WO2012080548A1 - Bak mutant, associated method for the identification of bak-modulating substances and bak activity inhibiting peptide - Google Patents

Bak mutant, associated method for the identification of bak-modulating substances and bak activity inhibiting peptide Download PDF

Info

Publication number
WO2012080548A1
WO2012080548A1 PCT/ES2011/070850 ES2011070850W WO2012080548A1 WO 2012080548 A1 WO2012080548 A1 WO 2012080548A1 ES 2011070850 W ES2011070850 W ES 2011070850W WO 2012080548 A1 WO2012080548 A1 WO 2012080548A1
Authority
WO
WIPO (PCT)
Prior art keywords
bak
polypeptide
membrane
protein
activation
Prior art date
Application number
PCT/ES2011/070850
Other languages
Spanish (es)
French (fr)
Inventor
Gorka BASAÑEZ ASUA
Olatz LANDETA DÍAZ
Ane Landajuela Larma
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Universidad Del País Vasco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Universidad Del País Vasco filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2012080548A1 publication Critical patent/WO2012080548A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4747Apoptosis related proteins

Definitions

  • Mutant of BAK associated method for the identification of BAK modulating substances and peptide inhibitor of BAK activity
  • the present invention relates to BAK derived polypeptides and methods that employ them to analyze the activation or functional inhibition of membrane-associated BAK . These methods are useful for identifying compounds of potential therapeutic application that modulate the proapoptotic activity of BAK.
  • the BCL2 (B-cell lymphoma 2) protein family, of which BAK is part ⁇ BCL2 antagonist / killer 1), is the main regulatory component of intracellular apoptotic machinery ⁇ Youle and Strasser 2008, Nature Rev Mol Cell Biol 9: 47-59). These proteins act at the point of "non-return" of the apoptotic process, modulating the permeabilization of the external mitochondrial membrane (MME) that allows the exit of various lethal factors from inside the mitochondria to the cellular cytosol. Given its crucial importance for cell viability, disorders in the function of BCL2 family proteins have been associated with a wide variety of human pathologies, including cancer and various degenerative and infectious diseases. In recent years, BCL2 family proteins have become promising therapeutic targets. Proof of this is that there are currently several compounds against BCL2 in advanced stages of clinical evaluation (G. Lessene et al. 2008, Nature Rev Drug Discovery 7: 989-1000).
  • BCL2 conserved homology domains
  • BAK / BAX proapoptotic proteins ⁇ BCL2-associated X protein
  • tBID proapoptotic "BH3-only” proteins
  • BCL2 type antiapoptotic proteins BCL2, BCL-X L ⁇ BCL2-like 1), MCL1 [myeloid cell leukemia sequence 1 (BCL2-related)), which contain the BH1 -BH4 domains and act as BAK / BAX inhibitor ligands.
  • BCL2 type antiapoptotic proteins BCL2, BCL-X L ⁇ BCL2-like 1
  • MCL1 [myeloid cell leukemia sequence 1 (BCL2-related)
  • BAK plays a fundamental and exclusive role (not shared by BAX) in the cellular resistance to apoptosis induced by multiple anticancer drugs (Wang and cois 2001, J B ⁇ ol Chem 276: 34307- 34317; Gillissen et al. 2010, J. Cell Biol. 188: 851-862), as well as in the premature or excessive induction of apoptosis associated with certain neurodegenerative processes and with infection by various pathogens (Someya 2009, Proc Nati Acad Sci USA 106: 19432-19437; Pardo et al. 2006, J Cell Biol 174: 509-519; Du et cois 2010, Mol Cell Biol 30: 3444-3452).
  • BAK BAK with multiple cell ligands both within the BCL2 family (for example tBID, MCL1, and BCL-X L ) and outside it (for example, DLP1 / Drp1 (dynamin 1 -like protein) (Montessu ⁇ t et al. 2010, Cell 142: 889-891)
  • BAK BAK with multiple cell ligands both within the BCL2 family (for example tBID, MCL1, and BCL-X L ) and outside it (for example, DLP1 / Drp1 (dynamin 1 -like protein) (Montessu ⁇ t et al. 2010, Cell 142: 889-891)
  • BAK is an integral protein of the MME
  • BAX and most of the antiapoptotic members of The BCL2 family are amphotropic proteins that are located both in the MME and in the cytosol.
  • BCL2 family proteins As noted above, a fundamental biological activity of BCL2 family proteins is to establish protein-protein interactions. Structural studies conducted with water-soluble and purified forms of amphotropic members of the BCL2 family have identified hydrophobic cavities on the surface of these molecules that act as binding sites for specific ligands. Based on these and other observations, various methods have been developed to quantify interactions between specific members of the BCL2 family and their respective ligands in an aqueous environment, using defined composition systems (WO2009042237, WO2002040530). Likewise, using these methods to analyze protein-protein interactions in aqueous media, peptides and other compounds of potential therapeutic application have been identified selectively directed against specific amphotropic members of the BCL2 family (WO2010068684, WO2010065865).
  • the present invention relates to a deletion mutant of the human BAK protein (SEQ ID NO: 1) that preserves the transmembrane segment and function and can be purified highly efficiently due to its majority presence in the soluble fraction resulting from the lysate of the cells where it is produced.
  • This mutant lacks between 4 and 6 amino acids of its carboxyl terminal end, which does not affect the function of the protein and nevertheless favors its purification.
  • the authors of the present invention have developed methods to examine in a controlled manner the functional activation of this BAK mutant, located in a suitable lipid environment, in order to identify compounds capable of specifically modulating the membrane-associated BAK proapoptotic activity. . These methods and compounds are useful in the pharmaceutical and clinical research of diseases associated with functional disorders of BAK.
  • BAK protein lacks only 4 to 6 amino acids from its terminal carboxyl end implies that it is very similar to the native protein since it contains its transmembrane domain, which greatly increases the chances that substances that demonstrate a capacity for Modulate the activity of BAK in vitro, do it also in vivo, and therefore be good candidates for use in the preparation of medications.
  • a first aspect of the invention relates to a mutant derived from the human BAK protein, which contains its transmembrane domain and preserves basic functional features of the wild protein but lacks 4 to 6 amino acids from its terminal carboxy terminus.
  • a second aspect of the invention relates to a method that allows the functional activation of this BAK mutant linked to model membranes of defined lipid composition to be analyzed.
  • a third aspect of the invention relates to the use of the method of the second aspect of the invention to identify substances that modulate the functional activation of BAK.
  • Another aspect of the invention relates to a peptide with BAK inhibitory activity, as well as a composition comprising it and the use of the peptide or the composition for the manufacture of a medicament.
  • Another aspect of the invention relates to a kit comprising the truncated BAK protein of the first aspect of the invention.
  • a first aspect of the invention relates to a polypeptide where the amino acid sequence is that of the truncated human BAK protein so that four to six amino acids are removed from its terminal carboxy terminus or a bioequivalent variant.
  • the amino acid sequence of the polypeptide is SEO ID NO: 3.
  • bioequivalent variant refers to a molecule with the same function as the described molecule, which may have slight variations with respect to the described molecule without such variations providing any technical effect. added to said molecule.
  • the polypeptide of the first aspect of the invention is conjugated (covalently linked) to a label.
  • said marker is a fluorophore. More preferably, the fluorophore is 7-nitrobenz-2-oxa-1,3-diazolylethylenediamine (NBD).
  • marker refers to a molecule that facilitates the detection of the molecule to which it binds and, therefore, the label.
  • a marker can be a molecule that emits energy (radioactivity, light, fluorescence), an enzyme capable of generating a detectable product (colored, fluorescent, luminous), a protein or an epitope easily detected by immunological methods or based on recognition and binding affinity
  • markers are radioactive isotopes, luciferase protein, fluorescent proteins or fluorophores, enzymes such as peroxidases or alkaline phosphatase, epitopes such as myc or FLAG, proteins such as GST (glutathione S transferase) or biotin, etc.
  • a fluorophore is a substance that emits light with a characteristic wavelength (emission wavelength (Aem)) when excited with a light with a characteristic wavelength (excitation wavelength (Aex)) and less than the emission wavelength.
  • a second aspect of the present invention relates to a method for identifying substances that modulate the functional activation of membrane-associated BAK, which comprises the following steps: (a) contacting the polypeptide of the first aspect of the invention with a system of membranes rich in mitochondrial lipids to form a complex,
  • step (b) contacting the product resulting from step (a) with the substance to be tested,
  • the polypeptide described in step (a) is NBD-SEQ ID NO: 3 (the polypeptide whose amino acid sequence is SEQ ID NO: 3 conjugated to NBD) or a bioequivalent variant of the same.
  • the membrane system described in step (a) is a set of liposomes.
  • the term "liposomes" indicates a set of purely lipid vesicles of defined composition.
  • the mitochondrial lipid is cardiolipin.
  • the activation or functional inhibition of the NBD-SEQ ID NO: 3 polypeptide is measured by fluorescence.
  • Another aspect of the invention relates to the use of the substances identified by the method of the second aspect of the invention for the preparation of a medicament for the treatment and / or prevention of diseases related to BAK activation resistance.
  • the disease is cancer.
  • Another aspect of the invention relates to the use of the substances identified by the method of the second aspect of the invention for the preparation of a medicament for the treatment and / or prevention of diseases related to hyperactivation of BAK.
  • diseases related to hyperactivation of BAK can be all those diseases related to an abnormal apoptotic death.
  • Some non-limiting examples of these diseases associated with excessive or premature BAK-dependent apoptosis are invasive aspergillosis caused by the bacterium Aspergillus fumigatus (Brown and cois. J Cell Biol. 2006; 1 74 (4): 509-19), Gonorrhea caused by Ne ⁇ sseria gonorrheae (Kepp et al.
  • Another aspect of the invention relates to a fragment of the polypeptide of the first aspect of the invention (hereinafter called the peptide of the invention) consisting of amino acids 164 to 185 of said polypeptide, a fragment or a derivative thereof.
  • the sequence of said fragment or peptide is SEQ ID NO: 7
  • SEQ ID NO: 7 (BAK 164 "185 ) inhibits BAK (Fig. 7) and also has a low IC50 (table 1), less than the IC50 of the sequence peptides SEQ ID NO: 8 (BAK 68 "), SEQ ID NO: 9 BAK 120" 146 , SEQ ID NO: 10 (BAK 167 " 181 ), SEQ ID NO: 1 (vBAK 164" 85 ', BAK variant or variant artificial) and SEQ ID NO: 12 (BAX 146 "66 ).
  • SEQ ID NO: 10 (BAK 167 "181 ) is a fragment of SEQ ID NO: 7 and also inhibits BAK although with a higher IC50.
  • BAK variant refers to a peptide obtained by substitution or elimination of one to three amino acid residues in the corresponding peptide the native human BAK protein
  • derivative means a product obtained from the original peptide by any synthetic or natural chemical reaction.
  • fragment means molecules obtained from the original peptide by eliminating sequences of between four and ten amino acids.
  • peptides or preferably a pharmacologically acceptable composition thereof, may find application in the treatment and / or prevention of human pathologies related to premature or excessive activation of BAK.
  • composition of the invention Another aspect of the invention relates to a composition (hereinafter called the composition of the invention) comprising the peptide of the invention.
  • the composition is a composition
  • the composition comprises a vehicle or an excipient.
  • composition refers to any substance used for prevention, diagnosis, relief, treatment or cure of diseases. In the context of the present invention it refers to a composition comprising at least the peptide of the invention.
  • the pharmaceutical composition of the invention can be used both alone and in combination with other compositions for the treatment or prevention of diseases related to BAK.
  • excipient is a component of a pharmaceutical composition that is not an active compound but a diluent, a vehicle or a filler, among others, which is considered pharmaceutically acceptable when safe, is not toxic and has no adverse effects.
  • excipient refers to a substance that helps the absorption of the compound, stabilizes it or helps the preparation of the drug in the sense of giving it consistency or providing flavors that make it more pleasant.
  • the excipients could have the function of keeping the ingredients together such as starches, sugars or cellulose, sweetening function, dye function, drug protection function such as to isolate it from air and / or moisture, function filling a tablet, capsule or any other form of presentation such as dibasic calcium phosphate, a disintegrating function to facilitate the dissolution of the components and their absorption in the intestine, without excluding other types of excipients not mentioned in this paragraph.
  • pharmaceutically acceptable refers to the excipient being allowed and evaluated so as not to cause harm to organisms to which it is administered.
  • the excipient must be pharmaceutically suitable, that is, it must allow the activity of the compounds of the pharmaceutical composition, that is, it must be compatible with said components.
