WO2012081336A1 - 医療装置 - Google Patents

医療装置 Download PDF

Info

Publication number
WO2012081336A1
WO2012081336A1 PCT/JP2011/075687 JP2011075687W WO2012081336A1 WO 2012081336 A1 WO2012081336 A1 WO 2012081336A1 JP 2011075687 W JP2011075687 W JP 2011075687W WO 2012081336 A1 WO2012081336 A1 WO 2012081336A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
time
filter
unit
diagnosis
Prior art date
Application number
PCT/JP2011/075687
Other languages
English (en)
French (fr)
Inventor
圭 久保
信行 道口
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to CN201180034489.9A priority Critical patent/CN102984991B/zh
Priority to JP2012527552A priority patent/JP5139602B2/ja
Priority to EP11849714.8A priority patent/EP2596739A4/en
Priority to US13/495,059 priority patent/US8868160B2/en
Publication of WO2012081336A1 publication Critical patent/WO2012081336A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00006Operational features of endoscopes characterised by electronic signal processing of control signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources

Definitions

  • the present invention relates to a medical device, and more particularly to a medical device capable of observation based on fluorescence emitted from a fluorescent agent.
  • cancer diagnosis technology using molecular target drugs has begun to attract attention. Specifically, for example, after a fluorescent drug (fluorescent probe) targeting a biological protein specifically expressed in cancer cells is administered to the living body, the presence or absence of cancer is determined based on the fluorescence emitted from the target site of the living body. In recent years, a method of discriminating has been studied. Such a technique is useful for early detection of cancer in the gastrointestinal tract field.
  • fluorescent drug fluorescent probe
  • the plurality of types of fluorescent agents are handled based on a plurality of fluorescence emitted at a target site of the living body.
  • a technique of observing the expression state of a plurality of types of biological proteins in combination has been proposed. Such a method is considered to be useful in estimation of cancer stage, prediction of cancer invasion risk, prediction of cancer metastasis risk, and the like.
  • Japanese Patent Application Laid-Open No. 2006-61683 discloses a laser light source that generates excitation light, an endoscope scope having an excitation light irradiation portion at the tip, and fluorescence generated in a subject by excitation light.
  • An endoscope apparatus comprising: a measurement unit; and a fluorescence amount calculation unit that corrects the fluorescence signal with a distance signal to calculate a fluorescence amount that is not affected by a variation in distance, wherein the fluorescence amount calculation unit includes the fluorescence amount calculation unit.
  • a configuration is disclosed that includes a post-drug administration time correction unit that corrects the signal or the fluorescent image signal based on the elapsed time since the fluorescent drug was administered.
  • the fading of the fluorescence emitted from the fluorescent agent starts from the point of time when the fluorescent agent is irradiated with the excitation light
  • the irradiation of the excitation light is started before the fluorescent agent is sufficiently accumulated on the target site, for example, in the period from the start of the irradiation of the excitation light until the fluorescent agent is accumulated on the target site. Fluorescence having substantially the same intensity is emitted from both the normal site and the abnormal site, and further, when the fluorescent agent is accumulated at the target site, the fading of fluorescence has already progressed considerably. Situations can arise.
  • the accumulated amount of the fluorescent drug administered to the subject in the target site is not limited to the elapsed time from the administration to the subject until it is excreted, for example, the type of the fluorescent drug to be used and the target site are It may be possible to change variously based on a plurality of factors, such as the organ to which the target belongs and the method of administering the fluorescent drug to the target site.
  • Japanese Patent Application Laid-Open No. 2006-61683 makes no particular mention regarding fading of the fluorescence emitted from the fluorescent agent, and as a result, the time in which the observation of the fluorescence emitted from the fluorescent agent can be continued.
  • the target region must be diagnosed in a state in which is relatively shortened.
  • the present invention has been made in view of the above-described circumstances, and in observing fluorescence emitted from a fluorescent agent administered to a target site of a subject, fluorescence other than a time zone in which the target site can be diagnosed. It aims at providing the medical device which can aim at the improvement of diagnostic ability by suppressing generating of as much as possible.
  • a storage unit in which information on drug dynamics in a living body is stored in advance for each type of a plurality of fluorescent agents, information stored in the storage unit, and a desired fluorescent agent are administered To the desired fluorescent agent based on the information on the target site of the subject to be analyzed, the information on the administration method of the desired fluorescent agent to the target site, and the information on the administration start time of the desired fluorescent agent.
  • An arithmetic processing unit for acquiring a corresponding diagnosis start time, and at least in a time zone from the administration start time to the diagnosis start time, stopping irradiation of excitation light for exciting the desired fluorescent agent, A light source control unit that performs control to irradiate the excitation light based on a diagnosis start time.
  • the figure which shows the state at the time of electricity supply of the magnet displacement apparatus at the time of making a filter switching mechanism into the state of FIG. The figure which shows a state when an optical filter is evacuated from the optical path in the filter switching mechanism of an imaging actuator.
  • the figure which shows an example of a structure of the switching filter provided in the light source device The figure which shows the characteristic of the normal light filter provided in the switching filter. The figure which shows the characteristic of the 1st excitation light filter provided in the switching filter. The figure which shows the characteristic of the 2nd excitation light filter provided in the switching filter. The figure which shows the characteristic of the 3rd excitation light filter provided in the switching filter.
  • the figure which shows the characteristic of the optical filter provided in the rotation filter The figure which shows the characteristic of the optical filter different from FIG. 14 provided in the rotation filter.
  • 6 is a timing chart showing an exposure period and a readout period of a CCD provided in the scope.
  • the timing chart which shows the insertion operation
  • the figure which shows an example of the table data used when selecting the chemical
  • the figure which shows an example of the pharmacokinetics selected from table data.
  • 6 is a timing chart showing an interposing operation and a retracting operation in a first observation mode of each optical filter provided in the imaging actuator.
  • 10 is a timing chart showing an interposing operation and a retracting operation in a third observation mode of each optical filter provided in the imaging actuator.
  • positioned in the capsule type medical device of FIG. The figure which shows the structure of the principal part of the capsule type medical device which concerns on the modification of the 2nd Example of this invention.
  • (First embodiment) 1 to 26 relate to the first embodiment of the present invention.
  • FIG. 1 is a diagram showing a configuration of a main part of an endoscope system according to a first embodiment of the present invention.
  • an endoscope system 301 can be inserted into a body cavity of a subject, and also includes a scope 2 that images an observation target region 201 in the body cavity and outputs an imaging signal, and a scope 2.
  • the processor 3 for performing various signal processing on the imaging signal from the scope 2, and the output signal from the processor 3
  • a monitor 4 for displaying an image
  • a digital filing device 5 for recording an image according to an output signal from the processor 3
  • a photography device 6 for capturing an image according to an output signal from the processor 3, and a character string
  • a keyboard 62 that can output a signal corresponding to a key operation such as an input operation to the processor 3, and a speaker 63 that emits a sound corresponding to the output signal from the processor 3. It is configured Te.
  • a light guide 13 for transmitting illumination light supplied from the light source device 1 to the distal end portion of the scope 2 is inserted into the scope 2.
  • the scope 2 includes an illumination optical system 14a that emits the illumination light transmitted by the light guide 13 to the observation target part 201, and an objective optical that forms an image of the return light from the observation target part 201 illuminated by the illumination light.
  • the system 14b, the monochrome type CCD 14 in which the imaging surface is arranged at the imaging position of the objective optical system 14b, and the imaging actuator 39 arranged on the optical path between the objective optical system 14b and the CCD 14 are arranged at the tip. It has.
  • the scope 2 includes a mode switch 15 that can perform an operation related to switching of the observation mode of the endoscope system 301, a release switch 16 that can perform an operation related to acquisition of a still image of the observation target region 201, and the scope 2 A scope discriminating element 17 in which unique discriminating information corresponding to the type of the disc is stored.
  • the CCD 14 is driven in accordance with the control of the processor 3, and performs photoelectric conversion on the return light from the observation target part 201 imaged on the imaging surface to generate an imaging signal and output it to the processor 3. .
  • the CCD 14 of this embodiment is provided with an electronic shutter (not shown) that can adjust the exposure time and the readout time in accordance with the control of the processor 3.
  • the CCD 14 of this embodiment is provided with a charge amplification device (not shown).
  • FIG. 2 is a diagram illustrating a state where an optical filter is inserted on the optical path in the filter switching mechanism of the imaging actuator.
  • FIG. 3 is a diagram illustrating a state when the magnet displacement device is energized when the filter switching mechanism is in the state of FIG. 2.
  • FIG. 4 is a diagram illustrating a state where the optical filter is retracted from the optical path in the filter switching mechanism of the imaging actuator.
  • FIG. 5 is a diagram illustrating a state where the magnet displacement device is not energized when the filter switching mechanism is in the state of FIG. 4.
  • the filter switching device 39a of the imaging actuator 39 includes a first arrangement state (interpolation state) in which a filter that allows passage of only light in a predetermined wavelength band is inserted on the optical path from the objective optical system 14b to the CCD 14, and
  • the second arrangement state (withdrawal state) in which the filter that passes only light in the predetermined wavelength band is retracted from the optical path from the objective optical system 14b to the CCD 14 can be switched according to the control of the processor 3. It has a configuration.
  • the filter switching device 39a of the imaging actuator 39 has a configuration similar to the configuration of the light adjusting device described in Japanese Unexamined Patent Publication No. 2009-8717. That is, the filter switching device 39a includes the filter switching mechanism 101 and the magnet displacement device 102.
  • the filter switching mechanism 101 is formed so that the filter moving member 105, the closing stopper 107, and the opening stopper 108 are sandwiched between the lower substrate 103 and the upper substrate 104.
  • One end of the shape memory alloy wire 120 is fixed to the magnet 119 of the magnet displacement device 102. Further, a bias spring 121 and an insulating tube 122 are passed through the shape memory alloy wire 120. On the other hand, the other end of the shape memory alloy wire 120 is fixed to a crimping member (not shown). Note that the above-described crimping member (not shown) is also fixed at the end of the tube 122 opposite to the magnet 119.
  • the filter moving member 105 is press-fitted with a rotating shaft 109 and a columnar magnet 110.
  • the filter moving member 105 is provided with an optical filter unit 118 having an optical filter 117a.
  • the lower substrate 103 is formed with an optical opening 111, a rotation shaft insertion hole for inserting the rotation shaft 109, and a notch for guiding the magnet 110.
  • the upper substrate 104 has an optical aperture having the same or slightly larger diameter as the optical aperture 111, a rotation shaft insertion hole for inserting the rotation shaft 109, and a guide for the magnet 110. And notches are formed.
  • the rotating shaft 109 is inserted into rotating shaft insertion holes provided in the lower substrate 103 and the upper substrate 104, respectively.
  • the filter moving member 105 can be rotationally displaced about the rotation shaft 109.
  • the rotation movable range of the filter moving member 105 is limited by the closing stopper 107 and the opening stopper 108.
  • the movable range of the magnet 110 is limited by guide notches provided on the lower substrate 103 and the upper substrate 104, respectively.
  • the filter moving member 105 when the filter moving member 105 is rotationally displaced about the rotation shaft 109, for example, when the optical filter unit 118 contacts the closing stopper 107, the center of the optical filter 117a and the optical aperture 111 are obtained. Matches the center of.
  • the shape memory alloy wire 120 contracts with the application of voltage according to the control of the processor 3. Then, when the magnet 119 fixed to one end of the shape memory alloy wire 120 is displaced toward the tube 122 against the repulsive force of the bias spring 121, the N pole of the magnet 110 and the N pole of the magnet 119 face each other. It is arranged at the position to do.
  • the filter moving member 105 rotates counterclockwise about the rotation shaft 109, and the optical filter unit 118 is closed. It contacts the hour stopper 107.
  • the optical aperture 111 is covered by the optical filter unit 118, so that the filter switching mechanism 101 returns light in a predetermined wavelength band defined by the optical filter 117a. Only is passed through the imaging surface of the CCD 14.
  • the shape memory alloy wire 120 expands as the voltage is applied according to the control of the processor 3, and the shape changes.
  • the magnet 119 fixed to one end of the memory alloy wire 120 is displaced to the opposite side of the tube 122 according to the repulsive force of the bias spring 121, so that the S pole of the magnet 110 and the N pole of the magnet 119 are opposed to each other.
  • the optical aperture 111 is not covered by the optical filter unit 118, so that the filter switching mechanism 101 performs band limitation on the return light that has passed through the objective optical system 14b. Without passing through, the return light passes through the imaging surface of the CCD 14 as it is.
  • FIG. 6 is a diagram illustrating characteristics of an optical filter provided in the imaging actuator.
  • optical filter 117a of the filter switching device 39a in this embodiment is formed so as to pass only light of 680 to 850 nm without being substantially attenuated as shown in FIG. 6, for example.
  • the imaging actuator 39 of the present embodiment is configured to include a filter switching device 39a and a filter switching device 39b having a configuration substantially similar to the filter switching device 39a.
  • FIG. 7 is a diagram showing the characteristics of an optical filter different from that shown in FIG. 6 provided in the imaging actuator.
  • the filter switching device 39b has an optical filter 117b that allows only return light having a wavelength band different from that of the optical filter 117a to pass therethrough, and the other parts have the same configuration as the filter switching device 39a. Further, for example, as shown in FIG. 7, the optical filter 117b is formed so as to pass only light of 790 to 850 nm without being substantially attenuated.
  • the imaging actuator 39 of the present embodiment is not limited to one configured based on the configuration of the light adjusting device described in Japanese Patent Application Laid-Open No. 2009-8717 as described above.
  • the imaging actuator 39 according to the present embodiment is configured to be able to switch between the first arrangement state (insertion state) and the second arrangement state (retraction state) for each of the optical filters 117a and 117b.
  • it may be configured based on another configuration such as a light adjusting device described in Japanese Patent Application Laid-Open No. 2009-8719, for example.
  • the light source device 1 is inserted on a lamp 7 that emits light in a wavelength region including a visible region and a near-infrared region, a switching filter 8 provided so as to vertically traverse the optical path of the lamp 7, and the optical path of the lamp 7.
  • a diaphragm 12 disposed on the optical path of the lamp 7 extending from the rotary filter 10 to the rotary filter 10, and a condenser lens 12 a that condenses the illumination light that has passed through the rotary filter 10 on the light incident side end face of the light guide 13. Configured.
  • FIG. 8 is a diagram illustrating an example of a configuration of a switching filter provided in the light source device.
  • the switching filter 8 having a disk shape includes a normal light filter 50 that transmits visible light, and a first excitation light filter 51 that transmits part of the visible light and red light.
  • FIG. 9 is a diagram showing the characteristics of the normal optical filter provided in the switching filter.
  • the normal optical filter 50 is formed so as to pass the light in the wavelength band of 400 to 650 nm out of the light in the wavelength band emitted from the lamp 7 without being substantially attenuated.
  • FIG. 10 is a diagram illustrating the characteristics of the first excitation light filter provided in the switching filter.
  • the first excitation light filter 51 allows light in the wavelength band of 600 to 650 nm out of light in each wavelength band emitted from the lamp 7 to pass through without being substantially attenuated, and 790 to 810 nm. Is attenuated to a predetermined intensity and passes therethrough.
  • FIG. 11 is a diagram showing characteristics of the second excitation light filter provided in the switching filter.
  • the second excitation light filter 55 allows light in the wavelength band of 700 to 760 nm out of the light in the wavelength bands emitted from the lamp 7 to pass through without being substantially attenuated, and 790 to 810 nm. Is attenuated to a predetermined intensity and passes therethrough.
  • FIG. 12 is a diagram showing the characteristics of the third excitation light filter provided in the switching filter.
  • the third excitation light filter 55 allows light in the wavelength band of 600 to 760 nm out of light in each wavelength band emitted from the lamp 7 to pass through without being substantially attenuated, and 790 to 810 nm. Is attenuated to a predetermined intensity and passes therethrough.
  • the diaphragm 12 has a configuration capable of increasing or decreasing the amount of light that has passed through the switching filter 8 in accordance with the control of the processor 3.
  • FIG. 13 is a diagram illustrating an example of a configuration of a rotary filter provided in the light source device.
  • the rotary filter 10 having a disk shape includes an optical filter 41 that transmits red light, an optical filter 42 that transmits green light, and blue and near-infrared light. And an optical filter 43 that allows the light to pass therethrough is provided along the circumferential direction of the disk. That is, the rotation filter 10 is placed on the optical path of the lamp 7 while the optical filters 41, 42, and 43 are sequentially replaced by the rotation of the motor 11 according to the control of the processor 3 (timing signal of the timing generator 30 described later). It is configured to be inserted or retreated from the optical path of the lamp 7. Note that the rotary filter 10 of this embodiment is formed so as not to allow light to pass through when the optical filter 41, 42 and 43 are inserted on the optical path of the lamp 7 except for the places where the optical filters 41, 42 and 43 are disposed. To do.
  • FIG. 14 is a diagram showing the characteristics of the optical filter provided in the rotary filter.
  • the optical filter 41 is formed so as to pass light in the wavelength band of 600 to 650 nm out of the wavelength bands of the light that has passed through the switching filter 8 and the diaphragm 12 without being substantially attenuated. ing.
  • FIG. 15 is a diagram showing the characteristics of an optical filter different from that shown in FIG. 14 provided in the rotary filter.
  • the optical filter 42 outputs light having a wavelength band of 500 to 600 nm and light having a wavelength band of 790 to 810 nm among the wavelength bands of the light that has passed through the switching filter 8 and the diaphragm 12. Each is formed so as to pass through without being substantially attenuated.
  • FIG. 16 is a diagram showing the characteristics of an optical filter different from that shown in FIGS. 14 and 15 provided in the rotary filter.
  • the optical filter 43 is formed so as to pass light in the wavelength bands of 400 to 500 nm and 700 to 760 nm among the wavelength bands of the light that has passed through the switching filter 8 and the diaphragm 12. Has been.
  • the imaging signal output from the CCD 14 is input to the processor 3, and then subjected to processing such as CDS (correlated double sampling) in the preprocess circuit 18, and converted into a digital image signal in the A / D conversion circuit 19. And then output to the color balance correction circuit 20.
  • CDS correlated double sampling
  • the color balance correction circuit 20 Based on the timing signal from the timing generator 30, the color balance correction circuit 20 synchronizes with the optical filter 41, the optical filter 41, 42 and 43 of the rotary filter 10 in synchronization with the timing at which the optical filter 41, 42 and 43 are sequentially inserted on the optical path of the lamp 7.
  • the color balance correction coefficient corresponding to each of 42 and 43 is selected, and the selected color balance correction coefficient is read from a memory (not shown).
  • the color balance correction circuit 20 multiplies the image signal sequentially output from the A / D conversion circuit 19 by the color balance correction coefficient read from the memory (not shown), and then outputs the multiplied image signal to the multiplexer 21. To do.
  • the color balance correction coefficient described above is a correction value calculated by calculation processing of the control unit 33 (calculation processing circuit 33a) during a color balance operation such as white balance, and is a processing result of the calculation processing. And stored in a memory (not shown) of the color balance correction circuit 20. Further, the above-described color balance operation such as white balance indicates that an operation related to the start of execution of the color balance operation is performed in a color balance setting switch (not shown) provided in the input switch group 60 of the processor 3. It is started at the timing detected by the control unit 33.
  • the multiplexer 21 is an image signal output from the color balance correction circuit 20 so as to synchronize with the timing at which the optical filters 41, 42 and 43 are sequentially inserted on the optical path of the lamp 7 based on the timing signal from the timing generator 30. Are output to the simultaneous memories 22a, 22b and 22c while being appropriately distributed.
  • the simultaneous memories 22a, 22b and 22c have a configuration capable of temporarily storing the image signal output from the multiplexer 21.
  • the image processing circuit 23 reads the image signals stored in the synchronization memories 22a, 22b, and 22c at the same time, and then performs predetermined image processing on the three read image signals. Then, the image processing circuit 23 converts the three image signals after the predetermined image processing into a first color channel and a second color component (for example, a first color component (for example, red (R) component)). The second color channel corresponding to the green (G) component) and the third color channel corresponding to the third color component (for example, blue (B) component) are allotted to the color tone adjustment circuit 24. Output.
  • a first color component for example, red (R) component
  • the second color channel corresponding to the green (G) component) and the third color channel corresponding to the third color component for example, blue (B) component
  • the color tone adjustment circuit 24 reads the color tone adjustment coefficient stored in a memory (not shown), and then the image signal of the color tone adjustment coefficient and the first color component (first color channel) output from the image processing circuit 23. Then, matrix calculation processing using the image signal of the second color component (second color channel) and the image signal of the third color component (third color channel) is performed. Thereafter, the color tone adjustment circuit 24 applies the first color component image signal, the second color component image signal, and the third color component image signal after the above-described matrix calculation processing is performed. To apply gamma correction.
  • the color tone adjustment circuit 24 sends the image signals of the first color component, the second color component, and the third color component after the above-described gamma correction processing to the encoding circuit 26 and the light control circuit 27. Output each.
  • the color tone adjustment circuit 24 outputs the image signal of the first color component to the D / A conversion circuit 25a after the above-described gamma correction processing, and outputs the image signal of the second color component to the D / A. It outputs to the conversion circuit 25b and outputs the image signal of the third color component to the D / A conversion circuit 25c.
  • the above-described color tone adjustment coefficient is an adjustment value calculated by the calculation process of the control unit 33 (calculation processing circuit 33a) in the color tone adjustment operation. As a result of the calculation process, the color tone adjustment circuit 24 is not illustrated. Stored in memory. Further, in the above-described color tone adjustment operation, the control unit 33 indicates that an operation related to a change in color tone displayed on the monitor 4 has been performed on a color tone setting switch (not shown) provided in the input switch group 60 of the processor 3. Is started at the timing detected. The control unit 33 (arithmetic processing circuit 33a) performs arithmetic processing for calculating a color tone adjustment coefficient corresponding to the color tone after the change when an operation related to the change of the color tone displayed on the monitor 4 is performed. .
  • the image signals of the first color component, the second color component, and the third color component output from the color tone adjustment circuit 24 are converted into analog video signals in the D / A conversion circuits 25a, 25b, and 25c, respectively. Is output to the monitor 4. Thereby, the monitor 4 displays an observation image corresponding to each observation mode.
  • the image signals of the first color component, the second color component, and the third color component output from the color tone adjustment circuit 24 are subjected to encoding processing in the encoding circuit 26, and then digital filing.
  • the data is output to the device 5 and the photography device 6. Accordingly, the digital filing device 5 records and stores a still image when the control unit 33 detects an input operation on the release switch 16. In addition, the photographic device 6 captures a still image when the control unit 33 detects an input operation on the release switch 16.
  • the dimming circuit 27 has an appropriate light amount corresponding to the observation mode based on the signal levels of the image signals of the first color component, the second color component, and the third color component output from the color tone adjustment circuit 24.
  • the diaphragm 12 is controlled so that the illumination light is supplied from the light source device 1.
  • the dimming circuit 27 performs control to change the amplification factor of the amplification factor control circuit 29.
  • the exposure time control circuit 28 is set to a timing at which the optical filters 41, 42 and 43 are sequentially inserted on the optical path of the lamp 7.
  • the electronic shutter of the CCD 14 is controlled so as to be synchronized and in accordance with the output signal from the control unit 33. And the exposure time in CCD14 is changed by control with respect to such an electronic shutter.
  • the amplification factor control circuit 29 is synchronized with the timing at which the optical filters 41, 42, and 43 are sequentially inserted on the optical path of the lamp 7 based on the control by the dimming circuit 27 and the timing signal output from the timing generator 30.
  • the charge amplifying device of the CCD 14 is controlled so that the amplification factor according to the control of the light control circuit 27 is obtained.
