WO2012088732A1 - 梯度地球化学勘探方法 - Google Patents

梯度地球化学勘探方法 Download PDF

Info

Publication number
WO2012088732A1
WO2012088732A1 PCT/CN2011/000390 CN2011000390W WO2012088732A1 WO 2012088732 A1 WO2012088732 A1 WO 2012088732A1 CN 2011000390 W CN2011000390 W CN 2011000390W WO 2012088732 A1 WO2012088732 A1 WO 2012088732A1
Authority
WO
WIPO (PCT)
Prior art keywords
geochemical
gradient
curve
depth
samples
Prior art date
Application number
PCT/CN2011/000390
Other languages
English (en)
French (fr)
Inventor
何展翔
索孝东
孙卫斌
Original Assignee
中国石油天然气集团公司
中国石油集团东方地球物理勘探有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气集团公司, 中国石油集团东方地球物理勘探有限责任公司 filed Critical 中国石油天然气集团公司
Priority to US13/976,887 priority Critical patent/US20130327125A1/en
Priority to RU2013134437/05A priority patent/RU2539023C1/ru
Priority to CA2823118A priority patent/CA2823118A1/en
Publication of WO2012088732A1 publication Critical patent/WO2012088732A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2294Sampling soil gases or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • G01N1/08Devices for withdrawing samples in the solid state, e.g. by cutting involving an extracting tool, e.g. core bit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N2001/021Correlating sampling sites with geographical information, e.g. GPS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V9/00Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00
    • G01V9/007Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00 by detecting gases or particles representative of underground layers at or near the surface

