WO2012079659A1 - Verfahren zur herstellung einer bipolarplatte und bipolarplatte für eine brennstoffzelle - Google Patents

Verfahren zur herstellung einer bipolarplatte und bipolarplatte für eine brennstoffzelle Download PDF

Info

Publication number
WO2012079659A1
WO2012079659A1 PCT/EP2011/005148 EP2011005148W WO2012079659A1 WO 2012079659 A1 WO2012079659 A1 WO 2012079659A1 EP 2011005148 W EP2011005148 W EP 2011005148W WO 2012079659 A1 WO2012079659 A1 WO 2012079659A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
adhesive
cathode
anode
cathode plate
Prior art date
Application number
PCT/EP2011/005148
Other languages
English (en)
French (fr)
Inventor
Christian Martin Erdmann
Arle-Stephan Koller
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Publication of WO2012079659A1 publication Critical patent/WO2012079659A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a method for producing a bipolar plate, in which an anode plate and a cathode plate are joined together.
  • the invention further relates to a bipolar plate for a fuel cell, comprising an anode plate and a cathode plate joined thereto.
  • Fuel cells and methods for their production are generally known from the prior art, wherein a fuel cell comprises a fuel cell stack, also called a fuel cell stack.
  • a fuel cell comprises a fuel cell stack, also called a fuel cell stack.
  • bipolar plates form electrodes which are each connected by a membrane, in particular a membrane-electrode unit (im
  • the bipolar plates are made of a single plate or two interconnected plates, i. H. an anode plate and a cathode plate.
  • the anode plate and cathode plate are produced in a one-off production by forming steel sheets and then joined by laser welding. It varies depending on a linear propagation of the laser radiation and a
  • Laser beam length one cycle time for the joining of the anode plate and cathode plate to the bipolar plate.
  • the invention is based on the object, an improved over the prior art method for producing a bipolar plate and an improved
  • an anode plate and a cathode plate are joined together. According to the invention is between the
  • Anode plate and the cathode plate an adhesive introduced by means of which the anode plate and the cathode plate are glued together.
  • Adhesive process reduces certain cycle times and thus the joining of the plates is significantly accelerated by means of the gluing process, so that a higher
  • Bipolar plate can be achieved.
  • the bonding takes place in such a way that the anode plate and cathode plate are in direct electrical contact.
  • the electrical contact is realized by means of the adhesive, for which purpose, according to a development of the method according to the invention, the adhesive is admixed with electrically conductive particles.
  • FIG. 1 schematically shows a bipolar plate according to the invention in a plan view
  • FIG. 2 schematically shows an anode plate
  • FIG. 3 shows schematically a cathode plate
  • FIG. 1 shows a sectional representation during a joining process
  • Fig. 5 shows schematically a detail of a first embodiment of
  • Bipolar plate according to the invention according to Figure 1 in a sectional view in a joined region
  • Fig. 6 shows schematically a detail of a second embodiment of
  • Bipolar plate according to the invention according to Figure 1 in a sectional view in a joined region.
  • FIG. 1 shows a bipolar plate 1 according to the invention.
  • Fuel cell stack with membrane electrode units also not shown alternately stacked.
  • a plurality of the fuel cell stacks formed are electrically connected in series and stacked plane-parallel one above the other and form one or more fuel cells.
  • Each of these fuel cells has electrodes in the form of Gas diffusion electrodes, an anode, a cathode and an electrolyte disposed therebetween, in particular an electrolyte membrane, which together form the membrane electrode assembly.
  • the respective bipolar plate 1 arranged between two membrane-electrode units serves in this case for the spacing of the membrane-electrode units, the distribution of reactants for the fuel cell via the adjacent membrane-electrode units and the removal of the reactants in each case provided for this purpose the membrane-electrode units open towards, shown in more detail in Figure 4
  • the bipolar plate 1 serves to dissipate the heat of reaction via a coolant conducted in separate coolant channels, not shown, and to establish an electrical connection between the anode and the cathode of adjacent membrane-electrode assemblies.
  • the reactants used are a fuel and an oxidizing agent.
  • gaseous reactants so-called reaction gases are used, wherein the reaction gases, for example, hydrogen or a hydrogen-containing gas, such as.
  • reformate gas as fuel and oxygen or an oxygen-containing gas such.
  • air as an oxidizing agent.
  • Reactants are all substances involved in the electrochemical reaction, including the reaction products P, such as. B. water or
  • the respective bipolar plate 1 consists of two plane-parallel interconnected moldings, which are formed as plates.