  • the amplification factor in the CCD 14 is changed by controlling the charge amplifying device.
  • the timing generator 30 generates and outputs a timing signal for appropriately synchronizing the operations of each unit of the endoscope system 301.
  • the CCD driver 31 drives the CCD 14 based on the timing signal output from the timing generator 30 so as to synchronize with the timing at which the optical filters 41, 42 and 43 are sequentially inserted on the optical path of the lamp 7.
  • the imaging actuator control circuit 32 determines the timing at which the optical filters 41, 42 and 43 are sequentially inserted on the optical path of the lamp 7, and the arrangement of the optical filter 117a in the filter switching device 39a. Control for synchronizing the switching timing of the state and the switching timing of the arrangement state of the optical filter 117b in the filter switching device 39b is performed on the imaging actuator 39.
  • the control unit 33 including a CPU and a memory includes an arithmetic processing circuit 33a that performs arithmetic processing, a storage circuit 33b, a timer circuit 33c, a determination circuit 33d, and a switching control circuit 33e. .
  • the storage circuit 33b stores various data used for arithmetic processing of the arithmetic processing circuit 33a such as table data described later.
  • the timer circuit 33c has an RTC (real time clock), a timer, and the like, and is configured to be able to measure the elapsed time from the administration of the fluorescent agent to the subject for each fluorescent agent.
  • RTC real time clock
  • the determination circuit 33d performs determination processing as described later as needed based on the calculation processing result of the calculation processing circuit 33a and the measurement result of the timing circuit 33c.
  • the switching control circuit 33e performs control on the motor 9 and the like of the light source device 1 based on the detection result of the operation state in the mode switching switch 15 of the scope 2 connected to the processor 3 and the determination result of the determination circuit 33d. .
  • a color setting switch capable of performing an operation related to a change in the color tone of an image displayed on the monitor 4 and an operation related to a color balance operation such as white balance can be performed.
  • a plurality of switches such as a color balance setting switch that can be performed and an image display selection switch that can perform an operation related to switching of the display mode of the observation image displayed on the monitor 4 are provided.
  • the control part 33 detects the operation state of each switch provided in the input switch group 60 of the processor 3, and performs control, a process, etc. according to a detection result.
  • the control unit 33 detects an operation state of the release switch 16 of the scope 2 connected to the processor 3, and records and / or records a still image in the digital filing device 5 according to the detection result. Control related to still image shooting.
  • control unit 33 reads information stored in the scope discriminating element 17, and performs control according to the read information.
  • control unit 33 of this embodiment is connected to each unit of the processor 3 through a signal line (not shown) so that comprehensive control can be performed on each unit of the processor 3.
  • the notification signal generation circuit 61 generates a character signal for displaying a predetermined character string capable of notifying information on the determination result of the determination circuit 33 d of the control unit 33 and outputs the character signal to the monitor 4. Further, the notification signal generation circuit 61 generates a sound signal for generating a predetermined sound capable of notifying information related to the determination result of the determination circuit 33 d of the control unit 33 and outputs the sound signal to the speaker 63.
  • the notification signal generation circuit 61 according to the present embodiment only needs to be configured to output at least one of the character signal and the voice signal.
  • surgeon or the like connects each part of the endoscope system 301 and turns on the power to start the operation of each part.
  • FIG. 17 is a timing chart showing the exposure period and readout period of the CCD provided in the scope.
  • the CCD driver 31 drives the CCD 14 according to the timing chart of FIG. 17, for example, based on the timing signal from the timing generator 30.
  • the CCD 14 operates such that the exposure period T1 as a period related to charge accumulation and the readout period T2 as a period related to sweeping out the accumulated charge during the exposure period T1 are alternately switched.
  • FIG. 18 is a timing chart showing the interposing operation and the retracting operation of each optical filter accompanying the rotation of the rotating filter.
  • the rotation drive of the motor 11 is started.
  • the optical filters 41, 42, and 43 are sequentially replaced while being inserted into the optical path of the lamp 7 or retracted from the optical path of the lamp 7. Note that the insertion operation and the retraction operation of the optical filters 41, 42, and 43 accompanying the rotation drive of the motor 11 are performed, for example, at a timing according to the timing chart of FIG.
  • the motor 11 sequentially inserts the optical filters 41, 42, and 43 on the optical path of the lamp 7 during the exposure period of the CCD 14, and places the optical filters 41, 42, and 43 on the optical path of the lamp 7 during the readout period of the CCD 14.
  • the rotary filter 10 is rotated so as to be retreated.
  • the surgeon or the like connects each part of the endoscope system 301 and turns on the power, and then operates the keyboard 62 to display the setting screen related to the various settings of the processor 3 on the monitor 4 (for example, )
  • a reference value Ns for the accumulation amount at the start of diagnosis and a reference value Ne for the accumulation amount at the end of diagnosis in observation using a fluorescent agent are set. Further, the surgeon or the like administers the fluorescent agent to the observation target region 201 of the subject before or after setting the reference values Ns and Ne.
  • the reference values Ns and Ne are set to Nmax depending on the combination of the type of fluorescent agent to be used, the organ to which the target site (observation target site 201) to which the fluorescent agent is administered, and the method of administering the fluorescent agent to the target site. Even if the value is other than 1, sufficient diagnostic ability may be obtained. Therefore, the reference values Ns and Ne may be set to arbitrary values by operating the keyboard 62, or predetermined values (for example, 80%, 60%,). You may be allowed to select one by one.
  • control unit 33 When the control unit 33 detects that new reference values Ns and Ne are set by operating the keyboard 62, the control unit 33 updates the reference values Ns and Ne stored in the storage circuit 33b.
  • the surgeon further operates the keyboard 62 to select the type of fluorescent agent to be used, the organ to which the target site (observation target site 201) to which the fluorescent agent is administered,
  • Each set of information on the administration method of the fluorescent agent to the target region and the administration start time of the fluorescent agent to the subject is input for each fluorescence in the wavelength band that can be observed by the endoscope system 301.
  • fluorescence in the first wavelength band (680 to 750 nm) excited by irradiation with light in the wavelength band of 600 to 650 nm, and 700 to 760 nm. Since the fluorescence in the second wavelength band (790 to 850 nm) excited by the irradiation of light in the wavelength band can be observed, two sets of the above-described information are input.
  • the arithmetic processing circuit 33a of the control unit 33 selects one table data that matches the type of fluorescent agent to be used from the table data stored in advance in the storage circuit 33b.
  • FIG. 19 is a diagram showing an example of table data used when selecting the drug dynamics of the fluorescent drug.
  • the above-described table data is stored in advance in the storage circuit 33b in a state where information on drug dynamics in the living body is classified for each type of a plurality of fluorescent drugs.
  • the arithmetic processing circuit 33a of the control unit 33 selects the table data illustrated in FIG. 19 when the fluorescent agent to be used is the fluorescent agent A.
  • the arithmetic processing circuit 33a of the control unit 33 selects the organ to which the target site (observation target site 201) to which the fluorescent drug is administered from the selected table data, and the method for administering the fluorescent drug to the target site. selecting one pharmacokinetic corresponding to the combination of.
  • the arithmetic processing circuit 33a of the control unit 33 for example, in the table data shown in FIG. 19, the target site to be administered with the fluorescent drug (observation target site 201) belongs to the stomach and is intravenously injected (intravenous injection). ), When a fluorescent drug is administered, pharmacokinetic A02 is selected.
  • the reference values Ns and Ne are set in advance for each pharmacokinetic in each table data stored in the storage circuit 33b.
  • the values Ns and Ne may be determined uniquely.
  • the arithmetic processing circuit 33a of the control unit 33 is based on the reference values Ns and Ne stored in the storage circuit 33b and the administration start time of the fluorescent drug to the subject, and one pharmacokinetics selected by the above process.
  • FIG. 20 is a diagram showing an example of the pharmacokinetics selected from the table data.
  • FIG. 21 is a diagram illustrating an example of a diagnosis start time and a diagnosis end time acquired when the pharmacokinetics of FIG. 20 is selected.
  • the pharmacokinetics of the fluorescent drug in the living body are the elapsed time T from when the fluorescent drug is administered to the body of the subject until it is excreted, and the target site in the body of the subject to which the fluorescent drug is administered.
  • T the elapsed time
  • N in observation target part 201
  • the accurate diagnosis start time Ts and diagnosis end time Te are obtained by setting the time when an administration start time notification switch (not shown) provided in the input switch group 60 is pressed instead of the administration start time. can do.
  • a plurality of switches provided in the input switch group 60 of the processor 3
  • a color balance setting switch, an image display selection switch, etc. a function corresponding to any one switch selected in advance by an operator or the like is assigned to the administration start time notification switch of the scope 2. May be.
  • the determination circuit 33d of the control unit 33 determines the current time from the diagnosis start time Ts based on the diagnosis start time Ts and the diagnosis end time Te acquired by the arithmetic processing circuit 33a and the measurement result of the timer circuit 33c. A determination is made at any time as to whether or not the time corresponds to within the diagnosis possible time which is a time zone until the diagnosis end time Te. In other words, the determination circuit 33d of the control unit 33 determines that the current time is the diagnosis start time Ts based on the diagnosis start time Ts and the diagnosis end time Te acquired by the arithmetic processing circuit 33a and the measurement result of the timer circuit 33c. And whether the current time has reached the diagnosis end time Te can be determined.
  • the notification signal generation circuit 61 enters the observation mode in which the excitation light corresponding to the administered fluorescent agent is irradiated.
  • a character signal for displaying a character string indicating that it is a time zone in which switching is impossible is generated and output to the monitor 4.
  • the notification signal generation circuit 61 switches to the observation mode in which the excitation light corresponding to the administered fluorescent agent is irradiated when the determination circuit 33d obtains the determination result that the current time is not within the diagnosis possible time.
  • a sound signal for generating a sound indicating that it is a time zone in which switching is not possible is generated and output to the speaker 63.
  • the switching control circuit 33e of the control unit 33 when the determination result that the current time is not within the diagnosable time is obtained by the determination circuit 33d, observes the excitation light corresponding to the administered fluorescent agent. Even if the switching operation to the mode is performed by the mode switching switch 15, the operation is performed so as to invalidate the switching operation. Further, the switching control circuit 33e of the control unit 33 irradiates the excitation light corresponding to the administered fluorescent agent when the determination circuit 33d obtains the determination result that the current time is within the diagnosis possible time. When the switching operation to the observation mode to be performed is performed by the mode switching switch 15, the control according to the switching operation is performed on the motor 9 of the light source device 1 and the like.
  • the switching control circuit 33e of the control unit 33 determines that the current time does not reach the diagnosis end time Te, that is, if the determination result that 0 ⁇ T ⁇ Te is obtained by the determination circuit 33d.
  • predetermined control is performed on the light control circuit 27 and the like.
  • the operations performed when switching the observation mode are excited by irradiation with light in the wavelength band of 600 to 650 nm and excited in the first wavelength band (680 to 750 nm).
  • the second fluorescent agent that is excited by irradiation with light in the wavelength band of 700 to 760 nm and emits fluorescence in the second wavelength band (790 to 850 nm).
  • the switching control circuit 33e of the control unit 33 corresponds to the first fluorescent agent when the determination result that the current time is within the diagnosis possible time of the first fluorescent agent is obtained by the determination circuit 33d.
  • the switching operation to the first observation mode for irradiating the excitation light is performed in the mode switching switch 15 (or from the other observation mode to the first observation mode regardless of the operation state of the mode switching switch 15).
  • the first excitation light filter 51 is inserted on the optical path of the lamp 7 by controlling the motor 9 of the light source device 1. That is, in the first observation mode described above, the frame sequential first illumination light having the reference light in the wavelength band of 790 to 810 nm and the first excitation light in the wavelength band of 600 to 650 nm is the light guide. 13 is supplied.
  • the switching control circuit 33e of the control unit 33 switches to the first observation mode when the determination circuit 33d obtains a determination result that the current time is within the diagnosis possible time of the first fluorescent agent.
  • the switching operation is performed at the mode switch 15 (or when switching from another observation mode to the first observation mode is performed regardless of the operation state of the mode switch 15).
  • the imaging actuator control circuit 32 By controlling the imaging actuator control circuit 32, the timing at which the optical filters 41, 42 and 43 are sequentially inserted on the optical path of the lamp 7 is synchronized with the switching timing of the arrangement state of the optical filter 117a in the filter switching device 39a.
  • the imaging actuator 39 is operated so that
  • the imaging actuator control circuit 32 performs the exposure period of the CCD 14 and the optical filter 41 is on the optical path of the lamp 7.
  • the arrangement state of the optical filter 117a of the filter switching device 39a is set to the first arrangement state (interpolation state), and the arrangement state of the optical filter 117b of the filter switching device 39b is set to the above-described state.
  • the second arrangement state is assumed.
  • the imaging actuator control circuit 32 has the optical filter 42 inserted on the optical path of the lamp 7 during the readout period of the CCD 14.
  • the arrangement state of the optical filter 117a of the filter switching device 39a is set to the second arrangement state (retracted state) described above, and
  • the arrangement state of the optical filter 117b of the filter switching device 39b is the above-described second arrangement state (retracted state).
  • the first fluorescent agent is excited by the first illumination light (first excitation light) emitted from the light guide 13, so that the wavelength band of 680 to 750 nm is increased.
  • the first fluorescence and reference light in the wavelength band of 790 to 810 nm are sequentially imaged on the imaging surface of the CCD 14 as return light from the observation target region 201.
  • the switching control circuit 33e of the control unit 33 starts from another observation mode. Even if the switching operation to one observation mode is performed by the mode switching switch 15, the switching operation is performed by maintaining the control state for the motor 9 and the imaging actuator control circuit 32 as before the switching operation is performed. Invalid.
  • the switching control circuit 33e of the control unit 33 is configured so that the determination circuit 33d obtains a determination result that the current time is within the diagnosis possible time of the first fluorescent agent, that is, the current time is the first.
  • the motor 9 and the imaging actuator control circuit 32 are controlled to shift to the first observation mode regardless of the operation state of the mode switch 15. Also good.
  • the switching control circuit 33e of the control unit 33 determines the determination result that the current time is not within the diagnosis possible time of the first fluorescent agent and the diagnosis end time Te of the first fluorescent agent has elapsed.
  • the switching operation from the other observation mode to the first observation mode is invalidated, and the first observation mode to the other observation mode is performed regardless of the operation state of the mode switch 15.
  • Control for switching to (for example, a fourth observation mode described later) may be performed on the motor 9 and the imaging actuator control circuit 32.
  • the notification signal generation circuit 61 starts diagnosis of the first fluorescent agent, for example.
  • the notification signal generation circuit 61 starts the diagnosis of the first fluorescent agent, for example, when the determination circuit 33d obtains a determination result that the current time is not within the diagnosis possible time of the first fluorescent agent.
  • a voice indicating that it is a time zone during which switching to the first observation mode is impossible including a message such as the time Ts has not been reached or the diagnosis end time Te of the first fluorescent agent has passed and it generates an audio signal for generating an output to the speaker 63.
  • the notification signal generation circuit 61 may operate to perform notification at the time when the diagnosis start time Ts and the diagnosis end time Te of the first fluorescent agent are reached based on the determination result of the determination circuit 33d, Or you may operate
  • the switching control circuit 33e of the control unit 33 corresponds to the second fluorescent agent when the determination result that the current time is within the diagnosis possible time of the second fluorescent agent is obtained by the determination circuit 33d.
  • the switching operation to the second observation mode for irradiating the excitation light is performed in the mode switching switch 15 (or from the other observation mode to the second observation mode regardless of the operation state of the mode switching switch 15).
  • the second excitation light filter 55 is inserted on the optical path of the lamp 7 by controlling the motor 9 of the light source device 1. That is, in the above-described second observation mode, the second sequential illumination light having the reference light in the wavelength band of 790 to 810 nm and the second excitation light in the wavelength band of 700 to 760 nm is the light guide. 13 is supplied.
  • the switching control circuit 33e of the control unit 33 goes to the second observation mode when the determination circuit 33d obtains a determination result that the current time is within the diagnosis possible time of the second fluorescent agent. Is switched at the mode switch 15 (or when switching from another observation mode to the second observation mode regardless of the operation state of the mode switch 15).
  • the imaging actuator control circuit 32 By controlling the imaging actuator control circuit 32, the timing at which the optical filters 41, 42 and 43 are sequentially inserted on the optical path of the lamp 7 is synchronized with the switching timing of the arrangement state of the optical filter 117b in the filter switching device 39b.
  • the imaging actuator 39 is operated so that
  • the imaging actuator control circuit 32 performs the exposure period of the CCD 14 and the optical filter 43 is on the optical path of the lamp 7 in the second observation mode.
  • the arrangement state of the optical filter 117a of the filter switching device 39a is set to the second arrangement state (retracted state), and the arrangement state of the optical filter 117b of the filter switching device 39b is set to the above-described second arrangement state. 1 is an arrangement state (an insertion state).
  • the imaging actuator control circuit 32 has the optical filter 41 inserted in the optical path of the lamp 7 during the readout period of the CCD 14.
  • the arrangement state of the optical filter 117a of the filter switching device 39a is set to the second arrangement state (retracted state) described above, and
  • the arrangement state of the optical filter 117b of the filter switching device 39b is the above-described second arrangement state (retracted state).
  • the second fluorescent agent is excited by the second illumination light (second excitation light) emitted from the light guide 13, so that the wavelength band of 790 to 850 nm is increased.
  • the second fluorescence and reference light in the wavelength band of 790 to 810 nm are sequentially imaged on the imaging surface of the CCD 14 as return light from the observation target region 201.
  • the switching control circuit 33e of the control unit 33 starts from another observation mode. 2, even if the switching operation to the observation mode 2 is performed in the mode switching switch 15, by maintaining the control state for the motor 9 and the imaging actuator control circuit 32 as before the switching operation is performed, the switching operation is performed. Invalid.
  • the switching control circuit 33e of the control unit 33 is configured so that the determination circuit 33d obtains a determination result that the current time is within the diagnosis possible time of the second fluorescent agent, that is, the current time is the second time.
  • the diagnosis start time Ts of the fluorescent agent is reached, the motor 9 and the imaging actuator control circuit 32 are controlled to shift to the second observation mode regardless of the operation state of the mode switch 15. Also good.
  • the switching control circuit 33e of the control unit 33 determines the determination result that the current time is not within the diagnosis possible time of the second fluorescent agent and the diagnosis end time Te of the second fluorescent agent has elapsed.
  • the switching operation from the other observation mode to the second observation mode is invalidated and the second observation mode is switched to the other observation mode regardless of the operation state of the mode switch 15.
  • Control for switching to (for example, a fourth observation mode described later) may be performed on the motor 9 and the imaging actuator control circuit 32.
  • the notification signal generation circuit 61 starts diagnosis of the second fluorescent agent, for example. Characters that indicate that it is impossible to switch to the second observation mode, such as a message indicating that the time Ts has not been reached or the diagnosis end time Te of the second fluorescent agent has passed. and it generates a character signal for displaying the column outputs to the monitor 4. Also, the notification signal generation circuit 61 starts the diagnosis of the second fluorescent agent, for example, when the determination result that the current time is not within the diagnosis possible time of the second fluorescent agent is obtained by the determination circuit 33d.
  • a voice message indicating that it is impossible to switch to the second observation mode such as a message indicating that the time Ts has not been reached or the diagnosis end time Te of the second fluorescent agent has passed. and it generates an audio signal for generating an output to the speaker 63.
  • the switching control circuit 33e of the control unit 33 When the switching operation to the third observation mode for irradiating the excitation light corresponding to the second fluorescent agent is performed in the mode switch 15 (or regardless of the operation state of the mode switch 15) When the switching from the observation mode to the third observation mode is performed, the third excitation light filter 56 is inserted on the optical path of the lamp 7 by controlling the motor 9 of the light source device 1).
  • the reference light in the wavelength band of 790 to 810 nm, the first excitation light in the wavelength band of 600 to 650 nm, and the second excitation light in the wavelength band of 700 to 760 nm is supplied to the light guide 13.
  • the switching control circuit 33e of the control unit 33 determines that the determination circuit 33d obtains a determination result that the current time is within the diagnosable time for both the first and second fluorescent agents.
  • the switching operation to the third observation mode is performed in the mode switching switch 15 (or switching from another observation mode to the third observation mode is performed regardless of the operation state of the mode switching switch 15).
  • the optical filter 41, 42 and 43 are sequentially inserted on the optical path of the lamp 7 by controlling the imaging actuator control circuit 32, and the arrangement state of the optical filter 117a in the filter switching device 39a is switched. The timing is synchronized with the switching timing of the arrangement state of the optical filter 117b in the filter switching device 39b. Operating the imaging actuator 39.
  • the imaging actuator control circuit 32 performs the exposure period of the CCD 14 and the optical filter 41 is on the optical path of the lamp 7 in the third observation mode.
  • the arrangement state of the optical filter 117a of the filter switching device 39a is set to the first arrangement state (interpolation state), and the arrangement state of the optical filter 117b of the filter switching device 39b is set to the above-described state.
  • the second arrangement state is assumed.
  • the imaging actuator control circuit 32 in the third observation mode, has the exposure period of the CCD 14 and the optical filter 43 inserted on the optical path of the lamp 7.
  • the arrangement state of the optical filter 117a of the filter switching device 39a is set to the second arrangement state (retracted state), and the arrangement state of the optical filter 117b of the filter switching device 39b is set to the first arrangement state.
  • the imaging actuator control circuit 32 is configured so that the readout period of the CCD 14 or the optical filter 42 is interposed on the optical path of the lamp 7 in the third observation mode.
  • the arrangement state of the optical filter 117a of the filter switching device 39a is set to the second arrangement state (retracted state), and the arrangement state of the optical filter 117b of the filter switching device 39b is set to the second arrangement state.
  • the first fluorescent agent and the second fluorescent agent are emitted by the third illumination light (first excitation light and second excitation light) emitted from the light guide 13. Is excited, the first fluorescence in the wavelength band of 680 to 750 nm, the second fluorescence in the wavelength band of 790 to 850 nm, and the reference light in the wavelength band of 790 to 810 nm are emitted from the observation target region 201. sequentially imaged as a return light to the image pickup surface of the CCD 14.
  • the switching control circuit 33e of the control unit 33 determines whether the current time is not within the diagnosable time for both the first and second fluorescent agents when the determination circuit 33d obtains a determination result. Even if the switching operation from the observation mode to the third observation mode is performed in the mode switching switch 15, the control state for the motor 9 and the imaging actuator control circuit 32 is maintained as it was before the switching operation was performed. The switching operation is invalidated.
  • the notification signal generation circuit 61 when the determination circuit 33d obtains a determination result that the current time is not within the diagnosable time for both the first and second fluorescent agents, the notification signal generation circuit 61, for example, The third observation with a message such that either the diagnosis start time Ts of the second fluorescent agent has not been reached or the diagnosis end times Te of the first and second fluorescent agents have passed.
  • a character signal for displaying a character string indicating that it is a time zone in which switching to the mode is impossible is generated and output to the monitor 4.
