WO2012080388A1 - Kautschukmodifizierte flammgeschützte formmassen und deren herstellung - Google Patents

Kautschukmodifizierte flammgeschützte formmassen und deren herstellung Download PDF

Info

Publication number
WO2012080388A1
WO2012080388A1 PCT/EP2011/072881 EP2011072881W WO2012080388A1 WO 2012080388 A1 WO2012080388 A1 WO 2012080388A1 EP 2011072881 W EP2011072881 W EP 2011072881W WO 2012080388 A1 WO2012080388 A1 WO 2012080388A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding compositions
thermoplastic molding
component
compositions according
weight
Prior art date
Application number
PCT/EP2011/072881
Other languages
English (en)
French (fr)
Inventor
Matthias Müller
Norbert Güntherberg
Günter KEHR
Norbert Niessner
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to EP11799414.5A priority Critical patent/EP2652037B1/de
Priority to KR1020137018431A priority patent/KR20140033328A/ko
Priority to US13/992,538 priority patent/US20140323606A1/en
Publication of WO2012080388A1 publication Critical patent/WO2012080388A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/50Phosphorus bound to carbon only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/14Macromolecular materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/322Ammonium phosphate
    • C08K2003/323Ammonium polyphosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/12Applications used for fibers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams

Definitions

  • the invention relates to flame-retardant thermoplastic molding compositions which contain several flame retardant components, as well as processes for their preparation and their use.
  • thermoplastic molding compositions contain:
  • the present invention relates to a process for the preparation of such molding compositions, the use of such molding compositions for the production of moldings, fibers, foams and films, as well as the moldings, fibers, foams and films obtainable thereby.
  • Expandable graphite which is also referred to as expandable graphite, as a flame retardant in polystyrene ("PS") or impact modified polystyrene (“HIPS”), is known for example from WO 2003/046071.
  • PS polystyrene
  • HIPS impact modified polystyrene
  • a halogen-containing compound in amounts of 2 to 1 1%, calculated as halogen.
  • Halogen-free flame-retardant styrene polymers containing expandable graphite and a phosphorus compound as flame retardant components are disclosed in WO 2000/34367 and WO 2000/34342.
  • molding compositions based on such flame-retardant styrene polymers are in terms of their dripping behavior in case of fire in need of improvement.
  • WO 2005/103136 discloses flame-retardant styrene polymers which contain, in addition to expandable graphite and a phosphorus compound, a further co-additive which is intended to suppress the migration of the phosphorus-containing flame retardant to the polymer surface.
  • Polycarbonate is explicitly mentioned as a co-additive.
  • KR10-1996-0001006 discloses flame-retardant polystyrene wherein the flame retardant components include expandable graphite, a phosphorus compound, and Teflon.
  • the mean particle size of the expandable graphite is 5 ⁇ .
  • the Teflon added as an anti-drip agent is used in amounts of from 1 to 5 percent by weight.
  • the halogen-free flame-retardant molding compositions obtained in this way have good heat resistance and impact resistance.
  • WO 2009/007358 describes acrylonitrile-styrene-acrylate polymers ("ASA”) and acrylonitrile-butadiene-styrene polymers ("ABS”), which are provided with a flame retardant system containing expandable graphite, a phosphorus compound and Teflon, and the above also contain linear styrene-butadiene block copolymers.
  • ASA acrylonitrile-styrene-acrylate polymers
  • ABS acrylonitrile-butadiene-styrene polymers
  • WO 2010/003891 describes flame-retardant molding compositions which are based on vinylaromatic copolymers impact-modified with particulate graft rubbers, in particular on ASA and / or ABS, and which have an improved combination of flame-retardant, mechanical and rheological properties over known molding compositions.
  • the molding compositions defined above were found, with a polybutadiene content between 0 and 1 1 wt .-% (based on the total weight of the molding compositions).
  • the flame-retardant molding compositions according to the invention based on vinylaromatic copolymers impact-modified with particulate graft rubbers, have a distinctly reduced inherent odor compared to known molding compositions.
  • the molding compositions according to the invention contain (or consist of) the following components: 55 to 98 wt .-%, preferably 57 to 92 wt .-%, particularly preferably 60 to 85 wt .-%, component A,
  • component B From 1 to 44% by weight, preferably from 5 to 40% by weight, particularly preferably from 10 to 35% by weight, of component B,
  • the polybutadiene content is from 0 to 1% by weight.
  • the polybutadiene content is from 3 to 10.5 wt .-%, preferably from 5 to 10 wt .-%.
  • the polybutadiene content is 0% by weight, i.
  • the flame retardant component B comprises in particular the following constituents:
  • B1) from 20 to 79.99% by weight, preferably from 30 to 69.9% by weight, particularly preferably from 40 to 59.5% by weight, of component B1), B2) from 20 to 79.99% by weight %, preferably 30 to 69.9 wt .-%, particularly preferably 40 to
  • B3) from 0.01 to 4% by weight, preferably from 0.1 to 3% by weight, particularly preferably from 0.5 to 2% by weight, of component B3), the percentages by weight being based on the total weight of components B1 ) to B3) and together give 100% by weight.
  • the molding composition contains (or consists of):
  • component A 60 to 85% by weight, component A,
  • component B 10 to 35% by weight, component B,
  • component D 0 to 25% by weight of component D.
  • the flame retardant component B may preferably contain the following constituents:
  • component B3) from 0.01 to 4% by weight of component B3), the percentages by weight of component B being based in each case on the total weight of components B1) to B3) and together amount to 100% by weight, the percentages by weight the molding composition (total) in each case based on the total weight of components A) to D) and together give 100 wt .-%.
  • the polybutadiene content of the molding composition (total) should be from 0 to 1 1 wt .-%. Often in the compositions 5 to 15 wt .-% of component C (such as ethylene-methacrylate copolymer (eg Elvaloy ® 1330 EAC)), and 0 to 25 wt .-% of component D (such as carbon black ”)).
  • component A in principle all vinylaromatic copolymers impact-modified with a particulate graft rubber are suitable. These vinylaromatic copolymers impact-modified with a particulate graft rubber and their preparation are known to the person skilled in the art, described in the literature (for example in A. Echte, Handbuch der ischen Polymerchemie, VCH Verlagsgesellschaft, Weinheim, 1993, and Saechtling, Kunststoff Taschenbuch, Carl Hanser Verlag, Kunststoff, 29th edition, 2004) and often commercially available.
  • Preferred components A) comprise as the rubber phase a particulate graft and, as thermoplastic hard phase, copolymers of vinylaromatic monomers and vinyl cyanides (SAN), in particular of ⁇ -methylstyrene and acrylonitrile, more preferably of styrene and acrylonitrile.
  • SAN vinyl cyanides
  • the component A) generally contains 15 to 60 wt .-%, preferably 25 to 55 wt .-%, in particular 30 to 50 wt .-%, particulate graft rubber and 40 to 85 wt .-%, preferably 45 to 75% by weight, in particular 50 to 70% by weight, of vinylaromatic copolymers, the percentages by weight in each case being based on the total weight of particulate graft rubber and vinylaromatic copolymer and together amount to 100% by weight.
  • Acrylic nitrile-styrene-acrylate polymers (“ASA") and / or acrylonitrile-butadiene-styrene polymers (“ABS”) are preferably used as impact-modified SAN with a particulate graft rubber, and (meth) acrylate-acrylonitrile-butadiene-styrene Polymers (“MABS", transparent ABS), but also blends of SAN, ABS, ASA and MABS with other thermoplastics such as polycarbonate, polyamide, polyethylene terephthalate, polybutylene terephthalate, polyvinylchloride, polyolefins, most preferably with polycarbonate.
  • ASA polymers are generally understood as meaning impact-modified SAN polymers with a particulate graft rubber in which rubber-elastic Graft copolymers of vinylaromatic compounds, in particular styrene, and vinylcyanides, in particular acrylonitrile, on polyalkylacrylate rubbers in a copolymer matrix of, in particular, styrene and / or ⁇ -methylstyrene and acrylonitrile.
  • ASA polymers and their preparation are known to the person skilled in the art and described in the literature, for example in DIN EN ISO 6402-1 DE of February 2003, WO 2002/00745, WO 2000/1 1080, EP-A 450 485 and WO 2007 / 031,445th
  • ABS polymers are generally understood to be impact-modified SAN polymers in which diene polymers, in particular 1,3-polybutadiene, are present in a copolymer matrix of, in particular, styrene and / or ⁇ -methylstyrene and acrylonitrile. ABS polymers and their preparation are known to the person skilled in the art and described in the literature, for example in DIN EN ISO 2580-1 DE of February 2003, WO 2002/00745 and WO 2008/020012. To component B):
  • thermoplastic molding compositions contain as component B) according to the invention a flame retardant mixture containing (or consisting of): B1) expandable graphite,
  • the molding compositions according to the invention contain as component B1) known to those skilled in the art and described in the literature expandable graphite, so-called expandable graphite (heat or heat expandable graphite). This is usually derived from natural or artificial graphite.
  • the expandable graphite is obtainable, for example, by oxidation of natural and / or synthetic graphite.
  • oxidation agents H2O2 or nitric acid in sulfuric acid can be used.
  • the expandable graphite can be prepared by reduction, for example with sodium naphthalenide in an aprotic organic solvent. Due to its layered lattice structure, graphite is able to form special forms of intercalation compounds. In these so-called interstitial compounds, foreign atoms or foreign molecules have been taken up in some of the stoichiometric ratios in the spaces between the carbon atoms.
  • the surface of the expanded graphite may be coated with a coating agent, for example silane sizes known to those skilled in the art.
  • a coating agent for example silane sizes known to those skilled in the art.
  • alkali metal compounds and Mg (OH) 2 or Al hydroxides may be added in amounts of up to 10, preferably up to 5 wt .-% (based on 100 wt .-% B1). The mixture is advantageously carried out before the components are compounded.
  • the heat expansion of the expandable graphite with rapid heating from room temperature to 800 ° C. is preferably at least 100 ml / g, preferably at least 110 ml / g (so-called specific volume change).
  • the expandable graphite does not expand to a greater extent at temperatures below 270 ° C., preferably below 280 ° C. This is understood by those skilled in the art that the expanded graphite at the temperatures mentioned in a period of 10 min undergoes a volume expansion of less than 20%.
