WO2012077941A2 - Drain system of shield tunnel lining and method for constructing shield tunnel using same - Google Patents

Drain system of shield tunnel lining and method for constructing shield tunnel using same Download PDF

Info

Publication number
WO2012077941A2
WO2012077941A2 PCT/KR2011/009344 KR2011009344W WO2012077941A2 WO 2012077941 A2 WO2012077941 A2 WO 2012077941A2 KR 2011009344 W KR2011009344 W KR 2011009344W WO 2012077941 A2 WO2012077941 A2 WO 2012077941A2
Authority
WO
WIPO (PCT)
Prior art keywords
segment
longitudinal
sides
segments
water
Prior art date
Application number
PCT/KR2011/009344
Other languages
French (fr)
Korean (ko)
Other versions
WO2012077941A3 (en
Inventor
마상준
Original Assignee
한국건설기술연구원
주식회사 씨엠어
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국건설기술연구원, 주식회사 씨엠어 filed Critical 한국건설기술연구원
Priority to CN201180058774.4A priority Critical patent/CN103270246B/en
Publication of WO2012077941A2 publication Critical patent/WO2012077941A2/en
Publication of WO2012077941A3 publication Critical patent/WO2012077941A3/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/08Lining with building materials with preformed concrete slabs
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F16/00Drainage
    • E21F16/02Drainage of tunnels

Definitions

  • the present invention provides a shield tunnel lining drainage system and shield using the shield tunnel structure of the drain tunnel concept that is actively drained into the shield tunnel structure in the conventional non-drainage tunnel design that does not drain into the shield tunnel structure. It relates to a tunnel construction method.
  • the shield method is an excavation method that uses a shield having a cross section slightly larger than the tunnel outline section to excavate while preventing the collapse of the tip ground and establish a vent hole that supports the excavated section at the rear portion of the shield. Perforations are assembled by segments.
  • the shield method is the most efficient and stable method for constructing tunnel structures on soft ground, not rock, with low topigo.
  • Shield tunnels are undrained structures that do not allow groundwater to flow into the shield tunnel structure.
  • the shield segment lining supports the water pressure as well as the ground load.
  • the shield segment lining supports both the ground pressure and the hydraulic pressure, the cross section of the segment becomes thicker.
  • the conventional design method is an undrained concept design method.
  • the vertical ground reaction force and the horizontal horizontal reaction force (or the ground pressure) in the vertical direction with respect to the earth pressure, the hydraulic pressure, and the magnetic weight g are set as shown in FIG.
  • the ground reaction force in the vertical direction with respect to the earth pressure, the hydraulic pressure, the magnetic weight g, and the like is set to an equal distribution reaction force that is balanced against these loads independently of the displacement of the ground.
  • the lateral horizontal ground force (or ground pressure) is considered to be generated by the ground displacement of the vent hole (shield segment), and is set as the ground ground force (or ground pressure) of the triangular distribution as shown in FIG.
  • the thickness of the cross section of the shield lining becomes thick as water pressure is involved.
  • the thickness of the segment lining considering hydraulic pressure is usually 30 to 45 cm. If hydraulic pressure is not taken into account, the lining thickness can be reduced by 20-50%.
  • the design of the non-drainage concept if the non-drainage tunnel is constructed especially under the groundwater level, it is inevitable that the inflow of the groundwater penetrated into the shield tunnel structure through the connection joint of the assembled shield segment is inevitable. Even if the minute water penetrates into the shield tunnel structure, it is not called the drainage design. This is because the design of the drainage concept, unlike the design of the non-drainage concept, does not consider water pressure. In designing the cross-section of the shield lining segment, the hydraulic pressure should not be applied to the shield tunnel in order to avoid hydraulic pressure. In order for water pressure not to be caught in the shield tunnel, the groundwater should be actively introduced into the shield tunnel structure.
  • the cross section diameter of shield equipment is 4 ⁇ 5cm larger than the outer diameter of segment lining.
  • this 4-5cm gap is the back cavity between the ground drilling surface and the segment lining.
  • the back cavity should be filled to prevent ground displacement and to improve the exponential of the tunnel.
  • the rear cavity backfill is used to ensure premature stabilization of the segment lining against external pressure.
  • tail void is generated at the top of the rear cavity because it flows down in the direction of gravity due to the structure of the rear cavity.
  • Water glass is added to provide fastness to the existing rear cavity backfill, or bentonite is added for ordering. Water glass and bentonite not only reduce long-term durability, but also contaminate groundwater.
  • An object of the present invention is to provide a shield tunnel structure of a drain tunnel concept that is actively drained into a shield tunnel structure in a conventional non-drain tunnel design that does not drain into the shield tunnel structure.
  • the design of the drain tunnel concept does not consider the hydraulic pressure, so that the cross-section of the shield lining segment becomes more economical.
  • the shield tunnel is made by assembling the segments.
  • the number of segments is generally 5 pieces, 7 pieces, 8 pieces, etc. are commonly used. In the present invention, for convenience of description, it will be described with reference to seven pieces.
  • the shape of the segment is a quadrangular shape with four sides.
  • the two sides are in the circumferential (P) direction and the two sides are in the longitudinal (L) direction of the straight line.
  • Key Segment Shield serves to secure the assembly of the tunnel. It is a wedge shape as it is a finishing segment that is assembled last.
  • the wedge shape of the key segment has a triangular shape in the longitudinal (L) direction, and the longitudinal (L) side of the corresponding side segments is also formed as an inclined surface.
  • the key segment is denoted by K.
  • the segment located on the left side of the key segment will be marked with KL and the segment located on the right side with KR.
  • the longitudinal (L) side edges of the KL and KR segments in contact with the key segment form an inclined surface, but the other longitudinal (L) side edges of the KL and KR segments are straight rather than inclined surfaces.
  • KL and KR segments must always be present. Since the K, KL, and KR segments are indispensable, they will be called SK segments.
  • 5 is a plan view of the SK segment.
  • the linear longitudinal (L) side edges of the KL and KR segments are in contact with the longitudinal longitudinal (L) side edges of the SA and SAB segments.
  • the straight longitudinal (L) side edges of the SA and SAB segments and the SB segments contacting each other are located.
  • the SA, SAB, SB, SAC, and SC segments, except for the SK segment consisting of KL, K, and KR, are quadrilateral and have the same size. However, there are only differences in whether the flow path groove 10 or the discharge groove 22 is formed on the four sides and whether the water-expandable index member 40 is installed.
  • the channel grooves 10 are formed on all four sides as shown in FIGS. 6 and 7. That is, the flow path groove 10 is formed in both the circumferential P direction of two sides, and the linear L direction of the two sides.
  • the flow path groove 10 is formed long in the longitudinal direction with the outer protruding plane 14 and the inner protruding plane 12 on both sides.
  • the SB segment and the SC segment located at the bottom are undrained segments.
  • the flow path grooves 10 are not formed on all four sides because they are undrained segments. ⁇ See Figs. 8 and 9 ⁇
  • the flow path grooves 10 are formed in only two sides of the SB segment that are in contact with the SAB segment, that is, two sides of the straight (L) direction in a straight line shape.
  • the remaining two sides of the circumferential P direction are only flat portions 16 in which the flow path grooves 10 are not formed.
  • the flow path groove 10 is formed only on one side that is in contact with the SAC segment, that is, on one side of the straight (L) direction.
  • the remaining two sides of the circumferential P direction and one side of the straight longitudinal L direction are the flat portions 16 in which the flow path grooves 10 are not formed.
  • the connection part 32 of two SC segments has the linear (L) direction planar part 32 of the SC segment, and the planar part 32 oppose each other.
  • SB and SC which are located at the bottom, are non-drained segments, and SB is composed of one segment, whereas SC is different in that two SC segments are connected to each other.
  • This difference is due to the zigzag arrangement of the segments for robustness of assembly.
  • SB segment and the SC segment which are the undrained segments located at the bottom, are alternated with each other.
  • the positions of the segments located at the top and bottom of the shield tunnel are determined.
  • the SK segment is located at the top and the SB segment and the two SC segments, which are undrained segments, are located at the bottom.
  • the SK segment is located once in the XL and then in the XR. Alternating only on XL and XR.
  • the lower undrained segment varies depending on the alternating position of the uppermost SK segment.
  • the SB segment is located in the lowest undrained segment correspondingly.
  • the positions of the top SK segments alternately change because the assembly of the segments is arranged in a zigzag according to the rows.
  • the SA, SAB, and SAC segments are located between the uppermost SK segment and the lowermost undrained segments (SB segment and two SC segments).
  • the SA and SAB segments are positioned therebetween, and when the uppermost SK segment and the lowermost two SC segments are positioned, the SAC segment is positioned therebetween.
  • the present invention is a drainage tunnel concept, the groundwater is drained into the shield tunnel 100.
  • the segment joint part 30 has a construction error. This is because the segments are made of concrete.
  • the construction error of the segment joint part 30 is generally 1-5 mm.
  • the joint portion 30 refers to a connection / assembly portion in the circumferential P direction and the longitudinal L direction in which the segments are in contact with each other in a state where the segments are assembled.
  • Groundwater is introduced through the joint portion 30 in the circumferential (P) direction and the longitudinal (L) direction.
  • the part is an inflow passage through which groundwater flows, but the inflow water flows into the shield tunnel 100 only through the discharge port 20 formed in the joint 30 of the non-drainage segment and the SAB and SAC segments.
  • a flow path groove 10 is formed in the center thereof in the longitudinal direction, and the outer protrusion plane 14 and the inner protrusion plane ( 12) is formed.
  • Groundwater is introduced through the outer protruding plane 14 of the joint portion 30.
  • the inflowed water is guided downward by the flow path groove and is discharged into the shield tunnel 100 through the discharge port.
  • the discharged effluent is discharged out of the tunnel through a hole (not shown) installed in the bottom of the shield tunnel 100. Since the shield tunnel 100 is usually designed to be given a longitudinal inclination, it is naturally drained by the longitudinal inclination.
  • the segments in which the one-row water-expanding index members 40 in the longitudinal direction are provided on all four sides of the inner projection plane 12 are KL, K, KR, SA, SAB, and SAC segments.
  • the SB segment is provided with a single-column water expansion index member 40 on the protruding plane 12 in the linear longitudinal direction L. As shown in FIG.
  • the SC segment is provided with a single-row water-expandable index member 40 on the protruding plane 12 in the linear longitudinal direction L, which is in contact with the SAC segment, and has a straight longitudinal (L) planar portion which is not in contact. 16, a two-row water expansion index member 40 in the longitudinal direction is provided.
  • two- and three-row water-expandable index members are installed on the plane of the joint to be waterproof.
  • a discharge port 20 through which the inflow of ground water is discharged into the shield tunnel 100 will be described.
  • the discharge ports 20 are formed at both ends of the straight longitudinal direction L in which the undrained segments SB and SC segments and the SAB and SAC segments are in contact with each other.
  • a linear longitudinal (L) joint portion 30 formed by the SB segment and the SAB segment (or SC segment) is formed around the Q point which is the end point of the longitudinal direction (L) of FIG.
  • the discharge port 20 is in the Z axis direction.
  • the Z axis direction is perpendicular to the X axis and the Y axis.
  • Inflow water induced in the X-axis direction and the Y-axis direction by the flow path groove 10 is discharged into the shield tunnel 100 through the Q point of the discharge port 20 in the Z-axis direction.
  • the discharge hole 20 is drilled in the Z-axis direction at the end point Q of the inner projecting surfaces 12 and 12 of the blocked SB and SAB segments.
  • the discharge port 20 passes through the quarter-shaped discharge grooves 22 and 22 at the end points Q of the protruding surfaces 12 and 12 in the longitudinal direction L of the SB and SAB segments, respectively. It is formed in communication with (10) (10).
  • the quarter-shaped discharge grooves 22 and 22 mean one quarter of the arc formed by the flow path groove 10.
  • the discharge port 20 in a state where the SB and SAB segments are in contact with each other forms a semicircle.
  • discharge port 20 is formed by two SC segments and an SAC segment that are undrained segments.
  • the segment joint portion 30 should be smoothly introduced with groundwater. If the conventional milk grout is used as the backfill material 50, not only the permeability is good, but the fine particles of the milk grout material are deposited in the oil hole to close the oil hole. If the hole is blocked, the drainage system is disturbed and the hydraulic pressure of the segment lining part is not considered in the design, which may cause serious problems in the stability of the shield tunnel structure. It is completely placed in the drain tunnel concept.
  • the backfill or fill 50 of the present invention is sand 52 or soybean or PS ball. This is because it is most suitable for the concept of drainage tunnel.
  • the particle diameter of the sand 52 or soybean is preferably 1 to 20 mm.
  • the particle diameter of the filler material 50 is larger than 20 mm, the filling of the back cavity having a width of the back cavity of 1 to 10 cm is not performed well, and as a result, additional cavity is generated on the back, causing concentrated load on the segment lining part. The problem arises.
  • the permeability coefficient of the filler 50 is preferably 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 cm / sec. In order to facilitate the inflow of the shield tunnel segment into the flow path groove 10 from the ground 60.
  • the permeability coefficient of the filling material 50 is less than 1 x 10 -3 cm / sec, the groundwater is not easily introduced into the drainage structure of the shield tunnel, which falls short of the drainage tunnel concept.
  • the filling material 50 such as sand 52 is filled in the rear cavity through the support hole 18 together with the air pressure in the shield tunnel.
  • the support hole 18 is used as the filler 50 supply passage.
  • All segments have a support hole 18 formed in the center of gravity thereof. This is because assembling the lifted segment becomes easier when the support bolt connected to the support bolt inserted and fixed in the support hole 18 is inserted and fixed in the support hole 18 and the wire is lifted by the shielding equipment. .
  • the air pressure used is preferably 1 ⁇ 3bar.
  • the filler 50 is filled in the rear cavity by air pressure. The rounder the shape of the filler 50 is, the better the rolling is to fill the small space of the rear cavity.
  • the SK segment is alternately located at the XL and XR, and at the bottom of the shield tunnel, the SB segment and the two SC segments are alternately positioned at the bottom of the shield tunnel.
  • the segment is sequentially positioned between the KR segment and the SB segment of the SK segment, and the SAC segment is positioned between the KL and KR and SC segments of the SK segment, while the KL, K, KR of the SK segment is located.
  • Segments and four sides of the SA, SAB, and SAC segments have flow path grooves 10 formed at their centers, and outer projecting surfaces 14 and inner projecting surfaces 12 formed on both sides of the channel grooves 10, respectively.
  • the planar portion 16 is formed at two sides in the circumferential direction P, and the outer groove 14 and the outer protrusion 14 and the inner protrusion 12 are formed on both sides thereof.
  • the SC segment which is a segment, has a flow path groove 10 and an outer protruding surface 14 and an inner protruding surface 12 formed on one side thereof in one longitudinal (L) direction, which is in contact with the SAC segment. Is formed on two sides of the circumferential (P) direction, and the water-expandable index member 40 of one row is provided on the inner protruding surface 12 of all the segments in which the flow path grooves 10 are installed.
  • the plane portion 16 is provided with two rows of water-expandable index members 40, and the discharge ports 20 are provided at both end points of the protruding surface 12 in the longitudinal (L) direction of the SAB and the non-drained segment SB.
  • a quarter-shaped discharge groove 22 is formed at right angles to the longitudinal (L) direction flow path grooves 10 at both end points Q of the protruding surface 12 in the longitudinal (L) direction of the SAC and the undrained segment SC, respectively.
  • the quarter-shaped discharge groove 22 is formed only on the protruding surface 12 in the longitudinal (L) direction to communicate with the longitudinal (L) direction flow path groove 10 so that the inflow water is discharged in the Z direction. Shield lining A number of systems.
  • the present invention is designed to be a drainage tunnel concept in which water pressure is not considered, unlike the conventional non-drainage tunnel concept in which water pressure is considered, as well as reducing the segment lining thickness by 20 to 50%, as well as reducing the segment lining production and logistics costs. There is an economic effect that can be reduced by 10-30%.
  • the water expansion index members are arranged in one row only on the protruding surface of the segment joint part, so that the water expansion index members can be reduced as much as the non-drain tunnel concept of the two-row array.
  • FIG. 1 is a perspective view of the shield tunnel of the present invention
  • FIG. 2 is an enlarged view of portion “A” and “B” in FIG. 1.
  • FIG. 3 is a cross-sectional view taken along the line A-A of FIG.
  • FIG. 4 is a cross-sectional view taken along line B-B of FIG.
  • FIG. 6 is a perspective view of SA and SK segments showing the relationship between the flow path groove and the water-expandable index member of the present invention
  • FIG. 7 is a perspective view of SAB and SAC segments showing the relationship between the flow path groove and the water-expandable index member of the present invention.
  • FIG. 8 is a perspective view of the SB segment showing the relationship between the flow path groove and the water-expandable index member of the present invention
  • FIG. 9 is a perspective view of an SC segment showing the relationship between the flow path groove of the present invention and the water-expandable index member
  • the present invention is different from the conventional non-drain tunnel concept of drainage tunnel concept.
  • the SK segment consisting of KL, K, KR, and quadrangular segments having the same size are assembled and constructed while tunneling by the shielding equipment.
  • a two-row array of water-expandable index members 40 is provided in the longitudinal direction on the planar portion 16 in the circumferential direction P and has a single-row arrangement on the inner projecting surface 12 in the longitudinal (L) direction.
  • a water-expandable index member 40 is provided, and at both end points Q of the inner protruding surface 12, an SB segment, which is an undrained segment in which the discharge groove 22 communicates with the flow path groove 40, is installed at the bottom of the excavation ground.
  • the KL is the XL SAB segment. Assembling and installing the segments in the XR-side SA segment by aligning the KR segments with the longitudinal (L) side edges;
  • a K segment having a flow path groove 10 on all four sides and a one-row array of water-expandable index members 40 on all four sides of the inner protruding surface 12 may be formed between the KR and KL segments. L) inserting in the direction side to complete the first row shield assembly;
  • the two-row array of water-expandable index members 40 in the excavating direction in conjunction with the first-row shield assembly include the planar portion 16 in two circumferential (P) directions and the planar portion in one longitudinal (L) direction.
  • the SC segments provided in the (16) are connected to each other in the longitudinal (L) direction of the planar portions 16 to form two SC segments as non-drained segments, but protrude in the longitudinal (L) side where the flow path grooves 10 are formed.
  • the KL segment provided with the flow path groove 10 on all four sides and the water-expandable index member 40 in one row on the inner protruding surface 12 on all four sides is selected from the length L of the SAC segment. Assembling and installing the KR segment and the KL segment against each other on the longitudinal side, with the KR segment facing the longitudinal (L) side of the XL side SAC segment;
  • KR and KL segment types (L) in which the channel grooves 10 are provided on all four sides and the water-expandable index members 40 in one row are provided on the inner protruding surfaces 12 on all four sides. Inserting between the direction sides to complete the second row shield assembly;
  • the particle size of the filler 50 in the step (k) is 1 ⁇ 20mm
  • the permeability coefficient of the filler is preferably 1 x 10 -3 ⁇ 1 x 10 cm / sec. This is because the smooth inflow of groundwater prevents the inflow of the filler 50 into the flow path groove 10 so that clogging of the perforated pipe does not occur.
  • the injection air pressure for filling the filler 50 to be closed in the rear cavity is preferably 1 to 3 bar.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