  • the notification signal generation circuit 61 for example, when the determination circuit 33d obtains a determination result that the current time is not within the diagnosis possible time of both the first and second fluorescent agents, The third observation with a message such that either the diagnosis start time Ts of the second fluorescent agent has not been reached or the diagnosis end times Te of the first and second fluorescent agents have passed. A sound signal for generating a sound indicating that it is a time zone in which switching to the mode is impossible is generated and output to the speaker 63.
  • the notification signal generation circuit 61 may operate to perform notification at the time when the diagnosis start time Ts and the diagnosis end time Te of the second fluorescent agent are reached based on the determination result of the determination circuit 33d, Or you may operate
  • the switching control circuit 33e of the control unit 33 has the current time within the diagnosable time of one of the first and second fluorescent agents and not within the diagnosable time of the other fluorescent agent. Is obtained by the determination circuit 33d, the switching operation to the third observation mode is invalidated and the observation mode corresponding to the one fluorescent agent (the first or second observation mode described above) is obtained. Control for switching to (observation mode) is performed on the motor 9 and the imaging actuator control circuit 32.
  • the notification signal generation circuit 61 determines that the current time is within the diagnosable time of one of the first and second fluorescent agents and is not within the diagnosable time of the other fluorescent agent.
  • the one fluorescent agent is A character signal for displaying a character string having a message such as switching to the observation mode corresponding to is generated and output to the monitor 4.
  • the notification signal generation circuit 61 for example, when the determination circuit 33d obtains a determination result that the current time is not within the diagnosable time for both the first and second fluorescent agents, for example, the other signal Since it is outside the diagnosis possible time of the fluorescent agent and it is not possible to switch to the third observation mode, a voice including a message such as switching to the observation mode corresponding to the one fluorescent agent is output. and it generates an audio signal for generating outputs to the speaker 63.
  • the switching control circuit 33e of the control unit 33 is within the diagnosis possible time of one of the first and second fluorescent agents based on the determination result obtained by the determination circuit 33d, and the other After a time period that is not within the diagnosis possible time of the fluorescent agent, and when a time that is within the diagnosis possible time of both the first and second fluorescent agents is reached, regardless of the operation state of the mode switch 15
  • the motor 9 and the imaging actuator control circuit 32 may be controlled to shift from the observation mode corresponding to the one fluorescent agent (the above-described first or second observation mode) to the third observation mode. Good.
  • the switching control circuit 33e of the control unit 33 is within the diagnosis possible time of one of the first and second fluorescent agents based on the determination result obtained by the determination circuit 33d, and the other Switching to the third observation mode when a time zone that is within the diagnosable time of both the first and second fluorescent agents is entered after a time zone that is not within the diagnosable time of the fluorescent agent.
  • the mode changeover switch 15 When the mode changeover switch 15 is performed, the motor 9 and the control for shifting from the observation mode (the first or second observation mode) to the third observation mode corresponding to the one fluorescent agent are performed. You may perform with respect to the imaging actuator control circuit 32.
  • the determination circuit 33d obtains a determination result that the current time is not within the diagnosis possible time of at least one of the first and second fluorescent agents. In this case, all the switching operations to the first to third observation modes are invalidated, and control for switching to the fourth observation mode described later is performed on the motor 9 and the imaging actuator control circuit 32. There may be.
  • the notification signal generation circuit 61 is in a time zone in which fluorescence observation is not possible, so that a character signal for displaying a character string including a message such as switching to the fourth observation mode is displayed. Is generated and output to the monitor 4, and an audio signal for generating a sound including the message is generated and output to the speaker 63.
  • the switching control circuit 33 e of the control unit 33 When switching from the other observation mode to the fourth observation mode is performed, the normal light filter 50 is inserted in the optical path of the lamp 7 by controlling the motor 9 of the light source device 1). That is, in the fourth observation mode, red light (R light) in the wavelength band of 600 to 650 nm, green light (G light) in the wavelength band of 500 to 600 nm, and blue light (G light) in the wavelength band of 400 to 500 nm ( B-sequential fourth illumination light (white light) is supplied to the light guide 13.
  • the switching control circuit 33e of the control unit 33 is configured so that when the switching operation to the fourth observation mode is performed in the mode switching switch 15, another observation is performed regardless of the operation state of the mode switching switch 15.
  • the arrangement state of the optical filter 117a of the filter switching device 39a and the optical filter of the filter switching device 39b are controlled by controlling the imaging actuator control circuit 32).
  • the imaging actuator 39 is operated so that the arrangement state of 117b becomes the above-described second arrangement state (retracted state).
  • the reflected light of the fourth illumination light (R light, G light, and B light) emitted from the light guide 13 is returned as the return light from the observation target portion 201 of the CCD 14. Images are sequentially formed on the imaging surface.
  • the switching control circuit 33e of the control unit 33 performs the above-described control for setting the fourth observation mode to the motor 9 and the imaging actuator control circuit 32, and further satisfies 0 ⁇ T ⁇ Te. If the determination result is obtained by the determination circuit 33d, the dimming circuit 27 is controlled to increase the stop amount of the stop 12, thereby at least one of the wavelength bands included in the fourth illumination light. The light is emitted from the light source device 1 in a state where the amount of light in the wavelength band of the unit is reduced to a predetermined amount of light.
  • the dimming circuit 27 increases the aperture amount of the aperture 12 so that the amount of light in each wavelength band of the fourth illumination light emitted from the light source device 1 becomes a predetermined value or less.
  • the dimming circuit 27 includes the amplification factor control circuit 29 so that the brightness of the reflected light of the fourth illumination light imaged on the imaging surface of the CCD 14 is suitable for observation. Increase amplification factor.
  • the dimming circuit 27 generates, based on the timing signal from the timing generator 30, R light that has a wavelength band overlapping with any of the first or second excitation light among the R light, G light, and B light.
  • the amount of the R light emitted from the light source device 1 is set to be equal to or less than a predetermined value by relatively increasing the aperture amount of the aperture 12 at the timing when the light is emitted.
  • the color balance is adjusted by setting a color balance correction coefficient (such as 1: 1). Note that the color balance adjustment accompanying the decrease in the amount of R light (reflected light) is not limited to being performed alone in the color balance correction circuit 20, but by cooperation between the color balance correction circuit 20 and the color tone adjustment circuit 24. It may be performed.
  • the aperture amount of the aperture 12 (the amount of the fourth illumination light) controlled by the operation of the light control circuit 27 in the fourth observation mode is a parameter set according to the fading characteristics of the fluorescent agent, For example, one of the plurality of apertures may be selected and set for each type of fluorescent agent by operating the keyboard 62 or the like, or the memory circuit is set in advance for each type of fluorescent agent. 33b may be stored.
  • the switching control circuit 33e of the control unit 33 performs, for example, the above-described control for setting the fourth observation mode on the imaging actuator control circuit 32, and then further satisfies 0 ⁇
  • the light source device 1 performs control for switching to a fading prevention filter (not shown) instead of the normal light filter 50 provided in the switching filter 8. It may be performed for the motor 9.
  • the above-mentioned fading prevention filter it is possible to attenuate the intensity of the wavelength band overlapping with either the first or second excitation light among the wavelength bands included in the fourth illumination light to a predetermined intensity. For example, those having the characteristics shown in FIGS. 25 and 26 can be applied.
  • FIG. 25 is a diagram showing an example of a fading prevention filter applicable in the first embodiment.
  • FIG. 26 is a diagram showing an example different from FIG. 25 of the fading prevention filter applicable in the first embodiment.
  • the anti-fading filter formed so as to have the characteristics illustrated in FIG. 25 light (B light) having a wavelength band of 400 nm or more and less than 600 nm among the wavelength bands included in the fourth illumination light. And G light) are allowed to pass without being substantially attenuated, and light (R light) having a wavelength band of 600 nm or more and 650 nm or less is attenuated to approximately half intensity and allowed to pass therethrough. Therefore, when switching to the fading prevention filter having the characteristics illustrated in FIG. 25, the color balance adjustment as described above is performed in the color balance correction circuit 20 (and the color tone adjustment circuit 24).
  • the anti-fading filter formed so as to have the characteristics illustrated in FIG. 26 among the wavelength bands included in the fourth illumination light, light having a wavelength band of 400 nm or more and less than 600 nm ( (B light and G light) are allowed to pass through without being substantially attenuated, and light (R light) in a wavelength band of 600 nm or more and 650 nm or less is blocked (intensity is attenuated to 0). Therefore, when switching to a fading prevention filter having the characteristics illustrated in FIG. 26, processing for generating an observation image without using reflected light of R light is performed by each unit of the processor 3.
  • the amount of R light is decreased by increasing the aperture amount of the diaphragm 12, and the fading prevention filter illustrated in FIG. You may comprise so that control which attenuates an intensity
  • the fluorescence of the observation target region other than the time zone in which the diagnosis can be performed is observed. Since generation
  • production can be suppressed as much as possible, the improvement of the diagnostic ability at the time of diagnosing an observation object site
  • (Second embodiment) 27 to 32 relate to the second embodiment of the present invention.
  • FIG. 27 is a diagram showing a configuration of a main part of a capsule medical device according to the second embodiment of the present invention.
  • FIG. 28 is a block diagram showing a configuration of a main part of a capsule medical device system including the capsule medical device of FIG. In FIG. 27, for simplicity, wiring from the battery 1009 to each part of the capsule medical device 1001 is omitted. In FIG. 28, for simplicity, part of the configuration of the capsule medical device 1001 is omitted.
  • the capsule medical device 1001 includes a capsule-type casing 1002, and an excitation light emitting unit 1003 that is accommodated in the casing 1002 and emits excitation light through a transparent window 1002b.
  • An imaging unit 1005 that images an observation target region in the body cavity and outputs an imaging signal; and an image generation unit 1006 that performs various image processing on the imaging signal output from the imaging unit 1005 and generates an image signal.
  • the wireless transmission unit 1007a that can transmit a wireless signal to the outside of the housing 1002, the wireless reception unit 1007b that can receive the wireless signal transmitted from the outside of the housing 1002, and each part of the capsule medical device 1001
  • a battery 1009 capable of supplying driving power for driving each part of the capsule medical device 1001. It has been made.
  • the capsule medical device system of the present embodiment includes a capsule medical device 1001, a transmission / reception unit 1014, and a terminal device 1015, as shown in FIG.
  • the capsule-type casing 1002 is formed by sealing both ends of a cylindrical casing main body 1002a with a hemispherical transparent window 1002b and an end plate 1002c.
  • the excitation light emitting unit 1003 emits light in the same wavelength band as the lamp 7 and is disposed in front of the light emitting surface of the LED 1003a, and has the same characteristics as the first excitation light filter 51 (see FIG. 10). And an excitation light filter 1003b formed as described above.
  • FIG. 29 is a diagram illustrating an example of a position where the excitation light illumination unit and the imaging unit are arranged in the capsule medical device of FIG.
  • the number of excitation light emitting units 1003 of the capsule medical device 1001 is not limited to four arranged around the imaging unit 1005. Any number may be arranged.
  • the imaging unit 1005 is formed to have the same characteristics (see FIG. 6) as the objective optical system 1005a that condenses the return light incident on the inside of the housing 1002 through the transparent window 1002b and the optical filter 117a.
  • the wireless transmission unit 1007a is configured to generate a wireless signal by performing signal processing such as modulation on the image signal generated by the image generation unit 1006, and to transmit the generated wireless signal to the transmission / reception unit 1014. ing.
  • the wireless receiving unit 1007b is configured to receive the wireless signal transmitted from the transmitting / receiving unit 1014 and output data obtained by performing signal processing such as demodulation to the control unit 1008.
  • a control unit 1008 including a CPU, a memory, and the like includes an arithmetic processing unit 1008a corresponding to the arithmetic processing circuit 33a of the first example, a storage unit 1008b corresponding to the storage circuit 33b of the first example, and the first example.
  • the control unit 1008 (the switching control unit 1008e) operates the above-described units based on the data output from the wireless reception unit 1007b, thereby performing the control described later on each unit of the capsule medical device 1001. Do it.
  • the terminal device 1015 is configured as a personal computer, a portable terminal, or the like that can perform bidirectional communication with the transmission / reception unit 1014.
  • the terminal device 1015 records an image according to an output signal from the transmission / reception unit 1014.
  • a terminal device main body having a recording medium for displaying, a display unit capable of displaying an image or the like according to an output signal from the transmission / reception unit 1014, and an input operation unit capable of performing a character string input operation, etc. It is configured.
  • surgeons and the like turn on the capsule medical device 1001 and then roughly administer the fluorescent drug to the subject's observation target site and introduce the capsule medical device 1001 into the subject. Do it at the same time.
  • the surgeon or the like operates the input operation unit of the terminal device 1015, so that the reference values Ns and Ne, the type of the fluorescent drug to be used, and the target site (observation target site) to which the fluorescent drug is administered belong.
  • Information on the organ, the method of administering the fluorescent agent to the target site, and the administration start time of the fluorescent agent to the subject are input.
  • the terminal device body of the terminal device 1015 detects that each of the above-described information has been input in the input operation unit, the terminal device 1015 converts each of the input information into digital data, and then a radio signal including the converted digital data Is transmitted from the transmission / reception unit 1014 to the wireless reception unit 1007b.
  • control unit 1008 when the control unit 1008 detects that new reference values Ns and Ne are set based on the digital data output from the wireless reception unit 1007b, the control unit 1008 sets the reference values Ns and Ne stored in the storage unit 1008b. Update.
  • control unit 1008 is based on the digital data output from the wireless reception unit 1007b, and one table that matches the type of fluorescent agent to be used from among the plurality of fluorescent agent table data stored in the storage unit 1008b. After selecting the data, it also corresponds to the combination of the organ to which the target site (observation target site) to which the fluorescent drug is administered and the method of administering the fluorescent drug to the target site from the selected table data Select one pharmacokinetic to do.
  • the reference values Ns and Ne are set in advance for each pharmacokinetic in each table data stored in the storage unit 1008b, so that the reference is accompanied by the selection of one pharmacokinetic.
  • the values Ns and Ne may be determined uniquely.
  • the arithmetic processing unit 1008a of the control unit 1008 is based on the reference values Ns and Ne stored in the storage unit 1008b and the administration start time of the fluorescent drug to the subject.
  • the determination unit 1008d of the control unit 1008 determines that the current time is the diagnosis end from the diagnosis start time Ts. A determination is made at any time as to whether or not the time corresponds to a diagnosis possible time that is a time zone up to the time Te.
  • the switching control unit 1008e of the control unit 1008 controls to extinguish each LED 1003a of the excitation light emitting unit 1003 when the determination unit 1008d obtains a determination result that the current time is not within the diagnosis possible time. Control for stopping the driving of the image sensor 1005c of the imaging unit 1005, and control for stopping the operations of the image generation unit 1006 and the wireless transmission unit 1007a.
  • the switching control unit 1008e of the control unit 1008 causes each LED 1003a of the excitation light emitting unit 1003 to emit light when the determination unit 1008d obtains a determination result that the current time is within the diagnosis possible time.
  • the control for driving the image sensor 1005c of the imaging unit 1005 is performed, and the control for operating the image generation unit 1006 and the wireless transmission unit 1007a is performed.
  • the capsule medical device 1001 of the present embodiment when the current time does not reach the diagnosis start time Ts of the fluorescent drug administered to the subject, and the current time is administered to the subject.
  • the diagnosis end time Te of the fluorescent agent When the diagnosis end time Te of the fluorescent agent has passed, operations relating to generation of excitation light, output of imaging signals, image processing related to generation of image signals, and transmission of radio signals are not performed.
  • the capsule medical device 1001 of the present embodiment only when the current time belongs to the time zone from the diagnosis start time Ts to the diagnosis end time Te, the generation of excitation light, the output of the imaging signal, and the image signal Each operation related to image processing and transmission of a radio signal is performed.
  • a capsule medical device system may be configured using a capsule medical device 1101 as shown in FIG.
  • FIG. 30 is a diagram showing a configuration of a main part of a capsule medical device according to a modification of the second embodiment of the present invention.
  • FIG. 31 is a block diagram illustrating a configuration of a main part of a capsule medical device system including the capsule medical device of FIG. In FIG. 30, for simplicity, wiring from the battery 1009 to each part of the capsule medical device 1101 is omitted. In FIG. 31, for the sake of simplicity, a part of the configuration of the capsule medical device 1101 is omitted.
  • the capsule medical device 1101 is housed in a housing 1002, an excitation light emitting unit 1003, and the housing 1002, and emits white light through a transparent window 1002b.
  • the light emitting unit 1103, the imaging unit 1105, the image generation unit 1006, the wireless transmission unit 1007 a, the wireless reception unit 1007 b, the control unit 1008, and the battery 1009 are configured.
  • the capsule medical device 1101 has a bidirectional transmission between the transceiver unit 1014 and the transceiver unit 1014 that can transmit and receive wireless signals between the wireless transmitters 1007a and 1007b.
  • a terminal device 1015 capable of performing the above communication. That is, as shown in FIG. 31, the capsule medical device system according to the modified example of the present embodiment includes a capsule medical device 1101, a transmission / reception unit 1014, and a terminal device 1015.
  • the white light emitting unit 1103 is disposed in front of the LED 1103a emitting light in the same wavelength band as the lamp 7 and the light emitting surface of the LED 1103a, and has the same characteristics as the normal light filter 50 (see FIG. 9).
  • FIG. 32 is a diagram illustrating an example of positions where the excitation light illumination unit, the white light illumination unit, and the imaging unit are arranged in the capsule medical device of FIG.
  • the excitation light emitting unit 1003 and the white light emitting unit 1103 of the capsule medical device 1101 are not limited to two arranged around the imaging unit 1105 as shown in FIG. it may be a number placed around the imaging section 1105, if any.
  • the imaging unit 1105 includes an objective optical system 1005a, an imaging element 1005c, and a filter switching unit 1105b disposed on the optical path between the objective optical system 1005a and the imaging element 1005c.
  • the filter switching unit 1105b includes a state in which the excitation light cut filter 1005b is inserted on the optical path from the objective optical system 1005a to the image sensor 1005c, and the excitation light cut filter 1005b.
  • a state in which the state of being retracted from the optical path from 1005 a to the image sensor 1005 c can be switched according to the control of the control unit 1008.
  • the imaging unit 1105 includes the objective optical system 1005a and the excitation light cut filter 1005b in a state where the excitation light cut filter 1005b of the filter switching unit 1105b is inserted on the optical path from the objective optical system 1005a to the image sensor 1005c. It is configured so that the light passing through can be imaged on the image sensor 1005c.
  • the imaging unit 1105 captures the light that has passed through the objective optical system 1005a in a state where the excitation light cut filter 1005b of the filter switching unit 1105b is retracted from the optical path from the objective optical system 1005a to the imaging element 1005c. An image can be formed on 1005c.
  • the filter switching unit 1105b of the imaging unit 1105 may have, for example, the same configuration as the filter switching device 39a described in the first embodiment, or a configuration that can switch between the two states described above. as long as they include a may have other configurations.
  • the surgeon or the like turns on the capsule medical device 1101 and then substantially simultaneously administers the fluorescent drug to the subject and introduces the capsule medical device 1101 to the subject.
  • the surgeon or the like operates the input operation unit of the terminal device 1015, so that the reference values Ns and Ne, the type of the fluorescent drug to be used, and the target site (observation target site) to which the fluorescent drug is administered belong.
  • Information on the organ, the method of administering the fluorescent agent to the target site, and the administration start time of the fluorescent agent to the subject are input.
  • the terminal device body of the terminal device 1015 detects that each of the above-described information has been input in the input operation unit, the terminal device 1015 converts each of the input information into digital data, and then a radio signal including the converted digital data Is transmitted from the transmission / reception unit 1014 to the wireless reception unit 1007b.
  • control unit 1008 when the control unit 1008 detects that new reference values Ns and Ne are set based on the digital data output from the wireless reception unit 1007b, the control unit 1008 sets the reference values Ns and Ne stored in the storage unit 1008b. Update.
  • control unit 1008 is based on the digital data output from the wireless reception unit 1007b, and one table that matches the type of fluorescent agent to be used from among the plurality of fluorescent agent table data stored in the storage unit 1008b. After selecting the data, it also corresponds to the combination of the organ to which the target site (observation target site) to which the fluorescent drug is administered and the method of administering the fluorescent drug to the target site from the selected table data Select one pharmacokinetic to do.
  • the arithmetic processing unit 1008a of the control unit 1008 is based on the reference values Ns and Ne stored in the storage unit 1008b and the administration start time of the fluorescent drug to the subject.
  • the determination unit 1008d of the control unit 1008 determines that the current time is the diagnosis end from the diagnosis start time Ts. A determination is made at any time as to whether or not the time corresponds to a diagnosis possible time that is a time zone up to the time Te.
  • the switching control unit 1008e of the control unit 1008 controls to extinguish each LED 1003a of the excitation light emitting unit 1003 when the determination unit 1008d obtains a determination result that the current time is not within the diagnosis possible time. And control for causing each of the LEDs 1103a of the white light emitting unit 1103 to emit light, and further control for retracting the excitation light cut filter 1005b from the optical path from the objective optical system 1005a to the image sensor 1005c. This is performed for the switching unit 1105b.
  • the switching control unit 1008e of the control unit 1008 causes each LED 1003a of the excitation light emitting unit 1003 to emit light when the determination unit 1008d obtains a determination result that the current time is within the diagnosis possible time. And the control for quenching each LED 1103a of the white light emitting unit 1103, and further, the excitation light cut filter 1005b is inserted on the optical path from the objective optical system 1005a to the image sensor 1005c. Control is performed on the filter switching unit 1105b.
  • the capsule medical device 1101 of the modification of the present embodiment when the current time has not reached the diagnosis start time Ts of the fluorescent drug administered to the subject, and the current time is the subject.
  • the diagnosis end time Te of the fluorescent drug administered to the patient has passed, white light irradiation is performed, and a white light image obtained by capturing the return light (reflected light) of the white light is acquired, and the white light is acquired.
  • An optical image is transmitted wirelessly.
  • the capsule medical device 1101 of the present embodiment when the current time belongs to the time zone from the diagnosis start time Ts to the diagnosis end time Te, excitation light irradiation is performed, and the excitation light A fluorescence image obtained by imaging the excited fluorescence is acquired, and the fluorescence image is transmitted wirelessly.
  • each of the white light emitted from the white light emitting unit 1103 is provided. Attenuate the intensity of the wavelength band that overlaps the excitation light emitted from the excitation light emitting unit 1003 to a predetermined intensity, and adjust the color balance to correct such intensity attenuation. This may be performed by the unit 1006.
  • the capsule medical device 1101 for example, when an imaging element 1005c including a charge amplifying device is used, the light amount of each wavelength band of white light emitted from the white light emitting unit 1103 is reduced to a predetermined light amount.
  • the control unit 1008 (switching control unit 1008e) performs control to change the drive current of the LED 1103a and control to make the gain of the charge amplifying device capable of compensating for such a decrease in the amount of light. There may be.
  • the fluorescence of the observation target region other than the time zone in which the diagnosis can be performed is observed. Since generation
  • production can be suppressed as much as possible, the improvement of the diagnostic ability at the time of diagnosing an observation object site