  • the coefficient of expansion (as a specific core size) usually means the difference between the specific volume (ml / g) after heating and the specific volume at 20 ° C room temperature. This is generally measured according to the following procedure: A quartz container is heated to 1000 ° C. in an electric melting furnace. 2 g of expandable graphite are quickly added to the quartz container and left in the melting furnace for 10 seconds. The weight of 100 ml of expanded graphite is measured to determine the "loosened apparent specific gravity.” The reciprocal then forms the specific volume at that temperature, and the specific volume at room temperature is measured correspondingly at 20 ° C.
  • the average particle size D50 of the expandable graphite should preferably be between 10 ⁇ m and 1000 ⁇ m, preferably between 30 ⁇ m and 850 ⁇ m, particularly preferably between 200 ⁇ m and 700 ⁇ m Particle sizes lower, usually sufficient flame retardancy is achieved, and if they are larger, usually the mechanical properties of the thermoplastic molding compositions are adversely affected.
  • the mean particle size and the particle size distribution of the expanded graphite B1) can be determined from the integral volume distribution.
  • the mean particle sizes are in all cases the volume average of the particle sizes, as determined by means of laser light diffraction on a Malvern Mastersizer 2000 on dry powder. Laser light diffraction provides the integral distribution of the particle diameter of a sample. From this it can be seen how many percent of the particles have a diameter equal to or smaller than a certain size.
  • the average particle diameter which is also referred to as the Dso value of the integral volume distribution, is defined as the particle diameter at which 50% by weight of the particles have a smaller diameter than the diameter corresponding to the Dso value. Likewise, then have 50 wt .-% of the particles have a larger diameter than the Dso value.
  • the density of the expandable graphite is usually in the range of 0.4 to 2 g / cm 3 .
  • the phosphorus-containing compounds of component B2) are organic and inorganic phosphorus-containing compounds in which the phosphorus has the valence state -3 to +5.
  • the term "oxidation state" should be understood as meaning in the textbook of inorganic chemistry by AF Hollemann and E.Wiberg, Walter des Gruyter and Co. (1964, 57th to 70th edition), pages 166 to 177 , is reproduced.
  • Phosphorus compounds of valence levels -3 to +5 are derived from phosphine (-3), diphosphine (-2), phosphine oxide (-1), elemental phosphorus (+0), hypophosphorous acid (+1), phosphorous acid (+3), Hypodiphosphoric acid (+4) and phosphoric acid (+5).
  • phosphorus-containing compounds suitable as component B2) in particular the inorganic or organic phosphates, phosphites, phosphonates, phosphate esters, red phosphorus and triphenylphosphine oxide, only a few examples are mentioned.
  • phosphine-type phosphorus compounds having the valence state -3 are aromatic phosphines such as triphenylphosphine, tritolylphosphine, trinonylphosphine, trinaphthylphosphine and trisnonylphenylphosphine, and the like. Particularly suitable is triphenylphosphine.
  • Examples of phosphorus compounds of the diphosphine class which have the valence state -2 are tetraphenyl diphosphine, tetranaphthyl diphosphine, and the like. Particularly suitable is tetranaphthyldiphosphine.
  • Phosphorus compounds of valence state -1 are derived from the phosphine oxide. Suitable phosphine oxides of the general formula (I)
  • R 1 , R 2 and R 3 in formula I mean the same or different alkyl, aryl, alkylaryl or cycloalkyl groups having 8 to 40 carbon atoms.
  • phosphine oxides are triphenylphosphine oxide, tritolylphosphine oxide, trisnonylphenylphosphine oxide, tricyclohexylphosphine oxide, tris (n-butyl) phosphine oxide, tris (n-hexyl) phosphine oxide, tris (n-octyl) phosphine oxide, tris (cyanoethyl) phosphine oxide, Benzyl bis (cyclohexyl) phosphine oxide, benzyl bisphenyl phosphine oxide, phenyl bis (n-hexyl) phosphine oxide.
  • oxidized reaction products of phosphine with aldehydes especially from t-butylphosphine with glyoxal.
  • Particular preference is given to using triphenylphosphine oxide, tricyclohexlyphosphine oxide, tris (n-octyl) phosphine oxide and tris (cyanoethyl) phosphine oxide, in particular triphenylphosphine oxide.
  • Phosphorus of the valence state +0 is the elemental phosphorus.
  • Eligible are red and black phosphorus. Preference is given to red phosphorus, in particular surface-coated red phosphorus, as known to the person skilled in the art, described in the literature and commercially available as a flame retardant for polymers.
  • Phosphorus compounds of the "oxidation state" +1 are e.g. Hypophosphites of purely organic nature, e.g. organic hypophosphites, such as cellulose hypophosphite esters, esters of hypophosphorous acids with diols, e.g. of 1, 10-dodecyldiol. Also substituted phosphinic acids and their anhydrides, e.g. Diphenylphosphinic can be used.
  • diphenylphosphinic acid di-p-tolylphosphinic acid, di-cresylphosphinic anhydride
  • compounds such as hydroquinone, ethylene glycol, propylene glycol bis (diphenylphosphinic) ester u.a. in question.
  • aryl (alkyl) phosphinic acid amides e.g. Diphenylphosphinic acid dimethylamide and sulfonamidoaryl (alkyl) phosphinic acid derivatives, e.g. p-tolylsulfonamidodiphenylphosphinic acid.
  • Hydroquinone and ethylene glycol bis (diphenylphosphinic) esters and the bis-diphenylphosphinate of the hydroquinone are preferably used.
  • Phosphorus compounds of the oxidation state +3 are derived from the phosphorous acid.
  • Ge are suitable cyclic phosphonates derived from pentaerythritol, neopentyl glycol or Brenzka techin such.
  • +3 valence phosphorous is in triaryl (alkyl) phosphites, e.g. Triphenyl phosphite, tris (4-decylphenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite or phenyldidecyl phosphite and the like. contain.
  • diphosphites such as propylene glycol-1, 2-bis (diphosphite) or cyclic phosphites, which are derived from pentaerythritol, neopentyl glycol or pyrocatechol, in question.
  • Particularly preferred are methyl neopentyl glycol phosphonate and phosphite and dimethyl pentaerythritol diphosphonate and phosphite.
  • Particularly suitable phosphorus compounds of the oxidation state +4 are hypodiphosphates, for example tetraphenyl hypodiphosphate or bisneopentyl hypodiphosphate.
  • Suitable phosphorus compounds of the oxidation state +5 are, in particular, alkyl- and aryl-substituted phosphates.
  • Examples are phenylbisdodecylphosphate, phenylethylhydrogenphosphate, phenylbis (3,5,5-trimethylhexyl) phosphate, ethyldiphenylphosphate, 2-ethylhexyldi (tolyl) phosphate, diphenylhydrogenphosphate, bis (2-ethylhexyl) -p-tolylphosphate, tritolylphosphate, bis (2 ethylhexyl) phenyl phosphate, di (nonyl) phenyl phosphate, phenylmethyl hydrogen phosphate, di (dodecyl) p-tolyl phosphate, p-tolylbis (2,5,5-trimethylhexyl) phosphate or 2-ethylhexy
  • phosphorus compounds in which each radical is an aryloxy radical are particularly suitable.
  • R 4 -R 7 is an aromatic radical having 6 to 20 C atoms, preferably a phenyl radical which may be substituted by alkyl groups having 1 to 4 C atoms, preferably methyl
  • R 8 is a dihydric phenol radical, preferably and n an average value between 0.1 to 100, preferably 0.5 to 50, in particular 0.8 to 10 and very particularly 1 to 5.
  • Such polymeric, halogen-free organic phosphorus compounds containing phosphorus in the polymer chain are formed, for example, in the preparation of pentacyclic, unsaturated phosphine dihalides, as described, for example, in DE-A 20 36 173.
  • the molecular weight measured by vapor pressure osmometry in dimethylformamide, the Polyphospholinoxide should be in the range of 500 to 7000, preferably in the range of 700 to 2000.
  • the phosphorus atom here has the oxidation state -1.
  • inorganic coordination polymers of aryl (alkyl) phosphinic acids such as e.g. Poly-ß-sodium (l) -methylphenylphosphinat be used. Their preparation is given in DE-A 31 40 520. The phosphorus has the oxidation number +1.
  • halogen-free polymeric phosphorus compounds may be prepared by the reaction of a phosphonic acid chloride, such as a phosphonic acid chloride. Phenyl, methyl, propyl, styryl and vinylphosphonic dichloride with bifunctional phenols, e.g. Hydroquinone, resorcinol, 2,3,5-trimethylhydroquinone, bisphenol-A, tetramethylbiphenol-A arise.
  • halogen-free polymeric phosphorus compounds which may be present in the molding compositions according to the invention are prepared by reaction of phosphorus oxytrichloride or phosphoric ester dichlorides with a mixture of mono-, bi- and trifunctional phenols and compounds carrying other hydroxyl groups (see Houben-Weyl-Muller, Thieme et al. Verlag Stuttgart, Organic Phosphorus Compounds Part II (1963)).
  • polymeric phosphonates can be prepared by transesterification reactions of phosphonic acid esters with bifunctional phenols (see DE-A 29 25 208) or by reactions of phosphonic acid esters with diamines or diamides or hydrazides (compare US Pat. No. 4,403,075). In question is also the inorganic poly (ammonium phosphate).
  • R 1 , R 2 is hydrogen, C 1 - to C 6 -alkyl which optionally contains one hydroxyl group, preferably C 1 - to C 4 -alkyl, linear or branched, for example methyl, ethyl, n-propyl, isopropyl, n-butyl, tert Butyl, n-pentyl; phenyl; wherein preferably at least one radical R 1 or R 2 , in particular R 1 and R 2 is hydrogen;
  • R 3 d- to Cio-alkylene linear or branched, for example methylene, ethylene, n-propylene, iso-
  • Arylene e.g. Phenylene, naphthylene; Alkylarylene, e.g. Methyl-phenylene, ethyl-phenylene, tert-butyl-phenylene, methyl-naphthylene, ethyl-naphthylene, tert-butyl-naphthylene;
  • Arylalkylene e.g. Phenyl-methylene, phenyl-ethylene, phenyl-propylene, phenyl-butylene; an alkaline earth, alkali metal, Al, Zn, Fe, boron;
  • R 1 and R 2 are hydrogen, where M is preferably Ca, Zn or Al and calcium phosphinate is very particularly preferred as the compound.
  • M is preferably Ca, Zn or Al
  • calcium phosphinate is very particularly preferred as the compound.
  • Such products are commercially available, for example, as calcium phosphinate.
  • Suitable salts of the formula (IV) or (V) in which only one radical R 1 or R 2 is hydrogen are, for example, salts of phenylphosphinic acid, their Na and / or Ca salts being preferred.
  • Further preferred salts have a hydroxyl-containing alkyl radical R 1 and / or R 2 . These are obtainable, for example, by hydroxymethylation.
  • Preferred compounds are Ca, Zn and Al salts.
  • the average particle size D50 (measured by the method described above for particle size determination of component B1) of component B2) is preferably less than 10 ⁇ m, preferably less than 7 ⁇ m and in particular less than 5 ⁇ m.
  • the Dio value is preferably less than 4 ⁇ , in particular 3 ⁇ and most preferably less than 2 ⁇ .
  • Preferred Dgo values are less than 40 ⁇ and in particular less than 30 ⁇ and most preferably less than 20 ⁇ .
  • R 1 to R 20 independently of one another hydrogen, a linear or branched alkyl group up to 6 C atoms n an average value of 0.5 to 50 and
  • X is a single bond
  • C O, S, S0 2 , C (CH 3 ) 2
  • Preferred compounds B2) are those of the formula (VI) in which R 1 to R 20 independently of one another are hydrogen and / or a methyl radical.
  • R 1 to R 20 independently of one another are hydrogen
  • the radicals R 1 , R 5 , R 6 , R 10 , R 11 , R 15 , R 16 , R 20 in ortho Position to the oxygen of the phosphate group represent at least one methyl radical.
  • n as an average value results from the preparation of the compounds listed above, so that the degree of oligomerization is usually less than 10 and small amounts (usually ⁇ 5 wt .-%) of triphenyl phosphate are included,
