、120HzでLフレーム画像及びRフレーム画像が交互に表示される。 The video viewing system 900 includes a video signal processing unit 901 to which 60 Hz video signals (left-eye video signal and right-eye video signal) are input. The video signal processing unit 901 converts the input video signal into a 120 Hz left-eye video signal and a right-eye video signal. The converted left-eye video signal and right-eye video signal are output to the liquid crystal driving unit 902 and the backlight control unit 903. The liquid crystal driver 902 converts the 120 Hz left-eye video signal and the right-eye video signal into a format that can be displayed on the liquid crystal panel 904. The left-eye video signal and the right-eye video signal converted by the liquid crystal driving unit 902 are output to the liquid crystal panel 904. The backlight control unit 903 outputs a light emission control signal to the backlight 905. The backlight 905 irradiates the liquid crystal panel 904 with light from the back surface of the liquid crystal panel 904 by a light emission control signal. As a result, the L frame image and the R frame image are alternately displayed on the liquid crystal panel 904 at 120 Hz.
 眼鏡装置950は、左眼シャッタ951と右眼シャッタ952とを備える。映像信号処理部901によって変換された120Hzの左眼用映像信号及び右眼用映像信号を基準にして、左眼シャッタ951用のシャッタ制御回路906及び右眼シャッタ952用のシャッタ制御回路907は、左眼シャッタ951及び右眼シャッタ952を同期制御する。 The eyeglass device 950 includes a left eye shutter 951 and a right eye shutter 952. The shutter control circuit 906 for the left eye shutter 951 and the shutter control circuit 907 for the right eye shutter 952 are based on the 120 Hz left eye video signal and right eye video signal converted by the video signal processing unit 901. The left eye shutter 951 and the right eye shutter 952 are synchronously controlled.
 図52は、従来の映像視聴システム900の制御タイミングチャートである。図52のセクション(A)は、液晶パネル904のLフレーム画像及びRフレーム画像の走査タイミングを示す。図52のセクション(B)は、バックライト905の点灯タイミングを示す。図52のセクション(C)は、眼鏡装置950のシャッタ951,952の開閉タイミングを示す。図51及び図52を用いて、従来の映像視聴システム900が説明される。 FIG. 52 is a control timing chart of the conventional video viewing system 900. The section (A) in FIG. 52 shows the scanning timing of the L frame image and the R frame image of the liquid crystal panel 904. The section (B) in FIG. 52 shows the lighting timing of the backlight 905. The section (C) in FIG. 52 shows opening / closing timings of the shutters 951 and 952 of the eyeglass device 950. A conventional video viewing system 900 will be described with reference to FIGS. 51 and 52.
 液晶パネル904に左眼用映像信号及び右眼用映像信号が順次書き込まれる。この間、バックライト905は常時点灯している。シャッタ制御回路906,907は、シャッタ951,952を制御する。液晶パネル904への左右交互の書き込み走査の後、シャッタの開期間がそれぞれの映像期間の半分となるように、シャッタ951,952は、シャッタ制御回路906,907の制御下で開閉する。シャッタ951,952を通じて視聴されるLフレーム画像及びRフレーム画像は、視聴者の左右の眼でそれぞれ視聴される。この結果、視聴者は、脳内で、視覚的な立体像を生成する。 The left-eye video signal and the right-eye video signal are sequentially written on the liquid crystal panel 904. During this time, the backlight 905 is always on. The shutter control circuits 906 and 907 control the shutters 951 and 952. The shutters 951 and 952 are opened and closed under the control of the shutter control circuits 906 and 907 so that the shutter open period becomes half of the respective video periods after the alternate left and right writing scan to the liquid crystal panel 904. The L frame image and the R frame image viewed through the shutters 951 and 952 are viewed by the viewer's left and right eyes, respectively. As a result, the viewer generates a visual stereoscopic image in the brain.
 図52に示される制御タイミングで動作する映像視聴システムにおいて、視聴者はシャッタ951,952が開かれている期間(立体像の生成に必要な映像を視聴するのに十分な期間)のみLフレーム画像又はRフレーム画像を視聴する。一方、バックライト905は、シャッタ951,952が開かれている期間以外の期間においても常時点灯している。したがって、図52に示される制御タイミングで動作する映像視聴システムは、省電力の観点から好ましくない。 In the video viewing system that operates at the control timing shown in FIG. 52, the viewer is an L frame image only during a period in which the shutters 951 and 952 are open (a period sufficient to view a video necessary for generating a stereoscopic image). Or, view the R frame image. On the other hand, the backlight 905 is always lit even in a period other than the period in which the shutters 951 and 952 are opened. Therefore, the video viewing system that operates at the control timing shown in FIG. 52 is not preferable from the viewpoint of power saving.
 図53は、従来の映像視聴システム900の他の制御タイミングチャートである。図53のセクション(A)は、液晶パネル904のLフレーム画像及びRフレーム画像の走査タイミングを示す。図53のセクション(B)は、バックライト905の点灯タイミングを示す。図53のセクション(C)は、眼鏡装置950のシャッタ951,952の開閉タイミングを示す。図51乃至図53を用いて、従来の映像視聴システム900が更に説明される。 FIG. 53 is another control timing chart of the conventional video viewing system 900. The section (A) in FIG. 53 shows the scanning timing of the L frame image and the R frame image of the liquid crystal panel 904. The section (B) in FIG. 53 shows the lighting timing of the backlight 905. A section (C) in FIG. 53 shows opening / closing timings of the shutters 951 and 952 of the eyeglass device 950. The conventional video viewing system 900 will be further described with reference to FIGS.
 特許文献2は、Lフレーム画像又はRフレーム画像が視聴される期間のみバックライト905が点灯される制御を開示する。図53に示される制御では、図52に示される制御と異なり、Lフレーム画像又はRフレーム画像が視聴される期間のみバックライト905が発光している。したがって、図53に示される制御は、図52に示される制御よりも省電力の点で優れている。 Patent Document 2 discloses control in which the backlight 905 is turned on only during a period in which an L frame image or an R frame image is viewed. In the control shown in FIG. 53, unlike the control shown in FIG. 52, the backlight 905 emits light only during a period in which the L frame image or the R frame image is viewed. Therefore, the control shown in FIG. 53 is superior to the control shown in FIG. 52 in terms of power saving.
 左眼シャッタ951は、液晶パネル904が左眼で視聴されるように作成されたLフレーム画像を表示した後且つRフレーム画像を表示するための右眼用映像信号が走査される前に開かれる。同様に、右眼シャッタ952は、液晶パネル904が右眼で視聴されるように作成されたRフレーム画像を表示した後且つLフレーム画像を表示するための左眼用映像信号が走査される前に開かれる。 The left-eye shutter 951 is opened after displaying the L frame image created so that the liquid crystal panel 904 can be viewed with the left eye and before the right-eye video signal for displaying the R frame image is scanned. . Similarly, the right eye shutter 952 displays the R frame image created so that the liquid crystal panel 904 can be viewed with the right eye and before the left eye video signal for displaying the L frame image is scanned. To be opened.
 図52及び図53に示される如く、左眼用映像信号及び/又は右眼用映像信号は液晶パネル904の上部から走査される。したがって、液晶パネル904の下部における左眼用映像信号及び/又は右眼用映像信号の走査は、液晶パネル904の上部に対して遅れる。 52 and 53, the left-eye video signal and / or the right-eye video signal are scanned from above the liquid crystal panel 904. Therefore, the scanning of the left-eye video signal and / or the right-eye video signal at the lower part of the liquid crystal panel 904 is delayed with respect to the upper part of the liquid crystal panel 904.
 左眼用映像信号及び/又は右眼用映像信号に基づく液晶の応答は、表示される映像の種類に応じた時間を要求する。例えば、先行して表示されるフレーム画像を表現する画素の輝度と、後に表示されるフレーム画像を表現する画素の輝度との間で大きさに差異が生ずる場合、比較的長い液晶の応答時間が要求される。 The response of the liquid crystal based on the left-eye video signal and / or the right-eye video signal requires time corresponding to the type of video to be displayed. For example, when there is a difference in size between the luminance of a pixel representing a frame image displayed in advance and the luminance of a pixel representing a frame image displayed later, the response time of a relatively long liquid crystal Required.
 Lフレーム画像又はRフレーム画像の表示が完了するのを待って、左眼シャッタ951又は右眼シャッタ952が開かれた場合、液晶の長い応答時間に起因して、左眼シャッタ951又は右眼シャッタ952が開かれている期間が短くなる。この結果、視聴者は液晶パネル904に表示された立体映像を暗く感じる。 When the left eye shutter 951 or the right eye shutter 952 is opened after the display of the L frame image or the R frame image is completed, the left eye shutter 951 or the right eye shutter is caused by the long response time of the liquid crystal. The period during which 952 is open is shortened. As a result, the viewer feels the 3D image displayed on the liquid crystal panel 904 dark.
 Lフレーム画像の表示が完了するのを待たずに、左眼シャッタ951が開かれた場合、視聴者は、先行して表示されたRフレーム画像の影響が混在したLフレーム画像を視聴することとなる。同様に、Rフレーム画像の表示が完了するのを待たずに、右眼シャッタ952が開かれた場合、視聴者は、先行して表示されたLフレーム画像の影響が混在したRフレーム画像を視聴することとなる。このようなLフレーム画像とRフレーム画像との混在は、クロストークと称される。液晶パネル904の下部における左眼用映像信号及び/又は右眼用映像信号の走査の遅れ並びに液晶の応答時間に起因して、先行するフレーム画像(Lフレーム画像又はRフレーム画像)の混在量は、液晶パネル904の下部において特に大きくなる。したがって、視聴者は液晶パネル904の下部において表示されたフレーム画像を立体的に知覚しにくくなる。 When the left eye shutter 951 is opened without waiting for the display of the L frame image to be completed, the viewer views the L frame image in which the influence of the R frame image displayed in advance is mixed. Become. Similarly, when the right eye shutter 952 is opened without waiting for the display of the R frame image to be completed, the viewer views the R frame image in which the influence of the L frame image displayed in advance is mixed. Will be. Such a mixture of L frame images and R frame images is referred to as crosstalk. Due to the scanning delay of the left-eye video signal and / or the right-eye video signal in the lower part of the liquid crystal panel 904 and the response time of the liquid crystal, the amount of the preceding frame image (L frame image or R frame image) is The size is particularly large at the bottom of the liquid crystal panel 904. Therefore, it is difficult for the viewer to perceive the frame image displayed at the lower part of the liquid crystal panel 904 in a three-dimensional manner.
 上述のクロストークの課題は、視差の分だけ異なる内容を表すLフレーム画像及びRフレーム画像が時間的に交互に表示される立体映像の表示において、特に顕著となるが、2次元映像においても共通の課題である。先行して表示されるフレーム画像と後続のフレーム画像との間の輝度差が大きな領域が存在するならば、視聴者は、クロストークを知覚しやすい。特に、輝度差が大きな領域が、比較的遅く走査されるならば、視聴者は、クロストークを一層知覚しやすくなる。 The above-mentioned crosstalk problem is particularly noticeable in the display of stereoscopic images in which L frame images and R frame images representing different contents by the amount of parallax are displayed alternately in time. It is a problem. If there is a region having a large luminance difference between the frame image displayed in advance and the subsequent frame image, the viewer can easily perceive crosstalk. In particular, if an area with a large luminance difference is scanned relatively slowly, the viewer can more easily perceive crosstalk.
特開昭62-133891号公報JP-A-62-133891 特開2009-25436号公報JP 2009-25436 A
 本発明は、クロストークを抑制することができる表示装置及び映像視聴システムを提供することを目的とする。 It is an object of the present invention to provide a display device and a video viewing system that can suppress crosstalk.
 本発明の一の局面に係る表示装置は、フレーム画像が表示される表示面を含む液晶パネルと、前記フレーム画像を表示するためのフレーム画像信号に基づき、異なる解像度の画像を表す複数の書込画像信号を生成する生成部と、前記複数の書込画像信号を、前記表示面に亘って走査するN回(Nは2以上の整数)の走査動作を実行し、前記液晶パネルを駆動する液晶駆動部と、を備え、n回(nは1以上N未満の整数)の前記走査動作によって走査された前記書込画像信号は、(n+1)回目の前記走査動作によって走査された書込画像信号と比べて低い解像度の画像を表す少なくとも1つの前記書込画像信号を含むことを特徴とする。 A display device according to one aspect of the present invention includes a liquid crystal panel including a display surface on which a frame image is displayed, and a plurality of writings representing images having different resolutions based on the frame image signal for displaying the frame image. A generating unit that generates an image signal; and a liquid crystal that drives the liquid crystal panel by performing N times (N is an integer of 2 or more) of scanning the plurality of writing image signals over the display surface. The write image signal scanned by the scanning operation n times (n is an integer of 1 or more and less than N), the written image signal scanned by the (n + 1) th scanning operation. And at least one of the written image signals representing an image having a lower resolution than the above.
 本発明の一の局面に係る映像視聴システムは、左眼で視聴されるように作成された左眼用フレーム画像と右眼で視聴されるように作成された右眼用フレーム画像とを表示し、立体的に知覚される画像を提供する表示装置と、前記左眼用フレーム画像が視聴されるように前記左眼へ到達する光量を調整する左眼フィルタと、前記右眼用フレーム画像が視聴されるように前記右眼へ到達する光量を調整する右眼フィルタ、とを含む眼鏡装置と、を備え、前記表示装置は、前記左眼用フレーム画像と前記右眼用フレーム画像とを、時間的に交互に切り換えて、表示面に表示する液晶パネルと、前記複数の書込画像信号を、前記表示面に亘って走査するN回(Nは2以上の整数)の走査動作を実行し、前記液晶パネルを駆動する液晶駆動部と、を備え、n回(nは1以上N未満の整数)の前記走査動作によって走査された前記書込画像信号は、(n+1)回目の前記走査動作によって走査された書込画像信号と比べて低い解像度の画像を表す少なくとも1つの前記書込画像信号を含むことを特徴とする。 A video viewing system according to an aspect of the present invention displays a left-eye frame image created to be viewed with the left eye and a right-eye frame image created to be viewed with the right eye. A display device that provides a stereoscopically perceived image; a left-eye filter that adjusts the amount of light reaching the left eye so that the left-eye frame image is viewed; and the right-eye frame image is viewed A right eye filter that adjusts the amount of light that reaches the right eye, and the display device displays the left eye frame image and the right eye frame image as a time. The liquid crystal panel to be displayed alternately on the display surface, and the scanning operation of N times (N is an integer of 2 or more) for scanning the plurality of writing image signals across the display surface, A liquid crystal driving unit for driving the liquid crystal panel. The written image signal scanned by the scanning operation n times (n is an integer of 1 or more and less than N) has a lower resolution than the written image signal scanned by the (n + 1) th scanning operation. It includes at least one written image signal representing an image.
 本発明に係る表示装置及び映像視聴システムは、クロストークを抑制することができる。 The display device and the video viewing system according to the present invention can suppress crosstalk.
 本発明の目的、特徴及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
第1実施形態に係る映像視聴システム及び表示装置の構成を概略的に示すブロック図である。1 is a block diagram schematically showing configurations of a video viewing system and a display device according to a first embodiment. 図1に示される映像視聴システムを概略的に示す模式図である。FIG. 2 is a schematic diagram schematically showing the video viewing system shown in FIG. 1. 図1に示される表示装置の映像信号処理部の概略的なブロック図である。FIG. 2 is a schematic block diagram of a video signal processing unit of the display device shown in FIG. 1. 図3に示される映像信号処理部が行う平均化処理の概念図である。It is a conceptual diagram of the averaging process which the video signal process part shown by FIG. 3 performs. 図3に示される映像信号処理部が行う平均化処理の概念図である。It is a conceptual diagram of the averaging process which the video signal process part shown by FIG. 3 performs. 図3に示される映像信号処理部が行う選択処理の概念図である。It is a conceptual diagram of the selection process which the video signal processing part shown by FIG. 3 performs. 図3に示される映像信号処理部が行う選択処理の概念図である。It is a conceptual diagram of the selection process which the video signal processing part shown by FIG. 3 performs. 図3に示される映像信号処理部が行う画像信号の生成処理の概念図である。It is a conceptual diagram of the production | generation process of the image signal which the video signal process part shown by FIG. 3 performs. 図3に示される映像信号処理部が行う画像信号の生成処理の概念図である。It is a conceptual diagram of the production | generation process of the image signal which the video signal process part shown by FIG. 3 performs. 図1に示される表示装置の液晶駆動部による第1走査動作を概略的に説明する概念図である。It is a conceptual diagram which illustrates roughly the 1st scanning operation | movement by the liquid-crystal drive part of the display apparatus shown by FIG. 図1に示される表示装置の液晶駆動部による第2走査動作を概略的に説明する概念図である。It is a conceptual diagram which illustrates roughly the 2nd scanning operation | movement by the liquid-crystal drive part of the display apparatus shown by FIG. 図3に示される映像信号処理部中の信号の出力図である。FIG. 4 is an output diagram of signals in the video signal processing unit shown in FIG. 3. 図3に示される映像信号処理部が第1走査期間に出力する信号を表す概略的なブロック図である。It is a schematic block diagram showing the signal which the video signal processing part shown by FIG. 3 outputs in a 1st scanning period. 図3に示される映像信号処理部が第2走査期間に出力する信号を表す概略的なブロック図である。It is a schematic block diagram showing the signal which the video signal processing part shown by FIG. 3 outputs in a 2nd scanning period. 図3に示される映像信号処理部の第1補正部による第1補正信号の生成処理を概略的に示す概念図である。It is a conceptual diagram which shows schematically the production | generation process of the 1st correction signal by the 1st correction | amendment part of the video signal processing part shown by FIG. 図3に示される映像信号処理部の第2補正部による第2補正信号の生成処理を概略的に示す概念図である。It is a conceptual diagram which shows schematically the production | generation process of the 2nd correction signal by the 2nd correction | amendment part of the video signal processing part shown by FIG. 先行するLフレーム画像信号が規定する目標輝度と後続のRフレーム画像信号が規定する目標輝度との差異が与える画素の輝度変化に対する影響を概略的に示すグラフである。It is a graph which shows roughly the influence with respect to the luminance change of the pixel which the difference of the target luminance prescribed | regulated by the preceding L frame image signal and the target luminance prescribed | regulated by the subsequent R frame image signal. 画素の位置に起因する走査動作の差異を概略的に説明する模式図である。It is a schematic diagram for schematically explaining the difference in scanning operation caused by the position of the pixel. 画素の位置が与える画素の輝度変化に対する影響を概略的に示すグラフである。It is a graph which shows roughly the influence with respect to the luminance change of the pixel which the position of a pixel gives. 図3に示される映像信号処理部中において第1走査期間に出力される信号が含む輝度のデータを示す。4 shows luminance data included in a signal output in the first scanning period in the video signal processing unit shown in FIG. 図3に示される映像信号処理部中において第2走査期間に出力される信号が含む輝度のデータを示す。4 shows luminance data included in a signal output in the second scanning period in the video signal processing unit shown in FIG. 図18及び図19に示される信号処理に基づく画素の輝度の変化を表す概略的なタイミングチャートである。20 is a schematic timing chart showing a change in luminance of a pixel based on the signal processing shown in FIGS. 18 and 19. 第2実施形態に係る映像視聴システム及び表示装置の構成を概略的に示すブロック図である。It is a block diagram which shows roughly the structure of the video viewing system and display apparatus which concern on 2nd Embodiment. 図21に示される表示装置の映像信号処理部の概略的なブロック図である。It is a schematic block diagram of the video signal processing part of the display apparatus shown by FIG. 図22に示される映像信号処理部の第1等価部の概略的なブロック図である。It is a schematic block diagram of the 1st equivalent part of the video signal processing part shown by FIG. 図22に示される映像信号処理部の第2等価部の概略的なブロック図である。It is a schematic block diagram of the 2nd equivalent part of the video signal processing part shown by FIG. 図22に示される映像信号処理部の第1等価部及び第2等価部が行う等価処理の概念図である。It is a conceptual diagram of the equivalent process which the 1st equivalent part and 2nd equivalent part of a video signal processing part shown by FIG. 22 perform. 図22に示される映像信号処理部の第2補正部による第2補正信号の生成処理を概略的に示す概念図である。It is a conceptual diagram which shows schematically the production | generation process of the 2nd correction signal by the 2nd correction | amendment part of the video signal processing part shown by FIG. 図22に示される映像信号処理部の第2補正部による第3補正信号の生成処理を概略的に示す概念図である。It is a conceptual diagram which shows schematically the production | generation process of the 3rd correction signal by the 2nd correction | amendment part of the video signal processing part shown by FIG. 図22に示される映像信号処理部の第1等価部による選択処理による輝度データの変化を示す概念図である。It is a conceptual diagram which shows the change of the luminance data by the selection process by the 1st equivalent part of the video signal processing part shown by FIG. 図22に示される映像信号処理部の第2等価部による選択処理による輝度データの変化を示す概念図である。It is a conceptual diagram which shows the change of the luminance data by the selection process by the 2nd equivalent part of the video signal processing part shown by FIG. 図22に示される映像信号処理部の第1補正部の輝度変化を示す概念図である。It is a conceptual diagram which shows the luminance change of the 1st correction | amendment part of the video signal processing part shown by FIG. 図22に示される映像信号処理部の第2補正部による期待値の算出工程の概念図である。It is a conceptual diagram of the calculation process of the expected value by the 2nd correction | amendment part of the video signal processing part shown by FIG. 図22に示される映像信号処理部の第2補正部による第2補正信号の生成工程の概念図である。It is a conceptual diagram of the production | generation process of the 2nd correction signal by the 2nd correction | amendment part of the video signal processing part shown by FIG. 第3走査期間の駆動輝度を設定するための手法を説明するためのグラフである。It is a graph for demonstrating the method for setting the drive brightness | luminance of a 3rd scanning period. 第3走査期間の駆動輝度を設定するための手法を説明するためのグラフである。It is a graph for demonstrating the method for setting the drive brightness | luminance of a 3rd scanning period. 第3走査期間の駆動輝度を設定するための手法を説明するためのグラフである。It is a graph for demonstrating the method for setting the drive brightness | luminance of a 3rd scanning period. 第3走査期間の駆動輝度を設定するための手法を説明するためのグラフである。It is a graph for demonstrating the method for setting the drive brightness | luminance of a 3rd scanning period. 第1走査動作、第2走査動作及び第3走査動作によって得られる空間スペクトルを概略的に示すグラフである。It is a graph which shows roughly the spatial spectrum obtained by the 1st scanning operation, the 2nd scanning operation, and the 3rd scanning operation. 第1走査動作によって描かれるオブジェクトを概略的に示す概念図である。It is a conceptual diagram which shows roughly the object drawn by 1st scanning operation | movement. 第2走査動作によって描かれるオブジェクトを概略的に示す概念図である。It is a conceptual diagram which shows roughly the object drawn by 2nd scanning operation | movement. 第3走査動作によって描かれるオブジェクトを概略的に示す概念図である。It is a conceptual diagram which shows roughly the object drawn by 3rd scanning operation | movement. 単回の走査動作から得られる輝度変化を概略的に示すタイミングチャートである。It is a timing chart which shows roughly the luminance change obtained from a single scanning operation. 多回の走査動作から得られる輝度変化を概略的に示すタイミングチャートである。It is a timing chart which shows roughly the luminance change obtained from a multiple scanning operation. 第3実施形態に係る映像視聴システム及び表示装置の構成を概略的に示すブロック図である。It is a block diagram which shows roughly the structure of the video viewing system and display apparatus which concern on 3rd Embodiment. 図41に示される表示装置の液晶駆動部の走査動作を概略的に示す模式図である。FIG. 42 is a schematic diagram schematically illustrating a scanning operation of a liquid crystal driving unit of the display device illustrated in FIG. 41. 視聴者に知覚されるオブジェクトの差異を概略的に示す概念図である。It is a conceptual diagram which shows roughly the difference of the object perceived by a viewer. 視聴者に知覚されるオブジェクトの差異を概略的に示す概念図である。It is a conceptual diagram which shows roughly the difference of the object perceived by a viewer. 図41に示される表示装置の液晶駆動部の他の走査動作を概略的に示す模式図である。FIG. 42 is a schematic diagram schematically illustrating another scanning operation of the liquid crystal driving unit of the display device illustrated in FIG. 41. 第4実施形態に係る映像視聴システム及び表示装置の構成を概略的に示すブロック図である。It is a block diagram which shows roughly the structure of the video viewing system and display apparatus which concern on 4th Embodiment. 図45に示される表示装置の映像信号処理部の概略的なブロック図である。FIG. 46 is a schematic block diagram of a video signal processing unit of the display device shown in FIG. 45. 図46に示される映像信号処理部の第1等価部の概略的なブロック図である。It is a schematic block diagram of the 1st equivalent part of the video signal processing part shown by FIG. 図46に示される映像信号処理部の第2等価部の概略的なブロック図である。It is a schematic block diagram of the 2nd equivalent part of the video signal processing part shown by FIG. 図46に示される映像信号処理部の第1等価部の概略的なブロック図である。It is a schematic block diagram of the 1st equivalent part of the video signal processing part shown by FIG. 図46に示される映像信号処理部の第2等価部の概略的なブロック図である。It is a schematic block diagram of the 2nd equivalent part of the video signal processing part shown by FIG. 図46に示される映像信号処理部の第2補正部による補正信号の生成処理を概略的に示す概念図である。It is a conceptual diagram which shows roughly the production | generation process of the correction signal by the 2nd correction | amendment part of the video signal processing part shown by FIG. 図46に示される映像信号処理部の第2補正部による補正信号の生成処理を概略的に示す概念図である。It is a conceptual diagram which shows roughly the production | generation process of the correction signal by the 2nd correction | amendment part of the video signal processing part shown by FIG. 従来の映像視聴システムの構成を概略的に示すブロック図である。It is a block diagram which shows schematically the structure of the conventional video viewing system. 従来の映像視聴システムの制御を例示する制御タイミングチャートである。It is a control timing chart which illustrates control of the conventional video viewing system. 従来の映像視聴システムの制御を例示する制御タイミングチャートである。It is a control timing chart which illustrates control of the conventional video viewing system.
 以下、表示装置及び映像視聴システムの様々な実施形態が図面を参照して説明される。尚、以下に説明される実施形態において、同様の構成要素に対して同様の符号が付されている。また、説明の明瞭化のため、必要に応じて、重複する説明は省略される。図面に示される構成、配置或いは形状並びに図面に関連する記載は、単に本実施形態の原理を容易に理解させることを目的とするものであり、表示装置及び映像視聴システムの原理はこれらに何ら限定されるものではない。 Hereinafter, various embodiments of the display device and the video viewing system will be described with reference to the drawings. In the embodiment described below, the same reference numerals are given to the same components. For the sake of clarification of explanation, duplicate explanation is omitted as necessary. The configuration, arrangement, or shape shown in the drawings and the description related to the drawings are merely for the purpose of easily understanding the principle of this embodiment, and the principle of the display device and the video viewing system is not limited to these. Is not to be done.
 <第1実施形態>
 (映像視聴システムの構成)
 図1は、第1実施形態に係る映像視聴システムの構成を概略的に示すブロック図である。図2は、図1に示される映像視聴システムを概略的に示す模式図である。図1及び図2を参照しつつ、映像視聴システムの概略的な構成が説明される。
<First Embodiment>
(Configuration of video viewing system)
FIG. 1 is a block diagram schematically showing the configuration of the video viewing system according to the first embodiment. FIG. 2 is a schematic diagram schematically showing the video viewing system shown in FIG. A schematic configuration of the video viewing system will be described with reference to FIGS. 1 and 2.
 映像視聴システム100は、左眼で視聴されるように作成された左眼用フレーム画像(以下、Lフレーム画像と称される)と、右眼で視聴されるように作成された右眼用フレーム画像(以下、Rフレーム画像と称される)とを含むフレーム画像を表示する表示装置200と、表示装置200が表示するLフレーム画像及びRフレーム画像の視聴を補助する眼鏡装置300とを備える。眼鏡装置300は、視聴者が左眼でLフレーム画像を視聴し、右眼でRフレーム画像を視聴するように、表示装置200によるLフレーム画像及びRフレーム画像の表示に同期した立体視補助動作を行う。この結果、視聴者は、眼鏡装置300を通じて、表示装置200が表示するフレーム画像(Lフレーム画像及びRフレーム画像)を立体的に知覚する(視聴者は、Lフレーム画像及びRフレーム画像中で表現されたオブジェクトを、Lフレーム画像及びRフレーム画像が映し出される表示面に対して、飛び出たように或いは引っ込んだように知覚する)。 The video viewing system 100 includes a left-eye frame image (hereinafter referred to as an L frame image) created so as to be viewed with the left eye, and a right-eye frame created so as to be viewed with the right eye. A display device 200 that displays a frame image including an image (hereinafter referred to as an R frame image) and an eyeglass device 300 that assists viewing of the L frame image and the R frame image displayed by the display device 200 are provided. The eyeglass device 300 is a stereoscopic assistance operation synchronized with the display of the L frame image and the R frame image by the display device 200 so that the viewer views the L frame image with the left eye and the R frame image with the right eye. I do. As a result, the viewer perceives three-dimensionally the frame images (L frame image and R frame image) displayed on the display device 200 through the eyeglass device 300 (the viewer expresses them in the L frame image and the R frame image). The detected object is perceived as popping out or retracting with respect to the display surface on which the L frame image and the R frame image are projected.
 視力矯正用の眼鏡と同様の形状をなす眼鏡装置300は、視聴者の左眼前に配設される左眼シャッタ311と、視聴者の右眼前に配設される右眼シャッタ312とを含む光学シャッタ部310を備える。左眼シャッタ311は、表示装置200がLフレーム画像を表示しているときに開き、表示装置200がRフレーム画像を表示しているときに閉じる。右眼シャッタ312は、表示装置200がLフレーム画像を表示しているときに閉じ、表示装置200がRフレーム画像を表示しているときに開く。表示装置200がLフレーム画像を表示しているときに、Lフレーム画像から視聴者の左眼へ透過する光路が開かれる一方で、Lフレーム画像から視聴者の右眼へ透過する光路が閉じられるので、視聴者は左眼のみでLフレーム画像を視聴する。同様に、表示装置200がRフレーム画像を表示しているときに、Rフレーム画像から視聴者の右眼へ透過する光路が開かれる一方で、Rフレーム画像から視聴者の左眼へ透過する光路が閉じられるので、視聴者は右眼のみでRフレーム画像を視聴する。本実施形態において、左眼シャッタ311は、左眼フィルタとして例示される。また、右眼シャッタ312は、右眼フィルタとして例示される。左眼フィルタ及び右眼フィルタとして、表示装置200が表示する映像から視聴者の左眼へ到達する光の量(以下、左眼光量と称される)及び視聴者の右眼へ到達する光の量(以下、右眼光量と称される)を調整可能に形成された他の光学素子が用いられてもよい。例えば、左眼フィルタ及び右眼フィルタとして、視聴者の左眼及び右眼へ透過する光を偏向する偏向素子(例えば、液晶フィルタ)や光量を調整可能な他の光学素子が好適に用いられる。左眼フィルタは、Lフレーム画像の表示に同期して、左眼光量を増大させる一方で、Rフレーム画像の表示に同期して、左眼光量を低減させるように制御される。同様に、右眼フィルタは、Rフレーム画像の表示に同期して、右眼光量を増大させる一方で、Lフレーム画像の表示に同期して、右眼光量を低減させるように制御される。 An eyeglass device 300 having the same shape as eyesight correction glasses includes an optical system including a left-eye shutter 311 disposed in front of the viewer's left eye and a right-eye shutter 312 disposed in front of the viewer's right eye. A shutter unit 310 is provided. The left eye shutter 311 is opened when the display device 200 is displaying an L frame image, and is closed when the display device 200 is displaying an R frame image. The right eye shutter 312 is closed when the display device 200 is displaying an L frame image, and is opened when the display device 200 is displaying an R frame image. When the display device 200 displays an L frame image, an optical path that passes from the L frame image to the viewer's left eye is opened, while an optical path that passes from the L frame image to the viewer's right eye is closed. Therefore, the viewer views the L frame image only with the left eye. Similarly, when the display device 200 displays an R frame image, an optical path that is transmitted from the R frame image to the viewer's right eye is opened, while an optical path that is transmitted from the R frame image to the viewer's left eye. Is closed, the viewer views the R frame image only with the right eye. In the present embodiment, the left eye shutter 311 is exemplified as a left eye filter. The right eye shutter 312 is exemplified as a right eye filter. As the left eye filter and the right eye filter, the amount of light reaching the viewer's left eye from the image displayed on the display device 200 (hereinafter referred to as the left eye light amount) and the light reaching the viewer's right eye Other optical elements formed so that the amount (hereinafter referred to as right eye light amount) can be adjusted may be used. For example, as the left eye filter and the right eye filter, a deflecting element (for example, a liquid crystal filter) that deflects light transmitted to the left eye and right eye of the viewer and other optical elements that can adjust the light amount are preferably used. The left eye filter is controlled to increase the left eye light amount in synchronization with the display of the L frame image, while reducing the left eye light amount in synchronization with the display of the R frame image. Similarly, the right eye filter is controlled to increase the right eye light amount in synchronization with the display of the R frame image, while reducing the right eye light amount in synchronization with the display of the L frame image.
 表示装置200は、映像信号処理部210、液晶駆動部220、表示部230、第1制御部250及び第2制御部240を備える。 The display device 200 includes a video signal processing unit 210, a liquid crystal driving unit 220, a display unit 230, a first control unit 250, and a second control unit 240.
 映像信号処理部210には、基本となる垂直同期周波数を有する映像信号(左眼用映像信号及び右眼用映像信号)が入力される。映像信号処理部210は、入力された左眼用映像信号(以下、L信号と称される)と右眼用映像信号(以下、R信号と称される)とを、基本となる垂直同期周波数のK倍(Kは自然数)の周波数で、交互に出力する。本実施形態では、入力された60Hzの映像信号が、120HzのL信号及びR信号に変換される。変換を通じて得られたL信号及びR信号は、液晶駆動部220へ出力される。加えて、映像信号処理部210は、L信号及びR信号の出力に同期して、第1制御部250に制御信号を出力する。 The video signal processor 210 receives a video signal (a left-eye video signal and a right-eye video signal) having a basic vertical synchronization frequency. The video signal processing unit 210 uses the input left-eye video signal (hereinafter referred to as an L signal) and the right-eye video signal (hereinafter referred to as an R signal) as a basic vertical synchronization frequency. Are alternately output at a frequency of K times (K is a natural number). In the present embodiment, an input 60 Hz video signal is converted into a 120 Hz L signal and an R signal. The L signal and R signal obtained through the conversion are output to the liquid crystal driving unit 220. In addition, the video signal processing unit 210 outputs a control signal to the first control unit 250 in synchronization with the output of the L signal and the R signal.
 表示部230は、バックライト232を備える。第1制御部250は、映像信号処理部210からの制御信号に基づき、表示部230のバックライト232を制御する。映像信号処理部210は、L信号及びR信号の出力に同期して、第2制御部240を制御するための制御信号を出力する。第2制御部240は、映像信号処理部210からの制御信号に基づき、光学シャッタ部310を制御する。第1制御部250及び/又は第2制御部240へ出力される制御信号は、映像信号処理部210による変換後のL信号及び/又はR信号自体であってもよい。代替的に、L信号及び/又はR信号の120Hzの垂直同期信号であってもよい。 The display unit 230 includes a backlight 232. The first control unit 250 controls the backlight 232 of the display unit 230 based on the control signal from the video signal processing unit 210. The video signal processing unit 210 outputs a control signal for controlling the second control unit 240 in synchronization with the output of the L signal and the R signal. The second control unit 240 controls the optical shutter unit 310 based on the control signal from the video signal processing unit 210. The control signal output to the first control unit 250 and / or the second control unit 240 may be the L signal and / or the R signal itself after conversion by the video signal processing unit 210. Alternatively, a 120 Hz vertical synchronization signal of the L signal and / or the R signal may be used.
 以下の説明において、L信号に含まれる一の垂直同期信号と、該一の垂直同期信号に続いて入力される後続の垂直同期信号との間の映像情報を含む映像信号は、Lフレーム画像信号と称される。また、R信号に含まれる一の垂直同期信号と、該一の垂直同期信号に続いて入力される後続の垂直同期信号との間の映像情報を含む映像信号は、以下の説明において、Rフレーム画像信号と称される。Lフレーム画像信号は、Lフレーム画像を表現するために用いられる。同様に、Rフレーム画像信号は、Rフレーム画像を表現するために用いられる。本実施形態において、Lフレーム画像信号及び/又はRフレーム画像信号は、フレーム画像信号として例示される。 In the following description, a video signal including video information between one vertical synchronization signal included in the L signal and a subsequent vertical synchronization signal input subsequent to the one vertical synchronization signal is an L frame image signal. It is called. Also, a video signal including video information between one vertical synchronization signal included in the R signal and a subsequent vertical synchronization signal input subsequent to the one vertical synchronization signal is an R frame in the following description. This is called an image signal. The L frame image signal is used to represent an L frame image. Similarly, the R frame image signal is used to represent the R frame image. In the present embodiment, the L frame image signal and / or the R frame image signal are exemplified as the frame image signal.