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

 本発明の医療装置は、生体内における薬剤動態に関する情報が複数の蛍光薬剤の種類毎に予め格納された記憶部と、記憶部に格納された情報と、所望の蛍光薬剤が投与される被検体の対象部位の情報と、所望の蛍光薬剤の前記対象部位への投与方法の情報と、所望の蛍光薬剤の投与開始時刻の情報と、に基づき、所望の蛍光薬剤に対応する診断開始時刻を取得する演算処理部と、少なくとも投与開始時刻から診断開始時刻に達するまでの時間帯において、所望の蛍光薬剤を励起するための励起光の照射を停止し、診断開始時刻に基づいて励起光を照射するように制御を行う光源制御部と、を有する。

Description

医療装置
 本発明は、医療装置に関し、特に、蛍光薬剤から発せられる蛍光に基づく観察が可能な医療装置に関するものである。
 近年、分子標的薬剤を用いた癌診断技術が注目され始めている。具体的には、例えば、癌細胞において特異的に発現する生体タンパク質をターゲットとした蛍光薬剤(蛍光プローブ)を生体へ投与した後、該生体の対象部位において発せられる蛍光に基づいて癌の有無を判別する、という手法が近年研究されている。そして、このような手法は、消化管分野の癌の早期発見において有用である。
 また、前述の手法を応用したものとして、蛍光波長が異なる複数種類の蛍光薬剤を生体へ投与した後、該生体の対象部位において発せられる複数の蛍光に基づき、該複数種類の蛍光薬剤に対応する複数種類の生体タンパク質の発現状態を複合的に観察する、という手法が提案されつつある。そして、このような手法は、癌のステージの推定、癌の浸潤リスクの予測、及び、癌の転移リスクの予測等において有用であると考えられている。
 例えば、日本国特開2006-61683号公報には、励起光を発生するレーザ光源と、先端部に励起光の照射部を有する内視鏡スコープと、励起光によって被検体に発生した蛍光を検出するインテンシファイア内臓CCDと、インテンシファイア内臓CCDからの蛍光信号をもとに蛍光画像信号を生成する蛍光画像生成手段と、照射部と被検体との距離に相当する距離信号を生成する距離測定手段と、蛍光信号を距離信号により補正して距離の変動に影響されない蛍光量を算出する蛍光量算出手段と、を備えた内視鏡装置であって、前記蛍光量算出手段が、前記蛍光信号あるいは前記蛍光画像信号を、蛍光薬剤を投与してからの経過時間に基づいて補正する薬剤投与後時間補正手段を有する構成が開示されている。
 そして、日本国特開2006-61683号公報に開示された前述の構成により、投与された蛍光薬剤の影響が被検体に行き渡る前であっても、当該蛍光薬剤の影響が当該被検体に行き渡った後の状態に蛍光画像を補正することができるようにしている。
 ここで、蛍光薬剤から発せられる蛍光の退色が励起光を蛍光薬剤に照射した時点から始まることを考慮すると、蛍光薬剤が対象部位に十分に集積した後で励起光の照射を開始することが望ましい。これに対し、蛍光薬剤が対象部位に十分に集積する前に励起光の照射を開始した場合には、例えば、励起光の照射を開始してから蛍光薬剤が対象部位に集積するまでの期間において、相互に略同等の強度を有する蛍光が正常部位及び異常部位の両方から発せられ、さらに、蛍光薬剤が対象部位に集積した時点において、蛍光の退色が既にかなり進行してしまっている、というような状況が生じ得る。
 また、被検体へ投与された蛍光薬剤の対象部位における集積量は、被検体へ投与されてから***されるまでの間における経過時間のみならず、例えば、使用する蛍光薬剤の種類、対象部位が属する器官、及び、対象部位への蛍光薬剤の投与方法というような複数の要因に基づいて様々に変化し得ると考えられる。
 そのため、日本国特開2006-61683号公報の薬剤投与後時間補正手段により、蛍光薬剤が対象部位に十分に集積する前に励起光の照射を開始して得た蛍光画像を補正したとしても、例えば、正常部位と異常部位とを視覚的に区別することが非常に困難な補正後の画像しか得られず、結果的に、蛍光薬剤から発せられる蛍光の強度の違いに基づく対象部位の診断に支障をきたす、という課題が生じている。
 一方、日本国特開2006-61683号公報には、蛍光薬剤から発せられる蛍光の退色に関して特に言及されておらず、結果的に、蛍光薬剤から発せられる蛍光の観察を継続して実施可能な時間が比較的大きく短縮された状態で対象部位の診断を行わざるを得ない、という課題が生じている。
 本発明は、前述した事情に鑑みてなされたものであり、被検体の対象部位へ投与された蛍光薬剤から発せられる蛍光を観察する場合において、当該対象部位の診断が可能な時間帯以外における蛍光の発生を極力抑制することにより、診断能の向上を図ることが可能な医療装置を提供することを目的としている。
 本発明の一態様の医療装置は、生体内における薬剤動態に関する情報が複数の蛍光薬剤の種類毎に予め格納された記憶部と、前記記憶部に格納された情報と、所望の蛍光薬剤が投与される被検体の対象部位の情報と、前記所望の蛍光薬剤の前記対象部位への投与方法の情報と、前記所望の蛍光薬剤の投与開始時刻の情報と、に基づき、前記所望の蛍光薬剤に対応する診断開始時刻を取得する演算処理部と、少なくとも前記投与開始時刻から前記診断開始時刻に達するまでの時間帯において、前記所望の蛍光薬剤を励起するための励起光の照射を停止し、前記診断開始時刻に基づいて前記励起光を照射するように制御を行う光源制御部と、を有する。
本発明の第1の実施例に係る内視鏡システムの要部の構成を示す図。 撮像アクチュエータのフィルタ切替機構において、光学フィルタが光路上に介挿された場合の状態を示す図。 フィルタ切替機構を図2の状態にする際の、磁石変位装置の通電時の状態を示す図。 撮像アクチュエータのフィルタ切替機構において、光学フィルタが光路上から退避された場合の状態を示す図。 フィルタ切替機構を図4の状態にする際の、磁石変位装置の非通電時の状態を示す図。 撮像アクチュエータに設けられた光学フィルタの特性を示す図。 撮像アクチュエータに設けられた、図6とは異なる光学フィルタの特性を示す図。 光源装置に設けられた切り替えフィルタの構成の一例を示す図。 切り替えフィルタに設けられた通常光フィルタの特性を示す図。 切り替えフィルタに設けられた第1励起光フィルタの特性を示す図。 切り替えフィルタに設けられた第2励起光フィルタの特性を示す図。 切り替えフィルタに設けられた第3励起光フィルタの特性を示す図。 光源装置に設けられた回転フィルタの構成の一例を示す図。 回転フィルタに設けられた光学フィルタの特性を示す図。 回転フィルタに設けられた、図14とは異なる光学フィルタの特性を示す図。 回転フィルタに設けられた、図14及び図15とは異なる光学フィルタの特性を示す図。 スコープに設けられたCCDの露光期間及び読出期間を示すタイミングチャート。 回転フィルタの回転に伴う各光学フィルタの介挿動作及び退避動作を示すタイミングチャート。 蛍光薬剤の薬剤動態を選択する際に用いられるテーブルデータの一例を示す図。 テーブルデータの中から選択された薬剤動態の一例を示す図。 図20の薬剤動態が選択された場合に取得される診断開始時刻及び診断終了時刻の一例を示す図。 撮像アクチュエータに設けられた各光学フィルタの、第1の観察モードにおける介挿動作及び退避動作を示すタイミングチャート。 撮像アクチュエータに設けられた各光学フィルタの、第2の観察モードにおける介挿動作及び退避動作を示すタイミングチャート。 撮像アクチュエータに設けられた各光学フィルタの、第3の観察モードにおける介挿動作及び退避動作を示すタイミングチャート。 第1の実施例において適用可能な退色防止用フィルタの一例を示す図。 第1の実施例において適用可能な退色防止用フィルタの、図25とは異なる例を示す図。 本発明の第2の実施例に係るカプセル型医療装置の要部の構成を示す図。 図27のカプセル型医療装置を含むカプセル型医療装置システムの要部の構成を示すブロック図。 図27のカプセル型医療装置において、励起光照明部及び撮像部が配置される位置の一例を示す図。 本発明の第2の実施例の変形例に係るカプセル型医療装置の要部の構成を示す図。 図30のカプセル型医療装置を含むカプセル型医療装置システムの要部の構成を示すブロック図。 図30のカプセル型医療装置において、励起光照明部、白色光照明部、及び、撮像部が配置される位置の一例を示す図。
 以下、本発明の実施の形態について、図面を参照しつつ説明を行う。
(第1の実施例)
 図1から図26は、本発明の第1の実施例に係るものである。
 図1は、本発明の第1の実施例に係る内視鏡システムの要部の構成を示す図である。
 内視鏡システム301は、図1に示すように、被検者の体腔内に挿入可能であるとともに、該体腔内の観察対象部位201を撮像して撮像信号を出力するスコープ2と、スコープ2による観察対象部位201を照明するための照明光を供給する光源装置1と、スコープ2からの撮像信号に対して種々の信号処理を施して出力するプロセッサ3と、プロセッサ3からの出力信号に応じた画像を表示するモニタ4と、プロセッサ3からの出力信号に応じた画像を記録するデジタルファイリング装置5と、プロセッサ3からの出力信号に応じた画像を撮影する写真撮影装置6と、文字列の入力操作等のキー操作に応じた信号をプロセッサ3へ出力可能なキーボード62と、プロセッサ3からの出力信号に応じた音声を発するスピーカ63と、を有して構成されている。また、スコープ2の内部には、光源装置1から供給される照明光を、スコープ2の先端部へ伝送するためのライトガイド13が挿通されている。
 スコープ2は、ライトガイド13により伝送された照明光を観察対象部位201に対して出射する照明光学系14aと、該照明光により照明された観察対象部位201からの戻り光を結像する対物光学系14bと、対物光学系14bの結像位置に撮像面が配置されたモノクロタイプのCCD14と、対物光学系14bとCCD14との間の光路上に配置された撮像アクチュエータ39と、を先端部に具備している。また、スコープ2は、内視鏡システム301の観察モードの切り替えに係る操作が可能なモード切替スイッチ15と、観察対象部位201の静止画像の取得に係る操作が可能なレリーズスイッチ16と、スコープ2の種類等に応じた固有の判別情報が格納されたスコープ判別素子17と、を有している。
 CCD14は、プロセッサ3の制御に応じて駆動するとともに、撮像面に結像された観察対象部位201からの戻り光に対して光電変換を施すことにより、撮像信号を生成してプロセッサ3へ出力する。また、本実施例のCCD14には、プロセッサ3の制御に応じて露光時間及び読出時間を調整することが可能な、図示しない電子シャッタが設けられている。さらに、本実施例のCCD14には、図示しない電荷増幅装置が設けられている。
 ここで、撮像アクチュエータ39の詳細な構成について説明を行う。図2は、撮像アクチュエータのフィルタ切替機構において、光学フィルタが光路上に介挿された場合の状態を示す図である。図3は、フィルタ切替機構を図2の状態にする際の、磁石変位装置の通電時の状態を示す図である。図4は、撮像アクチュエータのフィルタ切替機構において、光学フィルタが光路上から退避された場合の状態を示す図である。図5は、フィルタ切替機構を図4の状態にする際の、磁石変位装置の非通電時の状態を示す図である。
 撮像アクチュエータ39のフィルタ切替装置39aは、所定の波長帯域の光のみを通過させるフィルタを対物光学系14bからCCD14に至るまでの光路上に介挿する第1の配置状態(介挿状態)、及び、該所定の波長帯域の光のみを通過させるフィルタを対物光学系14bからCCD14に至るまでの光路上から退避する第2の配置状態(退避状態)を、プロセッサ3の制御に応じて切り替え可能な構成を有している。
 具体的には、撮像アクチュエータ39のフィルタ切替装置39aは、日本国特開2009-8717号公報に記載された光調節装置の構成と類似の構成を有している。すなわち、フィルタ切替装置39aは、フィルタ切替機構101と、磁石変位装置102と、を有して構成されている。
 フィルタ切替機構101は、フィルタ移動部材105と、閉時ストッパ107と、開時ストッパ108と、を下基板103及び上基板104の間に挟むようにして形成されている。
 磁石変位装置102の磁石119には、形状記憶合金ワイヤ120の一端が固定されている。また、形状記憶合金ワイヤ120には、バイアスバネ121と絶縁性のチューブ122とが通されている。一方、形状記憶合金ワイヤ120の他端は、図示しないカシメ部材に固定されている。なお、前述の図示しないカシメ部材は、チューブ122の磁石119とは反対側の端部においても固定されている。
 フィルタ移動部材105には、回転軸109と、円柱状の磁石110と、が圧入されている。また、フィルタ移動部材105には、光学フィルタ117aを有する光学フィルタ部118が設けられている。
 一方、下基板103には、光学開口111と、回転軸109を挿入するための回転軸挿入孔と、磁石110のガイド用の切り欠きと、が形成されている。また、上基板104にも、下基板103と略同様に、光学開口111と同一またはやや大きい径を有する光学開口と、回転軸109を挿入するための回転軸挿入孔と、磁石110のガイド用の切り欠きと、が形成されている。
 すなわち、回転軸109は、下基板103及び上基板104にそれぞれ設けられた回転軸挿入孔に挿入されている。これにより、フィルタ移動部材105は、回転軸109を中心に回転変位することができる。そして、フィルタ移動部材105の回転可動範囲は、閉時ストッパ107と開時ストッパ108とによって制限されている。また、磁石110は、下基板103及び上基板104にそれぞれ設けられたガイド用の切り欠きにより、可動範囲が制限されている。
 以上に述べた構成によれば、フィルタ移動部材105が回転軸109を中心に回転変位した際に、例えば、光学フィルタ部118が閉時ストッパ107に接触すると、光学フィルタ117aの中心と光学開口111の中心とが一致する。
 フィルタ切替装置39aの前述の第1の配置状態に(介挿状態)おいては、例えば図3に示すように、プロセッサ3の制御に応じた電圧の印加に伴って形状記憶合金ワイヤ120が収縮し、形状記憶合金ワイヤ120の一端に固定された磁石119がバイアスバネ121の反発力に抗してチューブ122の側に変位することにより、磁石110のN極と磁石119のN極とが対向する位置に配置される。
 これにより、前述の第1の配置状態(介挿状態)においては、磁石110と磁石119との間に斥力が発生し、磁石110がフィルタ切替機構101の中心方向に向かって変位する。この結果、前述の第1の配置状態(介挿状態)においては、例えば図2に示すように、フィルタ移動部材105が回転軸109を中心に反時計回りに回転し、光学フィルタ部118が閉時ストッパ107に接触する。
 そして、前述の第1の配置状態(介挿状態)においては、光学フィルタ部118により光学開口111が覆われるため、フィルタ切替機構101は、光学フィルタ117aによって規定される所定の波長帯域の戻り光のみをCCD14の撮像面へ通過させる。
 一方、以上に述べた構成によれば、フィルタ移動部材105が回転軸109を中心に回転変位した際に、例えば、光学フィルタ部118が開時ストッパ108に接触すると、光学フィルタ部118が光学開口111から完全に退避する。
 フィルタ切替装置39aの前述の第2の配置状態(退避状態)においては、例えば図5に示すように、プロセッサ3の制御に応じた電圧の印加に伴って形状記憶合金ワイヤ120が伸長し、形状記憶合金ワイヤ120の一端に固定された磁石119がバイアスバネ121の反発力に従ってチューブ122の反対側に変位することにより、磁石110のS極と磁石119のN極とが対向する位置に配置される。
 これにより、前述の第2の配置状態(退避状態)においては、磁石110と磁石119との間に引力が発生し、磁石110がフィルタ切替機構101の外周方向に向かって変位する。この結果、前述の第2の配置状態(退避状態)においては、例えば図4に示すように、フィルタ移動部材105が回転軸109を中心に時計回りに回転し、光学フィルタ部118が開時ストッパ108に接触する。
 そして、前述の第2の配置状態(退避状態)においては、光学フィルタ部118により光学開口111が覆われないため、フィルタ切替機構101は、対物光学系14bを通過した戻り光に対する帯域制限を行うことなく、該戻り光をそのままCCD14の撮像面へ通過させる。
 図6は、撮像アクチュエータに設けられた光学フィルタの特性を示す図である。
 なお、本実施例におけるフィルタ切替装置39aの光学フィルタ117aは、例えば図6に示すように、680~850nmの光のみを略減衰させずに通過させるように形成されているものとする。
 また、本実施例の撮像アクチュエータ39は、図1に示すように、フィルタ切替装置39aと、フィルタ切替装置39aと略同様の構成を有するフィルタ切替装置39bと、を具備して構成されている。
 図7は、撮像アクチュエータに設けられた、図6とは異なる光学フィルタの特性を示す図である。
 フィルタ切替装置39bは、光学フィルタ117aとは異なる波長帯域の戻り光のみを通過させる光学フィルタ117bを有している一方、これ以外の部分についてはフィルタ切替装置39aと同じ構成を具備している。また、光学フィルタ117bは、例えば図7に示すように、790~850nmの光のみを略減衰させずに通過させるように形成されている。
 なお、本実施例の撮像アクチュエータ39は、以上に述べたような、日本国特開2009-8717号公報に記載された光調節装置の構成に基づいて構成されるものに限らない。具体的には、本実施例の撮像アクチュエータ39は、光学フィルタ117a及び117bのそれぞれについて、前述の第1の配置状態(介挿状態)及び第2の配置状態(退避状態)を切り替え可能な構成を有する限りにおいては、例えば、日本国特開2009-8719号公報に記載された光調節装置等の他の構成に基づいて構成されるものであっても良い。
 光源装置1は、可視域及び近赤外域を含む波長領域の光を発するランプ7と、ランプ7の光路を垂直に横切るように設けられた切替フィルタ8と、ランプ7の光路上に介挿するフィルタを切替フィルタ8の各フィルタのうちの1つに切り替えるモータ9と、ランプ7の光路を垂直に横切るように設けられた回転フィルタ10と、回転フィルタ10を回転駆動するモータ11と、切替フィルタ8から回転フィルタ10に至るランプ7の光路上に配置された絞り12と、回転フィルタ10を通過した照明光をライトガイド13の光入射側の端面に集光する集光レンズ12aと、を有して構成されている。
 図8は、光源装置に設けられた切り替えフィルタの構成の一例を示す図である。
 図8に示すように、円板形状を有する切替フィルタ8には、可視域の光を通過させる通常光フィルタ50と、可視域の一部及び赤色域の光を通過させる第1励起光フィルタ51と、可視域の一部及び近赤外域の光を通過させる第2励起光フィルタ55と、第1励起光フィルタ51及び第2励起光フィルタ55の通過帯域を併せ持つ第3励起光フィルタ56と、が円板の周方向に沿って設けられている。すなわち、切替フィルタ8は、プロセッサ3の制御に応じてモータ9が回転することにより、通常光フィルタ50、第1励起光フィルタ51、第2励起光フィルタ55、及び、第3励起光フィルタ56のうちのいずれか1つのフィルタがランプ7の光路上に介挿され、かつ、該1つのフィルタ以外の他の3つのフィルタがランプ7の光路上から退避されるように構成されている。
 図9は、切り替えフィルタに設けられた通常光フィルタの特性を示す図である。
 通常光フィルタ50は、図9に示すように、ランプ7から発せられた各波長帯域の光のうち、400~650nmの波長帯域の光を略減衰させずに通過させるように形成されている。
 図10は、切り替えフィルタに設けられた第1励起光フィルタの特性を示す図である。
 第1励起光フィルタ51は、図10に示すように、ランプ7から発せられた各波長帯域の光のうち、600~650nmの波長帯域の光を略減衰させずに通過させるとともに、790~810nmの波長帯域の光を所定の強度まで減衰させて通過させるように形成されている。
 図11は、切り替えフィルタに設けられた第2励起光フィルタの特性を示す図である。
 第2励起光フィルタ55は、図11に示すように、ランプ7から発せられた各波長帯域の光のうち、700~760nmの波長帯域の光を略減衰させずに通過させるとともに、790~810nmの波長帯域の光を所定の強度まで減衰させて通過させるように形成されている。
 図12は、切り替えフィルタに設けられた第3励起光フィルタの特性を示す図である。
 第3励起光フィルタ55は、図12に示すように、ランプ7から発せられた各波長帯域の光のうち、600~760nmの波長帯域の光を略減衰させずに通過させるとともに、790~810nmの波長帯域の光を所定の強度まで減衰させて通過させるように形成されている。
 絞り12は、切替フィルタ8を通過した光の光量を、プロセッサ3の制御に応じて増減させることが可能な構成を有している。
 図13は、光源装置に設けられた回転フィルタの構成の一例を示す図である。
 図13に示すように、円板形状を有する回転フィルタ10には、赤色域の光を通過させる光学フィルタ41と、緑色域の光を通過させる光学フィルタ42と、青色域及び近赤外域の光を通過させる光学フィルタ43と、が円板の周方向に沿って設けられている。すなわち、回転フィルタ10は、プロセッサ3の制御(後述のタイミングジェネレータ30のタイミング信号)に応じてモータ11が回転することにより、光学フィルタ41、42及び43が順次入れ替わりつつ、ランプ7の光路上に介挿、または、ランプ7の光路上から退避されるように構成されている。なお、本実施例の回転フィルタ10は、光学フィルタ41、42及び43が配置された箇所以外がランプ7の光路上に介挿された場合に、光を通過させないように形成されているものとする。