  • Such compounds B2) are commercially available as CR-741 from Daihachi.
  • a particularly preferred as component B2) mixture consists of red phosphorus and at least one inorganic or organic phosphate, phosphite, phosphonate, phosphate ester or triphenylphosphine oxide.
  • Particularly advantageous are mixtures of red phosphorus and ammonium polyphosphate, of red phosphorus and bisphenol A bis-diphenyl phosphate or from red phosphorus and triphenyl phosphate.
  • a particularly preferred mixture as component B2) comprises red phosphorus and ammonium polyphosphate.
  • Another particularly preferred as component B2) mixture consists of red phosphorus and ammonium polyphosphate and triphenyl phosphate.
  • these molding compositions according to the invention have an improved combination of flame-retardant, mechanical and rheological properties, in particular also a high heat resistance (Vicat). Temperature).
  • component B2) generally contains from 10 to 90% by weight, preferably from 20 to 80% by weight. , particularly preferably 30 to 70 wt .-%, red phosphorus and 10 to 90 wt .-%, preferably 20 to 80 wt .-%, particularly preferably 30 to 70 wt .-%, at least one of the above-described, of red phosphorus various phosphorus compounds, wherein the weight percent of red phosphorus and the at least one above-described, different from red phosphorus phosphorus compound in each case based on the total weight of the component B2) and together give 100 wt .-%.
  • the molding compositions contain a fluorine-containing polymer.
  • a fluorine-containing polymer Preference is given to fluorinated ethylene polymers. These are polymers of ethylene with a fluorine content of 55 to 76 wt .-%, preferably 70 to 76 wt .-%.
  • PTFE polytetrafluoroethylene
  • tetrafluoroethylene-hexafluoro-propylene copolymers or tetrafluoroethylene copolymers with smaller proportions (generally up to 50% by weight) of copolymerizable ethylenically unsaturated monomers.
  • PTFE polytetrafluoroethylene
  • tetrafluoroethylene-hexafluoro-propylene copolymers or tetrafluoroethylene copolymers with smaller proportions (generally up to 50% by weight) of copolymerizable ethylenically unsaturated monomers.
  • fluorine-containing ethylene polymers are generally homogeneously distributed in the molding compositions and preferably have an average particle size D50 in the range of 0.05 to 10 ⁇ , in particular from 0.1 to 5 ⁇ on. These small particle sizes can be achieved particularly preferably by using aqueous dispersions of fluorine-containing ethylene polymers and their incorporation into a polymer melt.
  • the proportion by weight of the fluorine-containing polymer B3) based on the total weight of components A) to D) is from 0.01 to 0.5% by weight, preferably from 0.1 to 0.45% by weight. %, more preferably from 0.2 to 0.4 wt .-%.
  • component C) in principle all non-particulate rubbers known to the person skilled in the art and described in the literature are suitable. Suitable components C) according to the invention are, for example, polar group-containing, non-particulate rubbers which are crosslinked. However, preferred components C) are uncrosslinked rubbers containing polar groups, in particular linear rubbers containing polar groups.
  • Polar groups for the purposes of this invention are preferably O- and / or N-containing functional groups, in particular hydroxyl, alkoxy, amino, imino, alkoxycarbonyl, carboxamide and / or carboxy groups, more preferably derived from acrylic acid or maleic acid Acid or ester groups.
  • ethylene-acrylate rubbers are particularly suitable as component C).
  • Preferred ethylene-acrylate rubbers are copolymers of ethylene and methyl acrylate or, in particular, terpolymers of ethylene, methyl acrylate and an unsaturated carboxylic acid; as the unsaturated carboxylic acid, maleic acid or its half ester, but preferably acrylic acid, are suitable for the preparation of these terpolymers.
  • the ethylene-acrylate rubbers can be used as component C) in an example, with diamines, especially with hexane-1, 6-diamine or 4,4'-methylenedianiline, crosslinked form.
  • ethylene-acrylate rubbers sold under the name Elvaloy ® 1330 EAC (Fa. DuPont) commercially available.
  • thermoplastic molding compositions may contain one or more additives other than components A), B) and C) as component D).
  • additives other than components A), B) and C) as component D).
  • all plastic additives known to the person skilled in the art and described in the literature are suitable.
  • Plastic additives for the purposes of the present invention are, for example, stabilizers and antioxidants, agents against heat decomposition and decomposition by ultraviolet light, lubricants and mold release agents, dyes and pigments and plasticizers and fibers, for example glass fibers or carbon fibers.
  • Oxidation retarders and heat stabilizers that can be added to the thermoplastic molding composition according to the invention are, for. B. halides of metals of Group I of the Periodic Table, z. For example, sodium, potassium, lithium halides. Furthermore, zinc fluoride and zinc chloride can be used. Further, sterically hindered phenols, hydroquinones, substituted members of this group, secondary aromatic amines, optionally in conjunction with phosphorus-containing acids or their salts, and mixtures of these compounds, preferably in concentrations up to 1 wt .-%, based on the weight of the thermoplastic molding compositions, can be used.
  • UV stabilizers are various substituted resorcinols, salicylates, benzotriazoles and benzophenones, which are generally used in amounts of up to 2 wt .-%, based on the weight of the thermoplastic molding compositions.
  • Lubricants and mold release agents which can generally be added in amounts of up to 1% by weight, based on the weight of the thermoplastic molding compositions, of stearic acid, stearyl alcohol, stearic acid alkyl esters and amides and esters of pentaerythritol with long-chain fatty acids.
  • stearic acid stearyl alcohol
  • stearic acid alkyl esters and amides and esters of pentaerythritol with long-chain fatty acids.
  • salts of calcium, zinc or aluminum of stearic acid and dialkyl ketones eg. B. distearyl ketone used.
  • Zinc, magnesium and calcium stearates and N, N'-ethylene-bis-stearamide are particularly suitable according to the invention.
  • glass fibers it is possible to use in the novel molding materials all glass fibers known to the person skilled in the art and described in the literature (see, for example, Milewski, JV, Katz, HS "Handbook of Reinforcements for Plastics", p. 233 et seq., Van Nostrand Reinholt Company Inc, 1987 ).
  • thermoplastic molding compositions according to the invention can be prepared by processes known per se, in which the starting components are mixed in conventional mixing devices, such as screw extruders, Brabender mills or Banbury mills, and then extruded. After extrusion, the extrudate can be cooled and comminuted. It is also possible to premix individual components and then to add the remaining starting materials individually and / or likewise mixed.
  • the mixing temperatures are generally 200 to 280 ° C.
  • the components A), B) except B1), C) and optionally D) can be premixed in a first step.
  • the premixed components can either be formulated and granulated, for example, but they can also be melt-blended directly as a melt, for example on the same extruder, in a subsequent second step with component B1).
  • novel flame-retardant molding compositions based on the vinylaromatic copolymers impact-modified with particulate graft rubbers have a significantly reduced inherent odor compared to known molding compositions.
  • Notched impact strength a k [kJ / m 2 ]:
  • melt volume rate MVR 200/5 was determined according to DIN EN ISO 1 133.
  • the heat resistance was determined as Vicat softening temperature of standard small bars at a heating rate of 50 K / hour and a force of 49.05 N according to DIN 53460, method B.
  • the first afterburner time t1 was measured on bars with a thickness of 1.6 mm after a first flame duration of 10 seconds. After a second flame duration of 10 seconds directly following the extinguishment of the flames, the second afterburn time t2 was measured. The sum of the afterburning times t1 and t2 gives the afterburning time t (in each case the mean value of the afterburning times t determined on two bars is indicated.
  • odor test bars with a thickness of 1, 6 mm were used, as they are also used for the fire test. The bars were placed in a 500 ml glass jar and stored in the closed state for 24 h at 60 ° C. After cooling to room temperature, the odor was rated on a scale of: very poor (- -), poor (-), satisfactory (o), good (+) to very good (++). To the starting materials
  • al A commercially available acrylonitrile-butadiene-styrene copolymer (ABS), Hl Terluran ® 10, BASF SE, containing a styrene-acrylonitrile copolymer hard phase and a particulate butadiene graft rubber.
  • a-ll a commercial butyl acrylate-styrene-acrylonitrile copolymer (ASA), Luran S, BASF SE, containing a styrene-acrylonitrile copolymer hard phase and a particulate butyl acrylate graft rubber.
  • a-III a styrene-acrylonitrile copolymer (SAN) containing 24% by weight of acrylonitrile and 78% by weight of styrene having a viscosity number of 64 ml / g.
  • SAN styrene-acrylonitrile copolymer
  • component B1 As component B1) were used: b1-l: expandable graphite Nord- Min® 503 Nordmann, Rassmann, GmbH, with a mean particle size D50 of 465 ⁇ , a free expansion (starting at about 300 ° C) of at least 150 ml / g and a bulk density of 0.5 g / ml at 20 ° C.
  • component B2 As component B2) was used: b2-l: Disflammol ® TP, a triphenyl phosphate from Lanxess Aktiengesellschaft.
  • b2-ll Nord- Min® JLS, an ammonium polyphosphate from Nordmann, Rassmann, GmbH.
  • b2-III Masteret 38450, a red phosphorus masterbatch from Italmatch Chemicals Spa.
  • b3-l polytetrafluoroethylene PTFE TE-3893, Teflon ® dispersion from the company CH Erbslöh with a PTFE content of 60 wt .-% (based on the total weight of the dispersion).
  • Cl A commercial linear ethylene-methacrylate copolymer, Elvaloy ® 1330 EAC, the Fa.
  • component D) The following components were used as component D): dl: Black Pearls® 880, a commercial carbon black from Cabot Corp.
  • the essential source of odor is due to an interaction between the expandable graphite and the polybutadiene component from the ABS, which is evidenced by the examples in Table.
  • composition [parts by weight (% by weight)]
  • the examples show that the flame-retardant molding compositions according to the invention, based on vinylaromatic copolymers impact-modified with particulate graft rubbers, have a markedly reduced, compared to known molding compositions. have acceptable odor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Die Erfindung betrifft thermoplastische Formmassen enthaltend: A) 55 bis 98 Gew.-% mindestens eines mit einem partikelförmigen Pfropfkautschuk modifizierten vinylaromatischen Copolymers B) 1 bis 44 Gew.-% eines Flammschutzmittels enthaltend B1) einen expandierbaren Graphit, B2) eine Phosphor enthaltende Flammschutz-Verbindung, B3) ein fluorhaltiges Polymer, C) 1 bis 20 Gew.-% eines polare Gruppen enthaltenden, nicht-partikelförmigen Kautschuks, D) 0 bis 40 Gew.-% weiterer Zusatzstoffe, wobei die Gewichtsprozente jeweils auf das Gesamtgewicht der Komponenten A) bis D) bezogen sind und zusammen 100 Gew.-% ergeben und der Polybutadiengehalt 0 bis 11 Gew.-% beträgt.