  • the "vehicle” or carrier is preferably an inert substance.
  • the function of the vehicle is to facilitate the incorporation of other compounds, allow a better dosage and administration or give consistency and form to the pharmaceutical composition. Therefore, the carrier is a substance that is used in the medicament to dilute any of the components of the pharmaceutical composition of the present invention to a certain volume or weight; or that even without diluting said components it is capable of allowing a better dosage and administration or giving consistency and form to the medicine.
  • the pharmaceutically acceptable carrier is the diluent.
  • the pharmaceutical composition further comprises another active substance.
  • another active substance is any matter, whatever its human, animal, plant, chemical or other origin to which an appropriate activity is attributed to constitute a medicine.
  • kits of the invention characterized in that it comprises the polypeptide of the first aspect of the invention.
  • the kit of the invention comprises a set of membranes rich in mitochondrial lipids.
  • the kit comprises liposomes rich in mitochondrial lipids. More preferably, the liposomes are rich in cardiolipin.
  • the kit of the invention comprises an activator and / or a BAK inhibitor.
  • Membrane assemblies such as cardiolipin-rich liposomes, can be frozen and stored for use when needed. In addition, they may suffer at least two freeze / thaw cycles without their usefulness in carrying out the method of the invention being impaired.
  • a compound or substance is called "BAK activator" when the ratio of fluorescence intensities of the polypeptide of the invention increases to a fluorescent marker in the presence of liposomes and in the absence of liposomes.
  • a BAK trigger is tBID or DLP1.
  • the compound or substance has to increase this ratio in a dose-dependent manner and saturably.
  • a compound or substance is called "BAK inhibitor" when the ratio of fluorescence intensities of the polypeptide of the invention bound to a fluorescent marker in the presence of liposomes and in the absence of liposomes decreases.
  • a BAK inhibitor is BCLXL or MCL1.
  • the compound or substance must decrease said ratio in a dose-dependent manner and saturable, even in the presence of a physiological BAK activator such as, but not limited to, tBID.
  • the experimental results are analyzed to a non-linear function using appropriate mathematical equations well known to the person skilled in the art.
  • the described methods can be used to analyze a wide variety of substances, including, but not limited to, collections of biomolecules or libraries of small organic or natural compounds of less than 500 daltons.
  • the methods of the invention can be carried out in different formats that adapt to the number of compounds or substances to be analyzed.
  • the authors of the present invention have demonstrated the efficacy of the methods of the invention carried out in 96-well microplates, which facilitate the measurement of fluorescence robotically.
  • additional reagents can be used, such as, but not limited to, MgC and bovine serum albumin (BSA)
  • BAK activating or inhibiting compounds identified in these assays can be used in pharmaceutical and clinical research of diseases associated with functional BAK disorders, as single components or in complex mixtures.
  • Another aspect of the invention relates to the use of the kit of the invention for the identification of substances that modulate the activation of BAK.
  • FIG. 1 Scheme of the BAK protein where the ochelid regions and the conserved domains BH1, BH2, BH3 and transmembrane (TM) of the protein are indicated. Likewise, the terminal carboxyl end sequences corresponding to the wild-type human BAK protein (BAK), and the BAKAC2, BAKAC4 and ⁇ 06 deletion mutants are indicated.
  • BAK wild-type human BAK protein
  • Figure 2A shows duplicate assays of SDS-PAGE and immunoblot with anti-BAK antibody to determine the distribution of different recombinant forms of BAK in the supernatant (S) and in the pellet (P) obtained after centrifuging the bacterial lysates .
  • Figure 2B shows an SDS-PAGE gel stained with Coomassie blue containing increasing amounts of BAKAC4 purified by chromatographic procedures from the soluble fraction of the bacterial lysate.
  • Figure 3A shows duplicate assays of SDS-PAGE and immunoblot with anti-BAK antibody to determine the distribution of BAKAC4 in the supernatant (S) and in the petiet (P) obtained after centrifuging the ⁇ 04 protein incubated in the presence ( +) or in the absence (-) of isolated mitochondria.
  • Figure 3B represents the effect exerted by ⁇ 04, two natural activating ligands of BAK (tBID and DLP1 / Drp1), or combinations of both types of molecules, on the permeabilization of MME.
  • the concentrations of protein and mitochondria were 0.4 ⁇ and 1 mg protein / ml, respectively. Mean values of 2 individual measurements plus standard errors are represented.
  • Figure 4A represents duplicate assays of SDS-PAGE and immunoblot with anti-BAK antibody to determine the distribution of BAKAC4 in the supernatant (S) and in the pellet (P) obtained after centrifuging ⁇ 04 incubated in the presence (+) or in the absence (-) of liposomes enriched in cardiolipin.
  • Figure 4B depicts the effect of ⁇ 04, two natural activating ligands of BAK (tBID and DLP1 / Drp1), or combinations of both types of molecules on the release of 1, 3, 6-aminonaphthalene-tri-sulphonate (ANTS) encapsulated in liposomes enriched in cardiolipin. In all cases, the total protein and lipid concentrations were 0.1 ⁇ and 0.2 mM, respectively. Mean values of 3 to 6 individual measurements plus standard errors are represented.
  • Figure 5 Structure of ⁇ 021 resolved by X-ray crystallography, indicating the two endogenous cisterns used to mark BAKAC4 with the NBD fluorophore (7-nitrobenz-2-oxa-1, 3-diazolineletylenediamine).
  • F fluorescence.
  • Figure 7A shows the effect exerted increasing doses of the peptides BAK 68 "99 (SEQ ID NO: 8), BAK 120146 (SEQ ID NO: 9) and BAK 164- 185 (SEQ ID NO: 7) on the relative fluorescence of NBD-BAKAC4 incubated with tBID in the presence (fliposome) and in the absence (resolution) of Liposomes enriched in cardiolipin.
  • concentrations of NBD-BAKAC4, tBID and lipid were 0.1 ⁇ , 0.05 ⁇ , and 0.1 mM, respectively. Mean values of 3 to 6 individual measurements plus standard errors are represented.
  • FIG. 7B depicts the effect of the three synthetic peptides on the permeabilization of the MME induced by ⁇ 04 activated by tBID.
  • concentrations of peptide, BAKAC4, tBID, and mitochondria were, respectively, 12 ⁇ , 0.4 ⁇ , 0.2 ⁇ , and 1 mg protein / ml. Mean values of at least 2 individual measurements plus standard errors are represented.
  • Plasmids for expressing the BAKAC2 deletion mutants (SEQ ID NO: 2), ⁇ 04 (SEQ ID NO: 3), and BAKAC6 (SEO ID NO: 4) were prepared by molecular biology procedures known to those skilled in the art, including but not limited to standard polymerase chain reaction (PCR) techniques, restriction enzyme digestion, alkaline phosphatase treatment to prevent unwanted binding, ligase ligation and sequence confirmation.
  • PCR polymerase chain reaction
  • BAK6hislipoil is SEQ ID NO: 5
  • BAKAC4-6hislipoil is SEQ ID NO: 6
  • the appropriate bacterial strain preferably C41 pLys
  • IPTG isopropyl-D-thiogalactopyranoside
  • EXAMPLE 2 OBTAINING THE MUTANT PROTEIN ⁇ 04.
  • a bacterial lysate is obtained from cells expressing 6HisLipo-BAKAC4 following the protocol described in the previous section. Then, the soluble fraction of the lysate is loaded onto a Ni 2+ agarose (Qiagen) column equilibrated with buffer A (50mM Hepes, pH7.5, 500mM NaCI, 5mM imidazole, 1mM TCEP, 10% glycerol). To reduce the degree of contaminants, the column is washed with buffer A containing 20 mM imidazole. To elute the 6H ⁇ sl_ ⁇ po-BAKAC4 protein, wash the column with buffer A containing 500 mM imidazole.
  • buffer A 50mM Hepes, pH7.5, 500mM NaCI, 5mM imidazole, 1mM TCEP, 10% glycerol.
  • buffer A 50mM Hepes, pH7.5, 500mM NaCI, 5mM imidazole, 1mM TCEP
  • the eluted fraction with 6HisTEV protease is treated following the manufacturer's instructions (GE Healthcare), and the sample is passed on another N 2+ column equilibrated with buffer A without imidazole.
  • the fraction that has not bound to the column containing the BAKAC4 protein is collected, and the protein is concentrated using Amicon Y10 filters.
  • the sample is passed on an analytical filtration gel column (preferably Superdex 75) equilibrated in buffer A without imidazole, using an AKTA chromatography system (GE Healthcare).
  • the elution fractions corresponding to BAKAC4 are identified by SDS-PAGE and immunoblot with anti-BAK antibody, the protein is concentrated again, and its concentration is determined by UV light absorption spectroscopy at 280 nm.
  • EXAMPLE 3 OBTAINING PROTEIN NBD-BAKAC4.
  • NBD-BAKAC4 a procedure similar to that described in Saksena and cois was used. 2009, Cell 136: 97-109 for protein mapping with NBD. First, 1 mg of ⁇ 04 is passed through a desalting chromatography column type PD-10 (GE Healthcare) balanced at 100 mM KCI, 10 mM Hepes pH 7.5. Next, the NBD iodoacetamide derivative (IANBD, GE Healthcare) is added at a concentration 5 times higher than BAKAC4, and the mixture is incubated 2 hours at room temperature.
  • PD-10 desalting chromatography column type PD-10
  • IANBD NBD iodoacetamide derivative
  • EXAMPLE 4 Analysis of the ability of BAKAC4 to bind to mitochondria and permeabilize MME.
  • BAKAC4 preserves the basic functional traits of the wild BAK protein
  • procedures known to those skilled in the art were used with isolated yeast mitochondria which completely lack BCL2 family proteins (see LJ Siskind et al. 2002, J Biol. Chem. 283: 6622-6630).
  • the ability of BAKAC4 to associate with mitochondria was checked ( Figure 3A).
  • the ability of BAKAC4 to permeabilize MME was verified in the presence of two physiological activators of the wild BAK protein (tBID and DLP1 / Drp1) ( Figure 3B).
  • EXAMPLE 5 Manufacture of liposomes, binding assays of ⁇ 04 and release of ANTS.
  • Liposome assays to develop a large-scale search for potential BAK modulating compounds are better than mitochondrial assays due to the lower stability of mitochondria (between 3 and 5 hours) with respect to liposomes (several days and even weeks) , the greater cost and duration of mitochondrial tests with respect to liposome assays, and the greater ambiguity in the interpretation of results obtained in mitochondrial assays with respect to liposome assays, than due to their complexity Compositional, structural and dynamic increase the variability of the results.
  • Iiposomes were manufactured using methods well known in the field, preferably by extrusion through 0.2 ⁇ polycarbonate filters (see Lumps and cois. 2004 J. Biol. Chem. 279: 30081-30091).
  • the following optimal lipid composition was established to perform the tests with Iiposomes described in this invention: egg yolk phosphatidylcholine (20% mol), egg yolk phosphatidylethanolamine (20% mol), rat brain phosphatidylinositol (10% mol) and rat heart cardiolipin (50% mol).
  • egg yolk phosphatidylcholine (20% mol
  • egg yolk phosphatidylethanolamine 20% mol
  • rat brain phosphatidylinositol 10% mol
  • rat heart cardiolipin 50% mol.
  • cardiolipin is a specific lipid of the mitochondria whose levels in MME increase during apoptosis (Kagan et al. 2005, Nat Chem Biol. 1: 22
  • BAKAC4 binds to Iiposomes enriched in cardiolipin but not to liposomes without cardiolipin (Figure 4A).
  • ANTS release method (1, 3, 6-aminonaphthalene-tri-sulphonate) encapsulated in liposomes (see Lumps and cois. 2004 J. Biol. Chem. 279: 30081-30091) to evaluate modulation Functional of BAKAC4 by different compounds.
  • this method is not appropriate to examine the functional modulation of BAKAC4 by molecules of interest, such as DLP1 / Drp1 or the synthetic peptide BAK 64 "185 (table 1) which produce release of ANTS alone ( Figure 4B).
  • EXAMPLE 6 TESTS TO IDENTIFY BAK MODULATING COMPOUNDS AT MEMBRANE LEVEL.
  • FIG. 5 shows, BAK contains two tank residues exposed to the solvent, which can be used for the mapping of ⁇ 04 with the NBD fluorophore (see Example 3). This fluorophore has been used to analyze conformational changes in other membrane proteins (Johnson 2005, Traffic 6: 1078-1092).
  • Figure 6A shows the fluorescence spectra of the NBD-BAKAC4 protein after being incubated with the reaction buffer, with tBID, or with tBID together with cardiolipin-enriched liposomes. It is observed that when NBD-BAKAC4 is incubated with tBID in the absence of liposomes, no significant changes in the fluorescence spectrum of NBD occur.
  • NBD-BAKAC4 without liposomes
  • EXAMPLE 7 IDENTIFICATION OF INHIBITING PEPTIDES OF NBD- ⁇ 04 ASSOCIATED WITH LIPOSOMES. We analyze the effect on the functional activation of NBD-BAKAC4 associated with liposomes of three synthetic peptides.
  • NBD-BAKAC4 protein and cardiolipin-enriched liposomes were prepared as described above.
  • the tBID protein was prepared as described in Terrones and cois. 2004, J Biol Chem. 279: 30081-30091. Peptides were obtained from AMS Biotechnology (Oxford, United Kingdom).
  • Two types of reaction mixtures were prepared: on the one hand, NBD-BAKAC4 (0.1 ⁇ ) without liposomes; on the other hand, NBD-BAKAC4 (0.1 ⁇ ) with liposomes (0.1 mM).
  • One of the following peptide concentrations was added to each reaction mixture: 0 ⁇ , 0.25 ⁇ , 0.5 ⁇ , 1 ⁇ , 2 ⁇ , 4 ⁇ , 8 ⁇ , or 12 ⁇ .
  • reaction mixtures were incubated for 5 minutes at 37 S C.
  • a suboptimal concentration of tBID 0.5 ⁇ was added to all reaction mixtures.
  • the reaction mixtures were incubated again for 30 minutes at 37 9 C.
  • the reaction buffer was 100 mM KCI, 10 mM Hepes pH 7.5, 1 mM TCEP.
  • the temperature of the tests was 37 S C.
  • the measurements were performed in triplicate.
  • Table 1 shows the IC50 values obtained for BAK 164 " peptides.

Abstract

The invention relates to: a truncated form of human BAK protein, which retains the transmembrane segment and the function; a method for identifying BAK-activity-modulating substances, using the truncated form; a BAK-activity-inhibiting peptide; and a kit comprising said truncated form.

Description

Muíante de BAK, método asociado para ia identificación de sustancias moduladoras de BAK y péptido inhibidor de la actividad BAK La presente invención se refiere a unos polipéptidos derivados de BAK y a unos métodos que los emplean para analizar la activación o inhibición funcional de BAK asociada a membrana. Estos métodos son útiles para identificar compuestos de potencial aplicación terapéutica que modulan la actividad proapoptótica de BAK.  Mutant of BAK, associated method for the identification of BAK modulating substances and peptide inhibitor of BAK activity The present invention relates to BAK derived polypeptides and methods that employ them to analyze the activation or functional inhibition of membrane-associated BAK . These methods are useful for identifying compounds of potential therapeutic application that modulate the proapoptotic activity of BAK.
ESTADO DE LA TÉCNICA ANTERIOR STATE OF THE PREVIOUS TECHNIQUE
La familia de proteínas BCL2 (B-cell lymphoma 2), de la cual forma parte BAK {BCL2 antagonist/killer 1), constituye el principal componente regulador de la maquinaría apoptótica intracelular {Youle y Strasser 2008, Nature Rev Mol Cell Biol 9:47-59). Estas proteínas actúan en el punto de "no-retorno" del proceso apoptótico, modulando la permeabilización de la membrana mitocondrial externa (MME) que posibilita la salida de diversos factores letales desde el interior de la mitocondría hasta el citosol celular. Dada su crucial importancia para la viabilidad celular, los desarreglos en la función de las proteínas de la familia BCL2 han sido asociados con una amplia variedad de patologías humanas, entre las que destacan el cáncer y diversas enfermedades degenerativas e infecciosas. En los últimos años, las proteínas de la familia BCL2 se han convertido en prometedoras dianas terapéuticas. Prueba de ello es que en la actualidad existen varios compuestos contra BCL2 en fases avanzadas de evaluación clínica (G. Lessene y cois. 2008, Nature Rev Drug Discovery 7: 989-1000). The BCL2 (B-cell lymphoma 2) protein family, of which BAK is part {BCL2 antagonist / killer 1), is the main regulatory component of intracellular apoptotic machinery {Youle and Strasser 2008, Nature Rev Mol Cell Biol 9: 47-59). These proteins act at the point of "non-return" of the apoptotic process, modulating the permeabilization of the external mitochondrial membrane (MME) that allows the exit of various lethal factors from inside the mitochondria to the cellular cytosol. Given its crucial importance for cell viability, disorders in the function of BCL2 family proteins have been associated with a wide variety of human pathologies, including cancer and various degenerative and infectious diseases. In recent years, BCL2 family proteins have become promising therapeutic targets. Proof of this is that there are currently several compounds against BCL2 in advanced stages of clinical evaluation (G. Lessene et al. 2008, Nature Rev Drug Discovery 7: 989-1000).
Atendiendo tanto a la presencia de dominios de homología conservados (dominios BH, de "Bcl2 Homolog ) como a criterios funcionales, los miembros de la familia BCL2 pueden ser clasificados en tres grandes subgrupos: 1 ) proteínas proapoptóticas tipo BAK/BAX {BCL2-associated X protein), las cuales contienen los dominios BH1 -BH3, y una vez activadas, inducen directamente la permeabilízación de la MME; 2) proteínas proapoptóticas "sólo-BH3" (tBID (truncated BH3 interacting domain death agonist) y otras), las cuales contienen únicamente el dominio BH3 y actúan a modo de ligandos activadores de BAK/BAX, y 3) proteínas antiapoptóticas tipo BCL2 (BCL2, BCL-XL {BCL2-like 1), MCL1 [myeloid cell leukemia sequence 1 (BCL2-related)), las cuales contienen los dominios BH1 -BH4 y actúan a modo de ligandos inhibidores de BAK/BAX. Además, algunos miembros de la familia BCL2 incluyendo a BAK, contienen un dominio transmembrana conservado que actúa a modo de punto de anclaje para estas proteínas en la MME. Considering both the presence of conserved homology domains (BH domains of "Bcl2 Homolog) and functional criteria, members of the BCL2 family can be classified into three large subgroups: 1) BAK / BAX proapoptotic proteins {BCL2-associated X protein), which contain the BH1 -BH3 domains, and once activated, directly induce MME permeabilization; 2) proapoptotic "BH3-only" proteins (tBID (truncated BH3 interacting domain death agonist) and others), which contain only the BH3 domain and act as BAK / BAX activating ligands, and 3) BCL2 type antiapoptotic proteins ( BCL2, BCL-X L {BCL2-like 1), MCL1 [myeloid cell leukemia sequence 1 (BCL2-related)), which contain the BH1 -BH4 domains and act as BAK / BAX inhibitor ligands. In addition, some members of the BCL2 family, including BAK, contain a conserved transmembrane domain that acts as an anchor point for these proteins in MME.
A pesar de compartir propiedades comunes, distintos miembros dentro de un mismo subgrupo de la familia BCL2 pueden desempeñar funciones fisiológicas no equivalentes. Para el caso de BAK y BAX, se ha demostrado que BAK desempeña un papel fundamental y exclusivo (no compartido por BAX) en la resistencia celular a la apoptosis inducida por múltiples drogas anticancerígenas (Wang y cois 2001 , J Bíol Chem 276: 34307-34317; Gillissen y cois. 2010, J. Cell Biol. 188:851 -862), así como en la inducción prematura o excesiva de la apoptosis asociada con ciertos procesos neurodegenerativos y con la infección por diversos patógenos (Someya 2009, Proc Nati Acad Sci USA 106:19432-19437; Pardo y cois. 2006, J Cell Biol 174: 509-519; Du y cois 2010, Mol Cell Biol 30: 3444- 3452). Despite sharing common properties, different members within the same subgroup of the BCL2 family can perform non-equivalent physiological functions. In the case of BAK and BAX, it has been shown that BAK plays a fundamental and exclusive role (not shared by BAX) in the cellular resistance to apoptosis induced by multiple anticancer drugs (Wang and cois 2001, J Bíol Chem 276: 34307- 34317; Gillissen et al. 2010, J. Cell Biol. 188: 851-862), as well as in the premature or excessive induction of apoptosis associated with certain neurodegenerative processes and with infection by various pathogens (Someya 2009, Proc Nati Acad Sci USA 106: 19432-19437; Pardo et al. 2006, J Cell Biol 174: 509-519; Du et cois 2010, Mol Cell Biol 30: 3444-3452).
Por tanto, existe interés terapéutico por identificar compuestos capaces de modular la actividad proapoptótica de BAK de forma selectiva. Cabe esperar que estos compuestos dirigidos específicamente contra BAK no causen una toxicidad elevada en el organismo, debido a que no alteran la función de otros miembros de la familia BCL2. Resulta extremadamente difícil analizar de forma individualizada y precisa la actividad proapoptótica de BAK en su entorno natural (Basañez y Hardwick 2008, PLOS Biol. 6:1 148-1 151 ). Esto se debe a la extensa y dinámica red de interacciones que establece BAK con múltiples lígandos celulares tanto dentro la familia BCL2 (por ejemplo tBID, MCL1 , y BCL-XL) como fuera de ella (por ejemplo, DLP1 /Drp1 (dynamin 1-like protein) (Montessuít y cois. 2010, Cell 142:889-891 ). Además, la activación funcional de BAK es un proceso especialmente complejo, dado que conlleva profundos cambios estructurales en la proteína que ocurren en un entorno de membrana. Es bien conocido que las proteínas de membrana presentan dificultades añadidas para su estudio en comparación con las proteínas hidrosolubles/citosólicas. En este sentido, conviene resaltar que BAK es una proteína integral de la MME, mientras que BAX y la mayor parte de los miembros antiapoptoticos de la familia BCL2 son proteínas anfitrópicas que se localizan tanto en la MME como en el citosol. Therefore, there is therapeutic interest in identifying compounds capable of modulating the proapoptotic activity of BAK selectively. It is expected that these compounds specifically directed against BAK do not cause a high toxicity in the organism, because they do not alter the function of other members of the BCL2 family. It is extremely difficult to analyze the proapoptotic activity of BAK individually and accurately in its natural environment (Basañez and Hardwick 2008, PLOS Biol. 6: 1 148-1 151). This is due to the extensive and dynamic network of interactions established by BAK with multiple cell ligands both within the BCL2 family (for example tBID, MCL1, and BCL-X L ) and outside it (for example, DLP1 / Drp1 (dynamin 1 -like protein) (Montessuít et al. 2010, Cell 142: 889-891) In addition, the functional activation of BAK is a particularly complex process, since it entails profound structural changes in the protein that occur in a membrane environment. It is well known that membrane proteins present additional difficulties for study compared to water-soluble / cytosolic proteins.In this regard, it should be noted that BAK is an integral protein of the MME, while BAX and most of the antiapoptotic members of The BCL2 family are amphotropic proteins that are located both in the MME and in the cytosol.
Como se ha resaltado anteriormente, una actividad biológica fundamental de las proteínas de la familia BCL2 es la de establecer interacciones proteína-proteína. Estudios estructurales realizados con formas hidrosolubles y purificadas de miembros anfitrópicos de la familia BCL2 han identificado cavidades hidrofóbicas en la superficie de estas moléculas que actúan a modo de sitios de unión para ligandos específicos. Basándose en éstas y otras observaciones, se han desarrollado diversos métodos para cuantificar interacciones entre miembros concretos de la familia BCL2 y sus respectivos ligandos en un entorno acuoso, utilizando sistemas de composición definida (WO2009042237, WO2002040530). Asimismo, utilizando estos métodos para analizar interacciones proteína-proteína en medio acuoso se han identificado péptidos y otros compuestos de potencial aplicación terapéutica dirigidos selectivamente contra miembros anfitrópicos específicos de la familia BCL2 (WO2010068684, WO2010065865). Sin embargo, para el caso de BAK, los estudios estructurales realizados con formas hidrosolubles y purificadas de la proteína no han revelado la existencia de ninguna cavidad hidrofóbica en la superficie de esta molécula que pudiera actuar como sitio de unión para lígandos específicos (Moldoveanu, 2006 Mol Cell 24:677-688). Además, aún no ha sido descrito ningún método que posibilite cuantifícar la interacción entre BAK y sus ligandos en medio acuoso, utilizando sistemas de composición definida. Conviene destacar que todas las investigaciones realizadas hasta la fecha han empleado formas de BAK que no contienen su dominio transmembrana, aparentemente debido a problemas para expresar y/o purificar la forma completa (silvestre) de la proteína. Sin embargo, los estudios realizados en sistemas celulares demuestran que la eliminación del dominio transmembrana de BAK no sólo elimina la localización de la proteína en la MME sino también su actividad proapoptótica (Dewson y cois. 2009, Mol Cell 25:696-703). Estas observaciones sugieren que BAK necesita la presencia de su dominio transmembrana y/o un entorno lipídico apropiado para adoptar una conformación activa. De hecho, se conocen numerosas proteínas integrales de membrana que únicamente adoptan la conformación necesaria para interaccionar con sus ligandos y/o auto-ensamblarse cuando se encuentran correctamente asociadas a una membrana de composición iipídica definida. As noted above, a fundamental biological activity of BCL2 family proteins is to establish protein-protein interactions. Structural studies conducted with water-soluble and purified forms of amphotropic members of the BCL2 family have identified hydrophobic cavities on the surface of these molecules that act as binding sites for specific ligands. Based on these and other observations, various methods have been developed to quantify interactions between specific members of the BCL2 family and their respective ligands in an aqueous environment, using defined composition systems (WO2009042237, WO2002040530). Likewise, using these methods to analyze protein-protein interactions in aqueous media, peptides and other compounds of potential therapeutic application have been identified selectively directed against specific amphotropic members of the BCL2 family (WO2010068684, WO2010065865). However, in the case of BAK, structural studies conducted with water-soluble and purified forms of the protein have not revealed the existence of any hydrophobic cavity on the surface of this molecule that could act as a binding site for specific ligands (Moldoveanu, 2006 Mol Cell 24: 677-688). In addition, no method has yet been described that makes it possible to quantify the interaction between BAK and its ligands in aqueous medium, using systems of defined composition. It should be noted that all the investigations carried out to date have used forms of BAK that do not contain their transmembrane domain, apparently due to problems in expressing and / or purifying the complete (wild) form of the protein. However, studies in cellular systems show that the elimination of the transmembrane domain of BAK not only eliminates the location of the protein in the MME but also its proapoptotic activity (Dewson et al. 2009, Mol Cell 25: 696-703). These observations suggest that BAK needs the presence of its transmembrane domain and / or an appropriate lipid environment to adopt an active conformation. In fact, numerous integral membrane proteins are known that only adopt the conformation necessary to interact with their ligands and / or self-assemble when they are correctly associated with a membrane of defined lipid composition.
DESCRIPCIÓN DE LA INVENCIÓN La presente invención se refiere a un muíante de deleción de la proteína BAK humana (SEQ ID NO: 1 ) que conserva el segmento transmembrana y la función y puede purificarse de manera altamente eficiente debido a su presencia mayoritaria en la fracción soluble resultante del lisado de las células donde se produce. Este muíante carece de entre 4 y 6 aminoácidos de su extremo carboxilo terminal, lo que no afecta a la función de la proteína y sin embargo favorece la purificación de la misma. Además, los autores de la presente invención han desarrollado métodos para examinar de forma controlada la activación funcional de este mutante de BAK, localizado en un entorno lipídico adecuado, con el objetivo de identificar compuestos capaces de modular específicamente la actividad proapoptótica de BAK asociada a membrana. Estos métodos y compuestos son de utilidad en la investigación farmacéutica y clínica de enfermedades asociadas a desarreglos funcionales de BAK. DESCRIPTION OF THE INVENTION The present invention relates to a deletion mutant of the human BAK protein (SEQ ID NO: 1) that preserves the transmembrane segment and function and can be purified highly efficiently due to its majority presence in the soluble fraction resulting from the lysate of the cells where it is produced. This mutant lacks between 4 and 6 amino acids of its carboxyl terminal end, which does not affect the function of the protein and nevertheless favors its purification. In addition, the authors of the present invention have developed methods to examine in a controlled manner the functional activation of this BAK mutant, located in a suitable lipid environment, in order to identify compounds capable of specifically modulating the membrane-associated BAK proapoptotic activity. . These methods and compounds are useful in the pharmaceutical and clinical research of diseases associated with functional disorders of BAK.
En la presente invención se describen métodos para analizar la activación funcional de BAK asociada a membrana utilizando sistemas de composición definida, así como la utilización de estos métodos para identificar compuestos que modulan la función proapoptótica de BAK y tienen una potencial aplicación terapéutica. Los autores de la presente invención demuestran que la proteína BAK nativa no puede producirse eficazmente para emplearse en ensayos de screening (cribado) de moléculas que modulen su actividad apoptótica, y la proteína BAK truncada que carece de dos aminoácidos en su extremo carboxilo terminal, tampoco, dado que ambas son tóxicas para las células que las producen y se localizan mayoritariamente en el precipitado del lisado celular. Sin embargo, los autores han encontrado que las proteínas truncadas que carecen de 4 o de 6 aminoácidos de su extremo carboxilo terminal, no son tóxicas y sí pueden purificarse de manera eficaz, puesto que se presentan mayoritariamente en la fracción soluble del lisado celular de las células que las producen. In the present invention methods are described for analyzing the functional activation of membrane-associated BAK using defined composition systems, as well as the use of these methods to identify compounds that modulate the proapoptotic function of BAK and have a potential therapeutic application. The authors of the present invention demonstrate that the native BAK protein cannot be efficiently produced for use in screening assays of molecules that modulate its apoptotic activity, and the truncated BAK protein that lacks two amino acids at its terminal carboxyl end, nor , since both are toxic to the cells that produce them and are mostly located in the precipitate of the cell lysate. However, the authors have found that truncated proteins that lack 4 or 6 amino acids of their terminal carboxyl terminus, are not toxic and can be effectively purified, since they occur mostly in the soluble fraction of the cell lysate of cells that produce them.
El hecho de que la proteína BAK sólo carezca de 4 a 6 aminoácidos de su extremo carboxilo terminal implica que es muy similar a la proteína nativa ya que contiene su dominio transmembrana, lo que aumenta enormemente las posibilidades de que las sustancias que demuestren una capacidad para modular la actividad de BAK in vitro, lo hagan también in vivo, y sean, por tanto, buenos candidatos para su uso en la preparación de medicamentos. The fact that the BAK protein lacks only 4 to 6 amino acids from its terminal carboxyl end implies that it is very similar to the native protein since it contains its transmembrane domain, which greatly increases the chances that substances that demonstrate a capacity for Modulate the activity of BAK in vitro, do it also in vivo, and therefore be good candidates for use in the preparation of medications.
Un primer aspecto de la invención se refiere a un mutante derivado de la proteína BAK humana, el cual contiene su dominio transmembrana y preserva rasgos funcionales básicos de la proteína silvestre pero carece de 4 a 6 aminoácidos de su extremo carboxílo terminal. A first aspect of the invention relates to a mutant derived from the human BAK protein, which contains its transmembrane domain and preserves basic functional features of the wild protein but lacks 4 to 6 amino acids from its terminal carboxy terminus.
Un segundo aspecto de la invención se refiere a un método que permite analizar la activación funcional de este mutante de BAK unido a membranas modelo de composición lipídica definida. A second aspect of the invention relates to a method that allows the functional activation of this BAK mutant linked to model membranes of defined lipid composition to be analyzed.
Un tercer aspecto de la invención se refiere a la utilización del método del segundo aspecto de la invención para identificar sustancias que modulan la activación funcional de BAK. A third aspect of the invention relates to the use of the method of the second aspect of the invention to identify substances that modulate the functional activation of BAK.
Otro aspecto de la invención se refiere a un péptido con actividad inhibidora de BAK, así como a una composición que lo comprenda y al uso del péptido o la composición para la fabricación de un medicamento. Another aspect of the invention relates to a peptide with BAK inhibitory activity, as well as a composition comprising it and the use of the peptide or the composition for the manufacture of a medicament.
Otro aspecto de la invención se refiere a un kit que comprende la proteína BAK truncada del primer aspecto de la invención. Another aspect of the invention relates to a kit comprising the truncated BAK protein of the first aspect of the invention.
Por tanto, un primer aspecto de la invención se refiere a un polipéptído donde la secuencia aminoacídica es la de la proteína BAK humana truncada de manera que se eliminan de cuatro a seis aminoácidos de su extremo carboxílo terminal o una variante bioequivalente. En una realización preferida del primer aspecto de la invención, se eliminan cuatro aminoácidos del extremo carboxílo terminal. En una realización más preferida, la secuencia aminoacídica del polipéptído es SEO ID NO: 3. El término "variante bioequivalente", tal y como se emplea en la presente descripción, se refiere a una molécula con la misma función que la molécula descrita, que puede presentar ligeras variaciones con respecto a la molécula descrita sin que dichas variaciones aporten ningún efecto técnico añadido a dicha molécula. Thus, a first aspect of the invention relates to a polypeptide where the amino acid sequence is that of the truncated human BAK protein so that four to six amino acids are removed from its terminal carboxy terminus or a bioequivalent variant. In a preferred embodiment of the first aspect of the invention, four amino acids are removed from the carboxy terminus. In a more preferred embodiment, the amino acid sequence of the polypeptide is SEO ID NO: 3. The term "bioequivalent variant", as used in the present description, refers to a molecule with the same function as the described molecule, which may have slight variations with respect to the described molecule without such variations providing any technical effect. added to said molecule.
En una realización preferida, el polipéptido del primer aspecto de la invención se conjuga (se une mediante enlace covalente) a un marcador. Preferiblemente, dicho marcador es un fluoróforo. Más preferiblemente, el fluoróforo es 7-nitrobenz-2-oxa-1 ,3-diazoliletilenodiamina (NBD). In a preferred embodiment, the polypeptide of the first aspect of the invention is conjugated (covalently linked) to a label. Preferably, said marker is a fluorophore. More preferably, the fluorophore is 7-nitrobenz-2-oxa-1,3-diazolylethylenediamine (NBD).
El término "marcador", tal y como se emplea en la presente descripción, se refiere a una molécula que facilita la detección de la molécula a la que se une y, por tanto, la marca. Existen multitud de moléculas marcadoras bien descritas y conocidas sobradamente por el experto en la materia. Un marcador puede ser una molécula que emite energía (radioactividad, luz, fluorescencia), una enzima capaz de generar un producto detectabie (coloreado, fluorescente, luminoso), una proteína o un epítopo fácilmente detectabie por métodos inmunológicos o basados en el reconocimiento y la afinidad de unión. Ejemplos de marcadores son isótopos radioactivos, la proteína luciferasa, proteínas fluorescentes o fluoróforos, enzimas como la peroxídasa o la fosfatasa alcalina, epítopos como myc o FLAG, proteínas como GST (glutatión S transferasa) o biotina, etc. Un fluoróforo es una sustancia que emite luz con una longitud de onda característica (longitud de onda de emisión (Aem)) cuando es excitada con una luz con una longitud de onda característica (longitud de onda de excitación (Aex)) y menor que la longitud de onda de emisión. Un segundo aspecto de la presente invención se refiere a un método para identificar sustancias que modulen la activación funcional de BAK asociada a membrana, que comprende las siguientes etapas: (a) poner en contacto el polípéptido del primer aspecto de la invención con un sistema de membranas rico en lípídos mitocondriales para que formen un complejo, The term "marker", as used herein, refers to a molecule that facilitates the detection of the molecule to which it binds and, therefore, the label. There are many marker molecules well described and well known to the person skilled in the art. A marker can be a molecule that emits energy (radioactivity, light, fluorescence), an enzyme capable of generating a detectable product (colored, fluorescent, luminous), a protein or an epitope easily detected by immunological methods or based on recognition and binding affinity Examples of markers are radioactive isotopes, luciferase protein, fluorescent proteins or fluorophores, enzymes such as peroxidases or alkaline phosphatase, epitopes such as myc or FLAG, proteins such as GST (glutathione S transferase) or biotin, etc. A fluorophore is a substance that emits light with a characteristic wavelength (emission wavelength (Aem)) when excited with a light with a characteristic wavelength (excitation wavelength (Aex)) and less than the emission wavelength. A second aspect of the present invention relates to a method for identifying substances that modulate the functional activation of membrane-associated BAK, which comprises the following steps: (a) contacting the polypeptide of the first aspect of the invention with a system of membranes rich in mitochondrial lipids to form a complex,
(b) poner en contacto el producto resultante de la etapa (a) con la sustancia a ensayar,  (b) contacting the product resulting from step (a) with the substance to be tested,
(c) determinar la activación o inhibición funcional del polipéptído de (a).  (c) determine the activation or functional inhibition of the polypeptide of (a).
En la presente memoria, se entiende por sustancias o compuestos que modulan la actividad de BAK, aquellos que cambian el estado de actividad de BAK, es decir, que activan o inhiben dicha proteína. Dado que BAK es una proteína proapoptótica, cuando se activa, induce la apoptósis, mientras que cuando se inhibe, inhibe la apoptósis. En una realización preferida del segundo aspecto de la invención, el polipéptído descrito en la etapa (a) es NBD-SEQ ID NO: 3 (el polipéptído cuya secuencia de aminoácidos es SEQ ID NO: 3 conjugado a NBD) o una variante bíoequivalente del mismo. En una realización preferida del segundo aspecto de la invención, el sistema de membranas descrito en la etapa (a) es un conjunto de liposomas. En la presente invención, el termino "liposomas" indica un conjunto de vesículas puramente lipídicas de composición definida. En una realización preferida del segundo aspecto de la invención, el lípido mitocondrial es cardiolipina. En una realización preferida del segundo aspecto de la invención, la activación o inhibición funcional del polipéptído NBD-SEQ ID NO: 3 se mide medíante fluorescencia. Los autores de la presente invención han demostrado que los niveles de fluorescencia analizados con una Aex= 470 nm y analizados para una Aem= 530 nm permiten la medición de la activación o la inhibición de la actividad de BAK (Figs. 6B y 7A). Otro aspecto de la invención se refiere al uso de las sustancias identificadas medíante el método del segundo aspecto de la invención para la preparación de un medicamento para el tratamiento y/o la prevención de enfermedades relacionadas con la resistencia a la activación de BAK. Preferiblemente, la enfermedad es cáncer. Here, we mean substances or compounds that modulate the activity of BAK, those that change the state of activity of BAK, that is, that activate or inhibit said protein. Since BAK is a proapoptotic protein, when activated, it induces apoptosis, while when it is inhibited, it inhibits apoptosis. In a preferred embodiment of the second aspect of the invention, the polypeptide described in step (a) is NBD-SEQ ID NO: 3 (the polypeptide whose amino acid sequence is SEQ ID NO: 3 conjugated to NBD) or a bioequivalent variant of the same. In a preferred embodiment of the second aspect of the invention, the membrane system described in step (a) is a set of liposomes. In the present invention, the term "liposomes" indicates a set of purely lipid vesicles of defined composition. In a preferred embodiment of the second aspect of the invention, the mitochondrial lipid is cardiolipin. In a preferred embodiment of the second aspect of the invention, the activation or functional inhibition of the NBD-SEQ ID NO: 3 polypeptide is measured by fluorescence. The authors of the present invention have shown that fluorescence levels analyzed with an Aex = 470 nm and analyzed for an Aem = 530 nm allow the measurement of activation or inhibition of BAK activity (Figs. 6B and 7A). Another aspect of the invention relates to the use of the substances identified by the method of the second aspect of the invention for the preparation of a medicament for the treatment and / or prevention of diseases related to BAK activation resistance. Preferably, the disease is cancer.
Se ha descrito que en el cáncer, la resistencia adquirida frente al tratamiento con diferentes fármacos antitumorales es debida, en parte, a un bloqueo de la activación de BAK (Youle y Strasser, Nature Rev Mol Cell Biol 2008. 9:47-59; Lessene y cois. Nature Reviews in Drug Discov. 2008. 7, 989-1000). It has been described that in cancer, the resistance acquired against treatment with different antitumor drugs is due, in part, to a blockage of BAK activation (Youle and Strasser, Nature Rev Mol Cell Biol 2008. 9: 47-59; Lessene et al. Nature Reviews in Drug Discov. 2008. 7, 989-1000).
Otro aspecto de la invención se refiere al uso de las sustancias identificadas mediante el método del segundo aspecto de la invención para la preparación de un medicamento para el tratamiento y/o la prevención de enfermedades relacionadas con la hiperactivación de BAK. En estas enfermedades se produce una activación prematura o excesiva de BAK. Las enfermedades relacionadas con la hiperactivación de BAK pueden ser todas aquellas enfermedades relacionadas con una muerte apoptótica anómala. Algunos ejemplos no limitantes de estas enfermedades asociadas con una excesiva o prematura apoptosis dependiente de BAK, son la aspergílosis invasiva causada por la bacteria Aspergillus fumigatus (Pardo y cois. J Cell Biol. 2006; 1 74(4):509-19), la gonorrea causada por Neísseria gonorrheae (Kepp y cois. EMBO J. 2007;26{3):825-34), la artrosis causada por Pseudomonas aeruginosa (Du y cois. Mol Cell Biol. 2010; 30{14):3444-52), la encefalitis o la poliartritis causadas por virus del género Alphavirus (Urban y cois. Cell Death Differ. 2008 15(9): 1396-407), o un tipo de sordera denominada presbiacusia {Someya y cois. Proc Nati Acad Sci U S A. 2009; 106(46):19432-7). Otro aspecto de la invención se refiere a un fragmento del polipéptido del primer aspecto de la invención (en adelante llamado péptído de la invención) que consiste en los aminoácidos 164 a 185 de dicho polipéptido, un fragmento o un derivado del mismo. En una realización preferida, la secuencia de dicho fragmento o péptido es SEQ ID NO: 7 Another aspect of the invention relates to the use of the substances identified by the method of the second aspect of the invention for the preparation of a medicament for the treatment and / or prevention of diseases related to hyperactivation of BAK. In these diseases, premature or excessive activation of BAK occurs. The diseases related to hyperactivation of BAK can be all those diseases related to an abnormal apoptotic death. Some non-limiting examples of these diseases associated with excessive or premature BAK-dependent apoptosis are invasive aspergillosis caused by the bacterium Aspergillus fumigatus (Brown and cois. J Cell Biol. 2006; 1 74 (4): 509-19), Gonorrhea caused by Neísseria gonorrheae (Kepp et al. EMBO J. 2007; 26 {3): 825-34), osteoarthritis caused by Pseudomonas aeruginosa (Du et al. Mol Cell Biol. 2010; 30 {14): 3444- 52), encephalitis or polyarthritis caused by viruses of the genus Alphavirus (Urban et al. Cell Death Differ. 2008 15 (9): 1396-407), or a type of deafness called presbiacusia {Someya and cois. Proc Nati Acad Sci US A. 2009; 106 (46): 19432-7). Another aspect of the invention relates to a fragment of the polypeptide of the first aspect of the invention (hereinafter called the peptide of the invention) consisting of amino acids 164 to 185 of said polypeptide, a fragment or a derivative thereof. In a preferred embodiment, the sequence of said fragment or peptide is SEQ ID NO: 7
Los autores de la presente invención han demostrado que el péptido de SEQ ID NO: 7 (BAK164"185) inhibe BAK (Fig. 7) y presenta además una baja IC50 (tabla 1 ), menor que la IC50 de los péptidos de secuencia SEQ ID NO: 8 (BAK68"), SEQ ID NO: 9 BAK120"146, SEQ ID NO: 10 (BAK167" 181), SEQ ID NO: 1 (vBAK164" 85', variante de BAK o variante artificial) y SEQ ID NO: 12 (BAX146" 66). SEQ ID NO: 10 (BAK167"181) es un fragmento de SEQ ID NO: 7 y también inhibe BAK aunque con una IC50 mayor. En el contexto de la presente invención, el término "variante de BAK" se refiere a un péptido obtenido por sustitución o eliminación de uno a tres residuos de aminoácido en el correspondiente péptido la proteína BAK humana nativa. Por otro lado, se entiende por el termino "derivado" un producto obtenido a partir del péptido original por cualquier reacción química sintética o natural. Por último, el término "fragmento" significa moléculas obtenidas del péptido original eliminando secuencias de entre cuatro y diez aminoácidos The authors of the present invention have shown that the peptide of SEQ ID NO: 7 (BAK 164 "185 ) inhibits BAK (Fig. 7) and also has a low IC50 (table 1), less than the IC50 of the sequence peptides SEQ ID NO: 8 (BAK 68 "), SEQ ID NO: 9 BAK 120" 146 , SEQ ID NO: 10 (BAK 167 " 181 ), SEQ ID NO: 1 (vBAK 164" 85 ', BAK variant or variant artificial) and SEQ ID NO: 12 (BAX 146 "66 ). SEQ ID NO: 10 (BAK 167 "181 ) is a fragment of SEQ ID NO: 7 and also inhibits BAK although with a higher IC50. In the context of the present invention, the term" BAK variant "refers to a peptide obtained by substitution or elimination of one to three amino acid residues in the corresponding peptide the native human BAK protein On the other hand, the term "derivative" means a product obtained from the original peptide by any synthetic or natural chemical reaction. Finally, the term "fragment" means molecules obtained from the original peptide by eliminating sequences of between four and ten amino acids.
Estos péptidos, o preferiblemente una composición farmacológicamente aceptable de los mismos, pueden encontrar aplicación en el tratamiento y/o prevención de patologías humanas relacionadas con la activación prematura o excesiva de BAK. These peptides, or preferably a pharmacologically acceptable composition thereof, may find application in the treatment and / or prevention of human pathologies related to premature or excessive activation of BAK.
Otro aspecto de la invención se refiere a una composición (en adelante llamada composición de la invención) que comprende el péptido de la invención. Preferiblemente, la composición es una composición farmacéutica. Más preferiblemente, la composición comprende un vehículo o un excipiente. Another aspect of the invention relates to a composition (hereinafter called the composition of the invention) comprising the peptide of the invention. Preferably, the composition is a composition Pharmaceutical More preferably, the composition comprises a vehicle or an excipient.
El término "composición farmacéutica" en esta memoria hace referencia a cualquier sustancia usada para prevención, diagnóstico, alivio, tratamiento o curación de enfermedades. En el contexto de la presente invención se refiere a una composición que comprenda al menos el péptido de la invención. La composición farmacéutica de la invención puede utilizarse tanto sola como en combinación con otras composiciones para el tratamiento o prevención de enfermedades relacionadas con BAK. The term "pharmaceutical composition" herein refers to any substance used for prevention, diagnosis, relief, treatment or cure of diseases. In the context of the present invention it refers to a composition comprising at least the peptide of the invention. The pharmaceutical composition of the invention can be used both alone and in combination with other compositions for the treatment or prevention of diseases related to BAK.
Un "excipiente "es un componente de una composición farmacéutica que no es un compuesto activo sino un diluyente, un vehículo o un relleno, entre otros, que se considera farmacéuticamente aceptable cuando es seguro, no es tóxico y no presenta efectos adversos. El término "excipiente" hace referencia a una sustancia que ayuda a la absorción del compuesto, lo estabiliza o ayuda a la preparación del medicamento en el sentido de darle consistencia o aportar sabores que lo hagan más agradable. Así pues, los excipientes podrían tener la función de mantener los ingredientes unidos como por ejemplo almidones, azúcares o celulosas, función de endulzar, función de colorante, función de protección del medicamento como por ejemplo para aislarlo del aire y/o la humedad, función de relleno de una pastilla, cápsula o cualquier otra forma de presentación como por ejemplo el fosfato de calcio dibásico, función desintegradora para facilitar la disolución de los componentes y su absorción en el intestino, sin excluir otro tipo de excipientes no mencionados en este párrafo. An "excipient" is a component of a pharmaceutical composition that is not an active compound but a diluent, a vehicle or a filler, among others, which is considered pharmaceutically acceptable when safe, is not toxic and has no adverse effects. The term "excipient" refers to a substance that helps the absorption of the compound, stabilizes it or helps the preparation of the drug in the sense of giving it consistency or providing flavors that make it more pleasant. Thus, the excipients could have the function of keeping the ingredients together such as starches, sugars or cellulose, sweetening function, dye function, drug protection function such as to isolate it from air and / or moisture, function filling a tablet, capsule or any other form of presentation such as dibasic calcium phosphate, a disintegrating function to facilitate the dissolution of the components and their absorption in the intestine, without excluding other types of excipients not mentioned in this paragraph.
El término "farmacológicamente aceptable" hace referencia a que el excipiente esté permitido y evaluado de modo que no cause daño a los organismos a los que se administra. Además, el excipiente debe ser farmacéuticamente adecuado, es decir, debe permitir la actividad de los compuestos de la composición farmacéutica, es decir, debe ser compatible con dichos componentes The term "pharmacologically acceptable" refers to the excipient being allowed and evaluated so as not to cause harm to organisms to which it is administered. In addition, the excipient must be pharmaceutically suitable, that is, it must allow the activity of the compounds of the pharmaceutical composition, that is, it must be compatible with said components.
El "vehículo" o portador, es preferiblemente una sustancia inerte. La función del vehículo es facilitar la incorporación de otros compuestos, permitir una mejor dosificación y administración o dar consistencia y forma a la composición farmacéutica. Por tanto, el vehículo es una sustancia que se emplea en el medicamento para diluir cualquiera de los componentes de la composición farmacéutica de la presente invención hasta un volumen o peso determinado; o bien que aún sin diluir dichos componentes es capaz de permitir una mejor dosificación y administración o dar consistencia y forma al medicamento. Cuando la forma de presentación es líquida, el vehículo farmacéuticamente aceptable es el diluyente. The "vehicle" or carrier is preferably an inert substance. The function of the vehicle is to facilitate the incorporation of other compounds, allow a better dosage and administration or give consistency and form to the pharmaceutical composition. Therefore, the carrier is a substance that is used in the medicament to dilute any of the components of the pharmaceutical composition of the present invention to a certain volume or weight; or that even without diluting said components it is capable of allowing a better dosage and administration or giving consistency and form to the medicine. When the form of presentation is liquid, the pharmaceutically acceptable carrier is the diluent.
En otra realización aún más preferida, la composición farmacéutica además comprende otra sustancia activa. Además del requerimiento de la eficacia terapéutica, que puede necesitar el uso de otros agentes terapéuticos, pueden existir razones fundamentales adicionales que obligan o recomiendan en gran medida el uso de una combinación de un compuesto de la invención y otro agente terapéutico. El término "principio activo" es toda materia, cualquiera que sea su origen humano, animal, vegetal, químico o de otro tipo a la que se atribuye una actividad apropiada para constituir un medicamento. In another even more preferred embodiment, the pharmaceutical composition further comprises another active substance. In addition to the requirement of therapeutic efficacy, which may require the use of other therapeutic agents, there may be additional fundamental reasons that compel or strongly recommend the use of a combination of a compound of the invention and another therapeutic agent. The term "active ingredient" is any matter, whatever its human, animal, plant, chemical or other origin to which an appropriate activity is attributed to constitute a medicine.
Otro aspecto de la invención se refiere al uso del péptido de la invención o de la composición de la invención para la preparación de un medicamento. Preferiblemente, dicho uso es para el tratamiento de enfermedades relacionadas con una hiperactivación de BAK. Otro aspecto de la invención se refiere a un kit (en adelante llamado "kit de la invención") caracterizado porque comprende el polipéptido del primer aspecto de la invención. En una realización preferida, el kit de la invención comprende un conjunto de membranas ricas en lípidos mitocondriales. Preferiblemente, el kit comprende liposomas ricos en lípidos mitocondriales. Más preferiblemente, los liposomas son ricos en cardíolipina. En una realización preferida, el kit de la invención comprende un activador y/o un inhibidor de BAK. Los conjuntos de membrana, como por ejemplo los liposomas ricos en cardíolipina, pueden congelarse y almacenarse así para ser empleados cuando se necesiten. Además, pueden sufrir al menos dos ciclos de congelación/descongelación sin que su utilidad para llevar a acabo el método de la invención se vea perjudicada. Another aspect of the invention relates to the use of the peptide of the invention or of the composition of the invention for the preparation of a medicament. Preferably, said use is for the treatment of diseases related to a hyperactivation of BAK. Another aspect of the invention relates to a kit (hereinafter called "kit of the invention") characterized in that it comprises the polypeptide of the first aspect of the invention. In a preferred embodiment, the kit of the invention comprises a set of membranes rich in mitochondrial lipids. Preferably, the kit comprises liposomes rich in mitochondrial lipids. More preferably, the liposomes are rich in cardiolipin. In a preferred embodiment, the kit of the invention comprises an activator and / or a BAK inhibitor. Membrane assemblies, such as cardiolipin-rich liposomes, can be frozen and stored for use when needed. In addition, they may suffer at least two freeze / thaw cycles without their usefulness in carrying out the method of the invention being impaired.
Según el método de la invención, un compuesto o sustancia se denomina "activador de BAK" cuando aumenta la relación de intensidades de fluorescencia del polipéptido de la invención unido a un marcador fluorescente en presencia de liposomas y en ausencia de liposomas. Por ejemplo, un activador de BAK es tBID o DLP1 . Además, el compuesto o sustancia ha de aumentar esta relación de forma dependiente de dosis y de forma saturable. Para cuantificar la potencia de un compuesto o sustancia activador de BAK, se analizan los resultados experimentales a una función no lineal utilizando ecuaciones matemáticas apropiadas y bien conocidas por el experto en la materia. According to the method of the invention, a compound or substance is called "BAK activator" when the ratio of fluorescence intensities of the polypeptide of the invention increases to a fluorescent marker in the presence of liposomes and in the absence of liposomes. For example, a BAK trigger is tBID or DLP1. In addition, the compound or substance has to increase this ratio in a dose-dependent manner and saturably. To quantify the potency of a compound or BAK activating substance, the experimental results are analyzed to a non-linear function using appropriate mathematical equations well known to the person skilled in the art.
Según el método de la invención, un compuesto o sustancia se denomina "inhibidor de BAK" cuando disminuye la relación de intensidades de fluorescencia del polipéptido de la invención unido a un marcador fluorescente en presencia de liposomas y en ausencia de liposomas. Por ejemplo, un inhibidor de BAK es BCLXL o MCL1 . Además, el compuesto o sustancia ha de disminuir dicha relación de forma dependiente de dosis y saturable, incluso en presencia de un activador fisiológico de BAK como por ejemplo, pero sin limitarse, tBID. Para cuantificar la potencia de un compuesto os sustancia inhibidor de BAK, se analizan los resultados experimentales a una función no lineal utilizando ecuaciones matemáticas apropiadas y bien conocidas por el experto en la materia. According to the method of the invention, a compound or substance is called "BAK inhibitor" when the ratio of fluorescence intensities of the polypeptide of the invention bound to a fluorescent marker in the presence of liposomes and in the absence of liposomes decreases. For example, a BAK inhibitor is BCLXL or MCL1. In addition, the compound or substance must decrease said ratio in a dose-dependent manner and saturable, even in the presence of a physiological BAK activator such as, but not limited to, tBID. To quantify the potency of a compound or BAK inhibitor substance, the experimental results are analyzed to a non-linear function using appropriate mathematical equations well known to the person skilled in the art.
Los métodos descritos pueden ser utilizados para analizar una amplia variedad de sustancias, incluyendo, pero no limitándose, colecciones de biomoléculas o librerías de pequeños compuestos orgánicos o naturales de menos de 500 dalton. Los métodos de la invención pueden llevarse a cabo en distintos formatos que se adapten al número de compuestos o sustancias a analizar. Los autores de la presente invención han demostrado la eficacia de los métodos de la invención llevados a cabo en microplacas de 96 pocilios, que facilitan la medida de la fluorescencia de manera robotízada. The described methods can be used to analyze a wide variety of substances, including, but not limited to, collections of biomolecules or libraries of small organic or natural compounds of less than 500 daltons. The methods of the invention can be carried out in different formats that adapt to the number of compounds or substances to be analyzed. The authors of the present invention have demonstrated the efficacy of the methods of the invention carried out in 96-well microplates, which facilitate the measurement of fluorescence robotically.
Para mejorar la eficiencia del ensayo, pueden emplearse reactivos adicionales, como por ejemplo, pero sin limitarse, MgC y seroalbúmina bovina (BSA) To improve the efficiency of the assay, additional reagents can be used, such as, but not limited to, MgC and bovine serum albumin (BSA)
Los compuestos activadores o inhibidores de BAK identificados en estos ensayos pueden ser utilizados en la investigación farmacéutica y clínica de enfermedades asociadas con desarreglos funcionales de BAK, como componentes únicos o en mezclas complejas. BAK activating or inhibiting compounds identified in these assays can be used in pharmaceutical and clinical research of diseases associated with functional BAK disorders, as single components or in complex mixtures.
Otro aspecto de la invención se refiere al uso del kit de la invención para la identificación de sustancias que modulan la activación de BAK. Another aspect of the invention relates to the use of the kit of the invention for the identification of substances that modulate the activation of BAK.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. DESCRIPCIÓN DE LAS FIGURAS Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be apparent in part of the description and part of the practice of the invention. The following examples are provided by way of illustration, and are not intended to be limiting of the present invention. DESCRIPTION OF THE FIGURES
Figura 1. Esquema de la proteína BAK donde se indican las regiones oc- helicoidales y los dominios conservados BH1 , BH2, BH3 y transmembrana (TM) de la proteína. Asimismo, se indican las secuencias del extremo carboxilo terminal correspondientes a la proteína BAK humana de tipo silvestre (BAK), y a los mutantes de deleción BAKAC2, BAKAC4 y ΒΑΚΔ06. Figure 1. Scheme of the BAK protein where the ochelid regions and the conserved domains BH1, BH2, BH3 and transmembrane (TM) of the protein are indicated. Likewise, the terminal carboxyl end sequences corresponding to the wild-type human BAK protein (BAK), and the BAKAC2, BAKAC4 and ΒΑΚΔ06 deletion mutants are indicated.
Figura 2. La Figura 2A muestra ensayos por duplicado de SDS-PAGE e inmunoblot con anticuerpo anti-BAK para determinar la distribución de distintas formas recombinantes de BAK en el sobrenadante (S) y en el pellet (P) obtenidos tras centrifugar los lisados bacterianos. La Figura 2B muestra un gel de SDS-PAGE teñido con azul de Coomassie conteniendo cantidades crecientes de BAKAC4 purificada por procedimientos cromatográficos a partir de la fracción soluble del lisado bacteriano. Figure 2. Figure 2A shows duplicate assays of SDS-PAGE and immunoblot with anti-BAK antibody to determine the distribution of different recombinant forms of BAK in the supernatant (S) and in the pellet (P) obtained after centrifuging the bacterial lysates . Figure 2B shows an SDS-PAGE gel stained with Coomassie blue containing increasing amounts of BAKAC4 purified by chromatographic procedures from the soluble fraction of the bacterial lysate.
Figura 3. La Figura 3A muestra ensayos por duplicado de SDS-PAGE e inmunoblot con anticuerpo anti-BAK para determinar la distribución de BAKAC4 en el sobrenadante (S) y en el petiet (P) obtenidos tras centrifugar la proteína ΒΑΚΔ04 incubada en presencia (+) o en ausencia (-) de mitocondrias aisladas. La Figura 3B representa el efecto que ejerce ΒΑΚΔ04, dos ligandos activadores naturales de BAK (tBID y DLP1 /Drp1 ), o combinaciones de ambos tipos de moléculas, sobre la permeabilización de la MME. Las concentraciones de proteína y mitocondrias fueron 0,4 μΜ y 1 mg proteína/ml, respectivamente. Se representan valores medios de 2 medidas individuales más los errores estándar. Figura 4. La Figura 4A representa ensayos por duplicado de SDS-PAGE e inmunoblot con anticuerpo anti-BAK para determinar la distribución de BAKAC4 en el sobrenadante (S) y en el pellet (P) obtenidos tras centrifugar ΒΑΚΔ04 incubada en presencia (+) o en ausencia (-) de liposomas enriquecidos en cardiolipina. La Figura 4B representa el efecto de ΒΑΚΔ04, dos ligandos activadores naturales de BAK (tBID y DLP1/Drp1 ), o combinaciones de ambos tipos de moléculas sobre la liberación de 1 , 3, 6-aminonaftaleno-tri-sulfonato (ANTS) encapsulado en liposomas enriquecidos en cardiolipina. En todos los casos, las concentraciones de proteína y lípido total fueron 0,1 μΜ y 0,2 mM, respectivamente. Se representan valores medios de 3 a 6 medidas individuales más los errores estándar. Figure 3. Figure 3A shows duplicate assays of SDS-PAGE and immunoblot with anti-BAK antibody to determine the distribution of BAKAC4 in the supernatant (S) and in the petiet (P) obtained after centrifuging the ΒΑΚΔ04 protein incubated in the presence ( +) or in the absence (-) of isolated mitochondria. Figure 3B represents the effect exerted by ΒΑΚΔ04, two natural activating ligands of BAK (tBID and DLP1 / Drp1), or combinations of both types of molecules, on the permeabilization of MME. The concentrations of protein and mitochondria were 0.4 μΜ and 1 mg protein / ml, respectively. Mean values of 2 individual measurements plus standard errors are represented. Figure 4. Figure 4A represents duplicate assays of SDS-PAGE and immunoblot with anti-BAK antibody to determine the distribution of BAKAC4 in the supernatant (S) and in the pellet (P) obtained after centrifuging ΒΑΚΔ04 incubated in the presence (+) or in the absence (-) of liposomes enriched in cardiolipin. Figure 4B depicts the effect of ΔΔ04, two natural activating ligands of BAK (tBID and DLP1 / Drp1), or combinations of both types of molecules on the release of 1, 3, 6-aminonaphthalene-tri-sulphonate (ANTS) encapsulated in liposomes enriched in cardiolipin. In all cases, the total protein and lipid concentrations were 0.1 μΜ and 0.2 mM, respectively. Mean values of 3 to 6 individual measurements plus standard errors are represented.
Figura 5. Estructura de ΒΑΚΔ021 resuelta por cristalografía de rayos X, señalando las dos cisternas endógenas utilizadas para marcar BAKAC4 con el fluoróforo NBD (7-nítrobenz-2-oxa-1 ,3-diazolíletílenodiamina). Figure 5. Structure of ΒΑΚΔ021 resolved by X-ray crystallography, indicating the two endogenous cisterns used to mark BAKAC4 with the NBD fluorophore (7-nitrobenz-2-oxa-1, 3-diazolineletylenediamine).
Figura 6. La Figura 6A representa espectros de la emisión de fluorescencia de NBD-BAKAC4 en distintas condiciones ( excitación=470 nm). La Figura 6B muestra el efecto de ligandos activadores (tBID, DLP1/Drp1 ) o inhibidores (MCL1 , BCLXL) de BAK sobre la relación de intensidades de fluorescencia de NBD-BAKAC4 en presencia y en ausencia de liposomas enriquecidos en cardiolipina (Aexcitación=470 nm, Aemisión=530nm). En todos los casos, las concentraciones de proteína y lípido total fueron 0,1 μΜ y 0,1 mM, respectivamente. Se representan valores medios de 3 a 9 medidas individuales más los errores estándar. F, fluorescencia. Figure 6. Figure 6A represents spectra of the fluorescence emission of NBD-BAKAC4 under different conditions (excitation = 470 nm). Figure 6B shows the effect of activating ligands (tBID, DLP1 / Drp1) or inhibitors (MCL1, BCLXL) of BAK on the ratio of fluorescence intensities of NBD-BAKAC4 in the presence and absence of liposomes enriched in cardiolipin (Excitation = 470 nm, emission = 530nm). In all cases, the total protein and lipid concentrations were 0.1 μΜ and 0.1 mM, respectively. Mean values of 3 to 9 individual measurements plus standard errors are represented. F, fluorescence.
Figura 7. La Figura 7A muestra el efecto que ejercen dosis crecientes de los péptidos BAK68"99 (SEQ ID NO:8), BAK120146 (SEQ ID NO: 9) y BAK164- 185 (SEQ ID NO: 7) sobre la fluorescencia relativa de NBD-BAKAC4 incubada con tBID en presencia (Fliposoma) y en ausencia (Fsolución) de líposomas enriquecidos en cardiolipina. Las concentraciones de NBD- BAKAC4, tBID y lípido fueron 0,1 μΜ, 0,05 μΜ, y 0,1 mM, respectivamente. Se representan valores medios de 3 a 6 medidas individuales más los errores estándar. La línea continua representa el ajuste de los datos experimentales a una función no lineal para obtener el valor IC50 ("half maximal inhibitory concentratiorí) correspondiente al péptido BAK164"185. La Figura 7B representa el efecto de los tres péptidos sintéticos sobre la permeabilización de la MME inducida por ΒΑΚΔ04 activada por tBID. Las concentraciones de péptido, BAKAC4, tBID, y mitocondrias fueron respectivamente, 12 μΜ, 0,4 μΜ, 0,2 μΜ, y 1 mg proteína/ml. Se representan valores medios de al menos 2 medidas individuales más los errores estándar. Figure 7. Figure 7A shows the effect exerted increasing doses of the peptides BAK 68 "99 (SEQ ID NO: 8), BAK 120146 (SEQ ID NO: 9) and BAK 164- 185 (SEQ ID NO: 7) on the relative fluorescence of NBD-BAKAC4 incubated with tBID in the presence (fliposome) and in the absence (resolution) of Liposomes enriched in cardiolipin. The concentrations of NBD-BAKAC4, tBID and lipid were 0.1 μΜ, 0.05 μΜ, and 0.1 mM, respectively. Mean values of 3 to 6 individual measurements plus standard errors are represented. The solid line represents the adjustment of the experimental data to a non-linear function to obtain the IC50 ("half maximal inhibitory concentratiorí) value corresponding to the BAK 164" 185 peptide. Figure 7B depicts the effect of the three synthetic peptides on the permeabilization of the MME induced by ΔΔ04 activated by tBID. The concentrations of peptide, BAKAC4, tBID, and mitochondria were, respectively, 12 μΜ, 0.4 μΜ, 0.2 μΜ, and 1 mg protein / ml. Mean values of at least 2 individual measurements plus standard errors are represented.
EJEMPLOS EXAMPLES
A continuación se ilustrará la invención mediante unos ensayos realizados por los inventores, que pone de manifiesto la efectividad de la proteína mutante de la invención, así como del método de criba de identificación de moléculas capaces de modular la actividad de BAK. The invention will now be illustrated by tests carried out by the inventors, which demonstrates the effectiveness of the mutant protein of the invention, as well as the screening method for identifying molecules capable of modulating the activity of BAK.
EJEMPLO*! : PURIFICACIÓN DE LAS PROTEÍNAS BAK, BAKAC2, BAKAC4, y BAKAC6. EXAMPLE * ! : PURIFICATION OF BAK, BAKAC2, BAKAC4, and BAKAC6 PROTEINS.
Para la expresión de la proteína BAK fusionada a la proteína 6HisLipoil se utilizó el vector pRSETHisüpoTEV (Weinberg y cois. 2004. J. Mol. Bíol. 342, 801 -81 1 ). Los plásmidos para expresar los mutantes de deleción BAKAC2 (SEQ ID NO: 2), ΒΑΚΔ04 (SEQ ID NO: 3), y BAKAC6 (SEO ID NO: 4) se prepararon por procedimientos de biología molecular conocidos por el experto en la materia, incluyendo pero no limitándose, a técnicas de reacción en cadena de polimerasa (PCR) estándares, digestión por enzimas de restricción, tratamiento con fosfatasa alcalina para evitar la unión no deseada, ligación con una ligasa y confirmación de la secuencia. Para expresar las distintas formas recombínantes de BAK fusionadas a 6Hisl_ipoíl (BAK6hislipoil es SEQ ID NO: 5 y BAKAC4-6hislipoil es SEQ ID NO: 6) en E. coli se siguió un procedimiento similar al descrito en Sot y cois. 2007, J. Biol. Chem. 282:29193-29200. Se transforma la cepa bacteriana adecuada (preferentemente C41 pLys) con el plásmido de interés. Tras alcanzar la fase estacionaria de crecimiento, se añade 0,5 mM isopropil-D-tiogalactopiranósido (IPTG) para inducir la expresión de la proteína recombinante en la célula huésped. Tras incubar 15 horas a 209C, las bacterias se recogen, se resuspenden y se lisan utilizando una prensa de French. A continuación, se centrifuga el lisado durante 30 minutos a 30.0000 para obtener una fracción soluble o sobrenadante (S) y un precipitado (P). Sorprendentemente, en el caso de BAK y BAKAC2, la práctica totalidad de la proteína expresada se localizó en el precipitado del lisado bacteriano. Este hecho, unido a la elevada toxicidad de la expresión de BAK y BAKAC2 para las bacterias, imposibilitó purificar ambas proteínas recombínantes en condiciones nativas. Sin embargo, para el caso de BAKAC4 y ΒΑΚΔ06, la mayor parte de la proteína expresada se localizó en el sobrenadante del lisado bacteriano y no se observó una elevada toxicidad en las bacterias (Figura 2A). For the expression of the BAK protein fused to the 6HisLipoil protein, the pRSETHisüpoTEV vector (Weinberg et al. 2004. J. Mol. Bíol. 342, 801-81 1) was used. Plasmids for expressing the BAKAC2 deletion mutants (SEQ ID NO: 2), ΒΑΚΔ04 (SEQ ID NO: 3), and BAKAC6 (SEO ID NO: 4) were prepared by molecular biology procedures known to those skilled in the art, including but not limited to standard polymerase chain reaction (PCR) techniques, restriction enzyme digestion, alkaline phosphatase treatment to prevent unwanted binding, ligase ligation and sequence confirmation. To express the different recombinant forms of BAK fused to 6Hisl_ipoil (BAK6hislipoil is SEQ ID NO: 5 and BAKAC4-6hislipoil is SEQ ID NO: 6) in E. coli a procedure similar to that described in Sot and cois was followed. 2007, J. Biol. Chem. 282: 29193-29200. The appropriate bacterial strain (preferably C41 pLys) is transformed with the plasmid of interest. After reaching the stationary phase of growth, 0.5 mM isopropyl-D-thiogalactopyranoside (IPTG) is added to induce expression of the recombinant protein in the host cell. After incubating 15 hours at 20 9 C, the bacteria are collected, resuspended and lysed using a French press. The lysate is then centrifuged for 30 minutes at 30,000 to obtain a soluble fraction or supernatant (S) and a precipitate (P). Surprisingly, in the case of BAK and BAKAC2, almost all of the expressed protein was located in the precipitate of the bacterial lysate. This fact, together with the high toxicity of the expression of BAK and BAKAC2 for bacteria, made it impossible to purify both recombinant proteins under native conditions. However, in the case of BAKAC4 and ΒΑΚΔ06, most of the expressed protein was located in the bacterial lysate supernatant and no high toxicity was observed in the bacteria (Figure 2A).
EJEMPLO 2: OBTENCIÓN DE LA PROTEÍNA MUTANTE ΒΑΚΔ04. EXAMPLE 2: OBTAINING THE MUTANT PROTEIN ΒΑΚΔ04.
En primer lugar, se obtiene un lisado bacteriano a partir de células que expresan 6HisLipo-BAKAC4 siguiendo el protocolo descrito en la sección anterior. A continuación, se carga la fracción soluble del lisado sobre una columna de Ni2+agarosa (Qiagen) equilibrada con tampón A (50mM Hepes, pH7.5, 500mM NaCI, 5mM imídazol, 1 mM TCEP, 10% glicerol). Para reducir el grado de contaminantes, se lava la columna con tampón A conteniendo imidazol 20 mM. Para eluír la proteína 6Hísl_ípo-BAKAC4 se lava la columna con tampón A conteniendo imidazol 500 mM. Para eliminar el fragmento 6HisLipoTEV, se trata la fracción eluida con proteasa 6HisTEV siguiendo indicaciones del fabricante (GE Healthcare), y se pasa la muestra sobre otra columna de Ní2+ equilibrada con tampón A sin imidazol. Seguidamente, se recoge la fracción que no se ha unido a la columna conteniendo la proteína BAKAC4, y se concentra la proteína utilizando filtros Amicon Y10. Posteriormente, se pasa la muestra sobre una columna de gel filtración analítica (preferiblemente Superdex 75) equilibrada en tampón A sin imidazol, utilizando un sistema de cromatografía AKTA (GE Healthcare). Finalmente, se identifican las fracciones de elución correspondientes a BAKAC4 por SDS-PAGE e inmunoblot con anticuerpo anti-BAK, se concentra de nuevo la proteína, y se determina su concentración por espectroscopia de absorción de luz UV a 280 nm. First, a bacterial lysate is obtained from cells expressing 6HisLipo-BAKAC4 following the protocol described in the previous section. Then, the soluble fraction of the lysate is loaded onto a Ni 2+ agarose (Qiagen) column equilibrated with buffer A (50mM Hepes, pH7.5, 500mM NaCI, 5mM imidazole, 1mM TCEP, 10% glycerol). To reduce the degree of contaminants, the column is washed with buffer A containing 20 mM imidazole. To elute the 6Hísl_ípo-BAKAC4 protein, wash the column with buffer A containing 500 mM imidazole. To remove the 6HisLipoTEV fragment, the eluted fraction with 6HisTEV protease is treated following the manufacturer's instructions (GE Healthcare), and the sample is passed on another N 2+ column equilibrated with buffer A without imidazole. Next, the fraction that has not bound to the column containing the BAKAC4 protein is collected, and the protein is concentrated using Amicon Y10 filters. Subsequently, the sample is passed on an analytical filtration gel column (preferably Superdex 75) equilibrated in buffer A without imidazole, using an AKTA chromatography system (GE Healthcare). Finally, the elution fractions corresponding to BAKAC4 are identified by SDS-PAGE and immunoblot with anti-BAK antibody, the protein is concentrated again, and its concentration is determined by UV light absorption spectroscopy at 280 nm.
EJEMPLO 3: OBTENCIÓN DE LA PROTEÍNA NBD-BAKAC4. EXAMPLE 3: OBTAINING PROTEIN NBD-BAKAC4.
Para producir NBD-BAKAC4 se utilizó un procedimiento similar al descrito en Saksena y cois. 2009, Cell 136:97-109 para el mareaje de proteínas con NBD. En primer lugar, se pasa 1 mg de ΒΑΚΔ04 por una columna de cromatografía de desalado tipo PD-10 (GE Healthcare) equilibrada en 100 mM KCI, 10 mM Hepes pH 7,5. A continuación, se añade el derivado iodoacetamida de NBD (IANBD, GE Healthcare) a una concentración 5 veces superior a BAKAC4, y se incuba la mezcla 2 horas a temperatura ambiente. Tras detener la reacción añadiendo 5 mM TCEP, tris(2- carboxyethyl)phosphine se vuelve a pasar la mezcla por una columna de desalado PD-10 equilibrada en tampón A sin imidazol para separar la proteína NBD-BAKAC4 marcada del IANBD libre. Finalmente, se determina la concentración de la proteína, se distribuye la muestra en alícuotas de 30-100 μΙ, se congela en N2 líquido y se almacena a -80eC. Conviene señalar que no se han encontrado diferencias significativas entre NBD-BAKAC4 y BAKAC4 tanto en ensayos con liposomas como en ensayos con mitocondrías aisladas. Siguiendo este protocolo, se obtiene una preparación homogénea y pura de ΒΑΚΔ04, la cual preserva rasgos funcionales básicos de la proteína BAK de existencia natural (Figuras 2B Y 3). To produce NBD-BAKAC4, a procedure similar to that described in Saksena and cois was used. 2009, Cell 136: 97-109 for protein mapping with NBD. First, 1 mg of ΒΑΚΔ04 is passed through a desalting chromatography column type PD-10 (GE Healthcare) balanced at 100 mM KCI, 10 mM Hepes pH 7.5. Next, the NBD iodoacetamide derivative (IANBD, GE Healthcare) is added at a concentration 5 times higher than BAKAC4, and the mixture is incubated 2 hours at room temperature. After stopping the reaction by adding 5 mM TCEP, tris (2- carboxyethyl) phosphine is again passed the mixture through a desalinated column of PD-10 equilibrated in buffer A without imidazole to separate the labeled NBD-BAKAC4 protein from the free IANBD. Finally, the protein concentration is determined, the sample is distributed in 30-100 μ 30 aliquots, frozen in liquid N 2 and stored at -80 e C. It should be noted that no significant differences were found between NBD-BAKAC4 and BAKAC4 both in trials with liposomes and in trials with isolated mitochondria. Following this protocol, a homogeneous and pure preparation of ΒΑΚΔ04 is obtained, which preserves basic functional features of the naturally occurring BAK protein (Figures 2B and 3).
EJEMPLO 4: Análisis de la capacidad de BAKAC4 para unirse a mitocondrías y permeabilizar la MME. EXAMPLE 4: Analysis of the ability of BAKAC4 to bind to mitochondria and permeabilize MME.
Para determinar si BAKAC4 preserva los rasgos funcionales básicos de la proteína BAK silvestre, se utilizaron procedimientos conocidos por el experto en la materia con mitocondrías aisladas de levadura las cuales carecen completamente de proteínas de la familia BCL2 (véase LJ Siskind y cois. 2002, J. Biol. Chem. 283:6622-6630). Por un lado, se comprobó la capacidad de BAKAC4 para asociarse con las mitocondrías (Figura 3A). Por otro lado, se verificó la capacidad de BAKAC4 para permeabilizar la MME en presencia de dos activadores fisiológicos de la proteína BAK silvestre (tBID y DLP1/Drp1 ) (Figura 3B). To determine whether BAKAC4 preserves the basic functional traits of the wild BAK protein, procedures known to those skilled in the art were used with isolated yeast mitochondria which completely lack BCL2 family proteins (see LJ Siskind et al. 2002, J Biol. Chem. 283: 6622-6630). On the one hand, the ability of BAKAC4 to associate with mitochondria was checked (Figure 3A). On the other hand, the ability of BAKAC4 to permeabilize MME was verified in the presence of two physiological activators of the wild BAK protein (tBID and DLP1 / Drp1) (Figure 3B).
EJEMPLO 5: Fabricación de liposomas, ensayos de unión de ΒΑΚΔ04 y liberación de ANTS. EXAMPLE 5: Manufacture of liposomes, binding assays of ΒΑΚΔ04 and release of ANTS.
Los ensayos en liposomas para desarrollar una búsqueda a gran escala de potenciales compuestos moduladores de BAK son mejores que los ensayos en mitocondrias debido a la menor estabilidad de las mitocondrías (entre 3 y 5 horas) respecto a los liposomas (varios días y hasta semanas), al mayor coste y duración de los ensayos con mitocondrias respecto a los ensayos con liposomas, y a la mayor ambigüedad en la interpretación de resultados obtenidos en ensayos con mitocondrias respecto a ensayos con liposomas, que por su complejidad composicional, estructural y dinámica aumentan la variabilidad de los resultados. Liposome assays to develop a large-scale search for potential BAK modulating compounds are better than mitochondrial assays due to the lower stability of mitochondria (between 3 and 5 hours) with respect to liposomes (several days and even weeks) , the greater cost and duration of mitochondrial tests with respect to liposome assays, and the greater ambiguity in the interpretation of results obtained in mitochondrial assays with respect to liposome assays, than due to their complexity Compositional, structural and dynamic increase the variability of the results.
Los Iiposomas se fabricaron utilizando métodos bien conocidos en el campo, preferiblemente por extrusión a través de filtros de policarbonato de 0,2 μΜ (véase Terrones y cois. 2004 J. Biol. Chem. 279:30081 -30091 ). Se estableció la siguiente composición lipídica óptima para realizar los ensayos con Iiposomas descritos en esta invención: fosfatidilcolina de yema de huevo (20 %mol), fosfatidiletanolamína de yema de huevo (20 %mol), fosfatidilinositol de cerebro de rata (10 %mol) y cardiolipina de corazón de rata (50 %mol). Estos Iiposomas se denominan "Iiposomas enriquecidos en cardiolipina" en la presente invención. Cabe señalar que la cardiolipina es un lípido específico de la mítocondria cuyos niveles en la MME aumentan durante la apoptosis (Kagan y cois. 2005, Nat Chem Biol. 1 :223-232). Iiposomes were manufactured using methods well known in the field, preferably by extrusion through 0.2 μΜ polycarbonate filters (see Lumps and cois. 2004 J. Biol. Chem. 279: 30081-30091). The following optimal lipid composition was established to perform the tests with Iiposomes described in this invention: egg yolk phosphatidylcholine (20% mol), egg yolk phosphatidylethanolamine (20% mol), rat brain phosphatidylinositol (10% mol) and rat heart cardiolipin (50% mol). These liposomes are referred to as "cardiolipin-enriched liposomes" in the present invention. It should be noted that cardiolipin is a specific lipid of the mitochondria whose levels in MME increase during apoptosis (Kagan et al. 2005, Nat Chem Biol. 1: 223-232).
A continuación, comprobamos que BAKAC4 se une a Iiposomas enriquecido en cardiolipina pero no a Iiposomas sin cardiolipina (Figura 4A). Seguidamente, nos planteamos utilizar el método de liberación de ANTS (1 , 3, 6-aminonaftaleno-tri-sulfonato) encapsulado en Iiposomas (véase Terrones y cois. 2004 J. Biol. Chem. 279:30081 -30091 ) para evaluar la modulación funcional de BAKAC4 por diferentes compuestos. Sin embargo, comprobamos que este método no es apropiado para examinar la modulación funcional de BAKAC4 por moléculas de interés, tales como DLP1/Drp1 o el péptído sintético BAK 64"185 (tabla 1 ) las cuales producen liberación de ANTS por sí solas (Figura 4B). Next, we found that BAKAC4 binds to Iiposomes enriched in cardiolipin but not to liposomes without cardiolipin (Figure 4A). Next, we consider using the ANTS release method (1, 3, 6-aminonaphthalene-tri-sulphonate) encapsulated in liposomes (see Lumps and cois. 2004 J. Biol. Chem. 279: 30081-30091) to evaluate modulation Functional of BAKAC4 by different compounds. However, we verify that this method is not appropriate to examine the functional modulation of BAKAC4 by molecules of interest, such as DLP1 / Drp1 or the synthetic peptide BAK 64 "185 (table 1) which produce release of ANTS alone (Figure 4B).
EJEMPLO 6: ENSAYOS PARA IDENTIFICAR COMPUESTOS MODULADORES DE BAK A NIVEL DE MEMBRANA. EXAMPLE 6: TESTS TO IDENTIFY BAK MODULATING COMPOUNDS AT MEMBRANE LEVEL.
Se han desarrollado ensayos basados en cambios de la fluorescencia de la proteína NBD-BAKAC4 asociada a Iiposomas enriquecidos en cardiolipína para identificar, de forma controlada y cuantitativa, compuestos que modulan la función de BAK a nivel de membrana. Assays based on fluorescence changes of the NBD-BAKAC4 protein associated with enriched liposomes have been developed in Cardiolipin to identify, in a controlled and quantitative way, compounds that modulate the function of BAK at the membrane level.
Tal y como muestra la Figura 5, BAK contiene dos residuos cisternas expuestos al solvente, los cuales pueden ser utilizadas para el mareaje de ΒΑΚΔ04 con el fluoróforo NBD (ver Ejemplo 3). Este fluoróforo ha sido utilizado para analizar cambios conformacionales en otras proteínas de membrana (Johnson 2005, Traffic 6: 1078-1092). En la Figura 6A se representan los espectros de fluorescencia de la proteína NBD-BAKAC4 tras ser incubada con el tampón de reacción, con tBID, o con tBID junto con liposomas enriquecidos en cardiolipína. Se observa que cuando NBD-BAKAC4 es incubada con tBID en ausencia de liposomas no se producen cambios significativos en el espectro de fluorescencia del NBD. Por el contrario, cuando NBD-BAKAC4 se incuba con tBID junto con liposomas se produce un aumento dramático de la intensidad de fluorescencia del NBD, acompañada por un desplazamiento hacia el azul de la longitud máxima de emisión del fluoróforo. Estos resultados demuestran que tBID provoca un profundo cambio en la estructura de NBD-BAKAC4 asociado a liposomas enriquecidos en cardiolipína, de manera análoga a lo observado durante la activación funcional de BAK en su entorno natural. As Figure 5 shows, BAK contains two tank residues exposed to the solvent, which can be used for the mapping of ΒΑΚΔ04 with the NBD fluorophore (see Example 3). This fluorophore has been used to analyze conformational changes in other membrane proteins (Johnson 2005, Traffic 6: 1078-1092). Figure 6A shows the fluorescence spectra of the NBD-BAKAC4 protein after being incubated with the reaction buffer, with tBID, or with tBID together with cardiolipin-enriched liposomes. It is observed that when NBD-BAKAC4 is incubated with tBID in the absence of liposomes, no significant changes in the fluorescence spectrum of NBD occur. On the contrary, when NBD-BAKAC4 is incubated with tBID together with liposomes, there is a dramatic increase in the fluorescence intensity of the NBD, accompanied by a blue shift of the maximum fluorophore emission length. These results demonstrate that tBID causes a profound change in the structure of NBD-BAKAC4 associated with cardiolipin-enriched liposomes, analogously to what was observed during the functional activation of BAK in its natural environment.
Se realizaron estudios adicionales para comprobar que varios lígandos activadores de BAK silvestre (tBID y DLP1 ) producen un aumento en la relación de intensidades de fluorescencia del NBD-BAKAC4 en presencia y en ausencia de liposomas, mientras que varios lígandos inhibidores de BAK silvestre (MCL1 y BCLXL) producen el efecto contrario (Figura 6B). Se emplearon los péptidos sintéticos descritos en la tabla 1 y se establecieron las siguientes etapas para la identificación de compuestos que modulan la función de BAK a nivel de membrana, así como para cuantificar su potencia: Additional studies were conducted to verify that several wild-type BAK activating ligands (tBID and DLP1) produce an increase in the fluorescence intensities ratio of NBD-BAKAC4 in the presence and absence of liposomes, while several wild-type BAK inhibitory ligands (MCL1 and BCLXL) produce the opposite effect (Figure 6B). The synthetic peptides described in Table 1 were used and the following steps were established for the identification of compounds that modulate the function of BAK at the membrane level, as well as to quantify its potency:
-proporcionar una sustancia candidata, -provide a candidate substance,
-formar dos tipos de mezcla de reacción: NBD-BAKAC4 sin liposomas y NBD-BAKAC4 unida a liposomas enriquecidos en cardiolipina,  - form two types of reaction mixture: NBD-BAKAC4 without liposomes and NBD-BAKAC4 linked to liposomes enriched in cardiolipin,
-medir la intensidad de fluorescencia de los dos tipos de mezclas de reacción (Aex= 70 nm, Aem=530 nm),  -measure the fluorescence intensity of the two types of reaction mixtures (Aex = 70 nm, Aem = 530 nm),
-añadir la sustancia candidata a los dos tipos de mezclas de reacción en dosis crecientes (preferiblemente desde 0 μΜ hasta 10-100 μΜ),  -add the candidate substance to the two types of reaction mixtures in increasing doses (preferably from 0 μΜ to 10-100 μΜ),
-incubar las muestras en condiciones suficientes para permitir que la sustancia candidata produzca la activación funcional de NBD- BAKAC4 unida a liposomas, y  -include the samples under sufficient conditions to allow the candidate substance to produce functional activation of NBD-BAKAC4 bound to liposomes, and
-medir de nuevo la intensidad de fluorescencia de los dos tipos de mezclas de reacción (Aex=470 nm, Áem=530 nm) para determinar un aumento o disminución producido por la sustancia candidata en la relación de intensidades de fluorescencia del NBD-BAKAC4 en presencia de liposomas y en ausencia de liposomas.  - measure again the fluorescence intensity of the two types of reaction mixtures (Aex = 470 nm, Áem = 530 nm) to determine an increase or decrease produced by the candidate substance in the ratio of fluorescence intensities of the NBD-BAKAC4 in presence of liposomes and in the absence of liposomes.
EJEMPLO 7: IDENTIFICACIÓN DE PÉPTIDOS INHIBIDORES DE NBD- ΒΑΚΔ04 ASOCIADA A LIPOSOMAS. Analizamos el efecto sobre la activación funcional de NBD-BAKAC4 asociado a liposomas de tres péptidos sintéticos. EXAMPLE 7: IDENTIFICATION OF INHIBITING PEPTIDES OF NBD- ΒΑΚΔ04 ASSOCIATED WITH LIPOSOMES. We analyze the effect on the functional activation of NBD-BAKAC4 associated with liposomes of three synthetic peptides.
Se prepararon la proteína NBD-BAKAC4 y los liposomas enriquecidos en cardiolipina como se ha descrito anteriormente. La proteína tBID se preparó como se describe en Terrones y cois. 2004, J Biol Chem. 279:30081 -30091 . Los péptidos se obtuvieron de AMS Bíotechnology (Oxford, Reino Unido). Se prepararon 2 tipos de mezclas de reacción: por un lado, NBD-BAKAC4 (0,1 μΜ) sin liposomas; por otro lado, NBD-BAKAC4 (0,1 μΜ) con liposomas (0,1 mM). A cada mezcla de reacción se añadió una de las siguientes concentraciones de péptido: 0 μΜ, 0,25 μΜ, 0,5 μΜ, 1 μΜ, 2 μΜ, 4 μΜ, 8 μΜ, o 12 μΜ. Se incubaron las mezclas de reacción durante 5 minutos a 37SC. Se añadió una concentración subóptima de tBID (0,5 μΜ) a todas las mezclas de reacción. Se incubaron de nuevo las mezclas de reacción durante 30 minutos a 379C. Los ensayos se realizaron en una microplaca de 96 pocilios con fondo translúcido y paredes opacas y las medidas de fluorescencia del NBD se realizaron en un lector de placas de fluorescencia convencional (Gemini EM, MDS Anal. Technologies), siendo Aex=470 nm y Aem=540 nm. El tampón de reacción fue 100 mM KCI, 10 mM Hepes pH 7,5, 1 mM TCEP. La temperatura de los ensayos fue 37SC. Las medidas se realizaron por triplicado. NBD-BAKAC4 protein and cardiolipin-enriched liposomes were prepared as described above. The tBID protein was prepared as described in Terrones and cois. 2004, J Biol Chem. 279: 30081-30091. Peptides were obtained from AMS Biotechnology (Oxford, United Kingdom). Two types of reaction mixtures were prepared: on the one hand, NBD-BAKAC4 (0.1 μΜ) without liposomes; on the other hand, NBD-BAKAC4 (0.1 μΜ) with liposomes (0.1 mM). One of the following peptide concentrations was added to each reaction mixture: 0 μΜ, 0.25 μΜ, 0.5 μΜ, 1 μΜ, 2 μΜ, 4 μΜ, 8 μΜ, or 12 μΜ. The reaction mixtures were incubated for 5 minutes at 37 S C. A suboptimal concentration of tBID (0.5 μΜ) was added to all reaction mixtures. The reaction mixtures were incubated again for 30 minutes at 37 9 C. The assays were performed in a 96-well microplate with translucent bottom and opaque walls and the NBD fluorescence measurements were performed on a conventional fluorescence plate reader ( Gemini EM, MDS Anal. Technologies), where Aex = 470 nm and Aem = 540 nm. The reaction buffer was 100 mM KCI, 10 mM Hepes pH 7.5, 1 mM TCEP. The temperature of the tests was 37 S C. The measurements were performed in triplicate.
Para cada mezcla de reacción, se determinó la relación de intensidades de fluorescencia del NBD-BAKAC4 en presencia y en ausencia de liposomas (Fliposoma/Fsolución). Para determinar la potencia de inhibición del péptido BAK164"185, se ajustaron los datos experimentales a una función no lineal utilizando ecuaciones estándares. For each reaction mixture, the ratio of fluorescence intensities of NBD-BAKAC4 in the presence and absence of liposomes (Fliposome / Solution) was determined. To determine the inhibition potency of the BAK 164 "185 peptide, the experimental data was adjusted to a non-linear function using standard equations.
Como muestra la Figura 7A y la Tabla 1 , el péptido BAK164"185, que incluye el dominio altamente conservado BH2 de BAK y un fragmento de éste, inhiben la activación funcional de NBD-BAKAC4 asociado a liposomas, mientras que los otros péptidos examinados no tienen un efecto significativo sobre este proceso. Tabla 1 As Figure 7A and Table 1 show, the BAK 164 "185 peptide, which includes the highly conserved BAK domain of BAK and a fragment thereof, inhibits the functional activation of NBD-BAKAC4 associated with liposomes, while the other peptides examined They have no significant effect on this process. Table 1
Figure imgf000026_0001
Figure imgf000026_0001
La tabla 1 muestra los valores IC50 obtenidos para los péptidos BAK164" Table 1 shows the IC50 values obtained for BAK 164 " peptides.
185> BAK167-181, BAK68-99j BAK120-146j QAK^5 y ΒΑχ146-166 185 > BAK 167-181, BAK 68-9 9j BAK 120-14 6j QAK ^ 5 and ΒΑ χ146-166

Claims

REIVINDICACIONES
1 . Un polipéptido donde la secuencia aminoacídica es la de la proteína BAK humana truncada de manera que se eliminan de cuatro a seis aminoácidos de su extremo carboxilo terminal. one . A polypeptide where the amino acid sequence is that of the truncated human BAK protein so that four to six amino acids are removed from its carboxyl terminus.
2. El polipéptido según la reivindicación anterior, donde se eliminan cuatro aminoácidos del extremo carboxilo terminal. 2. The polypeptide according to the preceding claim, wherein four amino acids are removed from the carboxyl terminus.
3. El polipéptido según cualquiera de las dos reivindicaciones anteriores donde la secuencia aminoacídica es SEQ ID NO: 3. 3. The polypeptide according to any of the two preceding claims wherein the amino acid sequence is SEQ ID NO: 3.
4. El polipéptido según cualquiera de las reivindicaciones anteriores donde dicho polipéptido se conjuga a un marcador. 4. The polypeptide according to any of the preceding claims wherein said polypeptide is conjugated to a label.
5. El polipéptido según cualquiera de las reivindicaciones anteriores donde dicho marcador es un fluoróforo. 5. The polypeptide according to any of the preceding claims wherein said marker is a fluorophore.
6. El polipéptido según cualquiera de las reivindicaciones anteriores donde dicho fluoróforo es 7-nitrobenz-2-oxa-1 ,3-diazoliletilenodíamina6. The polypeptide according to any of the preceding claims wherein said fluorophore is 7-nitrobenz-2-oxa-1, 3-diazolylethylenediamine
(NBD). (NBD).
7. Método para identificar sustancias que modulen la activación funcional de BAK asociada a membrana, que comprende las siguientes etapas: 7. Method for identifying substances that modulate the functional activation of membrane-associated BAK, which comprises the following steps:
(a) poner en contacto el polipéptido según cualquiera de las reivindicaciones 1 a 6 con un sistema de membranas rico en lípidos mítocondriales para que formen un complejo,  (a) contacting the polypeptide according to any one of claims 1 to 6 with a membrane system rich in mitochondrial lipids to form a complex,
(b) poner en contacto el producto resultante de la etapa (a) con la sustancia a ensayar,  (b) contacting the product resulting from step (a) with the substance to be tested,
(c) determinar la activación funcional del polipéptido de (a). (c) determine the functional activation of the polypeptide of (a).
8. Método para identificar sustancias que modulen la activación funcional de BAK asociada a membrana según la reivindicación anterior donde el polipéptido descrito en la etapa (a) es NBD-SEQ ID NO: 3. 8. Method for identifying substances that modulate the functional activation of membrane-associated BAK according to the preceding claim wherein the polypeptide described in step (a) is NBD-SEQ ID NO: 3.
9. Método para identificar sustancias que modulen la activación funcional de BAK asociada a membrana según cualquiera de las dos reivindicaciones anteriores donde el sistema de membranas descrito en la etapa (a) es un conjunto de liposomas. 9. Method for identifying substances that modulate the functional activation of membrane-associated BAK according to any of the two preceding claims wherein the membrane system described in step (a) is a set of liposomes.
10. Método para identificar sustancias que modulen la activación funcional de BAK asociada a membrana según cualquiera de las tres reivindicaciones anteriores donde el lípido mitocondrial es cardiolipina. 10. Method for identifying substances that modulate the functional activation of membrane-associated BAK according to any of the three preceding claims wherein the mitochondrial lipid is cardiolipin.
1 1 . Método para identificar sustancias que modulen la activación funcional de BAK asociada a membrana según cualquiera de las cuatro reivindicaciones anteriores donde la activación o inhibición funcional del polipéptido se mide mediante fluorescencia. eleven . Method for identifying substances that modulate the functional activation of membrane-associated BAK according to any of the four preceding claims wherein the activation or functional inhibition of the polypeptide is measured by fluorescence.
12. Uso de las sustancias identificadas según cualquiera de las reivindicaciones 7 a 1 1 para la preparación de un medicamento para el tratamiento y/o la prevención de enfermedades relacionadas con la resistencia a la activación de BAK. 12. Use of the substances identified according to any of claims 7 to 1 1 for the preparation of a medicament for the treatment and / or prevention of diseases related to the resistance to activation of BAK.
13. Uso según la reivindicación anterior donde la enfermedad es cáncer. 13. Use according to the preceding claim wherein the disease is cancer.
14. Uso de las sustancias identificadas según cualquiera de las reivindicaciones 7 a 1 para la preparación de un medicamento para el tratamiento y/o la prevención de enfermedades relacionadas con la hiperactivación de BAK. 14. Use of the substances identified according to any of claims 7 to 1 for the preparation of a medicament for the treatment and / or prevention of diseases related to hyperactivation of BAK.
15. Un fragmento del polipéptido según cualquiera de las reivindicaciones 1 a 6 que consiste en los aminoácidos 164 a 185 de dicho polipéptido, un fragmento o un derivado del mismo. 15. A fragment of the polypeptide according to any one of claims 1 to 6 consisting of amino acids 164 to 185 of said polypeptide, a fragment or a derivative thereof.
16. Péptido según la reivindicación anterior donde la secuencia es SEQ ID NO: 7. 16. Peptide according to the preceding claim wherein the sequence is SEQ ID NO: 7.
1 7. Composición que comprende el péptido según cualquiera de las reivindicaciones 15 o 16. 1 7. Composition comprising the peptide according to any of claims 15 or 16.
18. Composición según la reivindicación anterior donde dicha composición es una composición farmacéutica. 18. Composition according to the preceding claim wherein said composition is a pharmaceutical composition.
19. Composición según cualquiera de las reivindicaciones 17 o 18 que comprende un vehículo o un excipiente. 19. Composition according to any of claims 17 or 18 comprising a vehicle or an excipient.
20. Uso del péptido según cualquiera de las reivindicaciones 15 o 16 o de la composición según cualquiera de las reivindicaciones 17 a 19 para la preparación de un medicamento. 20. Use of the peptide according to any of claims 15 or 16 or of the composition according to any of claims 17 to 19 for the preparation of a medicament.
21 . Uso según la reivindicación anterior para el tratamiento de enfermedades relacionadas con una hiperactivación de BAK. twenty-one . Use according to the preceding claim for the treatment of diseases related to a hyperactivation of BAK.
22. Kit que comprende el polipéptido según cualquiera de las reivindicaciones 1 a 6. 22. Kit comprising the polypeptide according to any one of claims 1 to 6.
23. Kit según la reivindicación anterior que comprende un conjunto de membranas ricas en lípidos mitocondriales. 23. Kit according to the preceding claim comprising a set of membranes rich in mitochondrial lipids.
24. Kit según la reivindicación anterior donde el conjunto de membranas son liposomas ricos en lípidos mitocondriales. 24. Kit according to the preceding claim wherein the membrane set are liposomes rich in mitochondrial lipids.
25. Kít según la reivindicación anterior donde los liposomas son ricos en cardíolipina. 25. Kit according to the preceding claim wherein the liposomes are rich in cardiolipin.
26. Kit según cualquiera de las reivindicaciones 22 a 25 que comprende un activador y/o un inhibidor de BAK. 26. Kit according to any of claims 22 to 25 comprising an activator and / or a BAK inhibitor.
27. Uso del kit según cualquiera de las reivindicaciones 22 a 26 para la identificación de sustancias que modulan la activación de BAK. 27. Use of the kit according to any of claims 22 to 26 for the identification of substances that modulate the activation of BAK.
PCT/ES2011/070850 2010-12-17 2011-12-12 Bak mutant, associated method for the identification of bak-modulating substances and bak activity inhibiting peptide WO2012080548A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201031877 2010-12-17
ESP201031877 2010-12-17

Publications (1)

Publication Number Publication Date
WO2012080548A1 true WO2012080548A1 (en) 2012-06-21

Family

ID=46244152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070850 WO2012080548A1 (en) 2010-12-17 2011-12-12 Bak mutant, associated method for the identification of bak-modulating substances and bak activity inhibiting peptide

Country Status (1)

Country Link
WO (1) WO2012080548A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996035951A1 (en) * 1995-05-12 1996-11-14 Apoptosis Technology, Inc. Novel peptides and compositions which modulate apoptosis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996035951A1 (en) * 1995-05-12 1996-11-14 Apoptosis Technology, Inc. Novel peptides and compositions which modulate apoptosis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LANDETA, O. ET AL.: "Role of mitocondrial lipids in proapoptotic BAK function: mechanistic insights from in vitro reconstitued systems", CHEMISTRY AND PHYSICS OF LIPIDS., vol. 163, August 2010 (2010-08-01) *

Similar Documents

Publication Publication Date Title
Bernardi et al. Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions
Hannibal et al. Alternative conformations of cytochrome c: structure, function, and detection
She et al. SIRT2 inhibition confers neuroprotection by downregulation of FOXO3a and MAPK signaling pathways in ischemic stroke
ES2500340T3 (en) Annexins, derivatives thereof, and annexin-Cys variants, as well as diagnostic and therapeutic uses thereof
Marchi et al. The endoplasmic reticulum–mitochondria connection: one touch, multiple functions
Savva et al. Molecular architecture and functional analysis of NetB, a pore-forming toxin from Clostridium perfringens
Mohanram et al. Resurrecting inactive antimicrobial peptides from the lipopolysaccharide trap
US20020048271A1 (en) Methods and composition for restoring conformational stability of a protein of the p53 family
Almeida et al. A novel synthetic peptide inspired on Lys49 phospholipase A2 from Crotalus oreganus abyssus snake venom active against multidrug-resistant clinical isolates
Sanyal et al. Alpha-synuclein is a target of Fic-mediated adenylylation/AMPylation: possible implications for Parkinson's disease
Bobone et al. The thin line between cell‐penetrating and antimicrobial peptides: the case of Pep‐1 and Pep‐1‐K
JP2002524391A (en) Regulation of apoptosis
ES2899374T3 (en) Pharmaceutical composition comprising glutathione disulfide and glutathione disulfide S-oxide
Lin et al. Systematic comparison of activity and mechanism of antimicrobial peptides against nosocomial pathogens
Young et al. Protein promiscuity in H2O2 signaling
Hong Biochemical studies on the structure–function relationship of major drug transporters in the ATP-binding cassette family and solute carrier family
Chu et al. A C-terminal membrane anchor affects the interactions of prion proteins with lipid membranes
Silachev et al. Neuroprotective effect of glutamate-substituted analog of gramicidin A is mediated by the uncoupling of mitochondria
Aboye et al. A cactus‐derived toxin‐like cystine knot peptide with selective antimicrobial activity
Quemé‐Peña et al. Manipulating active structure and function of cationic antimicrobial peptide CM15 with the polysulfonated drug suramin: a step closer to in vivo complexity
BR112013023978B1 (en) POLYPEPTIDE WITH AFFINITY FOR THERMAL SHOCK PROTEINS AND THEIR USE IN INFECTIOUS DISEASE DIAGNOSIS, IMMUNE RESPONSE PRODUCTION AND CANCER TREATMENT, AS WELL AS NUCLEIC ACID, COMPOSITION AND METHOD OF FRACTIONATION OF ALOGIC SUBSTANCE OR CLINICAL ANALYSIS
Comert et al. Copper-binding anticancer peptides from the piscidin family: an expanded mechanism that encompasses physical and chemical bilayer disruption
Shi et al. Modification of carboxyl groups converts α-lactalbumin into an active molten globule state with membrane-perturbing activity and cytotoxicity
Pagano et al. Modulation of protein kinase CK2 activity by fragments of CFTR encompassing F508 may reflect functional links with cystic fibrosis pathogenesis
Zhou et al. Cooperative Membrane Damage as a Mechanism for Pentamidine–Antibiotic Mutual Sensitization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11848104

Country of ref document: EP

Kind code of ref document: A1