 図14は、回転フィルタに設けられた光学フィルタの特性を示す図である。
 光学フィルタ41は、図14に示すように、切替フィルタ8及び絞り12を通過した光が有する各波長帯域のうち、600~650nmの波長帯域の光を略減衰させずに通過させるように形成されている。
 図15は、回転フィルタに設けられた、図14とは異なる光学フィルタの特性を示す図である。
 光学フィルタ42は、図15に示すように、切替フィルタ8及び絞り12を通過した光が有する各波長帯域のうち、500~600nmの波長帯域の光、及び、790~810nmの波長帯域の光をそれぞれ略減衰させずに通過させるように形成されている。
 図16は、回転フィルタに設けられた、図14及び図15とは異なる光学フィルタの特性を示す図である。
 光学フィルタ43は、図16に示すように、切替フィルタ8及び絞り12を通過した光が有する各波長帯域のうち、400~500nm、及び、700~760nmの波長帯域の光を通過させるように形成されている。
 CCD14から出力された撮像信号は、プロセッサ3に入力された後、プリプロセス回路18においてCDS(相関2重サンプリング)等の処理が施され、A/D変換回路19においてデジタルの画像信号に変換された後、カラーバランス補正回路20へ出力される。
 カラーバランス補正回路20は、タイミングジェネレータ30からのタイミング信号に基づき、回転フィルタ10の光学フィルタ41、42及び43がランプ7の光路上に順次介挿されるタイミングに同期するように、光学フィルタ41、42及び43のそれぞれに対応するカラーバランス補正係数を選択するとともに、選択したカラーバランス補正係数を図示しないメモリから読み込む。そして、カラーバランス補正回路20は、図示しないメモリから読み込んだカラーバランス補正係数をA/D変換回路19から順次出力される画像信号に対して乗算した後、乗算後の画像信号をマルチプレクサ21へ出力する。
 なお、前述のカラーバランス補正係数は、ホワイトバランス等のカラーバランス動作の際に、制御部33(演算処理回路33a)の演算処理により算出される補正値であって、該演算処理の処理結果として、カラーバランス補正回路20の図示しないメモリへ格納される。また、前述のホワイトバランス等のカラーバランス動作は、プロセッサ3の入力スイッチ群60に設けられたカラーバランス設定スイッチ(図示せず)において、該カラーバランス動作の実行開始に係る操作がなされたことを制御部33が検出したタイミングで開始される。
 マルチプレクサ21は、タイミングジェネレータ30からのタイミング信号に基づき、光学フィルタ41、42及び43がランプ7の光路上に順次介挿されるタイミングに同期するように、カラーバランス補正回路20から出力される画像信号を同時化メモリ22a、22b及び22cへ適宜振り分けつつ出力する。
 同時化メモリ22a、22b及び22cは、マルチプレクサ21から出力される画像信号を一時的に記憶することが可能な構成を有している。
 画像処理回路23は、同時化メモリ22a、22b及び22cに記憶された画像信号を同時に読み込んだ後、読み込んだ3つの画像信号に対して所定の画像処理を施す。そして、画像処理回路23は、前記所定の画像処理後の3つの画像信号を、第1の色成分(例えば赤(R)成分)に相当する第1の色チャンネル、第2の色成分(例えば緑(G)成分)に相当する第2の色チャンネル、及び、第3の色成分(例えば青(B)成分)に相当する第3の色チャンネルにぞれぞれ割り当てて色調調整回路24へ出力する。
 色調調整回路24は、図示しないメモリに格納された色調調整係数を読み込んだ後、該色調調整係数と、画像処理回路23から出力された第1の色成分(第1の色チャンネル)の画像信号と、第2の色成分(第2の色チャンネル)の画像信号と、第3の色成分(第3の色チャンネル)の画像信号と、を用いたマトリクス演算処理を行う。その後、色調調整回路24は、前述のマトリクス演算処理を施した後の第1の色成分の画像信号と、第2の色成分の画像信号と、第3の色成分の画像信号と、に対してそれぞれガンマ補正処理を施す。そして、色調調整回路24は、前述のガンマ補正処理を施した後の第1の色成分、第2の色成分及び第3の色成分の画像信号を、符号化回路26及び調光回路27へそれぞれ出力する。また、色調調整回路24は、前述のガンマ補正処理を施した後の、第1の色成分の画像信号をD/A変換回路25aへ出力し、第2の色成分の画像信号をD/A変換回路25bへ出力し、第3の色成分の画像信号をD/A変換回路25cへ出力する。
 なお、前述の色調調整係数は、色調調整動作における制御部33(演算処理回路33a)の演算処理により算出される調整値であって、該演算処理の処理結果として、色調調整回路24の図示しないメモリへ格納される。また、前述の色調調整動作は、プロセッサ3の入力スイッチ群60に設けられた色調設定スイッチ(図示せず)において、モニタ4に表示される色調の変更に係る操作がなされたことを制御部33が検出したタイミングで開始される。そして、制御部33(演算処理回路33a)は、モニタ4に表示される色調の変更に係る操作がなされた際に、変更後の色調に対応する色調調整係数を算出するための演算処理を行う。
 色調調整回路24から出力された、第1の色成分、第2の色成分及び第3の色成分の画像信号は、D/A変換回路25a、25b及び25cにおいてそれぞれアナログの映像信号に変換された後、モニタ4へ出力される。これにより、モニタ4は、各観察モードに対応した観察画像を表示する。
 また、色調調整回路24から出力された、第1の色成分、第2の色成分及び第3の色成分の画像信号は、符号化回路26において符号化処理がそれぞれ施された後、デジタルファイリング装置5及び写真撮影装置6へ出力される。これにより、デジタルファイリング装置5は、制御部33がレリーズスイッチ16における入力操作を検出した際の静止画像を記録及び保存する。また、写真撮影装置6は、制御部33がレリーズスイッチ16における入力操作を検出した際の静止画像を撮影する。
 調光回路27は、色調調整回路24から出力される第1の色成分、第2の色成分及び第3の色成分の画像信号の各々の信号レベルに基づき、観察モードに応じた適切な光量の照明光が光源装置1から供給されるように絞り12に対する制御を行う。また、調光回路27は、増幅率制御回路29の増幅率を変化させる制御を行う。
 露光時間制御回路28は、タイミングジェネレータ30から出力されるタイミング信号と、制御部33からの出力信号と、に基づき、光学フィルタ41、42及び43がランプ7の光路上に順次介挿されるタイミングに同期し、かつ、制御部33からの該出力信号に応じたものとなるようにCCD14の電子シャッタを制御する。そして、このような電子シャッタに対する制御により、CCD14における露光時間が変更される。
 増幅率制御回路29は、調光回路27による制御と、タイミングジェネレータ30から出力されるタイミング信号とに基づき、光学フィルタ41、42及び43がランプ7の光路上に順次介挿されるタイミングに同期し、かつ、調光回路27の制御に応じた増幅率になるようにCCD14の電荷増幅装置を制御する。そして、このような電荷増幅装置に対する制御により、CCD14における増幅率が変更される。
 タイミングジェネレータ30は、内視鏡システム301の各部の動作を適切に同期させるためのタイミング信号を生成して出力する。
 CCDドライバ31は、タイミングジェネレータ30から出力されるタイミング信号に基づき、光学フィルタ41、42及び43がランプ7の光路上に順次介挿されるタイミングに同期するようにCCD14を駆動させる。
 撮像アクチュエータ制御回路32は、タイミングジェネレータ30から出力されるタイミング信号に基づき、光学フィルタ41、42及び43がランプ7の光路上に順次介挿されるタイミングと、フィルタ切替装置39aにおける光学フィルタ117aの配置状態の切り替えタイミングと、フィルタ切替装置39bにおける光学フィルタ117bの配置状態の切り替えタイミングと、を同期させるための制御を撮像アクチュエータ39に対して行う。
 CPU及びメモリ等からなる制御部33は、演算処理を行う演算処理回路33aと、記憶回路33bと、計時回路33cと、判定回路33dと、切替制御回路33eと、を有して構成されている。
 記憶回路33bには、例えば後述のテーブルデータのような、演算処理回路33aの演算処理等に用いられる種々のデータが格納されている。
 計時回路33cは、RTC(リアルタイムクロック)及びタイマ等を有し、被検者に蛍光薬剤を投与してからの経過時間を各蛍光薬剤毎に計測できるように構成されている。
 判定回路33dは、演算処理回路33aの演算処理結果及び計時回路33cの計測結果に基づき、後程述べるような判定処理を随時行う。
 切替制御回路33eは、プロセッサ3に接続されたスコープ2のモード切替スイッチ15における操作状態の検出結果と、判定回路33dの判定結果と、に基づく制御を光源装置1のモータ9等に対して行う。
 一方、プロセッサ3の入力スイッチ群60には、例えば、モニタ4に表示される画像の色調の変更に関する操作を行うことが可能な色調設定スイッチ、ホワイトバランス等のカラーバランス動作に関する操作を行うことが可能なカラーバランス設定スイッチ、及び、モニタ4に表示される観察画像の表示態様の切り替えに関する操作を行うことが可能な画像表示選択スイッチ等の複数のスイッチが設けられている。そして、制御部33は、プロセッサ3の入力スイッチ群60に設けられた各スイッチの操作状態を検出し、検出結果に応じた制御及び処理等を行う。
 制御部33は、プロセッサ3に接続されたスコープ2のレリーズスイッチ16における操作状態を検出し、検出結果に応じて、デジタルファイリング装置5における静止画像の記録、及び(または)、写真撮影装置6における静止画像の撮影に係る制御を行う。
 制御部33は、スコープ2がプロセッサ3に接続された際に、スコープ判別素子17に格納された情報を読み込み、読み込んだ該情報に応じた制御を行う。
 なお、本実施例の制御部33は、プロセッサ3の各部に対して包括的な制御を行えるように、図示しない信号線等を介してプロセッサ3の各部と接続されているものとする。
 告知信号生成回路61は、制御部33の判定回路33dの判定結果に関する情報を告知可能な所定の文字列を表示させるための文字信号を生成してモニタ4へ出力する。また、告知信号生成回路61は、制御部33の判定回路33dの判定結果に関する情報を告知可能な所定の音声を発生させるための音声信号を生成してスピーカ63へ出力する。なお、本実施例の告知信号生成回路61は、前述の文字信号及び音声信号のうちの少なくともいずれか一方を出力できるように構成されていればよい。
 続いて、本実施例の内視鏡システム301の作用について説明を行う。
 まず、術者等は、内視鏡システム301の各部を接続して電源を投入することにより、該各部の動作を開始させる。
 そして、プロセッサ3の電源が投入されるに伴い、タイミングジェネレータ30からのタイミング信号の出力が開始される。
 図17は、スコープに設けられたCCDの露光期間及び読出期間を示すタイミングチャートである。
 CCDドライバ31は、タイミングジェネレータ30からのタイミング信号に基づき、例えば、図17のタイミングチャートに応じてCCD14を駆動させる。これにより、CCD14は、電荷の蓄積に係る期間としての露光期間T1と、露光期間T1のうちに蓄積された電荷の掃き出しに係る期間としての読出期間T2とが交互に入れ替わるように動作する。
 図18は、回転フィルタの回転に伴う各光学フィルタの介挿動作及び退避動作を示すタイミングチャートである。
 また、光源装置1の電源が投入され、かつ、タイミングジェネレータ30からのタイミング信号の出力が開始されるに伴い、モータ11の回転駆動が開始される。そして、モータ11の回転駆動に伴い、光学フィルタ41、42及び43が順次入れ替わりつつ、ランプ7の光路上に介挿、または、ランプ7の光路上から退避される。なお、モータ11の回転駆動に伴う光学フィルタ41、42及び43の介挿動作及び退避動作は、例えば、図18のタイミングチャートに応じたタイミングにより行われる。すなわち、モータ11は、CCD14の露光期間においてランプ7の光路上に光学フィルタ41、42及び43を順次介挿させ、かつ、CCD14の読出期間において光学フィルタ41、42及び43をランプ7の光路上から退避させるように回転フィルタ10を回転させる。
 一方、術者等は、内視鏡システム301の各部を接続して電源を投入した後、キーボード62を操作することにより、(例えばプロセッサ3の各種設定に係る設定画面をモニタ4に表示させ、)蛍光薬剤を用いた観察における診断開始時の集積量の基準値Nsと、診断終了時の集積量の基準値Neと、をそれぞれ設定する。また、術者等は、基準値Ns及びNeを設定する前または設定した後のいずれかの時点において、被検者の観察対象部位201への蛍光薬剤の投与を行う。
 基準値Ns及びNeは、蛍光薬剤の集積量のピーク値に相当する最大値Nmaxを100%とした場合の割合を示す値であって、初期状態ではNs=Ne=Nmaxに設定された状態で記憶回路33bに格納されている。
 なお、使用する蛍光薬剤の種類、蛍光薬剤を投与する対象部位(観察対象部位201)が属する器官、当該対象部位への蛍光薬剤の投与方法の組み合わせ方次第では、基準値Ns及びNeがそれぞれNmax以外の値であっても、十分な診断能を得られる場合がある。そのため、基準値Ns及びNeは、キーボード62の操作により、それぞれ任意の値に設定できるようにしてもよく、または、(例えば80%、60%、・・・というような)所定の複数の値の中から1つずつ選択できるようにしてもよい。
 制御部33は、キーボード62の操作により新たな基準値Ns及びNeが設定されたことを検出すると、記憶回路33bに格納されている基準値Ns及びNeを更新する。
 術者等は、基準値Ns及びNeの設定を行った後、更にキーボード62を操作することにより、使用する蛍光薬剤の種類、蛍光薬剤を投与する対象部位(観察対象部位201)が属する器官、当該対象部位への蛍光薬剤の投与方法、及び、蛍光薬剤の被検者への投与開始時刻の各情報を、内視鏡システム301により観察可能な波長帯域の蛍光毎に1組ずつ入力する。具体的には、本実施例の内視鏡システム301によれば、600~650nmの波長帯域の光の照射により励起される第1の波長帯域(680~750nm)の蛍光、及び、700~760nmの波長帯域の光の照射により励起される第2の波長帯域(790~850nm)の蛍光を観察可能であるため、前述の各情報が2組分入力されることとなる。
 一方、制御部33の演算処理回路33aは、記憶回路33bに予め格納されたテーブルデータの中から、使用する蛍光薬剤の種類に一致する1つのテーブルデータを選択する。
 図19は、蛍光薬剤の薬剤動態を選択する際に用いられるテーブルデータの一例を示す図である。
 前述のテーブルデータは、例えば図19に示すように、生体内における薬剤動態に関する情報が複数の蛍光薬剤の種類毎に分類された状態で記憶回路33bに予め格納されている。
 そして、制御部33の演算処理回路33aは、使用する蛍光薬剤が蛍光薬剤Aである場合には、図19に例示したテーブルデータを選択する。
 さらに、制御部33の演算処理回路33aは、選択した1つのテーブルデータの中から、蛍光薬剤を投与する対象部位(観察対象部位201)が属する器官、及び、対象部位への蛍光薬剤の投与方法の組み合わせに該当する1つの薬剤動態を選択する。
 具体的には、制御部33の演算処理回路33aは、例えば、図19に示すテーブルデータにおいて、蛍光薬剤を投与する対象部位(観察対象部位201)が胃に属し、かつ、静注(静脈注射)により蛍光薬剤を投与する場合には、薬剤動態A02を選択する。
 なお、本実施例によれば、例えば、記憶回路33bに格納される各テーブルデータにおける薬剤動態毎に予め基準値Ns及びNeを設定しておくことにより、1つの薬剤動態の選択に伴って基準値Ns及びNeが一意に定まるように構成されていてもよい。
 制御部33の演算処理回路33aは、記憶回路33bに格納された基準値Ns及びNeと、蛍光薬剤の被検者への投与開始時刻と、に基づき、前述の処理により選択した1つの薬剤動態において、蛍光薬剤を被検者に投与してからの経過時間T=0かつ蛍光薬剤の集積量N=0の点を当該投与開始時刻に一致させ、集積量N=Nsとなる最初の経過時間Tに相当する診断開始時刻Tsを取得し、さらに、診断開始時刻Ts以降において最後に集積量N=Neとなる経過時間Tに相当する診断終了時刻Teを取得する。
 図20は、テーブルデータの中から選択された薬剤動態の一例を示す図である。図21は、図20の薬剤動態が選択された場合に取得される診断開始時刻及び診断終了時刻の一例を示す図である。
 ここで、生体内における蛍光薬剤の薬剤動態は、蛍光薬剤が被検者の体内へ投与されてから***されるまでの経過時間Tと、蛍光薬剤が投与される被検者の体内の対象部位(観察対象部位201)における集積量Nとの間において、例えば、図20に示すような相関関係を有している。そのため、例えば、蛍光薬剤の薬剤動態として図20に示したものが選択され、かつ、基準値Ns及びNeがいずれもNmaxとして設定された場合には、図21に示すような診断開始時刻Ts及び診断終了時刻Teが取得される。
 なお、蛍光薬剤を対象部位へ直接散布して投与する場合には、静注等による投与とは異なり、実際に蛍光薬剤を対象部位へ散布した直後の時刻が、被検者への投与開始時刻、すなわち、経過時間T=0かつ蛍光薬剤の集積量N=0の時刻に相当する。このような点を鑑み、蛍光薬剤を対象部位へ直接散布して投与する場合には、経過時間T=0かつ蛍光薬剤の集積量N=0に相当する時刻を、キーボード62の操作により入力される投与開始時刻ではなく、例えば、入力スイッチ群60に設けられた投与開始時刻通知スイッチ(図示せず)が押下された時刻にすることにより、正確な診断開始時刻Ts及び診断終了時刻Teを取得することができる。
 また、前述の投与開始時刻通知スイッチは、プロセッサ3の入力スイッチ群60に設けられるものに限らず、例えば、スコープ2に設けられるものであってもよい。これに応じ、誤操作を防ぐ目的において、例えば、スコープ2に設けられた投与開始時刻通知スイッチが長押しされた際に、経過時間T=0かつ蛍光薬剤の集積量N=0に相当する時刻が取得されるように構成してもよい。さらに、経過時間T=0かつ蛍光薬剤の集積量N=0に相当する時刻が取得された後において、スコープ2に設けられた投与開始時刻通知スイッチに他の機能が割り付けられるように構成してもよい。具体的には、経過時間T=0かつ蛍光薬剤の集積量N=0に相当する時刻が取得された後において、例えば、プロセッサ3の入力スイッチ群60に設けられた複数のスイッチ(色調設定スイッチ、カラーバランス設定スイッチ、及び、画像表示選択スイッチ等)のうち、術者等により予め選択されたいずれか1つのスイッチに相当する機能がスコープ2の投与開始時刻通知スイッチに割り付けられるように構成してもよい。
 一方、制御部33の判定回路33dは、演算処理回路33aにより取得された診断開始時刻Ts及び診断終了時刻Teと、計時回路33cの計測結果と、に基づき、現在の時刻が診断開始時刻Tsから診断終了時刻Teまでの時間帯である診断可能時間内に相当するか否かに関する判定を随時行う。換言すると、制御部33の判定回路33dは、演算処理回路33aにより取得された診断開始時刻Ts及び診断終了時刻Teと、計時回路33cの計測結果と、に基づき、現在の時刻が診断開始時刻Tsに達したか否かの判定、及び、現在の時刻が診断終了時刻Teに達したか否かの判定をそれぞれ行うことができるように構成されている。
 そして、告知信号生成回路61は、現在の時刻が診断可能時間内ではないとの判定結果が判定回路33dにより得られた場合に、投与された蛍光薬剤に対応する励起光を照射する観察モードへの切り替えが不可能な時間帯である旨を伝える文字列を表示させるための文字信号を生成してモニタ4へ出力する。また、告知信号生成回路61は、現在の時刻が診断可能時間内ではないとの判定結果が判定回路33dにより得られた場合に、投与された蛍光薬剤に対応する励起光を照射する観察モードへの切り替えが不可能な時間帯である旨を伝える音声を発生させるための音声信号を生成してスピーカ63へ出力する。
 制御部33の切替制御回路33eは、現在の時刻が診断可能時間内ではないとの判定結果が判定回路33dにより得られた場合には、投与された蛍光薬剤に対応する励起光を照射する観察モードへの切り替え操作がモード切替スイッチ15において行われたとしても、当該切り替え操作を無効とするように動作する。また、制御部33の切替制御回路33eは、現在の時刻が診断可能時間内であるとの判定結果が判定回路33dにより得られた場合には、投与された蛍光薬剤に対応する励起光を照射する観察モードへの切り替え操作がモード切替スイッチ15において行われた際に、当該切り替え操作に応じた制御を光源装置1のモータ9等に対して行う。さらに、制御部33の切替制御回路33eは、現在の時刻が診断終了時刻Teに達しておらず、すなわち、0≦T≦Teであるとの判定結果が判定回路33dにより得られた場合には、後述の第4の観察モードへ切り替えられた際に、所定の制御を調光回路27等に対して行う。
 ここで、本実施例の内視鏡システム301において、観察モードの切り替えの際に行われる動作等について、600~650nmの波長帯域の光の照射により励起されて第1の波長帯域(680~750nm)の蛍光を発する第1の蛍光薬剤と、700~760nmの波長帯域の光の照射により励起されて第2の波長帯域(790~850nm)の蛍光を発する第2の蛍光薬剤と、を同一の被検者に投与して観察対象部位201の観察を行う場合を例に挙げて説明する。