Description

Kautschukmodifizierte flammgeschützte Formmassen und deren Herstellung
Beschreibung Die Erfindung betrifft flammgeschützte thermoplastische Formmassen, die mehrere Flammschutz-Komponenten enthalten, sowie Verfahren zu deren Herstellung und deren Verwendung.
Diese thermoplastischen Formmassen enthalten:
A) 55 bis 98 Gew.-% mindestens eines mit einem partikelförmigen Pfropfkautschuk
schlagzäh modifizierten vinylaromatischen Copolymers,
B) 1 bis 44 Gew.-% eines Flammschutzmittels enthaltend
B1 ) einen expandierbaren Graphit,
B2) eine Phosphor enthaltende Flammschutz-Verbindung, und
B3) ein fluorhaltiges Polymer,
C) 1 bis 20 Gew.-% eines polare Gruppen enthaltenden, nicht-partikelförmigen Kautschuks, und
D) 0 bis 40 Gew.-% weiterer Zusatzstoffe, wobei die Gewichtsprozente jeweils auf das Gesamtgewicht der Komponenten A) bis D) bezogen sind und zusammen 100 Gew.-% ergeben. Der Polybutadien-Gehalt soll 0 bis 1 1 Gew.-% betragen.
Außerdem betrifft die vorliegende Erfindung ein Verfahren zur Herstellung derartiger Formmas- sen, die Verwendung derartiger Formmassen zur Herstellung von Formkörpern, Fasern, Schäumen und Folien sowie die hierbei erhältlichen Formkörpern, Fasern, Schäume und Folien.
Expandierbaren Graphit, der auch als Blähgraphit bezeichnet wird, als Flammschutzmittel in Polystyrol („PS") oder schlagzäh modifiziertem Polystyrol („HIPS") einzusetzen, ist beispielsweise aus WO 2003/046071 bekannt. Darüber hinaus wird laut dieser Schrift als weitere Flammschutzmittelkomponente eine halogenhaltige Verbindung in Mengen von 2 bis 1 1 %, gerechnet als Halogen, benötigt. Aus beispielsweise toxikologischen Gründen ist es jedoch wünschenswert, den Einsatz halogenhaltiger Flammschutzmittel möglichst weitgehend zu vermeiden.
Halogenfrei flammgeschützte Styrolpolymerisate, die expandierbaren Graphit und eine Phosphorverbindung als Flammschutzkomponenten enthalten werden in WO 2000/34367 und WO 2000/34342 offenbart. Formmassen auf Basis solcherart flammgeschützter Styrolpolymerisate sind bzgl. ihres Abtropfverhaltens im Brandfall aber verbesserungswürdig.
WO 2005/103136 offenbart flammgeschützte Styrolpolymere die neben expandierbarem Graphit und einer Phosphorverbindung ein weiteres Coadditiv enthalten, welches die Migration des phosphorhaltigen Flammschutzmittels an die Polymeroberfläche unterdrücken soll. Explizit als Coadditiv genannt wird Polycarbonat. Die KR10-1996-0001006 offenbart flammgeschütztes Polystyrol, wobei die Flammschutzmittelkomponenten expandierbaren Graphit, eine Phosphorverbindung und Teflon umfassen.
Die mittlere Teilchengröße des expandierbaren Graphits dabei beträgt 5 μιτι. Das als Antitropf- mittel zugesetzte Teflon wird in Mengen von 1 bis 5 Gewichtsprozent eingesetzt. Die so erhal- tenen halogenfrei flammgeschützten Formmassen besitzen eine gute Wärmebeständigkeit und Stoßfestigkeit.
Die WO 2009/007358 beschreibt Acrylnitril-Styrol-Acrylat-Polymerisate („ASA") und Acrylnitril- Butadien-Styrol-Polymerisate („ABS"), die mit einem Flammschutzmittelsystem enthaltend expandierbaren Graphit, eine Phosphorverbindung und Teflon ausgerüstet sind, und die darüber hinaus lineare Styrol-Butadien-Blockcopolymere enthalten.
Die WO 2010/003891 beschreibt flammhemmend ausgerüstete Formmassen, die auf mit partikelförmigen Pfropfkautschuken schlagzäh modifizierten vinylaromatischen Copolymeren basieren, insbesondere auf ASA und/oder ABS, und die gegenüber bekannten Formmassen eine verbesserte Kombination von flammhemmenden, mechanischen und Theologischen Eigenschaften besitzen. Die dort beschriebenen Formmassen auf Basis von ABS weisen allerdings noch einen unangenehmen Eigengeruch auf. Der vorliegenden Erfindung lag als eine Aufgabe zugrunde, den zuvor genannten Nachteilen abzuhelfen, insbesondere flammhemmend ausgerüstete Formmassen bereitzustellen, die auf mit partikelförmigen Pfropfkautschuken schlagzäh modifizierten vinylaromatischen Copolymeren basieren, insbesondere auf ASA und/oder ABS, und die gegenüber bekannten Formmassen einen verbesserten Eigengeruch aufweisen.
Demgemäß wurden die eingangs definierten Formmassen gefunden, mit einem Polybutadien- Gehalt zwischen 0 und 1 1 Gew.-% (bezogen auf das Gesamtgewicht der Formmassen).
Die erfindungsgemäßen flammhemmend ausgerüsteten Formmassen basierend auf mit partikelförmigen Pfropfkautschuken schlagzäh modifizierten vinylaromatischen Copolymeren weisen gegenüber bekannten Formmassen eine deutlich verringerten Eigengeruch auf.
Die erfindungsgemäßen Formmassen sowie die weiteren erfindungsgemäßen Verfahren und Gegenstände werden im Folgenden beschrieben.
Die erfindungsgemäßen Formmassen enthalten folgende Komponenten (bzw. bestehen aus): 55 bis 98 Gew.-%, bevorzugt 57 bis 92 Gew.-%, besonders bevorzugt 60 bis 85 Gew.-%, Komponente A,
1 bis 44 Gew.-%, bevorzugt 5 bis 40 Gew.-%, besonders bevorzugt 10 bis 35 Gew. %, Komponente B,
1 bis 20 Gew.-%, bevorzugt 3 bis 18 Gew.-%, besonders bevorzugt 5 bis 15 Gew. % Komponente C, und
0 bis 40 Gew.-%, bevorzugt 0 bis 30 Gew.-%, besonders bevorzugt 0 bis 25 Gew. % Komponente D, wobei die Gewichtsprozente jeweils auf das Gesamtgewicht der Komponenten A) bis D) bezogen sind und zusammen 100 Gew.-% ergeben, und der Polybutadiengehalt von 0 bis 1 1 Gew.- % beträgt. In einer weiteren Ausführungsform beträgt der Polybutadiengehalt von 3 bis 10,5 Gew.-%, bevorzugt von 5 bis 10 Gew.-%. In einer weiteren bevorzugten Ausführungsform beträgt der Polybutadiengehalt 0 Gew.-%, d.h. es werden partikelförmige Pfropfkauschuke mit einem Kautschuk-Kern auf Basis anderer Monomere als Butadien eingesetzt, insbesondere auf Basis von Meth(Acrylaten), bevorzugt Acrylaten, besonders bevorzugt Butylacrylat eingesetzt. Die Flammschutzmittel-Komponente B) umfasst insbesondere folgende Bestandteile:
B1 ) 20 bis 79,99 Gew.-%, bevorzugt 30 bis 69,9 Gew.-%, besonders bevorzugt 40 bis 59,5 Gew.-%, der Komponente B1 ), B2) 20 bis 79,99 Gew.-%, bevorzugt 30 bis 69,9 Gew.-%, besonders bevorzugt 40 bis
59,5 Gew.-%, der Komponente B2) und
B3) 0,01 bis 4 Gew.-%, bevorzugt 0,1 bis 3 Gew.-%, besonders bevorzugt 0,5 bis 2 Gew.-%, der Komponente B3), wobei die Gewichtsprozente jeweils auf das Gesamtgewicht der Komponenten B1 ) bis B3) bezogen sind und zusammen 100 Gew.-% ergeben.
In einer speziellen Ausführungsform der Erfindung enthält die Formmasse (bzw. besteht aus):
A) 60 bis 85 Gew.-%, Komponente A,
B) 10 bis 35 Gew.-%, Komponente B,
C) 5 bis 15 Gew.-% Komponente C, und
D) 0 bis 25 Gew.-% Komponente D.
Die Flammschutzmittel-Komponente B) kann dabei bevorzugt folgende Bestandteile beinhalten:
40 bis 59,5 Gew.-%, der Komponente B1 ), B2) 40 bis 59,5 Gew.-%, der Komponente B2),
B3) 0,01 bis 4 Gew.-%, der Komponente B3), wobei die Gewichtsprozente der Komponente B jeweils auf das Gesamtgewicht der Komponen- ten B1 ) bis B3) bezogen sind und zusammen 100 Gew.-% ergeben, wobei die Gewichtsprozente der Formmasse (insgesamt) jeweils auf das Gesamtgewicht der Komponenten A) bis D) bezogen sind und zusammen 100 Gew.-% ergeben. Der Polybutadiengehalt der Formmasse (insgesamt) soll von 0 bis 1 1 Gew.-% betragen. Oftmals werden in den Zusammensetzungen 5 bis 15 Gew.-% an Komponente C (wie Etylen- Methacrylat-Copolymer (z.B. Elvaloy® 1330 EAC)), und 0 bis 25 Gew.-% an Komponente D (wie handelsüblicher Ruß („carbon black")) eingesetzt.
Zur Komponente A):
Als Komponente A sind grundsätzlich alle mit einem partikelförmigen Pfropfkautschuk schlagzäh modifizierte vinylaromatische Copolymere geeignet. Diese mit einem partikelförmigen Pfropfkautschuk schlagzäh modifizierten vinylaromatischen Copolymere und ihre Herstellung sind dem Fachmann bekannt, in der Literatur beschrieben (beispielsweise in A. Echte, Handbuch der technischen Polymerchemie, VCH Verlagsgesellschaft, Weinheim, 1993; und Saechtling, Kunststoff Taschenbuch, Carl Hanser Verlag, München, 29. Ausgabe, 2004) und oftmals kommerziell verfügbar.
Bevorzugte Komponenten A) enthalten als Kautschukphase einen partikelförmigen Pfropfkaut- schuk und als thermoplastische Hartphase Copolymerisate aus vinylaromatischen Monomeren und Vinylcyaniden (SAN), insbesondere aus α-Methylstyrol und Acrylnitril, besonders bevorzugt aus Styrol und Acrylnitril.
Die Komponente A) enthält in der Regel 15 bis 60 Gew.-%, bevorzugt 25 bis 55 Gew.-%, insbe- sondere 30 bis 50 Gew.-%, partikelförmigen Pfropfkautschuk und 40 bis 85 Gew.-%, bevorzugt 45 bis 75 Gew.-%, insbesondere 50 bis 70 Gew.-%, vinylaromatische Copolymere, wobei die Gewichtsprozente jeweils auf das Gesamtgewicht aus partikelförmigen Pfropfkautschuk und vinylaromatischem Copolymer bezogen sind und zusammen 100 Gew.-% ergeben. Bevorzugt werden als mit einem partikelförmigen Pfropfkautschuk schlagzähmodifiziertes SAN Acrylnitril-Styrol-Acrylat-Polymerisate („ASA") und/oder Acrylnitril-Butadien-Styrol-Polymerisate („ABS") eingesetzt, sowie (Meth)acrylat-Acrylnitril-Butadien-Styrol-Polymerisate ("MABS", transparentes ABS), aber auch Blends von SAN, ABS, ASA und MABS mit anderen Thermoplasten wie Polycarbonat, Polyamid, Polyethylenterephthalat, Polybutylenterephthalat, Polyvi- nylchlorid, Polyolefinen, ganz besonders bevorzugt mit Polycarbonat.
Unter ASA-Polymerisaten werden im allgemeinen mit einem partikelförmigen Pfropfkautschuk schlagzähmodifizierte SAN-Polymerisate verstanden, bei denen kautschukelastische Pfropfcopolymerisate von vinylaromatischen Verbindungen, insbesondere Styrol, und Vinylcya- niden, insbesondere Acrylnitril, auf Polyalkylacrylatkautschuken in einer Copolymermatrix aus insbesondere Styrol und/oder a- Methyl styrol und Acrylnitril vorliegen. ASA-Polymerisate und ihre Herstellung sind dem Fachmann bekannt und in der Literatur beschriebenen, beispielswei- se in DIN EN ISO 6402-1 DE vom Februar 2003, WO 2002/00745, WO 2000/1 1080, EP-A 450 485 und WO 2007/031445.
Unter ABS-Polymerisaten werden im allgemeinen schlagzähmodifizierte SAN-Polymerisate verstanden, bei denen Dien-Polymerisate, insbesondere 1 ,3-Polybutadien, in einer Copolymermatrix aus insbesondere Styrol und/oder a- Methyl styrol und Acrylnitril vorliegen. ABS-Polymerisate und ihre Herstellung sind dem Fachmann bekannt und in der Literatur beschriebenen, beispielsweise in DIN EN ISO 2580-1 DE vom Februar 2003, WO 2002/00745 und WO 2008/020012. Zur Komponente B):
Die thermoplastischen Formmassen enthalten als Komponente B) erfindungsgemäß eine Flammschutzmittelmischung enthaltend (oder bestehend aus): B1 ) expandierbaren Graphit,
B2) eine Phosphor enthaltende Flammschutzverbindung und
B3) ein fluorhaltiges Polymer.
Die erfindungsgemäßen Formmassen enthalten als Komponente B1 ) dem Fachmann bekann- ten und in der Literatur beschriebenen expandierbaren Graphit, sogenannten Blähgraphit (wärme- bzw. hitzeexpandierbarer Graphit). Dieser leitet sich in der Regel von natürlichem oder künstlichem Graphit ab.
Der Blähgraphit ist beispielsweise erhältlich durch Oxidation von natürlichem und/oder künstli- ehern Graphit. Als Oxidationsagentien können H2O2 oder Salpetersäure in Schwefelsäure eingesetzt werden. Weiterhin kann der Blähgraphit durch Reduktion, z.B. mit Natrium-naphthalenid in einem aprotischen organischen Lösungsmittel hergestellt werden. Aufgrund seiner Schichtgitterstruktur ist Graphit in der Lage, spezielle Formen von Einlagerungsverbindungen zu bilden. In diesen so genannten Zwischengitterverbindungen sind Fremdatome oder Fremdmoleküle in z.T. stöchiometrischen Verhältnissen in die Räume zwischen den Kohlenstoffatomen aufgenommen worden. Die Oberfläche des Blähgraphits kann zur besseren Verträglichkeit gegenüber der Thermoplastmatrix mit einem Beschichtungsmittel beschichtet sein, beispielsweise mit dem Fachmann bekannten Silan-Schlichten. Für den Fall, dass der Blähgraphit durch o.g. Oxidation erhalten wurde, kann es notwendig sein, eine alkalische Verbindung zuzusetzen, da der Blähgraphit (durch die enthaltende Säure) ansonsten Korrosion der Formmassen und/oder Lager- und Herstellapparate derartiger Formmassen verursachen kann. Insbesondere Alkaliverbindungen sowie Mg(OH)2 oder AI-Hydroxide können in Mengen bis zu 10, vorzugsweise bis zu 5 Gew.-% (bezogen auf 100 Gew.-% B1 ) zugegeben werden. Vorteilhaft erfolgt die Mischung bevor die Komponenten compoundiert werden. Vorzugsweise beträgt die Hitze-Ausdehnung des Blähgraphits bei schnellem Aufheizen von Raumtemperatur auf 800°C (in Richtung der c-Achse des Kristalls) mindestens 100 ml/g, vorzugsweise mindestens 1 10 ml/g (sog. spezifische Volumenänderung).
Wesentlich für die Eignung als Flammschutzmittel ist es, dass der Blähgraphit sich nicht in grö- ßerem Ausmaß ausdehnt bei Temperaturen unter 270°C, bevorzugt unter 280°C. Darunter versteht der Fachmann, dass der Blähgraphits bei den genannten Temperaturen in einem Zeitraum von 10 min eine Volumenexpansion von weniger als 20 % erfährt.
Der Ausdehnungskoeffizient (als spezifische Kerngröße) bedeutet in der Regel die Differenz zwischen dem spezifischen Volumen (ml/g) nach Erhitzen und dem spezifischen Volumen bei 20°C Raumtemperatur. Dies wird allgemein gemessen nach folgender Vorschrift: Ein Quarzbehälter wird auf 1000°C in einem elektrischen Schmelzeofen erhitzt. 2 g des Blähgraphits werden schnell in den Quarzbehälter gegeben und dieser 10 Sekunden im Schmelzeofen belassen. Das Gewicht von 100 ml des expandierten Graphits wird gemessen, um die„loosened apparent specific gravity" zu bestimmen. Der Kehrwert bildet dann das spezifische Volumen bei dieser Temperatur. Das spezifische Volumen bei Raumtemperatur wird entsprechend bei 20°C gemessen. (Ausdehnungskoeffizient = spez. Volumen nach Erhitzen - spezifisches Volumen bei 20°C). Die mittlere Teilchengröße D50 des Blähgraphits soll vorzugsweise zwischen 10 μιτι und 1000 μιτι, bevorzugt zwischen 30 μιτι und 850 μιτι, insbesondere bevorzugt zwischen 200 μιτι und 700 μιτι, liegen. Sind die mittleren Teilchengrößen niedriger, wird in der Regel keine ausreichend Flammschutzwirkung erzielt; sind sie größer, werden üblicherweise die mechanischen Eigenschaften der thermoplastischen Formmassen nachteilig beeinflusst.
Die mittlere Teilchengröße und die Teilchengrößenverteilung des Blähgraphits B1 ) kann aus der integralen Volumenverteilung bestimmt werden. Bei den mittleren Teilchengrößen handelt es sich in allen Fällen um das Volumenmittel der Teilchengrößen, wie sie mittels Laserlichtbeugung an einem Malvern-Mastersizer 2000 am Trockenpulver ermittelt werden. Die Laserlicht- beugung liefert die integrale Verteilung des Teilchendurchmessers einer Probe. Hieraus lässt sich entnehmen, wie viel Prozent der Teilchen einen Durchmesser gleich oder kleiner einer bestimmten Größe haben. Der mittlere Teilchendurchmesser, der auch als Dso-Wert der integralen Volumenverteilung bezeichnet wird, ist dabei als der Teilchendurchmesser definiert, bei dem 50 Gew.-% der Teilchen einen kleineren Durchmesser haben als der Durchmesser, der dem Dso-Wert entspricht. Ebenso haben dann 50 Gew.-% der Teilchen einen größeren Durchmesser als der Dso-Wert.
Die Dichte des Blähgraphits liegt üblicherweise im Bereich von 0,4 bis 2 g/cm3. Bei den phosphorhaltigen Verbindungen der Komponente B2) handelt es sich um organische und anorganische Phosphor enthaltende Verbindungen, in denen der Phosphor die Wertigkeitsstufe -3 bis +5 besitzt. Unter der Wertigkeitsstufe soll der Begriff "Oxidationsstufe" verstan- den werden, wie er im Lehrbuch der Anorganischen Chemie von A.F. Hollemann und E.Wiberg, Walter des Gruyter und Co. (1964, 57. bis 70. Auflage), Seite 166 bis 177, wiedergegeben ist. Phosphorverbindungen der Wertigkeitsstufen -3 bis +5 leiten sich von Phosphin (-3), Diphosphin (-2), Phosphinoxid (-1 ), elementarem Phosphor (+0), hypophosphoriger Säure (+1 ), phosphoriger Säure (+3), Hypodiphosphorsäure (+4) und Phosphorsäure (+5) ab.
Aus der großen Zahl von als Komponente B2) geeigneten phosphorhaltigen Verbindungen, insbesondere den anorganischen oder organischen Phosphaten, Phosphiten, Phosphonaten, Phosphatestern, rotem Phosphor und Triphenylphosphinoxid, seien nur einige Beispiele erwähnt. Beispiele für Phosphorverbindungen der Phosphin-Klasse, die die Wertigkeitsstufe -3 aufweisen, sind aromatische Phosphine, wie Triphenylphosphin, Tritolylphosphin, Trinonylphosphin, Trinaphthylphosphin und Trisnonylphenylphosphin u.a. Besonders geeignet ist Triphenylphosphin.
Beispiele für Phosphorverbindungen der Diphosphinklasse, die die Wertigkeitsstufe -2 aufweisen, sind Tetraphenyldiphosphin, Tetranaphthyldiphosphin u.a. Besonders geeignet ist Tetranaphthyldiphosphin. Phosphorverbindungen der Wertigkeitsstufe -1 leiten sich vom Phosphinoxid ab. Geeignet sind Phosphinoxide der allgemeinen Formel (I)
R1
R Λ2— P =0 (I)
v
R wobei R1, R2 und R3 in Formel I gleiche oder verschiedene Alkyl-, Aryl-, Alkylaryl- oder Cycloalkylgruppen mit 8 bis 40 C-Atomen bedeuten.
Beispiele für Phosphinoxide sind Triphenylphosphinoxid, Tritolylphosphinoxid, Trisnonylphenylphosphinoxid, Tricyclohexylphosphinoxid, Tris-(n-butyl)-phosphinoxid, Tris-(n- hexyl)-phosphinoxid, Tris-(n-octyl)-phosphinoxid, Tris-(cyanoethyl)-phosphinoxid, Benzylbis- (cyclohexyl)-phosphinoxid, Benzylbisphenylphosphinoxid, Phenylbis-(n-hexyl)-phosphinoxid.
Bevorzugt sind weiterhin oxidierte Umsetzungsprodukte aus Phosphin mit Aldehyden, insbesondere aus t-Butylphosphin mit Glyoxal. Besonders bevorzugt eingesetzt werden Triphenylphosphinoxid, Tricyclohexlyphosphinoxid, Tris-(n-octyl)-phosphinoxid und Tris- (cyanoethyl)-phosphinoxid, insbesondere Triphenylphosphinoxid. Ebenso geeignet ist Triphenylphosphinsulfid und dessen wie oben beschriebene Derivate der Phosphinoxide. Phosphor der Wertigkeitsstufe +0 ist der elementare Phosphor. In Frage kommen roter und schwarzer Phosphor. Bevorzugt ist roter Phosphor, insbesondere oberflächenbeschichteter roter Phosphor, wie er dem Fachmann bekannt, in der Literatur beschrieben und als Flammschutzmittel für Polymere kommerziell verfügbar ist.
Phosphorverbindungen der "Oxidationsstufe" +1 sind z.B. Hypophosphite rein organischer Natur, z.B. organische Hypophosphite, wie Cellulosehypophosphitester, Ester der hypophosphorigen Säuren mit Diolen, wie z.B. von 1 ,10-Dodecyldiol. Auch substituierte Phosphinsäuren und deren Anhydride, wie z.B. Diphenylphosphinsäure, können eingesetzt werden. Des weiteren kommen in Frage Diphenylphosphinsäure, Di-p-Tolylphosphinsäure, Di- Kresylphosphinsäureanhydrid, Es kommen aber auch Verbindungen wie Hydrochinon-, Ethylenglykol-, Propylenglykol-bis(diphenylphosphinsäure)-ester u.a. in Frage.
Ferner sind geeignet Aryl(Alkyl)phosphinsäureamide, wie z.B. Diphenylphosphinsäure- dimethylamid und Sulfonamidoaryl(alkyl)phosphinsäure-derivate, wie z.B. p- Tolylsulfonamidodiphenylphosphinsäure. Bevorzugt eingesetzt werden Hydrochinon- und Ethylenglykol-bis-(diphenylphosphinsäure)ester und das Bisdiphenylphosphinat des Hydrochi- nons.
Phosphorverbindungen der Oxidationsstufe +3 leiten sich von der phosphorigen Säure ab. Ge eignet sind cyclische Phosphonate, die sich vom Pentaerythrit, Neopentylglykol oder Brenzka techin ableiten wie z.B. Verbindungen gemäß Formel (II)
Figure imgf000009_0001
wobei R einen Ci bis C4-Alkylrest, bevorzugt Methyl rest, x=0 oder 1 bedeutet (Amgard® P 45 der Firma Albright & Wilson).
Ferner ist Phosphor der Wertigkeitsstufe +3 in Triaryl(alkyl)phosphiten, wie z.B. Triphenylphosphit, Tris(4-decylphenyl)phosphit, Tris(2,4-di-tert.-butylphenyl)phosphit oder Phenyldidecylphosphit u.a. enthalten.
Es kommen aber auch Diphosphite, wie z.B. Propylenglykol-1 ,2-bis(diphosphit) oder cyclische Phosphite, die sich vom Pentaerythrit, Neopentylglykol oder Brenzkatechin ableiten, in Frage. Besonders bevorzugt werden Methylneopentylglycolphosphonat und -phosphit sowie Dimethylpentaerythritdiphosphonat und -phosphit. Als Phosphorverbindungen der Oxidationsstufe +4 kommen vor allem Hypodiphosphate, wie z.B. Tetraphenylhypodiphosphat oder Bisneopentylhypodiphosphat in Betracht.
Als Phosphorverbindungen der Oxidationsstufe +5 kommen vor allem alkyl- und arylsubstituierte Phosphate in Betracht. Beispiele sind Phenylbisdodecylphosphat, Phenylethylhydrogenphosphat, Phenyl-bis(3,5,5-trimethylhexyl)phosphat, Ethyldiphenyl- phosphat, 2-Ethylhexyldi(tolyl)phosphat, Diphenylhydrogenphosphat, Bis(2-ethylhexyl)-p- tolylphosphat, Tritolylphosphat, Bis(2-ethylhexyl)-phenylphosphat, Di(nonyl)phenylphosphat, Phenylmethylhydrogenphosphat, Di(dodecyl)-p-tolylphosphat, p-Tolyl-bis(2,5,5-trimethylhexyl)- phosphat oder 2-Ethylhexyldiphenyl-phosphat. Besonders geeignet sind Phosphorverbindungen, bei denen jeder Rest ein Aryloxi-Rest ist. Ganz besonders geeignet ist Triphenylphosphat und Resorcinol-bis-(diphenylphosphat) und dessen kernsubstituierten Derivate der allgemeinen Formel (III) (RDP):
Figure imgf000010_0001
in der die Substituenten in Formel III folgende Bedeutung haben:
R4-R7 ein aromatischer Rest mit 6 bis 20 C-Atomen, bevorzugt ein Phenylrest, welcher mit Alkylgruppen mit 1 bis 4 C-Atomen bevorzugt Methyl, substituiert sein kann, R8 ein zweiwertiger Phenolrest, bevorzugt
Figure imgf000010_0002
und n einen Durchschnittswert zwischen 0,1 bis 100, bevorzugt 0,5 bis 50, insbesondere 0,8 bis 10 und ganz besonders 1 bis 5.
Die im Handel erhältlichen RPD-Produkte unter dem Warenzeichen Fyroflex® oder Fyrol®-RDP (Akzo) sowie CR 733-S (Daihachi) sind bedingt durch das Herstellungsverfahren Gemische aus ca. 85 % RDP (n=1 ) mit ca. 2,5 % Triphenylphosphat sowie ca. 12,5 % oligomeren Anteilen, in denen der Oligomerisierungsgrad meist kleiner 10 beträgt. Es können auch cyclische Phosphate eingesetzt werden. Besonders geeignet ist hierbei Diphenylpentaerythritdiphosphat und Phenylneopentylphosphat. Außer den oben angeführten niedermolekularen Phosphorverbindungen kommen noch oligomere und polymere Phosphor- Verbindungen in Frage. Solche polymeren, halogenfreien organischen Phosphorverbindungen mit Phosphor in der Polymerkette entstehen beispielsweise bei der Herstellung von pentacyclischen, ungesättigten Phosphindihalogeniden, wie beispielsweise in der DE-A 20 36 173 beschrieben ist. Das Molekulargewicht gemessen durch Dampfdruck-Osmometrie in Dimethylformamid, der Polyphospholinoxide soll im Bereich von 500 bis 7000, vorzugsweise im Bereich von 700 bis 2000 liegen. Das Phosphoratom besitzt hierbei die Oxidationsstufe -1.
Ferner können anorganische Koordinationspolymere von Aryl(alkyl)-phosphinsäuren wie z.B. Poly-ß-natrium(l)-methylphenylphosphinat eingesetzt werden. Ihre Herstellung wird in DE- A 31 40 520 angegeben. Der Phosphor besitzt die Oxidationszahl +1. Weiterhin können solche halogenfreien polymeren Phosphorverbindungen durch die Reaktion eines Phosphonsäurechlorids, wie z.B. Phenyl-, Methyl-, Propyl-, Styryl- und Vinylphosphonsäuredichlorid mit bifunktionellen Phenolen, wie z.B. Hydrochinon, Resorcin, 2,3,5-Trimethylhydrochinon, Bisphenol-A, Tetramethylbiphenol-A entstehen.
Weitere halogenfreie polymere Phosphorverbindungen, die in den erfindungsgemäßen Formmassen enthalten sein können, werden durch Reaktion von Phosphoroxidtrichlorid oder Phosphorsäureesterdichloriden mit einem Gemisch aus mono-, bi- und trifunktionellen Phenolen und anderen Hydroxylgruppen tragenden Verbindungen hergestellt (vgl. Houben-Weyl- Müller, Thieme-Verlag Stuttgart, Organische Phosphorverbindungen Teil II (1963)). Ferner können polymere Phosphonate durch Umesterungsreaktionen von Phosphonsäureestern mit bifunktionellen Phenolen (vgl. DE-A 29 25 208) oder durch Reaktionen von Phosphonsäureestern mit Diaminen oder Diamiden oder Hydraziden (vgl. US 4 403 075) hergestellt werden. In Frage kommt aber auch das anorganische Poly(ammoniumphosphat).
Es können auch oligomere Pentaerythritphosphite, -phosphate und -phosphonate gemäß EP-A 008486, z.B. Mobil Antiblaze® 19 (eingetragene Marke der Firma Mobil Oil), verwendet werden, z.B. gemäß Formeln (IV) und (V):
Figure imgf000011_0001
Figure imgf000011_0002
wobei die Substituenten in den Formeln IV und V folgende Bedeutung haben: R1, R2 Wasserstoff, d- bis Cß-Alkyl, der gegebenenfalls eine Hydroxylgruppe enthält, vorzugsweise d- bis C4-Alkyl, linear oder verzweigt, z.B. Methyl, Ethyl, n-Propyl, iso- Propyl, n-Butyl, tert.-Butyl, n-Pentyl; Phenyl; wobei bevorzugt mindestens ein Rest R1 oder R2, insbesondere R1 und R2 Wasserstoff ist;
R3 d- bis Cio-Alkylen, linear oder verzweigt, z.B. Methylen, Ethylen, n-Propylen, iso-
Propylen, n-Butylen, tert.-Butylen, n-Pentylen, n-Octylen, n-Dodecylen; Arylen, z.B. Phenylen, Naphthylen; Alkylarylen, z.B. Methyl-phenylen, Ethyl-phenylen, tert.-Butyl- phenylen, Methyl-naphthylen, Ethyl-naphthylen, tert.-Butyl-naphthylen; Arylalkylen, z.B. Phenyl-methylen, Phenyl-ethylen, Phenyl-propylen, Phenyl-butylen; ein Erdalkali-, Alkalimetall, AI, Zn, Fe, Bor;
eine ganze Zahl von 1 bis 3;
eine ganze Zahl von 1 und 3 und
1 oder 2.
Besonders bevorzugt sind Verbindungen der Formel IV, in denen R1 und R2 Wasserstoff ist, wobei M vorzugsweise Ca, Zn oder AI ist und Calciumphosphinat als Verbindung ganz besonders bevorzugt ist. Derartige Produkte sind im Handel z.B. als Calciumphosphinat erhältlich.
Geeignete Salze der Formel (IV) oder (V), in denen nur ein Rest R1 oder R2 Wasserstoff bedeutet, sind z.B. Salze der Phenylphosphinsäure, wobei deren Na- und/oder Ca-Salze bevorzugt sind.
Weiterhin bevorzugte Salze weisen einen hydroxylgruppenhaltigen Alkylrest R1 und/oder R2 auf. Diese sind beispielsweise durch Hydroxymethylierung erhältlich. Bevorzugte Verbindungen sind Ca, Zn und AI-Salze.
Die mittlere Teilchengröße D50 (gemessen nach der oben beschriebenen Methode zur Teil- chengrößenbestimmung der Komponente B1 ) der Komponente B2) ist vorzugsweise kleiner 10 μιτι, vorzugsweise kleiner 7 μιτι und insbesondere kleiner 5 μιτι. Der Dio-Wert ist vorzugsweise kleiner 4 μιτι, insbesondere 3 μιτι und ganz besonders bevorzugt kleiner 2 μιτι. Bevorzugte Dgo-Werte sind kleiner 40 μιτι und insbesondere kleiner 30 μιτι und ganz besonders bevorzugt kleiner 20 μιτι.
Weiterhin bevorzugt sind Phosphorverbindungen der allgemeinen Formel (VI):
Figure imgf000013_0001
wobei die Substituenten in Formel (VI) folgende Bedeutung haben: R1 bis R20 unabhängig voneinander Wasserstoff, eine lineare oder verzweigte Alkylgrup- pe bis zu 6 C-Atomen n einen Durchschnittswert von 0,5 bis 50 und
X eine Einfachbindung, C=0, S, S02, C(CH3)2
Bevorzugte Verbindungen B2) sind solche der Formel (VI), in denen R1 bis R20 unabhängig voneinander Wasserstoff und/oder einen Methylrest bedeuten. Für den Fall, daß R1 bis R20 unabhängig voneinander einen Methylrest bedeuten, sind solche Verbindungen bevorzugt, in welchen die Reste R1, R5, R6, R10, R11, R15, R16, R20 in ortho-Stellung zum Sauerstoff der Phos- phatgruppe mindestens einen Methylrest darstellen.
Weiterhin bevorzugt sind Verbindungen B2) in denen pro aromatischem Ring eine Methylgruppe, vorzugsweise in ortho-Stellung vorhanden ist und die anderen Reste Wasserstoff bedeuten. Insbesondere bevorzugt sind als Substituenten SO2 und S, sowie ganz besonders bevorzugt C(CH3)2 für X in obiger Formel (VI), n beträgt in obiger Formel (VI) vorzugsweise als Durchschnittswert 0,5 bis 5, insbesondere 0,7 bis 2 und insbesondere == 1 .
Die Angabe von n als Durchschnittswert ergibt sich durch das Herstellverfahren der oben aufgeführten Verbindungen, so daß der Oligomerisierungsgrad meist kleiner 10 beträgt und geringe Anteile (meist < 5 Gew.-%) an Triphenylphosphat enthalten sind,
wobei dies von Charge zu Charge unterschiedlich ist. Solche Verbindungen B2) sind als CR - 741 der Firma Daihachi im Handel erhältlich.
Als ganz besonders bevorzugte Ausführungsform der Erfindung hat sich der Einsatz einer Mi- schung aus rotem Phosphor und mindestens einer der oben beschriebenen, von rotem Phosphor verschiedenen Phosphorverbindungen als Komponente B2) erwiesen. Eine insbesondere als Komponente B2) bevorzugte Mischung besteht aus rotem Phosphor und mindestens einem anorganischen oder organischen Phosphat, Phosphit, Phosphonat, Phosphatester oder Triphenylphosphinoxid. Besonders vorteilhaft sind Mischungen aus rotem Phosphor und Ammoniumpolyphosphat, aus rotem Phosphor und Bisphenol-A-bis-diphenylphosphat oder aus rotem Phosphor und Triphenylphosphat. Eine ganz besonders als Komponente B2) bevorzugte Mischung umfaßt roten Phosphor und Ammoniumpolyphosphat. Eine weitere ganz besonders als Komponente B2) bevorzugte Mischung besteht aus rotem Phosphor und Ammoniumpolyphosphat und Triphenylphosphat.
Wenn als Komponente B2) die genannte Mischung aus rotem Phosphor und aus mindestens einer der oben beschriebenen, von rotem Phosphor verschiedenen Phosphorverbindungen eingesetzt wird, weisen diese erfindungsgemäßen Formmassen eine verbesserte Kombination von flammhemmenden, mechanischen und Theologischen Eigenschaften, insbesondere auch eine hohe Wärmeformbeständigkeit (Vicat-Temperatur), auf.
Wenn als Komponente B2) die genannten Mischungen aus rotem Phosphor und mindestens einer der oben beschriebenen, von rotem Phosphor verschiedenen Phosphorverbindungen eingesetzt werden, enthält die Komponente B2) in der Regel 10 bis 90 Gew.-%, bevorzugt 20 bis 80 Gew.-%, besonders bevorzugt 30 bis 70 Gew.-%, roten Phosphor und 10 bis 90 Gew.-%, bevorzugt 20 bis 80 Gew.-%, besonders bevorzugt 30 bis 70 Gew.-%, mindestens einer der oben beschriebenen, von rotem Phosphor verschiedenen Phosphorverbindungen, wobei die Gewichtsprozente von rotem Phosphor und der mindestens einen oben beschriebenen, von rotem Phosphor verschiedenen Phosphorverbindung jeweils auf das Gesamtgewicht der Kom- ponente B2) bezogen sind und zusammen 100 Gew.-% ergeben.
Als Komponente B3) enthalten die Formmassen ein fluorhaltiges Polymer. Bevorzugt sind fluor- haltige Ethylenpolymerisate. Hierbei handelt es sich um Polymerisate des Ethylens mit einem Fluorgehalt von 55 bis 76 Gew.-%, vorzugsweise 70 bis 76 Gew.-%.
Beispiele hierfür sind Polytetrafluorethylen (PTFE), Tetrafluorethylen-hexafluor-propylen- Copolymere oder Tetrafluorethylen-Copolymerisate mit kleineren Anteilen (in der Regel bis zu 50 Gew.-%) copolymerisierbarer ethylenisch ungesättigter Mono-merer. Diese werden z.B. von Schildknecht in "Vinyl and Related Polymers", Wiley-Verlag, 1952, Seite 484 bis 494 und von Wall in "Fluorpolymers" (Wiley Interscience, 1972) beschrieben.
Diese fluorhaltigen Ethylenpolymerisate liegen in der Regel homogen verteilt in den Formmassen vor und weisen bevorzugt eine mittlere Teilchengröße D50 im Bereich von 0,05 bis 10 μιτι, insbesondere von 0,1 bis 5 μιτι auf. Diese geringen Teilchengrößen lassen sich besonders bevorzugt durch Verwendung von wässrigen Dispersionen von fluorhaltigen Ethylenpolymerisaten und deren Einarbeitung in eine Polymerschmelze erzielen.
In einer bevorzugten Ausführungsform der Erfindung beträgt der Gewichtsanteil des fluorhaltigen Polymers B3) bezogen auf das Gesamtgewicht der Komponenten A) bis D) von 0,01 bis 0,5 Gew.-%, bevorzugt von 0,1 bis 0,45 Gew.-%, besonders bevorzugt von 0,2 bis 0,4 Gew.-%.
Zur Komponente C): Als Komponente C) sind grundsätzlich alle dem Fachmann bekannten und in der Literatur beschriebenen polaren Gruppen enthaltende, nicht-partikelförmige Kautschuke geeignet. Als erfindungsgemäß geeignete Komponenten C) sind beispielsweise polare Gruppen enthaltende, nicht-partikelförmige Kautschuke einsetzbar, die vernetzt sind. Bevorzugte Komponenten C) sind aber polare Gruppen enthaltende unvernetzte Kautschuke, insbesondere polare Gruppen enthaltende lineare Kautschuke.
Polare Gruppen im Sinne dieser Erfindung sind bevorzugt O- und/oder N-haltige funktionelle Gruppen, insbesondere Hydroxy-, Alkoxy-, Amino-, Imino-, Alkoxycarbonyl-, Carboxamid- und/oder Carboxygruppen, besonders bevorzugt sich von Acrylsäure oder Maleinsäure ableitende Säure- oder Estergruppen.
Insbesondere als Komponente C) geeignet sind Ethylen-Acrylat-Kautschuke. Bevorzugte Ethylen-Acrylat-Kautschuke sind Copolymere aus Ethylen und Methylacrylat oder insbesondere Terpolymere aus Ethylen, Methylacrylat und einer ungesättigten Carbonsäure; als ungesättigte Carbonsäure sind zur Herstellung dieser Terpolymere Maleinsäure oder deren Halbester, bevorzugt aber Acrylsäure geeignet. Die Ethylen-Acrylat-Kautschuke lassen sich auch in einer beispielsweise mit Diaminen, insbesondere mit Hexan-1 ,6-diamin oder 4,4 '-Methylendianilin, vernetzten Form als Komponente C) einsetzen. Im Rahmen der vorliegenden Erfindung besonders geeignete Ethylen-Acrylat- Kautschuke sind unter der Bezeichnung Elvaloy® 1330 EAC (Fa. DuPont) kommerziell verfügbar.
Zur Komponente D):
Die thermoplastischen Formmassen können ein oder mehrere - von den Komponenten A), B) und C) verschiedene - Zusatzstoffe als Komponente D) enthalten. Geeignet sind grundsätzlich alle dem Fachmann bekannten und in der Literatur beschriebenen kunststoffüblichen Zusatzstoffe.
Kunststoffübliche Zusatzstoffe im Sinne der vorliegenden Erfindung sind beispielsweise Stabilisatoren und Oxidationsverzögerer, Mittel gegen Wärmezersetzung und Zersetzung durch ultraviolettes Licht, Gleit- und Entformungsmittel, Farbstoffe und Pigmente und Weichmacher so- wie Fasern, beispielsweise Glasfasern oder Kohlenstofffasern.
Oxidationsverzögerer und Wärmestabilisatoren, die der thermoplastischen Formmasse gemäß der Erfindung zugesetzt werden können, sind z. B. Halogenide von Metallen der Gruppe I des Periodensystems, z. B. Natrium-, Kalium-, Lithium-Halogenide. Weiterhin können Zinkfluorid und Zinkchlorid verwendet werden. Ferner sind sterisch gehinderte Phenole, Hydrochinone, substituierte Vertreter dieser Gruppe, sekundäre aromatische Amine, gegebenenfalls in Verbindung mit phosphorhaltigen Säuren bzw. deren Salze, und Mischungen dieser Verbindungen, vorzugsweise in Konzentrationen bis zu 1 Gew.-%, bezogen auf das Gewicht der thermoplastischen Formmassen, einsetzbar.
Beispiele für UV-Stabilisatoren sind verschiedene substituierte Resorcine, Salicylate, Benzotriazole und Benzophenone, die im Allgemeinen in Mengen bis zu 2 Gew.-%, bezogen auf das Gewicht der thermoplastischen Formmassen, eingesetzt werden.
Gleit- und Entformungsmittel, die in der Regel in Mengen bis zu 1 Gew.-%, bezogen auf das Gewicht der thermoplastischen Formmassen, zugesetzt werden können, sind Stearinsäure, Stearylalkohol, Stearinsäurealkylester und -amide sowie Ester des Pentaerythrits mit langkettigen Fettsäuren. Es können auch Salze des Calciums, Zinks oder Aluminiums der Stearinsäure sowie Dialkylketone, z. B. Distearylketon, eingesetzt werden. Erfindungsgemäß geeignet sind insbesondere Zink-, Magnesium- und Calciumstearat sowie N,N'-Ethylen-bis- stearamid.
Als Glasfasern können in den erfindungsgemäßen Formmassen alle dem Fachmann bekannten und in der Literatur beschriebenen Glasfasern eingesetzt werden (siehe beispielsweise Milewski, J.V., Katz, H.S.„Handbook of Reinforcements for Plastics", S. 233 ff., Van Nostrand Reinholt Company Inc, 1987).
Zu den Herstellungsverfahren:
Die erfindungsgemäßen thermoplastischen Formmassen können nach an sich bekannten Verfahren hergestellt werden, in dem man die Ausgangskomponenten in üblichen Mischvorrichtun- gen wie Schneckenextrudern, Brabender-Mühlen oder Banbury-Mühlen mischt und anschließend extrudiert. Nach der Extrusion kann das Extrudat abgekühlt und zerkleinert werden. Es können auch einzelne Komponenten vorgemischt werden und dann die restlichen Ausgangsstoffe einzeln und/oder ebenfalls gemischt hinzugegeben werden. Die Mischtemperaturen liegen in der Regel bei 200 bis 280°C.
Nach einer bevorzugten Arbeitsweise können in einem ersten Schritt die Komponenten A), B) außer B1 ), C) und gegebenenfalls D) vorvermischt werden. Die vorgemischten Komponenten können entweder konfektioniert und beispielsweise granuliert werden, sie können aber auch direkt als Schmelze, beispielsweise auf dem gleichen Extruder, in einem nachfolgenden zweiten Schritt mit Komponente B1 ) schmelzevermischt werden.
Die erfindungsgemäßen flammhemmend ausgerüsteten Formmassen basierend auf die auf mit partikelförmigen Pfropfkautschuken schlagzäh modifizierten vinylaromatischen Copolymeren weisen gegenüber bekannten Formmassen einen deutlich verringerten Eigengeruch auf.
Die Erfindung wird durch die Beispiele und Patentansprüche näher erläutert. Zu den Meßmethoden: Kerbschlagzähigkeit ak [kJ/m2]:
Die Kerbschlagzähigkeit ak wurde gemäß ISO 179 1 eA(F) bei 23°C bestimmt. Fließfähigkeit MVR [ml/10 min]:
Als Maß für die Fließfähigkeit wurde die Melt-Volume-Rate MVR 200/5 gemäß DIN EN ISO 1 133 bestimmt.
Wärmeformbeständigkeit, Vicat B, [°C]:
Die Wärmeformbeständigkeit wurde als Vicat-Erweichungstemperatur an Normkleinstäben bei einer Heizrate von 50 K/Stunde und einer Kraft von 49,05 N nach DIN 53460, Verfahren B, bestimmt.
Nachbrennzeit t [s]:
Im Brandtest in Anlehnung an UL 94, vertical burning Standard, wurde an Stäben mit einer Dicke von 1 ,6 mm nach einer ersten Beflammungsdauer von 10 Sekunden die erste Nachbrennzeit t1 gemessen. Nach einer sich an das Verlöschen der Flammen direkt anschließenden zweiten Beflammungsdauer von 10 Sekunden wurde die zweite Nachbrennzeit t2 gemessen. Die Summe der Nachbrennzeiten t1 und t2 ergibt die Nachbrennzeit t (angegeben wird jeweils der Mittelwert der an zwei Stäben bestimmten Nachbrennzeiten t ).
Geruchstest:
Für den Geruchstest wurden Stäbe mit einer Dicke von 1 ,6 mm verwendet, wie sie auch für den Brandtest verwendet werden. Die Stäbe wurden in ein 500 ml Schraubglas gegeben und im geschlossenen Zustand 24h bei 60°C gelagert. Nach Abkühlung auf Zimmertemperatur wurde der Geruch auf einer Skala bewertet von: sehr schlecht (- -), schlecht (-), zufriedenstellend (o), gut (+) bis sehr gut (++). Zu den Einsatzstoffen
Komponenten oder Versuche mit vorangestelltem "V-" sind nicht erfindungsgemäß und dienen zum Vergleich. Polymer-Komponente A):
Als Komponenten A wurden eingesetzt: a-l: ein handelsübliches Acrylnitril-Butadien-Styrol-Copolymer (ABS), Terluran® Hl 10, der BASF SE, enthaltend eine Styrol-Acrylnitril-Copolymer-Hartphase und einen partikelförmigen Butadien-Pfropfkautschuk. a-ll: ein handelsübliches Butylacrylat-Styrol-Acrylnitril-Copolymer (ASA), Luran S, der BASF SE, enhaltend eine Styrol-Acrylnitril-Copolymer-Hartphase und einen partikelförmigen Butylacrylat-Pfropfkautschuk.
a-lll: ein Styrol-Acrylnitril-Copolymer (SAN) enthaltend 24 Gew.-% Acrylnitril und 78 Gew-% Styrol mit einer Viskositätszahl von 64 ml/g.
Flammschutzmittel-Komponente B):
Als Komponente B1 ) wurden eingesetzt: b1 -l: Blähgraphit Nord-Min® 503 der Firma Nordmann, Rassmann, GmbH, mit einer mittleren Teilchengröße D50 von 465 μιτι, einer freien Expansion (beginnend bei ca. 300°C) von mindestens 150 ml/g und einer Schüttdichte von 0,5 g/ml bei 20°C. Als Komponente B2) wurde eingesetzt: b2-l: Disflammol® TP, ein Triphenylphosphat der Lanxess Aktiengesellschaft.
b2-ll: Nord-Min® JLS, ein Ammoniumpolyphosphat der Firma Nordmann, Rassmann, GmbH. b2-lll: Masteret 38450, ein roter Phosphor-Masterbatch der Firma Italmatch Chemicals Spa.
Als Komponente B3) wurde eingesetzt: b3-l: Polytetrafluorethylen PTFE TE-3893, Teflon® Dispersion der Fa. C. H. Erbslöh mit einem PTFE-Gehalt von 60 Gew.-% (bezogen auf das Gesamtgewicht der Dispersion).
Kautschuk-Komponente C):
Als Komponente C) wurde eingesetzt: c-l: Ein handelsübliches lineares Etylen-Methacrylat-Copolymer, Elvaloy® 1330 EAC, der Fa.
DuPont.
Weitere Zusatzstoffe D): Als Komponente D) wurden eingesetzt: d-l: Black Pearls® 880, ein handelsüblicher Ruß (carbon black) der Fa. Cabot Corp.
Herstellung der Formmassen und Formkörper:
Zur Bestimmung der in Tabelle 1 und 2 genannten Brand- und Geruchseigenschaften wurden die Komponenten A) bis D) (jeweilige Gew.-teile s. Tabelle 1 ) auf einem DSM Midiextruder homogenisiert und mit einem Spritzgußaufsatz bei 240°C Schmelzetemperatur und 80°C Werk- zeugoberflächentemperatur zu Prüfkörpern gemäß UL 94, („vertical burning Standard"), mit einer Dicken von 1 ,6 mm extrudiert.
Die wesentliche Geruchsquelle ist dabei auf eine Interaktion zwischen den Blähgraphit und der Polybutadien-Komponente aus dem ABS zurückzuführen, was anhand der Beispiele in Tabelle belegt wird.
Tabelle 1 : Zusammensetzung und Eigenschaften der Formmassen
(vorangestelltes V: zum Vergleich)
Beispiel V-1 V-2 V-3 1 2 3 4
Zusammensetzung [Gew.- teile (Gew.-%)]
a-l 54.6 49.6 44.6 39.6 34.6 29.6 0
a-ll 0 5 10 15 20 25 54,6
a-l II 16.7 16.7 16.7 16.7 16.7 16.7 16,7
b1 -l 8 8 8 8 8 8 8
b2-l 4 4 4 4 4 4 4
b2-ll 1 1 1 1 1 1 1
b2-lll 4.5 4.5 4.5 4.5 4.5 4.5 4,5
b3-l 0.4 0.4 0.4 0.4 0.4 0.4 0,4
c-l 10 10 10 10 10 10 10
d-l 0.8 0.8 0.8 0.8 0.8 0.8 0,8
Polybutadiengehalt 13.8 12.5 1 1.2 10.0 8.7 7.5 0
Eigenschaften
Geruchsbewertung - - o + ++ ++
Nachbrennzeit tN [s] 2.3 3.2 4.8 7.3 5.7 2.4 3.0
Tabelle 2: Zusammensetzung und Eigenschaften der Formmassen
(vorangestelltes V: zum Vergleich)
Figure imgf000020_0001
Die Beispiele zeigen, dass die erfindungsgemäßen flammhemmend ausgerüsteten Formmassen basierend auf mit partikelförmigen Pfropfkautschuken schlagzäh modifizierten vinylaromati- schen Copolymeren gegenüber bekannten Formmassen einen deutlich verringerten, d.h. akzeptablen Eigengeruch aufweisen.

Claims

Patentansprüche
Thermoplastische Formmassen enthaltend:
55 bis 98 Gew.-% mindestens eines mit einem partikelförmigen Pfropfkautschuk schlagzäh modifizierten vinylaromatischen Copolymers,
B) 1 bis 44 Gew.-% eines Flammschutzmittels enthaltend
B1 ) einen expandierbaren Graphit,
B2) eine Phosphor enthaltende Flammschutz-Verbindung und
B3) ein fluorhaltiges Polymer,
1 bis 20 Gew.-% eines polare Gruppen enthaltenden, nicht-partikelförmigen Kautschuks, und
0 bis 40 Gew.-% weiterer Zusatzstoffe, wobei die Gewichtsprozente jeweils auf das Gesamtgewicht der Komponenten A) bis D) bezogen sind und zusammen 100 Gew.-% ergeben und der Polybutadiengehalt 0 bis 1 1 Gew.-% beträgt.
2. Thermoplastische Formmassen nach Anspruch 1 , dadurch gekennzeichnet, dass der
Polybutadiengehalt 3 bis 10,5 Gew.-% beträgt.
Thermoplastische Formmassen nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Polybutadiengehalt 5 bis 10 Gew.-% beträgt.
Thermoplastische Formmassen nach Anspruch 1 , dadurch gekennzeichnet, dass der Polybutadiengehalt 0 Gew.-% beträgt und der partikelförmige Pfropfkautschuk Poly- Meth(Acrylat) enthält.
Thermoplastische Formmassen nach Anspruch 1 , dadurch gekennzeichnet, dass der Polybutadiengehalt 0 Gew.-% beträgt und der partikelförmige Pfropfkautschuk Poly- Acrylat enthält.
Thermoplastische Formmassen nach Anspruch 1 , dadurch gekennzeichnet, dass der Polybutadiengehalt 0 Gew.-% beträgt und der partikelförmige Pfropfkautschuk Polybutylacrylat enthält.
Thermoplastische Formmassen nach einem der Ansprüche 1 bis 6, enthaltend als Komponente C) einen Ethylen-Acrylat-Kautschuk.
Thermoplastische Formmassen nach einem der Ansprüchen 1 bis 7, enthaltend als Komponente A) Acrylnitril-Styrol-Acrylat-Polymerisate („ASA") und/oder Acrylnitril- Butadien-Styrol-Polymerisate („ABS"). Thermoplastische Formmassen nach einem der Ansprüche 1 bis 8, enthaltend als Komponente B2) mindestens eine Verbindung ausgewählt aus anorganischen oder organischen Phosphaten, Phosphiten, Phosphonaten, Phosphatestern, rotem Phosphor und Triphenylphosphinoxid.
Thermoplastische Formmassen nach einem der Ansprüche 1 bis 9, enthaltend als Komponente B2) eine Mischung aus rotem Phosphor und aus mindestens einem anorganischen oder organischen Phosphat, Phosphit, Phosphonat, Phosphatester oder Triphenylphosphinoxid.
Thermoplastische Formmassen nach einem der Ansprüche 1 bis 10, enthaltend als Komponente B2) eine Mischung aus rotem Phosphor und Ammoniumpolyphosphat.
Thermoplastische Formmassen nach einem der Ansprüche 1 bis 1 1 , enthaltend als Komponente B2) eine Mischung aus rotem Phosphor und Ammoniumpolyphosphat und Triphenylphosphat.
Thermoplastische Formmassen nach einem der Ansprüche 1 bis 12, enthaltend als Komponente B3) ein fluoriertes Ethylenpolymerisat.
Thermoplastische Formmassen nach einem der Ansprüche 1 bis 13, enthaltend
20 bis 79,99 Gew.-% der Komponente B1 ),
20 bis 79,99 Gew.-% der Komponente B2) und
0,01 bis 4 Gew.-% der Komponente B3), wobei die Gewichtsprozente jeweils auf das Gesamtgewicht der Komponenten B1 ) bis B3) bezogen sind und zusammen 100 Gew.-% ergeben.
Verfahren zur Herstellung der thermoplastischen Formmassen gemäß einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Komponenten A), B), C) und, falls vorhanden, D) schmelzevermischt werden.
16. Verwendung der thermoplastischen Formmassen gemäß einem der Ansprüche 1 bis 14 zur Herstellung von Fasern, Folien, Formkörpern und Schäumen.
17. Fasern, Folien, Formkörper und Schäume erhältlich aus den thermoplastischen Formmassen gemäß einem der Ansprüche 1 bis 14.
PCT/EP2011/072881 2010-12-16 2011-12-15 Kautschukmodifizierte flammgeschützte formmassen und deren herstellung WO2012080388A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11799414.5A EP2652037B1 (de) 2010-12-16 2011-12-15 Kautschukmodifizierte flammgeschützte formmassen und deren herstellung
KR1020137018431A KR20140033328A (ko) 2010-12-16 2011-12-15 고무 개질된 난연성 성형 조성물 및 그의 제조
US13/992,538 US20140323606A1 (en) 2010-12-16 2011-12-15 Rubber-modified flame-retardant moulding compositions and production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP10195400.6 2010-12-16
EP10195400 2010-12-16

Publications (1)

Publication Number Publication Date
WO2012080388A1 true WO2012080388A1 (de) 2012-06-21

Family

ID=45390089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/072881 WO2012080388A1 (de) 2010-12-16 2011-12-15 Kautschukmodifizierte flammgeschützte formmassen und deren herstellung

Country Status (4)

Country Link
US (1) US20140323606A1 (de)
EP (1) EP2652037B1 (de)
KR (1) KR20140033328A (de)
WO (1) WO2012080388A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7243103B2 (ja) * 2018-09-26 2023-03-22 富士フイルムビジネスイノベーション株式会社 樹脂組成物、及び樹脂成形体

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2036173A1 (de) 1970-07-21 1972-01-27 Farbenfabriken Bayer Ag, 5090 Lever Kusen Verfahren zur Herstellung von isomeren pentacychschen, ungesättigten Phosphin dihalogeniden
EP0008486A1 (de) 1978-04-28 1980-03-05 American Cyanamid Company Polymere Pentaerythrityl-Phosphonate mit feuerhemmenden Eigenschaften für Polyolefine und Verfahren zu ihrer Herstellung
DE2925208A1 (de) 1979-06-22 1981-01-29 Bayer Ag Verfahren zur herstellung von aromatischen thermoplastischen polyphosphonatocarbonaten
DE3140520A1 (de) 1981-10-13 1983-04-21 Basf Ag, 6700 Ludwigshafen Selbstverloeschende thermoplastische formmassen
US4403075A (en) 1980-09-25 1983-09-06 Mcdonnell Douglas Corporation Flame resistant composition containing polymeric phosphorylated amides
EP0450485A2 (de) 1990-04-06 1991-10-09 BASF Aktiengesellschaft Thermoplastische Formmasse
KR960001006B1 (ko) 1993-04-16 1996-01-17 주식회사금강 무기섬유 판상체의 압축강도 증진방법 및 그 장치
WO2000011080A1 (de) 1998-08-20 2000-03-02 Basf Aktiengesellschaft Asa-formmassen zur herstellung matter formteile
WO2000034342A2 (de) 1998-12-09 2000-06-15 Basf Aktiengesellschaft Verfahren zur herstellung von expandierbaren polystyrolteilchen
WO2000034367A2 (de) 1998-12-09 2000-06-15 Basf Aktiengesellschaft Flammgeschützte polystyrolschaumstoffe
WO2002000745A1 (de) 2000-06-28 2002-01-03 Basf Aktiengesellschaft Kautschukhaltige styrolpolymere mit verbesserter schlagzähigkeit
WO2003046071A1 (en) 2001-11-29 2003-06-05 Bromine Compounds Ltd. Fire retarded polymer composition
WO2005103136A2 (en) 2004-04-22 2005-11-03 Bromine Compounds Ltd. Fire retarded styrene polymer compositions
WO2007031445A1 (de) 2005-09-13 2007-03-22 Basf Se Formmasse auf basis von vernetzten acrylatkautschuken und styrol(co)polymeren
WO2008020012A2 (de) 2006-08-18 2008-02-21 Basf Se Thermoplastische formmassen auf basis von acrylnitril, styrol und butadien
WO2009007358A1 (en) 2007-07-10 2009-01-15 Basf Se Flame retardant thermoplastic molding compositions
WO2010003891A1 (de) 2008-07-07 2010-01-14 Basf Se Kautschukmodifizierte flammgeschützte formmassen

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2036173A1 (de) 1970-07-21 1972-01-27 Farbenfabriken Bayer Ag, 5090 Lever Kusen Verfahren zur Herstellung von isomeren pentacychschen, ungesättigten Phosphin dihalogeniden
EP0008486A1 (de) 1978-04-28 1980-03-05 American Cyanamid Company Polymere Pentaerythrityl-Phosphonate mit feuerhemmenden Eigenschaften für Polyolefine und Verfahren zu ihrer Herstellung
DE2925208A1 (de) 1979-06-22 1981-01-29 Bayer Ag Verfahren zur herstellung von aromatischen thermoplastischen polyphosphonatocarbonaten
US4403075A (en) 1980-09-25 1983-09-06 Mcdonnell Douglas Corporation Flame resistant composition containing polymeric phosphorylated amides
DE3140520A1 (de) 1981-10-13 1983-04-21 Basf Ag, 6700 Ludwigshafen Selbstverloeschende thermoplastische formmassen
EP0450485A2 (de) 1990-04-06 1991-10-09 BASF Aktiengesellschaft Thermoplastische Formmasse
KR960001006B1 (ko) 1993-04-16 1996-01-17 주식회사금강 무기섬유 판상체의 압축강도 증진방법 및 그 장치
WO2000011080A1 (de) 1998-08-20 2000-03-02 Basf Aktiengesellschaft Asa-formmassen zur herstellung matter formteile
WO2000034342A2 (de) 1998-12-09 2000-06-15 Basf Aktiengesellschaft Verfahren zur herstellung von expandierbaren polystyrolteilchen
WO2000034367A2 (de) 1998-12-09 2000-06-15 Basf Aktiengesellschaft Flammgeschützte polystyrolschaumstoffe
WO2002000745A1 (de) 2000-06-28 2002-01-03 Basf Aktiengesellschaft Kautschukhaltige styrolpolymere mit verbesserter schlagzähigkeit
WO2003046071A1 (en) 2001-11-29 2003-06-05 Bromine Compounds Ltd. Fire retarded polymer composition
WO2005103136A2 (en) 2004-04-22 2005-11-03 Bromine Compounds Ltd. Fire retarded styrene polymer compositions
WO2007031445A1 (de) 2005-09-13 2007-03-22 Basf Se Formmasse auf basis von vernetzten acrylatkautschuken und styrol(co)polymeren
WO2008020012A2 (de) 2006-08-18 2008-02-21 Basf Se Thermoplastische formmassen auf basis von acrylnitril, styrol und butadien
WO2009007358A1 (en) 2007-07-10 2009-01-15 Basf Se Flame retardant thermoplastic molding compositions
WO2010003891A1 (de) 2008-07-07 2010-01-14 Basf Se Kautschukmodifizierte flammgeschützte formmassen

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A. ECHTE: "Handbuch der technischen Polymerchemie", 1993, VCH VERLAGSGESELLSCHAFT
A.F. HOLLEMANN; E.WIBERG: "Lehrbuch der Anorganischen Chemie", 1964, WALTER DES GRUYTER UND CO., pages: 166 - 177
MILEWSKI, J.V.; KATZ, H.S.: "Handbook of Reinforcements for Plastics", 1987, VAN NOSTRAND REINHOLT COMPANY INC, pages: 233
SAECHTLING: "Kunststoff Taschenbuch", 2004, CARL HANSER VERLAG
SCHILDKNECHT: "Viny and Related Polymers", 1952, WILEY-VERLAG, pages: 484 - 494
WALL: "Fluorpolymers", 1972, WILEY INTERSCIENCE

Also Published As

Publication number Publication date
EP2652037A1 (de) 2013-10-23
KR20140033328A (ko) 2014-03-18
US20140323606A1 (en) 2014-10-30
EP2652037B1 (de) 2015-02-18

Similar Documents

Publication Publication Date Title
EP2297240B1 (de) Kautschukmodifizierte flammgeschützte formmassen
US8481624B2 (en) Methods for producing flameproofed thermoplastic moulding compounds
DE19734437A1 (de) Synergistische Flammschutzmittel-Kombination für Polymere
KR101473774B1 (ko) 고충격 난연 폴리페닐렌 에테르계 열가소성 수지 조성물
EP2942368B1 (de) Polyester zusammensetzungen
TWI432498B (zh) 聚碳酸酯及聚碳酸酯摻混物之安定化
EP2262854B1 (de) Flammgeschützte thermoplastische formmassen
WO2012113520A1 (de) Flammschutzmittel-stabilisator-kombination für thermoplastische polymere
WO2011039301A1 (de) Funktionalisierte expandierbare graphiteinlagerungsverbindungen
EP2627491B1 (de) Verfahren zur herstellung flammgeschützter thermoplastischer formmassen
CN103059499A (zh) 一种新型阻燃abs复合材料及其制备方法
WO2009037236A1 (de) Flammgeschütztes polystyrol und schlagzäh modifiziertes polystyrol
EP2652037B1 (de) Kautschukmodifizierte flammgeschützte formmassen und deren herstellung
DE69901860T2 (de) Harzzusammensetzung und Formmasse daraus
EP2167583A1 (de) Flammgeschütztes, elastisches blockcopolymerisat
DE112017003897T5 (de) Flammhemmende Polyesterzusammensetzung
WO2011039292A1 (de) Verfahren zur herstellung funktionalisierter expandierbarer graphiteinlagerungsverbindungen
EP0496120B1 (de) Selbstverlöschende, halogenfrei flammgeschützte Formmasse mit verbessertem Brandwiderstandsverhalten
EP0501162B1 (de) Flammgeschützte thermoplastische Formmassen
DE3920995A1 (de) Halogenfreie, flammgeschuetzte thermoplastische formmasse
DE102008038411A1 (de) Flammgeschützte Polyamide
DE69912483T2 (de) Flammgeschützte thermoplastische zusammensetzung aus vinylaromatischem polymer
EP0530558A2 (de) Selbstverlöschende thermoplastische Formmassen auf der Basis von niedermolekularen Polyphenylenethern
EP0489321B1 (de) Kontinuierliches Verfahren zur Herstellung von flammgeschützten halogenfreien thermoplastischen Formmassen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11799414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011799414

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137018431

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13992538

Country of ref document: US