  • one of the plates serves as shown in detail in Figure 2 anode plate 1.1 for connection to the anode of the membrane electrode assembly and the remaining of the plates as shown in more detail in Figure 3 cathode plate 1.2 for connection to the cathode of the other membrane electrode unit.
  • Anodenplatte 1.1 are arranged according to Figure 4 formed as anode channels channels SK1 for distribution of the fuel along a membrane-electrode unit, wherein at the other membrane electrode unit facing surface of the cathode plate 1.2 formed as a cathode channels SK2 channels to distribute the Oxidizer are arranged above the other membrane electrode assembly.
  • Membrane electrode units are inserted between the bipolar plate 1 and the membrane electrode assemblies sealing elements.
  • the sealing elements are preferably formed as a form of seals.
  • FIG. 2 shows the anode plate 1.1.
  • the anode plate 1.1 is preferably made
  • Such an advantageously used stainless steel has in particular the material number 1.4404.
  • the cathode plate 1.2 is shown.
  • the cathode plate 1.2 is preferably formed of stainless steel.
  • a stainless steel which can be used advantageously has, in particular, the material number 1.4404.
  • Figure 4 shows the bipolar plate 1 according to the invention in a sectional view, wherein the anode plate 1.1 and the cathode plate 1.2 are connected to each other by means of an adhesive K.
  • the bottom elements of the channels SK1, SK2 are in the active region of the anode plate 1.1 and the cathode plate 1.2.
  • the adhesive K is applied in a manner not shown in an outer sealing region of the anode plate 1.1 and / or the cathode plate 1.2.
  • a viscosity of the adhesive K is adjusted depending on the material and a design, in particular a structure of a surface of the anode plate 1.1 and cathode plate 1.2.
  • the adhesive K is designed such that it is activated when pressure is applied and hardens.
  • the anode plate 1.1 and the cathode plate 1.2 are heated to activate and cure the adhesive K. The heating takes place in the illustrated
  • Embodiment inductively, for which purpose at least one induction coil 2 is provided.
  • the heating is carried out, for example, by radiation or in an oven, in particular a so-called continuous furnace.
  • activators are added, which are excited when exposed to heat and pressure such that the activation and curing in a short time.
  • the adhesive K is formed such that an adhesion of the adhesive K is automatically activated upon contact with the anode plate 1.1 and / or the cathode plate 1.2.
  • the adhesive K is chemically reactive to the material of
  • Anodenplatte 1.1 and cathode plate 1.2 is formed so that this in contact with the material, in particular the stainless steel with the material number 1.4404, so reacts with this, that there is a particularly rapid adhesion of the adhesive K to the anode plate 1.1 and cathode plate 1.2.
  • FIG. 5 shows a detail of a first exemplary embodiment of the bipolar plate 1 according to the invention in the joined area provided with the adhesive K
  • the anode plate 1.1 and the cathode plate 1.2 are connected to one another during the joining process such that they touch each other directly at least in sections and form a direct and electrically conductive connection between the anode plate 1.1 and the cathode plate 1.2. Between the direct
  • Touch areas of the adhesive K is arranged, by means of which the bonding of the anode plate 1.1 and the cathode plate 1.2 is generated.
  • FIG. 6 shows a section of a second exemplary embodiment of FIG.
  • Bipolar plate 1 in the joined and provided with the adhesive K region of the anode plate 1.1 and the cathode plate 1.2.
  • the adhesive K is electrically conductive.
  • the adhesive K comprises electrically conductive particles P.
  • Anodenplatte 1.1 and the cathode plate 1.2 is a large-scale connection of the anode plate 1.1 and the cathode plate 1.2 can be generated, which is characterized by a particularly low electrical resistance. This results in a high electrical performance of the bipolar plate 1. Furthermore, on the basis of the admixture of different amounts of the particles P and / or by means of a selection of the type and the material of the particles P, the desired electrical conductivity between the
  • Anode plate 1.1 and the cathode plate 1.2 variably predetermined.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung einer Bipolarplatte (1), bei dem eine Anodenplatte (1.1) und eine Kathodenplatte (1.2) miteinander gefügt werden. Erfindungsgemäß wird zwischen die Anodenplatte (1.1) und die Kathodenplatte (1.2) ein Klebstoff (K) eingebracht, mittels welchem die Anodenplatte (1.1) und die Kathodenplatte (1.2) miteinander verklebt werden. Die Erfindung betrifft weiterhin eine Bipolarplatte (1) für eine Brennstoffzelle, umfassend eine Anodenplatte (1.1) und eine mit dieser gefügte Kathodenplatte (1.2). Erfindungsgemäß sind die Anodenplatte (1.1) und die Kathodenplatte (1.2) mittels eines Klebstoffs (K) miteinander verbunden.

Description

Verfahren zur Herstellung einer Bipolarplatte und Bipolarplatte für eine Brennstoffzelle
Die Erfindung betrifft ein Verfahren zur Herstellung einer Bipolarplatte, bei dem eine Anodenplatte und eine Kathodenplatte miteinander gefügt werden.
Die Erfindung betrifft weiterhin eine Bipolarplatte für eine Brennstoffzelle, umfassend eine Anodenplatte und eine mit dieser gefügte Kathodenplatte.
Aus dem Stand der Technik sind allgemein Brennstoffzellen und Verfahren zu deren Herstellung bekannt, wobei eine Brennstoffzelle einen Brennstoffzellenstapel, auch Brennstoffzellenstack genannt, umfasst. Dabei bilden Bipolarplatten Elektroden, welche jeweils durch eine Membran, insbesondere eine Membran-Elektroden-Einheit (im
Englischen: membrane electrode assembly) oder ein Elektrolyt elektrisch voneinander getrennt sind. Die Bipolarplatten sind aus einer einzelnen Platte oder zwei miteinander verbundenen Platten, d. h. einer Anodenplatte und einer Kathodenplatte, gebildet. Die Anodenplatte und Kathodenplatte werden in einer Einzelfertigung durch Umformung von Stahlblechen erzeugt und anschließend mittels Laserschweißen gefügt. Dabei variiert in Abhängigkeit einer linienförmigen Ausbreitung der Laserstrahlung und einer
Laserstrahllänge eine Taktzeit für das Fügen der Anodenplatte und Kathodenplatte zur Bipolarplatte.
Der Erfindung liegt die Aufgabe zugrunde, ein gegenüber dem Stand der Technik verbessertes Verfahren zur Herstellung einer Bipolarplatte und eine verbesserte
Bipolarplatte für eine Brennstoffzelle anzugeben.
Hinsichtlich des Verfahrens wird die Aufgabe erfindungsgemäß durch die im Anspruch 1 angegebenen Merkmale und hinsichtlich der Bipolarplatte durch die im Anspruch 8 angegebenen Merkmale gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
In einem Verfahren zur Herstellung einer Bipolarplatte werden eine Anodenplatte und eine Kathodenplatte miteinander gefügt. Erfindungsgemäß wird zwischen die
Anodenplatte und die Kathodenplatte ein Klebstoff eingebracht, mittels welchem die Anodenplatte und die Kathodenplatte miteinander verklebt werden.
Aus der Verklebung der Anodenplatte und der Kathodenplatte resultiert insbesondere gegenüber einer Verschweißung oder anderen thermischen Verfahren zur Erzeugung eines Stoffschlusses der Vorteil, dass eine Korrosionsbeständigkeit der Anodenplatte und Kathodenplatte nicht negativ beeinflusst wird. Weiterhin werden die durch den
Klebeprozess bestimmten Taktzeiten verringert und somit wird das Fügen der Platten mittels des Klebeprozesses wesentlich beschleunigt, so dass eine höhere
Ausbringungsmenge und eine hohe Wirtschaftlichkeit bei der Herstellung der
Bipolarplatte erzielbar sind.
Die Verklebung erfolgt dabei in der Art, dass die Anodenplatte und Kathodenplatte in direktem elektrischen Kontakt stehen. Alternativ oder zusätzlich wird der elektrische Kontakt mittels des Klebstoffs realisiert, wobei hierzu gemäß einer Weiterbildung des erfindungsgemäßen Verfahrens dem Klebstoff elektrisch leitfähige Partikel beigemengt werden.
Aufgrund einer derartigen direkten und/oder indirekten Verbindung der Anodenplatte und Kathodenplatte sind große elektrische Kontaktflächen zwischen der Anodenplatte und Kathodenplatte realisierbar. Dadurch wird ein Elektronenfluss, d. h. eine elektrische Leitfähigkeit zwischen der Anodenplatte und der Kathodenplatte verbessert und somit eine Leistungsfähigkeit der Bipolarplatte erhöht, woraus sich eine erhöhte Qualität und Leistungsfähigkeit des aus den Bipolarplatten gebildeten Brennstoffzellenstapels ergibt. Aus der Erhöhung der elektrischen Leitfähigkeit des Brennstoffzellenstapels ergibt sich in besonders vorteilhafter Weise die Möglichkeit, die Größe des Brennstoffzellenstapels bei gleichbleibender Leistung, wie sie herkömmliche Brennstoffzellenstapel aufweisen, zu verkleinern. Mit anderen Worten: Es sind weniger Bipolarplatten zur Erzeugung der gleichen elektrischen Leistung erforderlich. Aus der Verwendung des erfindungsgemäßen Verfahrens ergibt sich insbesondere die Möglichkeit, 40 % oder mehr Bipolarplatten einzusparen. Aufgrund der hohen elektrischen Leitfähigkeit und der gleichmäßigen Verbindung der Anodenplatte und Kathodenplatte resultiert eine erhöhte Qualität der Bipolarplatte und somit eine erhöhte Lebensdauer des Brennstoffzellenstapels.
Ausführungsbeispiele der Erfindung werden im Folgenden anhand von Zeichnungen näher erläutert.
Dabei zeigen:
Fig. 1 schematisch eine erfindungsgemäße Bipolarplatte in einer Draufsicht, Fig. 2 schematisch eine Anodenplatte, Fig. 3 schematisch eine Kathodenplatte,
Fig. 4 schematisch einen Ausschnitt der erfindungsgemäßen Bipolarplatte gemäß
Figur 1 in einer Schnittdarstellung während eines Fügeprozesses,
Fig. 5 schematisch einen Ausschnitt eines ersten Ausführungsbeispiels der
erfindungsgemäßen Bipolarplatte gemäß Figur 1 in einer Schnittdarstellung in einem gefügten Bereich und
Fig. 6 schematisch einen Ausschnitt eines zweiten Ausführungsbeispiels der
erfindungsgemäßen Bipolarplatte gemäß Figur 1 in einer Schnittdarstellung in einem gefügten Bereich.
Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen.
In Figur 1 ist eine erfindungsgemäße Bipolarplatte 1 dargestellt.
Mehrere Bipolarplatten 1 werden zur Erzeugung eines nicht näher dargestellten
Brennstoffzellenstapels mit ebenfalls nicht näher dargestellten Membran-Elektroden- Einheiten abwechselnd übereinander gestapelt.
Vorzugsweise werden mehrere der gebildeten Brennstoffzellenstapel elektrisch in Serie geschaltet und planparallel übereinander gestapelt und bilden eine oder mehrere Brennstoffzellen. Jede dieser Brennstoffzellen weist als Elektroden in Form von Gasdiffusionselektroden eine Anode, eine Kathode und einen dazwischen angeordneten Elektrolyt, insbesondere eine Elektrolytmembran, auf, die zusammen die Membran- Elektroden-Einheit bilden.
Die jeweilige, zwischen zwei Membran-Elektroden-Einheiten angeordnete Bipolarplatte 1 dient dabei der Beabstandung der Membran-Elektroden-Einheiten, dem Verteilen von Reaktionsstoffen für die Brennstoffzelle über die angrenzenden Membran-Elektroden- Einheiten und dem Abführen der Reaktionsstoffe in hierfür vorgesehenen, jeweils zu den Membran-Elektroden-Einheiten hin offenen, in Figur 4 näher dargestellten
Kanälen SK1 , SK2. Weiterhin dient die Bipolarplatte 1 der Abfuhr der Reaktionswärme über ein in separaten, nicht gezeigten Kühlmittelkanälen geführtes Kühlmittel sowie der Herstellung einer elektrischen Verbindung zwischen der Anode und der Kathode von benachbarten Membran-Elektroden-Einheiten.
Als Reaktionsstoffe werden ein Brennstoff und ein Oxidationsmittel eingesetzt. Dabei werden vorzugsweise gasförmige Reaktionsstoffe, sogenannte Reaktionsgase, eingesetzt, wobei die Reaktionsgase beispielsweise Wasserstoff oder ein Wasserstoff enthaltendes Gas, wie z. B. ein sogenanntes Reformatgas, als Brennstoff und Sauerstoff oder ein Sauerstoff enthaltendes Gas, wie z. B. Luft, als Oxidationsmittel umfassen. Unter Reaktionsstoffen werden alle an der elektrochemischen Reaktion beteiligten Stoffe verstanden, einschließlich der Reaktionsprodukte P, wie z. B. Wasser oder
Restbrenngas.
Die jeweilige Bipolarplatte 1 besteht dabei aus zwei planparallel miteinander verbundenen Formteilen, welche als Platten ausgebildet sind. Dabei dient eine der Platten als in Figur 2 näher dargestellte Anodenplatte 1.1 zur Verbindung mit der Anode der Membran- Elektroden-Einheit und die verbleibende der Platten als in Figur 3 näher dargestellte Kathodenplatte 1.2 zur Verbindung mit der Kathode der anderen Membran-Elektroden- Einheit.
An der der einen Membran-Elektroden-Einheit zugewandten Oberfläche der
Anodenplatte 1.1 sind gemäß Figur 4 die als Anodenkanäle ausgebildete Kanäle SK1 zur Verteilung des Brennstoffs entlang der einen Membran-Elektroden-Einheit angeordnet, wobei an der der anderen Membran-Elektroden-Einheit zugewandten Oberfläche der Kathodenplatte 1.2 die als Kathodenkanäle ausgebildeten Kanäle SK2 zur Verteilung des Oxidators über der anderen Membran-Elektroden-Einheit angeordnet sind. Die
Kathodenkanäle und die Anodenkanäle haben keine Verbindung miteinander. Zur Medienabdichtung und zur elektrischen Isolierung der Bipolarplatte 1 von den
Membran-Elektroden-Einheiten sind zwischen der Bipolarplatte 1 und den Membran- Elektroden-Einheiten Dichtungselemente eingebracht. Die Dichtungselemente sind dabei vorzugsweise als Formdichtungen ausgebildet.
Figur 2 zeigt die Anodenplatte 1.1. Die Anodenplatte 1.1 ist vorzugsweise aus
nichtrostendem Stahl gebildet. Ein solcher vorteilhaft einzusetzender nichtrostender Stahl weist insbesondere die Werkstoffnummer 1.4404 auf.
In Figur 3 ist die Kathodenplatte 1.2 dargestellt. Die Kathodenplatte 1.2 ist vorzugsweise aus nichtrostendem Stahl gebildet. Ebenso weist hierzu ein vorteilhaft einsetzbarer nichtrostender Stahl insbesondere die Werkstoffnummer 1.4404 auf.
Figur 4 zeigt die erfindungsgemäße Bipolarplatte 1 in einer Schnittdarstellung, wobei die Anodenplatte 1.1 und die Kathodenplatte 1.2 mittels eines Klebstoffs K miteinander verbunden sind.
Zur Herstellung der Bipolarplatte 1 , d. h. des dargestellten Verbunds aus der
Anodenplatte 1.1 , der Kathodenplatte 1.2 und dem Klebstoff K wird der Klebstoff K auf Bodenelemente der Kanäle SK1 und/oder der Kanäle SK2 der Anodenplatte 1.1 und/oder der Kathodenplatte 1.2 auf jeweils den Kanälen SK1 und/oder Kanälen SK2 abgewandten und bei der Fügung der Anodenplatte 1.1 und der Kathoden platte 1.2 einander zugewandten Seiten aufgebracht. Die Bodenelemente der Kanäle SK1 , SK2 befinden im aktiven Bereich der Anodenplatte 1.1 bzw. der Kathodenplatte 1.2. Zusätzlich wird der Klebstoff K in nicht dargestellter Weise in einem Außendichtbereich der Anodenplatte 1.1 und/oder der Kathodenplatte 1.2 aufgebracht.
Um eine besonders schnelle, gleichmäßige und vollständige Benetzung der zu
verklebenden Bereiche der Anodenplatte 1.1 und der Kathodenplatte 1.2 zu erzielen, wird in Abhängigkeit des Materials und einer Ausbildung, insbesondere einer Struktur einer Oberfläche der Anodenplatte 1.1 und Kathodenplatte 1.2 eine Viskosität des Klebstoffs K eingestellt.
Zur Verklebung der Anodenplatte 1.1 und der Kathoden platte 1.2 werden diese bei der Fügung mit Druck beaufschlagt. Der Klebstoff K ist dabei derart ausgebildet, dass dieser bei der Beaufschlagung mit Druck aktiviert wird und aushärtet. Zusätzlich werden die Anodenplatte 1.1 und die Kathodenplatte 1.2 zur Aktivierung und Aushärtung des Klebstoffs K erwärmt. Die Erwärmung erfolgt im dargestellten
Ausführungsbeispiel induktiv, wobei hierzu zumindest eine Induktionsspule 2 vorgesehen ist.
Alternativ oder zusätzlich wird die Erwärmung beispielsweise durch Strahlung oder in einem Ofen, insbesondere einem so genannten Durchlaufofen, durchgeführt.
Zur weiteren Beschleunigung der Aktivierung und Aushärtung werden dem Klebstoff K zusätzlich Aktivatoren beigemengt, welche bei der Beaufschlagung mit Wärme und Druck derart angeregt werden, dass die Aktivierung und Aushärtung in kurzer Zeit erfolgen.
Weiterhin ist der Klebstoff K derart ausgebildet, dass eine Adhäsion des Klebstoffs K bei einer Berührung mit der Anodenplatte 1.1 und/oder der Kathodenplatte 1.2 automatisch aktiviert wird. Hierzu ist der Klebstoff K chemisch reaktiv zum Material der
Anodenplatte 1.1 und Kathodenplatte 1.2 ausgebildet, so dass dieser bei Berührung mit dem Material, insbesondere dem nichtrostenden Stahl mit der Werkstoffnummer 1.4404, derart mit diesem reagiert, dass es besonders schnell zu einer Adhäsion des Klebstoffs K an der Anodenplatte 1.1 und Kathodenplatte 1.2 kommt.
In Figur 5 ist ein Ausschnitt eines ersten Ausführungsbeispiels der erfindungsgemäßen Bipolarplatte 1 im gefügten und mit dem Klebstoff K versehenen Bereich der
Anodenplatte 1.1 und der Kathodenplatte 1.2 dargestellt.
Die Anodenplatte 1.1 und die Kathodenplatte 1.2 werden während des Fügeprozesses derart miteinander verbunden, dass diese sich zumindest in Abschnitten unmittelbar berühren und sich zwischen der Anodenplatte 1.1 und die Kathodenplatte 1.2 eine direkte und elektrisch leitfähige Verbindung ausbildet. Zwischen den direkten
Berührungsbereichen ist der Klebstoff K angeordnet, mittels welchem die Verklebung der Anodenplatte 1.1 und der Kathodenplatte 1.2 erzeugt wird.
Um eine möglichst schnelle und vollständige Aushärtung, insbesondere Polymerisation des Klebstoffs K zu erzielen, wird ein Klebstoff-Spalt KS und eine Dicke des Klebstoffs K zwischen der Anodenplatte 1.1 und der Kathodenplatte 1.2 möglichst gering gewählt. Figur 6 zeigt einen Ausschnitt eines zweiten Ausführungsbeispiels der
erfindungsgemäßen Bipolarplatte 1 im gefügten und mit dem Klebstoff K versehenen Bereich der Anodenplatte 1.1 und der Kathodenplatte 1.2.
Im Unterschied zu dem in Figur 5 dargestellten Ausführungsbeispiel liegt keine unmittelbare Berührung der Anodenplatte 1.1 und der Kathodenplatte 1.2 im dargestellten Bereich vor. Um die elektrische Leitung zwischen der Anodenplatte 1.1 und der
Kathodenplatte 1.2 zu erzeugen, ist der Klebstoff K elektrisch leitfähig ausgebildet. Hierzu umfasst der Klebstoff K elektrisch leitfähige Partikel P.
Bei dieser Ausbildung des Klebstoffs K und einem derartigen Verbund, der
Anodenplatte 1.1 und der Kathodenplatte 1.2 ist eine großflächige Verbindung der Anodenplatte 1.1 und der Kathodenplatte 1.2 erzeugbar, welche sich durch einen besonders geringen elektrischen Widerstand auszeichnet. Daraus resultiert eine hohe elektrische Leistungsfähigkeit der Bipolarplatte 1. Weiterhin ist anhand der Beimengung verschiedener Mengen der Partikel P und/oder mittels einer Auswahl der Art und dem Material der Partikel P die gewünschte elektrische Leitfähigkeit zwischen der
Anodenplatte 1.1 und der Kathodenplatte 1.2 variabel vorgebbar.
Bezugszeichenliste
1 Bipolarplatte
1.1 Anodenplatte
1.2 Kathodenplatte
2 Induktionsspule
K Klebstoff
KS Klebstoffspalt
P Partikel
SK1 Kanal
SK2 Kanal

Claims

Patentansprüche
1. Verfahren zur Herstellung einer Bipolarplatte (1 ), bei dem eine Anodenplatte (1.1 ) und eine Kathodenplatte (1.2) miteinander gefügt werden,
dadurch gekennzeichnet, dass zwischen die Anodenplatte (1.1 ) und die
Kathodenplatte (1.2) ein Klebstoff (K) eingebracht wird, mittels welchem die Anodenplatte (1.1) und die Kathodenplatte (1.2) miteinander verklebt werden.
2. Verfahren nach Anspruch 1 ,
dadurch gekennzeichnet, dass eine Adhäsion des Klebstoffs (K) bei einer Berührung mit der Anodenplatte (1.1 ) und/oder der Kathodenplatte (1.2) automatisch aktiviert wird.
3. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass dem Klebstoff (K) Aktivatoren zur Beschleunigung einer Aktivierung und/oder Aushärtung des Klebstoffs (K) beigemengt werden.
4. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass in Abhängigkeit eines Materials und/oder einer Ausbildung einer Oberfläche der Anodenplatte (1.1) und/oder der
Kathodenplatte (1.2) eine Viskosität des Klebstoffs (K) eingestellt wird.
5. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass dem Klebstoff (K) elektrisch leitfähige Partikel (P) beigemengt werden.
6. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die Anodenplatte (1.1), die Kathodenplatte (1.2) und/oder der Klebstoff (K) zu einer Aushärtung des Klebstoffs (K) erwärmt und/oder mit Druck beaufschlagt werden.
7. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass der Klebstoff (K) auf einen Außendichtbereich und/oder einen aktiven Bereich der Anodenplatte (1.1) und/oder der
Kathodenplatte (1.2) aufgebracht wird.
8. Bipolarplatte (1) für eine Brennstoffzelle, umfassend eine Anodenplatte (1.1) und eine mit dieser gefügte Kathodenplatte (1.2),
dadurch gekennzeichnet, dass die Anodenplatte (1.1) und die Kathodenplatte (1.2) mittels eines Klebstoffs (K) miteinander verbunden sind.
9. Bipolarplatte (1) nach Anspruch 8,
dadurch gekennzeichnet, dass der Klebstoff (K) elektrisch leitfähige Partikel (P) umfasst.
10. Bipolarplatte (1) nach Anspruch 8 oder 9,
dadurch gekennzeichnet, dass die Anodenplatte (1.1) und/oder die
Kathodenplatte (1.2) aus nichtrostendem Stahl gebildet sind.
PCT/EP2011/005148 2010-12-18 2011-10-13 Verfahren zur herstellung einer bipolarplatte und bipolarplatte für eine brennstoffzelle WO2012079659A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010055075A DE102010055075A1 (de) 2010-12-18 2010-12-18 Verfahren zur Herstellung einer Bipolarplatte und Bipolarplatte für eine Brennstoffzelle
DE102010055075.2 2010-12-18

Publications (1)

Publication Number Publication Date
WO2012079659A1 true WO2012079659A1 (de) 2012-06-21

Family

ID=44802025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/005148 WO2012079659A1 (de) 2010-12-18 2011-10-13 Verfahren zur herstellung einer bipolarplatte und bipolarplatte für eine brennstoffzelle

Country Status (2)

Country Link
DE (1) DE102010055075A1 (de)
WO (1) WO2012079659A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110313092A (zh) * 2016-12-22 2019-10-08 许勒压力机有限责任公司 用于制造双极板的装置及方法
CN113454820A (zh) * 2018-11-12 2021-09-28 飞势生态解决方案有限公司 将两个板粘合在一起以用于燃料电池的方法,尤其是将燃料电池中的双极板胶合的方法
CN114023989A (zh) * 2021-11-02 2022-02-08 上海电气集团股份有限公司 双极板及包含其的电堆
CN114464838A (zh) * 2022-02-16 2022-05-10 安徽瑞氢动力科技有限公司 燃料电池双极板制作方法
CN115084565A (zh) * 2022-05-20 2022-09-20 苏州瀚川智能科技股份有限公司 燃料电池极板全自动点胶和压合装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022205352A1 (de) 2022-05-30 2023-11-30 Robert Bosch Gesellschaft mit beschränkter Haftung Separatorplattenhälfte, Separatorplatte, elektrochemischer Energiewandler sowie Verfahren zum Herstellen einer Separatorplattenhälfte
DE102022116561A1 (de) * 2022-07-04 2024-01-04 Mb Atech Gmbh Verfahren und Vorrichtung zum Aushärten eines Klebstoffs zwischen Elektroden-Lagen eines Elektroden-Stapels

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040209150A1 (en) * 2003-04-18 2004-10-21 Rock Jeffrey A. Stamped fuel cell bipolar plate
DE102004028142A1 (de) * 2004-06-10 2006-01-12 Sartorius Ag Bipolarseparator
US7306875B2 (en) * 2004-12-16 2007-12-11 Snecma Bipolar plate for a fuel cell
US20080292916A1 (en) * 2007-05-24 2008-11-27 Newman Keith E Joining bipolar plates using localized electrical nodes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040209150A1 (en) * 2003-04-18 2004-10-21 Rock Jeffrey A. Stamped fuel cell bipolar plate
DE102004028142A1 (de) * 2004-06-10 2006-01-12 Sartorius Ag Bipolarseparator
US7306875B2 (en) * 2004-12-16 2007-12-11 Snecma Bipolar plate for a fuel cell
US20080292916A1 (en) * 2007-05-24 2008-11-27 Newman Keith E Joining bipolar plates using localized electrical nodes

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110313092A (zh) * 2016-12-22 2019-10-08 许勒压力机有限责任公司 用于制造双极板的装置及方法
CN110313092B (zh) * 2016-12-22 2022-08-16 许勒压力机有限责任公司 用于制造双极板的装置及方法
US11695124B2 (en) 2016-12-22 2023-07-04 Schuller Pressen Gmbh Device and method for producing flow field plates
CN113454820A (zh) * 2018-11-12 2021-09-28 飞势生态解决方案有限公司 将两个板粘合在一起以用于燃料电池的方法,尤其是将燃料电池中的双极板胶合的方法
CN114023989A (zh) * 2021-11-02 2022-02-08 上海电气集团股份有限公司 双极板及包含其的电堆
CN114464838A (zh) * 2022-02-16 2022-05-10 安徽瑞氢动力科技有限公司 燃料电池双极板制作方法
CN115084565A (zh) * 2022-05-20 2022-09-20 苏州瀚川智能科技股份有限公司 燃料电池极板全自动点胶和压合装置

Also Published As

Publication number Publication date
DE102010055075A1 (de) 2012-06-21

Similar Documents

Publication Publication Date Title
WO2012079659A1 (de) Verfahren zur herstellung einer bipolarplatte und bipolarplatte für eine brennstoffzelle
DE10121176B4 (de) Brennstoffzelle, die ein Dichtmittel aufweist, um eine Festpolymerelektrolytmembran abzudichten Brennstoffzellenstapel und Verfahren zu dessen Herstellung
EP3378117B1 (de) Bipolarplatte mit asymmetrischen dichtungsabschnitten, sowie brennstoffzellenstapel mit einer solchen
DE102004008231B9 (de) Brennstoffzellenanordnung und Verfahren zur Herstellung einer Flachrohrbrennstoffzelle
DE102008029628B4 (de) Brennstoffzellenstapel mit Bipolarplatten-Diffusionsmedienanordnung mit niedrigem elektrischen Widerstand und Verfahren zu seiner Herstellung
DE10340215A1 (de) Polymerelektrolytmembran-Brennstoffzelle und bipolare Platte
DE102015100697A1 (de) Brennstoffzellenkassette und Verfahren zur Herstellung derselben und Brennstoffzellenstapel
EP3430662A1 (de) Bipolarplatte mit variabler breite der reaktionsgaskanäle im eintrittsbereich des aktiven bereichs, brennstoffzellenstapel und brennstoffzellensystem mit solchen bipolarplatten sowie fahrzeug
WO2015120933A1 (de) Bipolarplatte, brennstoffzelle und kraftfahrzeug sowie verfahren zur herstellung der bipolarplatte
DE102014205543A1 (de) Bipolarplatte sowie Brennstoffzelle mit einer solchen
EP1627445A1 (de) Elektrolyse- bzw. brennstoffzelle mit druckkissen und verbessertem übergangswiderstand
EP1981108B1 (de) Interkonnektoranordnung und Verfahren zur Herstellung einer Kontaktanordnung für einen Brennstoffzellenstapel
DE102010054305A1 (de) Brennstoffzellenstapel mit mehreren Brennstoffzellen
EP3736894B1 (de) Bipolarplatte für brennstoffzellen, brennstoffzellenstapel mit solchen bipolarplatten sowie fahrzeug mit einem solchen brennstoffzellenstapel
DE102020128043A1 (de) Bipolarplatte mit integriertem Kühlmittelkanal
WO2021001216A1 (de) Bipolarplatte für eine brennstoffzelle, verfahren zur herstellung einer bipolarplatte für eine brennstoffzelle sowie brennstoffzelle
DE102020100341A1 (de) Verfahren zur Herstellung eines Separators für eine Brennstoffzelle
DE102010056014A1 (de) Brennstoffzellenstapel und Verfahren zur Herstellung eines Brennstoffzellenstapels
EP2174370A1 (de) Einzel-brennstoffzelle für einen brennstoffzellen-stapel
EP4150692B1 (de) Verfahren zur herstellung eines wenigstens zweilagigen laminats einer membranelektrodeneinheit
DE102010056003A1 (de) Brennstoffzellenstapel
DE10243349A1 (de) Separator für eine Brennstoffzelle und Verfahren zur Herstellung desselben
DE102006058293B4 (de) Brennstoffzellenstapel
DE102020120407A1 (de) Verfahren zum Herstellen von Bipolarplatten
WO2023078653A1 (de) Elektrochemische zelle mit einer membran-elektroden-einheit, einer diffusionslage und einer verteilerplatte, und verfahren zum herstellen einer elektrochemischen zelle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11770380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11770380

Country of ref document: EP

Kind code of ref document: A1