 制御部33の切替制御回路33eは、現在の時刻が第1の蛍光薬剤の診断可能時間内であるとの判定結果が判定回路33dにより得られた場合には、第1の蛍光薬剤に対応する励起光を照射する第1の観察モードへの切り替え操作がモード切替スイッチ15において行われた際に、(または、モード切替スイッチ15の操作状態によらずに他の観察モードから第1の観察モードへの切り替えが行われた際に、)光源装置1のモータ9を制御することにより、第1励起光フィルタ51をランプ7の光路上に介挿させる。すなわち、前述の第1の観察モードにおいては、790~810nmの波長帯域の参照光と、600~650nmの波長帯域の第1の励起光と、を有する面順次な第1の照明光がライトガイド13へ供給される。
 さらに、制御部33の切替制御回路33eは、現在の時刻が第1の蛍光薬剤の診断可能時間内であるとの判定結果が判定回路33dにより得られた場合には、第1の観察モードへの切り替え操作がモード切替スイッチ15において行われた際に、(または、モード切替スイッチ15の操作状態によらずに他の観察モードから第1の観察モードへの切り替えが行われた際に、)撮像アクチュエータ制御回路32を制御することにより、光学フィルタ41、42及び43がランプ7の光路上に順次介挿されるタイミングと、フィルタ切替装置39aにおける光学フィルタ117aの配置状態の切り替えタイミングと、を同期させるように撮像アクチュエータ39を動作させる。
 具体的には、図17、図18及び図22に示すように、撮像アクチュエータ制御回路32は、前述の第1の観察モードにおいては、CCD14の露光期間かつ光学フィルタ41がランプ7の光路上に介挿されている期間に、フィルタ切替装置39aの光学フィルタ117aの配置状態を前述の第1の配置状態(介挿状態)とし、さらに、フィルタ切替装置39bの光学フィルタ117bの配置状態を前述の第2の配置状態(退避状態)とする。一方、図17、図18及び図22に示すように、撮像アクチュエータ制御回路32は、前述の第1の観察モードにおいては、CCD14の読出期間、光学フィルタ42がランプ7の光路上に介挿されている期間、または、光学フィルタ43がランプ7の光路上に介挿されている期間に、フィルタ切替装置39aの光学フィルタ117aの配置状態を前述の第2の配置状態(退避状態)とし、さらに、フィルタ切替装置39bの光学フィルタ117bの配置状態を前述の第2の配置状態(退避状態)とする。
 従って、前述の第1の観察モードにおいては、ライトガイド13から出射される第1の照明光(第1の励起光)により第1の蛍光薬剤が励起されるため、680~750nmの波長帯域の第1の蛍光と、790~810nmの波長帯域の参照光とが、観察対象部位201からの戻り光としてCCD14の撮像面に順次結像される。
 また、制御部33の切替制御回路33eは、現在の時刻が第1の蛍光薬剤の診断可能時間内ではないとの判定結果が判定回路33dにより得られた場合には、他の観察モードから第1の観察モードへの切り替え操作がモード切替スイッチ15において行われたとしても、モータ9及び撮像アクチュエータ制御回路32に対する制御状態を当該切り替え操作が行われる以前のまま維持することにより、当該切り替え操作を無効とする。
 なお、制御部33の切替制御回路33eは、現在の時刻が第1の蛍光薬剤の診断可能時間内であるとの判定結果が判定回路33dにより得られた時点、すなわち、現在の時刻が第1の蛍光薬剤の診断開始時刻Tsに達した時点において、モード切替スイッチ15の操作状態に係わらず、第1の観察モードに移行させるための制御をモータ9及び撮像アクチュエータ制御回路32に対して行ってもよい。
 また、制御部33の切替制御回路33eは、現在の時刻が第1の蛍光薬剤の診断可能時間内ではなく、かつ、第1の蛍光薬剤の診断終了時刻Teを経過したとの判定結果が判定回路33dにより得られた場合に、他の観察モードから第1の観察モードへの切り替え操作を無効化するとともに、モード切替スイッチ15の操作状態に係わらず、第1の観察モードから他の観察モード(例えば後述の第4の観察モード)へ切り替えるための制御をモータ9及び撮像アクチュエータ制御回路32に対して行うものであってもよい。
 一方、告知信号生成回路61は、現在の時刻が第1の蛍光薬剤の診断可能時間内ではないとの判定結果が判定回路33dにより得られた場合に、例えば、第1の蛍光薬剤の診断開始時刻Tsに達していない、または、第1の蛍光薬剤の診断終了時刻Teを過ぎている等のメッセージを備えた、第1の観察モードへの切り替えが不可能な時間帯である旨を伝える文字列を表示させるための文字信号を生成してモニタ4へ出力する。また、告知信号生成回路61は、現在の時刻が第1の蛍光薬剤の診断可能時間内ではないとの判定結果が判定回路33dにより得られた場合に、例えば、第1の蛍光薬剤の診断開始時刻Tsに達していない、または、第1の蛍光薬剤の診断終了時刻Teを過ぎている等のメッセージを備えた、第1の観察モードへの切り替えが不可能な時間帯である旨を伝える音声を発生させるための音声信号を生成してスピーカ63へ出力する。
 なお、告知信号生成回路61は、判定回路33dの判定結果に基づき、第1の蛍光薬剤の診断開始時刻Ts及び診断終了時刻Teに達した時点においてそれぞれ告知を行うように動作してもよく、または、第1の蛍光薬剤の診断開始時刻Ts及び診断終了時刻Teをモニタ4に常時表示させるように動作してもよい。
 制御部33の切替制御回路33eは、現在の時刻が第2の蛍光薬剤の診断可能時間内であるとの判定結果が判定回路33dにより得られた場合には、第2の蛍光薬剤に対応する励起光を照射する第2の観察モードへの切り替え操作がモード切替スイッチ15において行われた際に、(または、モード切替スイッチ15の操作状態によらずに他の観察モードから第2の観察モードへの切り替えが行われた際に、)光源装置1のモータ9を制御することにより、第2励起光フィルタ55をランプ7の光路上に介挿させる。すなわち、前述の第2の観察モードにおいては、790~810nmの波長帯域の参照光と、700~760nmの波長帯域の第2の励起光と、を有する面順次な第2の照明光がライトガイド13へ供給される。
 さらに、制御部33の切替制御回路33eは、現在の時刻が第2の蛍光薬剤の診断可能時間内であるとの判定結果が判定回路33dにより得られた場合には、第2の観察モードへの切り替え操作がモード切替スイッチ15において行われた際に、(または、モード切替スイッチ15の操作状態によらずに他の観察モードから第2の観察モードへの切り替えが行われた際に、)撮像アクチュエータ制御回路32を制御することにより、光学フィルタ41、42及び43がランプ7の光路上に順次介挿されるタイミングと、フィルタ切替装置39bにおける光学フィルタ117bの配置状態の切り替えタイミングと、を同期させるように撮像アクチュエータ39を動作させる。
 具体的には、図17、図18及び図23に示すように、撮像アクチュエータ制御回路32は、前述の第2の観察モードにおいては、CCD14の露光期間かつ光学フィルタ43がランプ7の光路上に介挿されている期間に、フィルタ切替装置39aの光学フィルタ117aの配置状態を前述の第2の配置状態(退避状態)とし、さらに、フィルタ切替装置39bの光学フィルタ117bの配置状態を前述の第1の配置状態(介挿状態)とする。一方、図17、図18及び図23に示すように、撮像アクチュエータ制御回路32は、前述の第2の観察モードにおいては、CCD14の読出期間、光学フィルタ41がランプ7の光路上に介挿されている期間、または、光学フィルタ42がランプ7の光路上に介挿されている期間に、フィルタ切替装置39aの光学フィルタ117aの配置状態を前述の第2の配置状態(退避状態)とし、さらに、フィルタ切替装置39bの光学フィルタ117bの配置状態を前述の第2の配置状態(退避状態)とする。
 従って、前述の第2の観察モードにおいては、ライトガイド13から出射される第2の照明光(第2の励起光)により第2の蛍光薬剤が励起されるため、790~850nmの波長帯域の第2の蛍光と、790~810nmの波長帯域の参照光とが、観察対象部位201からの戻り光としてCCD14の撮像面に順次結像される。
 また、制御部33の切替制御回路33eは、現在の時刻が第2の蛍光薬剤の診断可能時間内ではないとの判定結果が判定回路33dにより得られた場合には、他の観察モードから第2の観察モードへの切り替え操作がモード切替スイッチ15において行われたとしても、モータ9及び撮像アクチュエータ制御回路32に対する制御状態を当該切り替え操作が行われる以前のまま維持することにより、当該切り替え操作を無効とする。
 なお、制御部33の切替制御回路33eは、現在の時刻が第2の蛍光薬剤の診断可能時間内であるとの判定結果が判定回路33dにより得られた時点、すなわち、現在の時刻が第2の蛍光薬剤の診断開始時刻Tsに達した時点において、モード切替スイッチ15の操作状態に係わらず、第2の観察モードに移行させるための制御をモータ9及び撮像アクチュエータ制御回路32に対して行ってもよい。
 また、制御部33の切替制御回路33eは、現在の時刻が第2の蛍光薬剤の診断可能時間内ではなく、かつ、第2の蛍光薬剤の診断終了時刻Teを経過したとの判定結果が判定回路33dにより得られた場合に、他の観察モードから第2の観察モードへの切り替え操作を無効化するとともに、モード切替スイッチ15の操作状態に係わらず、第2の観察モードから他の観察モード(例えば後述の第4の観察モード)へ切り替えるための制御をモータ9及び撮像アクチュエータ制御回路32に対して行うものであってもよい。
 一方、告知信号生成回路61は、現在の時刻が第2の蛍光薬剤の診断可能時間内ではないとの判定結果が判定回路33dにより得られた場合に、例えば、第2の蛍光薬剤の診断開始時刻Tsに達していない、または、第2の蛍光薬剤の診断終了時刻Teを過ぎている等のメッセージを備えた、第2の観察モードへの切り替えが不可能な時間帯である旨を伝える文字列を表示させるための文字信号を生成してモニタ4へ出力する。また、告知信号生成回路61は、現在の時刻が第2の蛍光薬剤の診断可能時間内ではないとの判定結果が判定回路33dにより得られた場合に、例えば、第2の蛍光薬剤の診断開始時刻Tsに達していない、または、第2の蛍光薬剤の診断終了時刻Teを過ぎている等のメッセージを備えた、第2の観察モードへの切り替えが不可能な時間帯である旨を伝える音声を発生させるための音声信号を生成してスピーカ63へ出力する。
 制御部33の切替制御回路33eは、現在の時刻が第1及び第2の蛍光薬剤の両方の診断可能時間内であるとの判定結果が判定回路33dにより得られた場合には、第1及び第2の蛍光薬剤に対応する励起光をそれぞれ照射する第3の観察モードへの切り替え操作がモード切替スイッチ15において行われた際に、(または、モード切替スイッチ15の操作状態によらずに他の観察モードから第3の観察モードへの切り替えが行われた際に、)光源装置1のモータ9を制御することにより、第3励起光フィルタ56をランプ7の光路上に介挿させる。すなわち、前述の第3の観察モードにおいては、790~810nmの波長帯域の参照光と、600~650nmの波長帯域の第1の励起光と、700~760nmの波長帯域の第2の励起光と、を有する面順次な第3の照明光がライトガイド13へ供給される。
 さらに、制御部33の切替制御回路33eは、現在の時刻が第1及び第2の蛍光薬剤の両方の診断可能時間内であるとの判定結果が判定回路33dにより得られた場合には、第3の観察モードへの切り替え操作がモード切替スイッチ15において行われた際に、(または、モード切替スイッチ15の操作状態によらずに他の観察モードから第3の観察モードへの切り替えが行われた際に、)撮像アクチュエータ制御回路32を制御することにより、光学フィルタ41、42及び43がランプ7の光路上に順次介挿されるタイミングと、フィルタ切替装置39aにおける光学フィルタ117aの配置状態の切り替えタイミングと、フィルタ切替装置39bにおける光学フィルタ117bの配置状態の切り替えタイミングと、を同期させるように撮像アクチュエータ39を動作させる。
 具体的には、図17、図18及び図24に示すように、撮像アクチュエータ制御回路32は、前述の第3の観察モードにおいては、CCD14の露光期間かつ光学フィルタ41がランプ7の光路上に介挿されている期間に、フィルタ切替装置39aの光学フィルタ117aの配置状態を前述の第1の配置状態(介挿状態)とし、さらに、フィルタ切替装置39bの光学フィルタ117bの配置状態を前述の第2の配置状態(退避状態)とする。また、図17、図18及び図24に示すように、撮像アクチュエータ制御回路32は、前述の第3の観察モードにおいては、CCD14の露光期間かつ光学フィルタ43がランプ7の光路上に介挿されている期間に、フィルタ切替装置39aの光学フィルタ117aの配置状態を前述の第2の配置状態(退避状態)とし、さらに、フィルタ切替装置39bの光学フィルタ117bの配置状態を前述の第1の配置状態(介挿状態)とする。一方、図17、図18及び図24に示すように、撮像アクチュエータ制御回路32は、前述の第3の観察モードにおいては、CCD14の読出期間、または、光学フィルタ42がランプ7の光路上に介挿されている期間に、フィルタ切替装置39aの光学フィルタ117aの配置状態を前述の第2の配置状態(退避状態)とし、さらに、フィルタ切替装置39bの光学フィルタ117bの配置状態を前述の第2の配置状態(退避状態)とする。
 従って、前述の第3の観察モードにおいては、ライトガイド13から出射される第3の照明光(第1の励起光及び第2の励起光)により、第1の蛍光薬剤及び第2の蛍光薬剤が励起されるため、680~750nmの波長帯域の第1の蛍光と、790~850nmの波長帯域の第2の蛍光と、790~810nmの波長帯域の参照光とが、観察対象部位201からの戻り光としてCCD14の撮像面に順次結像される。
 また、制御部33の切替制御回路33eは、現在の時刻が第1及び第2の蛍光薬剤の両方の診断可能時間内ではないとの判定結果が判定回路33dにより得られた場合には、他の観察モードから第3の観察モードへの切り替え操作がモード切替スイッチ15において行われたとしても、モータ9及び撮像アクチュエータ制御回路32に対する制御状態を当該切り替え操作が行われる以前のまま維持することにより、当該切り替え操作を無効とする。
 一方、告知信号生成回路61は、現在の時刻が第1及び第2の蛍光薬剤の両方の診断可能時間内ではないとの判定結果が判定回路33dにより得られた場合に、例えば、第1及び第2の蛍光薬剤のいずれの診断開始時刻Tsにも達していない、または、第1及び第2の蛍光薬剤の診断終了時刻Teを両方とも過ぎている等のメッセージを備えた、第3の観察モードへの切り替えが不可能な時間帯である旨を伝える文字列を表示させるための文字信号を生成してモニタ4へ出力する。また、告知信号生成回路61は、現在の時刻が第1及び第2の蛍光薬剤の両方の診断可能時間内ではないとの判定結果が判定回路33dにより得られた場合に、例えば、第1及び第2の蛍光薬剤のいずれの診断開始時刻Tsにも達していない、または、第1及び第2の蛍光薬剤の診断終了時刻Teを両方とも過ぎている等のメッセージを備えた、第3の観察モードへの切り替えが不可能な時間帯である旨を伝える音声を発生させるための音声信号を生成してスピーカ63へ出力する。
 なお、告知信号生成回路61は、判定回路33dの判定結果に基づき、第2の蛍光薬剤の診断開始時刻Ts及び診断終了時刻Teに達した時点においてそれぞれ告知を行うように動作してもよく、または、第2の蛍光薬剤の診断開始時刻Ts及び診断終了時刻Teをモニタ4に常時表示させるように動作してもよい。
 制御部33の切替制御回路33eは、現在の時刻が第1及び第2の蛍光薬剤のうちの一方の蛍光薬剤の診断可能時間内であり、かつ、他方の蛍光薬剤の診断可能時間内ではないとの判定結果が判定回路33dにより得られた場合には、第3の観察モードへの切り替え操作を無効化するとともに、前記一方の蛍光薬剤に対応する観察モード(前述の第1または第2の観察モード)へ切り替えるための制御をモータ9及び撮像アクチュエータ制御回路32に対して行う。
 告知信号生成回路61は、現在の時刻が第1及び第2の蛍光薬剤のうちの一方の蛍光薬剤の診断可能時間内であり、かつ、他方の蛍光薬剤の診断可能時間内ではないとの判定結果が判定回路33dにより得られた場合に、例えば、前記他方の蛍光薬剤の診断可能時間外であって第3の観察モードへの切り替えが不可能な時間帯であるため、前記一方の蛍光薬剤に対応する観察モードに切り替わっている等のメッセージを備えた文字列を表示させるための文字信号を生成してモニタ4へ出力する。また、告知信号生成回路61は、現在の時刻が第1及び第2の蛍光薬剤の両方の診断可能時間内ではないとの判定結果が判定回路33dにより得られた場合に、例えば、前記他方の蛍光薬剤の診断可能時間外であって第3の観察モードへの切り替えが不可能な時間帯であるため、前記一方の蛍光薬剤に対応する観察モードに切り替わっている等のメッセージを備えた音声を発生させるための音声信号を生成してスピーカ63へ出力する。
 なお、制御部33の切替制御回路33eは、判定回路33dにより得られた判定結果に基づき、第1及び第2の蛍光薬剤のうちの一方の蛍光薬剤の診断可能時間内であり、かつ、他方の蛍光薬剤の診断可能時間内ではない時間帯を経た後、第1及び第2の蛍光薬剤の両方の診断可能時間内である時刻に達した時点において、モード切替スイッチ15の操作状態に係わらず、前記一方の蛍光薬剤に対応する観察モード(前述の第1または第2の観察モード)から第3の観察モードに移行させるための制御をモータ9及び撮像アクチュエータ制御回路32に対して行ってもよい。また、制御部33の切替制御回路33eは、判定回路33dにより得られた判定結果に基づき、第1及び第2の蛍光薬剤のうちの一方の蛍光薬剤の診断可能時間内であり、かつ、他方の蛍光薬剤の診断可能時間内ではない時間帯を経た後、第1及び第2の蛍光薬剤の両方の診断可能時間内である時間帯に入った場合において、第3の観察モードへの切り替え操作がモード切替スイッチ15において行われた際に、前記一方の蛍光薬剤に対応する観察モード(前述の第1または第2の観察モード)から第3の観察モードに移行させるための制御をモータ9及び撮像アクチュエータ制御回路32に対して行ってもよい。
 一方、制御部33の切替制御回路33eは、現在の時刻が第1及び第2の蛍光薬剤のうちの少なくとも一方の蛍光薬剤の診断可能時間内ではないとの判定結果が判定回路33dにより得られた場合に、第1~第3の観察モードへの切り替え操作を全て無効化するとともに、後述の第4の観察モードへ切り替えるための制御をモータ9及び撮像アクチュエータ制御回路32に対して行うものであってもよい。このような場合、告知信号生成回路61は、例えば、蛍光観察が不可能な時間帯であるため、第4の観察モードに切り替わっている等のメッセージを備えた文字列を表示させるための文字信号を生成してモニタ4へ出力するとともに、当該メッセージを備えた音声を発生させるための音声信号を生成してスピーカ63へ出力する。
 制御部33の切替制御回路33eは、白色光を照射する第4の観察モードへの切り替え操作がモード切替スイッチ15において行われた際に、(または、モード切替スイッチ15の操作状態によらずに他の観察モードから第4の観察モードへの切り替えが行われた際に、)光源装置1のモータ9を制御することにより、通常光フィルタ50をランプ7の光路上に介挿させる。すなわち、第4の観察モードにおいては、600~650nmの波長帯域の赤色光(R光)と、500~600nmの波長帯域の緑色光(G光)と、400~500nmの波長帯域の青色光(B光)と、を有する面順次な第4の照明光(白色光)がライトガイド13へ供給される。
 さらに、制御部33の切替制御回路33eは、第4の観察モードへの切り替え操作がモード切替スイッチ15において行われた際に、(または、モード切替スイッチ15の操作状態によらずに他の観察モードから第4の観察モードへの切り替えが行われた際に、)撮像アクチュエータ制御回路32を制御することにより、フィルタ切替装置39aの光学フィルタ117aの配置状態、及び、フィルタ切替装置39bの光学フィルタ117bの配置状態がそれぞれ前述の第2の配置状態(退避状態)となるように撮像アクチュエータ39を動作させる。
 従って、前述の第4の観察モードにおいては、ライトガイド13から出射される第4の照明光(R光、G光及びB光)の反射光が、観察対象部位201からの戻り光としてCCD14の撮像面に順次結像される。
 一方、制御部33の切替制御回路33eは、第4の観察モードとするための前述の制御をモータ9及び撮像アクチュエータ制御回路32に対して行った後、さらに、0≦T≦Teであるとの判定結果が判定回路33dにより得られた場合には、調光回路27を制御して絞り12の絞り量を増加させることにより、第4の照明光に含まれる各波長帯域のうち、少なくとも一部の波長帯域の光量を所定の光量まで低下させた状態で光源装置1から出射させる。
 具体的には、調光回路27は、光源装置1から出射される第4の照明光の各波長帯域の光量がそれぞれ所定値以下となるように絞り12の絞り量を増加させる。また、このような場合において、調光回路27は、CCD14の撮像面に結像された第4の照明光の反射光の明るさが観察に適したものになるように増幅率制御回路29の増幅率を増加させる。
 または、調光回路27は、タイミングジェネレータ30からのタイミング信号に基づき、R光、G光及びB光のうち、第1または第2の励起光のいずれかと波長帯域が重複するR光が生成されるタイミングにおいて絞り12の絞り量を相対的に増加させることにより、光源装置1から出射されるR光の光量が所定値以下となるようにする。また、このような場合において、カラーバランス補正回路20は、第4の照明光の反射光に応じた観察画像のカラーバランスが観察に適したものとなるような(例えばR:G:B=1:1:1となるような)カラーバランス補正係数を設定してカラーバランスの調整を行う。なお、R光の(反射光の)光量の低下に伴うカラーバランスの調整は、カラーバランス補正回路20において単独で行われるものに限らず、カラーバランス補正回路20と色調調整回路24との連携により行われるものであってもよい。