The present invention has an object to design a concept of a drainage tunnel in which water pressure has not been considered, unlike the prior art which relates to a concept of an undrained tunnel in which water pressure has been considered. The drainage tunnel concept is designed without consideration of water pressure and thus economical effects, such as that the thickness of a segment lining may be reduced up to 20-50% and that the manufacturing costs of the segment lining and distribution costs may be reduced up to 10-30%, may be obtained. Sand or PS balls are used as filler for backfilling, removing environmental problems such as pollution of underground water or the like. In addition, water permeability and filling performance are superior so that a space can be sealed in a single filling instance with air pressure. Therefore, additional filling work is not necessary.

Description

실드터널 라이닝 배수시스템 및 이를 이용한 실드터널 시공방법Shield tunnel lining drainage system and shield tunnel construction method
본 발명은 실드터널 구조물내부로 배수되지 않도록 한 종래의 비배수 터널 개념의 설계에서 능동적으로 실드터널 구조물내부로 배수되게 한 배수터널 개념의 실드터널구조가 되도록 한 실드터널 라이닝 배수시스템 및 이를 이용한 실드터널 시공방법에 관한 것이다.The present invention provides a shield tunnel lining drainage system and shield using the shield tunnel structure of the drain tunnel concept that is actively drained into the shield tunnel structure in the conventional non-drainage tunnel design that does not drain into the shield tunnel structure. It relates to a tunnel construction method.
수압을 전혀 고려하지 않은 배수개념의 설계이므로 종래의 비배수 개념에 비하여 실드 라이닝 세그먼트의 단면두께를 20~50%까지 절감할 수 있을 뿐만 아니라 이로 인한 세그먼트 라이닝 제작 및 물류비를 10~30% 절감할 수 있는 경제적 효과를 지닌 유용한 발명이다.As it is a drainage concept design that does not consider water pressure at all, it is possible to reduce the cross-sectional thickness of the shield lining segment by 20-50% compared to the conventional non-drainage concept, and to reduce the manufacturing cost of the segment lining and logistics by 10-30%. It is a useful invention with economic effects.
실드 공법은 터널 외형단면보다 약간 큰 단면을 갖는 실드(Shield)를 사용하여 선단부 지반의 붕괴를 막으면서 굴착하고 실드 후방부에 굴착단면을 지보하는 복공을 구축해나가는 굴진공법이다. 복공은 세그먼트(Segment)에 의하여 조립된다. The shield method is an excavation method that uses a shield having a cross section slightly larger than the tunnel outline section to excavate while preventing the collapse of the tip ground and establish a vent hole that supports the excavated section at the rear portion of the shield. Perforations are assembled by segments.
실드공법은 토피고가 낮으면서 암반이 아닌 연약한 지반에 터널구조물을 건설하기에 가장 효율적인 공법이면서 안정적인 공법이다. The shield method is the most efficient and stable method for constructing tunnel structures on soft ground, not rock, with low topigo.
실드터널은 실드터널 구조물내로 지하수의 유입을 허용하지 않는 비배수구조물이다. Shield tunnels are undrained structures that do not allow groundwater to flow into the shield tunnel structure.
비배수구조물이므로 실드 세그먼트 라이닝이 지반하중뿐만 아니라 지하수위만큼의 수압을 지지하게 된다. As it is an undrained structure, the shield segment lining supports the water pressure as well as the ground load.
이와 같이 실드 세그먼트 라이닝이 지반압과 수압을 모두 지지하게 되므로 그만큼 세그먼트의 단면이 두꺼워지게 된다. Thus, since the shield segment lining supports both the ground pressure and the hydraulic pressure, the cross section of the segment becomes thicker.
먼저, 실드 세그먼트 라이닝과 관련된 지반압과 수압의 관계를 도11의 관용 설계법에 의하여 살펴보기로 한다.First, the relationship between the ground pressure and the hydraulic pressure related to the shield segment lining will be described by the tolerance design method of FIG. 11.
관용 설계법은 비배수개념의 설계법이다.The conventional design method is an undrained concept design method.
관용 설계법은 토압, 수압, 자중(g) 등에 대한 연직방향의 지반 반력과 측방의 수평방향 지반반력(또는 지반압)을 도11과 같이 설정하고 있다.In the conventional design method, the vertical ground reaction force and the horizontal horizontal reaction force (or the ground pressure) in the vertical direction with respect to the earth pressure, the hydraulic pressure, and the magnetic weight g are set as shown in FIG.
토압, 수압, 자중(g) 등에 대한 연직방향의 지반 반력은 지반의 변위에 독립하여 이들의 하중에 평형한 등분포반력으로 설정하고 있다. The ground reaction force in the vertical direction with respect to the earth pressure, the hydraulic pressure, the magnetic weight g, and the like is set to an equal distribution reaction force that is balanced against these loads independently of the displacement of the ground.
연직방향의 지반 반력은, 수압(pw1) + 토압(pe1) + 자중(g) = 수압(pw2) + 토압(pe2) + 자동반력(pa) 이다. The ground reaction force in the vertical direction is water pressure (pw 1 ) + earth pressure (pe 1 ) + self-weight (g) = water pressure (pw 2 ) + earth pressure (pe 2 ) + automatic reaction force (p a ).
또한 측방의 수평방향 지반반력(또는 지반압)은 복공(실드 세그먼트)의 지반 내 변위에 따라 발생하는 것으로 간주하고, 도11과 같이 삼각형 분포의 지반반력(또는 지반압)으로 설정하고 있다.In addition, the lateral horizontal ground force (or ground pressure) is considered to be generated by the ground displacement of the vent hole (shield segment), and is set as the ground ground force (or ground pressure) of the triangular distribution as shown in FIG.
지반반력의 크기(q)는 q = kδThe magnitude of ground reaction force (q) is q = kδ
여기서, k : 지반 반력계수, δ : 변위량Where k is the ground reaction coefficient and δ is the displacement
로 표시되며 k값을 설정할 때는 토질조건을 기초로 하여 측방토압계수(λ)와의 관련을 고려하여 신중하게 결정해야한다. When setting k value, it should be decided carefully considering the relation with lateral earth pressure coefficient (λ) based on soil condition.
도11에서와 같이 수압을 고려한 비배수 개념으로 실드 라이닝 세그먼트를 설계할 경우 수압이 관여된 만큼 실드 라이닝의 단면의 두께가 두꺼워지게 된다. When the shield lining segment is designed in the non-drainage concept considering the hydraulic pressure as shown in FIG. 11, the thickness of the cross section of the shield lining becomes thick as water pressure is involved.
예컨대, 수압이 고려된 세그먼트 라이닝 두께는 통상 30~45cm가 된다. 수압이 고려되지 않았을 경우 라이닝 두께를 20~50% 절감할 수 있게 된다. For example, the thickness of the segment lining considering hydraulic pressure is usually 30 to 45 cm. If hydraulic pressure is not taken into account, the lining thickness can be reduced by 20-50%.
세그먼트 라이닝 두께가 두꺼워지게 되면 콘크리트의 양이 다량 소요됨은 물론이고, 철근의 양도 그만큼 많아져서 비경제적일 뿐만 아니라 중량이 증가됨으로 인하여 물류비 등 추가비용이 소요되는 문제점이 있다. When the thickness of the lining of the segment becomes thick, not only the amount of concrete is required, but also the amount of reinforcing bars is not only uneconomical but also increases the weight, and thus there is a problem in that additional costs such as logistics costs are required.
그런데 아무리 비배수 개념으로 설계한다하더라도 비배수 터널이 특히 지하수위 밑에 축조되는 경우에는 조립된 실드세그먼트의 연결 조인트부를 통해 실드터널 구조물내로 침투되는 지하수의 미세한 유입은 불가피하다. 미세한 침투수가 실드터널 구조물내부로 침투된다하더라도 이를 배수개념의 설계라고 하지 않는다. 배수개념의 설계는 비배수 개념의 설계와는 달리 수압을 고려하지 않은 설계이기 때문이다. 실드 라이닝 세그먼트의 단면을 설계함에 있어 수압을 고려하지 않기 위해서는 수압이 실드터널에 걸리지 않아야한다. 수압이 실드터널에 걸리지 않기 위해서는 지하수가 실드터널 구조물내부로 능동적으로 유입되는 구조이어야 한다.However, even if the design of the non-drainage concept, if the non-drainage tunnel is constructed especially under the groundwater level, it is inevitable that the inflow of the groundwater penetrated into the shield tunnel structure through the connection joint of the assembled shield segment is inevitable. Even if the minute water penetrates into the shield tunnel structure, it is not called the drainage design. This is because the design of the drainage concept, unlike the design of the non-drainage concept, does not consider water pressure. In designing the cross-section of the shield lining segment, the hydraulic pressure should not be applied to the shield tunnel in order to avoid hydraulic pressure. In order for water pressure not to be caught in the shield tunnel, the groundwater should be actively introduced into the shield tunnel structure.
다음으로 실드장비에 의한 지반 굴착면과 세그먼트 라이닝사이의 배면공동의 뒤채움 및 이에 대한 문제점에 대하여 살펴보기로 한다.Next, the back cavity between the ground excavation surface and the segment lining by the shield equipment and the problems thereof will be described.
실드 굴착시 실드장비의 단면직경은 세그먼트 라이닝외경보다 4~5cm정도 크다.When shielding excavation, the cross section diameter of shield equipment is 4 ~ 5cm larger than the outer diameter of segment lining.
달리 말하면 이 4~5cm의 간격이 지반 굴착면과 세그먼트 라이닝사이의 배면공동이다. In other words, this 4-5cm gap is the back cavity between the ground drilling surface and the segment lining.
이러한 배면공동은 세그먼트 라이닝 주면을 따라 형성되어있다.These back cavities are formed along the main surface of the segment lining.
굴착 후 배면공동을 뒤채움하지 않고 일정시간경과하게 되면 배면공동에 따라 소규모 붕락이 유발되게 된다. If a certain period of time is elapsed without back filling the back cavity after excavation, a small collapse will occur according to the back cavity.
지반변위와 지하수의 누수 등이 붕락의 원인이다. Ground displacement and groundwater leakage are the causes of collapse.
지반변위의 방지와 터널의 지수성 향상을 위해 배면공동을 뒤채움 해야 한다. The back cavity should be filled to prevent ground displacement and to improve the exponential of the tunnel.
여기에다 배면공동의 뒤채움은 외압에 대한 세그먼트 라이닝의 조기 안정화를 확보하기위해서다. In addition, the rear cavity backfill is used to ensure premature stabilization of the segment lining against external pressure.
배면공동의 뒤채움은 완벽하게 이루어지지 않는다.Back cavity back filling is not perfect.
뒤채움재를 배면공동에 채운다하더라도 배면공동의 구조상 중력방향으로 흘러내리므로 배면공동의 최상부에는 테일보이드라는 공간부가 발생되는 것은 불가피한 현상이다.Even if the back filling material is filled in the rear cavity, it is inevitable that a space part called tail void is generated at the top of the rear cavity because it flows down in the direction of gravity due to the structure of the rear cavity.
뒤채움은 최소 2~3차례에 걸쳐 실시하는 것도 이 때문이다. 그렇다고 해서 테일보이드의 현상은 막을 수는 없다. 테일보이드의 크기의 정도를 줄일 수 있을 뿐이다. This is why backfilling is done at least two to three times. That doesn't stop the phenomenon. It can only reduce the size of the tailboard.
배면 뒤채움재로 시멘트, 벤토나이트, 물유리 등의 밀크그라우팅을 사용할 경우에도 완벽한 충진이 어려울 뿐만 아니라 고결되는 과정에서 건조수축으로 인한 공동이 발생되므로 2~3차 뒤채움을 실시하게 된다. 여러 번 뒤채움을 실시하게 되므로 작업이 비효율적이고 비경제적인 문제점이 있다. Even when milk grouting such as cement, bentonite, water glass, etc. is used as the back filling material, perfect filling is difficult, and as a result of cavitation due to dry shrinkage during the solidification process, the second and third fillings are performed. Since the backfill is performed several times, the work is inefficient and inefficient.
기존 배면공동 뒤채움에 급결성을 부여하기위해 물유리를 첨가하거나, 또 차수성을 위해 벤토나이트를 첨가하게 된다. 물유리와 벤토나이트는 장기 내구성을 저하시킬 뿐만 아니라 지하수를 오염시키는 문제점이 있다.Water glass is added to provide fastness to the existing rear cavity backfill, or bentonite is added for ordering. Water glass and bentonite not only reduce long-term durability, but also contaminate groundwater.
본 발명은 실드터널 구조물내부로 배수되지 않도록 한 종래의 비배수 터널 개념의 설계에서 능동적으로 실드터널 구조물내부로 배수되게 한 배수터널 개념의 실드터널구조가 되도록 함에 그 목적이 있고, An object of the present invention is to provide a shield tunnel structure of a drain tunnel concept that is actively drained into a shield tunnel structure in a conventional non-drain tunnel design that does not drain into the shield tunnel structure.
수압이 고려된 종래의 비배수 터널 개념과는 달리 수압이 고려되지 않는 배수터널 개념으로 설계함으로써 실드 라이닝 세그먼트의 단면을 한층 더 경제적인 단면이 되게 함에 다른 목적이 있으며, Unlike the conventional undrained tunnel concept considering the hydraulic pressure, the design of the drain tunnel concept does not consider the hydraulic pressure, so that the cross-section of the shield lining segment becomes more economical.
터널 배면공동의 뒤채움재를 투수가 거의 되지 않는 기존의 밀크 그라우팅대신 투수성이 뛰어나고 충진성이 좋은 모래 또는 PS볼로 충진함으로써 실드터널 내부로 지하수가 원활하게 유입ㆍ배수되도록 함에 또 다른 목적이 있다. Instead of the conventional milk grouting where the backfill material of the tunnel back cavity is hardly pitched, it is filled with sand and PS balls that are excellent in permeability and have the purpose of smoothly inflowing and draining groundwater into the shield tunnel.
본 발명의 종래의 비 배수(非 排水)터널 개념의 설계와는 달리 배수(排水)터널 개념의 설계이므로 실드 세그먼트의 연결 조인트부에는 유로홈이 형성되어있다.Unlike the design of the conventional non-drain tunnel concept of the present invention, since the design of the drain tunnel concept is a flow path groove is formed in the connection joint of the shield segment.
실드터널은 세그먼트의 조립에 의하여 이루어진다. 세그먼트의 개수는 일반적으로 5피스, 7피스, 8피스 등이 주로 많이 사용된다. 본 발명에서는 설명의 편의상 7피스를 중심으로 설명하고자한다.The shield tunnel is made by assembling the segments. The number of segments is generally 5 pieces, 7 pieces, 8 pieces, etc. are commonly used. In the present invention, for convenience of description, it will be described with reference to seven pieces.
세그먼트의 형상은 4변을 갖는 4각형 형상이다. 2변은 원주(P)방향이고 2변은 직선형태의 종(L)방향이다. The shape of the segment is a quadrangular shape with four sides. The two sides are in the circumferential (P) direction and the two sides are in the longitudinal (L) direction of the straight line.
먼저 7피스 세그먼트의 위치에 대하여 설명하면 다음과 같다.First, the position of the seven-piece segment will be described.
실드터널 구조의 최상부에는 통상 쐐기형상의 키(key) 세그먼트가 위치된다. 키(key) 세그먼트 실드터널의 조립을 견고하게 하기위한 역할을 한다. 맨 나중에 조립되는 마무리 세그먼트이므로 쐐기형상이다. At the top of the shield tunnel structure is usually a wedge shaped key segment. Key Segment Shield serves to secure the assembly of the tunnel. It is a wedge shape as it is a finishing segment that is assembled last.
키(key) 세그먼트의 쐐기형상은 종(L)방향 변이 삼각형 형상을 이루고 있고, 이에 대응되는 양옆의 세그먼트의 종(L)방향 변 역시 경사면으로 형성되어있다. The wedge shape of the key segment has a triangular shape in the longitudinal (L) direction, and the longitudinal (L) side of the corresponding side segments is also formed as an inclined surface.
키(key) 세그먼트를 K로 표기하기로 한다. 또한 키(key) 세그먼트의 왼쪽에 위치된 세그먼트를 KL, 오른쪽에 위치된 세그먼트를 KR로 표기하기로 한다. The key segment is denoted by K. In addition, the segment located on the left side of the key segment will be marked with KL and the segment located on the right side with KR.
키(key) 세그먼트와 접면된 KL 및 KR 세그먼트의 종(L)방향 변은 경사면을 이루고 있지만 KL 및 KR 세그먼트의 다른 종(L)방향 변은 경사면이 아닌 직선형태이다.The longitudinal (L) side edges of the KL and KR segments in contact with the key segment form an inclined surface, but the other longitudinal (L) side edges of the KL and KR segments are straight rather than inclined surfaces.
K 세그먼트가 존재하는 한 KL 및 KR 세그먼트는 항상 존재하여야하는 구성이다. K, KL 및 KR 세그먼트는 뗄 수 없는 한 세트구성이므로 이 한 세트를 SK 세그먼트라고 부르기로 한다. As long as the K segment is present, the KL and KR segments must always be present. Since the K, KL, and KR segments are indispensable, they will be called SK segments.
도5에 SK 세그먼트의 평면도가 도시되어있다. 5 is a plan view of the SK segment.
KL 및 KR 세그먼트의 직선형태의 종(L)방향 변에는 SA와 SAB 세그먼트의 직선형태의 종(L)방향 변과 서로 접면된다. The linear longitudinal (L) side edges of the KL and KR segments are in contact with the longitudinal longitudinal (L) side edges of the SA and SAB segments.
실드터널 구조의 최하부에는 SA와 SAB 세그먼트의 직선형태의 종(L)방향 변과 서로 접면되는 SB 세그먼트가 위치되어있다.At the bottom of the shield tunnel structure, the straight longitudinal (L) side edges of the SA and SAB segments and the SB segments contacting each other are located.
KL, K, KR로 이루어진 SK 세그먼트를 제외한 SA, SAB, SB, SAC, SC세그먼트는 4변형 형상이면서 그 크기가 동일하다. 다만 4변에 유로 홈(10) 또는 토출홈(22)의 형성여부 및 수팽창 지수재(40)의 설치여부에 있어서만 차이가 있을 뿐이다.The SA, SAB, SB, SAC, and SC segments, except for the SK segment consisting of KL, K, and KR, are quadrilateral and have the same size. However, there are only differences in whether the flow path groove 10 or the discharge groove 22 is formed on the four sides and whether the water-expandable index member 40 is installed.
다음으로 세그먼트와 유로 홈(10)의 관계에 대하여 설명하면 다음과 같다.Next, the relationship between the segment and the flow path groove 10 will be described.
본 발명의 실드터널 구조는 최하부에 위치된 SB 세그먼트와 SC 세그먼트를 제외하고는 도6 및 도7에 도시된 바와 같이 유로 홈(10)이 4변에 모두 형성되어있다. 즉 유로 홈(10)이 2변의 원주(P)방향과, 2변의 직선형태의 종(L)방향에 모두 형성되어있다. 유로 홈(10)은 외 돌출평면(14)과 내 돌출평면(12)을 양측에 두고 길이방향으로 길게 형성되어있다. In the shield tunnel structure of the present invention, except for the SB segment and the SC segment located at the bottom, the channel grooves 10 are formed on all four sides as shown in FIGS. 6 and 7. That is, the flow path groove 10 is formed in both the circumferential P direction of two sides, and the linear L direction of the two sides. The flow path groove 10 is formed long in the longitudinal direction with the outer protruding plane 14 and the inner protruding plane 12 on both sides.
그런데 최하부에 위치된 SB 세그먼트와 SC 세그먼트는 비배수 세그먼트이다. 비배수 세그먼트이기 때문에 유로 홈(10)이 4변에 모두 형성되지는 않는다.{도8 및 도9 참조} However, the SB segment and the SC segment located at the bottom are undrained segments. The flow path grooves 10 are not formed on all four sides because they are undrained segments. {See Figs. 8 and 9}
도8에 도시된 바와 같이 SB 세그먼트에는 SAB 세그먼트와 접면되는 2변, 즉 직선형태의 종(L)방향 2변에만 유로 홈(10)이 형성된다. 그 나머지 원주(P)방향의 2변은 유로 홈(10)이 형성되지 않은 평면부(16)일 뿐이다. As shown in FIG. 8, the flow path grooves 10 are formed in only two sides of the SB segment that are in contact with the SAB segment, that is, two sides of the straight (L) direction in a straight line shape. The remaining two sides of the circumferential P direction are only flat portions 16 in which the flow path grooves 10 are not formed.
그리고 SC 세그먼트에는 SAC 세그먼트와 접면되는 1변, 즉 직선형태의 종(L)방향 1변에만 유로 홈(10)이 형성된다. 그 나머지 원주(P)방향의 2변과 직선형태의 종(L)방향 1변은 유로 홈(10)이 형성되지 않은 평면부(16)이다. 2개의 SC 세그먼트의 연결부(32)는 SC 세그먼트의 직선형태의 종(L)방향 평면부(32)와 평면부(32)가 서로 맞대어 있다. In the SC segment, the flow path groove 10 is formed only on one side that is in contact with the SAC segment, that is, on one side of the straight (L) direction. The remaining two sides of the circumferential P direction and one side of the straight longitudinal L direction are the flat portions 16 in which the flow path grooves 10 are not formed. The connection part 32 of two SC segments has the linear (L) direction planar part 32 of the SC segment, and the planar part 32 oppose each other.
최하부에 위치된 비배수 세그먼트인 SB와 SC는 비배수 세그먼트로서 SB는 한 개의 세그먼트로 이루어졌는데 반해 SC는 2개의 SC 세그먼트가 서로 연결되어있는 점에서 차이가 있다.SB and SC, which are located at the bottom, are non-drained segments, and SB is composed of one segment, whereas SC is different in that two SC segments are connected to each other.
이러한 차이는 조립의 견고성을 위해 세그먼트를 지그재그로 배열함으로써 생기는 차이이다. This difference is due to the zigzag arrangement of the segments for robustness of assembly.
그러나 1개의 SB 세그먼트로 된 비배수 세그먼트나 2개의 SC 세그먼트가 연결된 비배수 세그먼트의 역할은 동일하다.However, the role of an undrained segment consisting of one SB segment or an undrained segment in which two SC segments are connected is the same.
그 다음으로 최하부에 위치된 비배수 세그먼트인 SB 세그먼트와 SC 세그먼트가 서로 교번되는 것에 대하여 설명하기로 한다. Next, the SB segment and the SC segment, which are the undrained segments located at the bottom, are alternated with each other.
본 발명에서 실드터널의 최상부와 최하부에 위치되는 세그먼트는 그 위치가 정해져있다.In the present invention, the positions of the segments located at the top and bottom of the shield tunnel are determined.
즉, 최상부에는 SK 세그먼트가, 최하부에는 비배수 세그먼트인 SB 세그먼트와 2개의 SC 세그먼트가 위치된다. That is, the SK segment is located at the top and the SB segment and the two SC segments, which are undrained segments, are located at the bottom.
그런데 SK 세그먼트는 한번은 XL에 위치되고, 그 다음은 XR에 위치된다. XL과 XR에서만 교번된다. However, the SK segment is located once in the XL and then in the XR. Alternating only on XL and XR.
최상부의 SK 세그먼트의 교번적 위치에 따라 최하부의 비배수 세그먼트가 달라진다. The lower undrained segment varies depending on the alternating position of the uppermost SK segment.
다시 말하면, 도3에서와 같이 SK 세그먼트가 XL에 위치되면, 이에 대응하여 최하부의 비배수 세그먼트는 SB 세그먼트가 위치된다. In other words, when the SK segment is located in the XL as shown in Fig. 3, the SB segment is located in the lowest undrained segment correspondingly.
또 도4에서와 같이 SK 세그먼트가 XR에 위치되면, 이에 대응하여 최하부의 비배수 세그먼트는 2개의 SC 세그먼트가 위치된다. Also, as shown in Fig. 4, when the SK segment is located at XR, two SC segments are positioned in the lowermost undrained segment.
최상부의 SK 세그먼트가 교번적으로 그 위치가 달라지는 것은 세그먼트의 조립을 그 열에 따라 지그재그로 배치하기 때문이다. The positions of the top SK segments alternately change because the assembly of the segments is arranged in a zigzag according to the rows.
이와 같이 최상부의 SK 세그먼트와 최하부의 비배수 세그먼트 (SB 세그먼트 및 2개의 SC 세그먼트)사이에는 SA, SAB, SAC 세그먼트가 위치된다.In this way, the SA, SAB, and SAC segments are located between the uppermost SK segment and the lowermost undrained segments (SB segment and two SC segments).
최상부의 SK 세그먼트와 최하부의 SB 세그먼트가 위치된 경우에는 그 사이에 SA, SAB 세그먼트가 위치되고, 최상부의 SK 세그먼트와 최하부의 2개의 SC 세그먼트가 위치된 경우에는 그 사이에 SAC 세그먼트가 위치된다.When the uppermost SK segment and the lowermost SB segment are located, the SA and SAB segments are positioned therebetween, and when the uppermost SK segment and the lowermost two SC segments are positioned, the SAC segment is positioned therebetween.
지하수의 침투와 침투수의 유도경로 및 실드터널로의 토출에 대하여 설명한다.Infiltration of groundwater, induction paths of infiltration water, and discharge to shield tunnels will be described.
본 발명은 배수터널개념이므로 지하수가 실드터널(100)내부로 배수되게 하는 구조이다.Since the present invention is a drainage tunnel concept, the groundwater is drained into the shield tunnel 100.
세그먼트 조인트부(30)는 시공오차가 존재한다. 세그먼트는 콘크리트로 제작되기 때문이다. The segment joint part 30 has a construction error. This is because the segments are made of concrete.
세그먼트 조인트부(30)의 시공오차는 일반적으로 1~5mm이다. The construction error of the segment joint part 30 is generally 1-5 mm.
조인트부(30)는 세그먼트가 조립된 상태에서 세그먼트끼리 서로 접면된 원주(P)방향과 종(L)방향의 연결ㆍ조립부를 말한다.The joint portion 30 refers to a connection / assembly portion in the circumferential P direction and the longitudinal L direction in which the segments are in contact with each other in a state where the segments are assembled.
지하수는 원주(P)방향과 종(L)방향의 조인트부(30)를 통해 유입된다.Groundwater is introduced through the joint portion 30 in the circumferential (P) direction and the longitudinal (L) direction.
지하수의 유입통로인 조인트부(30)가 실드터널(100)내부로 유출되게 하는 유출통로는 아니다. The joint part 30, which is an inflow passage of groundwater, is not an outflow passage allowing the inside of the shield tunnel 100 to flow out.
세그먼트의 모든 조인트부(30)로부터 실드터널(100)내부로 유출되게 한다면 실드터널(100)내부의 미관이 좋지 않을 뿐만 아니라 내구성에도 문제가 되기 때문이다. It is because not only the aesthetics of the inside of the shield tunnel 100 is bad, but also the durability of the shield tunnel 100 from all the joints 30 of the segment.
본 발명은 비배수 세그먼트인 SB 및 SC 세그먼트의 2변의 원주(P)방향의 조인트부(30)와, 그리고 2개의 SC 세그먼트 직선형태의 종(L)방향 연결부(32)를 제외한 세그먼트의 모든 조인트부는 지하수가 유입되는 유입통로이지만 유입된 유입수는 비배수 세그먼트와 SAB 및 SAC 세그먼트의 조인트(30)부에 형성된 토출구(20)를 통해서만 실드터널(100)내부로 유출되도록 한 구조이다.According to the present invention, all the joints of the segment except for the joint portion 30 in the circumferential (P) direction of the two sides of the SB and the SC segment, which are undrained segments, and the longitudinal (L) connecting portion 32 in the form of two SC segments, The part is an inflow passage through which groundwater flows, but the inflow water flows into the shield tunnel 100 only through the discharge port 20 formed in the joint 30 of the non-drainage segment and the SAB and SAC segments.
지하수가 유입되는 조인트부(30)의 세그먼트 변에는 그 중심에 유로 홈(10)이 길이방향으로 형성되어있고, 유로 홈(10)의 양측 평면부에는 외 돌출평면(14)과 내 돌출평면(12)이 형성되어있다.In the segment side of the joint portion 30 into which the groundwater flows, a flow path groove 10 is formed in the center thereof in the longitudinal direction, and the outer protrusion plane 14 and the inner protrusion plane ( 12) is formed.
지하수는 조인트부(30)의 외 돌출평면(14)을 통해 유입된다. 유입된 유입수는 유로 홈에 의해 아래로 유도되고, 토출구를 통해 실드터널(100)내부로 토출되게 된다. 토출된 유출수는 실드터널(100) 저부에 설치된 유공관(미도시)을 통해 터널 밖으로 배출되게 된다. 실드터널(100)은 통상 종방향 경사가 주어지도록 설계되기 때문에 종방향 경사에 의해 자연 배수되게 된다. Groundwater is introduced through the outer protruding plane 14 of the joint portion 30. The inflowed water is guided downward by the flow path groove and is discharged into the shield tunnel 100 through the discharge port. The discharged effluent is discharged out of the tunnel through a hole (not shown) installed in the bottom of the shield tunnel 100. Since the shield tunnel 100 is usually designed to be given a longitudinal inclination, it is naturally drained by the longitudinal inclination.
지하수는 조인트부(30)의 외 돌출평면(14)을 통해 유입되지만 실드터널 내부로의 유출되지 않아야하기 때문에 조인트부(30)의 내 돌출평면(12)에는 길이방향의 1열 수팽창 지수재(40)가 설치되어있다. Groundwater flows in through the outer protruding plane 14 of the joint part 30 but should not flow out into the shield tunnel, so that the inner protruding plane 12 of the joint part 30 has a longitudinal single-row water expansion index member. 40 is installed.
내 돌출평면(12)에 길이방향의 1열 수팽창 지수재(40)가 4변 모두에 설치되는 세그먼트로는 KL, K, KR, SA, SAB, SAC 세그먼트이다. The segments in which the one-row water-expanding index members 40 in the longitudinal direction are provided on all four sides of the inner projection plane 12 are KL, K, KR, SA, SAB, and SAC segments.
SB 세그먼트는 직선형태의 종방향(L) 내 돌출평면(12)에 1열 수팽창 지수재(40)가 설치된다. The SB segment is provided with a single-column water expansion index member 40 on the protruding plane 12 in the linear longitudinal direction L. As shown in FIG.
SC 세그먼트는 SAC 세그먼트와 접면되는 직선형태의 종방향(L) 내 돌출평면(12)에 1열 수팽창 지수재(40)가 설치되고, 접면되지 않는 직선형태의 종방향(L) 평면부(16)에는 길이방향의 2열 수팽창 지수재(40)가 설치된다.The SC segment is provided with a single-row water-expandable index member 40 on the protruding plane 12 in the linear longitudinal direction L, which is in contact with the SAC segment, and has a straight longitudinal (L) planar portion which is not in contact. 16, a two-row water expansion index member 40 in the longitudinal direction is provided.
기존의 비배수터널 개념에서는 조인트부의 평면부에 2열, 3열의 수팽창 지수재를 설치해서 방수하고 있다. In the existing non-drainage tunnel concept, two- and three-row water-expandable index members are installed on the plane of the joint to be waterproof.
지하수의 유입수가 실드터널(100)내부로 토출되는 토출구(20)에 대하여 설명한다.A discharge port 20 through which the inflow of ground water is discharged into the shield tunnel 100 will be described.
토출구(20)는 비배수 세그먼트(SB 및 SC 세그먼트)와 SAB 및 SAC 세그먼트가 접면되는 직선형태의 종방향(L) 양 끝단에 형성되어있다.The discharge ports 20 are formed at both ends of the straight longitudinal direction L in which the undrained segments SB and SC segments and the SAB and SAC segments are in contact with each other.
예컨대 도2의 종방향(L) 끝점인 Q점을 중심으로 SB 세그먼트와 SAB 세그먼트(또는 SC 세그먼트)가 이루는 직선형태의 종방향(L) 조인트부(30)를 X축, SB 세그먼트와 SAB 세그먼트가 이루는 원주(P)방향의 조인트부(30)를 Y축이라하면 토출구(20)는 Z축 방향이다. For example, a linear longitudinal (L) joint portion 30 formed by the SB segment and the SAB segment (or SC segment) is formed around the Q point which is the end point of the longitudinal direction (L) of FIG. When the joint portion 30 in the circumferential P direction formed by the Y axis is formed, the discharge port 20 is in the Z axis direction.
Z축 방향은 X축과, 그리고 Y축에 대하여 직각방향이다.The Z axis direction is perpendicular to the X axis and the Y axis.
유로 홈(10)에 의하여 X축 방향과 Y축 방향으로 유도된 유입수가 Z축 방향의 토출구(20) Q점을 통해 실드터널(100)내부로 토출되게 된다.Inflow water induced in the X-axis direction and the Y-axis direction by the flow path groove 10 is discharged into the shield tunnel 100 through the Q point of the discharge port 20 in the Z-axis direction.
종방향(L) 끝점 Q는 SB와 SAB 세그먼트 2개의 내 돌출면(12)(12)이 서로 접면된 곳이기 때문에 Q점의 Z축 방향은 내 돌출면(12)(12)에 의하여 막혀있는 상태이다. Since the end point Q in the longitudinal direction (L) is where the two inner projecting surfaces 12 and 12 of the SB and SAB segments are in contact with each other, the Z axis direction of the Q point is blocked by the inner projecting surfaces 12 and 12. It is a state.
막혀있는 SB와 SAB 세그먼트의 내 돌출면(12)(12)의 끝점 Q에서 Z축 방향으로 뚫어놓은 것이 바로 토출구(20)이다. The discharge hole 20 is drilled in the Z-axis direction at the end point Q of the inner projecting surfaces 12 and 12 of the blocked SB and SAB segments.
토출구(20)는 SB와 SAB 세그먼트의 종방향(L) 내 돌출면(12)(12)의 끝점 Q에서 각각 1/4형상의 토출 홈(22)(22)을 종방향(L) 유로 홈(10)(10)에 연통되게 형성한 것이다. 1/4형상의 토출 홈(22)(22)0은 유로 홈(10)이 이루는 원호의 1/4를 의미한다.The discharge port 20 passes through the quarter-shaped discharge grooves 22 and 22 at the end points Q of the protruding surfaces 12 and 12 in the longitudinal direction L of the SB and SAB segments, respectively. It is formed in communication with (10) (10). The quarter-shaped discharge grooves 22 and 22 mean one quarter of the arc formed by the flow path groove 10.
SB와 SAB 세그먼트가 접면된 상태에서의 토출구(20)는 반원을 이루고 있다. The discharge port 20 in a state where the SB and SAB segments are in contact with each other forms a semicircle.
비배수 세그먼트인 2개의 SC 세그먼트와 SAC 세그먼트에 의해 토출구(20)가 형성되는 것 역시 이와 마찬가지이다. The same applies to the case where the discharge port 20 is formed by two SC segments and an SAC segment that are undrained segments.
실드터널(100)의 배면공동 뒤채움에 대하여 설명하기로 한다.The back cavity back filling of the shield tunnel 100 will be described.
본 발명은 배수터널 개념을 기초로 한 것이므로 세그먼트 조인트부(30)는 지하수의 유입이 원활해야한다. 만약 뒤채움재(50)로 종래의 밀크 그라우트를 사용하게 되면 투수가 좋지 않을 뿐 아니라 밀크 그라우트재의 미립자가 유공관에 침적되어 유공관을 폐쇄시키게 된다. 유공관이 폐색되게 되면 배수체계의 교란과 함께 세그먼트 라이닝부에 설계에 고려하지 않았던 수압이 걸리게 되어 실드터널구조의 안정성에 심각한 문제가 야기될 수 있다. 이는 배수터널 개념에 완전히 배치된다.Since the present invention is based on the concept of drainage tunnel, the segment joint portion 30 should be smoothly introduced with groundwater. If the conventional milk grout is used as the backfill material 50, not only the permeability is good, but the fine particles of the milk grout material are deposited in the oil hole to close the oil hole. If the hole is blocked, the drainage system is disturbed and the hydraulic pressure of the segment lining part is not considered in the design, which may cause serious problems in the stability of the shield tunnel structure. It is completely placed in the drain tunnel concept.
본 발명의 뒤채움재 또는 충진재(50)는 모래(52) 또는 콩자갈이나 PS볼이다. 배수터널 개념에 가장 적합하기 때문이다. The backfill or fill 50 of the present invention is sand 52 or soybean or PS ball. This is because it is most suitable for the concept of drainage tunnel.
세그먼트의 조인트부(30)를 통해 지하수와 함께 유공관으로 유출되지 않게 하기위해서는 모래(52) 또는 콩자갈의 입경은 1~20mm가 바람직하다.In order to prevent the outflow into the perforated pipe together with the ground water through the joint portion 30 of the segment, the particle diameter of the sand 52 or soybean is preferably 1 to 20 mm.
충진재(50)의 입경이 20mm보다 크게 되면 배면공동의 폭이 1~10cm인 배면공동에 충진이 잘 이루어지지 않게 될 뿐만 아니라 이로 인해 배면에 추가공동이 발생됨으로써 세그먼트 라이닝부에 집중하중이 유발되게 되는 문제가 발생되게 된다. When the particle diameter of the filler material 50 is larger than 20 mm, the filling of the back cavity having a width of the back cavity of 1 to 10 cm is not performed well, and as a result, additional cavity is generated on the back, causing concentrated load on the segment lining part. The problem arises.
충진재(50)의 입경이 1mm이하가 되면 밀크 그라우트재의 미립자가 유공관에 침적되어 유공관을 폐쇄시키는 것과 같은 문제가 발생되게 된다. When the particle diameter of the filler 50 is 1 mm or less, problems such as the fine particles of the milk grout material are deposited in the oil hole tube to close the oil hole tube.
충진재(50)의 투수계수는 1 x 10-3 ~ 1 x 10 cm/sec가 바람직하다. 지반(60)으로부터 실드터널 세그먼트의 유로 홈(10)으로의 유입이 원활하게 이루어지도록 하기위해서다.The permeability coefficient of the filler 50 is preferably 1 × 10 −3 to 1 × 10 cm / sec. In order to facilitate the inflow of the shield tunnel segment into the flow path groove 10 from the ground 60.
충진재(50)의 투수계수가 1 x 10-3 cm/sec이하가 되면 지하수가 실드터널의 배수구조로의 유입이 잘 이루어지지 않게 되어 배수터널 개념에 못 미치게 된다. When the permeability coefficient of the filling material 50 is less than 1 x 10 -3 cm / sec, the groundwater is not easily introduced into the drainage structure of the shield tunnel, which falls short of the drainage tunnel concept.
세그먼트의 조립이 완료된 후에는 모래(52)와 같은 충진재(50)를 실드터널 내부에서 공기압과 함께 지지공(18)을 통해 배면공동을 충진하게 된다. 지지공(18)을 충진재(50) 공급통로로 이용한다.After the assembly of the segment is completed, the filling material 50 such as sand 52 is filled in the rear cavity through the support hole 18 together with the air pressure in the shield tunnel. The support hole 18 is used as the filler 50 supply passage.
모든 세그먼트에는 그 무게중심에 지지공(18)이 형성되어있다. 지지공(18)에 삽입ㆍ고정된 지지볼트와 연결된 와이어가 연결된 지지볼트를 지지공(18)에 삽입ㆍ고정하고 실드장비에 의하여 와이어를 들어올리게 되면 들어올려진 세그먼트의 조립이 용이해지기 때문이다. All segments have a support hole 18 formed in the center of gravity thereof. This is because assembling the lifted segment becomes easier when the support bolt connected to the support bolt inserted and fixed in the support hole 18 is inserted and fixed in the support hole 18 and the wire is lifted by the shielding equipment. .
이때 사용되는 공기압은 1~3bar가 바람직하다. 공기압에 의하여 충진재(50)가 배면공동에 밀실 되게 충진 되게 된다. 충진재(50)의 형상이 둥글수록 잘 굴러가 배면공동의 작은 공간까지 밀실 되게 충진 된다.At this time, the air pressure used is preferably 1 ~ 3bar. The filler 50 is filled in the rear cavity by air pressure. The rounder the shape of the filler 50 is, the better the rolling is to fill the small space of the rear cavity.
상기의 내용을 기초로 한 실드 라이닝 배수시스템의 주요구성을 요약하면 다음과 같다.The main components of the shield lining drainage system based on the above are summarized as follows.
KL, K, KR로 이루어진 SK 세그먼트와, 그리고 크기가 동일한 4각형형상의 세그먼트를 실드장비에 의하여 터널을 굴진해가면서 조립ㆍ축조되는 실드터널에 있어서 In the shield tunnel where SK segments composed of KL, K, KR, and quadrangular segments having the same size are assembled and constructed while tunneling through the shielding equipment,
실드터널의 최상부에는 SK 세그먼트가 XL과 XR에 교번적으로 위치되고, 이에 대응되는 최하부에는 비배수 세그먼트인 SB 세그먼트와 2개의 SC 세그먼트가 교번되게 위치되며, SK 세그먼트의 KL과 SB 세그먼트사이에는 SAB 세그먼트가, SK 세그먼트의 KR과 SB 세그먼트사이에는 SA 세그먼트와 SAB 세그먼트가 순차적으로 위치되고, 또 SK 세그먼트의 KL 및 KR과 SC 세그먼트사이에는 SAC 세그먼트가 위치되는 한편, SK 세그먼트의 KL, K, KR 세그먼트와, 그리고 SA, SAB, SAC 세그먼트의 4변에는 그 중심에 유로 홈(10)이, 그리고 유로 홈(10)의 양측에 외 돌출면(14)과 내 돌출면(12)이 형성되어있고, 비배수 세그먼트인 SB 세그먼트에는 평면부(16)가 원주(P)방향 2변에 형성되어있으면서 유로 홈(10)과 그 양측에 외 돌출면(14)과 내 돌출면(12)이 종(L)방향 2변에 형성되어있고, 비배수 세그먼트인 SC 세그먼트에는 유로 홈(10)과 그 양측에 외 돌출면(14)과 내 돌출면(12)이 SAC 세그먼트와 접면되는 종(L)방향 1변에 형성되어있으면서 평면부(16)는 원주(P)방향 2변에 형성되어있고, 유로 홈(10)이 설치된 모든 세그먼트의 내 돌출면(12)에는 1열배열의 수팽창 지수재(40)가 설치되어있으며, 비배수 세그먼트의 평면부(16)에는 2열배열의 수팽창 지수재(40)가 설치되어있고, 토출구(20)는 SAB와 비배수 세그먼트 SB의 종(L)방향 내 돌출면(12)의 양 끝점에, 그리고 SAC와 비배수 세그먼트 SC의 종(L)방향 내 돌출면(12)의 양 끝점 Q에 1/4형상의 토출 홈(22)을 종(L)방향 유로 홈(10)에 직각되게 각각 형성하되 1/4형상의 토출 홈(22)은 종(L)방향 유로 홈(10)과 연통되게 종(L)방향 내 돌출면(12)에만 형성하여 Z방향으로 유입수가 토출되게 함을 특징으로 하는 실드 라이닝 배수시스템이다.At the top of the shield tunnel, the SK segment is alternately located at the XL and XR, and at the bottom of the shield tunnel, the SB segment and the two SC segments are alternately positioned at the bottom of the shield tunnel. The segment is sequentially positioned between the KR segment and the SB segment of the SK segment, and the SAC segment is positioned between the KL and KR and SC segments of the SK segment, while the KL, K, KR of the SK segment is located. Segments and four sides of the SA, SAB, and SAC segments have flow path grooves 10 formed at their centers, and outer projecting surfaces 14 and inner projecting surfaces 12 formed on both sides of the channel grooves 10, respectively. In the SB segment, which is an undrained segment, the planar portion 16 is formed at two sides in the circumferential direction P, and the outer groove 14 and the outer protrusion 14 and the inner protrusion 12 are formed on both sides thereof. L) formed on two sides in the direction and undrained The SC segment, which is a segment, has a flow path groove 10 and an outer protruding surface 14 and an inner protruding surface 12 formed on one side thereof in one longitudinal (L) direction, which is in contact with the SAC segment. Is formed on two sides of the circumferential (P) direction, and the water-expandable index member 40 of one row is provided on the inner protruding surface 12 of all the segments in which the flow path grooves 10 are installed. The plane portion 16 is provided with two rows of water-expandable index members 40, and the discharge ports 20 are provided at both end points of the protruding surface 12 in the longitudinal (L) direction of the SAB and the non-drained segment SB. Further, a quarter-shaped discharge groove 22 is formed at right angles to the longitudinal (L) direction flow path grooves 10 at both end points Q of the protruding surface 12 in the longitudinal (L) direction of the SAC and the undrained segment SC, respectively. However, the quarter-shaped discharge groove 22 is formed only on the protruding surface 12 in the longitudinal (L) direction to communicate with the longitudinal (L) direction flow path groove 10 so that the inflow water is discharged in the Z direction. Shield lining A number of systems.
(a) 본 발명은 수압이 고려된 종래의 비배수터널 개념과는 달리 수압이 고려되지 않는 배수터널 개념으로 설계되는 것이므로 세그먼트 라이닝 두께를 20~50% 줄일 수 있을 뿐만 아니라 세그먼트 라이닝 제작 및 물류비를 10~30% 저감할 수 있는 경제적 효과가 있다. (a) The present invention is designed to be a drainage tunnel concept in which water pressure is not considered, unlike the conventional non-drainage tunnel concept in which water pressure is considered, as well as reducing the segment lining thickness by 20 to 50%, as well as reducing the segment lining production and logistics costs. There is an economic effect that can be reduced by 10-30%.
(b) 배수터널 개념의 설계이므로 세그먼트 조인트부의 내 돌출면에만 수팽창 지수재를 1열로 배열하므로 2열배열의 비배수 터널 개념에 비해 수팽창 지수재를 그만큼 절감할 수 있어 경제적이다. (b) Since the design of the drain tunnel, the water expansion index members are arranged in one row only on the protruding surface of the segment joint part, so that the water expansion index members can be reduced as much as the non-drain tunnel concept of the two-row array.
(c) 비배수 개념의 실드터널은 시공상 문제로 인해 하저구간에서는 상당 양의 지하수가 터널내부로 유입되어 추가 차수그라우팅을 실시하나 배수 개념의 본 발명은 유도배수가 가능하므로 차수그라우팅과 같은 추가작업이 필요 없다. (c) The shield tunnel of the non-drainage concept has a considerable amount of groundwater flowing into the tunnel due to construction problems and performs additional order grouting. However, the present invention of the drainage concept is capable of induction drainage. No work required
(d) 모래 또는 PS볼을 뒤채움 충진재로 사용하므로 지하수 오염 등의 환경문제가 없을 뿐만 아니라 투수성이 뛰어나고 충진성이 좋아 공기압과 함께 1회 채움으로 밀실 되게 충진 시킬 수 있어 추가 충진 작업이 필요 없는 유용한 발명이다.(d) Since sand or PS balls are used as backfilling materials, there are no environmental problems such as groundwater contamination, as well as excellent permeability and good filling properties. There is no useful invention.
[도1] 본 발명 실드터널의 사시도1 is a perspective view of the shield tunnel of the present invention
[도2] 도1의 “A”부분 및 “B”의 확대도2 is an enlarged view of portion “A” and “B” in FIG. 1.
[도3] 도1의 A-A 단면도3 is a cross-sectional view taken along the line A-A of FIG.
[도4] 도1의 B-B 단면도4 is a cross-sectional view taken along line B-B of FIG.
[도5] SK세그먼트의 평면도5 is a plan view of the SK segment
[도6] 본 발명 유로홈과 수팽창 지수재와의 관계를 나타낸 SA, SK세그먼트의 사시도6 is a perspective view of SA and SK segments showing the relationship between the flow path groove and the water-expandable index member of the present invention;
[도7] 본 발명 유로홈과 수팽창 지수재와의 관계를 나타낸 SAB, SAC세그먼트의 사시도7 is a perspective view of SAB and SAC segments showing the relationship between the flow path groove and the water-expandable index member of the present invention.
[도8] 본 발명 유로홈과 수팽창 지수재와의 관계를 나타낸 SB세그먼트의 사시도8 is a perspective view of the SB segment showing the relationship between the flow path groove and the water-expandable index member of the present invention
[도9] 본 발명 유로홈과 수팽창 지수재와의 관계를 나타낸 SC세그먼트의 사시도9 is a perspective view of an SC segment showing the relationship between the flow path groove of the present invention and the water-expandable index member
[도10] 본 발명 실드터널의 배면공동에 뒤채움된 사시도10 is a perspective view backfilled with the rear cavity of the shield tunnel of the present invention;
[도11] 측방의 수평방향 지반반력은 실드 세그먼트의 지반 내 변위에 따라 발생하는 것으로 간주한 하고, 이에 따른 삼각형 분포의 지반반력을 나타낸 압력개념도 [Fig.11] The horizontal ground force in the lateral direction is regarded as occurring according to the displacement in the ground of the shield segment, and the pressure conceptual diagram showing the ground force of the triangular distribution accordingly.
<도면부호의 간단한 설명><Brief Description of Drawings>
100; 실드터널100; Shield Tunnel
10; 유로 홈, 12; 내 돌출면, 14; 외 돌출면, 16; 평면부, 18; 지지공10; Euro home, 12; Inner protruding surface, 14; Extruded surface, 16; Flat portion 18; Supporter
20; 토출구, 22; 토출 홈, 20; Outlet 22; Discharge groove,
30; 조인트부, 32; 연결부30; Joint part 32; Connection
40; 수팽창 지수재40; Water-expandable index material
50; 뒤채움재, 52; 모래50; Backfill, 52; sand
60; 지반60; Ground
본 발명은 종래의 비 배수(非 排水)터널 개념과는 달리 배수(排水)터널 개념이다. The present invention is different from the conventional non-drain tunnel concept of drainage tunnel concept.
배수(排水)터널 개념을 기본으로 한 본 발명의 실드 라이닝 배수시스템을 이용하여 실드터널 시공방법을 첨부된 도면과 함께 구체적으로 설명하면 다음과 같다. The method for constructing a shield tunnel using the shield lining drainage system of the present invention based on the concept of a drainage tunnel will be described in detail with the accompanying drawings.
KL, K, KR로 이루어진 SK 세그먼트와, 그리고 크기가 동일한 4각형형상의 세그먼트를 실드장비에 의하여 터널을 굴진해가면서 조립ㆍ축조되는 실드터널의 시공방법에 있어서 In the construction method of the shield tunnel, the SK segment consisting of KL, K, KR, and quadrangular segments having the same size are assembled and constructed while tunneling by the shielding equipment.
(a) 2열배열의 수팽창 지수재(40)가 원주(P)방향의 평면부(16)에 길이방향으로 설치되어있으면서 종(L)방향의 내 돌출면(12)에 1열배열의 수팽창 지수재(40)가 설치되어있고, 상기 내 돌출면(12)의 양 끝점 Q에는 유로 홈(40)까지 토출홈(22)이 연통된 비배수 세그먼트인 SB 세그먼트를 굴착지반 최하부에 설치하는 단계; (a) A two-row array of water-expandable index members 40 is provided in the longitudinal direction on the planar portion 16 in the circumferential direction P and has a single-row arrangement on the inner projecting surface 12 in the longitudinal (L) direction. A water-expandable index member 40 is provided, and at both end points Q of the inner protruding surface 12, an SB segment, which is an undrained segment in which the discharge groove 22 communicates with the flow path groove 40, is installed at the bottom of the excavation ground. Doing;
(b) 4변 모두에 유로 홈(10)과, 그리고 4변 모두의 내 돌출면(12)에 1열배열의 수팽창 지수재(40)가 형성되어있으면서 종(L)방향의 1변 내 돌출면의 끝점 Q에 토출홈(22)이 형성된 SAB 세그먼트의 종(L)방향 변을 SB 세그먼트의 양측 종(L)방향 변에 맞대어 SAB 세그먼트를 조립ㆍ설치하는 단계; (b) In one side in the longitudinal (L) direction while the flow path grooves 10 and all four sides of the inner protruding surface 12 are formed in one row of water-expandable index members 40 on all four sides. Assembling and installing the SAB segment by facing the longitudinal (L) side of the SAB segment having the discharge groove 22 formed at the end point Q of the protruding surface against the longitudinal (L) side of both sides of the SB segment;
(c) 4변 모두에 유로 홈(10)과, 그리고 4변 모두의 내 돌출면(12)에 1열배열의 수팽창 지수재(40)가 형성된 SA 세그먼트의 종(L)방향 변을 XR쪽 SAB 세그먼트의 종(L)방향 변에 맞대어 SA 세그먼트를 조립ㆍ설치하는 단계;(c) XR in the longitudinal (L) direction of the SA segment in which the flow path grooves 10 are formed on all four sides and the water-expandable index member 40 in one row is formed on the inner protruding surfaces 12 on all four sides. Assembling and installing the SA segment against the longitudinal (L) side edge of the side SAB segment;
(d) 4변 모두에 유로 홈(10)과, 그리고 4변 모두의 내 돌출면(12)에 1열배열의 수팽창 지수재(40)가 설치된 KL과 KR 세그먼트 중에서 XL쪽 SAB 세그먼트에는 KL 세그먼트를, XR쪽 SA 세그먼트에는 KR 세그먼트를 종(L)방향 변끼리 서로 맞대어 KL과 KR 세그먼트를 조립ㆍ설치하는 단계;(d) Among the KL and KR segments in which the flow path grooves 10 are provided on all four sides and the water-expandable index member 40 in one row is provided on the inner protruding surfaces 12 on all four sides, the KL is the XL SAB segment. Assembling and installing the segments in the XR-side SA segment by aligning the KR segments with the longitudinal (L) side edges;
(e) 4변 모두에 유로 홈(10)과, 그리고 4변 모두의 내 돌출면(12)에 1열배열의 수팽창 지수재(40)가 설치된 K 세그먼트를 KR과 KL 세그먼트사이에 종(L)방향 변에 삽입하여 제1열 실드조립을 완료하는 단계; (e) A K segment having a flow path groove 10 on all four sides and a one-row array of water-expandable index members 40 on all four sides of the inner protruding surface 12 may be formed between the KR and KL segments. L) inserting in the direction side to complete the first row shield assembly;
(f) 제1열 실드조립에 연하여 굴진방향으로 2열배열의 수팽창 지수재(40)가 2개의 원주(P)방향의 평면부(16)와 1개의 종(L)방향의 평면부(16)에 설치된 SC 세그먼트를 종(L)방향의 평면부(16)끼리 서로 연결하여 2개의 SC 세그먼트를 비배수 세그먼트로 하되 유로 홈(10)이 형성된 종(L)방향의 변에는 내 돌출면(12)에 1열배열의 수팽창 지수재(40)가 설치되어있고, 내 돌출면(12)의 양 끝점 Q에는 토출홈(22)이 유로 홈(10)까지 연통된 2개의 SC 세그먼트를 굴착지반 최하부에 설치하는 단계;(f) The two-row array of water-expandable index members 40 in the excavating direction in conjunction with the first-row shield assembly include the planar portion 16 in two circumferential (P) directions and the planar portion in one longitudinal (L) direction. The SC segments provided in the (16) are connected to each other in the longitudinal (L) direction of the planar portions 16 to form two SC segments as non-drained segments, but protrude in the longitudinal (L) side where the flow path grooves 10 are formed. Two SC segments in which one row of water-expandable index members 40 are provided on the surface 12 and discharge grooves 22 communicate with the flow path grooves 10 at both end points Q of the inner protruding surface 12. Installing the bottom of the excavation ground;
(g) 4변 모두에 유로 홈(10)과, 그리고 4변 모두의 내 돌출면(12)에 1열배열의 수팽창 지수재(40)가 형성되어있으면서 종(L)방향의 1변 내 돌출면(12)의 끝점 Q에 토출홈(22)이 형성된 SAC 세그먼트의 종(L)방향 변을 토출홈(22)이 형성된 비배수 세그먼트인 SC 세그먼트의 종(L)방향 변에 맞대어 SAC 세그먼트를 조립ㆍ설치하는 단계; (g) In one side in the longitudinal (L) direction while the flow path grooves 10 on all four sides and the water-expandable index member 40 in one row are formed on the inner protruding surfaces 12 on all four sides. The longitudinal (L) side of the SAC segment in which the discharge groove 22 is formed at the end point Q of the protruding surface 12 is opposed to the longitudinal (L) side of the SC segment, which is an undrained segment in which the discharge groove 22 is formed. Assembling and installing;
(h) 4변 모두에 유로 홈(10)과, 그리고 4변 모두의 내 돌출면(12)에 1열배열의 수팽창 지수재(40)가 설치된 KL 세그먼트를 XL쪽 SAC 세그먼트의 종(L)방향 변에, KR 세그먼트를 XL쪽 SAC 세그먼트의 종(L)방향 변에 서로 맞대고 KR과 KL 세그먼트를 조립ㆍ설치하는 단계;(h) The KL segment provided with the flow path groove 10 on all four sides and the water-expandable index member 40 in one row on the inner protruding surface 12 on all four sides is selected from the length L of the SAC segment. Assembling and installing the KR segment and the KL segment against each other on the longitudinal side, with the KR segment facing the longitudinal (L) side of the XL side SAC segment;
(i) 4변 모두에 유로 홈(10)과, 그리고 4변 모두의 내 돌출면(12)에 1열배열의 수팽창 지수재(40)가 설치된 K 세그먼트를 KR과 KL 세그먼트종(L)방향 변 사이에 삽입하여 제2열 실드조립을 완료하는 단계; (i) KR and KL segment types (L) in which the channel grooves 10 are provided on all four sides and the water-expandable index members 40 in one row are provided on the inner protruding surfaces 12 on all four sides. Inserting between the direction sides to complete the second row shield assembly;
(j) (a)~(i)단계를 반복하면서 제3열, 제4열, ㆍㆍㆍ실드조립을 완료하는 단계; (j) completing the third row, the fourth row, the shield assembly, repeating steps (a) to (i);
(k) 실드조립이 완료된 후 세그먼트의 지지공(18)을 통하여 모래 등의 충진재(50)를 공기압과 함께 배면공동에 충진하는 단계;를 포함함을 특징으로 하는 실드 라이닝 배수시스템을 이용한 실드터널 시공방법이다.(k) filling the filling cavity 50, such as sand, into the rear cavity through the support hole 18 of the segment after the shield assembly is completed; the shield tunnel using a shield lining drainage system, comprising: It is a construction method.
여기에다 (k)단계에서의 충진재(50)의 입경은 1~20mm이고, 충진재가 이루는 투수계수가 1 x 10-3 ~ 1 x 10 cm/sec이 바람직하다. 지하수의 유입이 원활하게 되면서 유로 홈(10)으로 충진재(50)의 유입이 방지되어 유공관의 폐색이 발생하지 않기 때문이다.In addition, the particle size of the filler 50 in the step (k) is 1 ~ 20mm, the permeability coefficient of the filler is preferably 1 x 10 -3 ~ 1 x 10 cm / sec. This is because the smooth inflow of groundwater prevents the inflow of the filler 50 into the flow path groove 10 so that clogging of the perforated pipe does not occur.
또한 충진재(50)가 배면공동에 밀실되게 하기위한 충진재(50) 분사공기압은 1~3bar가 바람직하다. In addition, the injection air pressure for filling the filler 50 to be closed in the rear cavity is preferably 1 to 3 bar.

Claims (4)

  1. KL, K, KR로 이루어진 SK 세그먼트와, 그리고 크기가 동일한 4각형형상의 세그먼트를 실드장비에 의하여 터널을 굴진해가면서 조립ㆍ축조되는 실드터널에 있어서 In the shield tunnel where SK segments composed of KL, K, KR, and quadrangular segments having the same size are assembled and constructed while tunneling through the shielding equipment,
    실드터널의 최상부에는 SK 세그먼트가 XL과 XR에 교번적으로 위치되고, 이에 대응되는 최하부에는 비배수 세그먼트인 SB 세그먼트와 2개의 SC 세그먼트가 교번되게 위치되며, SK 세그먼트의 KL과 SB 세그먼트사이에는 SAB 세그먼트가, SK 세그먼트의 KR과 SB 세그먼트사이에는 SA 세그먼트와 SAB 세그먼트가 순차적으로 위치되고, 또 SK 세그먼트의 KL 및 KR과 SC 세그먼트사이에는 SAC 세그먼트가 위치되는 한편, SK 세그먼트의 KL, K, KR 세그먼트와, 그리고 SA, SAB, SAC 세그먼트의 4변에는 그 중심에 유로 홈(10)이, 그리고 유로 홈(10)의 양측에 외 돌출면(14)과 내 돌출면(12)이 형성되어있고, 비배수 세그먼트인 SB 세그먼트에는 평면부(16)가 원주(P)방향 2변에 형성되어있으면서 유로 홈(10)과 그 양측에 외 돌출면(14)과 내 돌출면(12)이 종(L)방향 2변에 형성되어있고, 비배수 세그먼트인 SC 세그먼트에는 유로 홈(10)과 그 양측에 외 돌출면(14)과 내 돌출면(12)이 SAC 세그먼트와 접면되는 종(L)방향 1변에 형성되어있으면서 평면부(16)는 원주(P)방향 2변에 형성되어있고, 유로 홈(10)이 설치된 모든 세그먼트의 내 돌출면(12)에는 1열배열의 수팽창 지수재(40)가 설치되어있으며, 비배수 세그먼트의 평면부(16)에는 2열배열의 수팽창 지수재(40)가 설치되어있고, 토출구(20)는 SAB와 비배수 세그먼트 SB의 종(L)방향 내 돌출면(12)의 양 끝점에, 그리고 SAC와 비배수 세그먼트 SC의 종(L)방향 내 돌출면(12)의 양 끝점 Q에 1/4형상의 토출 홈(22)을 종(L)방향 유로 홈(10)에 직각되게 각각 형성하되 1/4형상의 토출 홈(22)은 종(L)방향 유로 홈(10)과 연통되게 종(L)방향 내 돌출면(12)에만 형성하여 Z방향으로 유입수가 토출되게 함을 특징으로 하는 실드 라이닝 배수시스템At the top of the shield tunnel, the SK segment is alternately located at the XL and XR, and at the bottom of the shield tunnel, the SB segment and the two SC segments are alternately positioned at the bottom of the shield tunnel. The segment is sequentially positioned between the KR segment and the SB segment of the SK segment, and the SAC segment is positioned between the KL and KR and SC segments of the SK segment, while the KL, K, KR of the SK segment is located. Segments and four sides of the SA, SAB, and SAC segments have flow path grooves 10 formed at their centers, and outer projecting surfaces 14 and inner projecting surfaces 12 formed on both sides of the channel grooves 10, respectively. In the SB segment, which is an undrained segment, the planar portion 16 is formed at two sides in the circumferential direction P, and the outer groove 14 and the outer protrusion 14 and the inner protrusion 12 are formed on both sides thereof. L) formed on two sides in the direction and undrained The SC segment, which is a segment, has a flow path groove 10 and an outer protruding surface 14 and an inner protruding surface 12 formed on one side thereof in one longitudinal (L) direction, which is in contact with the SAC segment. Is formed on two sides of the circumferential (P) direction, and the water-expandable index member 40 of one row is provided on the inner protruding surface 12 of all the segments in which the flow path grooves 10 are installed. The plane portion 16 is provided with two rows of water-expandable index members 40, and the discharge ports 20 are provided at both end points of the protruding surface 12 in the longitudinal (L) direction of the SAB and the non-drained segment SB. Further, a quarter-shaped discharge groove 22 is formed at right angles to the longitudinal (L) direction flow path grooves 10 at both end points Q of the protruding surface 12 in the longitudinal (L) direction of the SAC and the undrained segment SC, respectively. However, the quarter-shaped discharge groove 22 is formed only on the protruding surface 12 in the longitudinal (L) direction to communicate with the longitudinal (L) direction flow path groove 10 so that the inflow water is discharged in the Z direction. Shield lining Water system
  2. KL, K, KR로 이루어진 SK 세그먼트와, 그리고 크기가 동일한 4각형형상의 세그먼트를 실드장비에 의하여 터널을 굴진해가면서 조립ㆍ축조되는 실드터널의 시공방법에 있어서 In the construction method of the shield tunnel, the SK segment consisting of KL, K, KR, and quadrangular segments having the same size are assembled and constructed while tunneling by the shielding equipment.
    (a) 2열배열의 수팽창 지수재(40)가 원주(P)방향의 평면부(16)에 길이방향으로 설치되어있으면서 종(L)방향의 내 돌출면(12)에 1열배열의 수팽창 지수재(40)가 설치되어있고, 상기 내 돌출면(12)의 양 끝점 Q에는 유로 홈(40)까지 토출홈(22)이 연통된 비배수 세그먼트인 SB 세그먼트를 굴착지반 최하부에 설치하는 단계; (a) A two-row array of water-expandable index members 40 is provided in the longitudinal direction on the planar portion 16 in the circumferential direction P and has a single-row arrangement on the inner projecting surface 12 in the longitudinal (L) direction. A water-expandable index member 40 is provided, and at both end points Q of the inner protruding surface 12, an SB segment, which is an undrained segment in which the discharge groove 22 communicates with the flow path groove 40, is installed at the bottom of the excavation ground. Doing;
    (b) 4변 모두에 유로 홈(10)과, 그리고 4변 모두의 내 돌출면(12)에 1열배열의 수팽창 지수재(40)가 형성되어있으면서 종(L)방향의 1변 내 돌출면의 끝점 Q에 토출홈(22)이 형성된 SAB 세그먼트의 종(L)방향 변을 SB 세그먼트의 양측 종(L)방향 변에 맞대어 SAB 세그먼트를 조립ㆍ설치하는 단계; (b) In one side in the longitudinal (L) direction while the flow path grooves 10 and all four sides of the inner protruding surface 12 are formed in one row of water-expandable index members 40 on all four sides. Assembling and installing the SAB segment by facing the longitudinal (L) side of the SAB segment having the discharge groove 22 formed at the end point Q of the protruding surface against the longitudinal (L) side of both sides of the SB segment;
    (c) 4변 모두에 유로 홈(10)과, 그리고 4변 모두의 내 돌출면(12)에 1열배열의 수팽창 지수재(40)가 형성된 SA 세그먼트의 종(L)방향 변을 XR쪽 SAB 세그먼트의 종(L)방향 변에 맞대어 SA 세그먼트를 조립ㆍ설치하는 단계;(c) XR in the longitudinal (L) direction of the SA segment in which the flow path grooves 10 are formed on all four sides and the water-expandable index member 40 in one row is formed on the inner protruding surfaces 12 on all four sides. Assembling and installing the SA segment against the longitudinal (L) side edge of the side SAB segment;
    (d) 4변 모두에 유로 홈(10)과, 그리고 4변 모두의 내 돌출면(12)에 1열배열의 수팽창 지수재(40)가 설치된 KL과 KR 세그먼트 중에서 XL쪽 SAB 세그먼트에는 KL 세그먼트를, XR쪽 SA 세그먼트에는 KR 세그먼트를 종(L)방향 변끼리 서로 맞대어 KL과 KR 세그먼트를 조립ㆍ설치하는 단계;(d) Among the KL and KR segments in which the flow path grooves 10 are provided on all four sides and the water-expandable index member 40 in one row is provided on the inner protruding surfaces 12 on all four sides, the KL is the XL SAB segment. Assembling and installing the segments in the XR-side SA segment by aligning the KR segments with the longitudinal (L) side edges;
    (e) 4변 모두에 유로 홈(10)과, 그리고 4변 모두의 내 돌출면(12)에 1열배열의 수팽창 지수재(40)가 설치된 K 세그먼트를 KR과 KL 세그먼트사이에 종(L)방향 변에 삽입하여 제1열 실드조립을 완료하는 단계; (e) A K segment having a flow path groove 10 on all four sides and a one-row array of water-expandable index members 40 on all four sides of the inner protruding surface 12 may be formed between the KR and KL segments. L) inserting in the direction side to complete the first row shield assembly;
    (f) 제1열 실드조립에 연하여 굴진방향으로 2열배열의 수팽창 지수재(40)가 2개의 원주(P)방향의 평면부(16)와 1개의 종(L)방향의 평면부(16)에 설치된 SC 세그먼트를 종(L)방향의 평면부(16)끼리 서로 연결하여 2개의 SC 세그먼트를 비배수 세그먼트로 하되 유로 홈(10)이 형성된 종(L)방향의 변에는 내 돌출면(12)에 1열배열의 수팽창 지수재(40)가 설치되어있고, 내 돌출면(12)의 양 끝점 Q에는 토출홈(22)이 유로 홈(10)까지 연통된 2개의 SC 세그먼트를 굴착지반 최하부에 설치하는 단계;(f) The two-row array of water-expandable index members 40 in the excavating direction in conjunction with the first-row shield assembly include the planar portion 16 in two circumferential (P) directions and the planar portion in one longitudinal (L) direction. The SC segments provided in the (16) are connected to each other in the longitudinal (L) direction of the planar portions 16 to form two SC segments as non-drained segments, but protrude in the longitudinal (L) side where the flow path grooves 10 are formed. Two SC segments in which one row of water-expandable index members 40 are provided on the surface 12 and discharge grooves 22 communicate with the flow path grooves 10 at both end points Q of the inner protruding surface 12. Installing the bottom of the excavation ground;
    (g) 4변 모두에 유로 홈(10)과, 그리고 4변 모두의 내 돌출면(12)에 1열배열의 수팽창 지수재(40)가 형성되어있으면서 종(L)방향의 1변 내 돌출면(12)의 끝점 Q에 토출홈(22)이 형성된 SAC 세그먼트의 종(L)방향 변을 토출홈(22)이 형성된 비배수 세그먼트인 SC 세그먼트의 종(L)방향 변에 맞대어 SAC 세그먼트를 조립ㆍ설치하는 단계; (g) In one side in the longitudinal (L) direction while the flow path grooves 10 on all four sides and the water-expandable index member 40 in one row are formed on the inner protruding surfaces 12 on all four sides. The longitudinal (L) side of the SAC segment in which the discharge groove 22 is formed at the end point Q of the protruding surface 12 is opposed to the longitudinal (L) side of the SC segment, which is an undrained segment in which the discharge groove 22 is formed. Assembling and installing;
    (h) 4변 모두에 유로 홈(10)과, 그리고 4변 모두의 내 돌출면(12)에 1열배열의 수팽창 지수재(40)가 설치된 KL 세그먼트를 XL쪽 SAC 세그먼트의 종(L)방향 변에, KR 세그먼트를 XL쪽 SAC 세그먼트의 종(L)방향 변에 서로 맞대고 KR과 KL 세그먼트를 조립ㆍ설치하는 단계;(h) The KL segment provided with the flow path groove 10 on all four sides and the water-expandable index member 40 in one row on the inner protruding surface 12 on all four sides is selected from the length L of the SAC segment. Assembling and installing the KR segment and the KL segment against each other on the longitudinal side, with the KR segment facing the longitudinal (L) side of the XL side SAC segment;
    (i) 4변 모두에 유로 홈(10)과, 그리고 4변 모두의 내 돌출면(12)에 1열배열의 수팽창 지수재(40)가 설치된 K 세그먼트를 KR과 KL 세그먼트종(L)방향 변 사이에 삽입하여 제2열 실드조립을 완료하는 단계; (i) KR and KL segment types (L) in which the channel grooves 10 are provided on all four sides and the water-expandable index members 40 in one row are provided on the inner protruding surfaces 12 on all four sides. Inserting between the direction sides to complete the second row shield assembly;
    (j) (a)~(i)단계를 반복하면서 제3열, 제4열, ㆍㆍㆍ실드조립을 완료하는 단계; (j) completing the third row, the fourth row, the shield assembly, repeating steps (a) to (i);
    (k) 실드조립이 완료된 후 세그먼트의 지지공(18)을 통하여 모래 등의 충진재(50)를 공기압과 함께 배면공동에 충진하는 단계;를 포함함을 특징으로 하는 실드 라이닝 배수시스템을 이용한 실드터널 시공방법(k) filling the filling cavity 50, such as sand, into the rear cavity through the support hole 18 of the segment after the shield assembly is completed; the shield tunnel using a shield lining drainage system, comprising: Construction method
  3. 제2항에 있어서The method of claim 2
    (k)단계에서 충진재(50)의 입경은 1~20mm이고, 충진재(50)가 이루는 투수계수가 1 x 10-3 ~ 1 x 10 cm/sec임을 특징으로 하는 실드 라이닝 배수시스템을 이용한 실드터널 시공방법The shield tunnel using the shield lining drainage system, characterized in that the particle diameter of the filler 50 in the step (k) is 1 ~ 20mm, the permeability coefficient of the filler 50 is 1 x 10 -3 ~ 1 x 10 cm / sec Construction method
  4. 제2항에 있어서The method of claim 2
    (k)단계에서 충진재(50)의 분사공기압이 1~3bar가 되게 함을 특징으로 하는 실드 라이닝 배수시스템을 이용한 실드터널 시공방법Shield tunnel construction method using the shield lining drainage system, characterized in that in step (k) the injection air pressure of the filler 50 is 1 ~ 3bar
PCT/KR2011/009344 2010-12-07 2011-12-05 Drain system of shield tunnel lining and method for constructing shield tunnel using same WO2012077941A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180058774.4A CN103270246B (en) 2010-12-07 2011-12-05 Drain system of shield tunnel lining and method for constructing shield tunnel using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100124298A KR101215903B1 (en) 2010-12-07 2010-12-07 Drainage system of shield tunnel lining and method constructing the shield tunnel therewith
KR10-2010-0124298 2010-12-07

Publications (2)

Publication Number Publication Date
WO2012077941A2 true WO2012077941A2 (en) 2012-06-14
WO2012077941A3 WO2012077941A3 (en) 2012-10-11

Family

ID=46207578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009344 WO2012077941A2 (en) 2010-12-07 2011-12-05 Drain system of shield tunnel lining and method for constructing shield tunnel using same

Country Status (3)

Country Link
KR (1) KR101215903B1 (en)
CN (1) CN103270246B (en)
WO (1) WO2012077941A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107229812A (en) * 2017-07-31 2017-10-03 中国水利水电第七工程局成都水电建设工程有限公司 A kind of high hydraulic pressure Karst Tunnel lining cutting water pressure calculation method
CN108709534A (en) * 2018-06-27 2018-10-26 中国地质大学(武汉) Shield tunnel construction stress deformation indoor model test device and its installation method
CN109827494A (en) * 2019-03-12 2019-05-31 天津大学前沿技术研究院有限公司 A kind of instrument measuring shield tunnel gap of the shield tail
WO2019149604A1 (en) * 2018-01-31 2019-08-08 Tata Steel Nederland Technology B.V. Tube segment and tube for evacuated tube transport system
CN112855209A (en) * 2021-03-27 2021-05-28 南通铁建建设构件有限公司 High-strength anti-seepage shield segment for river-crossing tunnel
CN113006832A (en) * 2021-05-11 2021-06-22 西京学院 Small-excavation segment welded type underground vacuum pipeline and construction method thereof
CN115387803A (en) * 2022-08-11 2022-11-25 华能云南滇东能源有限责任公司 Heading machine stretching shield and heading machine

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101384738B1 (en) * 2013-04-16 2014-04-14 이시카와지마 겐자이 고교 가부시키가이샤 Waterproofing method for precast tunnel structure
KR101596806B1 (en) * 2014-06-10 2016-02-23 주식회사경도 Groundwater pressure control means comprises a shield T tunnel structure
CN105317447A (en) * 2014-07-30 2016-02-10 安瑞隧道壁板科技开发(大连)有限公司 Flow guide channel type ductile cast iron tunnel wallboard with high strength and toughness
CN105986827B (en) * 2015-02-03 2018-02-02 中国电建集团华东勘测设计研究院有限公司 Groundwater Treatment Methodss in a kind of tunnel side and roof arch lining concrete casting process
KR101907887B1 (en) 2015-05-27 2018-10-17 한국건설기술연구원 Backfilling material injection method for shield tunnel lining of drainage type using precious slag (ps) ball
CN110130905B (en) * 2019-05-10 2024-04-19 中铁第四勘察设计院集团有限公司 Shield tunnel circumferential seam shearing-resistant structure adapting to vertical fault of movable fault
CN110821515B (en) * 2019-09-30 2021-04-02 中铁隧道局集团建设有限公司 Construction method of assembled supporting structure of tunnel in high and cold area
KR102488061B1 (en) * 2020-10-19 2023-01-13 강릉건설(주) Tunnel excavation structure with backflow prevention member of backfill member
CN113153379B (en) * 2021-04-27 2024-01-09 重庆永昂实业有限公司 Tunnel waterproof and drainage system and construction process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08296399A (en) * 1995-04-24 1996-11-12 Kyoritsu Kagaku Sangyo Kk Embedment method for joint groove in underground pipeline
JPH0972197A (en) * 1995-09-07 1997-03-18 Shimizu Corp Shield tunnel lining method and shield tunnel lining construction
KR100936471B1 (en) * 2007-03-09 2010-01-13 한국건설기술연구원 A circular structure supported by the segment with A drainage structure and method constructing the shield tunnel
JP2010095977A (en) * 2008-10-20 2010-04-30 Ohbayashi Corp Drainage structure for underground water, and construction method for tunnel having the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100516462C (en) * 2005-09-22 2009-07-22 上海交通大学 Deviation correcting pressure weight method for side rolling in double circle shield tunnel construction
CN200958396Y (en) * 2006-10-16 2007-10-10 衡水长江预应力有限公司 Composite netted waterproof layer
CN101012750B (en) * 2007-02-12 2010-05-19 上海市隧道工程轨道交通设计研究院 Combined jointing method of lining gilled tube and inner lining for shield tunnel
CN101319942B (en) * 2008-07-22 2010-07-21 西南交通大学 Hydraulic prototype test method of underwater shield tunneling structure model
CN101403645B (en) * 2008-11-12 2011-02-16 西南交通大学 Hydraulic pressure and soil pressure independently loaded shield tunneling structure prototype experiment apparatus
CN101787890B (en) * 2009-12-29 2013-05-29 上海市基础工程有限公司 Rotating control method of shield segment splicing machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08296399A (en) * 1995-04-24 1996-11-12 Kyoritsu Kagaku Sangyo Kk Embedment method for joint groove in underground pipeline
JPH0972197A (en) * 1995-09-07 1997-03-18 Shimizu Corp Shield tunnel lining method and shield tunnel lining construction
KR100936471B1 (en) * 2007-03-09 2010-01-13 한국건설기술연구원 A circular structure supported by the segment with A drainage structure and method constructing the shield tunnel
JP2010095977A (en) * 2008-10-20 2010-04-30 Ohbayashi Corp Drainage structure for underground water, and construction method for tunnel having the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107229812A (en) * 2017-07-31 2017-10-03 中国水利水电第七工程局成都水电建设工程有限公司 A kind of high hydraulic pressure Karst Tunnel lining cutting water pressure calculation method
WO2019149604A1 (en) * 2018-01-31 2019-08-08 Tata Steel Nederland Technology B.V. Tube segment and tube for evacuated tube transport system
US11492019B2 (en) 2018-01-31 2022-11-08 Tata Steel Nederland Technology B.V. Tube segment and tube for evacuated tube transport system
CN108709534A (en) * 2018-06-27 2018-10-26 中国地质大学(武汉) Shield tunnel construction stress deformation indoor model test device and its installation method
CN108709534B (en) * 2018-06-27 2023-08-04 中国地质大学(武汉) Shield tunnel structure stress deformation indoor model test device and installation method thereof
CN109827494A (en) * 2019-03-12 2019-05-31 天津大学前沿技术研究院有限公司 A kind of instrument measuring shield tunnel gap of the shield tail
CN109827494B (en) * 2019-03-12 2024-03-08 天津大学前沿技术研究院有限公司 Instrument for measuring shield tail gap of shield tunnel
CN112855209A (en) * 2021-03-27 2021-05-28 南通铁建建设构件有限公司 High-strength anti-seepage shield segment for river-crossing tunnel
CN113006832A (en) * 2021-05-11 2021-06-22 西京学院 Small-excavation segment welded type underground vacuum pipeline and construction method thereof
CN115387803A (en) * 2022-08-11 2022-11-25 华能云南滇东能源有限责任公司 Heading machine stretching shield and heading machine
CN115387803B (en) * 2022-08-11 2023-09-22 华能云南滇东能源有限责任公司 Heading machine tightening shield and heading machine

Also Published As

Publication number Publication date
KR101215903B1 (en) 2012-12-27
CN103270246B (en) 2015-06-24
CN103270246A (en) 2013-08-28
WO2012077941A3 (en) 2012-10-11
KR20120063218A (en) 2012-06-15

Similar Documents

Publication Publication Date Title
WO2012077941A2 (en) Drain system of shield tunnel lining and method for constructing shield tunnel using same
WO2018221933A1 (en) Casing guide apparatus for ground excavator, and excavation method using same
WO2011102595A2 (en) Reinforced self-supported retaining wall structure making use of the arching effect and a construction method of excavations using the same
WO2020138860A1 (en) Method for constructing annular foundation using variable cross-section rectangular pipes, and foundation thereof
WO2015002348A1 (en) Prefabricated frame for steel-concrete composite member having attachable and detachable formwork and prefabricated column integrated with corrugated deck formwork
WO2014139252A1 (en) Method for constructing large raft foundation in high-temperature environment
WO2020197366A1 (en) Mold for wave dissipating block and method for manufacturing wave dissipating block by using same
WO2015142017A1 (en) Tunnel having steel rib having concrete filled steel tube structure and method for constructing same
WO2021054524A1 (en) Bucket
WO2013089371A2 (en) Horizontal transport apparatus capable of measuring the weight of a heavy object and horizontal movement
WO2016208934A1 (en) Free-standing retaining wall structure using two rows of h-beams and using high-strength steel plates and method for building same
WO2018074735A1 (en) Method for automatic replacement of casing and drill pipe and drilling machine comprising same
WO2023106785A1 (en) Cutting arm for forming enlarged-tip-reinforcing part of pile, and method for constructing pile having enlarged-tip-reinforcing part
WO2015174737A1 (en) Self-diameter-enlarging pile, and method for constructing same
WO2010085016A1 (en) Heavy weight transport and support device and heavy weight transport method using the same
WO2017034069A1 (en) Horizontal transport device having load cell embedded in bearing and strengthened load bearing capacity, and driving method therefor
WO2020105897A1 (en) Sleeve for connecting steel bar
WO2020159023A1 (en) Low-torque water shutoff-type line stopping valve using stepwise pressure point support
WO2010062078A2 (en) Concrete product assembly
CN103806466A (en) Modular cross-wall structure for civil work
WO2009142397A2 (en) A block for building a revetment and a construction method thereof
WO2012165669A1 (en) Earth retaining temporary structure and construction method for same
WO2020149473A1 (en) Display device
WO2021045440A1 (en) Underwater concrete block structure and construction method therefor
WO2023038449A1 (en) Retaining wall structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846812

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112 (1) EPC (EPO FORM 1205A DATED 19/11/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11846812

Country of ref document: EP

Kind code of ref document: A2