Definitions

  • the present invention relates to a geochemical exploration data acquisition and processing method, and is a gradient geochemical exploration method.
  • BACKGROUND OF THE INVENTION Currently, geochemical methods have been widely used in metal minerals, environmental monitoring, and oil and gas resource exploration. However, geochemical sample collection has always been used in the traditional way, that is, each sample is collected at a certain depth.
  • the soil samples have the following basic acquisition methods: pit sampling, impact drilling sampling, shallow well sampling, and gas sample collection. Drill to a certain depth and draw the gas sample with a vacuum needle.
  • this sample collection method can only obtain the lateral change information of a deep geochemical anomaly, and it is often difficult to satisfy the exploration problems such as bedding sampling and iso-depth sampling at the same time, so it is not very good. It is impossible to understand the variation of geochemical indicators under the same layer or equal depth conditions, and it is also impossible to understand the variation of anomalies with depth. In particular, because the anomalies caused by modern human environment pollution are significantly different from those of underground metal minerals and oil and gas reservoirs, the former tends to decrease with increasing depth, while the latter increases with depth, and it is difficult to identify such single data.
  • Step 1) At each measuring point, soil samples and gas samples are alternately collected from the surface to the bottom every 0. 5-1 meters to obtain a set of samples; Step 1) The alternating collection is to collect soil samples and collect gas samples from shallow to deep, with a depth of 20-50 meters.
  • Step 2) The geochemical index analysis is to detect the hydrocarbon component of the gas sample and the soil sample sample and the content of the component containing the hydrocarbon is methyl hydrazine and content.
  • the curve of the geochemical index of each measuring point with depth and its gradient curve are formed, and then the profile geochemical index curve of each depth along the line and the gradient geochemical index curve of the profile are formed;
  • step 3 form a contour map of the geochemical index section and its gradient section contour map
  • step 3 According to the value line diagram of step 3), form a three-dimensional visualization of the area acquisition number
  • the determined metal deposit or reservoir enrichment range described in step 6) is a section geochemical index in the three-dimensional visualization, and the anomalous zone where the depth becomes larger is a section rich in oil or metal ore.
  • Figure 1 is a schematic diagram of gradient geochemical acquisition
  • FIG. 3 is a cross-sectional view of a sounding curve of a nail detection index of the present invention.
  • Figure 4 is a deep section curve diagram of the nail detection index of the present invention.
  • Fig. 5 is a cross-sectional view showing the contour of the nail detection index of the present invention. detailed description
  • the invention is achieved by the following steps:
  • Geochemical sample collection Determine the geochemical sample collection point according to the construction measurement coordinates. For example, point 1 at this point, use special drilling tools to collect soil samples and gas samples from surface meters to 50 meters depth, every 1 meter alternately collect soil samples and gas samples, obtain a set of samples, that is, drill to 1 meter deep to take the first soil sample, put into the sample bag, drill to 2 meters deep to extract the first gas sample, seal the glass tube, Put the ql label, send the sample analysis vehicle, drill to the 3m deep to take the second soil sample, drill to the 4m deep to take out the second gas sample; up to 50 meters deep, collect 25 soil samples of the measuring point (tl, T2, ⁇ ⁇ ⁇ , t25 ) and 25 gas samples (ql, q2, * ", q25). Then move the rig to the second measuring point, continue the second measuring point sampling, repeat the above sampling operation, and obtain the first Two samples of soil and gas samples are taken until all points have been sampled, as shown in Figure 1.
  • Geochemical index analysis As in the conventional geochemical method, the sample is analyzed by the 3 ⁇ 4M seven-study index, the gas sample is analyzed on site, the soil sample is sent to the base for analysis, and the hydrocarbon composition of the gas sample and the soil sample sample is detected.
  • the content, the content of different geochemical indicators, such as formazan, acetamidine, acetamidine, etc., such as the No. 1 measuring point of the nail-like soil sample sounding indicators are:, F t2 , F t3 , ⁇ ⁇ ⁇ , F t25 ;
  • the methane gas sample sounding indicators of the measuring point are: 1 , 2 , 3 , ⁇ ⁇ ⁇ , F 25 .
  • other measuring points also obtained a series of analytical data.
  • Sounding curve and sounding gradient curve According to the analysis of geochemical indicators, the curve of different geochemical indicators with depth varies with each measuring point. The depth is plotted on the ordinate, the unit is m, and the geochemical index is The abscissa, in ppm, plots the sounding curve, showing the change of nails with depth, as shown in Figure 2 for the methane sounding curve. At the same time, you can draw a gradient curve of formazan, ie methane The rate of change curve along the depth.
  • Profile curve A profile of the methane index is formed by forming a profile of the hyperthyroidism indicator along each line.
  • the abscissa is the measurement point, and the ordinate is the methane index.
  • the profile curve is the hyperthyroidism.
  • Depth profile curve and depth gradient profile curve Combine the hyperthyroidism depth curve of each measurement point along the line to form a geochemical index profile depth curve, the abscissa is the measurement point, and the ordinate is the depth.
  • the methane sounding profile curve is shown in Fig. 4; at the same time, the hyperthyroidism depth gradient profile curve can be drawn, that is, the gradient curve of the hyperthyroidism along the depth is combined into a profile.
  • Section contour map and gradient section contour map Take the methane index of each line with the measuring point as the abscissa and the depth as the ordinate, and draw the contour map of the nail index value, as shown in Figure 4. It is a contour map of methane sounding in one line; at the same time, a contour map of methane sounding gradient can be drawn.
  • the collection point is the north-south plane coordinate, and the depth of the depth is the ordinate, forming a three-dimensional visualization of the hyperthyroidism; meanwhile, a three-dimensional map of the hyperthyroidism index can be drawn.
  • the geochemical index with depth and the gradient anomaly characteristics of its geochemical indicators Determine the enrichment range of reservoirs or metal deposits.
  • An anomalous area where the index of hyperthyroidism increases with depth, is a section rich in oil or metal ore.
  • the invention can overcome the false anomalies caused by surface environmental disturbances, and can also find the influence of geochemical indicators with depth transition characteristics, especially the lithology changes of the formation on the geochemical indicators, thereby improving the accuracy of geochemical exploration to identify deep oil and gas or other deposits. .

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Soil Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

梯度地球化学勘探方法 技术领域 本发明涉及地球化学勘探数据采集和处理方法, 是一种梯度地球化学勘 探方法。 背景技术 目前, 在金属矿产、 环境监测、 油气资源勘探中, 地球化学法已经应用 很广。 但地球化学样品采集一直沿用传统方式, 即每个测点在一定深度采集 一个样品, 土样有如下几种基本的采集方法: 挖坑取样、 冲击钻取样、 浅井 取样, 气样采集一般采用钻机钻至一定深度, 用真空针管抽取气样。 通过分 析土样或气样发现矿产异常, 这种样品采集方式只能获得某一个深度地球化 学异常的横向变化信息, 往往难以同时满足顺层取样和等深取样等勘探问题, 因而不能很好的研究地球化学指标在同层或等深条件下的变化规律, 同时也 不可能了解异常随深度变化的情况。 特别是, 由于现代人文环境污染产生的 异常与地下金属矿产、 油气藏存在产生的异常特征规律有明显差异, 前者往 往随深度增大会减弱, 而后者随深度增大会增强, 单一数据难以识别这类异 常, 以致实际勘探中常常发生错误的解释推断, 应用效果不佳, 这些问题的 存在, 原方法本身难以完满解决, 影响了该方法的进一步发展。 发明内容 本发明目的在于提供一种可获得同层或等深条件下的变化规律的梯度地 球化学勘探方法。 本发明采用以下技术方案实现:
1 ) 在每个测点, 从地表向下每隔 0. 5-1米交替采集土样和气样, 获得一 组样品; ' 步骤 1 ) 所述的交替采集是从浅到深采集土样和采集气样, 深度至 20— 50米。
2) 对气样和土样分别进行地球化学指标分析;
步骤 2) 所述的地球化学指标分析是检测气样和土样样品烃的成分和含 所述的烃的成分含量是甲垸及含量。
3)根据地球化学指标分析形成每个测点地球化学指标随深度变化的曲线 及其梯度曲线, 再形成每个深度沿测线的剖面地球化学指标曲线及其梯度的 剖面地球化学指标曲线;
4) 根据步骤 3) 的曲线, 形成地球化学指标断面等值线图及其梯度断面 等值线图;
5) 根据步骤 3) 的值线图, 形成面积性采集数三维可视化图;
6)根据三维可视化图中地球化学指标随深度变化特征以及其地球化学指 标的梯度异常特征, 确定金属矿藏或油气藏富集范围。
步骤 6)所述的确定金属矿藏或油气藏富集范围是在三维可视化图中区段 地球化学指标, 随着深度变大的异常区, 为含油或金属矿富集的区段。
附图说明
图 1是梯度地球化学采集示意图;
图 2是本发明中测点甲垸指标测深曲线;
图 3是本发明中测线甲垸指标测深曲线剖面图;
图 4 是本发明中测线甲垸指标等深剖面曲线图;
图 5 是本发明测线甲垸指标等值线断面图。 具体实施方式
以下结合附图详细说明本发明。
本发明通过以下步骤实现:
1 ) 地球化学样品采集: 根据施工测量坐标确定地球化学样品采集点位., 比如 1号点,在该测点,用专用钻具采集从地表米到 50米深度的土样和气样, 每隔 1米交替采集土样和气样, 获得一组样品, 即钻至 1米深取第一个土样, 装入样品袋, 钻至 2米深抽取出第一个气样, 密封好玻璃管, 打上 ql标签, 送样品分析车, 再钻至 3米深取第二个土样, 钻至 4米深取出第二个气样; 直至 50米深, 采集该测点 25个土样(tl、 t2、 · · · 、 t25 )和 25个气样(ql、 q2、 * "、 q25)。 然后将钻机搬迁到第二个测点, 继续第二个测点采样, 重复 上述采样操作, 获得第二个点的土样和气样, 直到所有测点采样完成。 如图 1 所示。
2) 地球化学指标分析: 与常规地球化学方法一样, 对样品进行地 ¾M七学 指标分析, 对气样在现场进行分析, 土样送基地进行分析, 检测气样和土样 样品烃的成分和含量, 得到不同地球化学指标含量, 如甲垸、 乙垸、 丙垸等, 如 1号测点甲垸土样测深指标为: 、 Ft2 、 Ft3 、 · · ·、 Ft25 ; 1号测点甲烷气 样测深指标为: 123 、 · · ·、 F25, 同样, 其它测点也获得一系列分析 数据。
3) 数据处理成图: 测深曲线和测深梯度曲线: 根据地球化学指标分析形 成每个测点不同地球化学指标随深度变化的曲线,以深度为纵坐标,单位为 m, 地球化学指标为横坐标, 单位为 ppm, 绘制测深曲线, 显示甲垸随深度变化情 况, 如图 2所示为甲烷测深曲线。 同时, 可以绘制甲垸的梯度曲线, 即甲烷 沿深度的变化率曲线。
剖面曲线: 把每个测点甲垸指标沿测线形成剖面就形成甲烷指标剖面曲 线, 横坐标为测点, 纵坐标为甲烷指标, 如图 3所示为甲垸剖面曲线。
测深剖面曲线和测深梯度剖面曲线: 把每个测点甲垸测深曲线沿测线组 合成剖面就形成地球化学指标剖面测深曲线, 横坐标为测点, 纵坐标为深度, 如图 4所示为甲烷测深剖面曲线; 同时, 可以绘制甲垸测深梯度剖面曲线, 即把甲垸沿深度的梯度曲线组合成剖面。
断面等值线图和梯度断面等值线图: 把每条测线的甲烷指标, 以测点为 横坐标, 深度为纵坐标, 绘制甲垸指标值的等值线图, 如图 4所示为一条测 线甲烷测深等值线图; 同时, 可以绘制甲烷测深梯度等值线图。
三维可视化图: 对面积性采集数据, 按照三维坐标, 即采集点正南北为 平面坐标, 测深深度为纵坐标, 形成甲垸三维可视化图; 同时, 可以绘制甲 垸指标梯度三维图。
4) 根据上述甲垸测深曲线、 剖面曲线、 测深剖面曲线、 等值线断面和三 维可视化图及其相应的梯度图中地球化学指标随深度变化特征以及其地球化 学指标的梯度异常特征, 确定油气藏或金属矿藏富集范围。 甲垸等指标随着 深度变大的异常区, 为含油或金属矿富集的区段。
工业实用性
本发明能够克服地表环境干扰造成的假异常, 也能够发现地球化学指标 随着深度变迁特征, 特别是地层岩性变化对地球化学指标的影响, 从而提高 地球化学勘探识别深层油气或其它矿床的精度。

Claims

权利要求书
1、 一种梯度地球化学勘探方法, 其特征是通过以下步骤实现:
1 ) 在每个测点, 从地表向下每隔 0. 5-1米交替采集土样和气样, 获得一 组样品;
2) 对气样和土样分别进行地球化学指标分析;
3)根据地球化学指标分析形成每个测点地球化学指标随深度变化的曲线 及其梯度曲线, 再形成每个深度沿测线的剖面地球化学指标曲线及其梯度的 剖面地球化学指标曲线;
4) 根据步骤 3) 的曲线, 形成地球化学指标断面等值线图及其梯度断面 等值线图;
5 ) 根据步骤 3) 的值线图, 形成面积性采集数三维可视化图;
6)根据三维可视化图中地球化学指标随深度变化特征以及其地球化学指 标的梯度异常特征, 确定金属矿藏或油气藏富集范围。
2、 根据权利要求 1的方法, 特征是步骤 1 ) 所述的交替采集是从浅到深 采集土样和采集气样, 深度至 20— 50米。
3、 根据权利要求 1的方法, 特征是步骤 2) 所述的地球化学指标分析是 检测气样和土样样品烃的成分和含量。
4、 根据权利要求 1的方法, 特征是权利要求 3所述的烃的成分含量是甲 烷及含量。
5、 根据权利要求 1的方法, 特征是步骤 6) 所述的确定金属矿藏或油气 藏富集范围是在三维可视化图中区段地球化学指标, 随着深度变大的异常区, 为含油或金属矿富集的区段。
PCT/CN2011/000390 2010-12-29 2011-03-11 梯度地球化学勘探方法 WO2012088732A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/976,887 US20130327125A1 (en) 2010-12-29 2011-03-11 Method for geochemical grandient exploration
RU2013134437/05A RU2539023C1 (ru) 2010-12-29 2011-03-11 Способ геохимической разведки с применением градиента геохимического индикатора
CA2823118A CA2823118A1 (en) 2010-12-29 2011-03-11 Method for geochemical gradient exploration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010611852.6 2010-12-29
CN2010106118526A CN102539194B (zh) 2010-12-29 2010-12-29 梯度地球化学勘探方法

Publications (1)

Publication Number Publication Date
WO2012088732A1 true WO2012088732A1 (zh) 2012-07-05

Family

ID=46346632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000390 WO2012088732A1 (zh) 2010-12-29 2011-03-11 梯度地球化学勘探方法

Country Status (5)

Country Link
US (1) US20130327125A1 (zh)
CN (1) CN102539194B (zh)
CA (1) CA2823118A1 (zh)
RU (1) RU2539023C1 (zh)
WO (1) WO2012088732A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103645517A (zh) * 2013-12-10 2014-03-19 成都理工大学 基于盲源分离技术的综合异常提取方法及装置
CN103778638A (zh) * 2014-01-29 2014-05-07 核工业北京地质研究院 一种物化探数据的子区背景差异的调节方法
US10280747B2 (en) * 2015-05-20 2019-05-07 Saudi Arabian Oil Company Sampling techniques to detect hydrocarbon seepage
US11668847B2 (en) 2021-01-04 2023-06-06 Saudi Arabian Oil Company Generating synthetic geological formation images based on rock fragment images
CN112948445B (zh) * 2021-05-13 2021-07-23 中国煤炭地质总局勘查研究总院 用于预测煤中稀土矿产资源靶区的方法及电子设备
CN113390686B (zh) * 2021-07-08 2024-01-16 东北石油大学 一种油气地球化学勘探微量气体收集装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2043825A1 (en) * 1991-06-04 1992-12-05 John Henry Davies Method of detecting explosives and other substances in samples of ground material
US5922974A (en) * 1997-07-03 1999-07-13 Davison; J. Lynne Geochemical soil sampling for oil and gas exploration
CN1414362A (zh) * 2001-10-24 2003-04-30 中国科学院沈阳应用生态研究所 一种土壤剖面梯度气体样本的负压同步采集方法及专用装置
CN101051007A (zh) * 2006-04-06 2007-10-10 中国石油化工股份有限公司 一种用于制备或收集岩石中吸附气态烃的装置
CN101520517A (zh) * 2008-02-25 2009-09-02 中国石油集团东方地球物理勘探有限责任公司 一种能准确评价碎屑岩盆地含油气目标的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4573354A (en) * 1982-09-20 1986-03-04 Colorado School Of Mines Apparatus and method for geochemical prospecting
US5241859A (en) * 1990-06-29 1993-09-07 Amoco Corporation Finding and evaluating rock specimens having classes of fluid inclusions for oil and gas exploration
RU2048749C1 (ru) * 1992-05-21 1995-11-27 Всероссийский научно-исследовательский институт гидротехники и мелиорации им.А.Н.Костякова Способ определения засоленности грунтов и/или уровня грунтовых вод и их минерализации
US6512371B2 (en) * 1995-10-12 2003-01-28 Halliburton Energy Services, Inc. System and method for determining oil, water and gas saturations for low-field gradient NMR logging tools
RU2284556C1 (ru) * 2005-04-25 2006-09-27 Венер Рафаэлевич Раянов Геохимический способ исследований выявленных сейсморазведкой структур на нефтегазосодержание
CN1327218C (zh) * 2005-09-23 2007-07-18 清华大学 海底浅层沉积物中苯、甲苯、乙苯、二甲苯含量异常预测深部油气藏的方法
US7983885B2 (en) * 2006-12-29 2011-07-19 Terratek, Inc. Method and apparatus for multi-dimensional data analysis to identify rock heterogeneity
US8185314B2 (en) * 2007-02-13 2012-05-22 Schlumberger Technology Corporation Method and system for determining dynamic permeability of gas hydrate saturated formations
CN101290357B (zh) * 2008-06-13 2010-06-02 杨辉 基于小循环平面多极同步基点的地面自然电位数据采集处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2043825A1 (en) * 1991-06-04 1992-12-05 John Henry Davies Method of detecting explosives and other substances in samples of ground material
US5922974A (en) * 1997-07-03 1999-07-13 Davison; J. Lynne Geochemical soil sampling for oil and gas exploration
CN1414362A (zh) * 2001-10-24 2003-04-30 中国科学院沈阳应用生态研究所 一种土壤剖面梯度气体样本的负压同步采集方法及专用装置
CN101051007A (zh) * 2006-04-06 2007-10-10 中国石油化工股份有限公司 一种用于制备或收集岩石中吸附气态烃的装置
CN101520517A (zh) * 2008-02-25 2009-09-02 中国石油集团东方地球物理勘探有限责任公司 一种能准确评价碎屑岩盆地含油气目标的方法

Also Published As

Publication number Publication date
RU2539023C1 (ru) 2015-01-10
CA2823118A1 (en) 2012-07-05
CN102539194B (zh) 2013-07-31
US20130327125A1 (en) 2013-12-12
CN102539194A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
CN103670383B (zh) 一种识别泥页岩油藏有效储层的方法及设备
WO2012088732A1 (zh) 梯度地球化学勘探方法
CN104343427B (zh) 一种预测co2驱油藏无机结垢趋势的方法
CN104142519B (zh) 一种泥岩裂缝油藏预测方法
CN101082277A (zh) 石油钻井地质x射线荧光岩屑录井方法
CN104453873A (zh) 页岩油气经济有效层段的评价方法
CN103592690A (zh) 基于电成像测井孔隙度谱信息自动识别储层裂缝的方法
CN110130883A (zh) 岩层参数的确定方法及装置
CN108561126B (zh) 一种确定页岩气储层有机孔隙度的简易方法
CN103470250B (zh) 一种测定地层孔隙结构以及流体特性的方法及设备
CN107505344A (zh) 利用“最小二乘积”法的岩性解释方法
CN105888657A (zh) 利用元素录井进行沉积岩的岩性识别方法
CN107143330A (zh) 页岩气储层品质测录井评价方法
CN103362505B (zh) 一种用于在钻井液添加油存在条件下判识钻遇油层的方法
CN108680965B (zh) 一种适用于戈壁荒漠浅覆盖区快速找矿方法
CN109256179A (zh) 一种基于岩石元素的风化指数确定方法及装置
CN103590828B (zh) 一种录井dck指数法评价地层压力的方法
CN105003258B (zh) 一种高温高压气层甲烷流体密度骨架参数的获取方法
CN103605168B (zh) 一种海底多金属硫化物综合信息快速找矿方法
CN102313772B (zh) 油气田油套管损伤检测及评价方法
CN105064987A (zh) 利用随钻录井q参数进行水层识别的解释评价方法
CN103352689A (zh) 一种利用放射性示踪测井技术确定井径的方法
CN110634079B (zh) 利用多参数计算储层综合含水率的录井油气层解释方法
CN110017136B (zh) 一种基于视水层电阻率的水淹层识别与产水率预测方法
CN110685676B (zh) 一种定量识别优质页岩段的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854010

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2823118

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013134437

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13976887

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11854010

Country of ref document: EP

Kind code of ref document: A1