 また、第4の観察モードにおける調光回路27の動作により制御される絞り12の絞り量(第4の照明光の光量)は、蛍光薬剤の退色特性に応じて設定されるパラメータであって、例えば、キーボード62の操作等により複数の絞り量の中から蛍光薬剤の種類毎に1つずつ選択及び設定できるようにしてもよく、または、蛍光薬剤の種類毎に予め設定された状態で記憶回路33bに格納されていてもよい。
 一方、本実施例によれば、制御部33の切替制御回路33eは、例えば、第4の観察モードとするための前述の制御を撮像アクチュエータ制御回路32に対して行った後、さらに、0≦T≦Teであるとの判定結果が判定回路33dにより得られた場合に、切替フィルタ8に設けられた通常光フィルタ50の代わりに、図示しない退色防止用フィルタに切り替えるための制御を光源装置1のモータ9に対して行うものであってもよい。
 前述の退色防止用フィルタとしては、第4の照明光に含まれる各波長帯域のうち、第1または第2の励起光のいずれかと重複する波長帯域の強度を所定の強度まで減衰させることができるように構成された、例えば、図25及び図26に示すような特性を具備するものを適用することができる。
 図25は、第1の実施例において適用可能な退色防止用フィルタの一例を示す図である。図26は、第1の実施例において適用可能な退色防止用フィルタの、図25とは異なる例を示す図である。
 図25に例示した特性を具備するように形成された退色防止用フィルタによれば、第4の照明光に含まれる各波長帯域のうち、400nm以上かつ600nm未満までの波長帯域の光(B光及びG光)を略減衰させずに通過させるとともに、600nm以上かつ650nm以下の波長帯域の光(R光)を略半分の強度まで減衰させて通過させる。そのため、図25に例示した特性を具備する退色防止用フィルタに切り替える場合においては、前述したようなカラーバランス調整がカラーバランス補正回路20(及び色調調整回路24)において行われる。
 また、図26に例示した特性を具備するように形成された退色防止用フィルタによれば、第4の照明光に含まれる各波長帯域のうち、400nm以上かつ600nm未満までの波長帯域の光(B光及びG光)を略減衰させずに通過させるとともに、600nm以上かつ650nm以下の波長帯域の光(R光)を遮断する(強度を0に減衰させる)。そのため、図26に例示した特性を具備する退色防止用フィルタに切り替える場合においては、R光の反射光を用いずに観察画像を生成する処理がプロセッサ3の各部により行われる。
 なお、本実施例によれば、第4の観察モードにおいて、絞り12の絞り量を増加させてR光の光量を低下させる制御と、図25に例示した退色防止用フィルタに切り替えてR光の強度を減衰させる制御と、が併せて行われるように構成してもよい。
 以上に述べたように、本実施例によれば、被検体の観察対象部位へ投与された蛍光薬剤から発せられる蛍光を観察する場合において、観察対象部位の診断が可能な時間帯以外における蛍光の発生を極力抑制することができるため、結果的に、観察対象部位の診断を行う際の診断能の向上を図ることができる。
(第2の実施例)
 図27から図32は、本発明の第2の実施例に係るものである。
 なお、本実施例においては、第1の実施例と同様の構成等を有する部分に関する詳細な説明を適宜省略するとともに、第1の実施例と異なる構成等を有する部分に関して主に説明を行う。
 図27は、本発明の第2の実施例に係るカプセル型医療装置の要部の構成を示す図である。図28は、図27のカプセル型医療装置を含むカプセル型医療装置システムの要部の構成を示すブロック図である。なお、図27においては、簡単のため、バッテリ1009からカプセル型医療装置1001の各部への配線を省略している。また、図28においては、簡単のため、カプセル型医療装置1001の構成の一部を省略している。
 カプセル型医療装置1001は、図27及び図28に示すように、カプセル型の筐体1002と、該筐体1002内に収容され、透明窓1002bを介して励起光を照射する励起光出射部1003と、体腔内の観察対象部位を撮像して撮像信号を出力する撮像部1005と、該撮像部1005から出力される撮像信号に種々の画像処理を施して画像信号を生成する画像生成部1006と、筐体1002の外部へ無線信号を送信可能な無線送信部1007aと、筐体1002の外部から送信された無線信号を受信することが可能な無線受信部1007bと、カプセル型医療装置1001の各部に対する制御を行う制御部1008と、カプセル型医療装置1001の各部を駆動させるための駆動電力を供給可能なバッテリ1009と、を有して構成されている。
 また、図28に示すように、カプセル型医療装置1001の外部には、無線送信部1007a及び1007bとの間における無線信号の送受信が可能な送受信部1014と、送受信部1014との間において双方向の通信を行うことが可能な端末装置1015と、が設けられている。すなわち、本実施例のカプセル型医療装置システムは、図28に示すように、カプセル型医療装置1001と、送受信部1014と、端末装置1015と、により構成されている。
 カプセル型の筐体1002は、円筒状の筐体本体1002aの両端を半球状の透明窓1002b及び端板1002cにより密封して形成されている。
 励起光出射部1003は、ランプ7と同一の波長帯域の光を発するLED1003aと、LED1003aの発光面の前面に配置されるとともに、第1励起光フィルタ51と同一の特性(図10参照)を具備するように形成された励起光フィルタ1003bと、を有している。
 図29は、図27のカプセル型医療装置において、励起光照明部及び撮像部が配置される位置の一例を示す図である。
 なお、カプセル型医療装置1001の励起光出射部1003は、例えば図29に示すように、撮像部1005の周囲に4つ配置したものに限らず、1つ以上であれば撮像部1005の周囲にいくつ配置してもよい。
 撮像部1005は、透明窓1002bを介して筐体1002の内部に入射される戻り光を集光する対物光学系1005aと、光学フィルタ117aと同一の特性(図6参照)を具備するように形成された励起光カットフィルタ1005bと、対物光学系1005a及び励起光カットフィルタ1005bを通過した光を撮像して撮像信号を出力することが可能な高感度CCD等の撮像素子1005cと、を有している。
 無線送信部1007aは、画像生成部1006により生成された画像信号に対して変調等の信号処理を施すことにより無線信号を生成し、当該生成した無線信号を送受信部1014へ送信できるように構成されている。
 無線受信部1007bは、送受信部1014から送信される無線信号を受信して復調等の信号処理を施して得られたデータを制御部1008へ出力できるように構成されている。
 CPU及びメモリ等からなる制御部1008は、第1の実施例の演算処理回路33aに相当する演算処理部1008a、第1の実施例の記憶回路33bに相当する記憶部1008b、第1の実施例の計時回路33cに相当する計時部1008c、第1の実施例の判定回路33dに相当する判定部1008d、及び、第1の実施例の切替制御回路33eに相当する切替制御部1008eを具備して構成されている。また、制御部1008(の切替制御部1008e)は、無線受信部1007bから出力されるデータに基づいて前述の各部を動作させることにより、後程述べるような制御をカプセル型医療装置1001の各部に対して行う。
 端末装置1015は、送受信部1014との間において双方向の通信を行うことが可能なパーソナルコンピュータまたは携帯端末等として構成されており、例えば、送受信部1014からの出力信号に応じた画像を記録するための記録媒体を具備する端末装置本体と、送受信部1014からの出力信号に応じた画像等を表示可能な表示部と、文字列の入力操作等を行うことが可能な入力操作部と、を有して構成されている。
 続いて、本実施例のカプセル型医療装置1001の作用について説明を行う。
 まず、術者等は、カプセル型医療装置1001の電源をオンした後、被検者の観察対象部位への蛍光薬剤の投与と、当該被検者へのカプセル型医療装置1001の導入とを略同時に行う。
 次に、術者等は、端末装置1015の入力操作部を操作することにより、基準値Ns及びNeと、使用する蛍光薬剤の種類と、蛍光薬剤を投与する対象部位(観察対象部位)が属する器官と、当該対象部位への蛍光薬剤の投与方法と、蛍光薬剤の被検者への投与開始時刻と、の各情報の入力を行う。
 端末装置1015の端末装置本体は、入力操作部において前述の各情報が入力されたことを検出すると、当該入力された各情報をデジタルデータに変換した後、当該変換されたデジタルデータを含む無線信号を送受信部1014から無線受信部1007bへ送信させるように動作する。
 一方、制御部1008は、無線受信部1007bから出力されるデジタルデータに基づき、新たな基準値Ns及びNeが設定されたことを検出すると、記憶部1008bに格納されている基準値Ns及びNeを更新する。
 また、制御部1008は、無線受信部1007bから出力されるデジタルデータに基づき、記憶部1008bに格納された複数の蛍光薬剤のテーブルデータの中から、使用する蛍光薬剤の種類に一致する1つのテーブルデータを選択した後、さらに、当該選択した1つのテーブルデータの中から、蛍光薬剤を投与する対象部位(観察対象部位)が属する器官、及び、対象部位への蛍光薬剤の投与方法の組み合わせに該当する1つの薬剤動態を選択する。
 なお、本実施例によれば、例えば、記憶部1008bに格納される各テーブルデータにおける薬剤動態毎に予め基準値Ns及びNeを設定しておくことにより、1つの薬剤動態の選択に伴って基準値Ns及びNeが一意に定まるように構成されていてもよい。
 制御部1008の演算処理部1008aは、記憶部1008bに格納された基準値Ns及びNeと、蛍光薬剤の被検者への投与開始時刻と、に基づき、前述の処理により選択した1つの薬剤動態において、蛍光薬剤を被検者に投与してからの経過時間T=0かつ蛍光薬剤の集積量N=0の点を当該投与開始時刻に一致させ、集積量N=Nsとなる最初の経過時間Tに相当する診断開始時刻Tsを取得し、さらに、診断開始時刻Ts以降において最後に集積量N=Neとなる経過時間Tに相当する診断終了時刻Teを取得する。
 制御部1008の判定部1008dは、演算処理部1008aにより取得された診断開始時刻Ts及び診断終了時刻Teと、計時部1008cの計測結果と、に基づき、現在の時刻が診断開始時刻Tsから診断終了時刻Teまでの時間帯である診断可能時間内に相当するか否かに関する判定を随時行う。
 制御部1008の切替制御部1008eは、現在の時刻が診断可能時間内ではないとの判定結果が判定部1008dにより得られた場合には、励起光出射部1003の各LED1003aを消光させるための制御を行い、撮像部1005の撮像素子1005cの駆動を停止させるための制御を行い、さらに、画像生成部1006及び無線送信部1007aの動作を停止させるための制御を行う。
 また、制御部1008の切替制御部1008eは、現在の時刻が診断可能時間内であるとの判定結果が判定部1008dにより得られた場合には、励起光出射部1003の各LED1003aを発光させるための制御を行い、撮像部1005の撮像素子1005cを駆動させるための制御を行い、さらに、画像生成部1006及び無線送信部1007aを動作させるための制御を行う。
 すなわち、本実施例のカプセル型医療装置1001によれば、現在の時刻が被検者に投与した蛍光薬剤の診断開始時刻Tsに達していない場合、及び、現在の時刻が被検者に投与した蛍光薬剤の診断終了時刻Teを過ぎている場合には、励起光の発生、撮像信号の出力、画像信号の生成に係る画像処理、及び、無線信号の送信に関する各動作が行われない。また、本実施例のカプセル型医療装置1001によれば、現在の時刻が診断開始時刻Tsから診断終了時刻Teまでの時間帯に属する場合においてのみ、励起光の発生、撮像信号の出力、画像信号の生成に係る画像処理、及び、無線信号の送信に関する各動作が行われる。
 一方、本実施例においては、図27に例示したカプセル型医療装置1001を用いる代わりに、図30に示すようなカプセル型医療装置1101を用いてカプセル型医療装置システムを構成してもよい。
 図30は、本発明の第2の実施例の変形例に係るカプセル型医療装置の要部の構成を示す図である。図31は、図30のカプセル型医療装置を含むカプセル型医療装置システムの要部の構成を示すブロック図である。なお、図30においては、簡単のため、バッテリ1009からカプセル型医療装置1101の各部への配線を省略している。また、図31においては、簡単のため、カプセル型医療装置1101の構成の一部を省略している。
 カプセル型医療装置1101は、図30及び図31に示すように、筐体1002と、励起光出射部1003と、該筐体1002内に収容され、透明窓1002bを介して白色光を照射する白色光出射部1103と、撮像部1105と、画像生成部1006と、無線送信部1007aと、無線受信部1007bと、制御部1008と、バッテリ1009と、を有して構成されている。
 また、図31に示すように、カプセル型医療装置1101の外部には、無線送信部1007a及び1007bとの間における無線信号の送受信が可能な送受信部1014と、送受信部1014との間において双方向の通信を行うことが可能な端末装置1015と、が設けられている。すなわち、本実施例の変形例のカプセル型医療装置システムは、図31に示すように、カプセル型医療装置1101と、送受信部1014と、端末装置1015と、により構成されている。
 白色光出射部1103は、ランプ7と同一の波長帯域の光を発するLED1103aと、LED1103aの発光面の前面に配置されるとともに、通常光フィルタ50と同一の特性(図9参照)を具備するように形成された白色光フィルタ1103bと、を有している。
 図32は、図30のカプセル型医療装置において、励起光照明部、白色光照明部、及び、撮像部が配置される位置の一例を示す図である。
 なお、カプセル型医療装置1101の励起光出射部1003及び白色光出射部1103は、例えば図32に示すように、撮像部1105の周囲に2つずつ配置したものに限らず、1つずつ以上であれば撮像部1105の周囲にいくつ配置してもよい。
 撮像部1105は、対物光学系1005aと、撮像素子1005cと、対物光学系1005aと撮像素子1005cとの間の光路上に配置されたフィルタ切替部1105bと、を有している。
 フィルタ切替部1105bは、例えば図31に示すように、励起光カットフィルタ1005bを対物光学系1005aから撮像素子1005cに至るまでの光路上に介挿した状態と、励起光カットフィルタ1005bを対物光学系1005aから撮像素子1005cに至るまでの光路上から退避した状態と、を制御部1008の制御に応じて切り替え可能な構成を有している。
 すなわち、撮像部1105は、フィルタ切替部1105bの励起光カットフィルタ1005bが対物光学系1005aから撮像素子1005cに至るまでの光路上に介挿された状態において、対物光学系1005a及び励起光カットフィルタ1005bを通過した光を撮像素子1005cに結像させることができるように構成されている。また、撮像部1105は、フィルタ切替部1105bの励起光カットフィルタ1005bが対物光学系1005aから撮像素子1005cに至るまでの光路上から退避された状態において、対物光学系1005aを通過した光を撮像素子1005cに結像させることができるように構成されている。
 なお、撮像部1105のフィルタ切替部1105bは、例えば、第1の実施例において説明したフィルタ切替装置39aと同様の構成を有していてもよく、または、前述の2つの状態を切り替え可能な構成を有する限りにおいては、他の構成を有していてもよい。
 続いて、本実施例の変形例のカプセル型医療装置1101の作用について説明を行う。
 まず、術者等は、カプセル型医療装置1101の電源をオンした後、被検者への蛍光薬剤の投与と、当該被検者へのカプセル型医療装置1101の導入とを略同時に行う。
 次に、術者等は、端末装置1015の入力操作部を操作することにより、基準値Ns及びNeと、使用する蛍光薬剤の種類と、蛍光薬剤を投与する対象部位(観察対象部位)が属する器官と、当該対象部位への蛍光薬剤の投与方法と、蛍光薬剤の被検者への投与開始時刻と、の各情報の入力を行う。
 端末装置1015の端末装置本体は、入力操作部において前述の各情報が入力されたことを検出すると、当該入力された各情報をデジタルデータに変換した後、当該変換されたデジタルデータを含む無線信号を送受信部1014から無線受信部1007bへ送信させるように動作する。
 一方、制御部1008は、無線受信部1007bから出力されるデジタルデータに基づき、新たな基準値Ns及びNeが設定されたことを検出すると、記憶部1008bに格納されている基準値Ns及びNeを更新する。
 また、制御部1008は、無線受信部1007bから出力されるデジタルデータに基づき、記憶部1008bに格納された複数の蛍光薬剤のテーブルデータの中から、使用する蛍光薬剤の種類に一致する1つのテーブルデータを選択した後、さらに、当該選択した1つのテーブルデータの中から、蛍光薬剤を投与する対象部位(観察対象部位)が属する器官、及び、対象部位への蛍光薬剤の投与方法の組み合わせに該当する1つの薬剤動態を選択する。
 制御部1008の演算処理部1008aは、記憶部1008bに格納された基準値Ns及びNeと、蛍光薬剤の被検者への投与開始時刻と、に基づき、前述の処理により選択した1つの薬剤動態において、蛍光薬剤を被検者に投与してからの経過時間T=0かつ蛍光薬剤の集積量N=0の点を当該投与開始時刻に一致させ、集積量N=Nsとなる最初の経過時間Tに相当する診断開始時刻Tsを取得し、さらに、診断開始時刻Ts以降において最後に集積量N=Neとなる経過時間Tに相当する診断終了時刻Teを取得する。
 制御部1008の判定部1008dは、演算処理部1008aにより取得された診断開始時刻Ts及び診断終了時刻Teと、計時部1008cの計測結果と、に基づき、現在の時刻が診断開始時刻Tsから診断終了時刻Teまでの時間帯である診断可能時間内に相当するか否かに関する判定を随時行う。
 制御部1008の切替制御部1008eは、現在の時刻が診断可能時間内ではないとの判定結果が判定部1008dにより得られた場合には、励起光出射部1003の各LED1003aを消光させるための制御を行い、白色光出射部1103の各LED1103aを発光させるための制御を行い、さらに、励起光カットフィルタ1005bを対物光学系1005aから撮像素子1005cに至るまでの光路上から退避させるための制御をフィルタ切替部1105bに対して行う。
 また、制御部1008の切替制御部1008eは、現在の時刻が診断可能時間内であるとの判定結果が判定部1008dにより得られた場合には、励起光出射部1003の各LED1003aを発光させるための制御を行い、白色光出射部1103の各LED1103aを消光させるための制御を行い、さらに、励起光カットフィルタ1005bを対物光学系1005aから撮像素子1005cに至るまでの光路上に介挿させるための制御をフィルタ切替部1105bに対して行う。
 すなわち、本実施例の変形例のカプセル型医療装置1101によれば、現在の時刻が被検者に投与した蛍光薬剤の診断開始時刻Tsに達していない場合、及び、現在の時刻が被検者に投与した蛍光薬剤の診断終了時刻Teを過ぎている場合においては、白色光の照射が行われ、当該白色光の戻り光(反射光)を撮像した白色光画像が取得されるとともに、当該白色光画像が無線により送信される。また、本実施例のカプセル型医療装置1101によれば、現在の時刻が診断開始時刻Tsから診断終了時刻Teまでの時間帯に属する場合には、励起光の照射が行われ、当該励起光により励起された蛍光を撮像した蛍光画像が取得されるとともに、当該蛍光画像が無線により送信される。
 なお、カプセル型医療装置1101においては、例えば、図25に示した特性を具備する退色防止用フィルタを白色光フィルタ1103bの代わりに設けることにより、白色光出射部1103から出射される白色光の各波長帯域のうち、励起光出射部1003から出射される励起光と重複する波長帯域の強度を所定の強度まで減衰させるとともに、このような強度の減衰を補正するためのカラーバランスの調整を画像生成部1006が行うものであっても良い。
 また、カプセル型医療装置1101において、例えば、電荷増幅装置を具備する撮像素子1005cを用いた場合には、白色光出射部1103から出射される白色光の各波長帯域の光量を所定の光量まで低下させるようにLED1103aの駆動電流を変化する制御、及び、このような光量の低下を補うことが可能な前記電荷増幅装置の増幅率とする制御を制御部1008(切替制御部1008e)が行うものであっても良い。
 以上に述べたように、本実施例によれば、被検体の観察対象部位へ投与された蛍光薬剤から発せられる蛍光を観察する場合において、観察対象部位の診断が可能な時間帯以外における蛍光の発生を極力抑制することができるため、結果的に、観察対象部位の診断を行う際の診断能の向上を図ることができる。
 なお、本発明は、上述した各実施例に限定されるものではなく、発明の趣旨を逸脱しない範囲内において種々の変更や応用が可能であることは勿論である。
 本出願は、2010年12月13日に日本国に出願された特願2010-277340号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲、図面に引用されたものとする。