 表示部230は、上述のバックライト232に加えて、液晶を用いてLフレーム画像とRフレーム画像とを時間的に交互に切り換えて、立体的に知覚される画像を表示面に表示する液晶パネル231を備える。バックライト232は、映像信号処理部210からの制御信号に基づき、液晶パネル231に光を照射する。液晶駆動部220は、主走査方向及び副走査方向にフレーム画像信号(Lフレーム画像信号又はRフレーム画像信号)を走査し、液晶パネル231の液晶を駆動する。図2に示されるように、液晶パネル231の幅方向は、フレーム画像信号の主走査方向として例示される。液晶パネル231の上下方向は、フレーム画像信号の副走査方向として例示される。以下の説明において、フレーム画像の表示に用いられる副走査方向の区間(液晶パネル231の上端縁から下端縁までの区間)は、副走査区間Sと称される。液晶駆動部220は、Lフレーム画像信号とRフレーム画像信号とを交互に走査する。この結果、液晶パネル231にLフレーム画像及びRフレーム画像が時間的に交互に表示される。 In addition to the above-described backlight 232, the display unit 230 uses a liquid crystal to alternately switch an L frame image and an R frame image temporally to display a stereoscopically perceived image on the display surface. 231. The backlight 232 irradiates the liquid crystal panel 231 with light based on a control signal from the video signal processing unit 210. The liquid crystal driving unit 220 scans the frame image signal (L frame image signal or R frame image signal) in the main scanning direction and the sub scanning direction, and drives the liquid crystal of the liquid crystal panel 231. As shown in FIG. 2, the width direction of the liquid crystal panel 231 is exemplified as the main scanning direction of the frame image signal. The vertical direction of the liquid crystal panel 231 is exemplified as the sub-scanning direction of the frame image signal. In the following description, a section in the sub-scanning direction (a section from the upper edge to the lower edge of the liquid crystal panel 231) used for frame image display is referred to as a sub-scan section S. The liquid crystal driver 220 scans the L frame image signal and the R frame image signal alternately. As a result, the L frame image and the R frame image are alternately displayed on the liquid crystal panel 231 in terms of time.
 映像信号処理部210は、1つのLフレーム画像に対応して、第1画像信号と、第1画像信号に後続する第2画像信号とを液晶駆動部220へ出力する。同様に、映像信号処理部210は、1つのRフレーム画像に対応して、第1画像信号と、第1画像信号に後続する第2画像信号とを液晶駆動部220へ出力する。第1画像信号は、映像信号処理部210に入力されたフレーム画像信号(Lフレーム画像信号及びRフレーム画像信号)より低い解像度の画像を表す。第2画像信号は、第1画像信号よりも高い解像度の画像を表す。本実施形態において、フレーム画像信号に基づき、第1画像信号と第2画像信号とを生成する映像信号処理部210は、生成部として例示される。また、異なる解像度の画像を表す第1画像信号及び第2画像信号それぞれは、書込画像信号として例示される。 The video signal processing unit 210 outputs a first image signal and a second image signal subsequent to the first image signal to the liquid crystal driving unit 220 corresponding to one L frame image. Similarly, the video signal processing unit 210 outputs a first image signal and a second image signal subsequent to the first image signal to the liquid crystal driving unit 220 corresponding to one R frame image. The first image signal represents an image having a lower resolution than the frame image signals (L frame image signal and R frame image signal) input to the video signal processing unit 210. The second image signal represents an image having a higher resolution than the first image signal. In the present embodiment, the video signal processing unit 210 that generates the first image signal and the second image signal based on the frame image signal is exemplified as the generation unit. In addition, each of the first image signal and the second image signal representing images having different resolutions is exemplified as a writing image signal.
 第1画像信号及び第2画像信号は、液晶駆動部220にそれぞれ入力される。液晶駆動部220は、第1画像信号に基づき、液晶パネル231の表示面に亘って液晶を駆動させる第1走査動作と、第2画像信号に基づき、液晶パネル231の表示面に亘って液晶を駆動させる第2走査動作と、を実行する。尚、第2走査動作は、第1走査動作の後に実行される。上述の如く、第1画像信号は、比較的低い解像度の画像を表すので、液晶駆動部220は、第1走査動作を第2走査動作よりも短期間で実行することができる。この結果、第1走査動作が実行された後であっても、左眼シャッタ311が開く前又は右眼シャッタ312が閉じる前に実行される第2走査動作のための十分に長い時間が確保されることとなる。 The first image signal and the second image signal are input to the liquid crystal driving unit 220, respectively. The liquid crystal driving unit 220 drives the liquid crystal over the display surface of the liquid crystal panel 231 based on the first image signal, and the liquid crystal over the display surface of the liquid crystal panel 231 based on the second image signal. And a second scanning operation to be driven. Note that the second scanning operation is executed after the first scanning operation. As described above, since the first image signal represents an image having a relatively low resolution, the liquid crystal driving unit 220 can execute the first scanning operation in a shorter period of time than the second scanning operation. As a result, even after the first scanning operation is executed, a sufficiently long time for the second scanning operation executed before the left eye shutter 311 is opened or before the right eye shutter 312 is closed is secured. The Rukoto.
 本実施形態において、液晶駆動部220は、書込画像信号として例示される第1画像信号及び第2画像信号に基づき、2回(N=2)の走査動作を実行する。後述される他の実施形態において、映像信号処理部は、フレーム画像信号に基づき異なる解像度の画像を表す第1乃至第3画像信号を書込画像信号として生成並びに出力する。液晶駆動部は、第1乃至第3画像信号に基づき、3回(N=3)の走査動作を実行する。後述される更に他の実施形態において、映像信号処理部は、フレーム画像信号に基づき異なる解像度の画像を表す第1乃至第N画像信号を書込画像信号として生成並びに出力する。液晶駆動部は、第1乃至第N画像信号に基づき、N回の走査動作を実行する。尚、Nは、2以上の整数であり、液晶駆動部は、例えば、4回或いはそれ以上の走査動作を実行してもよい。以下の説明において、「N」は、液晶駆動部の走査動作の総数を意味する。また、「n」は、1以上N未満の整数を意味する。 In the present embodiment, the liquid crystal driving unit 220 performs the scanning operation twice (N = 2) based on the first image signal and the second image signal exemplified as the writing image signal. In another embodiment to be described later, the video signal processing unit generates and outputs first to third image signals representing different resolution images based on the frame image signal as write image signals. The liquid crystal driving unit performs three (N = 3) scanning operations based on the first to third image signals. In yet another embodiment to be described later, the video signal processing unit generates and outputs first to Nth image signals representing images of different resolutions as write image signals based on the frame image signal. The liquid crystal driver performs N scanning operations based on the first to Nth image signals. Note that N is an integer equal to or greater than 2, and the liquid crystal driving unit may execute, for example, four or more scanning operations. In the following description, “N” means the total number of scanning operations of the liquid crystal driving unit. “N” means an integer of 1 or more and less than N.
 本実施形態(N=2)において、1回目の走査動作に用いられる第1画像信号は、2回目の走査動作に用いられた第2画像信号が表す画像よりも低い解像度の画像を表す。後述される他の実施形態(N=3)において、1回目の走査動作に用いられる第1画像信号は、2回目の走査動作に用いられた第2画像信号が表す画像よりも低い解像度の画像を表す。また、2回目の走査動作に用いられる第2画像信号は、3回目の走査動作に用いられた第3画像信号が表す画像よりも低い解像度の画像を表す。必要に応じて、第1画像信号及び第2画像信号は、等しい解像度の画像を表してもよい。また、第2画像信号及び第3画像信号は、等しい解像度の画像を表してもよい。液晶駆動部が4回の走査動作を行うならば、1回目の走査動作に用いられる第1画像信号は、2回目の走査動作に用いられた第2画像信号が表す画像よりも低い解像度の画像を表す。また、2回目の走査動作に用いられる第2画像信号は、3回目の走査動作に用いられた第3画像信号が表す画像よりも低い解像度の画像を表す。3回目の走査動作に用いられる第3画像信号は、4回目の走査動作に用いられた第4画像信号が表す画像よりも低い解像度の画像を表す。必要に応じて、第1画像信号及び第2画像信号は、等しい解像度の画像を表してもよい。第2画像信号及び第3画像信号は、等しい解像度の画像を表してもよい。また、第3画像信号及び第4画像信号は、等しい解像度の画像を表してもよい。即ち、n回の走査動作によって走査された書込画像信号は、(n+1)回目の走査動作によって走査された書込画像信号と比べて低い解像度の画像を表す少なくとも1つの書込画像信号を含めばよい。 In the present embodiment (N = 2), the first image signal used for the first scanning operation represents an image having a lower resolution than the image represented by the second image signal used for the second scanning operation. In another embodiment (N = 3) described later, the first image signal used for the first scanning operation is an image having a lower resolution than the image represented by the second image signal used for the second scanning operation. Represents. The second image signal used for the second scanning operation represents an image having a lower resolution than the image represented by the third image signal used for the third scanning operation. If necessary, the first image signal and the second image signal may represent images of equal resolution. Further, the second image signal and the third image signal may represent images having the same resolution. If the liquid crystal driving unit performs four scanning operations, the first image signal used for the first scanning operation is an image having a lower resolution than the image represented by the second image signal used for the second scanning operation. Represents. The second image signal used for the second scanning operation represents an image having a lower resolution than the image represented by the third image signal used for the third scanning operation. The third image signal used for the third scanning operation represents an image having a lower resolution than the image represented by the fourth image signal used for the fourth scanning operation. If necessary, the first image signal and the second image signal may represent images of equal resolution. The second image signal and the third image signal may represent images of equal resolution. Further, the third image signal and the fourth image signal may represent images having the same resolution. That is, the written image signal scanned by the nth scanning operation includes at least one written image signal representing an image having a lower resolution than the written image signal scanned by the (n + 1) th scanning operation. That's fine.
 液晶駆動部220は、第1画像信号及び第2画像信号に含まれる垂直同期信号及び水平同期信号にしたがって、第1画像信号及び第2画像信号を、液晶パネル231が表示可能な形式に変換する。液晶駆動部220は、液晶パネル231上のフレーム画像の表示ごとに変換された第1画像信号及び第2画像信号のフレーム画像信号を用いて、第1走査動作と第2走査動作とをそれぞれ実行する。 The liquid crystal driver 220 converts the first image signal and the second image signal into a format that the liquid crystal panel 231 can display according to the vertical synchronization signal and the horizontal synchronization signal included in the first image signal and the second image signal. . The liquid crystal driving unit 220 performs a first scanning operation and a second scanning operation using the frame image signals of the first image signal and the second image signal converted for each display of the frame image on the liquid crystal panel 231. To do.
 上述の液晶駆動部220による液晶の駆動によって、液晶パネル231は、入力された第1画像信号と第2画像信号とに応じて、背面から入射する光を変調する。この結果、液晶パネル231は、左眼で視聴されるように作成されたLフレーム画像と、右眼で視聴されるように作成されたRフレーム画像とを交互に表示する。液晶パネル231には、例えば、IPS(In Plane Switching)方式や、VA(Vertical Alignment)方式やTN(Twisted Nematic)方式といった様々な駆動方式が好適に適用される。 The liquid crystal panel 231 modulates light incident from the back according to the input first image signal and second image signal by driving the liquid crystal by the liquid crystal driving unit 220 described above. As a result, the liquid crystal panel 231 alternately displays an L frame image created to be viewed with the left eye and an R frame image created to be viewed with the right eye. For the liquid crystal panel 231, for example, various driving methods such as an IPS (In-Plane-Switching) method, a VA (Vertical-Alignment) method, and a TN (Twisted-Nematic) method are suitably applied.
 バックライト232は、液晶パネル231の背面から液晶パネル231の表示面に向けて光を照射する。本実施形態において、バックライト232として、面発光するように二次元配列された複数の発光ダイオード(LED)(図示せず)が用いられている。代替的に、バックライト232として、面発光するように配列された複数の蛍光管が用いられてもよい。バックライト232として用いられる発光ダイオードや蛍光管は、液晶パネル231の縁部に配設され、面発光を生じさせてもよい(エッジタイプ)。 The backlight 232 irradiates light from the back surface of the liquid crystal panel 231 toward the display surface of the liquid crystal panel 231. In the present embodiment, a plurality of light emitting diodes (LEDs) (not shown) that are two-dimensionally arranged so as to emit light are used as the backlight 232. Alternatively, a plurality of fluorescent tubes arranged to emit light may be used as the backlight 232. A light emitting diode or a fluorescent tube used as the backlight 232 may be disposed at the edge of the liquid crystal panel 231 to cause surface light emission (edge type).
 第1制御部250は、映像信号処理部210から出力された120Hzの制御信号を基準に発光制御信号を出力する。バックライト232は、発光制御信号に基づき明滅可能である。 The first control unit 250 outputs a light emission control signal based on the 120 Hz control signal output from the video signal processing unit 210. The backlight 232 can blink based on the light emission control signal.
 第2制御部240は、眼鏡装置300の光学シャッタ部310を、Lフレーム画像及びRフレーム画像の表示周期に合わせて制御する。第2制御部240は、左眼シャッタ311を制御するための左眼用のフィルタ制御部241(以下、Lフィルタ制御部241と称される)と、右眼シャッタ312を制御するための右眼用のフィルタ制御部242(以下、Rフィルタ制御部242と称される)とを備える。液晶パネル231がLフレーム画像及びRフレーム画像を、例えば、120Hzで交互に表示するとき、Lフィルタ制御部241は、左眼シャッタ311が60Hzの周期で左眼光量を調整する(増減させる)ように眼鏡装置300を制御する。同様に、Rフィルタ制御部242は、右眼シャッタ312が60Hzの周期で右眼光量を調整する(増減させる)ように眼鏡装置300を制御する。 The second control unit 240 controls the optical shutter unit 310 of the eyeglass device 300 according to the display period of the L frame image and the R frame image. The second control unit 240 includes a left-eye filter control unit 241 for controlling the left-eye shutter 311 (hereinafter referred to as an L filter control unit 241) and a right-eye for controlling the right-eye shutter 312. Filter control unit 242 (hereinafter referred to as R filter control unit 242). For example, when the liquid crystal panel 231 alternately displays an L frame image and an R frame image at 120 Hz, the L filter control unit 241 causes the left eye shutter 311 to adjust (increase or decrease) the left eye light amount at a cycle of 60 Hz. The eyeglass device 300 is controlled. Similarly, the R filter control unit 242 controls the eyeglass device 300 so that the right eye shutter 312 adjusts (increases or decreases) the right eye light amount at a cycle of 60 Hz.
 図2に示される如く、本実施形態において、表示装置200は、Lフレーム画像の表示に同期する第1同期信号を送信する第1送信部243と、Rフレーム画像の表示に同期する第2同期信号を送信する第2送信部244とを備える。また、眼鏡装置300は、左眼シャッタ311と右眼シャッタ312との間に配設される受信部320を備える。受信部320は、第1同期信号及び第2同期信号を受信する。第1同期信号の波形は、好ましくは、第2同期信号の波形と異なる。受信部320は、受信された同期信号の波形に基づき、第1同期信号と第2同期信号とを識別する。かくして、眼鏡装置300は、第1同期信号に基づき、左眼シャッタ311を動作させる。また、眼鏡装置300は、第2同期信号に基づき、右眼シャッタ312を動作させる。表示装置200と眼鏡装置300との間の同期信号の無線通信並びに眼鏡装置300による同期信号(第1同期信号及び第2同期信号)の内部処理に対して、既知の他の通信技術並びに既知の他の信号処理技術が用いられてもよい。代替的に、表示装置200と眼鏡装置300との間の同期信号(第1同期信号及び第2同期信号)の通信が、有線式に行われてもよい。また、左眼用映像の表示に同期する第1同期信号を送信する第1送信部243と、右眼用映像の表示に同期する第2同期信号を送信する第2送信部244とを共通化して1つの送信部としてもよい。この場合、左眼用映像の表示及び右眼用映像の表示は、共通化された同期信号の立ち上がりに交互に同期されてもよい。 As shown in FIG. 2, in the present embodiment, the display device 200 includes a first transmission unit 243 that transmits a first synchronization signal that is synchronized with the display of an L frame image, and a second synchronization that is synchronized with the display of an R frame image. And a second transmission unit 244 that transmits a signal. The eyeglass device 300 includes a receiving unit 320 disposed between the left eye shutter 311 and the right eye shutter 312. The receiving unit 320 receives the first synchronization signal and the second synchronization signal. The waveform of the first synchronization signal is preferably different from the waveform of the second synchronization signal. The receiving unit 320 identifies the first synchronization signal and the second synchronization signal based on the waveform of the received synchronization signal. Thus, the eyeglass device 300 operates the left eye shutter 311 based on the first synchronization signal. Further, the eyeglass device 300 operates the right eye shutter 312 based on the second synchronization signal. With respect to wireless communication of a synchronization signal between the display device 200 and the eyeglass device 300 and internal processing of the synchronization signals (first synchronization signal and second synchronization signal) by the eyeglass device 300, other known communication techniques and known Other signal processing techniques may be used. Alternatively, communication of synchronization signals (first synchronization signal and second synchronization signal) between the display device 200 and the eyeglass device 300 may be performed in a wired manner. Further, the first transmission unit 243 that transmits the first synchronization signal that is synchronized with the display of the left-eye video and the second transmission unit 244 that transmits the second synchronization signal that is synchronized with the display of the right-eye video are shared. One transmitter may be used. In this case, the display of the left-eye video and the display of the right-eye video may be alternately synchronized with the rising edge of the common synchronization signal.
 Lフィルタ制御部241及びRフィルタ制御部242は、映像信号処理部210からの制御信号を基準とし、左眼シャッタ311による左眼光量の増減周期の位相及び右眼シャッタ312による右眼光量の増減周期の位相を決定する。Lフィルタ制御部241及びRフィルタ制御部242は、決定された位相に従い、第1同期信号及び第2同期信号を出力する。左眼シャッタ311及び右眼シャッタ312それぞれは、第1同期信号及び第2同期信号に基づき、Lフレーム画像の表示及びRフレーム画像の表示に同期して、左眼光量及び右眼光量を増減させる。 The L filter control unit 241 and the R filter control unit 242 use the control signal from the video signal processing unit 210 as a reference, and the phase of the increase / decrease period of the left eye light amount by the left eye shutter 311 and the increase / decrease of the right eye light amount by the right eye shutter 312. Determine the phase of the period. The L filter control unit 241 and the R filter control unit 242 output the first synchronization signal and the second synchronization signal according to the determined phase. Each of the left eye shutter 311 and the right eye shutter 312 increases or decreases the left eye light amount and the right eye light amount in synchronization with the display of the L frame image and the display of the R frame image based on the first synchronization signal and the second synchronization signal. .
 第2制御部240は、液晶パネル231の応答特性並びに表示されるLフレーム画像とRフレーム画像との間のクロストーク(相互干渉)を考慮して、左眼シャッタ311及び右眼シャッタ312それぞれが左眼光量及び右眼光量を増大させている期間(以下、光量増大期間と称される)の長さと、光量増大期間のタイミング(位相)を決定する。Lフィルタ制御部241は、左眼光量に対する光量増大期間の長さ及びタイミングを制御する。Rフィルタ制御部242は、右眼光量に対する光量増大期間の長さ及びタイミングを制御する。 The second control unit 240 considers the response characteristics of the liquid crystal panel 231 and the crosstalk (mutual interference) between the displayed L frame image and R frame image, so that each of the left eye shutter 311 and the right eye shutter 312 The length of the period during which the left eye light amount and right eye light amount are increased (hereinafter referred to as the light amount increase period) and the timing (phase) of the light amount increase period are determined. The L filter control unit 241 controls the length and timing of the light amount increase period with respect to the left eye light amount. The R filter control unit 242 controls the length and timing of the light amount increase period with respect to the right eye light amount.
 映像信号処理部210の120Hzの制御信号に基づき動作する第1制御部250は、左眼シャッタ311及び右眼シャッタ312による光量調整の動作に同期してバックライト232を発光させる発光制御信号を出力する。バックライト232は、発光制御信号に基づき、明滅することができる。尚、本実施形態において、バックライト232は、第1制御部250の制御下で、常時点灯している。したがって、視聴者がフレーム画像を視聴することができる視聴期間のタイミング及び長さは、眼鏡装置300の光学シャッタ部310の動作によって定められる。 The first control unit 250 that operates based on the 120 Hz control signal of the video signal processing unit 210 outputs a light emission control signal that causes the backlight 232 to emit light in synchronization with the light amount adjustment operation by the left eye shutter 311 and the right eye shutter 312. To do. The backlight 232 can blink based on the light emission control signal. In the present embodiment, the backlight 232 is always lit under the control of the first control unit 250. Therefore, the timing and length of the viewing period during which the viewer can view the frame image is determined by the operation of the optical shutter unit 310 of the eyeglass device 300.
 代替的に、第1制御部は、第2制御部によって調整される光量増大期間中の一部の期間或いは光量増大期間と略一致する期間において、バックライトを点灯させ、他の期間においてバックライトを消灯させてもよい。このような第1制御部によるバックライトの明滅制御下において、視聴者がフレーム画像を視聴することができる視聴期間のタイミング及び長さは、バックライトの明滅動作によって定められる。 Alternatively, the first control unit turns on the backlight during a part of the light amount increase period adjusted by the second control unit or a period substantially coincident with the light amount increase period, and the backlight in other periods. May be turned off. Under such backlight blinking control by the first control unit, the timing and length of the viewing period during which the viewer can view the frame image is determined by the backlight blinking operation.
 (映像信号処理部)
 図3は、本実施形態に従う表示装置200の映像信号処理部210の機能構成を概略的に示すブロック図である。図1及び図3を用いて、映像信号処理部210が説明される。
(Video signal processor)
FIG. 3 is a block diagram schematically showing a functional configuration of the video signal processing unit 210 of the display device 200 according to the present embodiment. The video signal processing unit 210 will be described with reference to FIGS. 1 and 3.
 映像信号処理部210は、第1等価部211、第1選択部212、第1遅延部213、第2等価部214、第2遅延部215、第3遅延部216、第1補正部217、第2補正部218、第2選択部219及び出力部221を備える。 The video signal processing unit 210 includes a first equivalent unit 211, a first selection unit 212, a first delay unit 213, a second equivalent unit 214, a second delay unit 215, a third delay unit 216, a first correction unit 217, 2 correction unit 218, second selection unit 219, and output unit 221.
 第1等価部211及び第2等価部214は、後述される等価処理を行う。液晶駆動部220は、等価処理を通じて得られた第1画像信号を、比較的短期間で液晶パネル231の表示面に亘って走査する。第1遅延部213,第2遅延部215及び第3遅延部216は、入力された信号をそれぞれ遅延させて出力する。第1補正部217及び第2補正部218は、後述されるオーバードライブ処理を行う。オーバードライブ処理によって、画素の輝度は比較的短期間で変化する。第1選択部212及び第2選択部219は、複数の入力信号を走査期間(第1画像信号が走査される第1走査期間,第2画像信号が走査される第2走査期間)に合わせて選択的に出力する。出力部221は、第1画像信号及び第2画像信号を液晶駆動部220に出力する。 The first equivalent unit 211 and the second equivalent unit 214 perform equivalent processing described later. The liquid crystal drive unit 220 scans the first image signal obtained through the equivalent process over the display surface of the liquid crystal panel 231 in a relatively short period of time. The first delay unit 213, the second delay unit 215, and the third delay unit 216 respectively delay the input signal and output the delayed signal. The first correction unit 217 and the second correction unit 218 perform an overdrive process described later. By the overdrive process, the luminance of the pixel changes in a relatively short period. The first selection unit 212 and the second selection unit 219 match a plurality of input signals with a scanning period (a first scanning period in which the first image signal is scanned and a second scanning period in which the second image signal is scanned). Selectively output. The output unit 221 outputs the first image signal and the second image signal to the liquid crystal driving unit 220.
 (等価処理(平均化処理))
 図4は、液晶パネル231の一部を概略的に示す模式図である。図5は、等価処理として例示される平均化処理を通じて設定される画素の輝度変化を示す。図1、図3乃至図5を用いて、平均化処理が説明される。
(Equivalent processing (averaging))
FIG. 4 is a schematic diagram schematically showing a part of the liquid crystal panel 231. FIG. 5 shows the luminance change of the pixels set through the averaging process exemplified as the equivalent process. The averaging process is described with reference to FIGS. 1, 3 to 5.
 液晶パネル231は、主走査方向に延びる複数のゲート線と、副走査方向に延びる複数のデータ線と、を含む。図4には、副走査方向に整列したゲート線L乃至L16及び主走査方向に整列したデータ線M乃至M32が示されている。各ゲート線L乃至L16と各データ線M乃至M32との交点には、画素P及び画素Pに対応する液晶(図示せず)がそれぞれ割り当てられる。各ゲート線L乃至L16と各データ線M乃至M32とに印加される電圧に応じて、液晶の駆動量が定められる。 The liquid crystal panel 231 includes a plurality of gate lines extending in the main scanning direction and a plurality of data lines extending in the sub-scanning direction. FIG. 4 shows gate lines L 1 to L 16 aligned in the sub-scanning direction and data lines M 1 to M 32 aligned in the main scanning direction. A pixel P and a liquid crystal (not shown) corresponding to the pixel P are respectively assigned to the intersections of the gate lines L 1 to L 16 and the data lines M 1 to M 32 . The driving amount of the liquid crystal is determined according to the voltage applied to each of the gate lines L 1 to L 16 and each of the data lines M 1 to M 32 .
 図5には、ゲート線L乃至Lとデータ線M及びMとのそれぞれの交点に対応する画素P1乃至P8が示されている。図3に示される如く、第1等価部211にはフレーム画像信号(Lフレーム画像信号及びRフレーム画像信号)が直接的に入力される。また、フレーム画像信号は、第1遅延部213を介して、第2等価部214に入力される。第1等価部211及び第2等価部214は、副走査方向に整列した複数の画素を含む画素グループ(図5中、点線で囲まれる画素の組)を設定する。図5には、データ線M上に整列した画素P1,P2の組を含む画素グループG1,データ線M上に整列した画素P3,P4の組を含む画素グループG2,データ線M上に整列した画素P5,P6の組を含む画素グループG3及びデータ線M上に整列した画素P7,P8の組を含む画素グループG4が示されている。 5, the gate line L 1 to L 4 and the data lines M 1 and the pixel P1 to P8 corresponding to each of intersections of the M 2 is shown. As shown in FIG. 3, a frame image signal (L frame image signal and R frame image signal) is directly input to the first equivalent unit 211. In addition, the frame image signal is input to the second equivalent unit 214 via the first delay unit 213. The first equivalent unit 211 and the second equivalent unit 214 set a pixel group (a group of pixels surrounded by a dotted line in FIG. 5) including a plurality of pixels aligned in the sub-scanning direction. Figure 5, a pixel group including a set of pixels P1, P2 aligned on the data lines M 1 G1, pixel group includes a set of pixel P3, P4 aligned on the data lines M 1 G2, the data line M 2 above pixel group G4 including a set of pixels P7, P8 aligned on the pixel group G3 and the data lines M 2 comprises a set of pixels P5, P6 aligned is shown in.
 図5中の各画素内に示された数値は、画素に対して割り当てられた輝度を示す。フレーム画像信号は、例えば、画素P1,P3に対して、「40」の輝度を規定し、画素P2,P4,P6,P8に対して、「60」の輝度を規定し、画素P5,P7に対して、「80」の輝度を規定している。第1等価部211及び第2等価部214は、各画素グループG1,G2,G3,G4内で輝度を平均化する。第1等価部211及び第2等価部214は、画素グループG1中の画素P1,P2に対して規定された「40」の輝度と「60」の輝度とを平均化し、「50」の輝度を画素P1,P2に設定する。第1等価部211及び第2等価部214は、画素グループG2中の画素P3,P4に対して規定された「40」の輝度と「60」の輝度とを平均化し、「50」の輝度を画素P3,P4に設定する。第1等価部211及び第2等価部214は、画素グループG3中の画素P5,P6に対して規定された「80」の輝度と「60」の輝度とを平均化し、「70」の輝度を画素P5,P6に設定する。第1等価部211及び第2等価部214は、画素グループG4中の画素P7,P8に対して規定された「80」の輝度と「60」の輝度とを平均化し、「70」の輝度を画素P7,P8に設定する。図4に示される如く、上述の平均化処理は、ゲート線L乃至L16と各データ線M乃至M32との交点に対応する全ての画素Pに対して実行される。本実施形態において、フレーム画像信号が画素Pそれぞれに対して規定する輝度は、目標輝度として例示される。フレーム画像信号が画素グループ内の画素に対して規定した目標輝度の平均値は、平均輝度として例示される。 The numerical value shown in each pixel in FIG. 5 indicates the luminance assigned to the pixel. The frame image signal defines, for example, a luminance of “40” for the pixels P1 and P3, a luminance of “60” for the pixels P2, P4, P6, and P8, and the pixels P5 and P7. On the other hand, a luminance of “80” is defined. The first equivalent unit 211 and the second equivalent unit 214 average the luminance within each pixel group G1, G2, G3, G4. The first equivalent unit 211 and the second equivalent unit 214 average the luminance of “40” and the luminance of “60” defined for the pixels P1 and P2 in the pixel group G1, and obtain the luminance of “50”. Set to pixels P1 and P2. The first equivalent unit 211 and the second equivalent unit 214 average the luminance of “40” and the luminance of “60” defined for the pixels P3 and P4 in the pixel group G2, and obtain the luminance of “50”. Set to pixels P3 and P4. The first equivalent unit 211 and the second equivalent unit 214 average the luminance of “80” and the luminance of “60” defined for the pixels P5 and P6 in the pixel group G3, and obtain the luminance of “70”. Set to pixels P5 and P6. The first equivalent unit 211 and the second equivalent unit 214 average the luminance of “80” and the luminance of “60” defined for the pixels P7 and P8 in the pixel group G4 to obtain the luminance of “70”. Set to pixels P7 and P8. As shown in FIG. 4, the above-described averaging process is executed for all the pixels P corresponding to the intersections of the gate lines L 1 to L 16 and the data lines M 1 to M 32 . In the present embodiment, the luminance defined by the frame image signal for each pixel P is exemplified as the target luminance. The average value of the target luminance defined by the frame image signal for the pixels in the pixel group is exemplified as the average luminance.
 (等価処理(選択処理))
 図6は、液晶パネル231の一部を概略的に示す模式図である。図7は、等価処理として例示される選択処理を通じて設定される画素の輝度変化を示す。図1、図3、図6及び図7を用いて、平均化処理が説明される。
(Equivalent processing (selection processing))
FIG. 6 is a schematic diagram schematically showing a part of the liquid crystal panel 231. FIG. 7 shows the luminance change of the pixel set through the selection process exemplified as the equivalent process. The averaging process is described with reference to FIGS. 1, 3, 6, and 7.
 液晶パネル231は、主走査方向に延びる複数のゲート線と、副走査方向に延びる複数のデータ線と、を含む。図6には、副走査方向に整列したゲート線L乃至L16及び主走査方向に整列したデータ線M乃至M32が示されている。各ゲート線L乃至L16と各データ線M乃至M32との交点には、画素P及び画素Pに対応する液晶(図示せず)がそれぞれ割り当てられる。各ゲート線L乃至L16と各データ線M乃至M32とに印加される電圧に応じて、液晶の駆動量が定められる。 The liquid crystal panel 231 includes a plurality of gate lines extending in the main scanning direction and a plurality of data lines extending in the sub-scanning direction. FIG. 6 shows gate lines L 1 to L 16 aligned in the sub-scanning direction and data lines M 1 to M 32 aligned in the main scanning direction. A pixel P and a liquid crystal (not shown) corresponding to the pixel P are respectively assigned to the intersections of the gate lines L 1 to L 16 and the data lines M 1 to M 32 . The driving amount of the liquid crystal is determined according to the voltage applied to each of the gate lines L 1 to L 16 and each of the data lines M 1 to M 32 .
 図7には、ゲート線L乃至Lとデータ線M及びMとのそれぞれの交点に対応する画素P1乃至P8が示されている。第1等価部211及び第2等価部214は、副走査方向に整列した複数の画素を含む画素グループ(図7中、点線で囲まれる画素の組)を設定する。図7には、データ線M上に整列した画素P1,P2の組を含む画素グループG1,データ線M上に整列した画素P3,P4の組を含む画素グループG2,データ線M上に整列した画素P5,P6の組を含む画素グループG3及びデータ線M上に整列した画素P7,P8の組を含む画素グループG4が示されている。 7, the gate line L 1 to L 4 and the data lines M 1 and the pixel P1 to P8 corresponding to each of intersections of the M 2 is shown. The first equivalent unit 211 and the second equivalent unit 214 set a pixel group (a group of pixels surrounded by a dotted line in FIG. 7) including a plurality of pixels aligned in the sub-scanning direction. Figure 7, a pixel group including a set of pixels P1, P2 aligned on the data lines M 1 G1, pixel group G2 includes a set of pixel P3, P4 aligned on the data lines M 1, the upper data line M 2 pixel group G4 including a set of pixels P7, P8 aligned on the pixel group G3 and the data lines M 2 comprises a set of pixels P5, P6 aligned is shown in.
 図7中の各画素P1乃至P8内に示された数値は、画素P1乃至P8それぞれに対して割り当てられた輝度を示す。フレーム画像信号は、例えば、画素P1,P3に対して、「40」の輝度を規定し、画素P2,P4,P6,P8に対して、「60」の輝度を規定し、画素P5,P7に対して、「80」の輝度を規定している。第1等価部211及び第2等価部214は、各画素グループG1,G2,G3,G4内で輝度を選択する。第1等価部211及び第2等価部214は、奇数番号のゲート線上の画素P1,P3,P5,P7に対して規定された輝度を選択し、画素グループG1,G2,G3,G4内の他の画素P2,P4,P6,P8に選択された輝度をそれぞれ割り当てる。したがって、画素グループG1内の画素P1,P2並びに画素グループG2内の画素P3,P4内の画素P3,P4の輝度は、「40」に設定される。また、画素グループG3内の画素P5,P6並びに画素グループG4内の画素P7,P8の輝度は、「80」に設定される。代替的に、第1等価部211及び第2等価部214は、フレーム画像信号が画素グループ内の画素に対して定めた輝度のうち、大きい方或いは小さい方を選択してもよい。更に代替的に、第1等価部211及び第2等価部214は、他の適切な基準に基づき、第1画像信号を生成するための輝度を選択してもよい。図6に示される如く、上述の選択処理は、ゲート線L乃至L16と各データ線M乃至M32との交点に対応する全ての画素Pに対して実行される。本実施形態において、第1等価部211及び第2等価部214によって選択された輝度は、選択輝度として例示される。 The numerical values shown in each of the pixels P1 to P8 in FIG. 7 indicate the luminance assigned to each of the pixels P1 to P8. The frame image signal defines, for example, a luminance of “40” for the pixels P1 and P3, a luminance of “60” for the pixels P2, P4, P6, and P8, and the pixels P5 and P7. On the other hand, a luminance of “80” is defined. The first equivalent unit 211 and the second equivalent unit 214 select luminance within each pixel group G1, G2, G3, G4. The first equivalent unit 211 and the second equivalent unit 214 select the luminance defined for the pixels P1, P3, P5, and P7 on the odd-numbered gate lines, and the others in the pixel groups G1, G2, G3, and G4. The selected luminance is assigned to each of the pixels P2, P4, P6, and P8. Accordingly, the luminance of the pixels P1 and P2 in the pixel group G1 and the pixels P3 and P4 in the pixels P3 and P4 in the pixel group G2 are set to “40”. Further, the luminance of the pixels P5 and P6 in the pixel group G3 and the pixels P7 and P8 in the pixel group G4 are set to “80”. Alternatively, the first equivalent unit 211 and the second equivalent unit 214 may select the larger or smaller one of the luminances determined by the frame image signal for the pixels in the pixel group. Further alternatively, the first equivalent unit 211 and the second equivalent unit 214 may select the luminance for generating the first image signal based on other appropriate criteria. As shown in FIG. 6, the selection process described above is executed for all pixels P corresponding to the intersections of the gate lines L 1 to L 16 and the data lines M 1 to M 32 . In the present embodiment, the luminance selected by the first equivalent unit 211 and the second equivalent unit 214 is exemplified as the selected luminance.
 (第1走査動作及び第2走査動作)
 第1画像信号を走査するための第1走査動作及び第2画像信号を走査するための第2走査動作が以下に説明される。
(First scanning operation and second scanning operation)
A first scanning operation for scanning the first image signal and a second scanning operation for scanning the second image signal will be described below.
 第1等価部211及び第2等価部214は、フレーム画像信号に対して、上述の平均化処理を行い、平均化信号を出力する。或いは、第1等価部211及び第2等価部214は、フレーム画像信号に対して、上述の選択処理を行い、選択信号を出力する。 The first equivalent unit 211 and the second equivalent unit 214 perform the above-described averaging process on the frame image signal and output an average signal. Or the 1st equivalent part 211 and the 2nd equivalent part 214 perform the above-mentioned selection process with respect to a frame image signal, and output a selection signal.
 図3に示される如く、平均化信号又は選択信号は、第1選択部212,第1補正部217及び第2補正部218へ入力される。第1補正部217は、上述の平均輝度又は選択輝度に対する補正値を規定する補正信号を第2選択部219に出力する。第2補正部218は、フレーム画像信号が規定する目標輝度に対する補正値を規定する補正信号を第2選択部219に出力する。 As shown in FIG. 3, the averaged signal or the selection signal is input to the first selection unit 212, the first correction unit 217, and the second correction unit 218. The first correction unit 217 outputs a correction signal that defines a correction value for the above-described average luminance or selection luminance to the second selection unit 219. The second correction unit 218 outputs a correction signal that defines a correction value for the target luminance defined by the frame image signal to the second selection unit 219.
 本実施形態及び以下に示される一連の他の実施形態の原理は、上述の等価処理によって得られた信号を用いて、比較的短い走査動作を1若しくはそれ以上の回数行うことに特徴付けられる。当該特徴的な原理は、図3のブロック図よりも簡素化された構成で達成可能である。例えば、第1遅延部、第2等価部、第2遅延部、第3遅延部、第1補正部、第2補正部及び第2選択部は省略されてもよい。第1等価部は、走査回数に応じて、画素グループを設定し、平均化信号又は選択信号を第1選択部に出力する。第1選択部は、走査回数に応じて、平均化信号又は選択信号或いはRフレーム画像信号又はLフレーム画像信号を、出力部を介して、液晶駆動部へ出力する。かくして、比較的簡素化された信号処理の下、多回の走査動作が実行される。 The principle of this embodiment and a series of other embodiments shown below is characterized in that a relatively short scanning operation is performed one or more times using the signal obtained by the above-described equivalent processing. The characteristic principle can be achieved with a simplified configuration than the block diagram of FIG. For example, the first delay unit, the second equivalent unit, the second delay unit, the third delay unit, the first correction unit, the second correction unit, and the second selection unit may be omitted. The first equivalent unit sets a pixel group according to the number of scans, and outputs an average signal or a selection signal to the first selection unit. The first selection unit outputs an average signal, a selection signal, an R frame image signal, or an L frame image signal to the liquid crystal drive unit via the output unit according to the number of scans. Thus, multiple scanning operations are performed under relatively simplified signal processing.
 後述される第1遅延部、第2等価部、第2遅延部、第3遅延部、第1補正部、第2補正部及び第2選択部は、上述の特徴的な原理に加え、より速く液晶を駆動させるためのオーバードライブ処理に寄与する。以下の説明において、オーバードライブ処理を伴う多数回走査が説明される。必要に応じて、オーバードライブ処理は省略されてもよい。 A first delay unit, a second equivalent unit, a second delay unit, a third delay unit, a first correction unit, a second correction unit, and a second selection unit, which will be described later, are faster in addition to the characteristic principle described above. This contributes to overdrive processing for driving the liquid crystal. In the following description, multiple scans with overdrive processing will be described. The overdrive process may be omitted as necessary.
 図8A及び図8Bは、出力部221の処理を概略的に示す。図3、図8A及び図8Bを用いて、出力部221の処理が説明される。尚、図8A及び図8Bは、図7に関連して説明された選択処理によって生成された選択信号に対する出力部221の処理を示す。図8A及び図8Bに関連して説明される出力部221の処理の原理は、図7に関連して説明された平均化処理によって生成された平均化信号に対する出力部221の処理にも同様に適用される。 8A and 8B schematically show processing of the output unit 221. FIG. The processing of the output unit 221 will be described with reference to FIGS. 3, 8A, and 8B. 8A and 8B show the process of the output unit 221 for the selection signal generated by the selection process described with reference to FIG. The principle of the processing of the output unit 221 described with reference to FIGS. 8A and 8B is the same as the processing of the output unit 221 with respect to the averaged signal generated by the averaging processing described with reference to FIG. Applied.
 図8Aは、第1画像信号を出力する出力部221の処理を示す。図8Bは、第2画像信号を出力する出力部221の処理を示す。 FIG. 8A shows processing of the output unit 221 that outputs the first image signal. FIG. 8B shows processing of the output unit 221 that outputs the second image signal.
 第1画像信号の走査が行われる第1走査期間において、第1選択部212は、選択信号を出力部221に出力し、第2選択部219は、第1補正部217によって生成された補正信号を出力部221に出力する。出力部221は、選択信号が規定する選択輝度と、第1補正部217によって生成された補正信号が規定する補正値とを加算する。 In the first scanning period in which scanning of the first image signal is performed, the first selection unit 212 outputs a selection signal to the output unit 221, and the second selection unit 219 generates a correction signal generated by the first correction unit 217. Is output to the output unit 221. The output unit 221 adds the selection luminance specified by the selection signal and the correction value specified by the correction signal generated by the first correction unit 217.
 図8Aに示される如く、第1補正部217によって生成された補正信号は、画素グループG1,G2,G3,G4内の画素に対して、等しい補正値を規定する。図8Aにおいて、画素グループG1内の画素P1,P2に対して、「C1」の補正値が規定されている。画素グループG2内の画素P3,P4に対して、「C2」の補正値が規定されている。画素グループG3内の画素P5,P6に対して、「C3」の補正値が規定されている。画素グループG4内の画素P7,P8に対して、「C4」の補正値が規定されている。かくして、出力部221は、画素グループG1,G2,G3,G4内の画素に共通する等価輝度を規定する第1画像信号を生成する。本実施形態において、第1画像信号は、等価信号として例示される。また、平均輝度又は選択輝度と第1補正部217によって生成された補正信号が規定する補正値との加算によって規定される輝度は等価輝度として例示される。 8A, the correction signal generated by the first correction unit 217 defines equal correction values for the pixels in the pixel groups G1, G2, G3, and G4. In FIG. 8A, a correction value of “C1” is defined for the pixels P1 and P2 in the pixel group G1. A correction value “C2” is defined for the pixels P3 and P4 in the pixel group G2. A correction value of “C3” is defined for the pixels P5 and P6 in the pixel group G3. A correction value of “C4” is defined for the pixels P7 and P8 in the pixel group G4. Thus, the output unit 221 generates a first image signal that defines the equivalent luminance common to the pixels in the pixel groups G1, G2, G3, and G4. In the present embodiment, the first image signal is exemplified as an equivalent signal. Further, the luminance defined by adding the average luminance or the selected luminance and the correction value defined by the correction signal generated by the first correction unit 217 is exemplified as equivalent luminance.
 図3に示される如く、フレーム画像信号は、第1選択部212及び第2補正部218に入力される。第2補正部218は、画素ごとに個別に補正値を設定する。図8Bに示される如く、画素P1乃至P8に対して、補正値「D1」乃至「D8」がそれぞれ規定されている。補正値「D1」乃至「D8」は、それぞれ異なる輝度値であってもよい。第2補正部218は、補正値「D1」乃至「D8」を規定する補正信号を第2選択部219に出力する。 3, the frame image signal is input to the first selection unit 212 and the second correction unit 218. The second correction unit 218 sets a correction value for each pixel individually. As shown in FIG. 8B, correction values “D1” to “D8” are defined for the pixels P1 to P8, respectively. The correction values “D1” to “D8” may be different brightness values. The second correction unit 218 outputs a correction signal that defines the correction values “D1” to “D8” to the second selection unit 219.
 第2画像信号の走査が行われる第2走査期間において、第1選択部212は、フレーム画像信号を出力部221に出力し、第2選択部219は、第2補正部218によって生成された補正信号を出力部221に出力する。出力部221は、フレーム画像信号が規定する目標輝度と、第1補正部217によって生成された補正信号が規定する補正値とを加算する。したがって、第1画像信号と異なり、第2画像信号は、画素ごとに異なる輝度を規定してもよい。図8A及び図8Bそれぞれに示される画素P1乃至P8中に示された輝度値は、第1走査期間及び第2走査期間における駆動輝度として例示される。 In the second scanning period in which the scanning of the second image signal is performed, the first selection unit 212 outputs the frame image signal to the output unit 221, and the second selection unit 219 corrects the correction generated by the second correction unit 218. The signal is output to the output unit 221. The output unit 221 adds the target luminance defined by the frame image signal and the correction value defined by the correction signal generated by the first correction unit 217. Therefore, unlike the first image signal, the second image signal may define different luminance for each pixel. The brightness values shown in the pixels P1 to P8 shown in FIGS. 8A and 8B are exemplified as the drive brightness in the first scanning period and the second scanning period.
 図9A及び図9Bは、液晶駆動部220が行う走査動作を示す概略的なグラフである。図9Aは、第1画像信号に基づく第1走査動作を示す。図9Bは、第2画像信号に基づく第2走査動作を示す。図9A及び図9Bは、ゲート線L乃至L12までの走査動作を示す。図9A及び図9Bの横軸は、ゲート線L乃至L12までの走査動作を行っている時間軸である。図9A及び図9Bの縦軸は、液晶パネル231の副走査方向に位置を表す。図1、図8A乃至図9Bを用いて、第1走査動作及び第2走査動作が説明される。 9A and 9B are schematic graphs showing a scanning operation performed by the liquid crystal driving unit 220. FIG. FIG. 9A shows a first scanning operation based on the first image signal. FIG. 9B shows a second scanning operation based on the second image signal. 9A and 9B show the scanning operation from the gate lines L 1 to L 12 . The horizontal axis in FIGS. 9A and 9B is a time axis during which the scanning operation from the gate lines L 1 to L 12 is performed. The vertical axis in FIGS. 9A and 9B represents the position of the liquid crystal panel 231 in the sub-scanning direction. The first scanning operation and the second scanning operation are described with reference to FIGS. 1 and 8A to 9B.
 第1画像信号は、図8Aに関連して説明された如く、副走査方向に整列した画素を含む画素グループG1,G2,G3,G4内の画素に対して、等しい輝度を規定する。したがって、液晶駆動部220は、ゲート線L2t-1,L2t上に第1画像信号を同時に書き込むことができる。この結果、ゲート線L2t-1,L2t上の画素に対応する液晶は、同時に駆動される。 As described with reference to FIG. 8A, the first image signal defines equal luminance for the pixels in the pixel groups G1, G2, G3, and G4 including the pixels aligned in the sub-scanning direction. Accordingly, the liquid crystal driver 220 can simultaneously write the first image signal on the gate lines L 2t−1 and L 2t . As a result, the liquid crystals corresponding to the pixels on the gate lines L 2t-1 and L 2t are driven simultaneously.
 第2画像信号は、図8Bに関連して説明された如く、画素ごとに異なる輝度を潜在的に規定する。したがって、液晶駆動部220は、ゲート線Lから下端のゲート線に向けて、順次、第2画像信号を書き込む。 The second image signal potentially defines a different brightness for each pixel, as described in connection with FIG. 8B. Thus, the liquid crystal driver 220, toward the gate line L 1 to the gate line of the lower end, sequentially writes the second image signal.
 本実施形態において、第1走査動作を行う液晶駆動部220は、2つのゲート線L2t-1,L2tの組に同時に第1画像信号の書き込みを行うので、ゲート線L12までの書き込みを完了するまでの第1走査動作の期間T1は、ゲート線L12までの書き込みを完了するまでの第2走査動作の期間T2の半分となる。比較的短期間で行われる第1走査動作によって、液晶パネル231の液晶の駆動が表示面全体に亘って早期に開始されるので、特に表示面下部領域におけるクロストークが低減される。 In the present embodiment, the liquid crystal driving unit 220 that performs the first scanning operation simultaneously writes the first image signal to the pair of the two gate lines L 2t−1 and L 2t , so that the writing up to the gate line L 12 is performed. period of the first scan operation to complete T1 is half of the period T2 of the second scanning operation to complete writing to the gate line L 12. The first scanning operation performed in a relatively short period of time starts driving the liquid crystal of the liquid crystal panel 231 at an early stage over the entire display surface, thereby reducing crosstalk particularly in the lower region of the display surface.
 図8Aに関連して説明された第1画像信号の生成の原理並びに図9Aに関連して説明された走査期間の短縮の原理は、後述される他の実施形態にも同様に適用される。例えば、液晶駆動部が3回の走査動作を行うならば(N=3)、1回目の走査動作に用いられる第1画像信号を生成するために、映像信号処理部は、例えば、副走査方向に整列した4つの画素を含む画素グループを規定する。また、2回目の走査動作に用いられる第2画像信号を生成するために、映像信号処理部は、副走査方向に整列した2つの画素を含む画素グループを規定する。更に、3回目の走査動作に用いられる第3画像信号を生成するために、映像信号処理部は、単一の画素からなる画素グループを規定する。この結果、第1画像信号が走査される第1走査期間は、第2画像信号が走査される第2走査期間の半分の長さとなる。また、第2走査期間は、第3画像信号が走査される第3走査期間の半分の長さとなる。 The principle of generation of the first image signal described in relation to FIG. 8A and the principle of shortening of the scanning period described in relation to FIG. 9A are similarly applied to other embodiments described later. For example, if the liquid crystal driving unit performs the scanning operation three times (N = 3), the video signal processing unit, for example, generates the first image signal used in the first scanning operation. Defines a group of pixels including four pixels aligned with each other. In order to generate the second image signal used for the second scanning operation, the video signal processing unit defines a pixel group including two pixels aligned in the sub-scanning direction. Further, in order to generate the third image signal used for the third scanning operation, the video signal processing unit defines a pixel group including a single pixel. As a result, the first scanning period during which the first image signal is scanned is half the length of the second scanning period during which the second image signal is scanned. The second scanning period is half the length of the third scanning period during which the third image signal is scanned.
 液晶駆動部が4回の走査動作を行うならば、1回目の走査動作に用いられる第1画像信号を生成するために、映像信号処理部は、例えば、副走査方向に整列した8つの画素を含む画素グループを規定する。また、2回目の走査動作に用いられる第2画像信号を生成するために、映像信号処理部は、副走査方向に整列した4つの画素を含む画素グループを規定する。更に、3回目の走査動作に用いられる第3画像信号を生成するために、映像信号処理部は、副走査方向に整列した2つの画素を含む画素グループを規定する。また、4回目の走査動作に用いられる第4画像信号を生成するために、映像信号処理部は、単一の画素を含む画素グループを規定する。この結果、第1画像信号が走査される第1走査期間は、第2画像信号が走査される第2走査期間の半分の長さとなる。また、第2走査期間は、第3画像信号が走査される第3走査期間の半分の長さとなる。更に、第3走査期間は、第4画像信号が走査される第4走査期間の半分の長さとなる。即ち、(n+1)回目の走査動作によって走査された書込画像信号と比べて低い解像度の画像を表す書込画像信号は、図9A及び図9Bに関連して説明された原理に従って、(n+1)回目の走査動作によって走査された書込画像信号よりも短い時間で書き込まれる。また、(n+1)回目の走査動作によって走査された書込画像信号は、(n+1)回目の走査動作によって走査された書込画像信号と比べて低い解像度の画像を表す書込画像信号の生成に用いられた画素グループの画素の数よりも少ない数の画素を含む画素グループを用いて生成される。 If the liquid crystal driving unit performs four scanning operations, the video signal processing unit, for example, generates eight pixels aligned in the sub-scanning direction in order to generate a first image signal used for the first scanning operation. Define the pixel group to include. In order to generate the second image signal used for the second scanning operation, the video signal processing unit defines a pixel group including four pixels aligned in the sub-scanning direction. Further, in order to generate a third image signal used for the third scanning operation, the video signal processing unit defines a pixel group including two pixels aligned in the sub-scanning direction. Further, in order to generate a fourth image signal used for the fourth scanning operation, the video signal processing unit defines a pixel group including a single pixel. As a result, the first scanning period during which the first image signal is scanned is half the length of the second scanning period during which the second image signal is scanned. The second scanning period is half the length of the third scanning period during which the third image signal is scanned. Further, the third scanning period is half the length of the fourth scanning period during which the fourth image signal is scanned. That is, the write image signal representing an image having a lower resolution than the write image signal scanned by the (n + 1) -th scanning operation is (n + 1) according to the principle described with reference to FIGS. 9A and 9B. Writing is performed in a shorter time than the writing image signal scanned by the second scanning operation. Further, the writing image signal scanned by the (n + 1) th scanning operation is used to generate a writing image signal representing an image having a lower resolution than the writing image signal scanned by the (n + 1) th scanning operation. The pixel group is generated using a pixel group including a smaller number of pixels than the number of pixels of the used pixel group.
 (信号出力)
 図10は、映像信号処理部210中の信号の出力図である。図11は、第1走査期間における映像信号処理部210中の信号の出力を表す概略的なブロック図である。図12は、第2走査期間における映像信号処理部210中の信号の出力を表す概略的なブロック図である。図4乃至図8B並びに図10乃至図12を用いて、映像信号処理部210中の信号の出力が説明される。
(Signal output)
FIG. 10 is an output diagram of signals in the video signal processing unit 210. FIG. 11 is a schematic block diagram showing output of signals in the video signal processing unit 210 in the first scanning period. FIG. 12 is a schematic block diagram showing output of signals in the video signal processing unit 210 in the second scanning period. The signal output in the video signal processing unit 210 will be described with reference to FIGS. 4 to 8B and FIGS.
 図10には、X番目のLフレーム画像を表示するための左眼期間、X番目のRフレーム画像を表示するための右眼期間、(X+1)番目のLフレーム画像を表示するための左眼期間及び(X+1)番目のRフレーム画像を表示するための右眼期間が示されている。以下の説明において、X番目のRフレーム画像を表示するための右眼期間における信号の出力が説明される。尚、他の期間においても、X番目のRフレーム画像を表示するための右眼期間における信号の出力の原理は同様に適用される。以下の説明において、X番目のLフレーム画像は、先行フレーム画像として例示される。また、X番目のRフレーム画像は、後続フレーム画像として例示される。 FIG. 10 shows a left eye period for displaying the Xth L frame image, a right eye period for displaying the Xth R frame image, and a left eye for displaying the (X + 1) th L frame image. A period and a right eye period for displaying the (X + 1) th R frame image are shown. In the following description, output of a signal in the right eye period for displaying the Xth R frame image will be described. In other periods, the principle of signal output in the right eye period for displaying the Xth R frame image is similarly applied. In the following description, the Xth L frame image is exemplified as the preceding frame image. The Xth R frame image is exemplified as the subsequent frame image.
 図11に示される如く、X番目のRフレーム画像信号SRx(2)が映像信号処理部210に入力されると、第1走査期間において、第1等価部211は、図6及び図7に関連して説明された選択処理を実行し、選択信号SRx(1)を生成並びに出力する。選択信号SRx(1)は、第1選択部212、第1補正部217及び第2遅延部215へ入力される。図10乃至図12に関連する説明において、第1等価部211及び第2等価部214は、図6及び図7に関連して説明された選択処理を行う。代替的に、第1等価部211及び第2等価部214は、図4及び図5に関連して説明された平均化処理を行ってもよい。 As shown in FIG. 11, when the Xth R frame image signal SRx (2) is input to the video signal processing unit 210, the first equivalent unit 211 relates to FIGS. 6 and 7 in the first scanning period. The selection process described above is executed, and the selection signal SRx (1) is generated and output. The selection signal SRx (1) is input to the first selection unit 212, the first correction unit 217, and the second delay unit 215. 10 to 12, the first equivalent unit 211 and the second equivalent unit 214 perform the selection process described with reference to FIGS. 6 and 7. Alternatively, the first equivalent unit 211 and the second equivalent unit 214 may perform the averaging process described with reference to FIGS. 4 and 5.
 第1遅延部213は、直前のX番目のLフレーム画像を表示するための左眼期間において、X番目のLフレーム画像信号SLx(2)を取得している。第1遅延部213は、Lフレーム画像信号SLx(2)を遅延させ、後続のX番目のRフレーム画像を表示するための右眼期間の第1走査期間に第2等価部214及び第2補正部218へ出力する。本実施形態において、X番目のLフレーム画像を表示するためのLフレーム画像信号SLx(2)は、先行フレーム画像信号として例示される。X番目のRフレーム画像を表示するためのRフレーム画像信号SRx(2)は、後続フレーム画像信号として例示される。 The first delay unit 213 acquires the Xth L frame image signal SLx (2) in the left eye period for displaying the immediately previous Xth L frame image. The first delay unit 213 delays the L frame image signal SLx (2) and performs the second equivalent unit 214 and the second correction in the first scanning period of the right eye period for displaying the subsequent Xth R frame image. To the unit 218. In the present embodiment, the L frame image signal SLx (2) for displaying the Xth L frame image is exemplified as the preceding frame image signal. The R frame image signal SRx (2) for displaying the Xth R frame image is exemplified as the subsequent frame image signal.
 第2等価部214は、図6及び図7に関連して説明された選択処理を実行し、選択信号SLx(1)を生成並びに出力する。選択信号SLx(1)は、第1補正部217及び第3遅延部216へ入力される。 The second equivalent unit 214 executes the selection process described with reference to FIGS. 6 and 7, and generates and outputs the selection signal SLx (1). The selection signal SLx (1) is input to the first correction unit 217 and the third delay unit 216.
 第1補正部217は、選択信号SRx(1)及び選択信号SLx(1)に基づき、第1補正信号CRx(1)を生成する。図8A及び図8Bに関連して説明された如く、第1補正信号CRx(1)が画素グループ内の画素に対して規定する補正値は等しい。第1補正信号CRx(1)は、第2選択部219へ出力される。 The first correction unit 217 generates the first correction signal CRx (1) based on the selection signal SRx (1) and the selection signal SLx (1). As described with reference to FIGS. 8A and 8B, the correction values defined by the first correction signal CRx (1) for the pixels in the pixel group are equal. The first correction signal CRx (1) is output to the second selection unit 219.
 第1選択部212及び第2選択部219は、同期して、選択信号SRx(1)及び第1補正信号CRx(1)をそれぞれ出力部221へ出力する。図8A及び図8Bに関連して説明された如く、出力部221は、選択信号SRx(1)が規定する選択輝度と第1補正信号CRx(1)が規定する補正値とを加算し、第1画像信号IRx(1)を生成する。第1画像信号IRx(1)は、液晶駆動部220へ出力される。 The first selection unit 212 and the second selection unit 219 output the selection signal SRx (1) and the first correction signal CRx (1) to the output unit 221 in synchronization. As described with reference to FIGS. 8A and 8B, the output unit 221 adds the selected luminance defined by the selection signal SRx (1) and the correction value defined by the first correction signal CRx (1), One image signal IRx (1) is generated. The first image signal IRx (1) is output to the liquid crystal driving unit 220.
 図12に示される如く、X番目のRフレーム画像信号SRx(2)は、第1等価部211だけでなく、第1選択部212へ入力される。第2走査期間において、第1選択部212は、Rフレーム画像信号SRx(2)を出力する。 As shown in FIG. 12, the Xth R frame image signal SRx (2) is input not only to the first equivalent unit 211 but also to the first selection unit 212. In the second scanning period, the first selection unit 212 outputs the R frame image signal SRx (2).
 X番目のRフレーム画像信号SRx(2)は、更に、第2補正部218に入力される。第2遅延部215は、第1走査期間において取得された選択信号SRx(1)を遅延させ、第2走査期間において、遅延された選択信号SRx(1d)として、第2補正部218へ出力する。第3遅延部216は、第1走査期間において取得された選択信号SLx(1)を遅延させ、第2走査期間において、遅延された選択信号SLx(1d)として、第2補正部218へ出力する。第2補正部218には、第1遅延部213からLフレーム画像信号SLx(2)が更に入力される。第2補正部218は、Rフレーム画像信号SRx(2),Lフレーム画像信号SLx(2),選択信号SRx(1d)及び選択信号SLx(1d)を用いて、図8A及び図8Bに関連して説明された補正値を決定し、第2補正信号CRx(2)を第2選択部219に出力する。 The Xth R frame image signal SRx (2) is further input to the second correction unit 218. The second delay unit 215 delays the selection signal SRx (1) acquired in the first scanning period, and outputs the selection signal SRx (1d) delayed in the second scanning period to the second correction unit 218. . The third delay unit 216 delays the selection signal SLx (1) acquired in the first scanning period, and outputs the delayed selection signal SLx (1d) to the second correction unit 218 in the second scanning period. . The second correction unit 218 further receives the L frame image signal SLx (2) from the first delay unit 213. The second correction unit 218 uses the R frame image signal SRx (2), the L frame image signal SLx (2), the selection signal SRx (1d), and the selection signal SLx (1d) to relate to FIGS. 8A and 8B. The second correction signal CRx (2) is output to the second selection unit 219.
 第1選択部212及び第2選択部219は、同期して、Rフレーム画像信号SRx(2)及び第2補正信号CRx(2)をそれぞれ出力部221へ出力する。図8A及び図8Bに関連して説明された如く、出力部221は、Rフレーム画像信号SRx(2)が規定する目標輝度と第2補正信号CRx(2)が規定する補正値とを加算し、第2画像信号IRx(2)を生成する。第2画像信号IRx(2)は、液晶駆動部220へ出力される。 The first selection unit 212 and the second selection unit 219 output the R frame image signal SRx (2) and the second correction signal CRx (2) to the output unit 221 in synchronization with each other. As described with reference to FIGS. 8A and 8B, the output unit 221 adds the target luminance defined by the R frame image signal SRx (2) and the correction value defined by the second correction signal CRx (2). The second image signal IRx (2) is generated. The second image signal IRx (2) is output to the liquid crystal driving unit 220.
 (オーバードライブ処理)
 第1補正部217及び第2補正部218による補正値の算出並びに出力部221による加算処理は、オーバードライブ処理として例示される。図11に関連して説明された如く、第1補正部217は、第1画像信号IRx(1)の走査が行われる第1走査期間におけるオーバードライブ処理に寄与する。図12に関連して説明された如く、第2補正部218は、第2画像信号IRx(2)の走査が行われる第2走査期間におけるオーバードライブ処理に寄与する。
(Overdrive processing)
Calculation of correction values by the first correction unit 217 and the second correction unit 218 and addition processing by the output unit 221 are exemplified as overdrive processing. As described with reference to FIG. 11, the first correction unit 217 contributes to the overdrive process in the first scanning period in which the first image signal IRx (1) is scanned. As described with reference to FIG. 12, the second correction unit 218 contributes to the overdrive process in the second scanning period in which the scanning of the second image signal IRx (2) is performed.
 (第1補正部)
 図13は、第1補正部217が格納する第1補正テーブルの概念図である。図1、図7、図8A、図8B、図11及び図13を用いて、第1補正部217が説明される。尚、以下の説明において、第1等価部211及び第2等価部214は、選択処理を行っている。代替的に、第1等価部211及び第2等価部214は、平均化処理を行っていてもよい。
(First correction unit)
FIG. 13 is a conceptual diagram of a first correction table stored in the first correction unit 217. The first correction unit 217 is described with reference to FIGS. 1, 7, 8 </ b> A, 8 </ b> B, 11, and 13. In the following description, the first equivalent unit 211 and the second equivalent unit 214 perform selection processing. Alternatively, the first equivalent unit 211 and the second equivalent unit 214 may perform an averaging process.
 第1補正部217は、第1補正信号CRx(1)を生成するための第1補正テーブル222を格納する。第1補正部217には、上述の如く、第1等価部211からの選択信号SRx(1)及び第2等価部214からの選択信号SLx(1)が入力される。上述の如く、第2等価部214は、第1遅延部213によって遅延されたフレーム画像信号に基づき、選択信号SLx(1)を出力する。図13に示される第1補正テーブル222中の第1等価部211からの入力に対応する座標軸は、第1等価部211からの選択信号SRx(1)が規定する現行選択輝度を示す。第1補正テーブル222中の第2等価部214からの入力に対応する座標軸は、第2等価部214からの選択信号SLx(1)が規定する先行選択輝度を示す。 The first correction unit 217 stores a first correction table 222 for generating the first correction signal CRx (1). As described above, the selection signal SRx (1) from the first equivalent unit 211 and the selection signal SLx (1) from the second equivalent unit 214 are input to the first correction unit 217. As described above, the second equivalent unit 214 outputs the selection signal SLx (1) based on the frame image signal delayed by the first delay unit 213. The coordinate axis corresponding to the input from the first equivalent unit 211 in the first correction table 222 shown in FIG. 13 indicates the current selected luminance defined by the selection signal SRx (1) from the first equivalent unit 211. The coordinate axis corresponding to the input from the second equivalent unit 214 in the first correction table 222 indicates the preceding selection luminance defined by the selection signal SLx (1) from the second equivalent unit 214.
 第1補正部217は、第1等価部211からの選択信号SRx(1)に規定される現行選択輝度と、第2等価部214からの選択信号SLx(1)に規定される先行選択輝度と、に基づき、画素P1乃至P8それぞれに対して、第1補正値を決定し、第1補正値の情報を含む第1補正信号CRx(1)を第2選択部219へ出力する。尚、図8A及び図8Bに関連して説明された如く、第1補正部217は、画素グループG1,G2,G3,G4内の画素に対して、等しい値の第1補正値を規定する。第1補正値の絶対値は、例えば、現行選択輝度と先行選択輝度との差が大きいほど、大きくなるように設定される。また、現行選択輝度が先行選択輝度よりも大きいならば、第1補正値は、正の値に設定される。現行選択輝度が先行選択輝度より小さいならば、第1補正値は負の値に設定される。後述されるように、選択された第1補正値に応じて、第1走査期間中に達成される画素P1乃至P8の輝度が変動する。 The first correction unit 217 includes the current selection luminance defined by the selection signal SRx (1) from the first equivalent unit 211 and the preceding selection luminance defined by the selection signal SLx (1) from the second equivalent unit 214. , The first correction value is determined for each of the pixels P1 to P8, and the first correction signal CRx (1) including the information of the first correction value is output to the second selection unit 219. As described with reference to FIGS. 8A and 8B, the first correction unit 217 defines first correction values having equal values for the pixels in the pixel groups G1, G2, G3, and G4. For example, the absolute value of the first correction value is set so as to increase as the difference between the current selection luminance and the preceding selection luminance increases. Further, if the current selected luminance is greater than the preceding selected luminance, the first correction value is set to a positive value. If the current selection luminance is smaller than the previous selection luminance, the first correction value is set to a negative value. As will be described later, the luminance of the pixels P1 to P8 achieved during the first scanning period varies according to the selected first correction value.
 図11に示される如く、第1走査期間において、出力部221には、第1等価部211によって生成された選択信号SRx(1)及び第1補正部217によって生成された第1補正信号CRx(1)が入力される。 As illustrated in FIG. 11, in the first scanning period, the output unit 221 includes the selection signal SRx (1) generated by the first equivalent unit 211 and the first correction signal CRx ( 1) is input.
 出力部221は、第1等価部211によって生成された選択信号SRx(1)が規定する現行選択輝度と、第1補正信号CRx(1)が規定する第1補正値と、を加算する。上述の如く、現行選択輝度が先行選択輝度よりも大きいならば、第1補正値は、正の値に設定されるので、出力部221によって算出された加算値は、現行選択輝度よりも大きくなる。現行選択輝度が先行選択輝度よりも小さいならば、第1補正値は、負の値に設定されるので、出力部221によって算出された加算値は、現行選択輝度よりも小さくなる。上述の如く、第1等価部211は、画素グループG1,G2,G3,G4内の画素に対して、等しい値の現行選択輝度を規定している。また、第1補正部217は、画素グループG1,G2,G3,G4内の画素に対して、等しい値の第1補正値を規定している。したがって、画素グループG1,G2,G3,G4内の現行選択輝度と第1補正値との加算値は等しい値となる。第1走査動作が行われる第1走査期間において、出力部221は、算出された加算値の情報を含む第1画像信号IRx(1)を液晶駆動部220へ出力する。本実施形態において、現行選択輝度と第1補正値との加算値は、第1走査期間における駆動輝度として例示される。尚、第1等価部211及び第2等価部214が、選択処理に代えて、平均化処理を行うならば、第1等価部211が出力する平均化信号が規定する現行平均輝度と第2等価部214が出力する平均化信号が規定する平均輝度とに基づいて、第1補正値が決定される。また、第1補正値と現行平均輝度とに基づいて、駆動輝度が決定される。 The output unit 221 adds the current selected luminance defined by the selection signal SRx (1) generated by the first equivalent unit 211 and the first correction value defined by the first correction signal CRx (1). As described above, if the current selection luminance is larger than the previous selection luminance, the first correction value is set to a positive value, so that the added value calculated by the output unit 221 is larger than the current selection luminance. . If the current selected luminance is smaller than the previous selected luminance, the first correction value is set to a negative value, so that the added value calculated by the output unit 221 is smaller than the current selected luminance. As described above, the first equivalent unit 211 defines the current selected luminance with an equal value for the pixels in the pixel groups G1, G2, G3, and G4. The first correction unit 217 defines the first correction value having the same value for the pixels in the pixel groups G1, G2, G3, and G4. Therefore, the added value of the current selected luminance in the pixel groups G1, G2, G3, and G4 and the first correction value are equal. In the first scanning period in which the first scanning operation is performed, the output unit 221 outputs the first image signal IRx (1) including information on the calculated addition value to the liquid crystal driving unit 220. In the present embodiment, the added value of the current selected luminance and the first correction value is exemplified as the driving luminance in the first scanning period. Note that if the first equivalent unit 211 and the second equivalent unit 214 perform an averaging process instead of the selection process, the current equivalent luminance defined by the average signal output by the first equivalent unit 211 and the second equivalent luminance are defined. The first correction value is determined based on the average luminance defined by the averaged signal output from the unit 214. Further, the drive brightness is determined based on the first correction value and the current average brightness.
 液晶駆動部220は、第1画像信号IRx(1)に基づき、液晶パネル231の液晶を駆動する。上述の如く、第1画像信号IRx(1)が画素グループG1,G2,G3,G4内の画素に対して規定する駆動輝度は等しい値である。第1走査期間において、液晶駆動部220は、画素グループG1内で等しく設定された駆動輝度に向けて、画素P1,P2それぞれに対応する液晶を同時に駆動する。また、液晶駆動部220は、画素グループG3内で等しく設定された駆動輝度に向けて、画素P5,P6それぞれに対応する液晶を同時に駆動する。ゲート線L,Lに対応する水平同期信号に基づき、ゲート線L,Lに対応する画素に対する液晶の駆動が開始される。この結果、液晶駆動部220は、画素グループG2内で等しく設定された駆動輝度に向けて、画素P3,P4それぞれに対応する液晶を同時に駆動する。また、液晶駆動部220は、画素グループG4内で等しく設定された駆動輝度に向けて、画素P7,P8それぞれに対応する液晶を同時に駆動する。本実施形態において、第1補正値と現行平均輝度とに基づいて決定された駆動輝度は、等価輝度として例示される。 The liquid crystal driver 220 drives the liquid crystal of the liquid crystal panel 231 based on the first image signal IRx (1). As described above, the drive luminances defined by the first image signal IRx (1) for the pixels in the pixel groups G1, G2, G3, and G4 are equal values. In the first scanning period, the liquid crystal driver 220 simultaneously drives the liquid crystals corresponding to the pixels P1 and P2 toward the drive luminance set equally in the pixel group G1. In addition, the liquid crystal drive unit 220 drives the liquid crystals corresponding to the pixels P5 and P6 at the same time toward the drive luminance set equally in the pixel group G3. Based on the horizontal synchronizing signal corresponding to the gate line L 1, L 2, the driving of the liquid crystal is started for the pixels corresponding to the gate line L 1, L 2. As a result, the liquid crystal driving unit 220 simultaneously drives the liquid crystals corresponding to the pixels P3 and P4 toward the driving luminance set equally in the pixel group G2. In addition, the liquid crystal drive unit 220 drives the liquid crystals corresponding to the pixels P7 and P8 at the same time toward the drive luminance set equally in the pixel group G4. In the present embodiment, the drive luminance determined based on the first correction value and the current average luminance is exemplified as equivalent luminance.
 (第2補正部)
 図14は、第2補正部218が格納する第2補正テーブルの概念図である。図1、図12乃至図14を用いて、第2補正部218が説明される。尚、以下の説明において、第1等価部211及び第2等価部214は、選択処理を行っている。代替的に、第1等価部211及び第2等価部214は、平均化処理を行っていてもよい。
(Second correction unit)
FIG. 14 is a conceptual diagram of a second correction table stored in the second correction unit 218. The second correction unit 218 will be described with reference to FIGS. 1, 12 to 14. In the following description, the first equivalent unit 211 and the second equivalent unit 214 perform selection processing. Alternatively, the first equivalent unit 211 and the second equivalent unit 214 may perform an averaging process.
 第2補正部218は、第2補正信号を生成するための第2補正テーブル223を格納する。第2補正テーブル223は、第2走査動作が開始されるときに画素が達成している輝度に対する期待値を決定するための期待値テーブル224と、期待値とフレーム画像信号とに基づき、第2走査が行われるときの駆動輝度を決定するための決定テーブル225と、を含む。本実施形態において、液晶駆動部220は、2回の走査動作を行う(N=2)。したがって、期待値テーブル224は、2回目の走査動作が開始されるときに画素が達成している輝度に対する期待値に関する期待値データを格納する。後述される実施形態の如く、液晶駆動部が2回以上の走査動作を行うならば、期待値テーブルは、(n+1)回目の走査動作が行われるときに画素が達成している輝度に対する期待値に関する期待値データを格納してもよい。 The second correction unit 218 stores a second correction table 223 for generating a second correction signal. The second correction table 223 is based on the expected value table 224 for determining the expected value for the luminance achieved by the pixel when the second scanning operation is started, and the second correction table 223 based on the expected value and the frame image signal. And a determination table 225 for determining drive luminance when scanning is performed. In the present embodiment, the liquid crystal driver 220 performs two scanning operations (N = 2). Therefore, the expected value table 224 stores expected value data related to the expected value for the luminance achieved by the pixel when the second scanning operation is started. If the liquid crystal driving unit performs the scanning operation twice or more as in the embodiment described later, the expected value table indicates the expected value for the luminance achieved by the pixel when the (n + 1) th scanning operation is performed. Expected value data related to may be stored.
 期待値テーブル224は、第1遅延部213からのLフレーム画像信号SLx(2)、第2遅延部215からの選択信号SRx(1d)及び第3遅延部216からの選択信号SLx(1d)が入力される入力テーブル226と、駆動輝度が決定される画素の副走査方向に位置に基づき、入力テーブル226からの出力値を調整するための調整テーブル227と、を含む。 The expected value table 224 includes the L frame image signal SLx (2) from the first delay unit 213, the selection signal SRx (1d) from the second delay unit 215, and the selection signal SLx (1d) from the third delay unit 216. An input table 226 to be input and an adjustment table 227 for adjusting an output value from the input table 226 based on the position in the sub-scanning direction of the pixel for which drive luminance is determined are included.
 入力テーブル226には、上述の如く、第1遅延部213からのLフレーム画像信号SLx(2)、第2遅延部215からの選択信号SRx(1d)及び第3遅延部216からの選択信号SLx(1d)が入力される。図14に示される入力テーブル226中の第2遅延部215からの入力に対応する座標軸は、第2遅延部215からの選択信号SRx(1d)が規定する現行選択輝度を示す。入力テーブル226中の第3遅延部216からの入力に対応する座標軸は、第3遅延部216からの選択信号SLx(1d)が規定する先行選択輝度を示す。尚、第2遅延部215からの選択信号SRx(1d)が規定する現行選択輝度及び第3遅延部216からの選択信号SLx(1d)が規定する先行選択輝度は、図13に関連して説明された現行選択輝度及び先行選択輝度と等しい値である。 As described above, the input table 226 includes the L frame image signal SLx (2) from the first delay unit 213, the selection signal SRx (1d) from the second delay unit 215, and the selection signal SLx from the third delay unit 216. (1d) is input. The coordinate axis corresponding to the input from the second delay unit 215 in the input table 226 shown in FIG. 14 indicates the current selection luminance defined by the selection signal SRx (1d) from the second delay unit 215. The coordinate axis corresponding to the input from the third delay unit 216 in the input table 226 indicates the pre-selected luminance defined by the selection signal SLx (1d) from the third delay unit 216. The current selection luminance defined by the selection signal SRx (1d) from the second delay unit 215 and the preceding selection luminance defined by the selection signal SLx (1d) from the third delay unit 216 will be described with reference to FIG. The same value as the current selected luminance and the previous selected luminance.
 図15は、先行するLフレーム画像信号SLx(2)が規定する目標輝度と後続のRフレーム画像信号SRx(2)が規定する目標輝度との差異が与える画素の輝度変化に対する影響を概略的に示すグラフである。図7、図14及び図15を用いて、入力テーブル226が更に説明される。 FIG. 15 schematically shows the influence of the difference between the target luminance defined by the preceding L frame image signal SLx (2) and the target luminance defined by the subsequent R frame image signal SRx (2) on the luminance change of the pixel. It is a graph to show. The input table 226 is further described with reference to FIGS. 7, 14, and 15.
 図15中、水平方向に延びる直線HLは、Rフレーム画像信号SRx(2)が規定する目標輝度を示す。図15中の曲線CV1は、先行するLフレーム画像信号SLx(2)が規定する目標輝度と後続のRフレーム画像信号SRx(2)が規定する目標輝度との差異が小さいときの画素の輝度変化を表す。図15中の曲線CV2は、先行するLフレーム画像信号SLx(2)が規定する目標輝度と後続のRフレーム画像信号SRx(2)が規定する目標輝度との差異が大きいときの画素の輝度変化を表す。尚、時間「0」における曲線CV1,CV2の値は、それぞれ、先行するLフレーム画像信号SLx(2)が規定する目標輝度に相当する。図15に示される如く、先行するLフレーム画像信号SLx(2)が規定する目標輝度と後続のRフレーム画像信号SRx(2)が規定する目標輝度との差異が小さいとき、画素の輝度は、Rフレーム画像信号SRx(2)が規定する目標輝度に比較的早期に到達する。一方、先行するLフレーム画像信号SLx(2)が規定する目標輝度と後続のRフレーム画像信号SRx(2)が規定する目標輝度との差異が大きいとき、画素の輝度がRフレーム画像信号SRx(2)の目標輝度に到達するまでの期間は長くなる。 In FIG. 15, a straight line HL extending in the horizontal direction indicates the target luminance defined by the R frame image signal SRx (2). A curve CV1 in FIG. 15 indicates a change in luminance of the pixel when the difference between the target luminance defined by the preceding L frame image signal SLx (2) and the target luminance defined by the subsequent R frame image signal SRx (2) is small. Represents. A curve CV2 in FIG. 15 indicates a change in luminance of a pixel when the difference between the target luminance defined by the preceding L frame image signal SLx (2) and the target luminance defined by the subsequent R frame image signal SRx (2) is large. Represents. The values of the curves CV1 and CV2 at time “0” correspond to the target luminance defined by the preceding L frame image signal SLx (2), respectively. As shown in FIG. 15, when the difference between the target luminance defined by the preceding L frame image signal SLx (2) and the target luminance defined by the subsequent R frame image signal SRx (2) is small, the luminance of the pixel is The target luminance defined by the R frame image signal SRx (2) is reached relatively early. On the other hand, when the difference between the target luminance defined by the preceding L frame image signal SLx (2) and the target luminance defined by the subsequent R frame image signal SRx (2) is large, the luminance of the pixel is the R frame image signal SRx ( The period until the target luminance of 2) is reached becomes longer.
 図14に示される如く、入力テーブル226は、第1遅延部213から入力される先行のLフレーム画像信号SLx(2)が規定する目標輝度に対応する座標軸を備える。 As shown in FIG. 14, the input table 226 includes coordinate axes corresponding to the target luminance defined by the preceding L frame image signal SLx (2) input from the first delay unit 213.
 第2補正部218は、第1遅延部213から入力されるLフレーム画像信号SLx(2)が規定する目標輝度、第2遅延部215からの選択信号SRx(1d)が規定する現行選択輝度及び第3遅延部216からの選択信号SLx(1d)が規定する先行選択輝度に基づき、画素P1乃至P8それぞれに対して、仮期待値を決定する。 The second correction unit 218 includes a target luminance defined by the L frame image signal SLx (2) input from the first delay unit 213, a current selection luminance defined by the selection signal SRx (1d) from the second delay unit 215, and Based on the preceding selection luminance defined by the selection signal SLx (1d) from the third delay unit 216, a provisional expected value is determined for each of the pixels P1 to P8.
 図16は、画素の位置に起因する走査動作の差異を概略的に説明する模式図である。図1、図9A、図9B、図12、図13及び図16を用いて、画素の位置に起因する走査動作の差異が説明される。 FIG. 16 is a schematic diagram for schematically explaining the difference in the scanning operation caused by the position of the pixel. Differences in scanning operations caused by pixel positions are described with reference to FIGS. 1, 9A, 9B, 12, 13, and 16. FIG.
 図9A及び図9Bに関連して説明された如く、第1走査動作は、第2走査動作よりも短期間で行われる。第1走査動作の後、第2走査動作が開始されるまでの期間において、液晶は、図12及び図13に関連して説明された駆動輝度(等価輝度)に向けて駆動される。 As described with reference to FIGS. 9A and 9B, the first scanning operation is performed in a shorter period of time than the second scanning operation. In the period from the first scanning operation to the start of the second scanning operation, the liquid crystal is driven toward the driving luminance (equivalent luminance) described with reference to FIGS.
 図16には、等価輝度に向けて液晶が駆動される期間SP1,SP2が示されている。期間SP1は、比較的早期に駆動される液晶パネル231の上部の液晶が等価輝度に向けて駆動されている期間を示す。期間SP2は、比較的遅く駆動される液晶パネル231の下部の液晶が等価輝度に向けて駆動されている期間を示す。図16に示される如く、期間SP2は、期間SP1より長くなる。 FIG. 16 shows periods SP1 and SP2 in which the liquid crystal is driven toward the equivalent luminance. The period SP1 indicates a period in which the liquid crystal in the upper part of the liquid crystal panel 231 that is driven relatively early is driven toward the equivalent luminance. The period SP2 indicates a period in which the liquid crystal below the liquid crystal panel 231 that is driven relatively slowly is driven toward the equivalent luminance. As shown in FIG. 16, the period SP2 is longer than the period SP1.
 図17は、画素の位置が与える画素の輝度変化に対する影響を概略的に示すグラフである。図1、図8A、図8B、図12乃至図14並びに図16及び図17を用いて、入力テーブル226が更に説明される。 FIG. 17 is a graph schematically showing the influence of the pixel position on the luminance change of the pixel. The input table 226 is further described with reference to FIGS. 1, 8A, 8B, 12 to 14, 16 and 17. FIG.
 図17中、水平方向に延びる直線HLは、等価輝度を示す。図17中の曲線CVは、図12及び図13に関連して説明された等価輝度に向けて変動する画素の輝度を表す。上述の如く、液晶パネル231の上部の液晶は、期間SP1の間、等価輝度に向けて駆動される。この結果、液晶パネル231の上部の画素は、「AB1」の輝度を達成する。一方、液晶パネル231の下部の液晶は、期間SP2の間、等価輝度に向けて駆動される。この結果、液晶パネル231の下部の画素は、「AB2」の輝度を達成する。液晶パネル231の下部の画素は、液晶パネル231の上部の画素よりも等価輝度に近い値となっている。 In FIG. 17, a straight line HL extending in the horizontal direction indicates equivalent luminance. A curve CV in FIG. 17 represents the luminance of a pixel that varies toward the equivalent luminance described with reference to FIGS. 12 and 13. As described above, the liquid crystal in the upper part of the liquid crystal panel 231 is driven toward the equivalent luminance during the period SP1. As a result, the upper pixel of the liquid crystal panel 231 achieves a luminance of “AB1”. On the other hand, the liquid crystal below the liquid crystal panel 231 is driven toward the equivalent luminance during the period SP2. As a result, the lower pixel of the liquid crystal panel 231 achieves a luminance of “AB2”. The lower pixel of the liquid crystal panel 231 has a value closer to the equivalent luminance than the upper pixel of the liquid crystal panel 231.
 図14に示される如く、期待値テーブル224は、調整テーブル227を含む。第2補正部218は、調整テーブル227を用いて、図17に関連して説明された画素の位置に起因する達成輝度の差異を減少させるように仮期待値を調整し、期待値を決定する。本実施形態において、第2補正部218は、第1等価部211及び第2等価部214が規定した選択輝度、先行するフレーム画像信号が規定する目標輝度並びに画素に位置に基づき、期待値を決定する。代替的に、第2補正部218は、選択輝度に代えて、第1等価部211及び第2等価部214が規定した平均輝度に基づき、期待値を決定してもよい。第2補正部は、更に代替的に、画素の輝度に影響する他の因子(例えば、液晶パネル231の温度分布)に基づき、期待値を決定してもよい。 As shown in FIG. 14, the expected value table 224 includes an adjustment table 227. The second correction unit 218 uses the adjustment table 227 to adjust the provisional expected value so as to reduce the difference in the achieved luminance due to the pixel position described with reference to FIG. 17 and determine the expected value. . In the present embodiment, the second correction unit 218 determines an expected value based on the selection luminance defined by the first equivalent unit 211 and the second equivalent unit 214, the target luminance defined by the preceding frame image signal, and the position of the pixel. To do. Alternatively, the second correction unit 218 may determine the expected value based on the average luminance defined by the first equivalent unit 211 and the second equivalent unit 214 instead of the selected luminance. The second correction unit may alternatively determine the expected value based on another factor that affects the luminance of the pixel (for example, the temperature distribution of the liquid crystal panel 231).
 決定テーブル225は、第2走査期間に出力される第2補正値のデータを格納する。決定テーブル225中のフレーム画像信号(Rフレーム画像信号SRx(2))の入力に対応する座標軸は、フレーム画像信号(Rフレーム画像信号SRx(2))が規定する目標輝度を示す。決定テーブル225中の期待値テーブル224からの入力に対応する座標軸は、期待値テーブル224から抽出された輝度の期待値(即ち、第1走査期間中に達成すると期待される画素の輝度)を示す。第2補正部218は、目標輝度と輝度の期待値と、に基づき、画素P1乃至P8それぞれに対して、第2補正値を決定し、第2補正値の情報を含む第2補正信号CRx(2)を第2選択部219へ出力する。 The determination table 225 stores second correction value data output in the second scanning period. The coordinate axis corresponding to the input of the frame image signal (R frame image signal SRx (2)) in the determination table 225 indicates the target luminance defined by the frame image signal (R frame image signal SRx (2)). The coordinate axis corresponding to the input from the expected value table 224 in the determination table 225 indicates the expected brightness value extracted from the expected value table 224 (that is, the brightness of the pixel expected to be achieved during the first scanning period). . The second correction unit 218 determines a second correction value for each of the pixels P1 to P8 based on the target luminance and the expected luminance value, and generates a second correction signal CRx (including information on the second correction value). 2) is output to the second selection unit 219.
 図12に示される如く、第2走査期間において、出力部221には、Rフレーム画像信号SRx(2)及び第2補正部218によって生成された第2補正信号CRx(2)が入力される。 As shown in FIG. 12, in the second scanning period, the R frame image signal SRx (2) and the second correction signal CRx (2) generated by the second correction unit 218 are input to the output unit 221.
 出力部221は、Rフレーム画像信号SRx(2)が規定する目標輝度と、第2補正信号CRx(2)が規定する第2補正値と、を加算し、第2走査期間で用いられる駆動輝度を決定する。第2走査動作が行われる第2走査期間において、出力部221は、算出された駆動輝度の情報を含む第2画像信号IRx(2)を液晶駆動部220へ出力する。 The output unit 221 adds the target luminance defined by the R frame image signal SRx (2) and the second correction value defined by the second correction signal CRx (2), and drives the luminance used in the second scanning period. To decide. In the second scanning period in which the second scanning operation is performed, the output unit 221 outputs the second image signal IRx (2) including the calculated driving luminance information to the liquid crystal driving unit 220.
 液晶駆動部220は、第2画像信号IRx(2)に基づき、液晶パネル231の液晶を駆動する。第2画像信号IRx(2)に基づく液晶の駆動の結果、画素P1乃至P8の輝度は、駆動輝度に向けて変動する。 The liquid crystal driver 220 drives the liquid crystal of the liquid crystal panel 231 based on the second image signal IRx (2). As a result of driving the liquid crystal based on the second image signal IRx (2), the luminance of the pixels P1 to P8 varies toward the driving luminance.
 (輝度データの変動)
 図18は、第1走査期間に出力される信号が含む輝度のデータを示す。図7、図13及び図18を用いて、第1走査期間中の輝度のデータの変化が説明される。図18中の表は、データ線Mに沿って整列した画素の輝度を表す。尚、以下の説明において、第1等価部211及び第2等価部214は、選択処理を行っている。代替的に、第1等価部211及び第2等価部214は、平均化処理を行っていてもよい。
(Fluctuation of luminance data)
FIG. 18 shows luminance data included in a signal output in the first scanning period. Changes in luminance data during the first scanning period will be described with reference to FIGS. 7, 13, and 18. The table in FIG. 18 represents the luminance of the pixels aligned along the data line M. In the following description, the first equivalent unit 211 and the second equivalent unit 214 perform selection processing. Alternatively, the first equivalent unit 211 and the second equivalent unit 214 may perform an averaging process.
 第1等価部211に入力されるX番目のRフレーム画像信号SRx(2)は、奇数番号のゲート線L,L,・・・,L2t-1に対応する画素に対して、「80」の輝度を示している。また、Rフレーム画像信号SRx(2)は、偶数番号のゲート線L,L,・・・,L2tに対応する画素に対して、「60」の輝度を示している。 The X-th R frame image signal SRx (2) input to the first equivalent unit 211 is “with respect to the pixels corresponding to the odd-numbered gate lines L 1 , L 3 ,. 80 ". The R frame image signal SRx (2) indicates a luminance of “60” for the pixels corresponding to the even-numbered gate lines L 2 , L 4 ,..., L 2t .
 第1等価部211は、奇数番号のゲート線L,L,・・・,L2t-1に対応する画素の輝度を基準に、図7に関連して説明された選択処理を行い、選択信号SRx(1)を生成する。この結果、選択信号SRx(1)は、奇数番号のゲート線L,L,・・・,L2t-1に対応する画素及び偶数番号のゲート線L,L,・・・,L2tに対応する画素の両方に対して、「80」の輝度を示す。選択信号SRx(1)は、第1選択部212及び第1補正部217に出力される。第1選択部212は、出力部221へ選択信号SRx(1)を出力する。 The first equivalent unit 211 performs the selection process described with reference to FIG. 7 based on the luminance of the pixels corresponding to the odd-numbered gate lines L 1 , L 3 ,..., L 2t−1 . A selection signal SRx (1) is generated. As a result, the selection signal SRx (1) is supplied to the pixels corresponding to the odd-numbered gate lines L 1 , L 3 ,..., L 2t−1 and the even-numbered gate lines L 2 , L 4 ,. A luminance of “80” is indicated for both of the pixels corresponding to L 2t . The selection signal SRx (1) is output to the first selection unit 212 and the first correction unit 217. The first selection unit 212 outputs the selection signal SRx (1) to the output unit 221.
 X番目のRフレーム画像を表示するための右眼期間の第1走査期間において、第1遅延部213は、直前のX番目のLフレーム画像を表示するために左眼期間において取得されたLフレーム画像信号SLx(2)を出力する。Lフレーム画像信号SLx(2)は、奇数番号のゲート線L,L,・・・,L2t-1に対応する画素に対して、「40」の輝度を示している。また、Lフレーム画像信号SLx(2)は、偶数番号のゲート線L,L,・・・,L2tに対応する画素に対して、「0」の輝度を示している。Lフレーム画像信号SLx(2)は、第2等価部214へ入力される。 In the first scanning period of the right eye period for displaying the Xth R frame image, the first delay unit 213 acquires the L frame acquired in the left eye period in order to display the immediately previous Xth L frame image. The image signal SLx (2) is output. The L frame image signal SLx (2) indicates a luminance of “40” for the pixels corresponding to the odd-numbered gate lines L 1 , L 3 ,..., L 2t−1 . The L frame image signal SLx (2) indicates “0” brightness for the pixels corresponding to the even-numbered gate lines L 2 , L 4 ,..., L 2t . The L frame image signal SLx (2) is input to the second equivalent unit 214.
 第2等価部214は、奇数番号のゲート線L,L,・・・,L2t-1に対応する画素の輝度を基準に、図7に関連して説明された選択処理を行い、選択信号SLx(1)を生成する。この結果、選択信号SLx(1)は、奇数番号のゲート線L,L,・・・,L2t-1に対応する画素及び偶数番号のゲート線L,L,・・・,L2tに対応する画素の両方に対して、「40」の輝度を示す。選択信号SLx(1)は、第1補正部217に出力される。 The second equivalent unit 214 performs the selection process described with reference to FIG. 7 based on the luminance of the pixels corresponding to the odd-numbered gate lines L 1 , L 3 ,..., L 2t−1 . A selection signal SLx (1) is generated. As a result, the selection signal SLx (1) is supplied to the pixels corresponding to the odd-numbered gate lines L 1 , L 3 ,..., L 2t−1 and the even-numbered gate lines L 2 , L 4 ,. A luminance of “40” is shown for both pixels corresponding to L 2t . The selection signal SLx (1) is output to the first correction unit 217.
 図13に関連して説明された如く、第1補正部217は、選択信号SRx(1),SLx(1)に基づき、第1補正テーブル222を用いて、第1補正信号CRx(1)を生成する。第1補正部217は、選択信号SRx(1)が示す現行選択輝度と、選択信号SLx(1)が示す先行選択輝度とに基づき、画素それぞれに対して第1補正値を決定する。図18に示される選択信号SRx(1)は、データ線Mに沿う全ての画素に対し、「80」の現行選択輝度を示し、選択信号SLx(1)は、データ線Mに沿う全ての画素に対し、「40」の先行選択輝度を示しているので、第1補正部217は、データ線Mに沿う全ての画素に対し、「5」の第1補正値を定め、第1補正信号CRx(1)を生成する。第1補正信号CRx(1)は、その後、第2選択部219を介して、出力部221へ出力される。 As described with reference to FIG. 13, the first correction unit 217 uses the first correction table 222 to generate the first correction signal CRx (1) based on the selection signals SRx (1) and SLx (1). Generate. The first correction unit 217 determines a first correction value for each pixel based on the current selection luminance indicated by the selection signal SRx (1) and the preceding selection luminance indicated by the selection signal SLx (1). The selection signal SRx (1) shown in FIG. 18 indicates the current selection luminance of “80” for all pixels along the data line M, and the selection signal SLx (1) indicates all pixels along the data line M. On the other hand, since the pre-selected luminance of “40” is indicated, the first correction unit 217 determines the first correction value of “5” for all pixels along the data line M, and the first correction signal CRx. (1) is generated. The first correction signal CRx (1) is then output to the output unit 221 via the second selection unit 219.
 出力部221は、選択信号SRx(1)が指し示す輝度と、第1補正信号CRx(1)が指し示す第1補正値と、を画素それぞれについて加算する。図18に示される選択信号SRx(1)は、データ線Mに沿う全ての画素に対し、「80」の輝度を示し、第1補正信号CRx(1)は、データ線Mに沿う全ての画素に対し、「5」の第1補正値を示しているので、出力部221から出力される第1画像信号IRx(1)は、データ線Mに沿う全ての画素に対し、「85」の輝度を規定する。 The output unit 221 adds the luminance indicated by the selection signal SRx (1) and the first correction value indicated by the first correction signal CRx (1) for each pixel. The selection signal SRx (1) shown in FIG. 18 indicates a luminance of “80” for all pixels along the data line M, and the first correction signal CRx (1) is all pixels along the data line M. On the other hand, since the first correction value “5” is indicated, the first image signal IRx (1) output from the output unit 221 has a luminance of “85” for all the pixels along the data line M. Is specified.
 図19は、第2走査期間に出力される信号が含む輝度のデータを示す。図1及び図19を用いて、第2走査期間中の輝度のデータの変化が説明される。図19中の表は、データ線Mに沿って整列した画素の輝度を表す。尚、以下の説明において、第1等価部211及び第2等価部214は、選択処理を行っている。代替的に、第1等価部211及び第2等価部214は、平均化処理を行っていてもよい。 FIG. 19 shows luminance data included in a signal output in the second scanning period. Changes in luminance data during the second scanning period will be described with reference to FIGS. The table in FIG. 19 represents the luminance of the pixels aligned along the data line M. In the following description, the first equivalent unit 211 and the second equivalent unit 214 perform selection processing. Alternatively, the first equivalent unit 211 and the second equivalent unit 214 may perform an averaging process.
 X番目のRフレーム画像信号SRx(2)は、第1選択部212及び第2補正部218に入力される。第1選択部212は、第2走査期間に、Rフレーム画像信号SRx(2)を出力部221へ出力する。 The Xth R frame image signal SRx (2) is input to the first selection unit 212 and the second correction unit 218. The first selection unit 212 outputs the R frame image signal SRx (2) to the output unit 221 during the second scanning period.
 第1走査期間において、第1等価部211が出力した選択信号SRx(1)は、第2遅延部215に入力される。第2遅延部215は、選択信号SRx(1)を遅延させ、第2走査期間において、選択信号SRx(1d)として、出力する。尚、選択信号SRx(1)が画素それぞれに規定する輝度及び選択信号SRx(1d)が画素それぞれに規定する輝度は等しい。 In the first scanning period, the selection signal SRx (1) output from the first equivalent unit 211 is input to the second delay unit 215. The second delay unit 215 delays the selection signal SRx (1) and outputs it as the selection signal SRx (1d) in the second scanning period. Note that the luminance defined by the selection signal SRx (1) for each pixel is equal to the luminance defined by the selection signal SRx (1d) for each pixel.
 第1走査期間において、第2等価部214が出力した選択信号SLx(1)は、第3遅延部216に入力される。第3遅延部216は、選択信号SLx(1)を遅延させ、第2走査期間において、選択信号SLx(1d)として、出力する。尚、選択信号SLx(1)が画素それぞれに規定する輝度及び選択信号SLx(1d)が画素それぞれに規定する輝度は等しい。 In the first scanning period, the selection signal SLx (1) output from the second equivalent unit 214 is input to the third delay unit 216. The third delay unit 216 delays the selection signal SLx (1) and outputs it as the selection signal SLx (1d) in the second scanning period. Note that the luminance defined by the selection signal SLx (1) for each pixel and the luminance defined by the selection signal SLx (1d) for each pixel are equal.
 第2遅延部215は、選択信号SRx(1d)を第2補正部218へ出力する。選択信号SRx(1d)は、奇数番号のゲート線L,L,・・・,L2t-1に対応する画素及び偶数番号のゲート線L,L,・・・,L2tに対応する画素に対して、「80」の輝度をそれぞれ示している。 The second delay unit 215 outputs the selection signal SRx (1d) to the second correction unit 218. The selection signal SRx (1d) is applied to the pixels corresponding to the odd-numbered gate lines L 1 , L 3 ,..., L 2t−1 and the even-numbered gate lines L 2 , L 4 ,. A luminance of “80” is shown for the corresponding pixel.
 第3遅延部216は、選択信号SLx(1d)を第2補正部218へ出力する。選択信号SLx(1d)は、奇数番号のゲート線L,L,・・・,L2t-1に対応する画素及び偶数番号のゲート線L,L,・・・,L2tに対応する画素に対して、「40」の輝度をそれぞれ示している。 The third delay unit 216 outputs the selection signal SLx (1d) to the second correction unit 218. The selection signal SLx (1d) is applied to the pixels corresponding to the odd-numbered gate lines L 1 , L 3 ,..., L 2t−1 and the even-numbered gate lines L 2 , L 4 ,. A luminance of “40” is shown for the corresponding pixel.
 上述の如く、第1遅延部213は、第2走査期間において、X番目のLフレーム画像信号SLx(2)を第2補正部218に出力する。Lフレーム画像信号SLx(2)は、奇数番号のゲート線L,L,・・・,L2t-1(tは自然数)上の画素に対して、「40」の輝度を規定し、偶数番号のゲート線L,L,・・・,L2t(tは自然数)上の画素に対して、「0」の輝度を規定している。 As described above, the first delay unit 213 outputs the Xth L frame image signal SLx (2) to the second correction unit 218 in the second scanning period. The L frame image signal SLx (2) defines a luminance of “40” for pixels on odd-numbered gate lines L 1 , L 3 ,..., L 2t−1 (t is a natural number) A luminance of “0” is defined for pixels on even-numbered gate lines L 2 , L 4 ,..., L 2t (t is a natural number).
 図14に関連して説明された如く、第2補正部218は、第1等価部211及び第2等価部214が規定した選択輝度、先行するフレーム画像信号が規定する目標輝度並びに画素に位置に基づき、期待値を決定する。Lフレーム画像信号SLx(2)が偶数番号のゲート線L,L,・・・,L2t(tは自然数)上の画素に対して規定する輝度は、Lフレーム画像信号SLx(2)が奇数番号のゲート線L,L,・・・,L2t-1(tは自然数)上の画素に対して規定する画素を大きく下回るので、偶数番号のゲート線L,L,・・・,L2t(tは自然数)上の画素が第2走査動作開始時において達成している輝度は、奇数番号のゲート線L,L,・・・,L2t-1(tは自然数)上の画素が第2走査動作開始時において達成している輝度よりも低いことが予想される。したがって、第2補正部218は、奇数番号のゲート線L,L,・・・,L2t-1(tは自然数)上の画素に対して決定された期待値よりも小さな期待値を偶数番号のゲート線L,L,・・・,L2t(tは自然数)上の画素に対して決定する。 As described with reference to FIG. 14, the second correction unit 218 places the selected luminance defined by the first equivalent unit 211 and the second equivalent unit 214, the target luminance defined by the preceding frame image signal, and the pixel position. Based on the expected value. The luminance defined for the pixels on the gate lines L 2 , L 4 ,..., L 2t (t is a natural number) by which the L frame image signal SLx (2) is an even number is L frame image signal SLx (2). , L 2t−1 (where t is a natural number) is much lower than the pixel defined for the odd-numbered gate lines L 1 , L 3 ,..., L 2t−1, so that the even-numbered gate lines L 2 , L 4 , .., L 2t (t is a natural number), the luminance achieved by the pixels at the start of the second scanning operation is the odd-numbered gate lines L 1 , L 3 ,..., L 2t−1 (t Is a natural number) and is expected to be lower than the luminance achieved at the start of the second scanning operation. Therefore, the second correction unit 218 has an expected value smaller than the expected value determined for the pixels on the odd-numbered gate lines L 1 , L 3 ,..., L 2t−1 (t is a natural number). It is determined for pixels on even-numbered gate lines L 2 , L 4 ,..., L 2t (t is a natural number).
 また、第2補正部218は、図14に関連して説明された如く、画素の位置に応じた調整を期待値に対して行う。したがって、第2補正部218は、液晶パネル231の上部に位置する偶数番号のゲート線L上の画素に対して「50」の期待値を設定し、液晶パネル231の下部に位置する偶数番号のゲート線L2t上の画素に対して「65」の期待値を設定する。尚、本実施形態において、説明の明瞭化のため、第2補正部218は、奇数番号のゲート線L,L,・・・,L2t-1(tは自然数)上の画素全てに対して、「75」の期待値を設定している。第2補正部218は、奇数番号のゲート線L,L,・・・,L2t-1(tは自然数)上の画素に対しても、画素の位置に応じた調整を行ってもよい。 In addition, the second correction unit 218 performs adjustment on the expected value according to the position of the pixel as described with reference to FIG. Accordingly, the second correction unit 218 sets an expected value of “50” for the pixels on the even-numbered gate line L 2 located at the upper part of the liquid crystal panel 231, and the even-numbered number located at the lower part of the liquid crystal panel 231. An expected value of “65” is set for the pixel on the gate line L 2t . In the present embodiment, for the sake of clarity of explanation, the second correction unit 218 applies all the pixels on the odd-numbered gate lines L 1 , L 3 ,..., L 2t−1 (t is a natural number). On the other hand, an expected value of “75” is set. The second correction unit 218 may perform adjustment according to the position of the pixel on the odd-numbered gate lines L 1 , L 3 ,..., L 2t−1 (t is a natural number). Good.
 上述の如く、Rフレーム画像信号SRx(2)は、偶数番号のゲート線L,L,・・・,L2t(tは自然数)上の画素に対して、「60」の輝度を規定している。また、第2補正部218は、液晶パネル231の上部に位置する偶数番号のゲート線L上の画素に対して「50」の期待値を設定している。したがって、第2補正部218は、「60」の輝度と「50」の期待値とを比較し、「+5」の第2補正値を、液晶パネル231の上部に位置する偶数番号のゲート線L上の画素に対して決定する。 As described above, the R frame image signal SRx (2) defines a luminance of “60” for pixels on even-numbered gate lines L 2 , L 4 ,..., L 2t (t is a natural number). is doing. In addition, the second correction unit 218 sets an expected value of “50” for the pixels on the even-numbered gate line L 2 located at the top of the liquid crystal panel 231. Therefore, the second correction unit 218 compares the luminance of “60” with the expected value of “50”, and determines the second correction value of “+5” as the even-numbered gate line L positioned at the upper part of the liquid crystal panel 231. Determine for the pixel above 2 .
 上述の如く、第2補正部218は、液晶パネル231の下部に位置する偶数番号のゲート線L2t上の画素に対して「65」の期待値を設定している。したがって、第2補正部218は、「60」の輝度と「65」の期待値とを比較し、「-5」の第2補正値を、液晶パネル231の上部に位置する偶数番号のゲート線L上の画素に対して決定する。 As described above, the second correction unit 218 sets an expected value of “65” for the pixels on the even-numbered gate line L2t located below the liquid crystal panel 231. Therefore, the second correction unit 218 compares the luminance of “60” with the expected value of “65”, and sets the second correction value of “−5” to the even-numbered gate line located at the upper part of the liquid crystal panel 231. determined for the pixels on L 2.
 第2補正部218は、上述の如く、第2補正値の情報を含む第2補正信号CRx(2)を、第2選択部219を介して、第2選択部219へ出力する。出力部221は、Rフレーム画像信号SRx(2)が指し示す輝度と、第2補正信号CRx(2)が指し示す第2補正値と、を画素それぞれについて加算し、第2画像信号IRx(2)を生成並びに出力する。生成された第2画像信号IRx(2)は、奇数番号のゲート線L,L,・・・,L2t-1(tは自然数)上の画素全てに対して、「80」の駆動輝度を規定している。また、第2画像信号IRx(2)は、液晶パネル231の上部に位置する偶数番号のゲート線L上の画素に対して「65」の駆動輝度を規定している。更に、第2画像信号IRx(2)は、液晶パネル231の下部に位置する偶数番号のゲート線L2t上の画素に対して「55」の駆動輝度を規定している。 As described above, the second correction unit 218 outputs the second correction signal CRx (2) including the information on the second correction value to the second selection unit 219 via the second selection unit 219. The output unit 221 adds the luminance indicated by the R frame image signal SRx (2) and the second correction value indicated by the second correction signal CRx (2) for each pixel, and outputs the second image signal IRx (2). Generate and output. The generated second image signal IRx (2) is “80” driven for all the pixels on the odd-numbered gate lines L 1 , L 3 ,..., L 2t−1 (t is a natural number). Specifies the brightness. The second image signals IRx (2) defines the driving luminance of "65" for the pixels on the even-numbered gate line L 2 located on the upper portion of the liquid crystal panel 231. Moreover, the second image signal IRx (2) defines the driving luminance of "55" for the pixels on the gate lines L 2t even-numbered positioned on the lower portion of the liquid crystal panel 231.
 図20は、図18及び図19に関連して説明された信号処理に基づく画素の輝度の変化を表す概略的なタイミングチャートである。図1、図7乃至図9B、図18乃至図20を用いて、画素の輝度変化が説明される。 FIG. 20 is a schematic timing chart showing changes in pixel luminance based on the signal processing described with reference to FIGS. 18 and 19. The change in luminance of the pixel is described with reference to FIGS. 1, 7 to 9B, and FIGS. 18 to 20.
 図20のセクション(A)には、X番目のLフレーム画像の表示のための左眼期間、X番目のRフレーム画像の表示のための右眼期間及び(X+1)番目のLフレーム画像の表示のための左眼期間が示されている。以下の説明において、右眼期間における画素の輝度変化が説明される。 The section (A) of FIG. 20 includes a left eye period for displaying the Xth L frame image, a right eye period for displaying the Xth R frame image, and a display of the (X + 1) th L frame image. The left eye period for is shown. In the following description, the luminance change of the pixel in the right eye period will be described.
 図20のセクション(B)には、第1走査動作及び第2走査動作が示される。右眼期間の第1走査期間において、液晶駆動部220は、第1画像信号IRx(1)を用いて、第1走査動作を実行する。図9A及び図9Bに関連して説明された如く、液晶駆動部220は、1つの奇数番号のゲート線に対応する画素と、1つの偶数番号のゲート線に対応する画素の液晶と、を1つの組として、同時に駆動する。この結果、第1画像信号IRx(1)は、ゲート線(L,L)の組、ゲート線(L,L)の組、・・・・、ゲート線(L2t-1,L25)の組に順次書き込まれる。右眼期間の第2走査期間において、液晶駆動部220は、第2画像信号IRx(2)を用いて、第2走査動作を実行する。図9A及び図9Bに関連して説明された如く、液晶駆動部220は、ゲート線L,L,L,L,・・・L2t-1,L25に順次、第2画像信号IRx(2)を書き込む。本実施形態において、液晶駆動部220は、2回の走査動作を行うので、2回目の走査動作を行う液晶駆動部220は、画素グループG1,G2,G3,G4内の画素に対応する液晶を順次駆動する。液晶駆動部がN回の走査動作を行うならば、N回目の走査動作を行う液晶駆動部は、画素グループ内の画素に対応する液晶を順次駆動してもよい。 Section (B) in FIG. 20 shows the first scanning operation and the second scanning operation. In the first scanning period of the right eye period, the liquid crystal driving unit 220 performs the first scanning operation using the first image signal IRx (1). As described with reference to FIGS. 9A and 9B, the liquid crystal driving unit 220 includes one pixel corresponding to one odd-numbered gate line and one liquid crystal corresponding to one even-numbered gate line. Drive as a pair at the same time. As a result, the first image signal IRx (1) includes a set of gate lines (L 1 , L 2 ), a set of gate lines (L 3 , L 4 ),..., A gate line (L 2t−1 , L 25 ) are sequentially written. In the second scanning period of the right eye period, the liquid crystal driving unit 220 performs the second scanning operation using the second image signal IRx (2). As described with reference to FIGS. 9A and 9B, the liquid crystal driving unit 220 sequentially applies the second image to the gate lines L 1 , L 2 , L 3 , L 4 ,... L 2t−1 , L 25. Write signal IRx (2). In the present embodiment, since the liquid crystal driving unit 220 performs the scanning operation twice, the liquid crystal driving unit 220 that performs the second scanning operation supplies the liquid crystal corresponding to the pixels in the pixel groups G1, G2, G3, and G4. Drive sequentially. If the liquid crystal driver performs N scanning operations, the liquid crystal driver that performs the Nth scanning operation may sequentially drive the liquid crystals corresponding to the pixels in the pixel group.
 図20のセクション(C)は、光学シャッタ部310の開閉動作を示す。左眼シャッタ311は、第2走査動作の完了後、且つ、右眼期間が開始される前までの期間において開く。また、右眼シャッタ312は、第2走査動作の完了後、且つ、左眼期間が開始される前までの期間において開く。 20 (C) shows an opening / closing operation of the optical shutter section 310. The left eye shutter 311 opens in a period after the completion of the second scanning operation and before the start of the right eye period. Further, the right eye shutter 312 is opened during a period after the second scanning operation is completed and before the left eye period is started.
 図20のセクション(D)は、ゲート線Lとデータ線Mとの交点に位置する画素の輝度の変化を表す。図20のセクション(E)は、液晶パネル231の上部に位置する偶数番号のゲート線Lとデータ線Mとの交点に位置する画素の輝度の変化を表す。図20のセクション(F)は、液晶パネル231の下部に位置する偶数番号のゲート線L2tとデータ線Mとの交点に位置する画素の輝度の変化を表す。 Section of FIG. 20 (D) represents a change in luminance of the pixel positioned at the intersection of the gate line L 1 and the data line M. Section of FIG. 20 (E) represents the change in the luminance of the pixel positioned at the intersection of the gate line L 2 and the data line M of the even-numbered positioned on the upper portion of the liquid crystal panel 231. A section (F) in FIG. 20 represents a change in luminance of a pixel located at the intersection of the even-numbered gate line L 2 t located at the lower part of the liquid crystal panel 231 and the data line M.
 図18及び図19に関連して説明された如く、直前の左眼期間においてLフレーム画像の表示に用いられたLフレーム画像信号SLx(2)は、奇数番号のゲート線L,L,・・・,L2t-1に対応する画素に対して、「40」の目標輝度を規定している。したがって、セクション(D)に示される画素の輝度は、「40」から変動を開始する。Lフレーム画像信号SLx(2)は、偶数番号のゲート線L,L,・・・,L2tに対応する画素に対して、「0」の目標輝度を規定している。したがって、セクション(E)及びセクション(F)に示される画素の輝度は、「0」からそれぞれ変動を開始する。 As described with reference to FIGS. 18 and 19, the L frame image signal SLx (2) used for displaying the L frame image in the immediately preceding left eye period is the odd-numbered gate lines L 1 , L 3 , ..., a target luminance of "40" is defined for the pixel corresponding to L 2t-1 . Therefore, the luminance of the pixel shown in the section (D) starts to change from “40”. The L frame image signal SLx (2) defines a target luminance of “0” for the pixels corresponding to the even-numbered gate lines L 2 , L 4 ,..., L 2t . Therefore, the luminance of the pixels shown in the section (E) and the section (F) starts to vary from “0”.
 図18に関連して説明された如く、第1画像信号IRx(1)は、データ線Mに沿う画素全てに対して、「85」の駆動輝度を設定する。したがって、第1走査動作がなされると、データ線Mに沿う画素の輝度は、「85」の駆動輝度に向けて、変動を開始する。 As described with reference to FIG. 18, the first image signal IRx (1) sets a drive luminance of “85” for all the pixels along the data line M. Therefore, when the first scanning operation is performed, the luminance of the pixels along the data line M starts to fluctuate toward the driving luminance of “85”.
 第1走査動作の結果、第2走査動作が開始される直前には、奇数番号のゲート線L,L,・・・,L2t-1に対応する画素の輝度は、第2補正部218の決定テーブル225を用いて決定された「75」の輝度の期待値に到達する、或いは、「75」の輝度の期待値に近似する。第1走査動作の結果、液晶パネル231の上部に位置する偶数番号のゲート線L上の画素は、第2走査動作が開始されるとき、「50」の駆動輝度を達成している。一方、液晶パネル231の下部に位置する偶数番号のゲート線L2t上の画素に対応する液晶は、液晶パネル231の上部に位置する偶数番号のゲート線L上の画素に対応する液晶よりも長い期間に亘って「85」の駆動輝度に向けて駆動されるので、液晶パネル231の下部に位置する偶数番号のゲート線L2t上の画素は、第2走査動作が開始されるとき、「65」の駆動輝度を達成している。 As a result of the first scanning operation, immediately before the second scanning operation is started, the luminance of the pixels corresponding to the odd-numbered gate lines L 1 , L 3 ,. The expected value of luminance of “75” determined using the determination table 225 of 218 is reached or approximated to the expected value of luminance of “75”. Results of the first scanning operation, the pixels on the even-numbered gate line L 2 located on the upper portion of the liquid crystal panel 231, when the second scanning operation is started, and achieve a drive luminance values of "50". On the other hand, the liquid crystal corresponding to the pixels on the even-numbered gate line L 2 t positioned below the liquid crystal panel 231 is more liquid crystal than the liquid crystal corresponding to the pixels on the even-numbered gate line L 2 positioned above the liquid crystal panel 231. Since the pixel is driven toward the driving luminance of “85” over a long period, the pixels on the even-numbered gate line L 2t located at the lower part of the liquid crystal panel 231 are displayed when the second scanning operation is started. A driving brightness of 65 "is achieved.
 図20に関連して説明された如く、第2画像信号IRx(2)は、奇数番号のゲート線L,L,・・・,L2t-1に対応する画素に対して、「80」の駆動輝度を設定する。したがって、第2走査動作がなされると、奇数番号のゲート線L,L,・・・,L2t-1に対応する画素は、「80」の駆動輝度に向けて、変動を開始する。上述の如く、奇数番号のゲート線L,L,・・・,L2t-1に対応する画素の輝度は、第1走査動作の結果、Rフレーム画像信号SRx(2)が規定する目標輝度に十分に近づけられているので、右眼シャッタ312が開かれるときには、目標輝度に到達している。 As described with reference to FIG. 20, the second image signal IRx (2), the gate line L 1 of the odd-numbered, L 3, · · ·, for the pixels corresponding to the L 2t-1, "80 ”Is set. Therefore, when the second scanning operation is performed, the pixels corresponding to the odd-numbered gate lines L 1 , L 3 ,..., L 2t−1 start to fluctuate toward the driving luminance of “80”. . As described above, the luminance of the pixels corresponding to the odd-numbered gate lines L 1 , L 3 ,..., L 2t−1 is the target defined by the R frame image signal SRx (2) as a result of the first scanning operation. Since the brightness is sufficiently close, the target brightness is reached when the right eye shutter 312 is opened.
 第2画像信号IRx(2)は、液晶パネル231の上部に位置する偶数番号のゲート線L上の画素に対して「65」の駆動輝度を規定しているので、液晶パネル231の上部に位置する偶数番号のゲート線L上の画素は、第2走査期間において、輝度を増大させる。この結果、液晶パネル231の上部に位置する偶数番号のゲート線L上の画素は、Rフレーム画像信号SRx(2)が規定する目標輝度「60」に近づく。 Second image signals IRx (2) Since defines the drive luminance values of "65" for the pixels on the even-numbered gate line L 2 located on the upper portion of the liquid crystal panel 231, the upper portion of the liquid crystal panel 231 the pixels on the gate lines L 2 position to an even number, in the second scanning period, to increase the brightness. As a result, the pixels on the even-numbered gate line L 2 located on the upper portion of the liquid crystal panel 231 approaches the target brightness "60" to R frame image signal SRx (2) defines.
 第2画像信号IRx(2)は、液晶パネル231の下部に位置する偶数番号のゲート線L2t上の画素に対して「55」の駆動輝度を規定しているので、液晶パネル231の下部に位置する偶数番号のゲート線L2t上の画素は、第2走査期間において、輝度を減少させる。この結果、液晶パネル231の下部に位置する偶数番号のゲート線L2t上の画素は、Rフレーム画像信号SRx(2)が規定する目標輝度「60」に近づく。 Second image signals IRx (2) Since defines the drive luminance values of "55" for the pixels on the gate lines L 2t even-numbered positioned on the lower portion of the liquid crystal panel 231, the lower portion of the liquid crystal panel 231 The pixels on the even-numbered gate lines L2t that are positioned reduce the luminance in the second scanning period. As a result, the pixels on the even-numbered gate line L2t located below the liquid crystal panel 231 approach the target luminance “60” defined by the R frame image signal SRx (2).
 <第2実施形態>
 図21は、第2実施形態に係る映像視聴システムの構成を概略的に示すブロック図である。図21を用いて、第2実施形態に係る映像視聴システムの概略的な構成が説明される。尚、第1実施形態に関連して説明された要素と同様の要素に対しては、同様の符号が付されている。以下の説明において、第1実施形態との相違点が主に説明される。第1実施形態と同様の特徴に対して、第1実施形態に関連する説明が援用される。
Second Embodiment
FIG. 21 is a block diagram schematically showing the configuration of the video viewing system according to the second embodiment. The schematic configuration of the video viewing system according to the second embodiment will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the element similar to the element demonstrated in relation to 1st Embodiment. In the following description, differences from the first embodiment will be mainly described. The description relevant to 1st Embodiment is used with respect to the characteristic similar to 1st Embodiment.
 (映像視聴システム)
 映像視聴システム100Aは、第1実施形態に関連して説明された眼鏡装置300に加えて、表示装置200Aを備える。表示装置200Aは、第1実施形態に関連して説明された表示装置200と同様に、Lフレーム画像とRフレーム画像とを交互に表示する。
(Video viewing system)
The video viewing system 100A includes a display device 200A in addition to the eyeglass device 300 described in relation to the first embodiment. The display device 200A alternately displays the L frame image and the R frame image, similarly to the display device 200 described in relation to the first embodiment.
 表示装置200Aは、第1実施形態に関連して説明された表示部230、第1制御部250、第2制御部240に加えて、映像信号処理部210A及び液晶駆動部220Aを備える。 The display device 200A includes a video signal processing unit 210A and a liquid crystal driving unit 220A in addition to the display unit 230, the first control unit 250, and the second control unit 240 described in relation to the first embodiment.
 第1実施形態に関連して説明された映像信号処理部210と同様に、映像信号処理部210Aには、基本となる垂直同期周波数を有する映像信号(左眼用映像信号及び右眼用映像信号)が入力される。映像信号処理部210Aから第1制御部250及び第2制御部240への制御信号の出力処理は、第1実施形態に関連して説明された信号処理と同様である。 Similar to the video signal processing unit 210 described in relation to the first embodiment, the video signal processing unit 210A includes a video signal having a basic vertical synchronization frequency (a video signal for the left eye and a video signal for the right eye). ) Is entered. The output processing of the control signal from the video signal processing unit 210A to the first control unit 250 and the second control unit 240 is the same as the signal processing described in relation to the first embodiment.
 第1実施形態に関連して説明された映像信号処理部210と異なり、映像信号処理部210Aは、第1画像信号、第2画像信号及び第3画像信号を液晶駆動部220Aに順次出力する。液晶駆動部220Aは、第1画像信号、第2画像信号及び第3画像信号を液晶パネル231の表示面に亘って順次走査する。以下の説明において、第1画像信号を用いた液晶駆動部220Aの走査動作は、第1走査動作と称される。第2画像信号を用いた液晶駆動部220Aの走査動作は、第2走査動作と称される。第3画像信号を用いた液晶駆動部220Aの走査動作は、第3走査動作と称される。また、液晶駆動部220Aが第1走査動作を行っている期間は、第1走査期間と称される。液晶駆動部220Aが第2走査動作を行っている期間は、第2走査期間と称される。液晶駆動部220Aが第3走査動作を行っている期間は、第3走査期間と称される。 Unlike the video signal processing unit 210 described in relation to the first embodiment, the video signal processing unit 210A sequentially outputs the first image signal, the second image signal, and the third image signal to the liquid crystal driving unit 220A. The liquid crystal driver 220 </ b> A sequentially scans the first image signal, the second image signal, and the third image signal across the display surface of the liquid crystal panel 231. In the following description, the scanning operation of the liquid crystal driving unit 220A using the first image signal is referred to as a first scanning operation. The scanning operation of the liquid crystal driving unit 220A using the second image signal is referred to as a second scanning operation. The scanning operation of the liquid crystal driving unit 220A using the third image signal is referred to as a third scanning operation. Further, a period during which the liquid crystal driving unit 220A performs the first scanning operation is referred to as a first scanning period. The period during which the liquid crystal driving unit 220A performs the second scanning operation is referred to as a second scanning period. A period during which the liquid crystal driving unit 220A performs the third scanning operation is referred to as a third scanning period.
 (映像信号処理部)
 図22は、本実施形態に従う表示装置200Aの映像信号処理部210Aの機能構成を概略的に示すブロック図である。図21及び図22を用いて、映像信号処理部210Aが説明される。
(Video signal processor)
FIG. 22 is a block diagram schematically showing a functional configuration of the video signal processing unit 210A of the display device 200A according to the present embodiment. The video signal processing unit 210A is described with reference to FIGS.
 映像信号処理部210Aは、第1実施形態に関連して説明された第1遅延部213及び第1補正部217に加えて、第1等価部211A、第1選択部212A、第2等価部214A、第2遅延部215A、第3遅延部216A、第2補正部218A、第2選択部219A及び出力部221Aを備える。 The video signal processing unit 210A includes a first equivalent unit 211A, a first selection unit 212A, and a second equivalent unit 214A, in addition to the first delay unit 213 and the first correction unit 217 described in relation to the first embodiment. , A second delay unit 215A, a third delay unit 216A, a second correction unit 218A, a second selection unit 219A, and an output unit 221A.
 図23は、第1等価部211Aの概略的なブロック図である。図24は、第2等価部214Aの概略的なブロック図である。図5、図7、図22乃至図24を用いて、第1等価部211A及び第2等価部214Aが説明される。 FIG. 23 is a schematic block diagram of the first equivalent unit 211A. FIG. 24 is a schematic block diagram of the second equivalent unit 214A. The first equivalent part 211A and the second equivalent part 214A are described with reference to FIGS. 5, 7, and 22 to 24. FIG.
 図23に示される如く、第1等価部211Aには、フレーム画像信号が入力される。図23において、フレーム画像信号として、X番目のRフレーム画像信号SRx(3)が第1等価部211Aに入力されている。 23, a frame image signal is input to the first equivalent unit 211A. In FIG. 23, the X-th R frame image signal SRx (3) is input to the first equivalent unit 211A as the frame image signal.
 第1等価部211Aは、等価演算部261とカウンタ262とを備える。Rフレーム画像信号SRx(3)は、等価演算部261に入力される。等価演算部261は、図5及び図7に関連して説明された平均化処理又は選択処理を実行する。カウンタ262は、等価演算部261の演算回数をカウントする。 The first equivalent unit 211A includes an equivalent calculation unit 261 and a counter 262. The R frame image signal SRx (3) is input to the equivalent calculation unit 261. The equivalent calculation unit 261 executes the averaging process or the selection process described with reference to FIGS. 5 and 7. The counter 262 counts the number of calculations of the equivalent calculation unit 261.
 図24に示される如く、第2等価部214Aには、フレーム画像信号が入力される。図24において、フレーム画像信号として、X番目のLフレーム画像信号SLx(3)が第2等価部214Aに入力されている。 As shown in FIG. 24, a frame image signal is input to the second equivalent unit 214A. In FIG. 24, an Xth L frame image signal SLx (3) is input to the second equivalent unit 214A as a frame image signal.
 第1遅延部213は、第1実施形態に関連して説明された如く、X番目のRフレーム画像信号SRx(3)に先行するX番目のLフレーム画像信号SLx(3)を保持している。図24に示される如く、X番目のRフレーム画像を表示するための第1走査期間において、第1遅延部213は、第2等価部214Aに、Lフレーム画像信号SLx(3)を出力する。 As described in relation to the first embodiment, the first delay unit 213 holds the Xth L frame image signal SLx (3) preceding the Xth R frame image signal SRx (3). . As shown in FIG. 24, in the first scanning period for displaying the Xth R frame image, the first delay unit 213 outputs the L frame image signal SLx (3) to the second equivalent unit 214A.
 第2等価部214Aは、等価演算部263とカウンタ264とを備える。Rフレーム画像信号SRx(3)は、等価演算部263に入力される。等価演算部263は、図5及び図7に関連して説明された平均化処理又は選択処理を実行する。カウンタ264は、等価演算部263の演算回数をカウントする。 The second equivalent unit 214A includes an equivalent operation unit 263 and a counter 264. The R frame image signal SRx (3) is input to the equivalent calculation unit 263. The equivalent calculation unit 263 performs the averaging process or the selection process described with reference to FIGS. 5 and 7. The counter 264 counts the number of calculations of the equivalent calculation unit 263.
 図25は、第1等価部211A及び第2等価部214Aが行う等価処理の概念図である。図5、図7、図22乃至図25を用いて、第1等価部211A及び第2等価部214Aが行う等価処理が説明される。 FIG. 25 is a conceptual diagram of equivalent processing performed by the first equivalent unit 211A and the second equivalent unit 214A. The equivalent process performed by the first equivalent unit 211A and the second equivalent unit 214A will be described with reference to FIGS. 5, 7, and 22 to 25.
 図25には、データ線M上に整列する画素P1乃至P4が示されている。画素P1は、ゲート線Lとデータ線Mとの交点に位置する。画素P2は、ゲート線Lとデータ線Mとの交点に位置する。画素P3は、ゲート線Lとデータ線Mとの交点に位置する。画素P4は、ゲート線Lとデータ線Mとの交点に位置する。 Figure 25 is a pixel P1 to P4 is aligned on the data lines M 1 is shown. Pixel P1 is located at the intersection of the gate line L 1 and the data line M 1. Pixel P2 is located at the intersection of the gate line L 2 and the data lines M 1. Pixel P3 is located at the intersection of the gate line L 3 and the data lines M 1. Pixel P4 is located at the intersection of the gate line L 4 and the data lines M 1.
 カウンタ262,264のデフォルト値は、例えば、「0」に設定されている。等価演算部261,263は、カウンタ262,264のカウント値を参照し、カウント値が「0」ならば、副走査方向に整列した4つの画素P1乃至P4を含む画素グループG11を設定する。その後、等価演算部261は、設定された画素グループG11内の画素P1乃至P4に対してRフレーム画像信号SRx(3)がそれぞれ規定する輝度に対して、等価処理を行う。また、等価演算部263は、設定された画素グループG11内の画素P1乃至P4に対してLフレーム画像信号SLx(3)がそれぞれ規定する輝度に対して、等価処理を行う。尚、等価処理は、図5及び図7に関連して説明された平均化処理又は選択処理の原理に従う。 The default value of the counters 262 and 264 is set to “0”, for example. The equivalent calculation units 261 and 263 refer to the count values of the counters 262 and 264, and if the count value is “0”, sets the pixel group G11 including the four pixels P1 to P4 aligned in the sub-scanning direction. Thereafter, the equivalent calculation unit 261 performs an equivalent process on the luminances defined by the R frame image signal SRx (3) for the pixels P1 to P4 in the set pixel group G11. Further, the equivalent calculation unit 263 performs an equivalent process on the luminances defined by the L frame image signal SLx (3) for the pixels P1 to P4 in the set pixel group G11. The equivalent process follows the principle of the averaging process or the selection process described with reference to FIGS.
 等価演算部261は、画素グループG11に対して行った等価処理に基づき、第1走査期間に用いられる平均化信号又は選択信号を出力する。図23には、等価演算部261から出力された選択信号SRx(1)が示されている。 The equivalent calculation unit 261 outputs an average signal or a selection signal used in the first scanning period based on the equivalent process performed on the pixel group G11. FIG. 23 shows the selection signal SRx (1) output from the equivalent calculation unit 261.
 等価演算部263は、画素グループG11に対して行った等価処理に基づき、第1走査期間に用いられる平均化信号又は選択信号を出力する。図24には、等価演算部261から出力された選択信号SLx(1)が示されている。 The equivalent calculation unit 263 outputs an average signal or a selection signal used in the first scanning period based on the equivalent process performed on the pixel group G11. FIG. 24 shows the selection signal SLx (1) output from the equivalent calculation unit 261.
 カウンタ262,264は、等価演算部261,263が画素グループG11に対する等価処理を終えると、カウント値を「0」から「1」に繰り上げる。 The counters 262 and 264 increment the count value from “0” to “1” when the equivalent operation units 261 and 263 finish the equivalent process for the pixel group G11.
 等価演算部261,263は、カウンタ262,264のカウント値を参照し、カウント値が「1」ならば、副走査方向に整列した2つの画素P1及びP2を含む画素グループG21及び副走査方向に整列した2つの画素P3及びP4を含む画素グループG22を設定する。その後、等価演算部261は、設定された画素グループG21内の画素P1及びP2に対してRフレーム画像信号SRx(3)がそれぞれ規定する輝度に対して、等価処理を行う。また、等価演算部261は、設定された画素グループG22内の画素P3及びP4に対してRフレーム画像信号SRx(3)がそれぞれ規定する輝度に対して、等価処理を行う。等価演算部263は、設定された画素グループG21内の画素P1及びP2に対してLフレーム画像信号SLx(3)がそれぞれ規定する輝度に対して、等価処理を行う。また、等価演算部263は、設定された画素グループG22内の画素P3及びP4に対してLフレーム画像信号SLx(3)がそれぞれ規定する輝度に対して、等価処理を行う。尚、等価処理は、図5及び図7に関連して説明された平均化処理又は選択処理の原理に従う。 The equivalent calculation units 261 and 263 refer to the count values of the counters 262 and 264, and if the count value is “1”, the pixel group G21 including two pixels P1 and P2 aligned in the sub-scanning direction and the sub-scanning direction A pixel group G22 including two aligned pixels P3 and P4 is set. Thereafter, the equivalent calculation unit 261 performs an equivalent process on the luminances defined by the R frame image signal SRx (3) for the pixels P1 and P2 in the set pixel group G21. In addition, the equivalent calculation unit 261 performs an equivalent process on the luminances defined by the R frame image signal SRx (3) for the pixels P3 and P4 in the set pixel group G22. The equivalent calculation unit 263 performs an equivalent process on the luminances defined by the L frame image signal SLx (3) for the pixels P1 and P2 in the set pixel group G21. Further, the equivalent calculation unit 263 performs an equivalent process on the luminances defined by the L frame image signal SLx (3) for the pixels P3 and P4 in the set pixel group G22. The equivalent process follows the principle of the averaging process or the selection process described with reference to FIGS.
 等価演算部261は、画素グループG21,G22に対して行った等価処理に基づき、第2走査期間に用いられる平均化信号又は選択信号を出力する。図23には、等価演算部261から出力された選択信号SRx(2)が示されている。 The equivalent calculation unit 261 outputs an average signal or a selection signal used in the second scanning period based on the equivalent processing performed on the pixel groups G21 and G22. FIG. 23 shows the selection signal SRx (2) output from the equivalent calculation unit 261.
 等価演算部263は、画素グループG21,G22に対して行った等価処理に基づき、第2走査期間に用いられる平均化信号又は選択信号を出力する。図24には、等価演算部261から出力された選択信号SLx(2)が示されている。 The equivalent calculation unit 263 outputs an average signal or a selection signal used in the second scanning period based on the equivalent process performed on the pixel groups G21 and G22. FIG. 24 shows the selection signal SLx (2) output from the equivalent calculation unit 261.
 カウンタ262,264は、等価演算部261,263が画素グループG21,G22に対する等価処理を終えると、カウント値を「1」から「0」に繰り下げる。 The counters 262 and 264 lower the count value from “1” to “0” when the equivalent operation units 261 and 263 finish the equivalent processing for the pixel groups G21 and G22.
 図22乃至図24を用いて、第1選択部212A,第2遅延部215A及び第3遅延部216Aが説明される。以下の説明において、第1等価部211A及び第2等価部214Aはともに、等価処理として、選択処理を行い、選択信号SRx(1),SRx(2),SLx(1),SLx(2)を出力している。代替的に、第1等価部211A及び第2等価部214Aはともに、等価処理として、平均化処理を行い、平均化信号を出力してもよい。 The first selection unit 212A, the second delay unit 215A, and the third delay unit 216A are described with reference to FIGS. In the following description, both the first equivalent unit 211A and the second equivalent unit 214A perform selection processing as equivalent processing, and select signals SRx (1), SRx (2), SLx (1), SLx (2). Output. Alternatively, both the first equivalent unit 211A and the second equivalent unit 214A may perform an averaging process and output an average signal as an equivalent process.
 図23に示される如く、第1選択部212Aには、Rフレーム画像信号SRx(3)が入力される。また、第1選択部212Aには、第1等価部211Aから選択信号SRx(1),SRx(2)が順次入力される。第1選択部212Aは、第1走査期間において、選択信号SRx(1)を出力する。第1走査期間に後続する第2走査期間において、第1選択部212Aは、選択信号SRx(2)を出力する。第2走査期間に後続する第3走査期間において、第1選択部212Aは、Rフレーム画像信号SRx(3)を出力する。かくして、第1選択部212Aは、選択信号SRx(1),SRx(2)及びRフレーム画像信号SRx(3)を、走査期間に応じて、順次、出力部221Aに出力することができる。 23, the R frame image signal SRx (3) is input to the first selection unit 212A. Further, selection signals SRx (1) and SRx (2) are sequentially input from the first equivalent unit 211A to the first selection unit 212A. The first selection unit 212A outputs the selection signal SRx (1) in the first scanning period. In the second scanning period subsequent to the first scanning period, the first selection unit 212A outputs the selection signal SRx (2). In the third scanning period subsequent to the second scanning period, the first selection unit 212A outputs the R frame image signal SRx (3). Thus, the first selection unit 212A can sequentially output the selection signals SRx (1), SRx (2) and the R frame image signal SRx (3) to the output unit 221A according to the scanning period.
 第2遅延部215Aには、第1等価部211Aから選択信号SRx(1),SRx(2)が順次入力される。第2遅延部215Aは、選択信号SRx(1),SRx(2)を所定期間保持する。第2遅延部215Aは、第1走査期間に後続する第2走査期間において、選択信号SRx(1d)を第2補正部218Aに出力する。第2遅延部215Aは、第2走査期間に後続する第3走査期間において、選択信号SRx(2d)を第2補正部218Aに出力する。尚、選択信号SRx(1d)が保持する輝度データは、選択信号SRx(1)が保持する輝度データと等しい。また、選択信号SRx(2d)が保持する輝度データは、選択信号SRx(2)が保持する輝度データと等しい。 The selection signals SRx (1) and SRx (2) are sequentially input from the first equivalent unit 211A to the second delay unit 215A. The second delay unit 215A holds the selection signals SRx (1) and SRx (2) for a predetermined period. The second delay unit 215A outputs the selection signal SRx (1d) to the second correction unit 218A in the second scanning period subsequent to the first scanning period. The second delay unit 215A outputs the selection signal SRx (2d) to the second correction unit 218A in the third scanning period subsequent to the second scanning period. Note that the luminance data held by the selection signal SRx (1d) is equal to the luminance data held by the selection signal SRx (1). Further, the luminance data held by the selection signal SRx (2d) is equal to the luminance data held by the selection signal SRx (2).
 第3遅延部216Aには、第2等価部214Aから選択信号SLx(1),SLx(2)が順次入力される。第3遅延部216Aは、選択信号SLx(1),SLx(2)を所定期間保持する。第3遅延部216Aは、第1走査期間に後続する第2走査期間において、選択信号SLx(1)を第2補正部218Aに出力する。第3遅延部216Aは、第2走査期間に後続する第3走査期間において、選択信号SLx(2)を第2補正部218Aに出力する。尚、選択信号SLx(1d)が保持する輝度データは、選択信号SLx(1)が保持する輝度データと等しい。また、選択信号SLx(2d)が保持する輝度データは、選択信号SLx(2)が保持する輝度データと等しい。 The selection signals SLx (1) and SLx (2) are sequentially input from the second equivalent unit 214A to the third delay unit 216A. The third delay unit 216A holds the selection signals SLx (1) and SLx (2) for a predetermined period. The third delay unit 216A outputs the selection signal SLx (1) to the second correction unit 218A in the second scanning period subsequent to the first scanning period. The third delay unit 216A outputs the selection signal SLx (2) to the second correction unit 218A in the third scanning period subsequent to the second scanning period. Note that the luminance data held by the selection signal SLx (1d) is equal to the luminance data held by the selection signal SLx (1). The luminance data held by the selection signal SLx (2d) is equal to the luminance data held by the selection signal SLx (2).
 図13、図22乃至図25を用いて、第1補正部217が説明される。 The 1st correction | amendment part 217 is demonstrated using FIG. 13, FIG. 22 thru | or FIG.
 第1等価部211Aの等価演算部261は、選択信号SRx(1)を第1補正部217に出力する一方で、選択信号SRx(2)を第1補正部217に出力しない。同様に、第2等価部214Aの等価演算部263は、選択信号SLx(1)を第1補正部217に出力する一方で、選択信号SLx(2)を第1補正部217に出力しない。等価演算部261,263の信号出力の切り替えは、例えば、カウンタ262,264のカウント値に基づくものであってもよい。 The equivalent calculation unit 261 of the first equivalent unit 211A outputs the selection signal SRx (1) to the first correction unit 217, but does not output the selection signal SRx (2) to the first correction unit 217. Similarly, the equivalent calculation unit 263 of the second equivalent unit 214A outputs the selection signal SLx (1) to the first correction unit 217, but does not output the selection signal SLx (2) to the first correction unit 217. The switching of the signal output of the equivalent arithmetic units 261 and 263 may be based on the count values of the counters 262 and 264, for example.
 第1補正部217は、図13に関連して説明された原理に従って、選択信号SRx(1),SLx(1)に基づいて、画素グループG11内の画素に共通する駆動輝度(等価輝度)を決定する。その後、第1補正部217は、第1補正信号CRx(1)を出力する。 The first correction unit 217 sets the drive luminance (equivalent luminance) common to the pixels in the pixel group G11 based on the selection signals SRx (1) and SLx (1) according to the principle described with reference to FIG. decide. Thereafter, the first correction unit 217 outputs the first correction signal CRx (1).
 図22乃至図25を用いて、第2補正部217が説明される。 The 2nd correction | amendment part 217 is demonstrated using FIG. 22 thru | or FIG.
 第1等価部211Aの等価演算部261は、選択信号SRx(2)を第2補正部218Aに出力する一方で、選択信号SRx(1)を第2補正部218Aに出力しない。同様に、第2等価部214Aの等価演算部263は、選択信号SLx(2)を第2補正部218Aに出力する一方で、選択信号SLx(1)を第2補正部218Aに出力しない。等価演算部261,263の信号出力の切り替えは、例えば、カウンタ262,264のカウント値に基づくものであってもよい。 The equivalent calculation unit 261 of the first equivalent unit 211A outputs the selection signal SRx (2) to the second correction unit 218A, but does not output the selection signal SRx (1) to the second correction unit 218A. Similarly, the equivalent operation unit 263 of the second equivalent unit 214A outputs the selection signal SLx (2) to the second correction unit 218A, but does not output the selection signal SLx (1) to the second correction unit 218A. The switching of the signal output of the equivalent arithmetic units 261 and 263 may be based on the count values of the counters 262 and 264, for example.
 図26及び図27は、第2補正部218Aが格納する第2補正テーブルの概念図である。図26は、第2走査期間における第2補正テーブルを示す。図27は、第3走査期間における第2補正テーブルを示す。図14、図22乃至図24並びに図26及び図27を用いて、第2補正部218Aが説明される。尚、以下の説明において、第1等価部211A及び第2等価部214Aは、選択処理を行っている。代替的に、第1等価部211A及び第2等価部214Aは、平均化処理を行っていてもよい。 26 and 27 are conceptual diagrams of the second correction table stored in the second correction unit 218A. FIG. 26 shows a second correction table in the second scanning period. FIG. 27 shows the second correction table in the third scanning period. The second correction unit 218A is described with reference to FIGS. 14, 22 to 24, 26 and 27. FIG. In the following description, the first equivalent unit 211A and the second equivalent unit 214A perform selection processing. Alternatively, the first equivalent unit 211A and the second equivalent unit 214A may perform an averaging process.
 第2補正部218Aは、第2補正信号を生成するための第2補正テーブル223Aを格納する。第2補正テーブル223Aは、第2走査動作及び第3走査動作が開始されるときに画素が達成している輝度に対する期待値をそれぞれ決定するための期待値テーブル224Aと、期待値とフレーム画像信号とに基づき、第2走査が行われるときの駆動輝度を決定するための決定テーブル225Aと、を含む。 The second correction unit 218A stores a second correction table 223A for generating a second correction signal. The second correction table 223A includes an expected value table 224A for determining expected values for the luminance achieved by the pixels when the second scanning operation and the third scanning operation are started, and the expected value and frame image signal. And a determination table 225A for determining drive luminance when the second scan is performed.
 期待値テーブル224Aは、第1実施形態と同様の調整テーブル227に加えて、入力テーブル226Aを含む。第2補正部218Aは、カウンタ265を備える。入力テーブル226A及び決定テーブル225Aは、カウンタ265のカウント値に基づき、座標軸の切り替えを行う。 The expected value table 224A includes an input table 226A in addition to the adjustment table 227 similar to that of the first embodiment. The second correction unit 218A includes a counter 265. The input table 226A and the determination table 225A perform coordinate axis switching based on the count value of the counter 265.
 カウンタ265のデフォルト値は、例えば、「0」に設定される。したがって、第2走査期間に出力される第2補正信号CRx(2)が生成されるときのカウンタ265のカウント値は、「0」に設定される。 The default value of the counter 265 is set to “0”, for example. Therefore, the count value of the counter 265 when the second correction signal CRx (2) output in the second scanning period is generated is set to “0”.
 第2補正部218Aは、カウンタ265のカウント値が「0」であるとき、3次元マトリックス状の構成された入力テーブル226Aの第1座標軸AX1を第2等価部214Aから直接的に入力された選択信号SLx(2)に対応させる。また、第2補正部218Aは、入力テーブル226Aの第2座標軸AX2を第2遅延部215Aから出力された選択信号SRx(1d)に対応させる。更に、第2補正部218Aは、入力テーブル226Aの第3座標軸AX3を第3遅延部216Aから出力された選択信号SLx(1d)に対応させる。 When the count value of the counter 265 is “0”, the second correction unit 218A selects the first coordinate axis AX1 of the input table 226A configured as a three-dimensional matrix directly from the second equivalent unit 214A. Corresponding to the signal SLx (2). The second correction unit 218A associates the second coordinate axis AX2 of the input table 226A with the selection signal SRx (1d) output from the second delay unit 215A. Further, the second correction unit 218A associates the third coordinate axis AX3 of the input table 226A with the selection signal SLx (1d) output from the third delay unit 216A.
 第2補正部218Aは、図14に関連して説明された原理に従って、入力テーブル226Aを用いて、仮期待値を決定する。その後、第2補正部218Aは、調整テーブル227を用いて、仮期待値を画素の位置に応じて調整し、期待値を決定する。 The second correction unit 218A determines a provisional expected value using the input table 226A according to the principle described in relation to FIG. Thereafter, the second correction unit 218A uses the adjustment table 227 to adjust the temporary expected value according to the position of the pixel and determine the expected value.
 第2走査期間において、決定テーブル225Aは、第1座標軸BX1と第2座標軸BX2とを備える。第1座標軸BX1は、専ら、期待値テーブル224Aを用いて決定された期待値に対応する。 In the second scanning period, the determination table 225A includes a first coordinate axis BX1 and a second coordinate axis BX2. The first coordinate axis BX1 corresponds exclusively to the expected value determined using the expected value table 224A.
 第2補正部218Aは、カウンタ265のカウント値が「0」であるとき、決定テーブル225Aの第2座標軸BX2を第1等価部211Aから直接的に出力された選択信号SRx(2)に対応させる。第2補正部218Aは、図14に関連して説明された原理に従って、決定テーブル225Aを用いて、第2補正値を決定し、第2補正信号CRx(2)を出力する。 When the count value of the counter 265 is “0”, the second correction unit 218A associates the second coordinate axis BX2 of the determination table 225A with the selection signal SRx (2) output directly from the first equivalent unit 211A. . The second correction unit 218A determines a second correction value using the determination table 225A according to the principle described in relation to FIG. 14, and outputs a second correction signal CRx (2).
 カウンタ265は、第2補正部218Aが第2補正信号CRx(2)を出力すると、カウント値を「0」から「1」に繰り上げる。 The counter 265 increments the count value from “0” to “1” when the second correction unit 218A outputs the second correction signal CRx (2).
 入力テーブル226Aの第2座標軸AX2及び第3座標軸AX3は、専ら、第2遅延部215A及び第3遅延部216Aからの出力それぞれに対応する。したがって、カウンタ265のカウント値が「1」であるとき(即ち、第3走査期間において)、第2座標軸AX2には、選択信号SRx(1d)に続いて、選択信号SRx(2d)が入力される。また、第3座標軸AX3には、選択信号SLx(1d)に続いて、選択信号SLx(2d)が入力される。更に第2座標軸AX2は、前回入力された選択信号SRx(1d)のデータを保持する。また、第3座標軸AX3は、前回入力された選択信号SLx(1d)を保持する。 The second coordinate axis AX2 and the third coordinate axis AX3 of the input table 226A correspond exclusively to the outputs from the second delay unit 215A and the third delay unit 216A, respectively. Therefore, when the count value of the counter 265 is “1” (that is, in the third scanning period), the selection signal SRx (2d) is input to the second coordinate axis AX2 following the selection signal SRx (1d). The The selection signal SLx (2d) is input to the third coordinate axis AX3 following the selection signal SLx (1d). Further, the second coordinate axis AX2 holds the data of the selection signal SRx (1d) inputted last time. The third coordinate axis AX3 holds the selection signal SLx (1d) input last time.
 第2補正部218Aは、カウンタ265のカウント値が「1」であるとき、入力テーブル226Aの第1座標軸AX1を切り替え、第1遅延部213から出力されたLフレーム画像信号SLx(3)に対応させる。第2補正部218Aは、図14に関連して説明された原理に従って、入力テーブル226Aを用いて、仮期待値を決定する。その後、第2補正部218Aは、調整テーブル227を用いて、仮期待値を画素の位置に応じて調整し、期待値を決定する。 When the count value of the counter 265 is “1”, the second correction unit 218A switches the first coordinate axis AX1 of the input table 226A and corresponds to the L frame image signal SLx (3) output from the first delay unit 213. Let The second correction unit 218A determines a provisional expected value using the input table 226A according to the principle described with reference to FIG. Thereafter, the second correction unit 218A uses the adjustment table 227 to adjust the temporary expected value according to the position of the pixel and determine the expected value.
 第2補正部218Aは、カウンタ265のカウント値が「1」であるとき、決定テーブル225Aの第2座標軸BX2を切り替え、Rフレーム画像信号SRx(3)に対応させる。第2補正部218Aは、図14に関連して説明された原理に従い、決定テーブル225Aを用いて、第2補正値を決定し、第3補正信号CRx(3)を出力する。 When the count value of the counter 265 is “1”, the second correction unit 218A switches the second coordinate axis BX2 of the determination table 225A to correspond to the R frame image signal SRx (3). The second correction unit 218A determines the second correction value using the determination table 225A according to the principle described in relation to FIG. 14, and outputs the third correction signal CRx (3).
 図21乃至図24を用いて、第1選択部212A、第2選択部219A及び出力部221Aが説明される。 The first selection unit 212A, the second selection unit 219A, and the output unit 221A are described with reference to FIGS.
 第1選択部212Aには、第1等価部211Aから出力された選択信号SRx(1),SRx(2)及びRフレーム画像信号SRx(3)が入力される。第1選択部212Aは、第1走査期間に、選択信号SRx(1)を出力部221Aに出力する。第1選択部212Aは、第2走査期間に、選択信号SRx(2)を出力部221Aに出力する。第1選択部212Aは、第3走査期間に、Rフレーム画像信号SRx(3)を出力部221A出力する。 The selection signals SRx (1), SRx (2) and R frame image signal SRx (3) output from the first equivalent unit 211A are input to the first selection unit 212A. The first selection unit 212A outputs the selection signal SRx (1) to the output unit 221A during the first scanning period. The first selection unit 212A outputs the selection signal SRx (2) to the output unit 221A during the second scanning period. The first selection unit 212A outputs the R frame image signal SRx (3) to the output unit 221A during the third scanning period.
 第2選択部219Aには、第1補正部217から出力された第1補正信号CRx(1)並びに第2補正部218Aから出力された第2補正信号CRx(2)及び第3補正信号CRx(3)が入力される。第2選択部219Aは、第1走査期間に第1補正信号CRx(1)を出力部221Aに出力する。第2選択部219Aは、第2走査期間に第2補正信号CRx(2)を出力部221Aに出力する。第2選択部219Aは、第3走査期間に第3補正信号CRx(3)を出力部221Aに出力する。 The second selection unit 219A includes a first correction signal CRx (1) output from the first correction unit 217, a second correction signal CRx (2) output from the second correction unit 218A, and a third correction signal CRx ( 3) is input. The second selection unit 219A outputs the first correction signal CRx (1) to the output unit 221A during the first scanning period. The second selection unit 219A outputs the second correction signal CRx (2) to the output unit 221A during the second scanning period. The second selection unit 219A outputs the third correction signal CRx (3) to the output unit 221A during the third scanning period.
 出力部221Aは、第1走査期間において、第1選択部212Aから出力された選択信号SRx(1)の輝度データと第1補正信号CRx(1)の補正データとを加算し、第1画像信号を生成する。第1画像信号は、液晶駆動部220Aに出力される。 The output unit 221A adds the luminance data of the selection signal SRx (1) output from the first selection unit 212A and the correction data of the first correction signal CRx (1) in the first scanning period, and adds the first image signal. Is generated. The first image signal is output to the liquid crystal driving unit 220A.
 出力部221Aは、第2走査期間において、第1選択部212Aから出力された選択信号SRx(2)の輝度データと第2補正信号CRx(2)の補正データとを加算し、第2画像信号を生成する。第2画像信号は、液晶駆動部220Aに出力される。 In the second scanning period, the output unit 221A adds the luminance data of the selection signal SRx (2) output from the first selection unit 212A and the correction data of the second correction signal CRx (2) to generate the second image signal. Is generated. The second image signal is output to the liquid crystal driving unit 220A.
 出力部221Aは、第3走査期間において、第1選択部212Aから出力されたRフレーム画像信号SRx(3)の輝度データと第3補正信号CRx(3)の補正データとを加算し、第3画像信号を生成する。第3画像信号は、液晶駆動部220Aに出力される。 The output unit 221A adds the luminance data of the R frame image signal SRx (3) output from the first selection unit 212A and the correction data of the third correction signal CRx (3) in the third scanning period, An image signal is generated. The third image signal is output to the liquid crystal driving unit 220A.
 液晶駆動部220Aは、第1走査期間において、第1画像信号を走査する。液晶駆動部220Aは、第2走査期間において、第2画像信号を走査する。液晶駆動部220Aは、第3走査期間において、第3画像信号を走査する。かくして、Rフレーム画像信号SRx(3)に対応して、3回の走査動作が行われる。 The liquid crystal driver 220A scans the first image signal in the first scanning period. The liquid crystal driver 220A scans the second image signal in the second scanning period. The liquid crystal driver 220A scans the third image signal in the third scanning period. Thus, three scanning operations are performed corresponding to the R frame image signal SRx (3).
 (輝度データ)
 図28は、第1等価部211Aによる選択処理による輝度データの変化を例示する。図29は、第2等価部214Aによる選択処理による輝度データの変化を例示する。図22乃至図24並びに図28及び図29を用いて、輝度データの変化が説明される。
(Luminance data)
FIG. 28 exemplifies a change in luminance data due to the selection process by the first equivalent unit 211A. FIG. 29 exemplifies a change in luminance data by the selection process by the second equivalent unit 214A. Changes in luminance data are described with reference to FIGS. 22 to 24 and FIGS. 28 and 29.
 図28及び図29には、データ線M上に整列する画素P1乃至P4が示されている。画素P1は、ゲート線Lとデータ線Mとの交点に位置する。画素P2は、ゲート線Lとデータ線Mとの交点に位置する。画素P3は、ゲート線Lとデータ線Mとの交点に位置する。画素P4は、ゲート線Lとデータ線Mとの交点に位置する。 28 and 29, the pixel P1 to P4 is aligned on the data lines M 1 is shown. Pixel P1 is located at the intersection of the gate line L 1 and the data line M 1. Pixel P2 is located at the intersection of the gate line L 2 and the data lines M 1. Pixel P3 is located at the intersection of the gate line L 3 and the data lines M 1. Pixel P4 is located at the intersection of the gate line L 4 and the data lines M 1.
 図28に示される如く、X番目のRフレーム画像信号SRx(3)は、画素P1に対して、「80」の輝度を規定している。Rフレーム画像信号SRx(3)は、画素P2に対して、「70」の輝度を規定している。Rフレーム画像信号SRx(3)は、画素P3に対して、「60」の輝度を規定している。Rフレーム画像信号SRx(3)は、画素P4に対して、「50」の輝度を規定している。 As shown in FIG. 28, the Xth R frame image signal SRx (3) defines a luminance of “80” for the pixel P1. The R frame image signal SRx (3) defines a luminance of “70” for the pixel P2. The R frame image signal SRx (3) defines a luminance of “60” for the pixel P3. The R frame image signal SRx (3) defines a luminance of “50” for the pixel P4.
 第1等価部211Aは、画素P1乃至画素P4を含む画素グループG11を設定する。第1等価部211Aは、Rフレーム画像信号SRx(3)が画素P1に対して規定した「80」の輝度を選択し、画素グループG11中の画素P1乃至P4全てに対して「80」の輝度を設定する。この結果、第1等価部211Aは、画素グループG11内の画素P1乃至P4に対して「80」の輝度を規定する選択信号SRx(1)を出力する。 The first equivalent unit 211A sets a pixel group G11 including the pixels P1 to P4. The first equivalent unit 211A selects the luminance of “80” defined by the R frame image signal SRx (3) for the pixel P1, and the luminance of “80” for all the pixels P1 to P4 in the pixel group G11. Set. As a result, the first equivalent unit 211A outputs the selection signal SRx (1) that defines the luminance of “80” to the pixels P1 to P4 in the pixel group G11.
 第1等価部211Aは、画素P1及び画素P2を含む画素グループG21を設定する。第1等価部211Aは、Rフレーム画像信号SRx(3)が画素P1に対して規定した「80」の輝度を選択し、画素グループG21中の画素P1及び画素P2に対して「80」の輝度を設定する。第1等価部211Aは、画素P3及び画素P4を含む画素グループG22を設定する。第1等価部211Aは、Rフレーム画像信号SRx(3)が画素P3に対して規定した「60」の輝度を選択し、画素グループG22中の画素P3及び画素P4に対して「60」の輝度を設定する。この結果、第1等価部211Aは、画素グループG21内の画素P1,P2に対して「80」の輝度を規定し、画素グループG22内の画素P3,P4に対して「60」の輝度を規定する選択信号SRx(2)を出力する。 The first equivalent unit 211A sets a pixel group G21 including the pixel P1 and the pixel P2. The first equivalent unit 211A selects the luminance of “80” defined by the R frame image signal SRx (3) for the pixel P1, and the luminance of “80” for the pixel P1 and the pixel P2 in the pixel group G21. Set. The first equivalent unit 211A sets a pixel group G22 including the pixel P3 and the pixel P4. The first equivalent unit 211A selects the luminance of “60” defined by the R frame image signal SRx (3) for the pixel P3, and the luminance of “60” for the pixel P3 and the pixel P4 in the pixel group G22. Set. As a result, the first equivalent section 211A defines a luminance of “80” for the pixels P1 and P2 in the pixel group G21 and defines a luminance of “60” for the pixels P3 and P4 in the pixel group G22. The selection signal SRx (2) to be output is output.
 図29に示される如く、X番目のLフレーム画像信号SLx(3)は、画素P1に対して、「30」の輝度を規定している。Lフレーム画像信号SLx(3)は、画素P2に対して、「40」の輝度を規定している。Lフレーム画像信号SLx(3)は、画素P3に対して、「70」の輝度を規定している。Lフレーム画像信号SLx(3)は、画素P4に対して、「80」の輝度を規定している。 29, the Xth L frame image signal SLx (3) defines a luminance of “30” for the pixel P1. The L frame image signal SLx (3) defines a luminance of “40” for the pixel P2. The L frame image signal SLx (3) defines a luminance of “70” for the pixel P3. The L frame image signal SLx (3) defines a luminance of “80” for the pixel P4.
 第2等価部214Aは、画素P1乃至画素P4を含む画素グループG11を設定する。第2等価部214Aは、Lフレーム画像信号SLx(3)が画素P1に対して規定した「30」の輝度を選択し、画素グループG11中の画素P1乃至P4全てに対して「30」の輝度を設定する。この結果、第2等価部214Aは、画素グループG11内の画素P1乃至P4に対して「30」の輝度を規定する選択信号SLx(1)を出力する。 The second equivalent unit 214A sets a pixel group G11 including the pixels P1 to P4. The second equivalent unit 214A selects the luminance of “30” defined by the L frame image signal SLx (3) for the pixel P1, and the luminance of “30” for all the pixels P1 to P4 in the pixel group G11. Set. As a result, the second equivalent unit 214A outputs the selection signal SLx (1) that defines the luminance of “30” to the pixels P1 to P4 in the pixel group G11.
 第2等価部214Aは、画素P1及び画素P2を含む画素グループG21を設定する。第2等価部214Aは、Lフレーム画像信号SLx(3)が画素P1に対して規定した「30」の輝度を選択し、画素グループG21中の画素P1及び画素P2に対して「30」の輝度を設定する。第2等価部214Aは、画素P3及び画素P4を含む画素グループG22を設定する。第2等価部214Aは、Lフレーム画像信号SLx(3)が画素P3に対して規定した「70」の輝度を選択し、画素グループG22中の画素P3及び画素P4に対して「70」の輝度を設定する。この結果、第1等価部211Aは、画素グループG21内の画素P1,P2に対して「30」の輝度を規定し、画素グループG22内の画素P3,P4に対して「70」の輝度を規定する選択信号SRx(2)を出力する。 The second equivalent unit 214A sets a pixel group G21 including the pixel P1 and the pixel P2. The second equivalent unit 214A selects the luminance of “30” defined by the L frame image signal SLx (3) for the pixel P1, and the luminance of “30” for the pixel P1 and the pixel P2 in the pixel group G21. Set. The second equivalent unit 214A sets a pixel group G22 including the pixel P3 and the pixel P4. The second equivalent unit 214A selects the luminance of “70” defined by the L frame image signal SLx (3) for the pixel P3, and the luminance of “70” for the pixel P3 and the pixel P4 in the pixel group G22. Set. As a result, the first equivalent section 211A defines a luminance of “30” for the pixels P1 and P2 in the pixel group G21 and defines a luminance of “70” for the pixels P3 and P4 in the pixel group G22. The selection signal SRx (2) to be output is output.
 図30は、第1補正部217中の輝度変化を示す。図22乃至図24並びに図30を用いて、第1補正部217中の輝度変化が説明される。 FIG. 30 shows a change in luminance in the first correction unit 217. The luminance change in the first correction unit 217 will be described with reference to FIGS. 22 to 24 and FIG.
 図30には、データ線M上に整列する画素P1乃至P4が示されている。画素P1は、ゲート線Lとデータ線Mとの交点に位置する。画素P2は、ゲート線Lとデータ線Mとの交点に位置する。画素P3は、ゲート線Lとデータ線Mとの交点に位置する。画素P4は、ゲート線Lとデータ線Mとの交点に位置する。 Figure 30 is a pixel P1 to P4 is aligned on the data lines M 1 is shown. Pixel P1 is located at the intersection of the gate line L 1 and the data line M 1. Pixel P2 is located at the intersection of the gate line L 2 and the data lines M 1. Pixel P3 is located at the intersection of the gate line L 3 and the data lines M 1. Pixel P4 is located at the intersection of the gate line L 4 and the data lines M 1.
 第1補正部217は、第1等価部211Aが出力した選択信号SRx(1)と第2等価部214Aが出力した選択信号SLx(1)とを比較する。上述の如く、選択信号SRx(1)が画素グループG11内の画素P1乃至P4に規定する輝度は「80」であり、選択信号SLx(1)が画素グループG11内の画素P1乃至P4に規定する輝度は「30」であるので、第1補正部217は、例えば、「10」の第1補正値を決定し、画素グループG11内の画素P1乃至P4に対して「10」の第1補正値を規定する第1補正信号CRx(1)を出力する。 The first correction unit 217 compares the selection signal SRx (1) output from the first equivalent unit 211A with the selection signal SLx (1) output from the second equivalent unit 214A. As described above, the luminance defined by the selection signal SRx (1) for the pixels P1 to P4 in the pixel group G11 is “80”, and the selection signal SLx (1) is defined for the pixels P1 to P4 in the pixel group G11. Since the luminance is “30”, the first correction unit 217 determines, for example, the first correction value “10” and sets the first correction value “10” for the pixels P1 to P4 in the pixel group G11. The first correction signal CRx (1) that defines the above is output.
 出力部221Aは、第1選択部212Aから出力された選択信号SRx(1)が規定する輝度データと、第2選択部219Aから出力された第1補正信号CRx(1)が規定する第1補正値のデータとを加算する。上述の如く、選択信号SRx(1)が画素グループG11内の画素P1乃至P4に規定する輝度は「80」であり、第1補正信号CRx(1)が画素グループG11内の画素P1乃至P4に対して規定する第1補正値は「10」であるので、出力部221Aは、画素グループG11内の画素P1乃至P4に対して「90」の駆動輝度(等価輝度)を規定する第1画像信号IRx(1)を出力する。 The output unit 221A includes the luminance data defined by the selection signal SRx (1) output from the first selection unit 212A and the first correction defined by the first correction signal CRx (1) output from the second selection unit 219A. Add the value data. As described above, the luminance specified by the selection signal SRx (1) for the pixels P1 to P4 in the pixel group G11 is “80”, and the first correction signal CRx (1) is supplied to the pixels P1 to P4 in the pixel group G11. Since the first correction value defined for the pixel group is “10”, the output unit 221A defines the first image signal that defines the drive luminance (equivalent luminance) of “90” for the pixels P1 to P4 in the pixel group G11. IRx (1) is output.
 図31は、第2走査期間における期待値の算出工程の概念図である。図26及び図31を用いて、第2走査期間における期待値の算出工程が説明される。 FIG. 31 is a conceptual diagram of an expected value calculation process in the second scanning period. The expected value calculation process in the second scanning period will be described with reference to FIGS.
 図31には、データ線M上に整列する画素P1乃至P4が示されている。画素P1は、ゲート線Lとデータ線Mとの交点に位置する。画素P2は、ゲート線Lとデータ線Mとの交点に位置する。画素P3は、ゲート線Lとデータ線Mとの交点に位置する。画素P4は、ゲート線Lとデータ線Mとの交点に位置する。 Figure 31 is a pixel P1 to P4 is aligned on the data lines M 1 is shown. Pixel P1 is located at the intersection of the gate line L 1 and the data line M 1. Pixel P2 is located at the intersection of the gate line L 2 and the data lines M 1. Pixel P3 is located at the intersection of the gate line L 3 and the data lines M 1. Pixel P4 is located at the intersection of the gate line L 4 and the data lines M 1.
 第2走査期間において、第2補正部218Aの入力テーブル226Aには、第2遅延部215Aから出力された選択信号SRx(1d)、第3遅延部216Aから出力された選択信号SLx(1d)及び第2等価部214Aから出力された選択信号SLx(2)が入力される。上述の如く、選択信号SRx(1d)の輝度データは、選択信号SRx(1)の輝度データと等しいので、選択信号SRx(1d)は、画素P1乃至P4に対して、「80」の輝度を規定している。また、選択信号SLx(1d)の輝度データは、選択信号SLx(1)の輝度データと等しいので、選択信号SLx(1d)は、画素P1乃至P4に対して、「30」の輝度を規定している。上述の如く、第2等価部214Aから出力された選択信号SLx(2)は、画素グループG21に含まれる画素P1,P2に対して、「30」の輝度を規定する。また、選択信号SLx(2)は、画素グループG22に含まれる画素P3,P4に対して、「70」の輝度を規定する。 In the second scanning period, the input table 226A of the second correction unit 218A includes a selection signal SRx (1d) output from the second delay unit 215A, a selection signal SLx (1d) output from the third delay unit 216A, and The selection signal SLx (2) output from the second equivalent unit 214A is input. As described above, since the luminance data of the selection signal SRx (1d) is equal to the luminance data of the selection signal SRx (1), the selection signal SRx (1d) has a luminance of “80” with respect to the pixels P1 to P4. It prescribes. Since the luminance data of the selection signal SLx (1d) is equal to the luminance data of the selection signal SLx (1), the selection signal SLx (1d) defines a luminance of “30” for the pixels P1 to P4. ing. As described above, the selection signal SLx (2) output from the second equivalent unit 214A defines a luminance of “30” for the pixels P1 and P2 included in the pixel group G21. The selection signal SLx (2) defines a luminance of “70” for the pixels P3 and P4 included in the pixel group G22.
 第2補正部218Aは、選択信号SLx(2)の輝度データに基づき、画素グループG21内の画素P1,P2は、第1走査期間開始時において「30」の輝度を有すると判定する。また、選択信号SRx(1d),SLx(1d)間の画素P1,P2の輝度差と第1走査期間開始時における画素P1,P2の輝度(「30」の輝度)とに基づき、第2走査期間が開始するときに、画素グループG21内の画素P1,P2の輝度が、例えば、「65」の輝度を達成すると、第2補正部218Aは判定する。したがって、第2補正部218Aは、画素グループG21内の画素P1,P2に対して、「65」の仮期待値を決定する。 The second correction unit 218A determines that the pixels P1 and P2 in the pixel group G21 have a luminance of “30” at the start of the first scanning period based on the luminance data of the selection signal SLx (2). Further, the second scanning is performed based on the luminance difference between the pixels P1 and P2 between the selection signals SRx (1d) and SLx (1d) and the luminances of the pixels P1 and P2 at the start of the first scanning period (“30” luminance). When the period starts, the second correction unit 218A determines that the luminance of the pixels P1 and P2 in the pixel group G21 achieves a luminance of “65”, for example. Accordingly, the second correction unit 218A determines a temporary expected value of “65” for the pixels P1 and P2 in the pixel group G21.
 第2補正部218Aは、選択信号SLx(2)の輝度データに基づき、画素グループG22内の画素P3,P4は、第1走査期間開始時において「70」の輝度を有すると判定する。また、選択信号SRx(1d),SLx(1d)間の画素P3,P4の輝度差と第1走査期間開始時における画素P3,P4の輝度(「70」の輝度)とに基づき、第2走査期間が開始するときに、画素グループG22内の画素P3,P4の輝度が、例えば、「85」の輝度を達成すると、第2補正部218Aは判定する。したがって、第2補正部218Aは、画素グループG22内の画素P3,P4に対して、「85」の仮期待値を決定する。 The second correction unit 218A determines that the pixels P3 and P4 in the pixel group G22 have a luminance of “70” at the start of the first scanning period based on the luminance data of the selection signal SLx (2). Further, the second scan is performed based on the luminance difference between the pixels P3 and P4 between the selection signals SRx (1d) and SLx (1d) and the luminance of the pixels P3 and P4 at the start of the first scanning period (“70” luminance). When the period starts, the second correction unit 218A determines that the luminance of the pixels P3 and P4 in the pixel group G22 achieves the luminance of “85”, for example. Therefore, the second correction unit 218A determines a temporary expected value of “85” for the pixels P3 and P4 in the pixel group G22.
 尚、以下の説明において、説明を明瞭化のため、画素P1乃至P4は、比較的早期に走査され、調整テーブル227による仮期待値の調整量は「0」である。したがって、仮期待値の値は、期待値と同値である。 In the following description, for the sake of clarity, the pixels P1 to P4 are scanned relatively early, and the adjustment amount of the temporary expected value by the adjustment table 227 is “0”. Therefore, the value of the temporary expected value is the same as the expected value.
 図32は、第2補正信号CRx(2)の生成工程の概念図である。図26及び図32を用いて、第2補正信号CRx(2)の生成工程が説明される。 FIG. 32 is a conceptual diagram of the generation process of the second correction signal CRx (2). The generation process of the second correction signal CRx (2) will be described with reference to FIGS.
 図32には、データ線M上に整列する画素P1乃至P4が示されている。画素P1は、ゲート線Lとデータ線Mとの交点に位置する。画素P2は、ゲート線Lとデータ線Mとの交点に位置する。画素P3は、ゲート線Lとデータ線Mとの交点に位置する。画素P4は、ゲート線Lとデータ線Mとの交点に位置する。 Figure 32 is a pixel P1 to P4 is aligned on the data lines M 1 is shown. Pixel P1 is located at the intersection of the gate line L 1 and the data line M 1. Pixel P2 is located at the intersection of the gate line L 2 and the data lines M 1. Pixel P3 is located at the intersection of the gate line L 3 and the data lines M 1. Pixel P4 is located at the intersection of the gate line L 4 and the data lines M 1.
 第2補正部218Aは、第1等価部211Aが出力した選択信号SRx(2)と期待値テーブル224Aを用いて取得された期待値とを比較する。上述の如く、選択信号SRx(2)が画素グループG21内の画素P1,P2に規定する輝度は「80」であり、画素P1,P2が第2走査期間の開始時に達成している輝度に対する期待値は、「65」であるので、第2補正部218Aは、例えば、「10」の第2補正値を決定する。また、選択信号SRx(2)が画素グループG22内の画素P3,P4に規定する輝度は「60」であり、画素P3,P4が第2走査期間の開始時に達成している輝度に対する期待値は、「85」であるので、第2補正部218Aは、例えば、「-10」の第2補正値を決定する。かくして、第2補正部218Aは、画素グループG21内の画素P1,P2に対して「10」の第2補正値を規定し、画素グループG22内の画素P3,P4に対して「-10」の第2補正値を規定する第2補正信号CRx(2)を出力する。 The second correction unit 218A compares the selection signal SRx (2) output from the first equivalent unit 211A with the expected value acquired using the expected value table 224A. As described above, the luminance defined by the selection signal SRx (2) for the pixels P1 and P2 in the pixel group G21 is “80”, and the expectation for the luminance achieved by the pixels P1 and P2 at the start of the second scanning period. Since the value is “65”, the second correction unit 218A determines a second correction value of “10”, for example. The luminance defined by the selection signal SRx (2) for the pixels P3 and P4 in the pixel group G22 is “60”, and the expected value for the luminance achieved by the pixels P3 and P4 at the start of the second scanning period is , “85”, the second correction unit 218A determines, for example, a second correction value of “−10”. Thus, the second correction unit 218A defines the second correction value “10” for the pixels P1 and P2 in the pixel group G21, and “−10” for the pixels P3 and P4 in the pixel group G22. A second correction signal CRx (2) that defines the second correction value is output.
 出力部221Aは、第1選択部212Aから出力された選択信号SRx(2)が規定する輝度データと、第2選択部219Aから出力された第2補正信号CRx(2)が規定する第2補正値のデータとを加算する。上述の如く、選択信号SRx(2)が画素グループG21内の画素P1,P2に規定する輝度は「80」であり、第1補正信号CRx(1)が画素グループG21内の画素P1,P2に対して規定する第2補正値は「10」であるので、出力部221Aは、画素グループG21内の画素P1,P2に対して「90」の駆動輝度(等価輝度)を規定する第2画像信号IRx(2)を出力する。 The output unit 221A includes the luminance data defined by the selection signal SRx (2) output from the first selection unit 212A and the second correction defined by the second correction signal CRx (2) output from the second selection unit 219A. Add the value data. As described above, the luminance specified by the selection signal SRx (2) for the pixels P1 and P2 in the pixel group G21 is “80”, and the first correction signal CRx (1) is supplied to the pixels P1 and P2 in the pixel group G21. Since the second correction value specified for the pixel group is “10”, the output unit 221A sets the second image signal that specifies the drive luminance (equivalent luminance) of “90” for the pixels P1 and P2 in the pixel group G21. IRx (2) is output.
 図33乃至図36は、第3走査期間における駆動輝度の設定を説明するグラフである。図33は、画素P1の輝度の変動を表すグラフである。図34は、画素P2の輝度の変動を表すグラフである。図35は、画素P3の輝度の変動を表すグラフである。図36は、画素P4の輝度の変動を表すグラフである。図21、図23及び図24、図27乃至図29並びに図33乃至図36を用いて、第3走査期間における駆動輝度の設定が説明される。 33 to 36 are graphs for explaining setting of drive luminance in the third scanning period. FIG. 33 is a graph showing the luminance variation of the pixel P1. FIG. 34 is a graph showing the luminance variation of the pixel P2. FIG. 35 is a graph showing the luminance variation of the pixel P3. FIG. 36 is a graph showing the luminance variation of the pixel P4. The setting of drive luminance in the third scanning period is described with reference to FIGS. 21, 23 and 24, FIGS. 27 to 29, and FIGS. 33 to 36. FIG.
 図27に関連して説明された如く、入力テーブル226Aは、第2走査期間に入力された選択信号SRx(1d),SLx(1d)のデータを保持する。また、入力テーブル226Aには、第3走査期間において、第1遅延部213からのLフレーム画像信号SLx(3)、第2遅延部215Aからの選択信号SRx(2d)及び第3遅延部216Aからの選択信号SLx(2d)が入力される。これらの信号(選択信号SRx(1d),SLx(1d),SRx(2d),SLx(2d)並びにLフレーム画像信号SLx(3))に基づいて、第2補正部218Aは、第1走査期間及び第2走査期間における画素P1乃至P4の輝度の変動を把握することができる。 As described with reference to FIG. 27, the input table 226A holds the data of the selection signals SRx (1d) and SLx (1d) input in the second scanning period. Further, the input table 226A includes the L frame image signal SLx (3) from the first delay unit 213, the selection signal SRx (2d) from the second delay unit 215A, and the third delay unit 216A in the third scanning period. Selection signal SLx (2d) is input. Based on these signals (selection signals SRx (1d), SLx (1d), SRx (2d), SLx (2d) and L frame image signal SLx (3)), the second correction unit 218A performs the first scanning period. In addition, it is possible to grasp the luminance variation of the pixels P1 to P4 in the second scanning period.
 図33に示される如く、第2補正部218Aは、選択信号SRx(1d),SLx(1d),SRx(2d),SLx(2d)並びにLフレーム画像信号SLx(3)が含むデータに基づいて、画素P1は、第1走査期間において、「30」から「65」へ輝度を変え、その後、第2走査期間において、「65」から「85」へ輝度を変えることを推定する。かくして、期待値テーブル224Aは、「85」の輝度の期待値を出力する。 As shown in FIG. 33, the second correction unit 218A is based on the data included in the selection signals SRx (1d), SLx (1d), SRx (2d), SLx (2d) and the L frame image signal SLx (3). The pixel P1 is estimated to change the luminance from “30” to “65” in the first scanning period, and then change the luminance from “65” to “85” in the second scanning period. Thus, the expected value table 224A outputs an expected value of “85”.
 決定テーブル225Aには、「85」の輝度の期待値に加えて、Rフレーム画像信号SRx(3)が入力される。図28に示される如く、Rフレーム画像信号SRx(3)は、画素P1に対して「80」の目標輝度を規定する。第2補正部218Aは、「85」の輝度の期待値と「80」の目標輝度とを比較し、第3画像信号が「75」の駆動輝度を規定するように第3補正値を決定する。この結果、第3補正信号CRx(3)は、画素P1に対して、「-5」の補正値を規定する。 In addition to the expected brightness value of “85”, the R frame image signal SRx (3) is input to the determination table 225A. As shown in FIG. 28, the R frame image signal SRx (3) defines a target luminance of “80” for the pixel P1. The second correction unit 218A compares the expected value of “85” with the target luminance of “80” and determines the third correction value so that the third image signal defines the drive luminance of “75”. . As a result, the third correction signal CRx (3) defines a correction value of “−5” for the pixel P1.
 図34に示される如く、第2補正部218Aは、選択信号SRx(1d),SLx(1d),SRx(2d),SLx(2d)並びにLフレーム画像信号SLx(3)が含むデータに基づいて、画素P2は、第1走査期間において、「40」から「65」へ輝度を変え、その後、第2走査期間において、「65」から「85」へ輝度を変えることを推定する。かくして、期待値テーブル224Aは、「85」の輝度の期待値を出力する。 As shown in FIG. 34, the second correction unit 218A is based on the data included in the selection signals SRx (1d), SLx (1d), SRx (2d), SLx (2d) and the L frame image signal SLx (3). The pixel P2 is assumed to change the luminance from “40” to “65” in the first scanning period, and then change the luminance from “65” to “85” in the second scanning period. Thus, the expected value table 224A outputs an expected value of “85”.
 決定テーブル225Aには、「85」の輝度の期待値に加えて、Rフレーム画像信号SRx(3)が入力される。図28に示される如く、Rフレーム画像信号SRx(3)は、画素P2に対して「70」の目標輝度を規定する。第2補正部218Aは、「85」の輝度の期待値と「70」の目標輝度とを比較し、第3画像信号が「60」の駆動輝度を規定するように第3補正値を決定する。この結果、第3補正信号CRx(3)は、画素P2に対して、「-10」の補正値を規定する。 In addition to the expected brightness value of “85”, the R frame image signal SRx (3) is input to the determination table 225A. As shown in FIG. 28, the R frame image signal SRx (3) defines a target luminance of “70” for the pixel P2. The second correction unit 218A compares the expected value of “85” with the target luminance of “70”, and determines the third correction value so that the third image signal defines the drive luminance of “60”. . As a result, the third correction signal CRx (3) defines a correction value of “−10” for the pixel P2.
 図35に示される如く、第2補正部218Aは、選択信号SRx(1d),SLx(1d),SRx(2d),SLx(2d)並びにLフレーム画像信号SLx(3)が含むデータに基づいて、画素P3は、第1走査期間において、「70」から「85」へ輝度を変え、その後、第2走査期間において、「85」から「65」へ輝度を変えることを推定する。かくして、期待値テーブル224Aは、「65」の輝度の期待値を出力する。 As shown in FIG. 35, the second correction unit 218A is based on data included in the selection signals SRx (1d), SLx (1d), SRx (2d), SLx (2d) and the L frame image signal SLx (3). The pixel P3 is estimated to change the luminance from “70” to “85” in the first scanning period, and then change the luminance from “85” to “65” in the second scanning period. Thus, the expected value table 224A outputs an expected value of luminance of “65”.
 決定テーブル225Aには、「65」の輝度の期待値に加えて、Rフレーム画像信号SRx(3)が入力される。図28に示される如く、Rフレーム画像信号SRx(3)は、画素P3に対して「60」の目標輝度を規定する。第2補正部218Aは、「65」の輝度の期待値と「60」の目標輝度とを比較し、第3画像信号が「60」の駆動輝度を規定するように第3補正値を決定する。この結果、第3補正信号CRx(3)は、画素P3に対して、「0」の補正値を規定する。 In addition to the expected brightness value of “65”, the R frame image signal SRx (3) is input to the decision table 225A. As shown in FIG. 28, the R frame image signal SRx (3) defines a target luminance of “60” for the pixel P3. The second correction unit 218A compares the expected value of “65” with the target luminance of “60” and determines the third correction value so that the third image signal defines the driving luminance of “60”. . As a result, the third correction signal CRx (3) defines a correction value of “0” for the pixel P3.
 図36に示される如く、第2補正部218Aは、選択信号SRx(1d),SLx(1d),SRx(2d),SLx(2d)並びにLフレーム画像信号SLx(3)が含むデータに基づいて、画素P4は、第1走査期間において、「80」から「85」へ輝度を変え、その後、第2走査期間において、「85」から「65」へ輝度を変えることを推定する。かくして、期待値テーブル224Aは、「65」の輝度の期待値を出力する。 As shown in FIG. 36, the second correction unit 218A is based on data included in the selection signals SRx (1d), SLx (1d), SRx (2d), SLx (2d) and the L frame image signal SLx (3). The pixel P4 is assumed to change the luminance from “80” to “85” in the first scanning period, and then change the luminance from “85” to “65” in the second scanning period. Thus, the expected value table 224A outputs an expected value of luminance of “65”.
 決定テーブル225Aには、「65」の輝度の期待値に加えて、Rフレーム画像信号SRx(3)が入力される。図28に示される如く、Rフレーム画像信号SRx(3)は、画素P4に対して「50」の目標輝度を規定する。第2補正部218Aは、「65」の輝度の期待値と「50」の目標輝度とを比較し、第3画像信号が「45」の駆動輝度を規定するように第3補正値を決定する。この結果、第3補正信号CRx(3)は、画素P4に対して、「-5」の補正値を規定する。 In addition to the expected brightness value of “65”, the R frame image signal SRx (3) is input to the decision table 225A. As shown in FIG. 28, the R frame image signal SRx (3) defines a target luminance of “50” for the pixel P4. The second correction unit 218A compares the expected value of “65” with the target luminance of “50”, and determines the third correction value so that the third image signal defines the drive luminance of “45”. . As a result, the third correction signal CRx (3) defines a correction value of “−5” for the pixel P4.
 図33乃至図36に示されるように、第3走査期間の終了時には、画素P1乃至P4の輝度は、Rフレーム画像信号SRx(3)が規定する目標輝度に近似する値となる。第3走査期間の後、右眼シャッタ312が開かれる。かくして、視聴者は、クロストークが少ない映像を視聴することができる。 As shown in FIGS. 33 to 36, at the end of the third scanning period, the luminance of the pixels P1 to P4 becomes a value that approximates the target luminance defined by the R frame image signal SRx (3). After the third scanning period, the right eye shutter 312 is opened. Thus, the viewer can view a video with little crosstalk.
 図37は、第1走査動作、第2走査動作及び第3走査動作によって得られる空間スペクトルを概略的に示すグラフである。図38A乃至図38Cは、第1走査動作、第2走査動作及び第3走査動作によって描かれるオブジェクトを例示する。図38Aは、第1走査動作によって描かれるオブジェクトを示す。図38Bは、第1走査動作によって描かれるオブジェクトを示す。図38Cは、第1走査動作によって描かれるオブジェクトを示す。 FIG. 37 is a graph schematically showing a spatial spectrum obtained by the first scanning operation, the second scanning operation, and the third scanning operation. 38A to 38C illustrate objects drawn by the first scanning operation, the second scanning operation, and the third scanning operation. FIG. 38A shows an object drawn by the first scanning operation. FIG. 38B shows an object drawn by the first scanning operation. FIG. 38C shows an object drawn by the first scanning operation.
 第1実施形態及び第2実施形態に共通する原理は、先行して描かれるオブジェクトよりも後続の走査動作によって描かれるオブジェクトの解像度が高い点に特徴づけられる。オブジェクトの解像度が高いならば、空間周波数は高くなる。オブジェクトの解像度が低いならば、空間周波数は低くなる。 The principle common to the first embodiment and the second embodiment is characterized in that the resolution of an object drawn by a subsequent scanning operation is higher than that of an object drawn in advance. If the resolution of the object is high, the spatial frequency will be high. If the resolution of the object is low, the spatial frequency will be low.
 一般的に、空間周波数が低い領域ほど、クロストークが視聴者に知覚されやすい。図38A乃至図38Cに示されるように、早期に行われる第1走査動作によって、低い空間周波数の領域の描画が達成される。後続の第2走査動作及び第3走査動作によって、高い空間周波数の領域の描画が順次なされる。したがって、液晶の応答が不十分であっても、クロストークが知覚されやすい領域の描画は、早期に完了しているので、視聴者はほとんどクロストークを知覚しない。かくして、クロストークを生じにくい液晶パネル231の駆動が達成される。 Generally, the lower the spatial frequency is, the more easily viewers perceive crosstalk. As shown in FIG. 38A to FIG. 38C, the drawing of the low spatial frequency region is achieved by the first scanning operation that is performed early. By the subsequent second scanning operation and third scanning operation, drawing of a high spatial frequency region is sequentially performed. Therefore, even if the response of the liquid crystal is insufficient, the drawing of the region where the crosstalk is easily perceived is completed at an early stage, so that the viewer hardly perceives the crosstalk. Thus, driving of the liquid crystal panel 231 that hardly causes crosstalk is achieved.
 (単回走査と多回走査との比較)
 図39は、従来技術と同様の単回走査動作から得られる輝度変化を示す。図40は、第2実施形態に関連して説明された3回の走査動作から得られる輝度変化を示す。図39及び図40のセクション(a)は、Rフレーム画像を表示するための走査動作及び右眼シャッタの開期間を示す。図39及び図40のセクション(b)は、液晶パネルの上部の画素グループの輝度変化を示す。図39及び図40のセクション(c)は、液晶パネルの下部の画素グループの輝度変化を示す。尚、Lフレーム画像信号は、画素グループ内の画素それぞれに対して、「0」の輝度を規定している。Rフレーム画像信号は、画素グループ内の最上位の画素に対して、「100」の目標輝度を規定し、2番目に上方に位置する画素に対して「90」の目標輝度を規定し、3番目に上方に位置する画素に対して「80」の目標輝度を規定し、最下位の画素に対して、「70」の目標輝度を規定している。
(Comparison between single scan and multiple scan)
FIG. 39 shows a change in luminance obtained from a single scanning operation similar to the prior art. FIG. 40 shows luminance changes obtained from the three scanning operations described in the context of the second embodiment. The section (a) in FIGS. 39 and 40 shows the scanning operation for displaying the R frame image and the open period of the right eye shutter. The section (b) in FIGS. 39 and 40 shows the luminance change of the pixel group at the top of the liquid crystal panel. The section (c) of FIGS. 39 and 40 shows the luminance change of the pixel group at the bottom of the liquid crystal panel. The L frame image signal defines a luminance of “0” for each pixel in the pixel group. The R frame image signal defines a target luminance of “100” for the uppermost pixel in the pixel group, and a target luminance of “90” for the pixel located second upward. The target luminance of “80” is defined for the pixel located at the uppermost position, and the target luminance of “70” is defined for the lowest pixel.
 図39及び図40に示される如く、単回の走査動作及び多回の走査動作を通じて、上部の画素グループの画素は、右眼シャッタが開かれるまでに、Rフレーム画像信号が規定する目標輝度に略到達している。しかしながら、単回の走査動作では、下部の画素グループに対する走査動作が遅すぎるため、下部の画素グループの輝度は、目標輝度から大きく逸脱している。一方、多回の走査動作では、下部の画素グループに対応する液晶の駆動は、第2回目の走査動作が開始される直前で開始されるので、下部の画素グループの輝度は、目標輝度に近似した値となる。したがって、多回の走査動作の結果、視聴者に知覚されるクロストークは低減される。 As shown in FIGS. 39 and 40, through a single scanning operation and a multiple scanning operation, the pixels in the upper pixel group reach the target luminance defined by the R frame image signal before the right eye shutter is opened. Has almost reached. However, since the scanning operation for the lower pixel group is too slow in a single scanning operation, the luminance of the lower pixel group deviates greatly from the target luminance. On the other hand, in the multi-scanning operation, the driving of the liquid crystal corresponding to the lower pixel group is started immediately before the second scanning operation is started, so the luminance of the lower pixel group approximates the target luminance. It becomes the value. Accordingly, crosstalk perceived by the viewer as a result of the multiple scanning operations is reduced.
 <第3実施形態>
 図41は、第3実施形態に係る映像視聴システムの構成を概略的に示すブロック図である。図41を用いて、第3実施形態に係る映像視聴システムの概略的な構成が説明される。尚、第2実施形態に関連して説明された要素と同様の要素に対しては、同様の符号が付されている。以下の説明において、第1実施形態及び第2実施形態との相違点が主に説明される。第1実施形態及び第2実施形態と同様の特徴に対して、第1実施形態及び第2実施形態に関連する説明が援用される。
<Third Embodiment>
FIG. 41 is a block diagram schematically showing the configuration of the video viewing system according to the third embodiment. The schematic configuration of the video viewing system according to the third embodiment will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the element similar to the element demonstrated in relation to 2nd Embodiment. In the following description, differences from the first embodiment and the second embodiment will be mainly described. The description relevant to 1st Embodiment and 2nd Embodiment is used with respect to the characteristic similar to 1st Embodiment and 2nd Embodiment.
 (映像視聴システム)
 映像視聴システム100Bは、第1実施形態に関連して説明された眼鏡装置300に加えて、表示装置200Bを備える。表示装置200Bは、第2実施形態に関連して説明された表示装置200Aと同様に、Lフレーム画像とRフレーム画像とを交互に表示する。
(Video viewing system)
The video viewing system 100B includes a display device 200B in addition to the eyeglass device 300 described in relation to the first embodiment. The display device 200B alternately displays the L frame image and the R frame image, similarly to the display device 200A described in relation to the second embodiment.
 表示装置200Bは、第2実施形態に関連して説明された表示装置200Aと同様に、表示部230、第1制御部250、第2制御部240及び映像信号処理部210Aを備える。表示装置200Bは、液晶駆動部220Bを更に備える。 The display device 200B includes a display unit 230, a first control unit 250, a second control unit 240, and a video signal processing unit 210A, similar to the display device 200A described in relation to the second embodiment. The display device 200B further includes a liquid crystal driving unit 220B.
 第2実施形態と同様に、映像信号処理部210Aは、第1画像信号、第2画像信号及び第3画像信号を、順次、出力する。液晶駆動部220Bは、第1画像信号、第2画像信号及び第3画像信号を液晶パネル231の表示面に亘って順次走査する。以下の説明において、第1画像信号を用いた液晶駆動部220Bの走査動作は、第1走査動作と称される。第2画像信号を用いた液晶駆動部220Bの走査動作は、第2走査動作と称される。第3画像信号を用いた液晶駆動部220Bの走査動作は、第3走査動作と称される。また、液晶駆動部220Bが第1走査動作を行っている期間は、第1走査期間と称される。液晶駆動部220Bが第2走査動作を行っている期間は、第2走査期間と称される。液晶駆動部220Bが第3走査動作を行っている期間は、第3走査期間と称される。 As in the second embodiment, the video signal processing unit 210A sequentially outputs the first image signal, the second image signal, and the third image signal. The liquid crystal driver 220 </ b> B sequentially scans the first image signal, the second image signal, and the third image signal across the display surface of the liquid crystal panel 231. In the following description, the scanning operation of the liquid crystal driving unit 220B using the first image signal is referred to as a first scanning operation. The scanning operation of the liquid crystal driving unit 220B using the second image signal is referred to as a second scanning operation. The scanning operation of the liquid crystal driving unit 220B using the third image signal is referred to as a third scanning operation. Further, a period during which the liquid crystal driving unit 220B performs the first scanning operation is referred to as a first scanning period. A period during which the liquid crystal driving unit 220B performs the second scanning operation is referred to as a second scanning period. The period during which the liquid crystal driving unit 220B performs the third scanning operation is referred to as a third scanning period.
 (液晶駆動部)
 図42は、液晶駆動部220Bの走査動作を概略的に示す。図41及び図42を用いて、液晶駆動部220Bの走査動作が説明される。
(LCD drive)
FIG. 42 schematically shows the scanning operation of the liquid crystal driver 220B. The scanning operation of the liquid crystal driving unit 220B will be described with reference to FIGS.
 液晶駆動部220Bは、下方に向けて画像信号を副走査する副走査動作と、上方へ向けて画像信号を副走査する副走査動作と、を実行する。図42に示されるように、例えば、液晶駆動部220Bは、第1走査期間及び第3走査期間において、下方に向けて画像信号を副走査し、第2走査期間において、上方に向けて画像信号を副走査してもよい。代替的に、液晶駆動部220Bが、第3走査期間において、下方に向けて画像信号(第3画像信号)を副走査するならば、第1走査期間及び第2走査期間のうち少なくとも一方の期間において、液晶駆動部220Bは、上方に向けて画像信号(第1画像信号及び/又は第2画像信号)を副走査してもよい。液晶駆動部220Bが、第3走査期間において、上方に向けて画像信号(第3画像信号)を副走査するならば、第1走査期間及び第2走査期間のうち少なくとも一方の期間において、液晶駆動部220Bは、下方に向けて画像信号(第1画像信号及び/又は第2画像信号)を副走査してもよい。本実施形態において、第3走査期間における液晶駆動部220Bの副走査動作の方向は、第1方向として例示される。また、第3走査期間における液晶駆動部220Bの副走査動作の方向と反対の副走査動作の方向は第2方向として例示される。第3走査期間における液晶駆動部220Bの副走査動作の方向と反対の副走査動作が行われている期間は、逆副走査期間として例示される。例えば、図42に示される第2走査期間は、逆副走査期間として例示される。 The liquid crystal driving unit 220B performs a sub-scanning operation for sub-scanning the image signal downward and a sub-scanning operation for sub-scanning the image signal upward. As shown in FIG. 42, for example, the liquid crystal driver 220B sub-scans the image signal downward in the first scanning period and the third scanning period, and the image signal upward in the second scanning period. May be sub-scanned. Alternatively, if the liquid crystal driver 220B sub-scans the image signal (third image signal) downward in the third scanning period, at least one of the first scanning period and the second scanning period In this case, the liquid crystal driver 220B may sub-scan the image signal (first image signal and / or second image signal) upward. If the liquid crystal driving unit 220B sub-scans the image signal (third image signal) upward in the third scanning period, the liquid crystal driving is performed in at least one of the first scanning period and the second scanning period. The unit 220B may sub-scan the image signal (first image signal and / or second image signal) downward. In the present embodiment, the direction of the sub-scanning operation of the liquid crystal driver 220B in the third scanning period is exemplified as the first direction. The direction of the sub-scanning operation opposite to the direction of the sub-scanning operation of the liquid crystal driving unit 220B in the third scanning period is exemplified as the second direction. The period in which the sub-scanning operation opposite to the direction of the sub-scanning operation of the liquid crystal driving unit 220B in the third scanning period is exemplified as the reverse sub-scanning period. For example, the second scanning period shown in FIG. 42 is exemplified as the reverse sub-scanning period.
 (第2実施形態と第3実施形態との比較)
 図43A及び図43Bは、視聴者に知覚されるオブジェクトの差異を概略的に示す概念図である。図43Aは、本実施形態の原理に従って、描画され、視聴者に知覚されるオブジェクトを例示する。図43Bは、第2実施形態の原理に従って、描画され、視聴者に知覚されるオブジェクトを例示する。図21、図41乃至図43Bを用いて、視聴者に知覚されるオブジェクトの差異が説明される。
(Comparison between the second embodiment and the third embodiment)
43A and 43B are conceptual diagrams schematically showing differences in objects perceived by the viewer. FIG. 43A illustrates an object that is drawn and perceived by a viewer in accordance with the principles of the present embodiment. FIG. 43B illustrates an object that is drawn and perceived by the viewer in accordance with the principles of the second embodiment. The difference of objects perceived by the viewer will be described with reference to FIGS. 21, 41 to 43B.
 第2実施形態の表示装置200Aの液晶駆動部220Aは、第1走査期間、第2走査期間及び第3走査期間を通じて、下方に向けて副走査動作を行う。一方、第3実施形態の表示装置200Bの液晶駆動部220Bは、第1走査期間及び第3走査期間において、下方に向けて第1画像信号及び第3画像信号を副走査し、第2走査期間において、上方に向けて第2画像信号を副走査する。 The liquid crystal driver 220A of the display device 200A of the second embodiment performs a sub-scanning operation downward through the first scanning period, the second scanning period, and the third scanning period. On the other hand, the liquid crystal driver 220B of the display device 200B of the third embodiment performs sub-scanning of the first image signal and the third image signal downward in the first scanning period and the third scanning period, and performs the second scanning period. , The second image signal is sub-scanned upward.
 第2実施形態の原理に従うと、液晶パネル231の下部領域は、第1走査期間、第2走査期間及び第3走査期間を通じて、遅れて、画像信号の走査がなされる。この結果、液晶パネル231の上部領域におけるクロストークと比べて、液晶パネル231の下部領域におけるクロストークは知覚されやすくなる。また、液晶パネル231の上部領域におけるオブジェクトの解像度と比べて、液晶パネル231の下部領域におけるオブジェクトの解像度は低くなりやすい。 According to the principle of the second embodiment, the lower region of the liquid crystal panel 231 is scanned with an image signal with a delay through the first scanning period, the second scanning period, and the third scanning period. As a result, crosstalk in the lower region of the liquid crystal panel 231 is more easily perceived than crosstalk in the upper region of the liquid crystal panel 231. In addition, the resolution of the object in the lower area of the liquid crystal panel 231 tends to be lower than the resolution of the object in the upper area of the liquid crystal panel 231.
 本実施形態の原理に従うと、液晶駆動部220Bの走査動作が遅れる領域は、変動する。この結果、液晶パネル231の上部領域と下部領域との間での画質の差異は、比較的小さくなる。 According to the principle of the present embodiment, the region where the scanning operation of the liquid crystal driving unit 220B is delayed varies. As a result, the difference in image quality between the upper region and the lower region of the liquid crystal panel 231 is relatively small.
 図44は、液晶駆動部220Bの他の走査動作を概略的に示す概念図である。図41乃至図44を用いて、液晶駆動部220Bの他の走査動作が説明される。 FIG. 44 is a conceptual diagram schematically showing another scanning operation of the liquid crystal driving unit 220B. Another scanning operation of the liquid crystal driving unit 220B will be described with reference to FIGS.
 液晶駆動部220Bの走査動作が行われる液晶パネル231の表示面は、上部領域と下部領域とに分割して概念付けられてもよい。液晶駆動部220Bは、各走査期間において、上部領域及び下部領域のうち一方に対して、走査動作を行った後、他方の領域に対して走査動作を行う。上部領域に対する走査動作に対して、好ましくは、少なくとも1つの逆走査期間が設定される。同様に、下部領域に対する走査動作に対して、好ましくは、少なくとも1つの逆副走査期間が設定される。液晶パネル231の表示面を概念的に分割し、本実施形態の原理に従う走査動作が行われることにより、図43A及び図43Bに関連して説明された走査動作の遅延領域の分散効果が高められる。この結果、視聴者は、より均質な映像を視聴することができる。 The display surface of the liquid crystal panel 231 on which the scanning operation of the liquid crystal driving unit 220B is performed may be conceptualized by being divided into an upper region and a lower region. In each scanning period, the liquid crystal driver 220B performs a scanning operation on one of the upper region and the lower region, and then performs a scanning operation on the other region. For the scanning operation on the upper region, preferably at least one reverse scanning period is set. Similarly, at least one reverse sub-scanning period is preferably set for the scanning operation for the lower region. By dividing the display surface of the liquid crystal panel 231 conceptually and performing a scanning operation according to the principle of the present embodiment, the dispersion effect of the delay region of the scanning operation described with reference to FIGS. 43A and 43B is enhanced. . As a result, the viewer can view a more uniform video.
 本実施形態に関連して説明された原理は、3回の走査動作だけでなく、2回或いは3を超える回数の走査動作にも適用される。 The principle described in connection with the present embodiment is applied not only to the three scanning operations but also to the scanning operations twice or more than three times.
 <第4実施形態>
 第4実施形態において、上述の一連の実施形態の原理の拡張手法が説明される。上述の一連の実施形態の原理に基づき、多数回(例えば、4回或いはそれ以上)の走査動作を1つのフレーム画像に対して行うことができる。
<Fourth embodiment>
In the fourth embodiment, an extension method of the principle of the above-described series of embodiments will be described. Based on the principles of the series of embodiments described above, multiple (eg, four or more) scanning operations can be performed on a single frame image.
 図45は、第4実施形態に係る映像視聴システムの構成を概略的に示すブロック図である。図45を用いて、第4実施形態に係る映像視聴システムの概略的な構成が説明される。尚、上述の一連の実施形態に関連して説明された要素と同様の要素に対しては、同様の符号が付されている。以下の説明において、上述の一連の実施形態の原理の拡張手法が主に説明される。上述の一連の実施形態と同様の特徴に対して、上述の一連の実施形態に関連する説明が援用される。 FIG. 45 is a block diagram schematically showing the configuration of the video viewing system according to the fourth embodiment. A schematic configuration of the video viewing system according to the fourth embodiment will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the element similar to the element demonstrated in relation to the above-mentioned series of embodiment. In the following description, an extension method of the principle of the above-described series of embodiments will be mainly described. For features similar to the series of embodiments described above, the description associated with the series of embodiments described above is incorporated.
 (映像視聴システム)
 映像視聴システム100Cは、第1実施形態に関連して説明された眼鏡装置300に加えて、表示装置200Cを備える。表示装置200Cは、第1実施形態に関連して説明された表示装置200と同様に、Lフレーム画像とRフレーム画像とを交互に表示する。
(Video viewing system)
The video viewing system 100C includes a display device 200C in addition to the eyeglass device 300 described in relation to the first embodiment. The display device 200C displays the L frame image and the R frame image alternately, similarly to the display device 200 described in relation to the first embodiment.
 表示装置200Cは、第1実施形態に関連して説明された表示部230、第1制御部250、第2制御部240に加えて、映像信号処理部210C及び液晶駆動部220Cを備える。 The display device 200C includes a video signal processing unit 210C and a liquid crystal driving unit 220C in addition to the display unit 230, the first control unit 250, and the second control unit 240 described in relation to the first embodiment.
 第1実施形態に関連して説明された映像信号処理部210と同様に、映像信号処理部210Cには、基本となる垂直同期周波数を有する映像信号(左眼用映像信号及び右眼用映像信号)が入力される。映像信号処理部210Cから第1制御部250及び第2制御部240への制御信号の出力処理は、第1実施形態に関連して説明された信号処理と同様である。 Similar to the video signal processing unit 210 described in relation to the first embodiment, the video signal processing unit 210C includes a video signal having a basic vertical synchronization frequency (a video signal for the left eye and a video signal for the right eye). ) Is entered. The output processing of the control signal from the video signal processing unit 210C to the first control unit 250 and the second control unit 240 is the same as the signal processing described in relation to the first embodiment.
 映像信号処理部210Cは、1つのフレーム画像信号に対して、第1画像信号乃至第N画像信号を液晶駆動部220Cに順次出力する(Nは、2以上の整数)。液晶駆動部220Cは、第1画像信号乃至第N画像信号を液晶パネル231の表示面に亘って順次走査する。以下の説明において、第n画像信号を用いた液晶駆動部220Cの走査動作は、第n走査動作と称される(nは、1以上N未満の整数)。第N画像信号を用いた液晶駆動部220Aの走査動作は、第N走査動作と称される。また、液晶駆動部220Aが第n走査動作を行っている期間は、第n走査期間と称される。液晶駆動部220Aが第N走査動作を行っている期間は、第N走査期間と称される。 The video signal processing unit 210C sequentially outputs the first to Nth image signals to the liquid crystal driving unit 220C for one frame image signal (N is an integer of 2 or more). The liquid crystal driving unit 220C sequentially scans the first image signal to the Nth image signal over the display surface of the liquid crystal panel 231. In the following description, the scanning operation of the liquid crystal driving unit 220C using the nth image signal is referred to as an nth scanning operation (n is an integer greater than or equal to 1 and less than N). The scanning operation of the liquid crystal driving unit 220A using the Nth image signal is referred to as an Nth scanning operation. The period during which the liquid crystal driving unit 220A performs the nth scanning operation is referred to as the nth scanning period. The period during which the liquid crystal driving unit 220A performs the Nth scanning operation is referred to as the Nth scanning period.
 第3実施形態の原理に従い、液晶駆動部220Cが、第N走査期間において、下方への走査動作を行うならば、第n走査期間において、上方への副走査を行ってもよい。また、液晶駆動部220Cが、第N走査期間において、上方への走査動作を行うならば、第n走査期間において、下方への副走査を行ってもよい。 In accordance with the principle of the third embodiment, if the liquid crystal driver 220C performs a downward scanning operation in the Nth scanning period, it may perform an upward subscanning in the nth scanning period. Further, if the liquid crystal driver 220C performs an upward scanning operation in the Nth scanning period, it may perform a downward subscanning in the nth scanning period.
 (映像信号処理部)
 図46は、本実施形態に従う表示装置200Cの映像信号処理部210Cの機能構成を概略的に示すブロック図である。図45及び図46を用いて、映像信号処理部210Cが説明される。
(Video signal processor)
FIG. 46 is a block diagram schematically showing a functional configuration of the video signal processing unit 210C of the display device 200C according to the present embodiment. The video signal processing unit 210C is described with reference to FIGS. 45 and 46. FIG.
 映像信号処理部210Cは、第1実施形態に関連して説明された第1遅延部213及び第1補正部217に加えて、第1等価部211C、第1選択部212C、第2等価部214C、第2遅延部215C、第3遅延部216C、第2補正部218C、第2選択部219C及び出力部221Cを備える。 In addition to the first delay unit 213 and the first correction unit 217 described in relation to the first embodiment, the video signal processing unit 210C includes a first equivalent unit 211C, a first selection unit 212C, and a second equivalent unit 214C. , A second delay unit 215C, a third delay unit 216C, a second correction unit 218C, a second selection unit 219C, and an output unit 221C.
 (等価部)
 図47A乃至図48Bは、第1等価部211C及び第2等価部214Cの概略的なブロック図である。図47A及び図48Aは、第1等価部211Cのブロック図である。図47B及び図48Bは、第2等価部214Cのブロック図である。
(Equivalent part)
47A to 48B are schematic block diagrams of the first equivalent unit 211C and the second equivalent unit 214C. 47A and 48A are block diagrams of the first equivalent section 211C. 47B and 48B are block diagrams of the second equivalent section 214C.
 図47A及び図47Bに示される第1等価部211C及び第2等価部214Cは、平均化信号を出力している。図48A及び図48Bに示される第1等価部211C及び第2等価部214Cは、平均化信号を出力している。平均化信号及び選択信号の生成は、第1実施形態及び第2実施形態に関連して説明された原理に従う。 47A and 47B, the first equivalent unit 211C and the second equivalent unit 214C output an averaged signal. The first equivalent unit 211C and the second equivalent unit 214C shown in FIGS. 48A and 48B output an averaged signal. The generation of the average signal and the selection signal follows the principle described in relation to the first embodiment and the second embodiment.
 図47A及び図47Bに示される第1等価部211C及び第2等価部214Cが、例えば、第(n+1)走査期間における走査動作のために平均化信号を出力しているならば、図48A及び図48Bに示される第1等価部211C及び第2等価部214Cは、第1乃至第n走査期間のいずれかの走査期間における走査動作のために選択信号を出力している。或いは、図48A及び図48Bに示される第1等価部211C及び第2等価部214Cが、例えば、第(n+1)走査期間における走査動作のために選択信号を出力しているならば、図47A及び図47Bに示される第1等価部211C及び第2等価部214Cは、第1乃至第n走査期間のいずれかの走査期間における走査動作のために平均化信号を出力している。かくして、液晶駆動部220Cは、平均輝度に基づき設定された等価信号と、選択輝度に基づき設定された等価信号とに基づき走査動作を実行することができる。 If the first equivalent section 211C and the second equivalent section 214C shown in FIGS. 47A and 47B output an average signal for the scanning operation in the (n + 1) th scanning period, for example, FIG. The first equivalent section 211C and the second equivalent section 214C shown in 48B output a selection signal for the scanning operation in any one of the first to n-th scanning periods. Alternatively, if the first equivalent unit 211C and the second equivalent unit 214C shown in FIGS. 48A and 48B output the selection signal for the scanning operation in the (n + 1) th scanning period, for example, The first equivalent section 211C and the second equivalent section 214C shown in FIG. 47B output an average signal for the scanning operation in any one of the first to n-th scanning periods. Thus, the liquid crystal driving unit 220C can execute the scanning operation based on the equivalent signal set based on the average luminance and the equivalent signal set based on the selected luminance.
 第1等価部211Cは、等価演算部261Cとカウンタ262Cとを備える。また、第2等価部214Cは、等価演算部263Cとカウンタ264Cとを備える。カウンタ262C,264Cは、等価演算部261C,263Cの演算回数をカウントする。等価演算部261C,263Cは、カウンタ262C,264Cのカウント値に応じて、平均化処理及び選択処理を選択的に行ってもよい。代替的に、等価演算部261C,263Cは、他の条件(入力されたフレーム画像信号が規定する輝度のばらつきといった条件)に応じて、平均化処理と選択処理とを切り替えてもよい。 The first equivalent unit 211C includes an equivalent calculation unit 261C and a counter 262C. The second equivalent unit 214C includes an equivalent calculation unit 263C and a counter 264C. Counters 262C and 264C count the number of computations of equivalent computation units 261C and 263C. The equivalent calculation units 261C and 263C may selectively perform the averaging process and the selection process according to the count values of the counters 262C and 264C. Alternatively, the equivalent calculation units 261C and 263C may switch between the averaging process and the selection process according to other conditions (conditions such as variations in luminance defined by the input frame image signal).
 上述の一連の実施形態に関連して説明された如く、平均化処理及び選択処理で用いられる画素の数に応じて、液晶パネル231に描画される画像の解像度は変動する。本実施形態において、第1走査期間乃至第N走査期間の間に描かれる画像の解像度は、常に、増大しなくともよい。例えば、第(n+1)走査期間に描かれる画像の解像度は、第n走査期間に描かれる画像の解像度と等しくてもよい。 As described in relation to the series of embodiments described above, the resolution of the image drawn on the liquid crystal panel 231 varies depending on the number of pixels used in the averaging process and the selection process. In the present embodiment, the resolution of an image drawn during the first scanning period to the Nth scanning period does not always need to increase. For example, the resolution of the image drawn in the (n + 1) th scanning period may be equal to the resolution of the image drawn in the nth scanning period.
 第1等価部211C及び第2等価部214Cは、第2実施形態に関連して説明された原理に従って、カウンタ262C,264Cのカウント値に従って、平均化信号又は選択信号の出力先を切り替えてもよい。 The first equivalent unit 211C and the second equivalent unit 214C may switch the output destination of the average signal or the selection signal according to the count values of the counters 262C and 264C in accordance with the principle described in relation to the second embodiment. .
 (遅延部)
 図46を用いて、第2遅延部215C及び第3遅延部216Cが説明される。
(Delay part)
The second delay unit 215C and the third delay unit 216C will be described with reference to FIG.
 第2遅延部215Cには、第1等価部211Cからの出力信号(平均化信号又は選択信号)が順次入力される。第2遅延部215Cは、第n走査期間に第1等価部211Cから出力された出力信号を第(n+1)走査期間に出力する。 The output signal (average signal or selection signal) from the first equivalent unit 211C is sequentially input to the second delay unit 215C. The second delay unit 215C outputs the output signal output from the first equivalent unit 211C during the nth scanning period during the (n + 1) th scanning period.
 第3遅延部216Cには、第2等価部214Cからの出力信号(平均化信号又は選択信号)が順次入力される。第3遅延部216Cは、第n走査期間に第2等価部214Cから出力された出力信号を第(n+1)走査期間に出力する。 The output signal (average signal or selection signal) from the second equivalent unit 214C is sequentially input to the third delay unit 216C. The third delay unit 216C outputs the output signal output from the second equivalent unit 214C during the nth scanning period during the (n + 1) th scanning period.
 (補正処理)
 図46を用いて、補正処理が説明される。
(Correction process)
The correction process is described with reference to FIG.
 (第1走査期間)
 上述の一連の実施形態と同様に、第1補正部217は、第1走査期間に用いられる第1画像信号の生成のための第1補正信号を生成する。
(First scanning period)
Similar to the series of embodiments described above, the first correction unit 217 generates a first correction signal for generating a first image signal used in the first scanning period.
 (第2乃至第(N-1)走査期間)
 図49は、第2補正部218Cが有する第2補正テーブル223Aを示す。図46及び図49を用いて、第2乃至第(N-1)走査期間における補正信号の生成が説明される。
(Second to (N-1) th scanning period)
FIG. 49 shows a second correction table 223A included in the second correction unit 218C. The generation of the correction signal in the second to (N-1) th scanning period will be described with reference to FIGS.
 第2乃至第N走査期間における第2乃至第(N-1)補正信号の生成は、第2実施形態に関連して説明された第2補正部218Aの原理に従う。本実施形態の第2補正部218Cは、第2実施形態の第2補正部218Aと同様に第2補正テーブル223Aを備える。 The generation of the second to (N−1) th correction signals in the second to Nth scanning periods follows the principle of the second correction unit 218A described in relation to the second embodiment. Similar to the second correction unit 218A of the second embodiment, the second correction unit 218C of the present embodiment includes a second correction table 223A.
 第2実施形態に関連して説明された如く、入力テーブル226Aは、第n走査期間までに第2遅延部215C,第3遅延部216Cから入力された信号が含む情報を逐次格納する。第(n+1)走査期間において、第2等価部214Cから(n+1)回目の出力信号を受けると、第n走査期間までに蓄積された情報と第(n+1)走査期間において入力された情報とに基づき、期待値テーブル224Aは、期待値を出力する。第2補正部218Cは、その後、決定テーブル225Aを用いて、第2乃至第(n+1)補正信号を順次出力する。尚、入力テーブルは、第n走査期間までに第2遅延部215C,第3遅延部216Cから入力された信号全てを格納しなくてもよい。例えば、(n+1)回目の走査動作時において、第2遅延部及び第3遅延部から入力された信号(n回目の走査動作時に設定された平均輝度又は選択輝度の情報を含む信号)に基づき、第2補正部は、(n+1)回目の走査動作用の駆動輝度を設定してもよい。 As described in relation to the second embodiment, the input table 226A sequentially stores information included in the signals input from the second delay unit 215C and the third delay unit 216C until the n-th scanning period. When the (n + 1) th output signal is received from the second equivalent unit 214C in the (n + 1) th scanning period, it is based on the information accumulated until the nth scanning period and the information input in the (n + 1) th scanning period. The expected value table 224A outputs an expected value. Thereafter, the second correction unit 218C sequentially outputs second to (n + 1) th correction signals using the determination table 225A. The input table may not store all the signals input from the second delay unit 215C and the third delay unit 216C by the n-th scanning period. For example, in the (n + 1) -th scanning operation, based on signals input from the second delay unit and the third delay unit (a signal including information on average luminance or selected luminance set in the n-th scanning operation), The second correction unit may set the driving luminance for the (n + 1) th scanning operation.
 (第N走査期間)
 図50は、第2補正部218Cが有する第2補正テーブル223Aを示す。図46及び図50を用いて、第N走査期間における補正信号の生成が説明される。
(Nth scanning period)
FIG. 50 shows a second correction table 223A included in the second correction unit 218C. The generation of the correction signal in the Nth scanning period is described with reference to FIGS. 46 and 50. FIG.
 第N走査期間における第N補正信号の生成は、第2実施形態に関連して説明された第2補正部218Aの原理に従う。本実施形態の第2補正部218Cは、第2実施形態の第2補正部218Aと同様に第2補正テーブル223Aを備える。 The generation of the Nth correction signal in the Nth scanning period follows the principle of the second correction unit 218A described in relation to the second embodiment. Similar to the second correction unit 218A of the second embodiment, the second correction unit 218C of the present embodiment includes a second correction table 223A.
 第2実施形態に関連して説明された如く、入力テーブル226Aは、第(N-1)走査期間までに第2遅延部215C,第3遅延部216Cから入力された信号が含む情報を逐次格納する。第N走査期間において、第1遅延部213から先行して表示されるフレーム画像を表す先行フレーム画像信号を受けると、第(N-1)走査期間までに蓄積された情報と第N走査期間において入力された先行フレーム画像信号の情報とに基づき、期待値テーブル224Aは、期待値を出力する。第2補正部218Cは、その後、決定テーブル225Aを用いて、第N補正信号を出力する。 As described in relation to the second embodiment, the input table 226A sequentially stores information included in signals input from the second delay unit 215C and the third delay unit 216C until the (N−1) th scanning period. To do. When a preceding frame image signal representing a frame image displayed in advance is received from the first delay unit 213 in the Nth scanning period, the information accumulated up to the (N−1) th scanning period and the Nth scanning period Based on the information of the input preceding frame image signal, the expected value table 224A outputs an expected value. Thereafter, the second correction unit 218C outputs the Nth correction signal using the determination table 225A.
 (選択部)
 図46を用いて、第1選択部212C及び第2選択部219Cが説明される。
(Selection part)
The first selection unit 212C and the second selection unit 219C will be described with reference to FIG.
 第1選択部212Cには、フレーム画像信号及び第1等価部211Cによって生成された平均化信号又は選択信号が入力される。第1選択部212Cは、第1走査期間に、第1の平均化信号又は選択信号(第1走査期間に第1等価部211Cが生成した信号)を出力し、第n走査期間に第nの平均化信号又は選択信号(第n走査期間に第1等価部211Cが生成した信号)を出力する。第N走査期間に、フレーム画像信号を出力する。 The frame signal and the average signal or selection signal generated by the first equivalent unit 211C are input to the first selection unit 212C. The first selection unit 212C outputs the first averaged signal or the selection signal (the signal generated by the first equivalent unit 211C during the first scanning period) during the first scanning period, and the nth scanning period during the nth scanning period. An average signal or a selection signal (a signal generated by the first equivalent unit 211C during the n-th scanning period) is output. A frame image signal is output in the Nth scanning period.
 第2選択部219Cには、第1補正部217からの補正信号及び第2補正部218Cからの補正信号が入力される。第2選択部219Cは、第1走査期間に第1補正部217によって生成された補正信号を出力する。第2選択部219Cは、第2乃至第N走査期間に第2補正部218Cによって生成された補正信号を順次出力する。 The correction signal from the first correction unit 217 and the correction signal from the second correction unit 218C are input to the second selection unit 219C. The second selection unit 219C outputs the correction signal generated by the first correction unit 217 during the first scanning period. The second selection unit 219C sequentially outputs the correction signals generated by the second correction unit 218C during the second to Nth scanning periods.
 (出力部)
 図46を用いて、出力部221Cが説明される。
(Output part)
The output unit 221C will be described with reference to FIG.
 上述の如く、第1選択部212C及び第2選択部219Cは、出力部221Cに順次信号を入力する。第1走査期間において、出力部は、第1等価部211Cによって生成された平均化信号又は選択信号が含む輝度データと第1補正部217によって生成された補正信号が含む補正値データとを加算し、第1画像信号(等価信号)を生成する。第2乃至第(N―1)走査期間において、出力部221Cは、第1等価部211Cによって生成された平均化信号又は選択信号が含む輝度データと、第2補正部218Cによって生成された補正信号が含む補正値データとを加算し、第2乃至第(N-1)画像信号(等価信号)を順次生成する。第N走査期間において、出力部221Cは、フレーム画像信号と第2補正部218Cによって生成された補正信号が含む補正値データとを加算し、第N画像信号を生成する。 As described above, the first selection unit 212C and the second selection unit 219C sequentially input signals to the output unit 221C. In the first scanning period, the output unit adds the luminance data included in the average signal or selection signal generated by the first equivalent unit 211C and the correction value data included in the correction signal generated by the first correction unit 217. The first image signal (equivalent signal) is generated. In the second to (N-1) th scanning period, the output unit 221C includes the luminance data included in the average signal or the selection signal generated by the first equivalent unit 211C and the correction signal generated by the second correction unit 218C. And the second to (N-1) th image signals (equivalent signals) are sequentially generated. In the Nth scanning period, the output unit 221C adds the frame image signal and the correction value data included in the correction signal generated by the second correction unit 218C to generate the Nth image signal.
 出力部221Cは、第1乃至第N画像信号を、順次、液晶駆動部220Cへ出力する。液晶駆動部は、第1乃至第N画像信号を、順次、走査する。 The output unit 221C sequentially outputs the first to Nth image signals to the liquid crystal driving unit 220C. The liquid crystal driving unit sequentially scans the first to Nth image signals.
 上述の様々な実施形態において、先行するフレーム画像の輝度レベルや画素の位置といった様々な要素に基づき、液晶を駆動するための駆動輝度が設定される。駆動輝度の設定に用いられた様々な要素に加えて、他の要素が考慮されてもよい。例えば、液晶パネルの温度分布及び/又は液晶の応答速度や画素の輝度に影響する他の要素が、駆動輝度を設定するために用いられてもよい。 In the various embodiments described above, the driving luminance for driving the liquid crystal is set based on various factors such as the luminance level of the preceding frame image and the pixel position. In addition to the various factors used to set the drive brightness, other factors may be considered. For example, other factors that affect the temperature distribution of the liquid crystal panel and / or the response speed of the liquid crystal and the luminance of the pixels may be used to set the driving luminance.
 上述の一連の実施形態において、オーバードライブ処理に基づき、駆動輝度が設定されている。代替的に、オーバードライブ処理を行うことなく、駆動輝度が設定されてもよい。 In the series of embodiments described above, the drive luminance is set based on the overdrive process. Alternatively, the drive brightness may be set without performing overdrive processing.
 オーバードライブ処理がなされないならば、オーバードライブ処理に用いられる第1遅延部、第2等価部、第2遅延部、第3遅延部、第1補正部、第2補正部及び第2選択部は省略されてもよい。例えば、第1等価部は、走査回数に応じて、画素グループを設定し、平均化信号又は選択信号を第1選択部に出力する。第1選択部は、走査回数に応じて、平均化信号又は選択信号或いはRフレーム画像信号又はLフレーム画像信号を、出力部を介して、液晶駆動部へ出力する。かくして、比較的簡素化された信号処理の下、多回の走査動作が実行される。 If the overdrive process is not performed, the first delay unit, the second equivalent unit, the second delay unit, the third delay unit, the first correction unit, the second correction unit, and the second selection unit used for the overdrive process are It may be omitted. For example, the first equivalent unit sets a pixel group according to the number of scans, and outputs an average signal or a selection signal to the first selection unit. The first selection unit outputs an average signal, a selection signal, an R frame image signal, or an L frame image signal to the liquid crystal drive unit via the output unit according to the number of scans. Thus, multiple scanning operations are performed under relatively simplified signal processing.
 上述の一連の実施形態において、Lフレーム画像とRフレーム画像とが交互に表示される立体映像のクロストークが説明されている。2次元的に映像を知覚させるための複数のフレーム画像に対しても、上述の一連の実施形態に関連して説明された原理は適用される。先行するフレーム画像と後続のフレーム画像との輝度差に起因する2次元映像上でのクロストークは、上述の一連の実施形態に関連して説明された原理によって、好適に低減される。 In the series of embodiments described above, crosstalk of a stereoscopic video in which L frame images and R frame images are alternately displayed has been described. The principle described in relation to the above-described series of embodiments is also applied to a plurality of frame images for allowing a two-dimensional image to be perceived. Crosstalk on the 2D video due to the luminance difference between the preceding frame image and the subsequent frame image is preferably reduced by the principles described in connection with the above-described series of embodiments.
 上述の様々な実施形態は、単に例示的なものである。したがって、上述の実施形態の原理は、上記の詳細な説明や図面に記載の事項に限定されない。上述の実施形態の原理の範囲内で、当業者が様々な変形、組み合わせや省略を行うことができることは容易に理解される。 The various embodiments described above are merely exemplary. Therefore, the principle of the above-described embodiment is not limited to the matters described in the above detailed description and drawings. It is easily understood that various modifications, combinations, and omissions can be made by those skilled in the art within the scope of the principle of the above-described embodiment.
 上述された実施形態は、以下の特徴を主に備える。 The embodiment described above mainly includes the following features.
 上述の実施形態の一の局面に係る表示装置は、フレーム画像が表示される表示面を含む液晶パネルと、前記フレーム画像を表示するためのフレーム画像信号に基づき、異なる解像度の画像を表す複数の書込画像信号を生成する生成部と、前記複数の書込画像信号を、前記表示面に亘って走査するN回(Nは2以上の整数)の走査動作を実行し、前記液晶パネルを駆動する液晶駆動部と、を備え、n回(nは1以上N未満の整数)の前記走査動作によって走査された前記書込画像信号は、(n+1)回目の前記走査動作によって走査された書込画像信号と比べて低い解像度の画像を表す少なくとも1つの前記書込画像信号を含むことを特徴とする。 A display device according to one aspect of the above-described embodiment includes a liquid crystal panel including a display surface on which a frame image is displayed, and a plurality of images representing different resolution images based on a frame image signal for displaying the frame image. A generation unit that generates a writing image signal; and N times (N is an integer of 2 or more) of scanning the plurality of writing image signals across the display surface to drive the liquid crystal panel The writing image signal scanned by the scanning operation n times (n is an integer less than or equal to 1 and less than N) is scanned by the (n + 1) th scanning operation. It includes at least one written image signal representing an image having a lower resolution than the image signal.
 上記構成によれば、液晶パネルは、フレーム画像を表示面に表示する。生成部は、フレーム画像を表示するためのフレーム画像信号に基づき、異なる解像度の画像を表す複数の書込画像信号を生成する。液晶駆動部は、複数の書込画像信号を、表示面に亘って、N回の走査動作を実行し、液晶パネルを駆動する。n回の走査動作によって走査された書込画像信号は、(n+1)回目の走査動作によって走査された書込画像信号と比べて低い解像度の画像を表す少なくとも1つの書込画像信号を含む。 According to the above configuration, the liquid crystal panel displays the frame image on the display surface. The generation unit generates a plurality of write image signals representing images having different resolutions based on the frame image signal for displaying the frame image. The liquid crystal driving unit performs a scanning operation N times on the display surface for the plurality of write image signals to drive the liquid crystal panel. The written image signal scanned by the n scanning operations includes at least one written image signal representing an image having a lower resolution than the written image signal scanned by the (n + 1) th scanning operation.
 一般的に、副走査方向の輝度変動の周波数が低い画像領域におけるクロストークは、視聴者に知覚されやすく、副走査方向の輝度変動の周波数が高い画像領域におけるクロストークは、視聴者に知覚されにくい。上述の如く、n回の走査動作によって走査された書込画像信号は、(n+1)回目の走査動作によって走査された書込画像信号と比べて低い解像度の画像を表す少なくとも1つの書込画像信号を含むので、副走査方向の輝度変動の周波数が低い画像領域は、比較的早期に描画される。したがって、比較的遅く走査動作が実行される表示面の領域においても、視聴者はクロストークを知覚しにくい。 In general, crosstalk in an image area where the frequency of luminance fluctuation in the sub-scanning direction is low is easily perceived by the viewer, and crosstalk in an image area where the frequency of luminance fluctuation in the sub-scanning direction is high is perceived by the viewer. Hateful. As described above, the writing image signal scanned by the n scanning operations is at least one writing image signal representing an image having a lower resolution than the writing image signal scanned by the (n + 1) th scanning operation. Therefore, an image region having a low frequency of luminance fluctuation in the sub-scanning direction is drawn relatively early. Therefore, the viewer is less likely to perceive crosstalk even in the area of the display surface where the scanning operation is performed relatively slowly.
 上記構成において、前記フレーム画像は、左眼で視聴されるように作成された左眼用フレーム画像と右眼で視聴されるように作成された右眼用フレーム画像とを、含み、前記液晶パネルは、前記左眼用フレーム画像と前記右眼用フレーム画像とを、時間的に交互に切り換えて、立体的に知覚される画像を表示面に表示することが好ましい。 In the above configuration, the frame image includes a left-eye frame image created to be viewed with the left eye and a right-eye frame image created to be viewed with the right eye, and the liquid crystal panel Preferably, the left-eye frame image and the right-eye frame image are alternately switched in time to display a stereoscopically perceived image on the display surface.
 上記構成によれば、液晶パネルは、左眼で視聴されるように作成された左眼用フレーム画像と右眼で視聴されるように作成された右眼用フレーム画像とを、時間的に交互に切り換えて、立体的に知覚される画像を表示面に表示する。視聴者は、特に比較的遅く第2走査動作がなされる表示面の領域におけるクロストークが低減された立体画像を視聴することができる。 According to the above configuration, the liquid crystal panel temporally alternates the left-eye frame image created to be viewed with the left eye and the right-eye frame image created to be viewed with the right eye. To display a stereoscopically perceived image on the display surface. The viewer can view a stereoscopic image with reduced crosstalk in a region of the display surface where the second scanning operation is performed relatively late.
 上記構成において、前記液晶駆動部は、前記少なくとも1つの書込画像信号を、前記(n+1)回目の書込画像信号を書き込む期間よりも短い期間で書き込むことが好ましい。 In the above-described configuration, it is preferable that the liquid crystal driving unit writes the at least one write image signal in a period shorter than a period in which the (n + 1) th write image signal is written.
 上記構成によれば、液晶駆動部は、少なくとも1つの書込画像信号を、(n+1)回目の書込画像信号を書き込む期間よりも短い期間で書き込むので、複数回の走査動作を実行するための期間が確保されやすくなる。 According to the above configuration, the liquid crystal driving unit writes at least one write image signal in a period shorter than the period for writing the (n + 1) th write image signal. A period is easily secured.
 上記構成において、前記Nは、2乃至4のうちいずれかの整数であることが好ましい。 In the above configuration, N is preferably an integer of 2 to 4.
 上記構成によれば、フレーム画像信号当たり、2乃至4回の走査動作が実行されるので、副走査方向の輝度変動の周波数が低い画像領域は、比較的早期に描画される。したがって、比較的遅く走査動作が実行される表示面の領域においても、視聴者はクロストークをほとんど知覚しない。 According to the above configuration, since the scanning operation is performed two to four times per frame image signal, an image region having a low frequency of luminance fluctuation in the sub-scanning direction is rendered relatively early. Therefore, the viewer hardly perceives the crosstalk even in the area of the display surface where the scanning operation is executed relatively late.
 上記構成において、前記液晶駆動部は、第1方向及び該第1方向とは反対の第2方向に選択的に副走査するように形成され、前記N回目の走査動作が行われる期間において、前記第1方向への副走査が行われるならば、前記n回の走査動作が行われる期間は、前記第2方向への副走査が行われる少なくとも1つの逆副走査期間を含むことが好ましい。 In the above configuration, the liquid crystal driving unit is formed so as to selectively perform sub-scanning in a first direction and a second direction opposite to the first direction, and in the period when the N-th scanning operation is performed, If sub-scanning in the first direction is performed, it is preferable that the period in which the n scanning operations are performed includes at least one reverse sub-scanning period in which sub-scanning in the second direction is performed.
 上記構成によれば、液晶駆動部は、第1方向への副走査と、第1方向とは反対方向の第2副走査と、を選択的に実行する。N回目の走査動作が行われる期間において、第1方向への副走査が行われるならば、n回の走査動作が行われる期間は、第2方向への副走査が行われる少なくとも1つの逆副走査期間を含む。N回目の走査動作が行われる期間において、比較的遅く走査動作が実行される表示面上の領域は、逆副走査期間において、比較的早く予備走査動作を受ける。走査動作のタイミングが遅い領域が変動するので、視聴者は、クロストークの観点から、比較的均質な画像を視聴することができる。 According to the above configuration, the liquid crystal driving unit selectively performs sub-scanning in the first direction and second sub-scanning in the direction opposite to the first direction. If sub-scanning in the first direction is performed in the period in which the Nth scanning operation is performed, at least one reverse sub-scan in which sub-scanning in the second direction is performed in the period in which n scanning operations are performed. Includes scanning period. In the period in which the N-th scanning operation is performed, the region on the display surface where the scanning operation is performed relatively slowly receives the preliminary scanning operation relatively quickly in the reverse sub-scanning period. Since the region where the timing of the scanning operation is late fluctuates, the viewer can view a relatively homogeneous image from the viewpoint of crosstalk.
 上記構成において、前記表示面は、副走査方向に整列した複数の画素を含む画素グループを含み、前記n回目の走査動作によって走査された前記書込画像信号は、前記画素グループ内の前記画素に共通する等価輝度を規定する等価信号を含み、前記n回目の走査動作を実行する液晶駆動部は、前記等価輝度に向けて、前記画素グループ内の前記画素に対応する液晶それぞれを同時に駆動することが好ましい。 In the above configuration, the display surface includes a pixel group including a plurality of pixels aligned in the sub-scanning direction, and the writing image signal scanned by the n-th scanning operation is applied to the pixels in the pixel group. A liquid crystal driving unit that includes an equivalent signal that defines a common equivalent luminance and that performs the n-th scanning operation simultaneously drives each of the liquid crystals corresponding to the pixels in the pixel group toward the equivalent luminance. Is preferred.
 上記構成によれば、表示面は、副走査方向に整列した複数の画素を含む画素グループを含む。n回目の走査動作によって走査された書込画像信号は、画素グループ内の画素に共通する等価輝度を規定する等価信号を含む。n回目の走査動作を実行する液晶駆動部は、等価輝度に向けて、画素グループ内の前記画素に対応する液晶それぞれを同時に駆動するので、n回目の走査動作を実行する期間は比較的短くなる。 According to the above configuration, the display surface includes a pixel group including a plurality of pixels aligned in the sub-scanning direction. The writing image signal scanned by the n-th scanning operation includes an equivalent signal that defines equivalent luminance common to the pixels in the pixel group. Since the liquid crystal driving unit that performs the n-th scanning operation simultaneously drives each of the liquid crystals corresponding to the pixels in the pixel group toward equivalent luminance, the period during which the n-th scanning operation is performed is relatively short. .
 上記構成において、前記等価輝度は、前記フレーム画像信号が前記画素グループ内の前記画素それぞれに対して規定した目標輝度が平均化された平均輝度又は前記画素グループ内の画素それぞれに対する前記目標輝度から選択された選択輝度に基づき設定されることが好ましい。 In the above configuration, the equivalent luminance is selected from an average luminance obtained by averaging the target luminance defined by the frame image signal for each of the pixels in the pixel group or the target luminance for each of the pixels in the pixel group. It is preferable to set based on the selected luminance.
 上記構成によれば、等価輝度は、フレーム画像信号が画素グループ内の画素それぞれに対して規定した目標輝度が平均化された平均輝度又は画素グループ内の画素それぞれに対する目標輝度から選択された選択輝度のうち少なくとも1つに基づき設定されるので、副走査方向の輝度変動の周波数が低い画像領域の描画は、適切に行われる。 According to the above configuration, the equivalent luminance is the selected luminance selected from the average luminance obtained by averaging the target luminance defined by the frame image signal for each pixel in the pixel group or the target luminance for each pixel in the pixel group. Therefore, drawing of an image region having a low frequency of luminance fluctuation in the sub-scanning direction is appropriately performed.
 上記構成において、前記生成部は、前記(n+1)回目の前記走査動作によって走査された前記書込画像信号と比べて低い解像度の画像を表す前記少なくとも1つの前記書込画像信号に対応する前記画素グループよりも少ない数の画素を含む前記画素グループに基づき、前記(n+1)回目の走査動作によって走査される前記書込画像信号の生成のために用いられる駆動輝度を設定し、前記液晶駆動部は、前記駆動輝度に向けて、前記画素に対応する液晶を駆動することが好ましい。 In the above configuration, the generation unit includes the pixels corresponding to the at least one written image signal representing an image having a lower resolution than the written image signal scanned by the (n + 1) th scanning operation. Based on the pixel group including a smaller number of pixels than the group, a driving luminance used for generating the writing image signal scanned by the (n + 1) th scanning operation is set, and the liquid crystal driving unit Preferably, the liquid crystal corresponding to the pixel is driven toward the driving luminance.
 上記構成によれば、生成部は、(n+1)回目の走査動作によって走査された書込画像信号と比べて低い解像度の画像を表す少なくとも1つの書込画像信号に対応する前記画素グループよりも少ない数の画素を含む前記画素グループに基づき、(n+1)回目の走査動作によって走査される書込画像信号の生成のために用いられる駆動輝度を設定する。液晶駆動部は、低減された数の画素に基づき設定された駆動輝度に向けて、画素に対応する液晶を駆動するので、(n+1)回目の走査動作によって描画される画像の解像度は比較的高くなる。 According to the above configuration, the generation unit is smaller than the pixel group corresponding to at least one write image signal representing an image having a lower resolution than the write image signal scanned by the (n + 1) -th scanning operation. Based on the pixel group including a number of pixels, a driving luminance used for generating a writing image signal scanned by the (n + 1) th scanning operation is set. Since the liquid crystal driving unit drives the liquid crystal corresponding to the pixels toward the driving luminance set based on the reduced number of pixels, the resolution of the image drawn by the (n + 1) th scanning operation is relatively high. Become.
 上記構成において、前記n回目の走査動作は、前記平均輝度に基づき設定された前記等価信号を前記表示面に亘って走査する走査動作及び前記選択輝度に基づき設定された前記等価信号を前記表示面に亘って走査する走査動作のうち一方であることが好ましい。 In the above configuration, the n-th scanning operation includes a scanning operation for scanning the equivalent signal set based on the average luminance over the display surface, and the equivalent signal set based on the selected luminance as the display surface. It is preferable that one of the scanning operations for scanning over the entire area.
 上記構成によれば、n回目の走査動作は、平均輝度に基づき設定された等価信号を表示面に亘って走査する走査動作及び選択輝度に基づき設定された等価信号を表示面に亘って走査する走査動作のうち一方であるので、走査動作の回数に応じて、適切な走査動作が実行される。 According to the above configuration, in the n-th scanning operation, the equivalent signal set based on the average luminance is scanned over the display surface, and the equivalent signal set based on the selected luminance is scanned over the display surface. Since it is one of the scanning operations, an appropriate scanning operation is executed according to the number of scanning operations.
 上記構成において、前記フレーム画像信号は、先行して表示される先行フレーム画像を表示するための先行画像信号と、前記先行フレーム画像の後に表示される後続フレーム画像を表示するための後続画像信号と、を含み、前記生成部は、前記先行画像信号に基づき設定された前記平均輝度又は前記選択輝度と、前記後続画像信号に基づき設定された前記平均輝度又は前記選択輝度と、に基づき、前記駆動輝度を設定し、前記液晶駆動部は、前記駆動輝度に向けて、前記液晶を駆動し、前記先行画像信号に基づき設定された前記平均輝度又は前記選択輝度が、前記後続画像信号に基づき設定された前記平均輝度又は前記選択輝度よりも大きいならば、前記駆動輝度は、前記後続画像信号に基づき設定された前記平均輝度又は前記選択輝度よりも小さくなるように決定され、前記先行画像信号に基づき設定された前記平均輝度又は前記選択輝度が、前記後続画像信号に基づき設定された前記平均輝度又は前記選択輝度よりも小さいならば、前記駆動輝度は、前記後続画像信号に基づき設定された前記平均輝度又は前記選択輝度よりも大きくなるように決定されることが好ましい。 In the above configuration, the frame image signal includes a preceding image signal for displaying a preceding frame image displayed in advance, and a succeeding image signal for displaying a subsequent frame image displayed after the preceding frame image. The generation unit includes the drive based on the average luminance or the selected luminance set based on the preceding image signal and the average luminance or the selected luminance set based on the subsequent image signal. The luminance is set, and the liquid crystal driving unit drives the liquid crystal toward the driving luminance, and the average luminance or the selected luminance set based on the preceding image signal is set based on the subsequent image signal. If the average luminance or the selected luminance is greater than the average luminance or the selected luminance, the drive luminance is equal to the average luminance or the selected luminance set based on the subsequent image signal. If the average luminance or the selected luminance set based on the preceding image signal is smaller than the average luminance or the selected luminance set based on the subsequent image signal, the driving is performed. The luminance is preferably determined to be larger than the average luminance or the selected luminance set based on the subsequent image signal.
 上記構成によれば、フレーム画像信号は、先行して表示される先行フレーム画像を表示するための先行画像信号と、先行フレーム画像の後に表示される後続フレーム画像を表示するための後続画像信号と、を含む。生成部は、先行画像信号に基づき設定された平均輝度又は選択輝度と、後続画像信号に基づき設定された平均輝度又は選択輝度と、に基づき、駆動輝度を設定する。液晶駆動部は、駆動輝度に向けて、液晶を駆動する。先行画像信号に基づき設定された平均輝度又は選択輝度が、後続画像信号に基づき設定された平均輝度又は選択輝度よりも大きいならば、駆動輝度は、後続画像信号に基づき設定された平均輝度又は選択輝度よりも小さくなるように決定される。また、後続画像信号に基づき設定された平均輝度又は選択輝度よりも小さいならば、駆動輝度は、後続画像信号に基づき設定された平均輝度又は前記選択輝度よりも大きくなるように決定される。したがって、画素は、比較的素早く目標輝度に近づくことができる。 According to the above configuration, the frame image signal includes a preceding image signal for displaying a preceding frame image displayed in advance, and a subsequent image signal for displaying a subsequent frame image displayed after the preceding frame image. ,including. The generation unit sets the drive luminance based on the average luminance or selected luminance set based on the preceding image signal and the average luminance or selected luminance set based on the subsequent image signal. The liquid crystal driving unit drives the liquid crystal toward the driving luminance. If the average brightness or selected brightness set based on the preceding image signal is greater than the average brightness or selected brightness set based on the subsequent image signal, the drive brightness is set to the average brightness or selection set based on the subsequent image signal. It is determined to be smaller than the luminance. If the average luminance or the selected luminance set based on the subsequent image signal is smaller, the driving luminance is determined to be larger than the average luminance or the selected luminance set based on the subsequent image signal. Therefore, the pixel can approach the target brightness relatively quickly.
 上記構成において、前記生成部は、(n+1)回目の走査動作が開始されるときに前記画素が達成している輝度に対する期待値に関する期待値データを格納する期待値テーブルを備え、前記駆動輝度は、前記期待値に基づき設定され、前記駆動輝度を設定するための前記期待値は、n回目の走査動作時に設定された前記平均輝度又は前記選択輝度に基づき、決定されることが好ましい。 In the above configuration, the generation unit includes an expectation value table that stores expectation value data relating to an expectation value for the brightness achieved by the pixel when the (n + 1) -th scanning operation is started, and the drive brightness is It is preferable that the expected value for setting the driving luminance is determined based on the average luminance or the selected luminance set during the n-th scanning operation.
 上記構成によれば、生成部は、(n+1)回目の走査動作が開始されるときに画素が達成している輝度に対する期待値に関する期待値データを格納する期待値テーブルを備える。駆動輝度を設定するための期待値は、n回目の走査動作時に設定された平均輝度又は選択輝度に基づき、決定される。(n+1)回目の走査動作が開始されるときに画素が達成している輝度が考慮された駆動輝度の設定がなされた(n+1)回目の走査動作によって、適切な液晶の駆動がなされる。 According to the above configuration, the generation unit includes the expected value table that stores the expected value data regarding the expected value for the luminance achieved by the pixel when the (n + 1) th scanning operation is started. The expected value for setting the drive brightness is determined based on the average brightness or the selected brightness set during the n-th scanning operation. The liquid crystal is appropriately driven by the (n + 1) th scanning operation in which the driving luminance is set in consideration of the luminance achieved by the pixel when the (n + 1) th scanning operation is started.
 上記構成において、N回目の前記走査動作を行う前記液晶駆動部は、前記画素グループの前記画素に対応する液晶を順次駆動することが好ましい。 In the above configuration, it is preferable that the liquid crystal driving unit that performs the N-th scanning operation sequentially drives the liquid crystals corresponding to the pixels of the pixel group.
 上記構成によれば、画素グループの画素に対応する液晶を順次駆動するN回目の走査動作によって、比較的高い解像度の画像が表示面に描画される。 According to the above configuration, a relatively high resolution image is drawn on the display surface by the Nth scanning operation of sequentially driving the liquid crystals corresponding to the pixels of the pixel group.
 上述の実施形態の他の局面に係る映像視聴システムは、左眼で視聴されるように作成された左眼用フレーム画像と右眼で視聴されるように作成された右眼用フレーム画像とを表示し、立体的に知覚される画像を提供する表示装置と、前記左眼用フレーム画像が視聴されるように前記左眼へ到達する光量を調整する左眼フィルタと、前記右眼用フレーム画像が視聴されるように前記右眼へ到達する光量を調整する右眼フィルタ、とを含む眼鏡装置と、を備え、前記表示装置は、前記左眼用フレーム画像と前記右眼用フレーム画像とを、時間的に交互に切り換えて、表示面に表示する液晶パネルと、前記複数の書込画像信号を、前記表示面に亘って走査するN回(Nは2以上の整数)の走査動作を実行し、前記液晶パネルを駆動する液晶駆動部と、を備え、n回(nは1以上N未満の整数)の前記走査動作によって走査された前記書込画像信号は、(n+1)回目の前記走査動作によって走査された書込画像信号と比べて低い解像度の画像を表す少なくとも1つの前記書込画像信号を含むことを特徴とする。 The video viewing system according to another aspect of the above-described embodiment includes a left-eye frame image created to be viewed with the left eye and a right-eye frame image created to be viewed with the right eye. A display device for displaying and providing a stereoscopically perceived image; a left-eye filter for adjusting the amount of light reaching the left eye so that the left-eye frame image is viewed; and the right-eye frame image A right eye filter that adjusts the amount of light that reaches the right eye so that the viewer can view the image, and the display device includes the left eye frame image and the right eye frame image. , N times (N is an integer equal to or greater than 2) scanning operation is performed in which the liquid crystal panel displayed on the display surface and the plurality of writing image signals are scanned over the display surface by alternately switching in time. And a liquid crystal driving unit for driving the liquid crystal panel The writing image signal scanned by the scanning operation n times (n is an integer of 1 or more and less than N) is compared with the writing image signal scanned by the (n + 1) th scanning operation. It includes at least one said written image signal representing a low resolution image.
 上記構成によれば、表示装置は、左眼で視聴されるように作成された左眼用フレーム画像と右眼で視聴されるように作成された右眼用フレーム画像とを表示する。眼鏡装置の左眼フィルタは、左眼用フレーム画像が視聴されるように左眼へ到達する光量を調整する。眼鏡装置の右眼フィルタは、右眼用フレーム画像が視聴されるように右眼へ到達する光量を調整する。液晶パネルは、左眼で視聴されるように作成された左眼用フレーム画像と右眼で視聴されるように作成された右眼用フレーム画像とを、時間的に交互に切り換えて表示面に表示する。したがって、視聴者は、表示装置が提供する画像を立体的に知覚することができる。 According to the above configuration, the display device displays the left-eye frame image created to be viewed with the left eye and the right-eye frame image created to be viewed with the right eye. The left eye filter of the eyeglass device adjusts the amount of light reaching the left eye so that the left eye frame image is viewed. The right eye filter of the eyeglass device adjusts the amount of light reaching the right eye so that the right eye frame image is viewed. The liquid crystal panel switches the left-eye frame image created for viewing with the left eye and the right-eye frame image created for viewing with the right eye alternately on the display surface in time. indicate. Therefore, the viewer can perceive the image provided by the display device in three dimensions.
 生成部は、左眼用フレーム画像又は右眼用フレーム画像を表示するためのフレーム画像信号に基づき、異なる解像度の画像を表す複数の書込画像信号を生成する。液晶駆動部は、複数の書込画像信号を、表示面に亘って、N回の走査動作を実行し、液晶パネルを駆動する。n回の走査動作によって走査された書込画像信号は、(n+1)回目の走査動作によって走査された書込画像信号と比べて低い解像度の画像を表す少なくとも1つの書込画像信号を含む。 The generating unit generates a plurality of writing image signals representing images of different resolutions based on a frame image signal for displaying a left-eye frame image or a right-eye frame image. The liquid crystal driving unit performs a scanning operation N times on the display surface for the plurality of write image signals to drive the liquid crystal panel. The written image signal scanned by the n scanning operations includes at least one written image signal representing an image having a lower resolution than the written image signal scanned by the (n + 1) th scanning operation.
 一般的に、副走査方向の輝度変動の周波数が低い画像領域におけるクロストークは、視聴者に知覚されやすく、副走査方向の輝度変動の周波数が高い画像領域におけるクロストークは、視聴者に知覚されにくい。上述の如く、n回の走査動作によって走査された書込画像信号は、(n+1)回目の走査動作によって走査された書込画像信号と比べて低い解像度の画像を表す少なくとも1つの書込画像信号を含むので、副走査方向の輝度変動の周波数が低い画像領域は、比較的早期に描画される。したがって、比較的遅く走査動作が実行される表示面の領域においても、視聴者はクロストークをほとんど知覚しない。 In general, crosstalk in an image area where the frequency of luminance fluctuation in the sub-scanning direction is low is easily perceived by the viewer, and crosstalk in an image area where the frequency of luminance fluctuation in the sub-scanning direction is high is perceived by the viewer. Hateful. As described above, the writing image signal scanned by the n scanning operations is at least one writing image signal representing an image having a lower resolution than the writing image signal scanned by the (n + 1) th scanning operation. Therefore, an image region having a low frequency of luminance fluctuation in the sub-scanning direction is drawn relatively early. Therefore, the viewer hardly perceives the crosstalk even in the area of the display surface where the scanning operation is executed relatively late.
 本実施形態の原理は、クロストークの低減が可能な表示装置及び映像視聴システムとして好適である。 The principle of this embodiment is suitable for a display device and a video viewing system that can reduce crosstalk.

Claims (13)

  1.  フレーム画像が表示される表示面を含む液晶パネルと、
     前記フレーム画像を表示するためのフレーム画像信号に基づき、異なる解像度の画像を表す複数の書込画像信号を生成する生成部と、
     前記複数の書込画像信号を、前記表示面に亘って走査するN回(Nは2以上の整数)の走査動作を実行し、前記液晶パネルを駆動する液晶駆動部と、を備え、
     n回(nは1以上N未満の整数)の前記走査動作によって走査された前記書込画像信号は、(n+1)回目の前記走査動作によって走査された書込画像信号と比べて低い解像度の画像を表す少なくとも1つの前記書込画像信号を含むことを特徴とする表示装置。
    A liquid crystal panel including a display surface on which a frame image is displayed;
    A generating unit that generates a plurality of writing image signals representing images of different resolutions based on a frame image signal for displaying the frame image;
    A liquid crystal driver that performs N times (N is an integer of 2 or more) of scanning the plurality of writing image signals over the display surface and drives the liquid crystal panel;
    The written image signal scanned by the scanning operation n times (n is an integer of 1 or more and less than N) is an image having a lower resolution than the written image signal scanned by the (n + 1) th scanning operation. A display device comprising at least one written image signal representing
  2.  前記フレーム画像は、左眼で視聴されるように作成された左眼用フレーム画像と右眼で視聴されるように作成された右眼用フレーム画像とを、含み、
     前記液晶パネルは、前記左眼用フレーム画像と前記右眼用フレーム画像とを、時間的に交互に切り換えて、立体的に知覚される画像を表示面に表示することを特徴とする請求項1に記載の表示装置。
    The frame image includes a left-eye frame image created to be viewed with the left eye and a right-eye frame image created to be viewed with the right eye,
    2. The liquid crystal panel according to claim 1, wherein the frame image for the left eye and the frame image for the right eye are alternately switched in time to display a stereoscopically perceived image on a display surface. The display device described in 1.
  3.  前記液晶駆動部は、前記少なくとも1つの書込画像信号を、前記(n+1)回目の書込画像信号を書き込む期間よりも短い期間で書き込むことを特徴とする請求項1又は2に記載の表示装置。 3. The display device according to claim 1, wherein the liquid crystal driving unit writes the at least one write image signal in a period shorter than a period in which the (n + 1) th write image signal is written. .
  4.  前記Nは、2乃至4のうちいずれかの整数であることを特徴とする請求項3に記載の表示装置。 4. The display device according to claim 3, wherein N is an integer of 2 to 4.
  5.  前記液晶駆動部は、第1方向及び該第1方向とは反対の第2方向に選択的に副走査するように形成され、
     前記N回目の走査動作が行われる期間において、前記第1方向への副走査が行われるならば、前記n回の走査動作が行われる期間は、前記第2方向への副走査が行われる少なくとも1つの逆副走査期間を含むことを特徴とする請求項3又は4に記載の表示装置。
    The liquid crystal driving unit is formed to selectively perform sub-scanning in a first direction and a second direction opposite to the first direction,
    If sub-scanning in the first direction is performed during the N-th scanning operation, at least sub-scanning in the second direction is performed during the n-th scanning operation. The display device according to claim 3, wherein the display device includes one reverse sub-scanning period.
  6.  前記表示面は、副走査方向に整列した複数の画素を含む画素グループを含み、
     前記n回目の走査動作によって走査された前記書込画像信号は、前記画素グループ内の前記画素に共通する等価輝度を規定する等価信号を含み、
     前記n回目の走査動作を実行する液晶駆動部は、前記等価輝度に向けて、前記画素グループ内の前記画素に対応する液晶それぞれを同時に駆動することを特徴とする請求項1乃至5のいずれか1項に記載の表示装置。
    The display surface includes a pixel group including a plurality of pixels aligned in the sub-scanning direction,
    The writing image signal scanned by the n-th scanning operation includes an equivalent signal that defines an equivalent luminance common to the pixels in the pixel group,
    6. The liquid crystal driving unit that executes the n-th scanning operation simultaneously drives each of the liquid crystals corresponding to the pixels in the pixel group toward the equivalent luminance. Item 1. A display device according to item 1.
  7.  前記等価輝度は、前記フレーム画像信号が前記画素グループ内の前記画素それぞれに対して規定した目標輝度が平均化された平均輝度又は前記画素グループ内の画素それぞれに対する前記目標輝度から選択された選択輝度に基づき設定されることを特徴とする請求項6に記載の表示装置。 The equivalent luminance is a selected luminance selected from an average luminance obtained by averaging the target luminance defined by the frame image signal for each of the pixels in the pixel group or the target luminance for each of the pixels in the pixel group. The display device according to claim 6, wherein the display device is set based on the above.
  8.  前記生成部は、前記(n+1)回目の前記走査動作によって走査された前記書込画像信号と比べて低い解像度の画像を表す前記少なくとも1つの前記書込画像信号に対応する前記画素グループよりも少ない数の画素を含む前記画素グループに基づき、前記(n+1)回目の走査動作によって走査される前記書込画像信号の生成のために用いられる駆動輝度を設定し、
     前記液晶駆動部は、前記駆動輝度に向けて、前記画素に対応する液晶を駆動することを特徴とする請求項7に記載の表示装置。
    The generation unit is smaller than the pixel group corresponding to the at least one writing image signal representing an image having a lower resolution than the writing image signal scanned by the (n + 1) -th scanning operation. Based on the pixel group including a number of pixels, setting a driving luminance used for generating the writing image signal scanned by the (n + 1) th scanning operation,
    The display device according to claim 7, wherein the liquid crystal driving unit drives a liquid crystal corresponding to the pixel toward the driving luminance.
  9.  前記n回目の走査動作は、前記平均輝度に基づき設定された前記等価信号を前記表示面に亘って走査する走査動作及び前記選択輝度に基づき設定された前記等価信号を前記表示面に亘って走査する走査動作のうち一方であることを特徴とする請求項7又は8に記載の表示装置。 In the n-th scanning operation, the equivalent signal set based on the average luminance is scanned over the display surface, and the equivalent signal set based on the selected luminance is scanned over the display surface. The display device according to claim 7, wherein the display device is one of scanning operations.
  10.  前記フレーム画像信号は、先行して表示される先行フレーム画像を表示するための先行画像信号と、前記先行フレーム画像の後に表示される後続フレーム画像を表示するための後続画像信号と、を含み、
     前記生成部は、前記先行画像信号に基づき設定された前記平均輝度又は前記選択輝度と、前記後続画像信号に基づき設定された前記平均輝度又は前記選択輝度と、に基づき、前記駆動輝度を設定し、
     前記液晶駆動部は、前記駆動輝度に向けて、前記液晶を駆動し、
     前記先行画像信号に基づき設定された前記平均輝度又は前記選択輝度が、前記後続画像信号に基づき設定された前記平均輝度又は前記選択輝度よりも大きいならば、前記駆動輝度は、前記後続画像信号に基づき設定された前記平均輝度又は前記選択輝度よりも小さくなるように決定され、
     前記先行画像信号に基づき設定された前記平均輝度又は前記選択輝度が、前記後続画像信号に基づき設定された前記平均輝度又は前記選択輝度よりも小さいならば、前記駆動輝度は、前記後続画像信号に基づき設定された前記平均輝度又は前記選択輝度よりも大きくなるように決定されることを特徴とする請求項7乃至9いずれか1項に記載の表示装置。
    The frame image signal includes a preceding image signal for displaying a preceding frame image displayed in advance, and a succeeding image signal for displaying a succeeding frame image displayed after the preceding frame image,
    The generation unit sets the drive luminance based on the average luminance or the selected luminance set based on the preceding image signal and the average luminance or the selected luminance set based on the subsequent image signal. ,
    The liquid crystal driving unit drives the liquid crystal toward the driving luminance;
    If the average luminance or the selected luminance set based on the preceding image signal is greater than the average luminance or the selected luminance set based on the subsequent image signal, the driving luminance is added to the subsequent image signal. Determined to be smaller than the average luminance or the selected luminance set based on,
    If the average luminance or the selected luminance set based on the preceding image signal is smaller than the average luminance or the selected luminance set based on the subsequent image signal, the driving luminance is added to the subsequent image signal. The display device according to claim 7, wherein the display device is determined so as to be larger than the average luminance or the selected luminance set based on the average luminance.
  11.  前記生成部は、(n+1)回目の走査動作が開始されるときに前記画素が達成している輝度に対する期待値に関する期待値データを格納する期待値テーブルを備え、
     前記駆動輝度は、前記期待値に基づき設定され、
     前記駆動輝度を設定するための前記期待値は、n回目の走査動作時に設定された前記平均輝度又は前記選択輝度に基づき、決定されることを特徴とする請求項10に記載の表示装置。
    The generation unit includes an expectation value table that stores expectation value data related to an expectation value for luminance achieved by the pixel when the (n + 1) -th scanning operation is started,
    The driving brightness is set based on the expected value,
    The display device according to claim 10, wherein the expected value for setting the driving luminance is determined based on the average luminance or the selected luminance set during the n-th scanning operation.
  12.  N回目の前記走査動作を行う前記液晶駆動部は、前記画素グループの前記画素に対応する液晶を順次駆動することを特徴とする請求項1乃至11のいずれか1項に記載の表示装置。 12. The display device according to claim 1, wherein the liquid crystal driving unit that performs the N-th scanning operation sequentially drives liquid crystals corresponding to the pixels of the pixel group.
  13.  左眼で視聴されるように作成された左眼用フレーム画像と右眼で視聴されるように作成された右眼用フレーム画像とを表示し、立体的に知覚される画像を提供する表示装置と、
     前記左眼用フレーム画像が視聴されるように前記左眼へ到達する光量を調整する左眼フィルタと、前記右眼用フレーム画像が視聴されるように前記右眼へ到達する光量を調整する右眼フィルタ、とを含む眼鏡装置と、を備え、
     前記表示装置は、
     前記左眼用フレーム画像と前記右眼用フレーム画像とを、時間的に交互に切り換えて、表示面に表示する液晶パネルと、
     前記複数の書込画像信号を、前記表示面に亘って走査するN回(Nは2以上の整数)の走査動作を実行し、前記液晶パネルを駆動する液晶駆動部と、を備え、
     n回(nは1以上N未満の整数)の前記走査動作によって走査された前記書込画像信号は、(n+1)回目の前記走査動作によって走査された書込画像信号と比べて低い解像度の画像を表す少なくとも1つの前記書込画像信号を含むことを特徴とする映像視聴システム。
    A display device that displays a left-eye frame image created to be viewed with the left eye and a right-eye frame image created to be viewed with the right eye, and provides a stereoscopically perceived image When,
    A left-eye filter that adjusts the amount of light that reaches the left eye so that the left-eye frame image is viewed, and a right that adjusts the amount of light that reaches the right eye so that the right-eye frame image is viewed An eyeglass device including an eye filter, and
    The display device
    The left-eye frame image and the right-eye frame image are alternately switched over time, and a liquid crystal panel that displays on a display surface;
    A liquid crystal driver that performs N times (N is an integer of 2 or more) of scanning the plurality of writing image signals over the display surface and drives the liquid crystal panel;
    The written image signal scanned by the scanning operation n times (n is an integer of 1 or more and less than N) is an image having a lower resolution than the written image signal scanned by the (n + 1) th scanning operation. A video viewing system comprising at least one of the written image signals representing:
PCT/JP2011/007160 2010-12-27 2011-12-21 Display device and video viewing system WO2012090443A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-290204 2010-12-27
JP2010290204A JP2012137630A (en) 2010-12-27 2010-12-27 Display device and image viewing system

Publications (1)

Publication Number Publication Date
WO2012090443A1 true WO2012090443A1 (en) 2012-07-05

Family

ID=46382584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/007160 WO2012090443A1 (en) 2010-12-27 2011-12-21 Display device and video viewing system

Country Status (2)

Country Link
JP (1) JP2012137630A (en)
WO (1) WO2012090443A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051466A1 (en) * 2011-10-03 2013-04-11 シャープ株式会社 Display device and method for driving same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000194005A (en) * 1998-12-24 2000-07-14 Minolta Co Ltd Information display device and its display method
JP2009025436A (en) * 2007-07-18 2009-02-05 Seiko Epson Corp Electro-optical device, display method and electronic apparatus
JP2009175346A (en) * 2008-01-23 2009-08-06 Toshiba Mobile Display Co Ltd Liquid crystal display device and method for driving the same
JP2010107581A (en) * 2008-10-28 2010-05-13 Seiko Epson Corp Driving method and electro-optical device
JP2010117437A (en) * 2008-11-11 2010-05-27 Nano Loa Inc Liquid crystal display device
JP2011018993A (en) * 2009-07-07 2011-01-27 Sony Corp Video display device and video display system
WO2011155148A1 (en) * 2010-06-08 2011-12-15 パナソニック株式会社 Display device and video audiovisual system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000194005A (en) * 1998-12-24 2000-07-14 Minolta Co Ltd Information display device and its display method
JP2009025436A (en) * 2007-07-18 2009-02-05 Seiko Epson Corp Electro-optical device, display method and electronic apparatus
JP2009175346A (en) * 2008-01-23 2009-08-06 Toshiba Mobile Display Co Ltd Liquid crystal display device and method for driving the same
JP2010107581A (en) * 2008-10-28 2010-05-13 Seiko Epson Corp Driving method and electro-optical device
JP2010117437A (en) * 2008-11-11 2010-05-27 Nano Loa Inc Liquid crystal display device
JP2011018993A (en) * 2009-07-07 2011-01-27 Sony Corp Video display device and video display system
WO2011155148A1 (en) * 2010-06-08 2011-12-15 パナソニック株式会社 Display device and video audiovisual system

Also Published As

Publication number Publication date
JP2012137630A (en) 2012-07-19

Similar Documents

Publication Publication Date Title
TWI435297B (en) Image display device and method of driving image display device
KR101950204B1 (en) Method of driving display panel and display apparatus for performing the same
US8411024B2 (en) Image display device
US20150172622A1 (en) Display device, controller, and related operating method
US8917222B2 (en) Display device and video viewing system
KR101281989B1 (en) Apparatus and method for driving liquid crystal display device
CN102789774B (en) Method and device for optimizing 3D (three dimensional) display effect of LCD (liquid crystal display) screen and LCD television
US10102811B2 (en) Method of displaying three-dimensional image and display apparatus using the same
CN101923221A (en) The image display system of image display and this image display of use
WO2011108310A1 (en) 3d image control apparatus and method
KR101699875B1 (en) Apparatus and method for three- dimension liquid crystal display device
EP2575369A2 (en) Apparatus and method for displaying 3D image
JP2012189629A (en) Display device and display control method
JP2011257592A (en) Image display device and image viewing system
WO2011155148A1 (en) Display device and video audiovisual system
JP5726509B2 (en) Display device
WO2012090443A1 (en) Display device and video viewing system
KR101662987B1 (en) Apparatus and method for three dimension liquid crystal display device
KR101627522B1 (en) Liquid crystal display device and driving method the same
CN104581130A (en) Method and device for optimizing 3D display effect of liquid crystal display screen and liquid crystal display television
JP2012150330A (en) Display device and control method of display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11852848

Country of ref document: EP

Kind code of ref document: A1