Claims (10)

  1.  生体内における薬剤動態に関する情報が複数の蛍光薬剤の種類毎に予め格納された記憶部と、
     前記記憶部に格納された情報と、所望の蛍光薬剤が投与される被検体の対象部位の情報と、前記所望の蛍光薬剤の前記対象部位への投与方法の情報と、前記所望の蛍光薬剤の投与開始時刻の情報と、に基づき、前記所望の蛍光薬剤に対応する診断開始時刻を取得する演算処理部と、
     少なくとも前記投与開始時刻から前記診断開始時刻に達するまでの時間帯において、前記所望の蛍光薬剤を励起するための励起光の照射を停止し、前記診断開始時刻に基づいて前記励起光を照射するように制御を行う光源制御部と、
     を有することを特徴とする医療装置。
  2.  前記演算処理部の処理結果に基づき、現在の時刻が前記診断開始時刻に達したか否かの判定を行う判定部をさらに有し、
     前記光源制御部は、前記判定部の判定結果に基づき、少なくとも前記投与開始時刻から前記診断開始時刻に達するまでの時間帯において、前記励起光と白色光とを切り替えて出射可能な照明光出射部から前記白色光を照射させるように制御を行うことを特徴とする請求項1に記載の医療装置。
  3.  前記光源制御部は、前記励起光と重複する波長帯域の光量が低下した状態の前記白色光を前記照明光出射部から照射させるように制御を行うことを特徴とする請求項2に記載の医療装置。
  4.  前記照明光出射部には、前記白色光の各波長帯域のうち、前記励起光と重複する波長帯域の強度を減衰させるように構成されたフィルタが設けられていることを特徴とする請求項2に記載の医療装置。
  5.  前記光源制御部は、前記診断開始時刻に達した時点において、前記励起光を照射させるように制御を行うことを特徴とする請求項1に記載の医療装置。
  6.  前記光源制御部は、前記判定部の判定結果に基づき、前記診断開始時刻に達した時点において、前記照明光出射部から照射される照明光を前記白色光から前記励起光へ切り替えるように制御を行うことを特徴とする請求項2に記載の医療装置。
  7.  前記演算処理部は、前記診断開始時刻と、前記診断開始時刻以降の診断終了時刻と、を取得し、
     前記判定部は、現在の時刻が前記診断開始時刻から前記診断終了時刻までの時間帯である診断可能時間内であるか否かの判定を行い、
     前記光源制御部は、前記判定部の判定結果に基づき、前記診断可能時間内ではない場合において、前記照明光出射部から前記白色光を照射させるように制御を行うことを特徴とする請求項2に記載の医療装置。
  8.  前記診断開始時刻は、前記投与開始時刻以降において、前記対象部位に投与された前記所望の蛍光薬剤の集積量が所定の基準値となる最初の時刻であることを特徴とする請求項1に記載の医療装置。
  9.  現在の時刻が前記診断開始時刻に達していないとの判定結果が前記判定部により得られた場合に、前記照明光出射部から照射される照明光を前記白色光から前記励起光へ切り替えることが不可能である旨を、視覚情報及び聴覚情報の少なくともいずれか一方により伝えることが可能な告知部をさらに有することを特徴とする請求項2に記載の医療装置。
  10.  現在の時刻が前記診断可能時間内ではないとの判定結果が前記判定部により得られた場合に、前記照明光出射部から照射される照明光を前記白色光から前記励起光へ切り替えることが不可能である旨を、視覚情報及び聴覚情報の少なくともいずれか一方により伝えることが可能な告知部をさらに有することを特徴とする請求項7に記載の医療装置。
PCT/JP2011/075687 2010-12-13 2011-11-08 医療装置 WO2012081336A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180034489.9A CN102984991B (zh) 2010-12-13 2011-11-08 医疗装置
JP2012527552A JP5139602B2 (ja) 2010-12-13 2011-11-08 医療装置
EP11849714.8A EP2596739A4 (en) 2010-12-13 2011-11-08 Medical apparatus
US13/495,059 US8868160B2 (en) 2010-12-13 2012-06-13 Medical apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-277340 2010-12-13
JP2010277340 2010-12-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/495,059 Continuation US8868160B2 (en) 2010-12-13 2012-06-13 Medical apparatus

Publications (1)

Publication Number Publication Date
WO2012081336A1 true WO2012081336A1 (ja) 2012-06-21

Family

ID=46244449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075687 WO2012081336A1 (ja) 2010-12-13 2011-11-08 医療装置

Country Status (5)

Country Link
US (1) US8868160B2 (ja)
EP (1) EP2596739A4 (ja)
JP (1) JP5139602B2 (ja)
CN (1) CN102984991B (ja)
WO (1) WO2012081336A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017012666A (ja) * 2015-07-06 2017-01-19 オリンパス株式会社 内視鏡検査データ記録システム
JP2017012665A (ja) * 2015-07-06 2017-01-19 オリンパス株式会社 内視鏡検査データ記録システム
WO2017221336A1 (ja) * 2016-06-21 2017-12-28 オリンパス株式会社 内視鏡システム、画像処理装置、画像処理方法およびプログラム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105407789B (zh) * 2013-08-01 2017-07-14 奥林巴斯株式会社 内窥镜***、内窥镜***的工作方法
CN107105994B (zh) * 2015-10-16 2019-04-16 奥林巴斯株式会社 内窥镜装置
WO2017109815A1 (ja) * 2015-12-21 2017-06-29 オリンパス株式会社 光走査型観察装置、及び、パルス状レーザ光の照射パラメータ調整方法
JP7123166B2 (ja) * 2018-12-10 2022-08-22 オリンパス株式会社 画像記録装置、画像記録装置の作動方法及び内視鏡システム

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10113327A (ja) * 1996-10-02 1998-05-06 Richard Wolf Gmbh 内視鏡装置
JP2004521680A (ja) * 2001-01-22 2004-07-22 ヴイ−ターゲット テクノロジーズ リミテッド 摂取可能な装置
JP2006061683A (ja) 2004-07-30 2006-03-09 Olympus Corp 内視鏡装置
JP2006122131A (ja) * 2004-10-26 2006-05-18 Olympus Corp 画像生成装置
JP2006194646A (ja) * 2005-01-11 2006-07-27 Olympus Corp 蛍光剤集積濃度測定装置
JP2007125355A (ja) * 2005-10-04 2007-05-24 Olympus Corp 投与量制御装置、投与システム、及び、投与量制御方法
JP2007303990A (ja) * 2006-05-12 2007-11-22 Matsushita Electric Ind Co Ltd 蛍光診断装置
JP2009008717A (ja) 2007-06-26 2009-01-15 Olympus Corp 光調節装置及び光学装置
JP2009008719A (ja) 2007-06-26 2009-01-15 Olympus Corp 光調節装置及び光学装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020099310A1 (en) 2001-01-22 2002-07-25 V-Target Ltd. Gastrointestinal-tract sensor
EP1594551A2 (en) * 2003-02-19 2005-11-16 Sicel Technologies, Inc. In vivo fluorescence sensors, systems, and related methods operating in conjunction with fluorescent analytes
US7798955B2 (en) * 2004-10-26 2010-09-21 Olympus Corporation Image generating device for generating a fluorescence image
US7966051B2 (en) * 2005-01-11 2011-06-21 Olympus Corporation Fluorescent agent concentration measuring apparatus, dose control apparatus, administration system, fluorescent agent concentration measuring method, and dose control method
JP2008161550A (ja) * 2006-12-28 2008-07-17 Olympus Corp 内視鏡システム
JP5208430B2 (ja) * 2007-01-31 2013-06-12 オリンパス株式会社 生体組織用蛍光観察装置
WO2009148121A1 (ja) * 2008-06-05 2009-12-10 株式会社 島津製作所 新規な分子集合体、それを用いた分子イメージング用分子プローブ及び薬剤搬送システム用分子プローブ、並びに分子イメージングシステム及び薬剤搬送システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10113327A (ja) * 1996-10-02 1998-05-06 Richard Wolf Gmbh 内視鏡装置
JP2004521680A (ja) * 2001-01-22 2004-07-22 ヴイ−ターゲット テクノロジーズ リミテッド 摂取可能な装置
JP2006061683A (ja) 2004-07-30 2006-03-09 Olympus Corp 内視鏡装置
JP2006122131A (ja) * 2004-10-26 2006-05-18 Olympus Corp 画像生成装置
JP2006194646A (ja) * 2005-01-11 2006-07-27 Olympus Corp 蛍光剤集積濃度測定装置
JP2007125355A (ja) * 2005-10-04 2007-05-24 Olympus Corp 投与量制御装置、投与システム、及び、投与量制御方法
JP2007303990A (ja) * 2006-05-12 2007-11-22 Matsushita Electric Ind Co Ltd 蛍光診断装置
JP2009008717A (ja) 2007-06-26 2009-01-15 Olympus Corp 光調節装置及び光学装置
JP2009008719A (ja) 2007-06-26 2009-01-15 Olympus Corp 光調節装置及び光学装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2596739A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017012666A (ja) * 2015-07-06 2017-01-19 オリンパス株式会社 内視鏡検査データ記録システム
JP2017012665A (ja) * 2015-07-06 2017-01-19 オリンパス株式会社 内視鏡検査データ記録システム
WO2017221336A1 (ja) * 2016-06-21 2017-12-28 オリンパス株式会社 内視鏡システム、画像処理装置、画像処理方法およびプログラム
US10299658B2 (en) 2016-06-21 2019-05-28 Olympus Corporation Endoscope system, image processing device, image processing method, and computer-readable recording medium

Also Published As

Publication number Publication date
EP2596739A4 (en) 2017-08-16
US20120271128A1 (en) 2012-10-25
JP5139602B2 (ja) 2013-02-06
CN102984991B (zh) 2015-04-01
US8868160B2 (en) 2014-10-21
EP2596739A1 (en) 2013-05-29
JPWO2012081336A1 (ja) 2014-05-22
CN102984991A (zh) 2013-03-20

Similar Documents

Publication Publication Date Title
JP5139602B2 (ja) 医療装置
JP4773583B2 (ja) 蛍光観察装置
JP4818753B2 (ja) 内視鏡システム
EP1637062A1 (en) Endoscopic device
JP5200192B2 (ja) 医療装置
JP5372356B2 (ja) 内視鏡装置及び内視鏡装置の作動方法
JP4855586B2 (ja) 内視鏡装置
WO2011048886A1 (ja) 蛍光観察装置
US20090118578A1 (en) Endoscope apparatus and image processing apparatus
US20060173358A1 (en) Fluorescence observation endoscope apparatus and fluorescence observation method
WO2006077799A1 (ja) 電子内視鏡装置
JP5200193B2 (ja) 医療装置
CN103118582B (zh) 荧光观察装置
JP4716801B2 (ja) 内視鏡撮像システム
JP4679013B2 (ja) 内視鏡用画像処理装置
JP2007068896A (ja) 蛍光内視鏡システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180034489.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012527552

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849714

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011849714

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE