WO2012077867A1 - Nanofiber manufacturing device - Google Patents

Nanofiber manufacturing device Download PDF

Info

Publication number
WO2012077867A1
WO2012077867A1 PCT/KR2011/003058 KR2011003058W WO2012077867A1 WO 2012077867 A1 WO2012077867 A1 WO 2012077867A1 KR 2011003058 W KR2011003058 W KR 2011003058W WO 2012077867 A1 WO2012077867 A1 WO 2012077867A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer solution
nozzle
jacket
upward
tip
Prior art date
Application number
PCT/KR2011/003058
Other languages
French (fr)
Korean (ko)
Inventor
이재환
김익수
Original Assignee
주식회사 톱텍
신슈 다이가쿠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 톱텍, 신슈 다이가쿠 filed Critical 주식회사 톱텍
Publication of WO2012077867A1 publication Critical patent/WO2012077867A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0069Electro-spinning characterised by the electro-spinning apparatus characterised by the spinning section, e.g. capillary tube, protrusion or pin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D13/00Complete machines for producing artificial threads
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • a nanofiber means the fiber which consists of a polymer material and whose average diameter is several nm-several thousand nm.
  • a polymer solution means the solution which melt
  • FIG. 5 (a) is a front view of the nanofiber manufacturing apparatus 900
  • FIG. 5 (b) is a perspective view around the upward nozzle 912
  • FIG. 5 (c) is a front view of the nozzle tip portion 913.
  • a plurality of upward nozzles 912 for discharging a polymer solution upwardly from a discharge port, and a plurality of upward nozzles
  • a nozzle block 910 having a polymer solution supply path 914 for supplying a polymer solution to 912 and a polymer solution recovery path 916 for recovering the polymer solution that has overflowed from an outlet of the upward nozzle 912, and a nozzle block Collector 920 disposed above 910, a power supply device 930 for applying a high voltage between the plurality of upward nozzles 912 and the collector 920, and a polymer solution serving as a raw material of nanofibers.
  • the metering pump 950 for supplying the polymer solution stored in the tank 940 to the polymer solution supply path 914 of the nozzle block 910, and the plurality of upward nozzles 912. Recovering the polymer solution flowed back to the tank 940 Recovery pump 960 is provided.
  • the nozzle tip 913 which is the tip of the upward nozzle 912, has a cylindrical shape with a wide tip as shown in FIGS. 5B and 5C.
  • the nanofiber manufacturing apparatus 900 since the nanofibers are electrospun by discharging the polymer solution from the discharge ports of the plurality of upward nozzles 912, the nanofiber manufacturing apparatus using the conventional downward nozzle
  • the droplet phenomenon (a phenomenon in which agglomerates of a polymer solution which did not radiate from the downward nozzle adheres to the long sheet as it is) does not occur, and it is possible to manufacture high quality nanofibers.
  • the nanofibers are field-spun while overflowing the polymer solution from the discharge ports of the plurality of upward nozzles 912, a sufficient amount of the polymer solution is always supplied to the upward nozzle. It becomes possible to manufacture nanofibers having a uniform quality.
  • nanofiber manufacturing apparatus 900 since it is possible to recover the polymer solution overflowed from the discharge ports of the plurality of upward nozzles 912 and reuse it as a raw material of the nanofibers, reducing the fee for use of the raw materials As a result, nanofibers can be produced at low cost. This also follows the flow of resource saving.
  • the solvent is volatilized from the polymer solution in the process of electric field spinning while overflowing the polymer solution from the discharge port of the upward nozzle, so that the vicinity of the discharge port of the upward nozzle is near. It has been found that there is a problem that a polymer solid is produced, and the polymer solid is attached to the "nanofiber to be a product" to degrade the quality of the nanofiber.
  • An object of the present invention is to provide a nanofiber manufacturing apparatus capable of solving the problem.
  • the nanofiber manufacturing apparatus of the present invention overflows from a plurality of upward nozzles for discharging a polymer solution upward from a discharge port, a polymer solution supply path for supplying the polymer solution to the plurality of upward nozzles, and a discharge port of the plurality of upward nozzles.
  • a nano-fiber manufacturing apparatus makes it possible to, (hereinafter referred to as the nozzle tip end portion), the front end portion of the upstream nozzle and the cylinder characterized in that it contains the axis and an oblique cut along the intersecting plane shape of the cylinder.
  • an angle formed between the axis of the cylinder and the plane is in the range of 15 ° to 60 °.
  • the polymer solution recovery path includes a receiving portion receiving the polymer solution overflowed from the discharge ports of the plurality of upward nozzles, and a plurality of nozzles covering the receiving portions and passing through each upward nozzle. And a plurality of jackets covering the side surfaces of each of the upward nozzles protruding from the plurality of nozzle holes, and the proximal end of the jacket as the jacket proximal end, and the distal end side of the jacket.
  • the said jacket tip part is thinner than the said jacket base part.
  • the jacket base end has a tubular shape with a constant thickness
  • the jacket end part has a tubular shape that gradually decreases in thickness from the connecting end of the jacket end part to the jacket base end. It is desirable to have.
  • the tip of the inclined surface portion formed on the tip side of the nozzle tip portion is preferably located above the tip of the jacket.
  • the interval d1 along the axis of the cylinder between the tip of the inclined surface portion and the tip of the jacket is preferably in the range of 0.1 mm to 2.0 mm.
  • the base end of the inclined surface portion formed on the tip side of the nozzle tip portion is preferably located below the tip of the jacket.
  • the distance d2 along the axis of the cylinder between the base end of the inclined surface portion and the tip of the jacket is preferably in the range of 0.1 mm to 1.0 mm.
  • the area of the area surrounded by the inner circumference of the jacket is S1
  • the nozzle tip portion is When making the area of the area
  • the lid portion further has a lid portion screw portion around the nozzle hole, and the jacket is a jacket side screw portion corresponding to the lid portion screw portion on a proximal side of the jacket base end portion. It is further preferred that the lid part and the jacket are coupled by fitting the lid part side screw part and the jacket side threaded part.
  • the polymer solution supply path further has a polymer solution supply path side threaded portion, and the upward nozzle corresponds to the polymer solution supply path side threaded portion on the proximal side of the upward nozzle.
  • the polymer solution supply path and the upward nozzle are coupled by fitting the polymer solution supply path side threaded portion and the upward nozzle side threaded portion, and the proximal end of the upward nozzle is a polygonal cylinder. It is preferable that it is formed in a shape.
  • a regeneration tank for storing the regenerated polymer solution as a raw material tank for storing the polymer solution as a raw material of the nanofibers, and a regeneration tank for regenerating the recovered polymer solution.
  • an intermediate tank for storing the polymer solution supplied from the raw material tank or the regeneration tank, a first transfer device for transferring the polymer solution from the polymer solution recovery path of the nozzle block to the regeneration tank;
  • a first transfer control device for controlling a transfer operation of the transfer device, a second transfer device for transferring the polymer solution from the raw material tank and the regeneration tank to the intermediate tank, and a transfer operation of the second transfer device It is preferable to further provide a 2nd conveyance control apparatus.
  • the "transfer device” includes a pipe through the polymer solution, a pump for transferring the polymer solution, and the like.
  • the “conveyor control apparatus” includes a valve for controlling whether or not the polymer solution passes and the amount of passage, a controller for controlling the operation of the valve or the pump described above.
  • the device further comprises a conveying device for conveying a long sheet, and at least the nozzle block and the collector, and as a field radiating device for depositing nanofibers on the surface of the long sheet. And a plurality of field radiating devices arranged in series along the conveying direction of the long sheet.
  • the nanofiber manufacturing apparatus of the present invention since the polymer solution is discharged by discharging the polymer fibers from the discharge ports of the plurality of upward nozzles, the nanofiber production using the conventional downward nozzle The droplet phenomenon seen in the case of the device does not occur, and it becomes possible to manufacture high quality nanofibers.
  • the nanofiber manufacturing apparatus of the present invention since a field of the nanofibers are electrospun while overflowing the polymer solution from the discharge ports of the plurality of upward nozzles, a sufficient amount of the polymer solution It is supplied to this upward nozzle, and it becomes possible to manufacture the nanofiber which has uniform quality.
  • the nanofiber production apparatus of the present invention since it is possible to recover the polymer solution that overflowed from the discharge ports of the plurality of upward nozzles and reuse it as a raw material of the nanofiber, as in the case of the conventional nanofiber production apparatus. As a result of reducing the fee for use of raw materials, it becomes possible to manufacture nanofibers at low manufacturing costs. This also follows the flow of resource saving.
  • the nozzle tip portion has a shape in which the cylinder is cut along a plane intersecting the cylinder at an oblique angle, so that the polymer solution that overflows from the discharge port of the upward nozzle has a nozzle. It flows quickly without staying at the tip. Therefore, the amount of solvent volatilized from the polymer solution in the process of electric field spinning can be extremely small, and the amount of polymer solid produced in the vicinity of the discharge port of the upward nozzle can be extremely small.
  • the nanofiber manufacturing apparatus of the present invention solves the problem that the polymer solids adhere to the nanofibers and degrade the quality of the nanofibers even when electrospinning while overflowing the polymer solution from the outlet of the upward nozzle. It becomes possible.
  • the angle formed between the axis of the cylinder and the plane is in the range of 15 ° to 60 °, so that the polymer overflows from the discharge port of the upward nozzle when the angle is 60 ° or less. This is because the solution flows more quickly without staying at the tip of the nozzle, and when the angle is 15 ° or less, the length of the inclined surface of the upward nozzle becomes too long so that the field emission condition is not disturbed. For losing.
  • the amount of solvent volatilized from the polymer solution overflowing from the discharge port of the upward nozzle can be further reduced by the movement of the jacket covering the side surface of the upward nozzle.
  • the jacket tip is thinner than the jacket base, the amount of solvent volatilized from the polymer solution overflowing from the discharge port of the upward nozzle can be further reduced.
  • the jacket base end has a tubular shape with a constant thickness
  • the jacket end part has a tubular shape that gradually decreases in thickness from the connecting end of the jacket end part to the jacket base end.
  • the thickness decreases slowly.
  • the thickness decreases by a fixed ratio.
  • the tip of the inclined surface portion formed on the tip side of the nozzle tip portion is located above the tip of the jacket, so that the electric field formed between the upward nozzle and the collector is stabilized. It is possible to produce nanofibers having a uniform quality.
  • the gap d1 is 2.0. In the case of mm or less, it becomes possible to further reduce the amount of solvent volatilization from the polymer solution overflowing from the discharge port of the upward nozzle, and when the distance d1 is 0.1 mm or more, between the upward nozzle and the collector This is because it is possible to produce nanofibers having a uniform quality since the electric field to be formed is stabilized.
  • the base end of the inclined surface portion formed on the tip side of the nozzle tip portion is located below the tip of the jacket, the amount of solvent volatilization from the polymer solution overflowing from the discharge port of the upward nozzle. Can be further reduced.
  • the distance d2 along the axis of the cylinder between the base end of the inclined surface portion and the tip end of the jacket is within the range of 0.1 mm to 1.0 mm, the distance d2 is 0.1. In the case of mm or more, it is possible to further reduce the amount of solvent volatilization from the polymer solution overflowing from the outlet of the upward nozzle. When the distance d2 is 1.0 mm or less, the polymer solution is collected from the outlet of the upward nozzle. This is because it is made to be sprayed stably toward the, it is possible to manufacture a nanofiber having a uniform quality.
  • the area of the area surrounded by the inner circumference of the jacket is S1
  • the nozzle tip portion is When the area of the area surrounded by the outer circumference is set to S2, the relationship of "S2 ⁇ S1-S2 ⁇ 4 x S2" is satisfied, so that "S1-S2" corresponds to the area of the gap between the upward nozzle and the jacket.
  • the lid portion further has a lid portion screw portion around the nozzle hole, and the jacket is a jacket side screw portion corresponding to the lid portion screw portion on a proximal side of the jacket base end portion.
  • the cover part and the jacket are coupled by fitting the cover part side screw part and the jacket side threaded part, the detachable jacket becomes easy, and a nanofiber manufacturing device is easy to manufacture and maintain. .
  • the polymer solution supply path further has a polymer solution supply path side threaded portion
  • the upward nozzle corresponds to the polymer solution supply path side threaded portion on the proximal side of the upward nozzle.
  • the polymer solution supply path and the upward nozzle are coupled by fitting the polymer solution supply path side threaded portion and the upward nozzle side threaded portion, and the proximal end of the upward nozzle is a polygonal cylinder. As the shape is made, the attachment and detachment of the upward nozzle becomes easy, and the nanofiber production apparatus is easy to manufacture and maintain.
  • the base end portion of the upward nozzle is formed in a polygonal cylindrical shape, the upward nozzle can be easily attached and detached using a tool such as a wrench, and the nanofiber production apparatus is more easily manufactured and maintained.
  • the recovered polymer solution is transferred to a regeneration tank, the composition of the polymer solution is measured and the solvent or other necessary components are added to the polymer solution according to the measurement result. It is possible to regenerate the solution into a polymer solution having the same composition as the original polymer solution or having an extremely close composition. For this reason, according to the nanofiber production apparatus of the present invention, while the overflowed polymer solution is recovered and reused as a raw material of the nanofibers, the spinning conditions (in this case, the composition of the polymer solution) in the field spinning process are maintained for a long time. It becomes possible to keep constant over, and it becomes possible to mass-produce nanofibers with uniform quality.
  • nanofiber manufacturing apparatus of the present invention it becomes possible to mass-produce nanofibers with higher productivity. It is also possible to mass-produce products in which nanofibers are thickly deposited, products in which various kinds of nanofibers are deposited, and the like.
  • medical products such as high-performance and highly sensitive textiles, beauty-related products such as healthcare, skin care, industrial materials such as wiping cloth, filters, and separators for secondary batteries , Medical separators such as capacitor separators, carriers of various catalysts, various sensor materials, electronic / mechanical materials, regenerative medical materials, biomedical materials, medical MEMS materials, biosensor materials, etc.
  • Usable nanofibers can be prepared.
  • FIG. 1 is a front view of a nanofiber manufacturing apparatus according to the embodiment.
  • FIG 3 is a cross-sectional view of the nozzle block in the embodiment.
  • FIG. 5 is a view for explaining a conventional nanofiber manufacturing apparatus.
  • 1 is a front view of a nanofiber manufacturing apparatus 1 according to an embodiment.
  • 2 is a front view of the field emission device 20 in the embodiment. 1 and 2, the case 100, the nozzle block 110, the raw material tank 200, the intermediate tank 230, and the regeneration tanks 270 and 272 are shown as cross-sectional views.
  • FIG. 3 is a cross-sectional view of the nozzle block 110 in the embodiment.
  • 4 is a diagram illustrating main parts of the nozzle block 110 in the embodiment.
  • FIG. 4A is an enlarged view of a range indicated by code A in FIG. 3
  • FIG. 4B is an enlarged view of a range indicated by code B in FIG. 4A
  • FIG. 4C Is a cross-sectional view of the nozzle base 130
  • FIG. 4D is a top view of the upward nozzle 126 and the jacket 134. As shown in FIG.
  • each figure is a schematic diagram, and the magnitude
  • the nanofiber manufacturing apparatus 1 which concerns on an Example has the long conveyed by the conveying apparatus 10 and the conveying apparatus 10 which convey the long sheet W at a predetermined
  • the nanofibers are deposited by the field radiating device 20 for depositing the nanofibers on the sheet W, the heating device 30 for heating the long sheet W in which the nanofibers are deposited, and the field radiating device 20.
  • the conveying apparatus 10, the electric field radiating apparatus 20, the heating apparatus 30, the ventilation system, the measuring apparatus 40, the feed rate control apparatus 50, and the VOC processing apparatus 70 mentioned later Open the main control device 60 (not shown) and the volatile components generated when the nanofibers are deposited on the long sheet W.
  • a VOC processing apparatus 70 (not shown) for extinguishing is removed.
  • the electric field radiating apparatus includes two field radiating apparatuses 20 arranged in series along a predetermined conveying direction in which the long sheet W is conveyed.
  • the conveying apparatus 10 is located between the feeding roller 11 which injects the long sheet W, the winding roller 12 which winds the long sheet W, and the feeding roller 11 and the winding roller 12.
  • the auxiliary roller 13 is provided.
  • the feeding roller 11 and the winding roller 12 are comprised by the structure which is rotationally driven by the drive motor which is not shown in figure.
  • the structure of the field emission apparatus 20 is mentioned later.
  • the heating device 30 is disposed between the field radiating device 20 and the air permeability measuring device 40, and heats the long sheet W in which the nanofibers are deposited.
  • the heating temperature varies depending on the type of the long sheet W or the nanofibers, but for example, the long sheet W can be heated to a temperature of 50 ° C to 300 ° C.
  • the air permeability measuring device 40 a general air permeation measuring device can be used.
  • the electric field radiating device 20 includes a case 100, a nozzle block 110, a collector 150, a power supply device 160, an auxiliary belt device 170, and raw materials.
  • Tank 200, second conveying device 210, second conveying control device 220, intermediate tank 230, supply device 240, feed control device 242, first conveying An apparatus 250, a first transfer control device 260, and regeneration tanks 270, 272 are provided.
  • the case 100 is made of a conductor.
  • the nozzle block 110 includes a plurality of upward nozzles 126, a polymer solution supply path 114, a polymer solution recovery path 120, and a second sensor 142.
  • nozzle blocks having various sizes and various shapes can be used.
  • the nozzle block 110 has, for example, a rectangle of 0.5m to 3m (including square) when viewed from an upper surface thereof. Has the size and shape shown.
  • each upward nozzle 126 is the nozzle base part 130 which is the base end of the upward nozzle 126, the nozzle intermediate part 128 which is the intermediate part of the upward nozzle 126, and the upward nozzle ( It consists of the nozzle tip 132 which is the tip of 126.
  • the upward nozzle 126 and the polymer solution supply path side threaded part 118 are connected to the base end side (base end side of the nozzle base end 130) of the upward nozzle 126. It has a corresponding upward nozzle side threaded portion.
  • the interior of the upward nozzle 126 consists of a cave, which is in communication with the cave in the polymer solution supply path 114.
  • the upward nozzle 126 discharges a polymer solution upward from a discharge port.
  • the upward nozzle 126 is made of a conductor, for example, copper, stainless steel, aluminum, or the like.
  • the plurality of upward nozzles 126 are arranged at a pitch of, for example, 1.5 cm to 6.0 cm.
  • the number of the plurality of upward nozzles 126 is, for example, 36 pieces (6 * 6 pieces when arranged in the same number in the vertical direction) to 21904 pieces (148 pieces * 148 pieces in the case where they are arranged in the portrait).
  • the nozzle tip part 132 is formed in the shape which cut
  • the angle ⁇ formed between the axis of the cylinder and the plane is 50 degrees.
  • An inclined surface portion 133 is formed on the tip side of the nozzle tip portion 132, and the tip of the inclined surface portion 133 is located above the tip of the jacket 134.
  • the distance d1 along the axis of the cylinder between the tip of the inclined surface portion 133 and the tip of the jacket 134 is 0.5 mm.
  • the base end of the inclined surface portion 133 is located below the tip of the jacket 134.
  • the distance d2 along the axis of the cylinder between the base end of the inclined surface portion 133 and the tip end of the jacket 134 is 0.5 mm.
  • the area of the area surrounded by the inner circumference of the jacket 134 is S1.
  • the nozzle intermediate part 128 is formed in a substantially cylindrical shape.
  • the nozzle base end 130 is formed in a hexagonal cylindrical shape as shown in Fig. 4C.
  • the polymer solution supply path 114 has a substantially rectangular parallelepiped shape, has a cave therein, and a plurality of upward nozzles 126 through which the polymer solution from the supply device 240 flows. Supplies).
  • the polymer solution supply path 114 has the connection part 116 with a supply apparatus, and is connected with the supply apparatus 240 at the connection part 116 with this supply apparatus.
  • the polymer solution supply path 114 further has a polymer solution supply path side threaded portion 118.
  • the polymer solution supply path 114 and the upward nozzle 126 are coupled by fitting the polymer solution supply path side threaded portion 118 and the upward nozzle side threaded portion.
  • the polymer solution recovery path 120 is formed from the accommodation portion 121, the groove portion 124, the lid portion 123, and the plurality of jackets 134.
  • the polymer solution recovery path 120 recovers the polymer solution that has overflowed from the discharge ports of the plurality of upward nozzles 126.
  • the accommodating part 121 receives the polymer solution which overflowed from the discharge port of the some upward nozzle 126.
  • the accommodation part 121 is disposed above the polymer solution supply path 114.
  • a slight inclination is formed in the accommodating part 121 toward the groove part 124, and has a function which guides the received polymer solution toward the groove part 124. As shown in FIG.
  • the groove part 124 is arrange
  • the groove part 124 has the connection part 125 with the 1st conveying apparatus in the bottom face, and is connected with the 1st conveying apparatus 250 in the connection part 125 with this 1st conveying apparatus.
  • the cover part 123 covers the accommodating part 121, and has a some nozzle hole through each upward nozzle 126. Moreover, the cover part 123 has the cover part side screw part 122 around the hole for nozzles.
  • the jacket 134 covers the side surface of each upward nozzle 126 which protrudes from the some hole for nozzles.
  • the jacket 134 has a jacket base end 138 on the proximal side of the jacket 134 and a jacket tip 140 on the proximal side of the jacket 134.
  • the jacket tip 140 is thinner than the jacket tip 138.
  • the jacket tip 138 has a cylindrical shape with a constant thickness, and the jacket tip 140 is corresponding. From the connection part 136 of the jacket tip part 140 and the jacket base part 138 to the tip part, it has a cylindrical shape which decreases thickness gradually, specifically at a fixed ratio (refer FIG. 4 (a) and FIG. 4 (d)). .).
  • the jacket 134 has the jacket side screw part corresponding to the cover part side threaded part 122 on the base end side of the jacket base end part 138. As shown in FIG.
  • the cover part 123 and the jacket 134 are couple
  • the second sensor 142 measures the liquid level of the polymer solution in the polymer solution recovery path 120. Specifically, the second sensor 142 is disposed on the wall surface of the groove portion 124 and measures the liquid level of the polymer solution collected in the groove portion 124.
  • the second sensor 124 is made of, for example, an optical fiber sensor.
  • the collector 150 is disposed above the nozzle block 110.
  • the collector 150 is made of a conductor, and is attached to the case 100 via the insulating member 152 as shown in FIG. 2.
  • the field emission device 20 electrospins the nanofibers which discharge the polymer solution from the discharge ports of the plurality of upward nozzles 126 while overflowing the polymer solution from the discharge ports of the plurality of upward nozzles 126.
  • the power supply device 160 applies a high voltage between the plurality of upward nozzles 126 and the collector 150.
  • the positive electrode of the power supply device 160 is connected to the collector 150, and the negative electrode of the power supply device 160 is connected to the nozzle block 110 through the case 100.
  • the auxiliary belt device 170 includes an auxiliary belt 172 that rotates in synchronization with the feeding speed of the long sheet W, and five rollers 174 for assisting the auxiliary belt 172.
  • One or two or more auxiliary belt rollers of the five auxiliary belt rollers 174 are driving rollers, and the remaining auxiliary belt rollers are driven rollers. Since the auxiliary belt 172 is disposed between the collector 150 and the long sheet W, the long sheet W is smoothly conveyed without being pulled by the collector 150 to which a positive high voltage is applied. do.
  • the raw material tank 200 stores the polymer solution used as a raw material of a nanofiber.
  • the raw material tank 200 has an agitator 201 for preventing separation or solidification of the polymer solution therein.
  • the pipe 212 of the second transfer device 210 is connected to the raw material tank 200.
  • the second transfer device 210 transfers the polymer solution from the raw material tank 200 or the regeneration tanks 270 and 272 to the intermediate tank 230.
  • the second transfer device 210 includes a pipe 212 connecting the raw material tank 200 and the intermediate tank 230, and a pipe 214 connecting the regeneration tanks 270, 272 and the intermediate tank 230.
  • Have The end of the pipe 212 is connected to the first storage unit 236 (described later), and the end of the pipe 214 is connected to the pipe 212.
  • the second transfer control device 220 controls the transfer operation of the second transfer device 210.
  • the second transfer control device 220 has valves 222, 224, 226, and 228.
  • the valve 222 controls the transfer of the polymer solution from the raw material tank 200.
  • the valve 224 controls the amount of polymer solution flowing into the intermediate tank 230 from the raw material tank 200 and the regeneration tanks 270 and 272. Control by the valve 224 is performed according to the liquid level measured by the 1st sensor 239 mentioned later.
  • the valve 226 controls the transfer of the polymer solution from the regeneration tank 270.
  • the valve 228 controls the transfer of the polymer solution from the regeneration tank 272.
  • the second transfer control device 220 uses the valves 222, 224, 226, and 228 to transfer the polymer solution from the tank of any one of the raw material tank 200 and the regeneration tanks 270, 272 to the intermediate tank. It controls whether to transfer to 230. Moreover, the 2nd conveyance control apparatus 220 controls the conveyance operation
  • the intermediate tank 230 stores the polymer solution supplied from the raw material tank 200 or the regeneration tanks 270 and 272.
  • the intermediate tank 230 is disposed such that the lower end of the intermediate tank 230 is located above the upper end of each upward nozzle 126.
  • the intermediate tank 230 has a partition 232, a bubble removing filter 234, and a first sensor 239.
  • the partition 232 covers the supply site to which the polymer solution is supplied.
  • the bubble removing filter 234 is disposed at the bottom of the partition wall 232 and removes bubbles from the polymer solution passing therethrough.
  • the bubble removing filter 234 has a mesh structure having an eye of about 0.1 mm, for example.
  • the partition 232 and the bubble removing filter 234 are configured to store the polymer solution after bubbles are removed by the removal filter 234.
  • the second storage part 238 is connected to the polymer solution supply path 114 by the supply path 240. As a result, in the nanofiber manufacturing apparatus 1, the second storage part 238 is connected to the second storage part 238.
  • the stored polymer solution is supplied to the polymer solution supply path 114 of the nozzle block 110.
  • the first sensor 239 measures the liquid level of the polymer solution in the second storage unit 238.
  • the first sensor is made of, for example, an optical fiber sensor.
  • the supply device 240 is composed of one pipe and supplies the polymer solution stored in the second reservoir 238 of the intermediate tank 230 to the polymer solution supply path 114 of the nozzle block 110.
  • the supply apparatus may be at least one with respect to one nozzle block.
  • the supply control apparatus 242 consists of one valve provided in the supply apparatus 240, and controls the supply operation
  • the first transfer device 250 has a pipe 252 and a pump 254, and transfers the polymer solution from the polymer solution recovery path 120 of the nozzle block 110 to the regeneration tanks 270 and 272.
  • the pump 254 generates power for transferring the polymer solution to the regeneration tanks 270 and 272 located above the vicinity of the nozzle block 110.
  • the pump 254 consists of an air diaphragm pump, for example.
  • the first transfer control device 260 controls the transfer operation of the first transfer device 250.
  • the first transfer control device 260 includes valves 264 and 266 and a control device (not shown) of the pump 254.
  • the valve 264 controls the transfer operation of the polymer solution from the polymer solution recovery path to the regeneration tank 270.
  • the valve 266 controls the transfer operation of the polymer solution from the polymer solution recovery path to the regeneration tank 272.
  • the first transfer control device 260 controls whether the polymer solution is transferred to any one of the plurality of regeneration tanks 270 and 272 by the valves 264 and 266.
  • the 1st conveyance control apparatus 260 carries out 1st conveyance according to the liquid level of the polymer solution measured by the 2nd sensor 142 by the control apparatus of the said valve 264, 266 and the pump 254. Control the transfer operation of the device 250.
  • the plurality of regeneration tanks 270 and 272 are regeneration tanks for regenerating the recovered polymer solution and store the regenerated polymer solution.
  • the regeneration tanks 270 and 272 have agitators 271 and 273 therein for preventing separation or solidification of the polymer solution, respectively.
  • the nanofiber manufacturing apparatus 1 includes a nanofiber manufacturing apparatus which makes it possible to recover a polymer solution that has overflowed from the discharge ports of a plurality of upward nozzles and reuse it as a raw material of the nanofibers. do.
  • the nanofiber manufacturing method electro-spins the nanofibers which discharge the polymer solution from the discharge holes of the plurality of upward nozzles 126 while overflowing the polymer solution from the discharge holes of the plurality of upward nozzles 126. It is a nanofiber manufacturing method which makes it possible to collect the polymer solution which overflowed from the discharge opening of the upward nozzle 126 of the, and to reuse it as a raw material of a nanofiber.
  • the polymer solution is transferred from the raw material tank 200 to the intermediate tank 230 using the pipe 212 of the second transfer device 210.
  • the polymer solution which is moved from the first reservoir 232 to the second reservoir 234 through the bubble removing filter 234 in the intermediate tank 230, is supplied through the supply device 240 to the polymer solution.
  • the nanofiber manufacturing apparatus 1 discharges the polymer solution from the discharge ports of the plurality of upward nozzles 126 while overflowing the polymer solution from the discharge ports of the plurality of upward nozzles 126 supplied to the polymer solution supply path 114. Electrospinning the nanofibers.
  • the nanofiber manufacturing apparatus 1 recovers the overflowed polymer solution in the polymer solution recovery path 120.
  • the polymer solution transfers and recovers the regeneration tank 270 using the first transfer device 250 at a portion of the groove portion 124 of the polymer solution recovery path 120.
  • the transfer destination by the first transfer device 250 is switched to the regeneration tank 272 by the first transfer control device 260.
  • the overflowed polymer solution is recovered to the regeneration tank 272, and the polymer solution overflowed into the regeneration tank 270 enters the regeneration tank 270 when the subsequent step is performed in the regeneration tank 270. none.
  • the content rate of the solvent and the additive in the recovered polymer solution is measured.
  • This measurement can be performed by extracting a part of the polymer solution in the regeneration tank 270 as a sample and analyzing the sample. Analysis of a polymer solution can be performed by a conventional method.
  • the required amount of solvent, additives and other components are added to the polymer solution.
  • the recovered polymer solution is regenerated.
  • the polymer solution in the regeneration tank 270 is transferred to the intermediate tank 230 using the pipe 212 of the second transfer device 210.
  • the polymer solution in the regeneration tank 270 is nanofibers. It can be reused as a raw material of.
  • the polymer solution in the regeneration tank 272 is removed by the same method as that after the predetermined amount of the polymer solution is collected in the regeneration tank 270. It can be reused as a raw material of nanofibers.
  • a nonwoven fabric, a woven fabric, a knitted fabric, a film or the like made of various materials can be used.
  • the thickness of a long sheet the thing of 5 micrometers-500 micrometers can be used, for example.
  • the length of a long sheet the thing of 10 m-10 km can be used, for example.
  • polylactic acid polypropylene
  • PVAc polyvinyl acetate
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphtha Rate
  • PA Polyamide
  • PUR Polyurethane
  • PVA Polyvinyl Alcohol
  • PAN Polyacrylonitrile
  • PAN Polyetherimide
  • PCL Polycaprolactone
  • PLGA Polylactic acid glycol Acids
  • silk cellulose, chitosan and the like
  • the solvent used for the polymer solution for example, dichloromethane, dimethyl formamide, dimethyl sulfoxide, methyl ethyl ketone, chloroform, acetone, water, formic acid, acetic acid, cyclohexane, THF and the like can be used. You may mix and use multiple types of solvent.
  • the polymer solution may contain additives such as conductivity improvers.
  • Air permeability of the nanofiber nonwoven fabric produced can be set to 0.15cm 3 / cm 2 / s ⁇ 200cm 3 / cm 2 / s.
  • the feed speed can be set to, for example, 0.2 m / min to 100 m / min.
  • the voltage applied to the nozzle block 110 and the collector 150 can be set to 10 kV-80 kV, and it is preferable to set it near 50 kV.
  • the temperature of the spinning zone can be set to 25 ° C, for example.
  • the humidity of the radiation zone can be set to 30%, for example.
  • the nanofiber manufacturing apparatus 1 As in the case of the conventional nanofiber manufacturing apparatus, since the polymer solution is discharged by discharging the polymer solution from the discharge ports of the plurality of upward nozzles 126, conventional nanofibers are discharged.
  • the droplet phenomenon seen in the case of the nanofiber manufacturing apparatus using the downward nozzle does not occur, and it becomes possible to manufacture high quality nanofibers.
  • the field of the nanofibers is electrospun while overflowing the polymer solution from the discharge ports of the plurality of upward nozzles 126.
  • a sufficient amount of polymer solution is always supplied to the upward nozzle, making it possible to produce nanofibers of uniform quality.
  • the nanofiber manufacturing apparatus 1 as in the case of the conventional nanofiber manufacturing apparatus, the polymer solution overflowed from the discharge ports of the plurality of upward nozzles 126 is recovered and used as a raw material of the nanofibers. Since it is possible to reuse, it becomes possible to reduce the fee for use of a raw material, and as a result, it becomes possible to manufacture nanofibers at inexpensive manufacturing cost. This also follows the flow of resource saving.
  • the nozzle tip part 132 since the nozzle tip part 132 has the shape which cut
  • the nanofiber manufacturing apparatus 1 According to the nanofiber manufacturing apparatus 1 according to the embodiment, even when electrospinning while overflowing the polymer solution from the discharge port of the upward nozzle 134, the polymer solids adhere to the nanofibers to improve the quality of the nanofibers. It becomes possible to solve the problem of making it fall.
  • the angle formed between the axis of the cylinder and the plane is in the range of 15 ° to 60 °, the polymer overflows from the discharge port of the upward nozzle 126.
  • the solution flows down more quickly without remaining in the portion of the nozzle tip 132, and the length of the inclined surface of the upward nozzle 126 becomes too long so that the field emission condition is not disturbed.
  • the nanofiber manufacturing apparatus 1 which concerns on an Example, by the function of the jacket 134 which covers the side surface of the upward nozzle 126, a solvent is prevented from the polymer solution which overflows from the discharge port of the upward nozzle 126. It is possible to further reduce the amount of volatilization.
  • the jacket tip 140 is thinner than the jacket proximal end 138, the solvent volatilizes from the polymer solution overflowing from the discharge port of the upward nozzle 126. It is possible to further reduce the amount.
  • the jacket base end 138 has a cylindrical shape with a constant thickness
  • the jacket tip end 140 has the jacket tip end 140 and the jacket base end ( Since it has a cylindrical shape in which the thickness gradually decreases from the connection portion 136 with the tip 136, the amount of solvent volatilized from the polymer solution can be reduced by using the jacket 134 having a simple shape.
  • the nanofiber manufacturing apparatus 1 which concerns on an Example, since the front end of the inclined surface part 133 formed in the front end side of the nozzle front end part 132 is located above the front end of the jacket 134, an upward nozzle Since the electric field formed between 126 and the collector 150 is stabilized, it becomes possible to manufacture nanofibers with uniform quality.
  • the nanofiber manufacturing apparatus 1 which concerns on an Example, since the space
  • the nanofiber manufacturing apparatus 1 which concerns on an Example, since the base end of the inclined surface part 133 formed in the front end side of the nozzle front end part 132 is located below the front end of the jacket 134, an upward nozzle It is possible to further reduce the amount of solvent volatilization from the polymer solution overflowing from the discharge port of 126.
  • the nanofiber manufacturing apparatus 1 which concerns on an Example, since the space
  • the solvent is prevented from the polymer solution overflowing from the discharge port of the upward nozzle 126.
  • the amount of volatilization can be further reduced, and the polymer solution which overflows from the discharge port of the upward nozzle 126 is eliminated from sinking into the gap between the upward nozzle 126 and the jacket 134.
  • the jacket 134 since the cover part 123 and the jacket 134 are couple
  • the polymer solution supply path 114 and the upward nozzle 126 are coupled by the fitting of the polymer solution supply path side threaded portion 118 and the upward nozzle side threaded portion.
  • the attachment / detachment of the upward nozzle 126 becomes easy, and it becomes a nanofiber manufacturing apparatus which is easy to manufacture and maintain.
  • the proximal end (nozzle proximal end 130) of the upward nozzle 126 is formed in a hexagonal tubular shape, the upward nozzle (using a tool such as a wrench) 126) can be easily attached and detached, and a nanofiber manufacturing apparatus is more easily manufactured and maintained.
  • the composition of and simultaneously adding the solvent and other necessary components to the polymer solution according to the result of the measurement it is possible to regenerate the polymer solution into a polymer solution having a composition very close to or equal to that of the original polymer solution.
  • the spinning conditions in an electric field spinning process (in this case, a composition of a polymer solution) are collect
  • recovered making it possible to collect the overflowed polymer solution and to reuse it as a raw material of a nanofiber.
  • the nanofiber manufacturing apparatus 1 which concerns on an Example, it is further provided with the conveying apparatus 10 which conveys the elongate sheet W, and is provided with the nozzle block 110 and the collector 150 at least.
  • the field spinning device for depositing nanofibers on the surface of the long sheet W the field spinning device 20 includes a plurality of field spinning devices 20 arranged in series along the feeding direction of the long sheet W, Higher productivity makes it possible to mass-produce. It is also possible to mass-produce products in which nanofibers are thickly deposited, products in which various kinds of nanofibers are deposited, and the like.
  • the polymer solution is discharged from the discharge holes of the plurality of upward nozzles 126 while overflowing the polymer solution from the discharge holes of the plurality of upward nozzles 126, thereby causing the electric field of the nanofibers.
  • the polymer solution which overflowed from the discharge port of the some upward nozzle 126 was collect
  • the collected polymer solution is transferred to the regeneration tanks 270 and 272, and then the composition of the polymer solution is measured, and the polymer solution is added to the polymer solution according to the measurement result. Played.
  • Table 1 is a table
  • Table 2 is a table which shows the composition of the recovered polymer solution.
  • Table 3 is a table which shows the composition of the recycled polymer solution.
  • "relative weight” in Tables 1-3 has shown the relative weight of each substance at the time of making the weight of polyurethane into 100.
  • the polymer solution could be regenerated into a polymer solution having a composition that was the same as or very close to that of the original polymer solution.
  • the polymer solution was regenerated by adding 40.8 g of dimethyl formamide and 74.6 g of methyl ethyl ketone per 100 g of polyurethane to the recovered polymer solution.
  • the nanofiber production apparatus of the present invention has been described using the nanofiber production apparatus 1 having an angle of 50 ° between the axis and the plane of the cylinder as an example, but the present invention is limited thereto. It is not.
  • the present invention can be applied to a nanofiber production apparatus having an angle between a cylinder axis and a plane in the range of 15 ° to 60 °.
  • the nanofiber production apparatus of the present invention will be described with an example of the nanofiber production apparatus 1 having an interval d1 of 0.5 mm along the axis of the cylinder between the tip of the inclined surface portion and the tip of the jacket.
  • the present invention is not limited to this.
  • the present invention can be applied to a nanofiber production apparatus in which a distance d1 along the axis of the cylinder between the tip of the inclined surface portion and the tip of the jacket is in the range of 0.1 mm to 2.0 mm.
  • the nanofiber production apparatus of the present invention has been described with the example of the nanofiber production apparatus 1 in which the base end of the inclined surface portion formed on the tip side of the nozzle tip portion is located below the tip of the jacket.
  • the invention is not limited to this.
  • the present invention can be applied to a nanofiber manufacturing apparatus in which the base end of the inclined surface portion formed on the tip side of the nozzle tip portion is located at the same height as the tip of the jacket or above the tip of the jacket.
  • the nanofiber production apparatus of the present invention has been described with the example of the nanofiber production apparatus 1 having a distance d2 of 0.5 mm along the axis of the cylinder between the base end of the inclined surface portion and the tip of the jacket.
  • the present invention is not limited to this.
  • the present invention can be applied to a nanofiber production apparatus in which the distance d2 along the axis of the cylinder between the base end of the inclined surface portion and the tip of the jacket is in the range of 0.1 mm to 1.0 mm.
  • the nanofiber production apparatus of the present invention has been described by using the nanofiber production apparatus 1 having two field emission apparatuses 20 as field emission apparatuses, but the present invention is based on this. It is not limited.
  • the present invention may be applied to a nanofiber production apparatus having one, three or more field emission devices.
  • the nanoparticles of the present invention are made using an electrospinning device in which the positive electrode of the power supply device 160 is connected to the collector 150 and the negative electrode of the power supply device 160 is connected to the nozzle block 110.
  • the fiber manufacturing apparatus was demonstrated, this invention is not limited to this.
  • the present invention can also be applied to a nanofiber production apparatus comprising an electric field radiating device in which a positive electrode of a power supply device is connected to a nozzle block, and a negative electrode of the power supply device is connected to a collector.
  • the raw material tank 200 the regeneration tanks 270 and 272, the intermediate tank 230, the first transfer device 250, the first transfer control device 260,
  • the nanofiber manufacturing apparatus of this invention was demonstrated using the nanofiber manufacturing apparatus 1 provided with the 2nd conveying apparatus 210 and the 2nd conveyance control apparatus 220 as an example, this invention is not limited to this. .
  • the present invention may be applied to other nanofiber manufacturing apparatus.
  • the present invention has been described using a nanofiber production apparatus in which one nozzle block is disposed in one field radiating device, but the present invention is not limited thereto.
  • the present invention can be applied to a nanofiber production apparatus in which two nozzle blocks are disposed in one field radiator, and the present invention can be applied to a nanofiber production apparatus in which two or more nozzle blocks are disposed.
  • the nozzle arrangement pitch may be the same for all nozzle blocks, or the nozzle arrangement pitch may be different for each nozzle block.
  • the height position of the nozzle block may be the same for all the nozzle blocks, or the height position of the nozzle block may be different for each nozzle block.
  • a mechanism for reciprocating the nozzle block at a predetermined reciprocating cycle along the width direction of the elongate sheet may be provided.
  • the mechanism electric field spinning is performed while the nozzle block is reciprocated at a predetermined reciprocating cycle, so that the amount of polymer fibers deposited along the width direction of the long city can be made uniform.
  • the reciprocating cycle and the reciprocating distance of the nozzle block may be controlled independently for each field radiating device or for each nozzle block. With such a configuration, it is possible to reciprocate all the nozzle blocks at the same period, and it is also possible to reciprocate each nozzle block at different periods. In addition, it is possible to equalize the reciprocating distance of the reciprocating motion with all the nozzle blocks, and it is also possible to vary the reciprocating distance of the reciprocating motion with each nozzle block.

Abstract

Provided is a nanofiber manufacturing device capable of resolving the problem of reducing the quality of nanofibers, even when field-emitting a polymer solution while overflowing same from a discharge outlet of an upward nozzle, by attaching polymer solids to the nanofibers. The nanofiber manufacturing device comprises: a plurality of upward nozzles (126), a nozzle block (110) having a polymer solution supply channel (114) and a polymer solution retrieval channel (120), a collector (150), and a power device, and enables field-emission of nanofibers by discharging the polymer solution from the discharge outlet of the plurality of upward nozzles (126) while overflowing the polymer solution, and the retrieval of the overflowed polymer solution for reuse as a raw material for nanofibers at the same time, and a nozzle front end portion (132) has the shape of a cylinder that was cut along the plane that crosses obliquely with the axis of the corresponding cylinder.

Description

나노섬유 제조장치Nano Fiber Manufacturing Equipment
본 발명은, 나노섬유 제조장치에 관한 것이다. 그리고, 본 발명에 있어서, 「나노섬유」란, 폴리머 재료로 이루어지고, 평균 직경이 수nm~수천nm인 섬유를 말한다. 또한, 「폴리머 용액」이란, 폴리머를 용매에 용해시킨 용액을 말한다.The present invention relates to a nanofiber production apparatus. In addition, in this invention, a "nano fiber" means the fiber which consists of a polymer material and whose average diameter is several nm-several thousand nm. In addition, a "polymer solution" means the solution which melt | dissolved the polymer in the solvent.
복수의 상향 노즐의 토출구로부터 오버플로우한 폴리머 용액을 회수하여 나노섬유의 원료로서 재이용하는 것을 가능하게 한 나노섬유 제조장치가 알려져 있다.(일본국 특허 제4414458호 공보 참조) 도 5는, 종래의 나노섬유 제조장치(900)를 설명하기 위한 도면이다. 도 5(a)는 나노섬유 제조장치(900)의 정면도이고, 도 5(b)는 상향 노즐(912) 주변의 사시도이며, 도 5(c)는 노즐 선단부(913)의 정면도이다. A nanofiber production apparatus is known that allows a polymer solution that has overflowed from discharge ports of a plurality of upward nozzles to be recovered and reused as a raw material of nanofibers. (See Japanese Patent No. 4414458). The figure for explaining the nanofiber manufacturing apparatus 900. FIG. 5 (a) is a front view of the nanofiber manufacturing apparatus 900, FIG. 5 (b) is a perspective view around the upward nozzle 912, and FIG. 5 (c) is a front view of the nozzle tip portion 913.
종래의 나노섬유 제조장치(900)는, 도 5(a) 및 도 5(b)에 나타내는 바와 같이, 폴리머 용액을 토출구로부터 상향으로 토출하는 복수의 상향 노즐(912), 해당 복수의 상향 노즐(912)에 폴리머 용액을 공급하는 폴리머 용액 공급 경로(914) 및 상향 노즐(912)의 토출구로부터 오버플로우한 폴리머 용액을 회수하는 폴리머 용액 회수 경로(916)를 가지는 노즐 블록(910)과, 노즐 블록(910)보다 위쪽에 배치된 컬렉터(920)와, 복수의 상향 노즐(912)과 컬렉터(920)와의 사이에 고전압을 인가하는 전원 장치(930)와, 나노섬유의 원료가 되는 폴리머 용액을 저장하는 탱크(940)와, 탱크(940)에 저장된 폴리머 용액을 노즐 블록(910)의 폴리머 용액 공급 경로(914)에 공급하는 계량 펌프(950)와, 복수의 상향 노즐(912)의 토출구로부터 오버플로우한 폴리머 용액을 회수하여 탱크(940)에 되돌리는 회수 펌프(960)를 구비한다.In the conventional nanofiber manufacturing apparatus 900, as shown in FIG. 5 (a) and FIG. 5 (b), a plurality of upward nozzles 912 for discharging a polymer solution upwardly from a discharge port, and a plurality of upward nozzles ( A nozzle block 910 having a polymer solution supply path 914 for supplying a polymer solution to 912 and a polymer solution recovery path 916 for recovering the polymer solution that has overflowed from an outlet of the upward nozzle 912, and a nozzle block Collector 920 disposed above 910, a power supply device 930 for applying a high voltage between the plurality of upward nozzles 912 and the collector 920, and a polymer solution serving as a raw material of nanofibers. Over the discharge ports of the tank 940, the metering pump 950 for supplying the polymer solution stored in the tank 940 to the polymer solution supply path 914 of the nozzle block 910, and the plurality of upward nozzles 912. Recovering the polymer solution flowed back to the tank 940 Recovery pump 960 is provided.
상향 노즐(912)의 선단부인 노즐 선단부(913)는, 도 5(b) 및 도 5(c)에 나타내는 바와 같이, 선단이 넓어진 원통형의 형상으로 이루어진다. The nozzle tip 913, which is the tip of the upward nozzle 912, has a cylindrical shape with a wide tip as shown in FIGS. 5B and 5C.
종래의 나노섬유 제조장치(900)에 의하면, 복수의 상향 노즐(912)의 토출구로부터 폴리머 용액을 토출하여 나노섬유를 전계 방사 하기 때문에, 종래의 하향 노즐을 이용한 나노섬유 제조장치의 경우에 보여지는 드롭 렛 현상(하향 노즐로부터 방사 되지 않았던 폴리머 용액의 덩어리가 그대로 장척시트에 부착하는 현상)이 발생하는 일이 없고, 고품질의 나노섬유를 제조하는 것이 가능해진다. According to the conventional nanofiber manufacturing apparatus 900, since the nanofibers are electrospun by discharging the polymer solution from the discharge ports of the plurality of upward nozzles 912, the nanofiber manufacturing apparatus using the conventional downward nozzle The droplet phenomenon (a phenomenon in which agglomerates of a polymer solution which did not radiate from the downward nozzle adheres to the long sheet as it is) does not occur, and it is possible to manufacture high quality nanofibers.
또한, 종래의 나노섬유 제조장치(900)에 의하면, 복수의 상향 노즐(912)의 토출구로부터 폴리머 용액을 오버플로우시키면서 나노섬유를 전계 방사 하기 때문에, 항상 충분한 양의 폴리머 용액이 상향 노즐에 공급되고, 균일한 품질을 가지는 나노섬유를 제조하는 것이 가능해진다. In addition, according to the conventional nanofiber manufacturing apparatus 900, since the nanofibers are field-spun while overflowing the polymer solution from the discharge ports of the plurality of upward nozzles 912, a sufficient amount of the polymer solution is always supplied to the upward nozzle. It becomes possible to manufacture nanofibers having a uniform quality.
또한, 종래의 나노섬유 제조장치(900)에 의하면, 복수의 상향 노즐(912)의 토출구로부터 오버플로우한 폴리머 용액을 회수하여 나노섬유의 원료로서 재이용하는 것이 가능하기 때문에, 원료의 사용료를 줄이는 것이 가능해지는 결과, 염가의 제조비용으로 나노섬유를 제조하는 것이 가능해진다. 또한, 이것은 자원 절약화의 흐름에도 따르는 것이 된다.In addition, according to the conventional nanofiber manufacturing apparatus 900, since it is possible to recover the polymer solution overflowed from the discharge ports of the plurality of upward nozzles 912 and reuse it as a raw material of the nanofibers, reducing the fee for use of the raw materials As a result, nanofibers can be produced at low cost. This also follows the flow of resource saving.
그러나, 본 발명의 발명자의 연구 결과, 종래의 나노섬유 제조장치에 있어서는, 상향 노즐의 토출구로부터 폴리머 용액을 오버플로우시키면서 전계 방사 하는 과정에서 폴리머 용액으로부터 용매가 휘발되는 것으로 인하여 상향 노즐의 토출구의 근방에 있어서 폴리머 고형물이 생성되고, 해당 폴리머 고형물이 「제품이 되는 나노섬유」에 부착되어 나노섬유의 품질을 저하시켜 버린다고 하는 문제가 있는 것을 알 수 있었다.However, as a result of research by the inventor of the present invention, in the conventional nanofiber manufacturing apparatus, the solvent is volatilized from the polymer solution in the process of electric field spinning while overflowing the polymer solution from the discharge port of the upward nozzle, so that the vicinity of the discharge port of the upward nozzle is near. It has been found that there is a problem that a polymer solid is produced, and the polymer solid is attached to the "nanofiber to be a product" to degrade the quality of the nanofiber.
그러므로, 본 발명은, 상기한 문제를 해결하기 위해서 이루어진 것으로, 상향 노즐의 토출구로부터 폴리머 용액을 오버플로우시키면서 전계 방사 하는 경우라도, 폴리머 고형물이 나노섬유에 부착되어 나노섬유의 품질을 저하시켜 버린다고 하는 문제를 해결하는 것이 가능한 나노섬유 제조장치를 제공하는 것을 목적으로 한다.Therefore, the present invention has been made to solve the above-mentioned problem, and even when the field spinning is performed while overflowing the polymer solution from the discharge port of the upward nozzle, the polymer solids adhere to the nanofibers and degrade the quality of the nanofibers. An object of the present invention is to provide a nanofiber manufacturing apparatus capable of solving the problem.
본 발명의 나노섬유 제조장치는, 폴리머 용액을 토출구로부터 상향으로 토출하는 복수의 상향 노즐, 해당 복수의 상향 노즐에 상기 폴리머 용액을 공급하는 폴리머 용액 공급 경로 및 상기 복수의 상향 노즐의 토출구로부터 오버플로우한 상기 폴리머 용액을 회수하는 폴리머 용액 회수 경로를 가지는 노즐 블록과, 상기 노즐 블록보다 윗쪽에 배치된 컬렉터와, 상기 복수의 상향 노즐과 상기 컬렉터와의 사이에 고전압을 인가하는 전원 장치를 구비하고, 상기 복수의 상향 노즐의 토출구로부터 폴리머 용액을 오버플로우시키면서 상기 복수의 상향 노즐의 토출구로부터 상기 폴리머 용액을 토출하여 나노섬유를 전계 방사 하는 동시에, 상기 복수의 상향 노즐의 토출구로부터 오버플로우한 상기 폴리머 용액을 회수하여 상기 나노섬유의 원료로서 재이용하는 것을 가능하게 한 나노섬유 제조장치로서, 상기 상향 노즐의 선단부(이하, 노즐 선단부라고 한다)는, 원통을 해당 원통의 축과 비스듬하게 교차하는 평면을 따라서 절단한 형상을 가지는 것을 특징으로 한다. The nanofiber manufacturing apparatus of the present invention overflows from a plurality of upward nozzles for discharging a polymer solution upward from a discharge port, a polymer solution supply path for supplying the polymer solution to the plurality of upward nozzles, and a discharge port of the plurality of upward nozzles. A nozzle block having a polymer solution recovery path for recovering the polymer solution, a collector disposed above the nozzle block, and a power supply device for applying a high voltage between the plurality of upward nozzles and the collector, Discharging the polymer solution from the discharge ports of the plurality of upward nozzles while field-evolving nanofibers while overflowing the polymer solution from the discharge ports of the plurality of upward nozzles, and the polymer solution overflowing from the discharge ports of the plurality of upward nozzles. Was recovered to be used as a raw material of the nanofibers. As a nano-fiber manufacturing apparatus makes it possible to, (hereinafter referred to as the nozzle tip end portion), the front end portion of the upstream nozzle and the cylinder characterized in that it contains the axis and an oblique cut along the intersecting plane shape of the cylinder.
본 발명의 나노섬유 제조장치에 있어서는, 상기 원통의 축과, 상기 평면과의 이루는 각도는, 15˚~60˚의 범위내에 있는 것이 바람직하다. In the nanofiber manufacturing apparatus of the present invention, it is preferable that an angle formed between the axis of the cylinder and the plane is in the range of 15 ° to 60 °.
본 발명의 나노섬유 제조장치에 있어서는, 상기 폴리머 용액 회수 경로는, 상기 복수의 상향 노즐의 토출구로부터 오버플로우한 상기 폴리머 용액을 받는 수용부와, 상기 수용부를 덮는 동시에 각 상향 노즐을 통하는 복수의 노즐용 구멍을 가지는 덮개부와, 상기 복수의 노즐용 구멍으로부터 돌출하는 각 상향 노즐의 측면을 덮는 복수의 재킷으로 형성되어 이루어지고, 상기 재킷의 기단측을 재킷기단부로 하고, 상기 재킷의 선단측을 재킷 선단부로 할 때, 상기 재킷 선단부는, 상기 재킷기단부보다 가는 것이 바람직하다. In the nanofiber manufacturing apparatus of the present invention, the polymer solution recovery path includes a receiving portion receiving the polymer solution overflowed from the discharge ports of the plurality of upward nozzles, and a plurality of nozzles covering the receiving portions and passing through each upward nozzle. And a plurality of jackets covering the side surfaces of each of the upward nozzles protruding from the plurality of nozzle holes, and the proximal end of the jacket as the jacket proximal end, and the distal end side of the jacket. When making a jacket tip part, it is preferable that the said jacket tip part is thinner than the said jacket base part.
본 발명의 나노섬유 제조장치에 있어서는, 상기 재킷기단부는, 굵기가 일정한 통형상을 갖고, 상기 재킷 선단부는, 해당 재킷 선단부와 상기 재킷기단부와의 접속부로부터 선단에 걸쳐 서서히 굵기가 감소하는 통형상을 가지는 것이 바람직하다. In the nanofiber manufacturing apparatus of the present invention, the jacket base end has a tubular shape with a constant thickness, and the jacket end part has a tubular shape that gradually decreases in thickness from the connecting end of the jacket end part to the jacket base end. It is desirable to have.
본 발명의 나노섬유 제조장치에 있어서는, 상기 노즐 선단부의 선단측에 형성된 경사면부의 선단은, 상기 재킷의 선단보다 윗쪽에 위치하는 것이 바람직하다.In the nanofiber manufacturing apparatus of the present invention, the tip of the inclined surface portion formed on the tip side of the nozzle tip portion is preferably located above the tip of the jacket.
본 발명의 나노섬유 제조장치에 있어서는, 상기 경사면부의 선단과 상기 재킷의 선단과의 상기 원통의 축을 따른 간격(d1)은, 0.1mm~2.0mm의 범위내에 있는 것이 바람직하다. In the nanofiber manufacturing apparatus of the present invention, the interval d1 along the axis of the cylinder between the tip of the inclined surface portion and the tip of the jacket is preferably in the range of 0.1 mm to 2.0 mm.
본 발명의 나노섬유 제조장치에 있어서는, 상기 노즐 선단부의 선단측에 형성된 경사면부의 기단은, 상기 재킷의 선단보다 아래쪽에 위치하는 것이 바람직하다. In the nanofiber manufacturing apparatus of the present invention, the base end of the inclined surface portion formed on the tip side of the nozzle tip portion is preferably located below the tip of the jacket.
본 발명의 나노섬유 제조장치에 있어서는, 상기 경사면부의 기단과 상기 재킷의 선단과의 상기 원통의 축을 따른 간격(d2)은, 0.1mm~1.0mm의 범위내에 있는 것이 바람직하다. In the nanofiber manufacturing apparatus of the present invention, the distance d2 along the axis of the cylinder between the base end of the inclined surface portion and the tip of the jacket is preferably in the range of 0.1 mm to 1.0 mm.
본 발명의 나노섬유 제조장치에 있어서는, 상기 상향 노즐 및 상기 재킷을 상기 상향 노즐의 윗쪽으로부터 상기 원통의 축을 따라 보았을 때, 상기 재킷의 내주에 둘러싸이는 영역의 면적을 S1로 하고, 상기 노즐 선단부의 외주에 둘러싸이는 영역의 면적을 S2로 할 때, 「S2≤S1-S2≤4×S2」의 관계를 만족시키는 것이 바람직하다. In the nanofiber production apparatus of the present invention, when the upward nozzle and the jacket are viewed along the axis of the cylinder from above the upward nozzle, the area of the area surrounded by the inner circumference of the jacket is S1, and the nozzle tip portion is When making the area of the area | region enclosed by an outer periphery into S2, it is preferable to satisfy the relationship of "S2 <= S1-S2 <= 4 * S2".
본 발명의 나노섬유 제조장치에 있어서는, 상기 덮개부는, 상기 노즐용 구멍의 주위에 덮개부측 나사부를 추가로 갖고, 상기 재킷은, 상기 재킷기단부의 기단 측에 상기 덮개부측 나사부와 대응하는 재킷측 나사부를 추가로 갖고, 상기 덮개부측 나사부와 상기 재킷측 나사부와의 감합에 의해 상기 덮개부와 상기 재킷이 결합되어 있는 것이 바람직하다.In the nanofiber manufacturing apparatus of the present invention, the lid portion further has a lid portion screw portion around the nozzle hole, and the jacket is a jacket side screw portion corresponding to the lid portion screw portion on a proximal side of the jacket base end portion. It is further preferred that the lid part and the jacket are coupled by fitting the lid part side screw part and the jacket side threaded part.
본 발명의 나노섬유 제조장치에 있어서는, 상기 폴리머 용액 공급 경로는, 폴리머 용액 공급 경로측 나사부를 추가로 갖고, 상기 상향 노즐은, 상기 상향 노즐의 기단 측에 상기 폴리머 용액 공급 경로측 나사부와 대응하는 상향 노즐측 나사부를 추가로 갖고, 상기 폴리머 용액 공급 경로측 나사부와 상기 상향 노즐측 나사부와의 감합에 의해 상기 폴리머 용액 공급 경로와 상기 상향 노즐이 결합되며, 상기 상향 노즐의 기단부는, 다각형의 통형상으로 이루어지는 것이 바람직하다. In the nanofiber manufacturing apparatus of the present invention, the polymer solution supply path further has a polymer solution supply path side threaded portion, and the upward nozzle corresponds to the polymer solution supply path side threaded portion on the proximal side of the upward nozzle. Further having an upward nozzle side threaded portion, the polymer solution supply path and the upward nozzle are coupled by fitting the polymer solution supply path side threaded portion and the upward nozzle side threaded portion, and the proximal end of the upward nozzle is a polygonal cylinder. It is preferable that it is formed in a shape.
본 발명의 나노섬유 제조장치에 있어서는, 상기 나노섬유의 원료가 되는 상기 폴리머 용액을 저장하는 원료 탱크와, 회수된 상기 폴리머 용액을 재생하기 위한 재생 탱크로서, 재생된 상기 폴리머 용액을 저장하는 재생 탱크와, 상기 원료 탱크 또는 상기 재생 탱크로부터 공급된 상기 폴리머 용액을 저장하는 중간 탱크와, 상기 노즐 블록의 상기 폴리머 용액 회수 경로로부터 상기 재생 탱크로 상기 폴리머 용액을 이송하는 제1 이송 장치와, 상기 제1 이송 장치의 이송 동작을 제어하는 제1 이송 제어장치와, 상기 원료 탱크 및 상기 재생 탱크로부터 상기 중간 탱크로 상기 폴리머 용액을 이송하는 제2 이송 장치와, 상기 제 2 이송 장치의 이송 동작을 제어하는 제2 이송 제어장치를 추가로 구비하는 것이 바람직하다.In the nanofiber production apparatus of the present invention, a regeneration tank for storing the regenerated polymer solution as a raw material tank for storing the polymer solution as a raw material of the nanofibers, and a regeneration tank for regenerating the recovered polymer solution. And an intermediate tank for storing the polymer solution supplied from the raw material tank or the regeneration tank, a first transfer device for transferring the polymer solution from the polymer solution recovery path of the nozzle block to the regeneration tank; A first transfer control device for controlling a transfer operation of the transfer device, a second transfer device for transferring the polymer solution from the raw material tank and the regeneration tank to the intermediate tank, and a transfer operation of the second transfer device It is preferable to further provide a 2nd conveyance control apparatus.
그리고, 「이송 장치」에는, 폴리머 용액을 통하는 파이프, 폴리머 용액을 이송하는 펌프 등이 포함된다. 또한, 「이송 제어장치」에는, 폴리머 용액의 통과여부 및 통과량을 제어하는 밸브, 해당 밸브나 상기한 펌프의 동작을 제어하는 제어장치 등이 포함된다. The "transfer device" includes a pipe through the polymer solution, a pump for transferring the polymer solution, and the like. In addition, the "conveyor control apparatus" includes a valve for controlling whether or not the polymer solution passes and the amount of passage, a controller for controlling the operation of the valve or the pump described above.
본 발명의 나노섬유 제조장치에 있어서는, 장척시트를 이송하는 이송 장치를 추가로 구비하는 동시에, 적어도 상기 노즐 블록과 상기 컬렉터를 구비하고, 상기 장척시트의 표면에 나노섬유를 퇴적시키는 전계 방사 장치로서, 상기 장척시트의 이송 방향을 따라서 직렬로 배치된 복수의 전계 방사 장치를 구비하는 것이 바람직하다.In the nanofiber manufacturing apparatus of the present invention, the device further comprises a conveying device for conveying a long sheet, and at least the nozzle block and the collector, and as a field radiating device for depositing nanofibers on the surface of the long sheet. And a plurality of field radiating devices arranged in series along the conveying direction of the long sheet.
본 발명의 나노섬유 제조장치에 의하면, 종래의 나노섬유 제조장치의 경우와 마찬가지로, 복수의 상향 노즐의 토출구로부터 폴리머 용액을 토출하여 나노섬유를 전계 방사 하기 때문에, 종래의 하향 노즐을 이용한 나노섬유 제조장치의 경우에 보여지는 드롭 렛 현상이 발생하는 일이 없고, 고품질의 나노섬유를 제조하는 것이 가능해진다. According to the nanofiber manufacturing apparatus of the present invention, as in the case of the conventional nanofiber manufacturing apparatus, since the polymer solution is discharged by discharging the polymer fibers from the discharge ports of the plurality of upward nozzles, the nanofiber production using the conventional downward nozzle The droplet phenomenon seen in the case of the device does not occur, and it becomes possible to manufacture high quality nanofibers.
또한, 본 발명의 나노섬유 제조장치에 의하면, 종래의 나노섬유 제조장치의 경우와 마찬가지로, 복수의 상향 노즐의 토출구로부터 폴리머 용액을 오버플로우시키면서 나노섬유를 전계 방사 하기 때문에, 항상 충분한 양의 폴리머 용액이 상향 노즐에 공급되고, 균일한 품질을 가지는 나노섬유를 제조하는 것이 가능해진다. In addition, according to the nanofiber manufacturing apparatus of the present invention, as in the case of the conventional nanofiber manufacturing apparatus, since a field of the nanofibers are electrospun while overflowing the polymer solution from the discharge ports of the plurality of upward nozzles, a sufficient amount of the polymer solution It is supplied to this upward nozzle, and it becomes possible to manufacture the nanofiber which has uniform quality.
또한, 본 발명의 나노섬유 제조장치에 의하면, 종래의 나노섬유 제조장치의 경우와 마찬가지로, 복수의 상향 노즐의 토출구로부터 오버플로우한 폴리머 용액을 회수하여 나노섬유의 원료로서 재이용하는 것이 가능하기 때문에, 원료의 사용료를 줄이는 것이 가능해지는 결과, 염가의 제조비용으로 나노섬유를 제조하는 것이 가능해진다. 또한, 이것은 자원 절약화의 흐름에도 따르는 것이 된다. In addition, according to the nanofiber production apparatus of the present invention, since it is possible to recover the polymer solution that overflowed from the discharge ports of the plurality of upward nozzles and reuse it as a raw material of the nanofiber, as in the case of the conventional nanofiber production apparatus. As a result of reducing the fee for use of raw materials, it becomes possible to manufacture nanofibers at low manufacturing costs. This also follows the flow of resource saving.
또한, 본 발명의 나노섬유 제조장치에 의하면, 노즐 선단부가, 원통을 해당 원통의 축과 비스듬하게 교차하는 평면을 따라서 절단한 형상을 가지기 때문에, 상향 노즐의 토출구로부터 오버플로우하는 폴리머 용액이, 노즐 선단부의 부분에서 체류 하는 일 없이 신속하게 흘러 떨어지게 된다. 이 때문에, 전계 방사 하는 과정에서 폴리머 용액으로부터 용매가 휘발 하는 양을 극히 적게하는 동시에, 상향 노즐의 토출구의 근방에 있어 생성하는 폴리머 고형물의 양을 극히 적게 하는 것이 가능해진다. 그 결과, 본 발명의 나노섬유 제조장치에 의하면, 상향 노즐의 토출구로부터 폴리머 용액을 오버플로우시키면서 전해 방사 하는 경우라도, 폴리머 고형물이 나노섬유에 부착하여 나노섬유의 품질을 저하시켜 버린다고 하는 문제를 해결하는 것이 가능해진다. In addition, according to the nanofiber manufacturing apparatus of the present invention, the nozzle tip portion has a shape in which the cylinder is cut along a plane intersecting the cylinder at an oblique angle, so that the polymer solution that overflows from the discharge port of the upward nozzle has a nozzle. It flows quickly without staying at the tip. Therefore, the amount of solvent volatilized from the polymer solution in the process of electric field spinning can be extremely small, and the amount of polymer solid produced in the vicinity of the discharge port of the upward nozzle can be extremely small. As a result, the nanofiber manufacturing apparatus of the present invention solves the problem that the polymer solids adhere to the nanofibers and degrade the quality of the nanofibers even when electrospinning while overflowing the polymer solution from the outlet of the upward nozzle. It becomes possible.
본 발명의 나노섬유 제조장치에 있어서는, 원통의 축과 평면과의 이루는 각도를 15˚~60˚의 범위내로 이룸에 따라, 해당 각도가 60˚이하인 경우에는, 상향 노즐의 토출구로부터 오버플로우하는 폴리머 용액이 노즐 선단부의 부분에서 체류 하는 일 없이 보다 한층 신속하게 흘러 떨어지게 되기 때문이고, 해당 각도가 15˚이하인 경우에는, 상향 노즐의 경사면의 길이가 너무 길어지는 것으로 인하여 전계 방사 조건이 흐트러져 버리는 일도 없어지기 때문이다. In the nanofiber manufacturing apparatus of the present invention, the angle formed between the axis of the cylinder and the plane is in the range of 15 ° to 60 °, so that the polymer overflows from the discharge port of the upward nozzle when the angle is 60 ° or less. This is because the solution flows more quickly without staying at the tip of the nozzle, and when the angle is 15 ° or less, the length of the inclined surface of the upward nozzle becomes too long so that the field emission condition is not disturbed. For losing.
본 발명의 나노섬유 제조장치에 있어서는, 상향 노즐의 측면을 덮는 재킷의 움직임에 의해, 상향 노즐의 토출구로부터 오버플로우하는 폴리머 용액으로부터 용매가 휘발하는 양을 보다 한층 줄이는 것이 가능해진다. In the nanofiber manufacturing apparatus of the present invention, the amount of solvent volatilized from the polymer solution overflowing from the discharge port of the upward nozzle can be further reduced by the movement of the jacket covering the side surface of the upward nozzle.
또한, 재킷 선단부는 재킷기단부보다 가늘기 때문에, 상향 노즐의 토출구로부터 오버플로우하는 폴리머 용액으로부터 용매가 휘발 하는 양을 보다 한층 줄이는 것이 가능해진다.In addition, since the jacket tip is thinner than the jacket base, the amount of solvent volatilized from the polymer solution overflowing from the discharge port of the upward nozzle can be further reduced.
본 발명의 나노섬유 제조장치에 있어서는, 상기 재킷기단부는, 굵기가 일정한 통형상을 갖고, 상기 재킷 선단부는, 해당 재킷 선단부와 상기 재킷기단부와의 접속부로부터 선단에 걸쳐 서서히 굵기가 감소하는 통형상을 가짐에 따라 단순한 형상의 재킷을 이용하여, 폴리머 용액으로부터 용매가 휘발하는 양을 줄이는 것이 가능해진다. In the nanofiber manufacturing apparatus of the present invention, the jacket base end has a tubular shape with a constant thickness, and the jacket end part has a tubular shape that gradually decreases in thickness from the connecting end of the jacket end part to the jacket base end. With this, it is possible to reduce the amount of solvent volatilization from the polymer solution by using a jacket of a simple shape.
그리고, 「서서히 굵기가 감소하는」예로서는, 일정한 비율로 굵기가 감소하는 것을 들 수 있다. And as an example of "the thickness decreases slowly", the thickness decreases by a fixed ratio.
본 발명의 나노섬유 제조장치에 있어서는, 상기 노즐 선단부의 선단측에 형성된 경사면부의 선단은, 상기 재킷의 선단보다 윗쪽에 위치함에 따라, 상향 노즐과 컬렉터와의 사이에 형성되는 전계가 안정되기 때문에, 균일한 품질을 가지는 나노섬유를 제조하는 것이 가능해진다. In the nanofiber manufacturing apparatus of the present invention, the tip of the inclined surface portion formed on the tip side of the nozzle tip portion is located above the tip of the jacket, so that the electric field formed between the upward nozzle and the collector is stabilized. It is possible to produce nanofibers having a uniform quality.
본 발명의 나노섬유 제조장치에 있어서는, 상기 경사면부의 선단과 상기 재킷의 선단과의 상기 원통의 축을 따른 간격(d1)은, 0.1mm~2.0mm의 범위내에 있기 때문에, 해당 간격(d1)이 2.0mm이하인 경우에는, 상향 노즐의 토출구로부터 오버플로우하는 폴리머 용액으로부터 용매가 휘발하는 양을 보다 한층 줄이는 것이 가능해지기 때문이고, 간격(d1)이 0.1mm이상인 경우에는, 상향 노즐과 컬렉터와의 사이에 형성되는 전계가 안정되기 때문에, 균일한 품질을 가지는 나노섬유를 제조하는 것이 가능해지기 때문이다. In the nanofiber manufacturing apparatus of the present invention, since the distance d1 along the axis of the cylinder between the tip of the inclined surface portion and the tip of the jacket is in the range of 0.1 mm to 2.0 mm, the gap d1 is 2.0. In the case of mm or less, it becomes possible to further reduce the amount of solvent volatilization from the polymer solution overflowing from the discharge port of the upward nozzle, and when the distance d1 is 0.1 mm or more, between the upward nozzle and the collector This is because it is possible to produce nanofibers having a uniform quality since the electric field to be formed is stabilized.
본 발명의 나노섬유 제조장치에 있어서는, 상기 노즐 선단부의 선단측에 형성된 경사면부의 기단은, 상기 재킷의 선단보다 아래쪽에 위치하기 때문에, 상향 노즐의 토출구로부터 오버플로우하는 폴리머 용액으로부터 용매가 휘발하는 양을 보다 한층 줄이는 것이 가능해진다. In the nanofiber manufacturing apparatus of the present invention, since the base end of the inclined surface portion formed on the tip side of the nozzle tip portion is located below the tip of the jacket, the amount of solvent volatilization from the polymer solution overflowing from the discharge port of the upward nozzle. Can be further reduced.
본 발명의 나노섬유 제조장치에 있어서는, 상기 경사면부의 기단과 상기 재킷의 선단과의 상기 원통의 축을 따른 간격(d2)은, 0.1mm~1.0mm의 범위내에 있기 때문에, 해당 간격(d2)이 0.1 mm이상인 경우에는, 상향 노즐의 토출구로부터 오버플로우하는 폴리머 용액으로부터 용매가 휘발하는 양을 보다 한층 줄이는 것이 가능해지기 때문이며, 간격(d2)이 1.0 mm이하인 경우에는, 폴리머 용액이 상향 노즐의 토출구로부터 컬렉터를 향하여 안정되게 분사되도록 이루어지기 때문에, 균일한 품질을 가지는 나노섬유를 제조하는 것이 가능해지기 때문이다. In the nanofiber production apparatus of the present invention, since the distance d2 along the axis of the cylinder between the base end of the inclined surface portion and the tip end of the jacket is within the range of 0.1 mm to 1.0 mm, the distance d2 is 0.1. In the case of mm or more, it is possible to further reduce the amount of solvent volatilization from the polymer solution overflowing from the outlet of the upward nozzle. When the distance d2 is 1.0 mm or less, the polymer solution is collected from the outlet of the upward nozzle. This is because it is made to be sprayed stably toward the, it is possible to manufacture a nanofiber having a uniform quality.
본 발명의 나노섬유 제조장치에 있어서는, 상기 상향 노즐 및 상기 재킷을 상기 상향 노즐의 윗쪽으로부터 상기 원통의 축을 따라 보았을 때, 상기 재킷의 내주에 둘러싸이는 영역의 면적을 S1로 하고, 상기 노즐 선단부의 외주에 둘러싸이는 영역의 면적을 S2로 할 때, 「S2≤S1-S2≤4×S2」의 관계를 만족시킴에 따라, 「S1-S2」는, 상향 노즐과 재킷과의 틈새의 면적에 대응하는 값이지만, 「S2≤S1-S2≤4×S2」의 관계를 만족시키는 것이 바람직하다고 한 이유는, 「S1-S2」가 「4×S2」이하인 경우에는, 상향 노즐의 토출구로부터 오버플로우하는 폴리머 용액으로부터 용매가 휘발하는 양을 보다 한층 줄이는 것이 가능해지기 때문이고, 「S1-S2」가 「S2」이상인 경우에는, 상향 노즐과 재킷과의 틈새를 통과할 수 없는 폴리머 용액이 재킷의 외측에 흘러넘쳐 버리는 것이 없어지기 때문이다. In the nanofiber production apparatus of the present invention, when the upward nozzle and the jacket are viewed along the axis of the cylinder from above the upward nozzle, the area of the area surrounded by the inner circumference of the jacket is S1, and the nozzle tip portion is When the area of the area surrounded by the outer circumference is set to S2, the relationship of "S2 ≤ S1-S2 ≤ 4 x S2" is satisfied, so that "S1-S2" corresponds to the area of the gap between the upward nozzle and the jacket. Although it is a value to be said, it is preferable to satisfy the relationship of "S2≤S1-S2≤4 * S2", when "S1-S2" is below "4 * S2", it overflows from the discharge port of an upward nozzle. This is because the amount of solvent volatilized from the polymer solution can be further reduced, and when "S1-S2" is "S2" or more, a polymer solution that cannot pass through the gap between the upward nozzle and the jacket is formed on the outside of the jacket. Overflow It is because it is not.
본 발명의 나노섬유 제조장치에 있어서는, 상기 덮개부는, 상기 노즐용 구멍의 주위에 덮개부측 나사부를 추가로 갖고, 상기 재킷은, 상기 재킷기단부의 기단 측에 상기 덮개부측 나사부와 대응하는 재킷측 나사부를 추가로 갖고, 상기 덮개부측 나사부와 상기 재킷측 나사부와의 감합에 의해 상기 덮개부와 상기 재킷이 결합됨에 따라, 재킷의 착탈이 용이해지고, 제조 및 유지보수가 용이한 나노섬유 제조장치가 된다. In the nanofiber manufacturing apparatus of the present invention, the lid portion further has a lid portion screw portion around the nozzle hole, and the jacket is a jacket side screw portion corresponding to the lid portion screw portion on a proximal side of the jacket base end portion. In addition, as the cover part and the jacket are coupled by fitting the cover part side screw part and the jacket side threaded part, the detachable jacket becomes easy, and a nanofiber manufacturing device is easy to manufacture and maintain. .
본 발명의 나노섬유 제조장치에 있어서는, 상기 폴리머 용액 공급 경로는, 폴리머 용액 공급 경로측 나사부를 추가로 갖고, 상기 상향 노즐은, 상기 상향 노즐의 기단 측에 상기 폴리머 용액 공급 경로측 나사부와 대응하는 상향 노즐측 나사부를 추가로 갖고, 상기 폴리머 용액 공급 경로측 나사부와 상기 상향 노즐측 나사부와의 감합에 의해 상기 폴리머 용액 공급 경로와 상기 상향 노즐이 결합되며, 상기 상향 노즐의 기단부는, 다각형의 통형상으로 이루어짐에 따라, 상향 노즐의 착탈이 용이해지고, 제조 및 유지보수가 용이한 나노섬유 제조장치가 된다. In the nanofiber manufacturing apparatus of the present invention, the polymer solution supply path further has a polymer solution supply path side threaded portion, and the upward nozzle corresponds to the polymer solution supply path side threaded portion on the proximal side of the upward nozzle. Further having an upward nozzle side threaded portion, the polymer solution supply path and the upward nozzle are coupled by fitting the polymer solution supply path side threaded portion and the upward nozzle side threaded portion, and the proximal end of the upward nozzle is a polygonal cylinder. As the shape is made, the attachment and detachment of the upward nozzle becomes easy, and the nanofiber production apparatus is easy to manufacture and maintain.
또한, 상향 노즐의 기단부가 다각형의 통형상으로 이루어지기 때문에, 렌치 등의 공구를 이용하여 상향 노즐을 용이하게 착탈하는 것이 가능해지고, 제조 및 유지보수가 보다 한층 용이한 나노섬유 제조장치가 된다. In addition, since the base end portion of the upward nozzle is formed in a polygonal cylindrical shape, the upward nozzle can be easily attached and detached using a tool such as a wrench, and the nanofiber production apparatus is more easily manufactured and maintained.
다각형의 통형상의 예로서는, 사각형의 통형상, 육각형의 통형상 및 팔각형의 통형상을 들 수 있다. As a polygonal cylindrical shape, a rectangular cylindrical shape, a hexagonal cylindrical shape, and an octagonal cylindrical shape are mentioned.
본 발명의 나노섬유 제조장치에 있어서는, 회수한 폴리머 용액을 재생 탱크에 이송한 후, 해당 폴리머 용액의 조성을 측정하는 동시에, 해당 측정 결과에 따라 폴리머 용액에 용매 그 밖의 필요한 성분을 첨가함으로써, 해당 폴리머 용액을 원래의 폴리머 용액의 조성과 같든지, 극히 가까운 조성을 가지는 폴리머 용액으로 재생하는 것이 가능해진다. 이 때문에, 본 발명의 나노섬유 제조장치에 의하면, 오버플로우한 폴리머 용액을 회수하여 나노섬유의 원료로서 재이용 가능하게 하면서, 전계 방사 과정에 있어서의 방사 조건(이 경우 폴리머 용액의 조성)을 장시간에 걸쳐서 일정하게 유지하는 것이 가능해지고, 균일한 품질을 가지는 나노섬유를 대량생산 하는 것이 가능해진다. In the nanofiber manufacturing apparatus of the present invention, the recovered polymer solution is transferred to a regeneration tank, the composition of the polymer solution is measured and the solvent or other necessary components are added to the polymer solution according to the measurement result. It is possible to regenerate the solution into a polymer solution having the same composition as the original polymer solution or having an extremely close composition. For this reason, according to the nanofiber production apparatus of the present invention, while the overflowed polymer solution is recovered and reused as a raw material of the nanofibers, the spinning conditions (in this case, the composition of the polymer solution) in the field spinning process are maintained for a long time. It becomes possible to keep constant over, and it becomes possible to mass-produce nanofibers with uniform quality.
본 발명의 나노섬유 제조장치에 있어서는, 나노섬유를 보다 한층 높은 생산성으로 대량생산 하는 것이 가능해진다. 또한, 나노섬유를 두껍게 퇴적시킨 제품이나, 여러 종류의 나노섬유를 퇴적시킨 제품 등을 대량생산 하는 일도 가능해진다.In the nanofiber manufacturing apparatus of the present invention, it becomes possible to mass-produce nanofibers with higher productivity. It is also possible to mass-produce products in which nanofibers are thickly deposited, products in which various kinds of nanofibers are deposited, and the like.
본 발명의 전계방사장치 또는 나노섬유 제조장치에 의하면, 고기능.고감성 텍스타일 등의 의료(衣料)품, 헬스케어, 스킨케어 등 미용관련용품, 와이핑 클로스, 필터 등 산업재료, 이차전지의 세퍼레이터, 콘덴서의 세퍼레이터, 각종 촉매의 담체(擔體), 각종 센서재료 등의 전자.기계재료, 재생의료재료, 바이오 메디칼 재료, 의료용 MEMS재료, 바이오센서 재료 등의 의료재료, 그 밖의 폭넓은 용도로 사용가능한 나노섬유를 제조할 수 있다. According to the field emission apparatus or the nanofiber manufacturing apparatus of the present invention, medical products such as high-performance and highly sensitive textiles, beauty-related products such as healthcare, skin care, industrial materials such as wiping cloth, filters, and separators for secondary batteries , Medical separators such as capacitor separators, carriers of various catalysts, various sensor materials, electronic / mechanical materials, regenerative medical materials, biomedical materials, medical MEMS materials, biosensor materials, etc. Usable nanofibers can be prepared.
도 1은 실시예에 관한 나노섬유 제조장치의 정면도이다.  1 is a front view of a nanofiber manufacturing apparatus according to the embodiment.
도 2는 실시예에 있어서의 전계 방사 장치의 정면도이다.  It is a front view of the field emission apparatus in an Example.
도 3은 실시예에 있어서의 노즐 블록의 단면도이다.  3 is a cross-sectional view of the nozzle block in the embodiment.
도 4는 실시예에 있어서의 노즐 블록의 요부를 나타내는 도면이다.  It is a figure which shows the principal part of the nozzle block in an Example.
도 5는 종래의 나노섬유 제조장치를 설명하기 위한 도면이다.5 is a view for explaining a conventional nanofiber manufacturing apparatus.
이하, 본 발명의 나노섬유 제조장치를, 실시예를 기초로 하여 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the nanofiber manufacturing apparatus of this invention is demonstrated in detail based on an Example.
[실시예] EXAMPLE
도 1은, 실시예에 관한 나노섬유 제조장치(1)의 정면도이다. 도 2는, 실시예에 있어서의 전계 방사 장치(20)의 정면도이다. 그리고, 도 1및 도 2에 있어서는, 케이스(100), 노즐 블록(110), 원료 탱크(200), 중간 탱크(230) 및 재생 탱크(270, 272)에 있어서는 단면도로서 표시하고 있다.1 is a front view of a nanofiber manufacturing apparatus 1 according to an embodiment. 2 is a front view of the field emission device 20 in the embodiment. 1 and 2, the case 100, the nozzle block 110, the raw material tank 200, the intermediate tank 230, and the regeneration tanks 270 and 272 are shown as cross-sectional views.
도 3은, 실시예에 있어서의 노즐 블록(110)의 단면도이다. 도 4는, 실시예에 있어서의 노즐 블록(110)의 요부를 나타내는 도면이다. 도 4(a)는 도 3 중 부호 A가 나타내는 범위를 확대하여 나타내는 도면이고, 도 4(b)는 도 4(a) 중 부호 B가 나타내는 범위를 확대하여 나타내는 도면이며, 도 4(c)는 노즐기단부(130)의 단면도이고, 도 4(d)은 상향 노즐(126) 및 재킷(134)의 상면도이다. 3 is a cross-sectional view of the nozzle block 110 in the embodiment. 4 is a diagram illustrating main parts of the nozzle block 110 in the embodiment. FIG. 4A is an enlarged view of a range indicated by code A in FIG. 3, and FIG. 4B is an enlarged view of a range indicated by code B in FIG. 4A, and FIG. 4C. Is a cross-sectional view of the nozzle base 130, and FIG. 4D is a top view of the upward nozzle 126 and the jacket 134. As shown in FIG.
그리고, 각 도면은 모식도이고, 각 구성요소의 크기는, 반드시 현실에 맞은 것은 아니다. In addition, each figure is a schematic diagram, and the magnitude | size of each component does not necessarily match a reality.
1. 실시예에 관한 나노섬유 제조장치(1)의 구성1. Configuration of the nanofiber manufacturing apparatus 1 according to the embodiment
실시예에 관한 나노섬유 제조장치(1)는, 도 1에 나타내는 바와 같이, 장척시트(W)를 소정의 이송 속도로 이송하는 이송 장치(10)와 이송 장치(10)에 의해 이송되고 있는 장척시트(W)에 나노섬유를 퇴적시키는 전계 방사 장치(20)와, 나노섬유를 퇴적시킨 장척시트(W)를 가열하는 가열 장치(30)와, 전계 방사 장치(20)에 의해 나노섬유를 퇴적시킨 장척시트(W)의 통기도를 계측하는 통기도 계측장치(40)와, 통기도 계측장치(40)에 의해 계측된 통기도를 기초로 하여 이송 속도를 제어하는 이송 속도 제어장치(50)(도시하지 않음)와, 「이송 장치(10), 전계 방사 장치(20), 가열 장치(30), 통기도 계측장치(40), 이송 속도 제어장치(50), 후술하는 VOC 처리장치(70)」를 제어하는 주제어장치(60)(도시하지 않음)와, 장척시트(W)에 나노섬유를 퇴적시킬 때에 발생하는 휘발성 성분을 연소하여 제거하는 VOC 처리장치(70)(도시하지 않음.)를 구비한다. As shown in FIG. 1, the nanofiber manufacturing apparatus 1 which concerns on an Example has the long conveyed by the conveying apparatus 10 and the conveying apparatus 10 which convey the long sheet W at a predetermined | prescribed conveyance speed. The nanofibers are deposited by the field radiating device 20 for depositing the nanofibers on the sheet W, the heating device 30 for heating the long sheet W in which the nanofibers are deposited, and the field radiating device 20. The air permeability measuring device 40 for measuring the air permeability of the long sheet W thus made, and the feed speed controller 50 for controlling the feed speed based on the air permeability measured by the air permeability measuring device 40 (not shown) ) And "the conveying apparatus 10, the electric field radiating apparatus 20, the heating apparatus 30, the ventilation system, the measuring apparatus 40, the feed rate control apparatus 50, and the VOC processing apparatus 70 mentioned later" Open the main control device 60 (not shown) and the volatile components generated when the nanofibers are deposited on the long sheet W. A VOC processing apparatus 70 (not shown) for extinguishing is removed.
실시예에 관한 나노섬유 제조장치(1)에 있어서는, 전계 방사 장치로서, 장척시트(W)가 이송되어 가는 소정의 이송 방향을 따라서 직렬로 배치된 2대의 전계 방사 장치(20)를 구비한다. In the nanofiber manufacturing apparatus 1 according to the embodiment, the electric field radiating apparatus includes two field radiating apparatuses 20 arranged in series along a predetermined conveying direction in which the long sheet W is conveyed.
이송 장치(10)는, 장척시트(W)를 투입하는 투입 롤러(11) 및 장척시트(W)를 권취하는 권취 롤러(12) 및 투입 롤러(11)와 권취 롤러(12)와의 사이에 위치하는 보조 롤러(13)를 구비한다. 투입 롤러(11)및 권취 롤러(12)는, 도시하지 않는 구동 모터에 의해 회전 구동되는 구조로 이루어져 있다. The conveying apparatus 10 is located between the feeding roller 11 which injects the long sheet W, the winding roller 12 which winds the long sheet W, and the feeding roller 11 and the winding roller 12. In FIG. The auxiliary roller 13 is provided. The feeding roller 11 and the winding roller 12 are comprised by the structure which is rotationally driven by the drive motor which is not shown in figure.
전계 방사 장치(20)의 구성에 있어서는 후술한다. The structure of the field emission apparatus 20 is mentioned later.
가열 장치(30)는, 전계 방사 장치(20)와 통기도 계측장치(40)와의 사이에 배치되고, 나노섬유를 퇴적시킨 장척시트(W)를 가열한다. 가열 온도는, 장척시트(W)나 나노섬유의 종류을 따라서 다르지만, 예를 들면, 장척시트(W)를 50℃~300℃의 온도로 가열할 수 있다. The heating device 30 is disposed between the field radiating device 20 and the air permeability measuring device 40, and heats the long sheet W in which the nanofibers are deposited. The heating temperature varies depending on the type of the long sheet W or the nanofibers, but for example, the long sheet W can be heated to a temperature of 50 ° C to 300 ° C.
통기도 계측장치(40)로서는, 일반적인 통기도 계측장치를 사용할 수 있다. As the air permeability measuring device 40, a general air permeation measuring device can be used.
이하, 전계 방사 장치(20)의 구성에 대해 자세하게 설명한다. Hereinafter, the configuration of the field emission device 20 will be described in detail.
전계 방사 장치(20)는, 도 2에 나타내는 바와 같이, 케이스(100)와, 노즐 블록(110)과, 컬렉터(150)와, 전원 장치(160)와, 보조 벨트 장치(170)와, 원료 탱크(200)와, 제2 이송 장치(210)와, 제2 이송 제어장치(220)와, 중간 탱크(230)와, 공급 장치(240)와, 공급 제어장치(242)와, 제1 이송 장치(250)와, 제1 이송 제어장치(260)와, 재생 탱크(270, 272)를 구비한다. As shown in FIG. 2, the electric field radiating device 20 includes a case 100, a nozzle block 110, a collector 150, a power supply device 160, an auxiliary belt device 170, and raw materials. Tank 200, second conveying device 210, second conveying control device 220, intermediate tank 230, supply device 240, feed control device 242, first conveying An apparatus 250, a first transfer control device 260, and regeneration tanks 270, 272 are provided.
케이스(100)는, 도전체로 이루어진다. The case 100 is made of a conductor.
노즐 블록(110)은, 도 3에 나타내는 바와 같이, 복수의 상향 노즐(126), 폴리머 용액 공급 경로(114), 폴리머 용액 회수 경로(120) 및 제2 센서(142)를 가진다.As shown in FIG. 3, the nozzle block 110 includes a plurality of upward nozzles 126, a polymer solution supply path 114, a polymer solution recovery path 120, and a second sensor 142.
본 발명의 나노섬유 제조장치에는 다양한 크기 및 다양한 형상을 갖는 노즐블록을 이용할 수 있지만, 노즐블록(110)은, 예를 들면, 상면으로부터 보았을 때에 일변이 0.5m~3m의 장방형(정방형을 포함)으로 보이는 크기 및 형상을 갖는다. In the nanofiber manufacturing apparatus of the present invention, nozzle blocks having various sizes and various shapes can be used. However, the nozzle block 110 has, for example, a rectangle of 0.5m to 3m (including square) when viewed from an upper surface thereof. Has the size and shape shown.
각 상향 노즐(126)은, 도 4(a)에 나타내는 바와 같이, 상향 노즐(126)의 기단부인 노즐기단부(130), 상향 노즐(126)의 중간부인 노즐 중간부(128) 및 상향 노즐(126)의 선단부인 노즐 선단부(132)로 이루어진다. 상향 노즐(126)은, 도면에 나타내는 것에 의한 자세한 설명은 생략 하지만, 상향 노즐(126)의 기단측(노즐기단부(130)의 기단측)에 폴리머 용액 공급 경로측 나사부(118)(후술)와 대응하는 상향 노즐측 나사부를 가진다. 상향 노즐(126)의 내부는 동굴로 이루어져있고, 해당 동굴은 폴리머 용액 공급 경로(114)내의 동굴과 연통하고 있다. 상향 노즐(126)은, 폴리머 용액을 토출구로부터 상향에 토출한다. 상향 노즐(126)은 도전체, 예를 들면, 동, 스텐레스강, 알루미늄 등으로 이루어진다. As shown in FIG.4 (a), each upward nozzle 126 is the nozzle base part 130 which is the base end of the upward nozzle 126, the nozzle intermediate part 128 which is the intermediate part of the upward nozzle 126, and the upward nozzle ( It consists of the nozzle tip 132 which is the tip of 126. Although the detailed description by what is shown in the figure is abbreviate | omitted, the upward nozzle 126 and the polymer solution supply path side threaded part 118 (after-mentioned) are connected to the base end side (base end side of the nozzle base end 130) of the upward nozzle 126. It has a corresponding upward nozzle side threaded portion. The interior of the upward nozzle 126 consists of a cave, which is in communication with the cave in the polymer solution supply path 114. The upward nozzle 126 discharges a polymer solution upward from a discharge port. The upward nozzle 126 is made of a conductor, for example, copper, stainless steel, aluminum, or the like.
복수의 상향노즐(126)은, 예를 들면, 1.5cm~6.0cm의 피치로 배열되어 있다.The plurality of upward nozzles 126 are arranged at a pitch of, for example, 1.5 cm to 6.0 cm.
복수의 상향노즐(126)의 수는, 예를 들면, 36개(가로세로 같은 수로 배열한 경우 6개*6개)~21904개(가로세로로 배열한 경우, 148개*148개)이다.The number of the plurality of upward nozzles 126 is, for example, 36 pieces (6 * 6 pieces when arranged in the same number in the vertical direction) to 21904 pieces (148 pieces * 148 pieces in the case where they are arranged in the portrait).
노즐 선단부(132)는, 도 4(b)에 나타내는 바와 같이, 원통을 해당 원통의 축과 비스듬하게 교차하는 평면을 따라서 절단한 형상으로 이루어진다. 원통의 축과 평면과의 이루는 각도(θ)는, 50˚이다. As shown in FIG.4 (b), the nozzle tip part 132 is formed in the shape which cut | disconnected the cylinder along the plane which obliquely intersects the axis | shaft of the said cylinder. The angle θ formed between the axis of the cylinder and the plane is 50 degrees.
노즐 선단부(132)의 선단측에는 경사면부(133)가 형성되고, 해당 경사면부(133)의 선단은, 재킷(134)의 선단보다 윗쪽에 위치한다. 경사면부(133)의 선단과 재킷(134)의 선단과의 원통의 축을 따른 간격(d1)은 0.5mm이다. An inclined surface portion 133 is formed on the tip side of the nozzle tip portion 132, and the tip of the inclined surface portion 133 is located above the tip of the jacket 134. The distance d1 along the axis of the cylinder between the tip of the inclined surface portion 133 and the tip of the jacket 134 is 0.5 mm.
경사면부(133)의 기단은, 재킷(134)의 선단보다 하부에 위치한다. 경사면부(133)의 기단과 재킷(134)의 선단과의 원통의 축으로 따른 간격(d2)은 0.5mm이다.The base end of the inclined surface portion 133 is located below the tip of the jacket 134. The distance d2 along the axis of the cylinder between the base end of the inclined surface portion 133 and the tip end of the jacket 134 is 0.5 mm.
상향 노즐(126)및 재킷(134)을 상향 노즐(126)의 윗쪽으로부터 원통의 축을 따라 보았을 때(도 4(d) 참조.), 재킷(134)의 내주에 둘러싸이는 영역의 면적을 S1로 하고, 노즐 선단부(132)의 외주에 둘러싸이는 영역의 면적을 S2로 할 때, 상향 노즐(126) 및 재킷(134)은, 「S1-S2=3.3×S2」가 되도록 구성되어 있다. When the upward nozzle 126 and the jacket 134 are viewed along the axis of the cylinder from above the upward nozzle 126 (see FIG. 4 (d)), the area of the area surrounded by the inner circumference of the jacket 134 is S1. In addition, when setting the area of the area | region enclosed by the outer periphery of the nozzle tip part 132 to S2, the upward nozzle 126 and the jacket 134 are comprised so that it may become "S1-S2 = 3.3 * S2".
노즐 중간부(128)는, 대략 원통 형상으로 이루어진다. The nozzle intermediate part 128 is formed in a substantially cylindrical shape.
노즐기단부(130)는, 도 4(c)에 나타내는 바와 같이, 육각형의 통형상으로 이루어진다.The nozzle base end 130 is formed in a hexagonal cylindrical shape as shown in Fig. 4C.
폴리머 용액 공급 경로(114)는, 도 3에 나타내는 바와 같이, 대략 직방체 형상을 갖고, 내부에 동굴을 가지며, 이 내부의 동굴을 통하여 공급 장치(240)로부터의 폴리머 용액을 복수의 상향 노즐(126)에 공급한다. 폴리머 용액 공급 경로(114)는, 공급 장치와의 접속부(116)를 갖고, 해당 공급 장치와의 접속부(116)에서 공급 장치(240)와 접속되어 있다. 또한, 폴리머 용액 공급 경로(114)는, 폴리머 용액 공급 경로측 나사부(118)를 추가로 가진다. 나노섬유 제조장치(1)에 있어서는, 폴리머 용액 공급 경로측 나사부(118)와 상향 노즐측 나사부와의 감합에 의해 폴리머 용액 공급 경로(114)와 상향 노즐(126)이 결합되어 있다. As shown in FIG. 3, the polymer solution supply path 114 has a substantially rectangular parallelepiped shape, has a cave therein, and a plurality of upward nozzles 126 through which the polymer solution from the supply device 240 flows. Supplies). The polymer solution supply path 114 has the connection part 116 with a supply apparatus, and is connected with the supply apparatus 240 at the connection part 116 with this supply apparatus. In addition, the polymer solution supply path 114 further has a polymer solution supply path side threaded portion 118. In the nanofiber manufacturing apparatus 1, the polymer solution supply path 114 and the upward nozzle 126 are coupled by fitting the polymer solution supply path side threaded portion 118 and the upward nozzle side threaded portion.
폴리머 용액 회수 경로(120)은, 수용부(121), 홈부(124), 덮개부(123) 및 복수의 재킷(134)으로부터 형성되어 이루어진다. 폴리머 용액 회수 경로(120)는, 복수의 상향 노즐(126)의 토출구로부터 오버플로우한 폴리머 용액을 회수한다. The polymer solution recovery path 120 is formed from the accommodation portion 121, the groove portion 124, the lid portion 123, and the plurality of jackets 134. The polymer solution recovery path 120 recovers the polymer solution that has overflowed from the discharge ports of the plurality of upward nozzles 126.
수용부(121)는, 복수의 상향 노즐(126)의 토출구로부터 오버플로우한 폴리머 용액을 받는다. 수용부(121)는, 폴리머 용액 공급 경로(114)의 상부에 배치되어 있다. 수용부(121)에는, 홈부(124)를 향해 약간의 경사가 형성되어 있고, 받은 폴리머 용액을 홈부(124)를 향해 인도하는 기능을 가진다. The accommodating part 121 receives the polymer solution which overflowed from the discharge port of the some upward nozzle 126. The accommodation part 121 is disposed above the polymer solution supply path 114. A slight inclination is formed in the accommodating part 121 toward the groove part 124, and has a function which guides the received polymer solution toward the groove part 124. As shown in FIG.
홈부(124)는, 수용부(121)의 측방에 배치되어 있다. 홈부(124)는, 저면에 있어 제1 이송 장치와의 접속부(125)를 갖고, 해당 제 1 이송 장치와의 접속부(125)에서 제1 이송 장치(250)와 접속되어 있다. The groove part 124 is arrange | positioned at the side of the accommodating part 121. As shown in FIG. The groove part 124 has the connection part 125 with the 1st conveying apparatus in the bottom face, and is connected with the 1st conveying apparatus 250 in the connection part 125 with this 1st conveying apparatus.
덮개부(123)는, 수용부(121)를 덮는 동시에 각 상향 노즐(126)을 통하는 복수의 노즐용 구멍을 가진다. 또한, 덮개부(123)는, 노즐용 구멍의 주위에 덮개부측 나사부(122)를 가진다. The cover part 123 covers the accommodating part 121, and has a some nozzle hole through each upward nozzle 126. Moreover, the cover part 123 has the cover part side screw part 122 around the hole for nozzles.
재킷(134)은, 복수의 노즐용 구멍으로부터 돌출하는 각 상향 노즐(126)의 측면을 덮는다. 재킷(134)은, 재킷(134)의 기단측인 재킷기단부(138)와 재킷(134)의 선단측인 재킷 선단부(140)를 가진다. 재킷(134)에 있어서는, 재킷 선단부(140)는, 재킷기단부(138)보다 가늘다.구체적으로는, 재킷기단부(138)는, 굵기가 일정한 원통형의 형상을 갖고, 재킷 선단부(140)는, 해당 재킷 선단부(140)와 재킷기단부(138)와의 접속부(136)로부터 선단에 걸쳐 서서히, 구체적으로는 일정한 비율로 굵기가 감소하는 원통형의 형상을 가지는(도 4(a) 및 도 4(d) 참조.). The jacket 134 covers the side surface of each upward nozzle 126 which protrudes from the some hole for nozzles. The jacket 134 has a jacket base end 138 on the proximal side of the jacket 134 and a jacket tip 140 on the proximal side of the jacket 134. In the jacket 134, the jacket tip 140 is thinner than the jacket tip 138. Specifically, the jacket tip 138 has a cylindrical shape with a constant thickness, and the jacket tip 140 is corresponding. From the connection part 136 of the jacket tip part 140 and the jacket base part 138 to the tip part, it has a cylindrical shape which decreases thickness gradually, specifically at a fixed ratio (refer FIG. 4 (a) and FIG. 4 (d)). .).
재킷(134)은, 도면표시에 의한 상세한 설명은 생략 하지만, 재킷기단부(138)의 기단 측에 덮개부측 나사부(122)와 대응하는 재킷측 나사부를 가진다. Although the detailed description by drawing is abbreviate | omitted, the jacket 134 has the jacket side screw part corresponding to the cover part side threaded part 122 on the base end side of the jacket base end part 138. As shown in FIG.
나노섬유 제조장치(1)에 있어서는, 덮개부측 나사부(122)와 재킷측 나사부와의 감합에 의해 덮개부(123)와 재킷(134)가 결합되어 있다. In the nanofiber manufacturing apparatus 1, the cover part 123 and the jacket 134 are couple | bonded by the fitting of the cover part side threaded part 122 and the jacket side threaded part.
제2 센서(142)는, 폴리머 용액 회수 경로(120)에 있어서의 폴리머 용액의 액면높이를 측정한다. 구체적으로는, 제2 센서(142)는 홈부(124)의 벽면에 배치되어 있고, 홈부(124)에 모인 폴리머 용액의 액면높이를 측정한다. 제2 센서(124)는, 예를 들면, 광섬유 센서로 이루어진다. The second sensor 142 measures the liquid level of the polymer solution in the polymer solution recovery path 120. Specifically, the second sensor 142 is disposed on the wall surface of the groove portion 124 and measures the liquid level of the polymer solution collected in the groove portion 124. The second sensor 124 is made of, for example, an optical fiber sensor.
컬렉터(150)는, 노즐 블록(110)보다 윗쪽에 배치되어 있다. 컬렉터(150)는, 도전체로 이루어지고, 도 2에 나타내는 바와 같이, 절연부재(152)를 통하여 케이스(100)에 장착되어 있다.The collector 150 is disposed above the nozzle block 110. The collector 150 is made of a conductor, and is attached to the case 100 via the insulating member 152 as shown in FIG. 2.
전계 방사 장치(20)는, 복수의 상향 노즐(126)의 토출구로부터 폴리머 용액을 오버플로우 시키면서 복수의 상향 노즐(126)의 토출구로부터 폴리머 용액을 토출하는 나노섬유를 전계 방사 한다. The field emission device 20 electrospins the nanofibers which discharge the polymer solution from the discharge ports of the plurality of upward nozzles 126 while overflowing the polymer solution from the discharge ports of the plurality of upward nozzles 126.
전원 장치(160)는, 복수의 상향 노즐(126)와 컬렉터(150)와의 사이에 고전압을 인가한다. 전원 장치(160)의 정극은 컬렉터(150)에 접속되어, 전원 장치(160)의 부극은 케이스(100)를 통하여 노즐 블록(110)에 접속되어 있다. The power supply device 160 applies a high voltage between the plurality of upward nozzles 126 and the collector 150. The positive electrode of the power supply device 160 is connected to the collector 150, and the negative electrode of the power supply device 160 is connected to the nozzle block 110 through the case 100.
보조 벨트 장치(170)는, 장척시트(W)의 이송 속도에 동기하여 회전하는 보조 벨트(172)와, 보조 벨트(172)의 회전을 돕는 5개의 보조 벨트용 롤러(174)를 가진다. 5개의 보조 벨트용 롤러(174)중 1개 또는 2이상의 보조 벨트용 롤러가 구동롤러이고, 나머지 보조벨트용 롤러가 종동롤러이다. 컬렉터(150)와 장척시트(W)와의 사이에 보조 벨트(172)가 배설되고 있기 때문에, 장척시트(W)는, 정의 고전압이 인가되고 있는 컬렉터(150)에 끌어 당겨지는 일 없이 부드럽게 이송되게 된다. The auxiliary belt device 170 includes an auxiliary belt 172 that rotates in synchronization with the feeding speed of the long sheet W, and five rollers 174 for assisting the auxiliary belt 172. One or two or more auxiliary belt rollers of the five auxiliary belt rollers 174 are driving rollers, and the remaining auxiliary belt rollers are driven rollers. Since the auxiliary belt 172 is disposed between the collector 150 and the long sheet W, the long sheet W is smoothly conveyed without being pulled by the collector 150 to which a positive high voltage is applied. do.
원료 탱크(200)는, 나노섬유의 원료가 되는 폴리머 용액을 저장한다. 원료 탱크(200)는, 폴리머 용액의 분리나 응고를 막기 위한 교반장치(201)를 내부에 가진다. 원료 탱크(200)에는, 제2 이송 장치(210)의 파이프(212)가 접속되어 있다. The raw material tank 200 stores the polymer solution used as a raw material of a nanofiber. The raw material tank 200 has an agitator 201 for preventing separation or solidification of the polymer solution therein. The pipe 212 of the second transfer device 210 is connected to the raw material tank 200.
제2 이송 장치(210)는, 원료 탱크(200) 또는 재생 탱크(270, 272)로부터 중간 탱크(230)에 폴리머 용액을 이송한다. 제2 이송 장치(210)는, 원료 탱크(200)와 중간 탱크(230)을 접속하는 파이프(212)와, 재생 탱크(270, 272)와 중간 탱크(230)를 접속하는 파이프(214)를 가진다. 그리고, 파이프(212)의 말단은 제1 저장부(236)(후술.)에 접속되어 있고, 파이프(214)의 말단은 파이프(212)에 접속되어 있다. The second transfer device 210 transfers the polymer solution from the raw material tank 200 or the regeneration tanks 270 and 272 to the intermediate tank 230. The second transfer device 210 includes a pipe 212 connecting the raw material tank 200 and the intermediate tank 230, and a pipe 214 connecting the regeneration tanks 270, 272 and the intermediate tank 230. Have The end of the pipe 212 is connected to the first storage unit 236 (described later), and the end of the pipe 214 is connected to the pipe 212.
제2 이송 제어장치(220)는, 제2 이송 장치(210)의 이송 동작을 제어한다. 제2 이송 제어장치(220)는, 밸브(222, 224, 226, 228)를 가진다. The second transfer control device 220 controls the transfer operation of the second transfer device 210. The second transfer control device 220 has valves 222, 224, 226, and 228.
밸브(222)는, 원료 탱크(200)로부터의 폴리머 용액의 이송을 제어한다. The valve 222 controls the transfer of the polymer solution from the raw material tank 200.
밸브(224)는, 원료 탱크(200) 및 재생 탱크(270, 272)로부터 중간 탱크(230)에 유입하는 폴리머 용액의 양을 제어한다. 밸브(224)에 의한 제어는, 후술하는 제1 센서(239)로 계측된 액면높이에 따라 행해진다. The valve 224 controls the amount of polymer solution flowing into the intermediate tank 230 from the raw material tank 200 and the regeneration tanks 270 and 272. Control by the valve 224 is performed according to the liquid level measured by the 1st sensor 239 mentioned later.
밸브(226)는, 재생 탱크(270)로부터의 폴리머 용액의 이송을 제어한다. The valve 226 controls the transfer of the polymer solution from the regeneration tank 270.
밸브(228)는, 재생 탱크(272)로부터의 폴리머 용액의 이송을 제어한다. The valve 228 controls the transfer of the polymer solution from the regeneration tank 272.
제2 이송 제어장치(220)는, 상기한 밸브(222, 224, 226, 228)에 의해, 폴리머 용액을, 원료 탱크(200) 및 재생 탱크(270, 272) 중 어느 하나의 탱크로부터 중간 탱크(230)로 이송할지에 대해서 제어한다. 또한, 제2 이송 제어장치(220)는, 밸브(224)에 의해 제1 센서(239)로 계측된 액면높이에 따라서, 제2 이송 장치(210)의 이송 동작을 제어한다. 또한, 제2 이송 제어장치(220)는, 밸브(226, 228)에 의해, 폴리머 용액을 재생 탱크(270, 272)로부터 중간 탱크(230)에 이송하는 경우에는, 폴리머 용액을 복수의 재생 탱크(270, 272) 중 어느 하나의 재생 탱크로부터 이송할지에 대해서도 제어한다. The second transfer control device 220 uses the valves 222, 224, 226, and 228 to transfer the polymer solution from the tank of any one of the raw material tank 200 and the regeneration tanks 270, 272 to the intermediate tank. It controls whether to transfer to 230. Moreover, the 2nd conveyance control apparatus 220 controls the conveyance operation | movement of the 2nd conveyance apparatus 210 according to the liquid surface height measured by the 1st sensor 239 by the valve 224. FIG. In addition, when the second transfer control device 220 transfers the polymer solution from the regeneration tanks 270 and 272 to the intermediate tank 230 by the valves 226 and 228, the plurality of regeneration tanks are used. It also controls whether to transfer from any of the regeneration tanks (270, 272).
중간 탱크(230)는, 원료 탱크(200) 또는 재생 탱크(270, 272)로부터 공급된 폴리머 용액을 저장한다. 중간 탱크(230)는, 해당 중간 탱크(230)의 하단이 각 상향 노즐(126)의 상단보다 윗쪽에 위치하도록 배치되어 있다. The intermediate tank 230 stores the polymer solution supplied from the raw material tank 200 or the regeneration tanks 270 and 272. The intermediate tank 230 is disposed such that the lower end of the intermediate tank 230 is located above the upper end of each upward nozzle 126.
중간 탱크(230)는, 격벽(232)과, 기포제거필터(234)와, 제1 센서(239)를 가진다. The intermediate tank 230 has a partition 232, a bubble removing filter 234, and a first sensor 239.
격벽(232)은, 폴리머 용액이 공급되는 공급 부위를 덮는다. The partition 232 covers the supply site to which the polymer solution is supplied.
기포제거필터(234)는, 격벽(232)의 저부에 배설되고, 통과하는 폴리머 용액으로부터 기포를 제거한다. 기포제거필터(234)는, 예를 들면, 0.1mm정도의 눈을 가지는 그물형상 구조를 가진다. The bubble removing filter 234 is disposed at the bottom of the partition wall 232 and removes bubbles from the polymer solution passing therethrough. The bubble removing filter 234 has a mesh structure having an eye of about 0.1 mm, for example.
중간 탱크(230)에 있어서는, 격벽(232) 및 기포제거필터(234)에 의해, 기포제거필터(234)에 의해서 기포가 제거되기 전의 폴리머 용액을 저장하는 제1 저장부(236)와, 기포제거필터(234)에 의해서 기포가 제거된 후의 폴리머 용액을 저장하는 제2 저장부(238)가 구성되어 있다. In the intermediate tank 230, the partition 232 and the bubble removing filter 234, the first reservoir 236 for storing the polymer solution before the bubble is removed by the bubble removing filter 234, and the bubble A second storage unit 238 is configured to store the polymer solution after bubbles are removed by the removal filter 234.
제2 저장부(238)는, 공급 경로(240)에 의해 폴리머 용액 공급 경로(114)와 접속되어 있고, 이것에 의해, 나노섬유 제조장치(1)에 있어서는, 제2 저장부(238)에 저장된 폴리머 용액이 노즐 블록(110)의 폴리머 용액 공급 경로(114)에 공급된다. The second storage part 238 is connected to the polymer solution supply path 114 by the supply path 240. As a result, in the nanofiber manufacturing apparatus 1, the second storage part 238 is connected to the second storage part 238. The stored polymer solution is supplied to the polymer solution supply path 114 of the nozzle block 110.
제1 센서(239)는, 제2 저장부(238)에 있어서의 폴리머 용액의 액면높이를 측정한다. 제1 센서는, 예를 들면, 광섬유 센서로 이루어진다. The first sensor 239 measures the liquid level of the polymer solution in the second storage unit 238. The first sensor is made of, for example, an optical fiber sensor.
공급 장치(240)는, 1개의 파이프로 이루어지고, 중간 탱크(230)의 제2 저장부(238)에 저장된 폴리머 용액을 노즐 블록(110)의 폴리머 용액 공급 경로(114)에 공급한다. 그리고, 공급장치는, 하나의 노즐블록에 대하여 최저 1개이면 좋다.The supply device 240 is composed of one pipe and supplies the polymer solution stored in the second reservoir 238 of the intermediate tank 230 to the polymer solution supply path 114 of the nozzle block 110. The supply apparatus may be at least one with respect to one nozzle block.
공급 제어장치(242)는, 공급 장치(240)에 설치된 1개의 밸브로 이루어지고, 공급 장치(240)의 공급 동작을 제어한다. The supply control apparatus 242 consists of one valve provided in the supply apparatus 240, and controls the supply operation | movement of the supply apparatus 240. FIG.
제1 이송 장치(250)는, 파이프(252) 및 펌프(254)를 갖고, 노즐 블록(110)의 폴리머 용액 회수 경로(120)로부터 재생 탱크(270, 272)에 폴리머 용액을 이송한다. The first transfer device 250 has a pipe 252 and a pump 254, and transfers the polymer solution from the polymer solution recovery path 120 of the nozzle block 110 to the regeneration tanks 270 and 272.
펌프(254)는, 노즐 블록(110) 부근보다 윗쪽에 있는 재생 탱크(270, 272)에 폴리머 용액을 이송하는 동력을 발생시킨다. 펌프(254)는, 예를 들면, 에어 다이어프램 펌프로 이루어진다. The pump 254 generates power for transferring the polymer solution to the regeneration tanks 270 and 272 located above the vicinity of the nozzle block 110. The pump 254 consists of an air diaphragm pump, for example.
제1 이송 제어장치(260)는, 제1 이송 장치(250)의 이송 동작을 제어한다. 제1 이송 제어장치(260)는, 밸브(264, 266) 및 펌프(254)의 제어장치(도시하지 않음.)를 구비한다. The first transfer control device 260 controls the transfer operation of the first transfer device 250. The first transfer control device 260 includes valves 264 and 266 and a control device (not shown) of the pump 254.
밸브(264)는, 폴리머 용액 회수 경로로부터 재생 탱크(270)로의 폴리머 용액의 이송 동작을 제어한다. The valve 264 controls the transfer operation of the polymer solution from the polymer solution recovery path to the regeneration tank 270.
밸브(266)는, 폴리머 용액 회수 경로로부터 재생 탱크(272)로의 폴리머 용액의 이송 동작을 제어한다. The valve 266 controls the transfer operation of the polymer solution from the polymer solution recovery path to the regeneration tank 272.
제1 이송 제어장치(260)는, 상기 밸브(264, 266)에 의해, 폴리머 용액을, 복수의 재생 탱크(270, 272) 중 어느 하나의 재생 탱크로 이송할지에 대해서 제어한다. The first transfer control device 260 controls whether the polymer solution is transferred to any one of the plurality of regeneration tanks 270 and 272 by the valves 264 and 266.
또한, 제1 이송 제어장치(260)는, 상기 밸브(264, 266) 및 펌프(254)의 제어장치에 의해, 제2 센서(142)로 측정된 폴리머 용액의 액면높이에 따라서, 제1 이송 장치(250)의 이송 동작을 제어한다. In addition, the 1st conveyance control apparatus 260 carries out 1st conveyance according to the liquid level of the polymer solution measured by the 2nd sensor 142 by the control apparatus of the said valve 264, 266 and the pump 254. Control the transfer operation of the device 250.
복수의 재생 탱크(270, 272)는, 회수된 폴리머 용액을 재생하기 위한 재생 탱크로서, 재생된 폴리머 용액을 저장한다. 재생 탱크(270, 272)는, 폴리머 용액의 분리나 응고를 막기 위한 교반장치(271, 273)를 각각 내부에 가진다. The plurality of regeneration tanks 270 and 272 are regeneration tanks for regenerating the recovered polymer solution and store the regenerated polymer solution. The regeneration tanks 270 and 272 have agitators 271 and 273 therein for preventing separation or solidification of the polymer solution, respectively.
상기 구성요소에 의해, 실시예에 관한 나노섬유 제조장치(1)은, 복수의 상향 노즐의 토출구로부터 오버플로우한 폴리머 용액을 회수하여 나노섬유의 원료로서 재이용하는 것을 가능하게 한 나노섬유 제조장치가 된다. According to the above components, the nanofiber manufacturing apparatus 1 according to the embodiment includes a nanofiber manufacturing apparatus which makes it possible to recover a polymer solution that has overflowed from the discharge ports of a plurality of upward nozzles and reuse it as a raw material of the nanofibers. do.
2.실시예에 관한 나노섬유 제조장치(1)을 이용한 나노섬유 제조 방법2. Nanofiber manufacturing method using the nanofiber manufacturing apparatus (1) according to the embodiment
실시예에 관한 나노섬유 제조 방법은, 복수의 상향 노즐(126)의 토출구로부터 폴리머 용액을 오버플로우 시키면서 복수의 상향 노즐(126)의 토출구로부터 폴리머 용액을 토출하는 나노섬유를 전계 방사 하는 동시에, 복수의 상향 노즐(126)의 토출구로부터 오버플로우한 폴리머 용액을 회수하여 나노섬유의 원료로서 재이용하는 것을 가능하게 하는 나노섬유 제조 방법이다. The nanofiber manufacturing method according to the embodiment electro-spins the nanofibers which discharge the polymer solution from the discharge holes of the plurality of upward nozzles 126 while overflowing the polymer solution from the discharge holes of the plurality of upward nozzles 126. It is a nanofiber manufacturing method which makes it possible to collect the polymer solution which overflowed from the discharge opening of the upward nozzle 126 of the, and to reuse it as a raw material of a nanofiber.
우선, 폴리머 용액을, 제2 이송 장치(210)의 파이프(212)를 이용하여, 원료 탱크(200)로부터 중간 탱크(230)로 이송한다. 다음에, 중간 탱크(230)내에서 기포제거필터(234)를 통하여 제1 저장부(232)로부터 제2 저장부(234)로 이동한 폴리머 용액을, 공급 장치(240)을 통하여 폴리머 용액 공급 경로(114)에 공급한다. 나노섬유 제조장치(1)는, 해당 폴리머 용액 공급 경로(114)에 공급된 복수의 상향 노즐(126)의 토출구로부터 폴리머 용액을 오버플로우 시키면서 복수의 상향 노즐(126)의 토출구로부터 폴리머 용액을 토출하여 나노섬유를 전계 방사 한다. First, the polymer solution is transferred from the raw material tank 200 to the intermediate tank 230 using the pipe 212 of the second transfer device 210. Next, the polymer solution, which is moved from the first reservoir 232 to the second reservoir 234 through the bubble removing filter 234 in the intermediate tank 230, is supplied through the supply device 240 to the polymer solution. Supply to path 114. The nanofiber manufacturing apparatus 1 discharges the polymer solution from the discharge ports of the plurality of upward nozzles 126 while overflowing the polymer solution from the discharge ports of the plurality of upward nozzles 126 supplied to the polymer solution supply path 114. Electrospinning the nanofibers.
또한, 나노섬유 제조장치(1)는, 오버플로우한 폴리머 용액을 폴리머 용액 회수 경로(120)에서 회수한다. 폴리머 용액이 폴리머 용액 회수 경로(120)의 홈부(124)에 어느 정도 곳에서 제1 이송 장치(250)를 이용하여 재생 탱크(270)를 이송하여, 회수한다. In addition, the nanofiber manufacturing apparatus 1 recovers the overflowed polymer solution in the polymer solution recovery path 120. The polymer solution transfers and recovers the regeneration tank 270 using the first transfer device 250 at a portion of the groove portion 124 of the polymer solution recovery path 120.
재생 탱크(270)에 소정 양의 폴리머 용액이 모인 후에, 제1 이송 제어장치(260)에 의해 제1 이송 장치(250)에 의한 이송처를 재생 탱크(272)로 전환한다. 이것에 의해, 오버플로우한 폴리머 용액은 재생 탱크(272)에 회수되게 되고, 재생 탱크(270)에서 후의 공정을 실시하고 있을 때, 재생 탱크(270)에 오버플로우한 폴리머 용액이 들어가 버리는 일이 없다.After the predetermined amount of the polymer solution is collected in the regeneration tank 270, the transfer destination by the first transfer device 250 is switched to the regeneration tank 272 by the first transfer control device 260. As a result, the overflowed polymer solution is recovered to the regeneration tank 272, and the polymer solution overflowed into the regeneration tank 270 enters the regeneration tank 270 when the subsequent step is performed in the regeneration tank 270. none.
이어서, 회수한 폴리머 용액에 있어서의 용매 및 첨가제의 함유율을 측정한다. 해당 측정은, 재생 탱크(270) 중의 폴리머 용액의 일부를 샘플로서 빼내고, 해당 샘플을 분석하는 것에 의해 실시할 수 있다. 폴리머 용액의 분석은, 기존의 방법으로 실시할 수 있다.Next, the content rate of the solvent and the additive in the recovered polymer solution is measured. This measurement can be performed by extracting a part of the polymer solution in the regeneration tank 270 as a sample and analyzing the sample. Analysis of a polymer solution can be performed by a conventional method.
이어서, 해당 측정 결과를 기초로 하여, 필요한 양의 용매 및 첨가제 그 밖의 성분을 폴리머 용액에 첨가한다. 이것에 의해, 회수된 폴리머 용액이 재생된다. 그 후에, 해당 재생 탱크(270)내의 폴리머 용액을 제2 이송 장치(210)의 파이프(212)를 이용하여 중간 탱크(230)로 이송한다. 재생 탱크(270)내의 폴리머 용액을 원료 탱크(200)내의 폴리머 재료를 대신하여, 또는 원료 탱크(200)내의 폴리머 재료와 함께 전계 방사에 이용하는 것에 의해, 재생 탱크(270)내의 폴리머 용액을 나노섬유의 원료로서 재이용할 수 있다. Subsequently, based on the measurement result, the required amount of solvent, additives and other components are added to the polymer solution. As a result, the recovered polymer solution is regenerated. Thereafter, the polymer solution in the regeneration tank 270 is transferred to the intermediate tank 230 using the pipe 212 of the second transfer device 210. By using the polymer solution in the regeneration tank 270 for electric field spinning instead of the polymer material in the raw material tank 200 or together with the polymer material in the raw material tank 200, the polymer solution in the regeneration tank 270 is nanofibers. It can be reused as a raw material of.
그리고, 재생 탱크(272)에 소정의 양의 폴리머 용액이 모인 후에는, 재생 탱크(270)에 소정의 양의 폴리머 용액이 모인 뒤로 한 것과 마찬가지의 방법에 의해 재생 탱크(272)내의 폴리머 용액을 나노섬유의 원료로서 재이용할 수 있다. Then, after the predetermined amount of the polymer solution is collected in the regeneration tank 272, the polymer solution in the regeneration tank 272 is removed by the same method as that after the predetermined amount of the polymer solution is collected in the regeneration tank 270. It can be reused as a raw material of nanofibers.
이하에, 실시예에 관한 나노섬유 제조 방법에 있어서의 방사조건을 예시적으로 나타낸다.Below, the spinning conditions in the nanofiber manufacturing method which concerns on an Example are shown by way of example.
장척시트로서는, 각종 재료로 이루어지는 부직포, 직물, 편물, 필름등을 이용할 수 있다. 장척시트의 두께는, 예를 들면 5μm~500μm의 것을 이용할 수 있다. 장척시트의 길이는, 예를 들면 10m~10km의 것을 이용할 수 있다. As the long sheet, a nonwoven fabric, a woven fabric, a knitted fabric, a film or the like made of various materials can be used. As for the thickness of a long sheet, the thing of 5 micrometers-500 micrometers can be used, for example. As for the length of a long sheet, the thing of 10 m-10 km can be used, for example.
나노섬유의 원료가 되는 폴리머로서는, 예를 들면, 폴리 유산(PLA), 폴리프로필렌(PP), 폴리 초산비닐(PVAc), 폴리에틸렌 테레프탈레이트(PET), 폴리부틸렌 테레프탈레이트(PBT), 폴리에틸렌 나프타 레이트(PEN), 폴리아미드(PA), 폴리우레탄(PUR), 폴리비닐 알코올(PVA), 폴리 아크릴로니트릴(PAN), 포리에이테르이미드(PEI), 폴리카프로락톤(PCL), 폴리 유산 글리콜산(PLGA), 실크, 셀룰로오스, 키토산 등을 이용할 수 있다. As a polymer used as a raw material of a nanofiber, For example, polylactic acid (PLA), polypropylene (PP), polyvinyl acetate (PVAc), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphtha Rate (PEN), Polyamide (PA), Polyurethane (PUR), Polyvinyl Alcohol (PVA), Polyacrylonitrile (PAN), Polyetherimide (PEI), Polycaprolactone (PCL), Polylactic acid glycol Acids (PLGA), silk, cellulose, chitosan and the like can be used.
폴리머 용액에 이용하는 용매로서는, 예를 들면, 디클로로 메탄, 디메틸 폼 아미드, 디메틸 설폭시드, 메틸 에틸 케톤, 클로로포름, 아세톤, 물, 포름산, 초산, 시클로 헥산, THF 등을 이용할 수 있다. 복수 종류의 용매를 혼합하여 이용해도 좋다. 폴리머 용액에는, 도전성 향상제 등의 첨가제를 함유시켜도 좋다. As the solvent used for the polymer solution, for example, dichloromethane, dimethyl formamide, dimethyl sulfoxide, methyl ethyl ketone, chloroform, acetone, water, formic acid, acetic acid, cyclohexane, THF and the like can be used. You may mix and use multiple types of solvent. The polymer solution may contain additives such as conductivity improvers.
제조하는 나노섬유 부직포의 통기도는, 예를 들면, 0.15cm3/cm2/s∼200cm3/cm2/s로 설정할 수 있다. 이송속도는, 예를 들면, 0.2m/분~100m/분으로 설정할 수 있다. 노즐 블록(110)과 컬렉터(150)에 인가하는 전압은, 10kV~80kV로 설정할 수 있고, 50kV 부근으로 설정하는 것이 바람직하다. Air permeability of the nanofiber nonwoven fabric produced, for example, can be set to 0.15cm 3 / cm 2 / s~200cm 3 / cm 2 / s. The feed speed can be set to, for example, 0.2 m / min to 100 m / min. The voltage applied to the nozzle block 110 and the collector 150 can be set to 10 kV-80 kV, and it is preferable to set it near 50 kV.
방사 구역의 온도는, 예를 들면 25℃으로 설정할 수 있다. 방사 구역의 습도는, 예를 들면 30%로 설정할 수 있다. The temperature of the spinning zone can be set to 25 ° C, for example. The humidity of the radiation zone can be set to 30%, for example.
3. 실시예에 관한 나노섬유 제조장치(1)의 효과 3. Effect of the nanofiber manufacturing apparatus 1 according to the embodiment
실시예에 관한 나노섬유 제조장치(1)에 의하면, 종래의 나노섬유 제조장치의 경우와 마찬가지로, 복수의 상향 노즐(126)의 토출구로부터 폴리머 용액을 토출하여 나노섬유를 전계 방사 하기 때문에, 종래의 하향 노즐을 이용한 나노섬유 제조장치의 경우에 보여지는 드롭 렛 현상이 발생하는 일이 없고, 고품질의 나노섬유를 제조하는 것이 가능해진다. According to the nanofiber manufacturing apparatus 1 according to the embodiment, as in the case of the conventional nanofiber manufacturing apparatus, since the polymer solution is discharged by discharging the polymer solution from the discharge ports of the plurality of upward nozzles 126, conventional nanofibers are discharged. The droplet phenomenon seen in the case of the nanofiber manufacturing apparatus using the downward nozzle does not occur, and it becomes possible to manufacture high quality nanofibers.
또한, 실시예에 관한 나노섬유 제조장치(1)에 의하면, 종래의 나노섬유 제조장치의 경우와 마찬가지로, 복수의 상향 노즐(126)의 토출구로부터 폴리머 용액을 오버플로우 시키면서 나노섬유를 전계 방사 하기 때문에, 항상 충분한 양의 폴리머 용액이 상향 노즐에 공급되고, 균일한 품질을 가지는 나노섬유를 제조하는 것이 가능해진다. Further, according to the nanofiber manufacturing apparatus 1 according to the embodiment, as in the case of the conventional nanofiber manufacturing apparatus, the field of the nanofibers is electrospun while overflowing the polymer solution from the discharge ports of the plurality of upward nozzles 126. A sufficient amount of polymer solution is always supplied to the upward nozzle, making it possible to produce nanofibers of uniform quality.
또한, 실시예에 관한 나노섬유 제조장치(1)에 의하면, 종래의 나노섬유 제조장치의 경우와 마찬가지로, 복수의 상향 노즐(126)의 토출구로부터 오버플로우한 폴리머 용액을 회수하여 나노섬유의 원료로서 재이용하는 것이 가능하기 때문에, 원료의 사용료를 줄이는 것이 가능해지는 결과, 염가의 제조비용으로 나노섬유를 제조하는 것이 가능해진다. 또한, 이것은 자원 절약화의 흐름에도 따르는 것이 된다. Further, according to the nanofiber manufacturing apparatus 1 according to the embodiment, as in the case of the conventional nanofiber manufacturing apparatus, the polymer solution overflowed from the discharge ports of the plurality of upward nozzles 126 is recovered and used as a raw material of the nanofibers. Since it is possible to reuse, it becomes possible to reduce the fee for use of a raw material, and as a result, it becomes possible to manufacture nanofibers at inexpensive manufacturing cost. This also follows the flow of resource saving.
또한, 실시예에 관한 나노섬유 제조장치(1)에 의하면, 노즐 선단부(132)가, 원통을 해당 원통의 축과 비스듬하게 교차하는 평면을 따라서 절단한 형상을 가지기 때문에, 상향 노즐(134)의 토출구로부터 오버플로우 하는 폴리머 용액이, 노즐 선단부(132)의 부분에서 체류 하는 일 없이 신속하게 흘러 떨어지게 된다. 이 때문에, 전계 방사 하는 과정에서 폴리머 용액으로부터 용매가 휘발하는 양을 극히 줄이는 동시에, 상향 노즐(134)의 토출구의 근방에 있어서 생성하는 폴리머 고형물의 양을 극히 줄이는 것이 가능해진다. 그 결과, 실시예에 관한 나노섬유 제조장치(1)에 의하면, 상향 노즐(134)의 토출구로부터 폴리머 용액을 오버플로우 시키면서 전해 방사 하는 경우라도, 폴리머 고형물이 나노섬유에 부착하여 나노섬유의 품질을 저하시켜 버린다는 문제를 해결하는 것이 가능해진다. Moreover, according to the nanofiber manufacturing apparatus 1 which concerns on an Example, since the nozzle tip part 132 has the shape which cut | disconnected the cylinder along the plane which intersects the cylinder axis | shaft obliquely, the upward nozzle 134 of the The polymer solution that overflows from the discharge port flows quickly without remaining in the portion of the nozzle tip 132. For this reason, it becomes possible to extremely reduce the amount of solvent volatilization from the polymer solution in the process of electric field spinning, and to extremely reduce the amount of polymer solid produced in the vicinity of the discharge port of the upward nozzle 134. As a result, according to the nanofiber manufacturing apparatus 1 according to the embodiment, even when electrospinning while overflowing the polymer solution from the discharge port of the upward nozzle 134, the polymer solids adhere to the nanofibers to improve the quality of the nanofibers. It becomes possible to solve the problem of making it fall.
또한, 실시예에 관한 나노섬유 제조장치(1)에 의하면, 원통의 축과 평면과의 이루는 각도는, 15˚~60˚의 범위내에 있기 때문에, 상향 노즐(126)의 토출구로부터 오버플로우 하는 폴리머 용액이 노즐 선단부(132)의 부분에서 체류 하는 일 없이 보다 한층 신속하게 흘러 떨어지게 되고, 또한, 상향 노즐(126)의 경사면의 길이가 너무 길어 지는 것으로 인하여 전계 방사 조건이 흐트러져 버리는 일도 없어진다. In addition, according to the nanofiber manufacturing apparatus 1 according to the embodiment, since the angle formed between the axis of the cylinder and the plane is in the range of 15 ° to 60 °, the polymer overflows from the discharge port of the upward nozzle 126. The solution flows down more quickly without remaining in the portion of the nozzle tip 132, and the length of the inclined surface of the upward nozzle 126 becomes too long so that the field emission condition is not disturbed.
또한, 실시예에 관한 나노섬유 제조장치(1)에 의하면, 상향 노즐(126)의 측면을 덮는 재킷(134)의 기능에 의해, 상향 노즐(126)의 토출구로부터 오버플로우 하는 폴리머 용액으로부터 용매가 휘발하는 양을 보다 한층 줄이는 것이 가능해진다. Moreover, according to the nanofiber manufacturing apparatus 1 which concerns on an Example, by the function of the jacket 134 which covers the side surface of the upward nozzle 126, a solvent is prevented from the polymer solution which overflows from the discharge port of the upward nozzle 126. It is possible to further reduce the amount of volatilization.
또한, 실시예에 관한 나노섬유 제조장치(1)에 의하면, 재킷 선단부(140)는 재킷기단부(138)보다 가늘기 때문에, 상향 노즐(126)의 토출구로부터 오버플로우 하는 폴리머 용액으로부터 용매가 휘발하는 양을 보다 한층 줄이는 것이 가능해진다. Further, according to the nanofiber manufacturing apparatus 1 according to the embodiment, since the jacket tip 140 is thinner than the jacket proximal end 138, the solvent volatilizes from the polymer solution overflowing from the discharge port of the upward nozzle 126. It is possible to further reduce the amount.
또한, 실시예에 관한 나노섬유 제조장치(1)에 의하면, 재킷기단부(138)는, 굵기가 일정한 통 모양의 형상을 갖고, 재킷 선단부(140)는, 해당 재킷 선단부(140)와 재킷기단부(138)와의 접속부(136)으로부터 선단에 걸쳐 서서히 굵기가 감소하는 통 모양의 형상을 가지기 때문에, 단순한 형상의 재킷(134)를 이용하여, 폴리머 용액으로부터 용매가 휘발하는 양을 줄이는 것이 가능해진다. In addition, according to the nanofiber manufacturing apparatus 1 according to the embodiment, the jacket base end 138 has a cylindrical shape with a constant thickness, and the jacket tip end 140 has the jacket tip end 140 and the jacket base end ( Since it has a cylindrical shape in which the thickness gradually decreases from the connection portion 136 with the tip 136, the amount of solvent volatilized from the polymer solution can be reduced by using the jacket 134 having a simple shape.
또한, 실시예에 관한 나노섬유 제조장치(1)에 의하면, 노즐 선단부(132)의 선단측에 형성된 경사면부(133)의 선단은, 재킷(134)의 선단보다 윗쪽에 위치하기 때문에, 상향 노즐(126)과 컬렉터(150)와의 사이에 형성되는 전계가 안정되기 때문에, 균일한 품질을 가지는 나노섬유를 제조하는 것이 가능해진다. Moreover, according to the nanofiber manufacturing apparatus 1 which concerns on an Example, since the front end of the inclined surface part 133 formed in the front end side of the nozzle front end part 132 is located above the front end of the jacket 134, an upward nozzle Since the electric field formed between 126 and the collector 150 is stabilized, it becomes possible to manufacture nanofibers with uniform quality.
또한, 실시예에 관한 나노섬유 제조장치(1)에 의하면, 간격(d1)은, 0.1mm~2.0 mm의 범위내에 있기 때문에, 상향 노즐(126)의 토출구로부터 오버플로우 하는 폴리머 용액으로부터 용매가 휘발하는 양을 보다 한층 줄이는 것이 가능해지고, 또한, 상향 노즐(126)과 컬렉터(150)와의 사이에 형성되는 전계가 안정되기 때문에, 균일한 품질을 가지는 나노섬유를 제조하는 것이 가능해진다. Moreover, according to the nanofiber manufacturing apparatus 1 which concerns on an Example, since the space | interval d1 exists in the range of 0.1 mm-2.0 mm, a solvent volatilizes from the polymer solution which overflows from the discharge port of the upward nozzle 126. Since the amount to be reduced can be further reduced, and the electric field formed between the upward nozzle 126 and the collector 150 is stabilized, it becomes possible to manufacture nanofibers having uniform quality.
또한, 실시예에 관한 나노섬유 제조장치(1)에 의하면, 노즐 선단부(132)의 선단측에 형성된 경사면부(133)의 기단은, 재킷(134)의 선단보다 하부에 위치하기 때문에, 상향 노즐(126)의 토출구로부터 오버플로우 하는 폴리머 용액으로부터 용매가 휘발하는 양을 보다 한층 줄이는 것이 가능해진다. Moreover, according to the nanofiber manufacturing apparatus 1 which concerns on an Example, since the base end of the inclined surface part 133 formed in the front end side of the nozzle front end part 132 is located below the front end of the jacket 134, an upward nozzle It is possible to further reduce the amount of solvent volatilization from the polymer solution overflowing from the discharge port of 126.
또한, 실시예에 관한 나노섬유 제조장치(1)에 의하면, 간격(d2)은, 0.1mm~1.0 mm의 범위내에 있기 때문에, 상향 노즐(126)의 토출구로부터 오버플로우 하는 폴리머 용액으로부터 용매가 휘발하는 양을 보다 한층 줄이는 것이 가능해지고, 또한, 폴리머 용액이 상향 노즐(126)의 토출구로부터 컬렉터(150)를 향해서 안정되어 분사되게 되고, 균일한 품질을 가지는 나노섬유를 제조하는 것이 가능해진다. Moreover, according to the nanofiber manufacturing apparatus 1 which concerns on an Example, since the space | interval d2 exists in the range of 0.1 mm-1.0 mm, a solvent volatilizes from the polymer solution which overflows from the discharge port of the upward nozzle 126. It is possible to further reduce the amount to be made, and also the polymer solution can be stably sprayed toward the collector 150 from the discharge port of the upward nozzle 126, and it becomes possible to manufacture nanofibers with uniform quality.
또한, 실시예에 관한 나노섬유 제조장치(1)에 의하면, 「S2≤S1-S2≤4×S2」의 관계를 만족시키기 때문에, 상향 노즐(126)의 토출구로부터 오버플로우 하는 폴리머 용액으로부터 용매가 휘발하는 양을 보다 한층 줄이는 것이 가능해지고, 또한, 상향 노즐(126)의 토출구로부터 오버플로우 하는 폴리머 용액이 상향 노즐(126)과 재킷(134)과의 틈새로 가라앉는 없어진다. In addition, according to the nanofiber manufacturing apparatus 1 according to the embodiment, since the relationship of "S2≤S1-S2≤4xS2" is satisfied, the solvent is prevented from the polymer solution overflowing from the discharge port of the upward nozzle 126. The amount of volatilization can be further reduced, and the polymer solution which overflows from the discharge port of the upward nozzle 126 is eliminated from sinking into the gap between the upward nozzle 126 and the jacket 134.
또한, 실시예에 관한 나노섬유 제조장치(1)에 의하면, 덮개부측 나사부(122)와 재킷측 나사부와의 감합에 의해 덮개부(123)와 재킷(134)이 결합되어 있기 때문에, 재킷(134)의 착탈이 용이해지고, 제조 및 유지보수가 용이한 나노섬유 제조장치가 된다. Moreover, according to the nanofiber manufacturing apparatus 1 which concerns on an Example, since the cover part 123 and the jacket 134 are couple | bonded by the fitting of the cover part side threaded part 122 and the jacket side threaded part, the jacket 134 It becomes easy to attach and detach, and becomes a nanofiber manufacturing apparatus which is easy to manufacture and maintain.
또한, 실시예에 관한 나노섬유 제조장치(1)에 의하면, 폴리머 용액 공급 경로측 나사부(118)와 상향 노즐측 나사부와의 감합에 의해 폴리머 용액 공급 경로(114)와 상향 노즐(126)이 결합되어 있기 때문에, 상향 노즐(126)의 착탈이 용이해지고, 제조 및 유지보수가 용이한 나노섬유 제조장치가 된다. In addition, according to the nanofiber manufacturing apparatus 1 according to the embodiment, the polymer solution supply path 114 and the upward nozzle 126 are coupled by the fitting of the polymer solution supply path side threaded portion 118 and the upward nozzle side threaded portion. As a result, the attachment / detachment of the upward nozzle 126 becomes easy, and it becomes a nanofiber manufacturing apparatus which is easy to manufacture and maintain.
또한, 실시예에 관한 나노섬유 제조장치(1)에 의하면, 상향 노즐(126)의 기단부(노즐기단부(130))가 육각형의 통형상으로 이루어지기 때문에, 렌치 등의 공구를 이용하여 상향 노즐(126)을 용이하게 착탈하는 것이 가능해지고, 제조 및 유지보수가 보다 한층 용이한 나노섬유 제조장치가 된다. Further, according to the nanofiber manufacturing apparatus 1 according to the embodiment, since the proximal end (nozzle proximal end 130) of the upward nozzle 126 is formed in a hexagonal tubular shape, the upward nozzle (using a tool such as a wrench) 126) can be easily attached and detached, and a nanofiber manufacturing apparatus is more easily manufactured and maintained.
또한, 실시예에 관한 나노섬유 제조장치(1)에 의하면, 원료 탱크(200)와, 재생 탱크(270, 272)와, 중간 탱크(230)와, 제1 이송 장치(250)와, 제1 이송 제어장치(260)와, 제2 이송 장치(210)와, 제2 이송 제어장치(220)를 구비하기 때문에, 회수한 폴리머 용액을 재생 탱크(270, 272)로 이송한 후, 해당 폴리머 용액의 조성을 측정하는 동시에, 해당 측정 결과에 따라 폴리머 용액에 용매 그 밖의 필요한 성분을 첨가함으로써, 해당 폴리머 용액을 원래의 폴리머 용액의 조성과 같든지 극히 가까운 조성을 갖는 폴리머 용액으로 재생하는 것이 가능해진다. 이 때문에, 실시예에 관한 나노섬유 제조장치(1)에 의하면, 오버플로우한 폴리머 용액을 회수하여 나노섬유의 원료로서 재이용 가능하게 하면서, 전계 방사 과정에 있어서의 방사 조건(이 경우 폴리머 용액의 조성)을 장시간에 걸쳐서 일정하게 유지하는 것이 가능해지고, 균일한 품질을 가지는 나노섬유를 대량생산 하는 것이 가능해진다. Moreover, according to the nanofiber manufacturing apparatus 1 which concerns on an Example, the raw material tank 200, the regeneration tank 270, 272, the intermediate tank 230, the 1st conveying apparatus 250, and the 1st Since the transfer control device 260, the second transfer device 210, and the second transfer control device 220 are provided, the recovered polymer solution is transferred to the regeneration tanks 270 and 272, and then the polymer solution is transferred. By measuring the composition of and simultaneously adding the solvent and other necessary components to the polymer solution according to the result of the measurement, it is possible to regenerate the polymer solution into a polymer solution having a composition very close to or equal to that of the original polymer solution. For this reason, according to the nanofiber manufacturing apparatus 1 which concerns on an Example, the spinning conditions in an electric field spinning process (in this case, a composition of a polymer solution) are collect | recovered, making it possible to collect the overflowed polymer solution and to reuse it as a raw material of a nanofiber. ) Can be kept constant over a long time, and mass production of nanofibers having a uniform quality becomes possible.
또한, 실시예에 관한 나노섬유 제조장치(1)에 의하면, 장척시트(W)를 이송하는 이송 장치(10)를 추가로 구비하는 동시에, 적어도 노즐 블록(110)과 컬렉터(150)를 구비하고, 장척시트(W)의 표면에 나노섬유를 퇴적시키는 전계 방사 장치로서, 장척시트(W)의 이송 방향을 따라서 직렬로 배치된 복수의 전계 방사 장치(20)를 구비하기 때문에, 나노섬유를 보다 한층 높은 생산성으로 대량생산 하는 것이 가능해진다. 또한, 나노섬유를 두껍게 퇴적시킨 제품이나, 여러 종류의 나노섬유를 퇴적시킨 제품 등을 대량생산 하는 일도 가능해진다.Moreover, according to the nanofiber manufacturing apparatus 1 which concerns on an Example, it is further provided with the conveying apparatus 10 which conveys the elongate sheet W, and is provided with the nozzle block 110 and the collector 150 at least. Since the field spinning device for depositing nanofibers on the surface of the long sheet W, the field spinning device 20 includes a plurality of field spinning devices 20 arranged in series along the feeding direction of the long sheet W, Higher productivity makes it possible to mass-produce. It is also possible to mass-produce products in which nanofibers are thickly deposited, products in which various kinds of nanofibers are deposited, and the like.
[실험예] [Experimental example]
실시예에 관한 나노섬유 제조장치(1)을 이용하여, 복수의 상향 노즐(126)의 토출구로부터 폴리머 용액을 오버플로우 시키면서 복수의 상향 노즐(126)의 토출구로부터 폴리머 용액을 토출하여 나노섬유를 전계 방사 하는 동시에, 복수의 상향 노즐(126)의 토출구로부터 오버플로우한 폴리머 용액을 회수하여 나노섬유의 원료로서 재이용했다. 구체적으로는, 회수한 폴리머 용액을 재생 탱크(270, 272)에 이송한 후, 해당 폴리머 용액의 조성을 측정하는 동시에, 해당 측정 결과에 따라 폴리머 용액에 용매 그 밖의 필요한 성분을 첨가하는 것으로써 폴리머 용액을 재생했다. Using the nanofiber manufacturing apparatus 1 according to the embodiment, the polymer solution is discharged from the discharge holes of the plurality of upward nozzles 126 while overflowing the polymer solution from the discharge holes of the plurality of upward nozzles 126, thereby causing the electric field of the nanofibers. At the same time, the polymer solution which overflowed from the discharge port of the some upward nozzle 126 was collect | recovered, and was recycled as a raw material of nanofiber. Specifically, the collected polymer solution is transferred to the regeneration tanks 270 and 272, and then the composition of the polymer solution is measured, and the polymer solution is added to the polymer solution according to the measurement result. Played.
표 1은, 원료가 되는 폴리머 용액의 조성을 나타내는 표이다. 표 2는, 회수한 폴리머 용액의 조성을 나타내는 표이다. 표 3은, 재생한 폴리머 용액의 조성을 나타내는 표이다. 그리고, 표 1 내지 표 3에 있어서의 「상대 중량」은, 폴리우레탄의 중량을 100으로 했을 때에 있어서의 각 물질의 상대 중량을 나타내고 있다. Table 1 is a table | surface which shows the composition of the polymer solution used as a raw material. Table 2 is a table which shows the composition of the recovered polymer solution. Table 3 is a table which shows the composition of the recycled polymer solution. And "relative weight" in Tables 1-3 has shown the relative weight of each substance at the time of making the weight of polyurethane into 100.
[표 1]TABLE 1
물질명 상대 중량Material Name Relative Weight
폴리우레탄(폴리머) 100.0Polyurethane (Polymer) 100.0
디메틸 포름 아미드(용매) 240.0Dimethyl Formamide (Solvent) 240.0
디메틸 에틸 케톤(용매) 160.0Dimethyl ethyl ketone (solvent) 160.0
[표 2]TABLE 2
물질명 상대 중량Material Name Relative Weight
폴리우레탄(폴리머) 100.0Polyurethane (Polymer) 100.0
디메틸 포름 아미드(용매) 199.2Dimethyl Formamide (Solvent) 199.2
디메틸 에틸 케톤(용매) 85.4Dimethyl ethyl ketone (solvent) 85.4
[표 3]TABLE 3
물질명 상대 중량Material Name Relative Weight
폴리우레탄(폴리머) 100.0Polyurethane (Polymer) 100.0
디메틸 포름 아미드(용매) 240.0Dimethyl Formamide (Solvent) 240.0
디메틸 에틸 케톤(용매) 160.0Dimethyl ethyl ketone (solvent) 160.0
표 1~표 3에 나타내는 바와 같이, 실험예에 의하면, 해당 폴리머 용액을 원래의 폴리머 용액의 조성과 같든지 극히 가까운 조성을 가지는 폴리머 용액으로 재생할 수 있었다.As shown in Tables 1 to 3, according to the experimental example, the polymer solution could be regenerated into a polymer solution having a composition that was the same as or very close to that of the original polymer solution.
그리고, 실험예에 있어서는, 회수한 폴리머 용액에, 폴리우레탄 100g 당 40.8g의 디메틸 폼 아미드 및 74.6g의 메틸 에틸 케톤을 첨가함으로써, 폴리머 용액을 재생했다. In the experimental example, the polymer solution was regenerated by adding 40.8 g of dimethyl formamide and 74.6 g of methyl ethyl ketone per 100 g of polyurethane to the recovered polymer solution.
이상, 본 발명을 상기의 실시예를 기초로 하여 설명했지만, 본 발명은 상기의 실시예로 한정되는 것은 아니다. 그 취지를 일탈하지 않는 범위에 대해 여러 가지의 형태에 있어서 실시하는 것이 가능하고, 예를 들면, 다음과 같은 변형도 가능하다. As mentioned above, although this invention was demonstrated based on said Example, this invention is not limited to said Example. It is possible to implement in various forms about the range which does not deviate from the meaning, for example, the following modification is also possible.
(1) 상기 실시예에 있어서의 각 구성요소의 수, 위치 관계, 크기는 예시이며, 본 발명은 이것으로 한정되는 것은 아니다. (1) The number, positional relationship, and size of each component in the above embodiment are exemplifications, and the present invention is not limited thereto.
(2) 상기 실시예에 있어서는, 원통의 축과 평면과의 이루는 각도가 50˚인 나노섬유 제조장치(1)를 예로써 본 발명의 나노섬유 제조장치를 설명했지만, 본 발명은 이것으로 한정되는 것은 아니다. 예를 들면, 원통의 축과 평면과의 이루는 각도가 15˚~60˚의 범위내에 있는 나노섬유 제조장치에 본 발명을 적용할 수 있다.(2) In the above embodiment, the nanofiber production apparatus of the present invention has been described using the nanofiber production apparatus 1 having an angle of 50 ° between the axis and the plane of the cylinder as an example, but the present invention is limited thereto. It is not. For example, the present invention can be applied to a nanofiber production apparatus having an angle between a cylinder axis and a plane in the range of 15 ° to 60 °.
(3) 상기 실시예에 있어서는, 경사면부의 선단과 재킷의 선단과의 원통의 축으로 따른 간격(d1)이 0.5mm인 나노섬유 제조장치(1)를 예로써 본 발명의 나노섬유 제조장치를 설명했지만, 본 발명은 이것으로 한정되는 것은 아니다. 예를 들면, 경사면부의 선단과 재킷의 선단과의 원통의 축을 따른 간격(d1)이 0.1mm~2.0mm의 범위내에 있는 나노섬유 제조장치에 본 발명을 적용할 수 있다. (3) In the above embodiment, the nanofiber production apparatus of the present invention will be described with an example of the nanofiber production apparatus 1 having an interval d1 of 0.5 mm along the axis of the cylinder between the tip of the inclined surface portion and the tip of the jacket. However, the present invention is not limited to this. For example, the present invention can be applied to a nanofiber production apparatus in which a distance d1 along the axis of the cylinder between the tip of the inclined surface portion and the tip of the jacket is in the range of 0.1 mm to 2.0 mm.
(4) 상기 실시예에 있어서는, 노즐 선단부의 선단측에 형성된 경사면부의 기단이 재킷의 선단보다 하부에 위치하는 나노섬유 제조장치(1)를 예로써 본 발명의 나노섬유 제조장치를 설명했지만, 본 발명은 이것으로 한정되는 것은 아니다. 예를 들면, 노즐 선단부의 선단측에 형성된 경사면부의 기단이 재킷의 선단과 같은 높이 또는 재킷의 선단보다 윗쪽에 위치하는 나노섬유 제조장치에 본 발명을 적용할 수 있다. (4) In the above embodiment, the nanofiber production apparatus of the present invention has been described with the example of the nanofiber production apparatus 1 in which the base end of the inclined surface portion formed on the tip side of the nozzle tip portion is located below the tip of the jacket. The invention is not limited to this. For example, the present invention can be applied to a nanofiber manufacturing apparatus in which the base end of the inclined surface portion formed on the tip side of the nozzle tip portion is located at the same height as the tip of the jacket or above the tip of the jacket.
(5) 상기 실시예에 있어서는, 경사면부의 기단과 재킷의 선단과의 원통의 축을 따른 간격(d2)이 0.5mm인 나노섬유 제조장치(1)를 예로써 본 발명의 나노섬유 제조장치를 설명했지만, 본 발명은 이것으로 한정되는 것은 아니다. 예를 들면, 경사면부의 기단과 재킷의 선단과의 원통의 축으로 따른 간격(d2)이 0.1mm~1.0mm의 범위내에 있는 나노섬유 제조장치에 본 발명을 적용할 수 있다. (5) In the above embodiment, the nanofiber production apparatus of the present invention has been described with the example of the nanofiber production apparatus 1 having a distance d2 of 0.5 mm along the axis of the cylinder between the base end of the inclined surface portion and the tip of the jacket. The present invention is not limited to this. For example, the present invention can be applied to a nanofiber production apparatus in which the distance d2 along the axis of the cylinder between the base end of the inclined surface portion and the tip of the jacket is in the range of 0.1 mm to 1.0 mm.
(6) 상기 실시예에 있어서는, 재킷의 내주에 둘러싸이는 영역의 면적을 S1로 하고, 노즐 선단부의 외주에 둘러싸이는 영역의 면적을 S2로 할 때, 「S1-S2=3.3×S2」의 관계를 만족시키는 나노섬유 제조장치(1)을 예를 들어 본 발명의 나노섬유 제조장치를 설명했지만, 본 발명은 이것으로 한정되는 것은 아니다. 예를 들면, 「S2≤S1-S2≤4×S2」의 관계를 만족시키는 나노섬유 제조장치에 본 발명을 적용할 수 있다. (6) In the above embodiment, when the area of the area surrounded by the inner circumference of the jacket is S1 and the area of the area surrounded by the outer circumference of the nozzle tip is S2, the relationship of "S1-S2 = 3.3 x S2" Although the nanofiber manufacturing apparatus of this invention was demonstrated to the example of the nanofiber manufacturing apparatus 1 which satisfy | fills the present invention, this invention is not limited to this. For example, the present invention can be applied to a nanofiber production apparatus that satisfies the relationship of "S2≤S1-S2≤4xS2".
(7) 상기 실시예에 있어서는, 전계 방사 장치로서 2대의 전계 방사 장치(20)를 구비하는 나노섬유 제조장치(1)을 예로써 본 발명의 나노섬유 제조장치를 설명했지만, 본 발명은 이것으로 한정되는 것은 아니다. 예를 들면, 1대 또는 3대 이상의 전계 방사 장치를 구비하는 나노섬유 제조장치에 본 발명을 적용할 수도 있다.(7) In the above embodiment, the nanofiber production apparatus of the present invention has been described by using the nanofiber production apparatus 1 having two field emission apparatuses 20 as field emission apparatuses, but the present invention is based on this. It is not limited. For example, the present invention may be applied to a nanofiber production apparatus having one, three or more field emission devices.
(8) 상기 실시예에 있어서는, 전원 장치(160)의 정극이 컬렉터(150)에 접속되고 전원 장치(160)의 부극이 노즐 블록(110)에 접속된 전계 방사 장치를 이용하여 본 발명의 나노섬유 제조장치를 설명했지만, 본 발명은 이것으로 한정되는 것은 아니다. 예를 들면, 전원 장치의 정극이 노즐 블록에 접속되고, 전원 장치의 부극이 컬렉터에 접속된 전계 방사 장치를 구비하는 나노섬유 제조장치에 본 발명을 적용할 수도 있다. (8) In the above embodiment, the nanoparticles of the present invention are made using an electrospinning device in which the positive electrode of the power supply device 160 is connected to the collector 150 and the negative electrode of the power supply device 160 is connected to the nozzle block 110. Although the fiber manufacturing apparatus was demonstrated, this invention is not limited to this. For example, the present invention can also be applied to a nanofiber production apparatus comprising an electric field radiating device in which a positive electrode of a power supply device is connected to a nozzle block, and a negative electrode of the power supply device is connected to a collector.
(9) 상기 실시예에 있어서는, 원료 탱크(200)와 재생 탱크(270, 272)와, 중간 탱크(230)와,제1 이송 장치(250)와, 제1 이송 제어장치(260)와, 제2 이송 장치(210)와, 제2 이송 제어장치(220)를 구비하는 나노섬유 제조장치(1)를 예로써 본 발명의 나노섬유 제조장치를 설명했지만, 본 발명은 이것으로 한정되는 것은 아니다. 다른 나노섬유 제조장치에 본 발명을 적용할 수도 있다.(9) In the above embodiment, the raw material tank 200, the regeneration tanks 270 and 272, the intermediate tank 230, the first transfer device 250, the first transfer control device 260, Although the nanofiber manufacturing apparatus of this invention was demonstrated using the nanofiber manufacturing apparatus 1 provided with the 2nd conveying apparatus 210 and the 2nd conveyance control apparatus 220 as an example, this invention is not limited to this. . The present invention may be applied to other nanofiber manufacturing apparatus.
(10) 상기 실시예에 있어서는, 하나의 전계방사장치에 하나의 노즐블록이 배설된 나노섬유 제조장치를 이용하여 본발명을 설명했지만, 본 발명은 이것에 한정되는 것은 아니다. 예를 들면, 하나의 전계방사장치에 2개의 노즐블록이 배설된 나노섬유 제조장치에 본 발명을 적용할 수 있고 2개 이상의 노즐블록이 배설된 나노섬유 제조장치에 본 발명을 적용할 수도 있다.(10) In the above embodiment, the present invention has been described using a nanofiber production apparatus in which one nozzle block is disposed in one field radiating device, but the present invention is not limited thereto. For example, the present invention can be applied to a nanofiber production apparatus in which two nozzle blocks are disposed in one field radiator, and the present invention can be applied to a nanofiber production apparatus in which two or more nozzle blocks are disposed.
이 경우, 모든 노즐블록으로 노즐배열 피치를 동일하게 할 수도 있고, 각 노즐블록으로 노즐배열 피치를 다르게 할 수도 있다. 또한, 모든 노즐블록으로 노즐블록의 높이위치를 동일하게 할 수도 있고, 각 노즐블록으로 노즐블록의 높이위치를 다르게 할 수도 있다.In this case, the nozzle arrangement pitch may be the same for all nozzle blocks, or the nozzle arrangement pitch may be different for each nozzle block. In addition, the height position of the nozzle block may be the same for all the nozzle blocks, or the height position of the nozzle block may be different for each nozzle block.
(11) 본 발명의 나노섬유 제조장치에 있어서는, 장척시트의 폭방향을 따라서 노즐블록을 소정의 왕복운동주기로 왕복운동시키는 기구를 구비해도 좋다. 해당 기구를 이용하여 노즐블록을 소정의 왕복운동주기로 왕복운동시키면서 전계방사를 실시함으로써, 장척시티의 폭방향을 따른 폴리머 섬유의 퇴적량을 균일화 할 수 있다. 이 경우, 노즐블록의 왕복운동주기나 왕복거리를 전계방사장치마다 또는 노즐블록마다 독립하여 제어가능하게 해도 좋다. 이와 같은 구성으로 함으로써, 모든 노즐블록을 동일 주기로 왕복운동시키는 것이 가능하고, 각 노즐블록을 다른 주기로 왕복운동시키는 것도 가능하다. 또한, 모든 노즐블록으로 왕복운동의 왕복거리를 동일하게 하는 것이 가능하고, 각 노즐블록으로 왕복운동의 왕복거리를 다르게 하는 것도 가능하다.(11) In the nanofiber manufacturing apparatus of the present invention, a mechanism for reciprocating the nozzle block at a predetermined reciprocating cycle along the width direction of the elongate sheet may be provided. By using the mechanism, electric field spinning is performed while the nozzle block is reciprocated at a predetermined reciprocating cycle, so that the amount of polymer fibers deposited along the width direction of the long city can be made uniform. In this case, the reciprocating cycle and the reciprocating distance of the nozzle block may be controlled independently for each field radiating device or for each nozzle block. With such a configuration, it is possible to reciprocate all the nozzle blocks at the same period, and it is also possible to reciprocate each nozzle block at different periods. In addition, it is possible to equalize the reciprocating distance of the reciprocating motion with all the nozzle blocks, and it is also possible to vary the reciprocating distance of the reciprocating motion with each nozzle block.

Claims (13)

  1. 폴리머 용액을 토출구로부터 상향으로 토출하는 복수의 상향 노즐, 해당 복수의 상향 노즐에 상기 폴리머 용액을 공급하는 폴리머 용액 공급 경로 및 상기 복수의 상향 노즐의 토출구로부터 오버플로우한 상기 폴리머 용액을 회수하는 폴리머 용액 회수 경로를 가지는 노즐 블록과, A plurality of upward nozzles for discharging the polymer solution upward from a discharge port, a polymer solution supply path for supplying the polymer solution to the plurality of upward nozzles, and a polymer solution for recovering the polymer solution that has overflowed from the discharge ports of the plurality of upward nozzles A nozzle block having a recovery path,
    상기 노즐 블록보다 윗쪽에 배치된 컬렉터와, A collector disposed above the nozzle block;
    상기 복수의 상향 노즐과 상기 컬렉터와의 사이에 고전압을 인가하는 전원 장치를 구비하고,A power supply device for applying a high voltage between the plurality of upward nozzles and the collector;
    상기 복수의 상향 노즐의 토출구로부터 폴리머 용액을 오버플로우 시키면서 상기 복수의 상향 노즐의 토출구로부터 상기 폴리머 용액을 토출하는 나노섬유를 전계 방사 하는 동시에, 상기 복수의 상향 노즐의 토출구로부터 오버플로우한 상기 폴리머 용액을 회수하여 상기 나노섬유의 원료로서 재이용하는 것을 가능하게 한 나노섬유 제조장치로서, The polymer solution overflowing from the discharge holes of the plurality of upward nozzles while field-spinning the nanofibers discharging the polymer solution from the discharge holes of the plurality of upward nozzles while overflowing the polymer solution from the discharge ports of the plurality of upward nozzles. As a nanofiber manufacturing apparatus that was able to recover and reuse as a raw material of the nanofiber,
    상기 상향 노즐의 선단부(이하, 노즐 선단부라고 한다.)는, 원통을 해당 원통의 축과 비스듬하게 교차하는 평면을 따라서 절단된 형상을 가지는 것을 특징으로 하는 나노섬유 제조장치.A tip portion of the upward nozzle (hereinafter referred to as a nozzle tip) has a shape cut along a plane intersecting the cylinder at an angle with the axis of the cylinder.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 원통의 축와, 상기 평면과의 이루는 각도는, 15˚~60˚의 범위내에 있는 것을 특징으로 하는 나노섬유 제조장치.An angle formed between the axis of the cylinder and the plane is in the range of 15 ° to 60 °.
  3. 제 1 또는 2 항에 있어서,The method of claim 1 or 2,
    상기 폴리머 용액 회수 경로는, 상기 복수의 상향 노즐의 토출구로부터 오버플로우한 상기 폴리머 용액을 받는 수용부와, 상기 수용부를 덮는 동시에 각 상향 노즐을 통하는 복수의 노즐용 구멍을 가지는 덮개부와, 상기 복수의 노즐용 구멍으로부터 돌출하는 각 상향 노즐의 측면을 덮는 복수의 재킷으로부터 형성되어 이루어지고, The polymer solution recovery path may include: a lid having a polymer receiving portion overflowing from the discharge ports of the plurality of upward nozzles, a lid having a plurality of nozzle holes for covering the housing and passing through each upward nozzle; It is formed from a plurality of jackets covering the side of each upward nozzle protruding from the nozzle hole of the
    상기 재킷의 기단측을 재킷기단부로 하고, 상기 재킷의 선단측을 재킷 선단부로 할 때, 상기 재킷 선단부는, 상기 재킷기단부보다 가는 것을 특징으로 하는 나노섬유 제조장치.When the proximal end of the jacket is a jacket proximal end and the proximal end of the jacket is a proximal end of the jacket, the jacket distal end is thinner than the proximal end of the jacket.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 재킷기단부는, 굵기가 일정한 통 모양의 형상을 갖고, 상기 재킷 선단부는, 해당 재킷 선단부와 상기 재킷기단부와의 접속부에서 선단에 걸쳐 서서히 굵기가 감소하는 통 모양의 형상을 가지는 것을 특징으로 하는 나노섬유 제조장치.The jacket proximal end has a cylindrical shape with a constant thickness, and the jacket proximal end has a tubular shape in which the thickness decreases gradually over the distal end at the connection portion between the jacket proximal end and the jacket proximal end. Textile manufacturing equipment.
  5. 제 3 또는 4 항에 있어서,The method according to claim 3 or 4,
    청구항 3또는 4에 기재의 나노섬유 제조장치에 있어서, 상기 노즐 선단부의 선단측에 형성된 경사면부의 선단은, 상기 재킷의 선단보다 윗쪽에 위치하는 것을 특징으로 하는 나노섬유 제조장치.The nanofiber production apparatus according to claim 3 or 4, wherein the distal end of the inclined surface formed on the distal end side of the nozzle distal end is located above the distal end of the jacket.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 경사면부의 선단과 상기 재킷의 선단과의 상기 원통의 축을 따른 간격(d1)은, 0.1mm~2.0mm의 범위내에 있는 것을 특징으로 하는 나노섬유 제조장치.An interval d1 along the axis of the cylinder between the tip of the inclined surface portion and the tip of the jacket is in the range of 0.1 mm to 2.0 mm.
  7. 제 5 또는 6 항에 있어서,The method of claim 5 or 6,
    상기 노즐 선단부의 선단측에 형성된 경사면부의 기단은, 상기 재킷의 선단보다 하부에 위치하는 것을 특징으로 하는 나노섬유 제조장치.The base end of the inclined surface portion formed on the tip side of the nozzle tip portion is located lower than the tip of the jacket.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 경사면부의 기단과 상기 재킷의 선단과의 상기 원통의 축을 따른 간격(d2)은, 0.1mm~1.0mm의 범위내에 있는 것을 특징으로 하는 나노섬유 제조장치. And a distance d2 along the axis of the cylinder between the base end of the inclined surface portion and the tip of the jacket is in the range of 0.1 mm to 1.0 mm.
  9. 제 5 내지 8 항 중 어느 하나의 항에 있어서,The method according to any one of claims 5 to 8,
    상기 상향 노즐 및 상기 재킷을 상기 상향 노즐의 윗쪽으로부터 상기 원통의 축을 따라 보았을 때, 상기 재킷의 내주에 둘러싸이는 영역의 면적을 S1로 하고, 상기 노즐 선단부의 외주에 둘러싸이는 영역의 면적을 S2로 할 때, 「S2≤S1-S2≤4×S2」의 관계를 만족시키는 것을 특징으로 하는 나노섬유 제조장치. When the upward nozzle and the jacket are viewed along the axis of the cylinder from above the upward nozzle, the area of the area surrounded by the inner circumference of the jacket is S1, and the area of the area surrounded by the outer circumference of the nozzle tip is S2. The nanofiber manufacturing apparatus characterized by satisfy | filling the relationship of "S2 <= S1-S2 <= 4 * S2".
  10. 제 3 내지 9 항 중 어느 하나의 항에 있어서,The method according to any one of claims 3 to 9,
    상기 덮개부는, 상기 노즐용 구멍의 주위에 덮개부측 나사부를 추가로 갖고, The said cover part further has a cover part side screw part around the said hole for nozzles,
    상기 재킷은, 상기 재킷기단부의 기단 측에 상기 덮개부측 나사부와 대응하는 재킷측 나사부를 추가로 갖고, The jacket further has a jacket side threaded portion corresponding to the lid side threaded portion at a proximal side of the jacket base end portion,
    상기 덮개부측 나사부와 상기 재킷측 나사부와의 감합에 의해 상기 덮개부와 상기 재킷이 결합되어 있는 것을 특징으로 하는 나노섬유 제조장치. And the cover part and the jacket are joined by fitting the cover part side screw part and the jacket side threaded part.
  11. 제 1 내지 10 항 중 어느 하나의 항에 있어서,The method according to any one of claims 1 to 10,
    상기 폴리머 용액 공급 경로는, 폴리머 용액 공급 경로측 나사부를 추가로 갖고, The polymer solution supply path further has a polymer solution supply path side threaded portion,
    상기 상향 노즐은, 상기 상향 노즐의 기단 측에 상기 폴리머 용액 공급 경로측 나사부와 대응하는 상향 노즐측 나사부를 추가로 갖고, The upward nozzle further has an upward nozzle side threaded portion corresponding to the polymer solution supply path side threaded portion at a proximal side of the upward nozzle,
    상기 폴리머 용액 공급 경로측 나사부와 상기 상향 노즐측 나사부와의 감합에 의해 상기 폴리머 용액 공급 경로와 상기 상향 노즐이 결합되고, The polymer solution supply path and the upward nozzle are coupled by the fitting of the polymer solution supply path side threaded portion and the upward nozzle side threaded portion,
    상기 상향 노즐의 기단부는, 다각형의 통형상으로 이루어지는 것을 특징으로 하는 나노섬유 제조장치.The proximal end of the upward nozzle is a nanofiber production apparatus, characterized in that the polygonal tubular shape.
  12. 제 1 내지 11 항 중 어느 하나의 항에 있어서,The method according to any one of claims 1 to 11,
    상기 나노섬유의 원료가 되는 상기 폴리머 용액을 저장하는 원료 탱크와,A raw material tank for storing the polymer solution as a raw material of the nanofibers;
    회수된 상기 폴리머 용액을 재생하기 위한 재생 탱크로서, 재생된 상기 폴리머 용액을 저장하는 재생 탱크와, A regeneration tank for regenerating the recovered polymer solution, the regeneration tank for storing the regenerated polymer solution;
    상기 원료 탱크 또는 상기 재생 탱크로부터 공급된 상기 폴리머 용액을 저장하는 중간 탱크와, An intermediate tank for storing the polymer solution supplied from the raw material tank or the regeneration tank;
    상기 노즐 블록의 상기 폴리머 용액 회수 경로로부터 상기 재생 탱크에 상기 폴리머 용액을 이송하는 제1 이송 장치와, A first transfer device for transferring the polymer solution from the polymer solution recovery path of the nozzle block to the regeneration tank;
    상기 제 1 이송 장치의 이송 동작을 제어하는 제1 이송 제어장치와, A first transport control device for controlling a transport operation of the first transport device;
    상기 원료 탱크 및 상기 재생 탱크로부터 상기 중간 탱크에 상기 폴리머 용액을 이송하는 제2 이송 장치와, A second transfer device for transferring the polymer solution from the raw material tank and the regeneration tank to the intermediate tank;
    상기 제 2 이송 장치의 이송 동작을 제어하는 제2 이송 제어장치를 추가로 구비하는 것을 특징으로 하는 나노섬유 제조장치. Nanofiber manufacturing apparatus, characterized in that further comprising a second transfer control device for controlling the transfer operation of the second transfer device.
  13. 제 1 내지 12 항 중 어느 하나의 항에 있어서,The method according to any one of claims 1 to 12,
    장척시트를 이송하는 이송 장치를 추가로 구비하는 동시에, At the same time having an additional conveying device for conveying the long sheet,
    적어도 상기 노즐 블록과 상기 컬렉터를 구비하고, 상기 장척시트의 표면에 나노섬유를 퇴적시키는 전계 방사 장치로서, 상기 장척시트의 이송 방향을 따라서 직렬로 배치된 복수의 전계 방사 장치를 구비하는 것을 특징으로 하는 나노섬유 제조장치. A field spinning device comprising at least the nozzle block and the collector and depositing nanofibers on a surface of the long sheet, the field spinning device comprising a plurality of field spinning devices arranged in series along a conveying direction of the long sheet. Nano fiber manufacturing apparatus.
PCT/KR2011/003058 2010-12-06 2011-04-27 Nanofiber manufacturing device WO2012077867A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-272073 2010-12-06
JP2010272073A JP5698508B2 (en) 2010-12-06 2010-12-06 Nanofiber manufacturing equipment
KR10-2011-0016679 2011-02-24
KR1020110016679A KR101040057B1 (en) 2010-12-06 2011-02-24 An apparatus for manufacturing nano-fiber

Publications (1)

Publication Number Publication Date
WO2012077867A1 true WO2012077867A1 (en) 2012-06-14

Family

ID=44405266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/003058 WO2012077867A1 (en) 2010-12-06 2011-04-27 Nanofiber manufacturing device

Country Status (3)

Country Link
JP (1) JP5698508B2 (en)
KR (1) KR101040057B1 (en)
WO (1) WO2012077867A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103325716A (en) * 2013-05-31 2013-09-25 华中科技大学 Method and device for manufacturing welding points of chip-level device
CN103757719A (en) * 2014-02-12 2014-04-30 厦门大学 Fiber felt manufacturing device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5874005B2 (en) * 2012-10-17 2016-03-01 パナソニックIpマネジメント株式会社 Nanofiber manufacturing apparatus, nanofiber manufacturing method, and nanofiber manufacturing nozzle
KR101382571B1 (en) 2013-04-17 2014-04-17 (주)에프티이앤이 Electrospinning device for manufacturing nanofiber
CN103290492B (en) * 2013-05-31 2015-10-28 华中科技大学 The preparation method of a kind of micro-footpath silk or pipe and device
CN104928767B (en) * 2014-03-21 2017-06-06 馨世工程教育有限公司 A kind of multi-functional spinning equipment of Centrifugal Electrostatic formula
KR101688817B1 (en) * 2014-12-31 2016-12-22 주식회사 에이앤에프 Apparatus of forming patterns by electrospinning method
JP6543199B2 (en) * 2016-01-15 2019-07-10 株式会社リメディオ Nozzle, dry spinning apparatus, nozzle set, and nozzle mounting method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050094918A (en) * 2004-03-23 2005-09-29 김학용 A bottom-up electrospinning devices, and nanofibers prepared by using the same
KR100595486B1 (en) * 2004-05-10 2006-07-03 김학용 A bottom-up electrospinning devices for multi-components and nanofibers with multi-component prepared by using the same
KR100743502B1 (en) * 2006-08-23 2007-07-27 전북대학교산학협력단 Method of manufacturing for nano size particles by electrospinning
KR20090055934A (en) * 2007-11-29 2009-06-03 주식회사 엘지화학 Nozzle block for preventing nozzles from getting blocked and polluted and bottom-up electrospinning device with the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE461299T1 (en) * 2004-01-30 2010-04-15 Hak-Yong Kim ELECTRIC SPINNING DEVICE WORKING FROM BOTTOM UP
JP4862665B2 (en) * 2007-01-16 2012-01-25 パナソニック株式会社 Nozzle for polymer fiber production
JP4833238B2 (en) * 2007-03-27 2011-12-07 ジョン−チョル パック Electrospinning equipment for mass production of nanofibers
JP5698509B2 (en) * 2010-12-06 2015-04-08 トップテック・カンパニー・リミテッドTOPTEC Co., Ltd. Nanofiber manufacturing equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050094918A (en) * 2004-03-23 2005-09-29 김학용 A bottom-up electrospinning devices, and nanofibers prepared by using the same
KR100595486B1 (en) * 2004-05-10 2006-07-03 김학용 A bottom-up electrospinning devices for multi-components and nanofibers with multi-component prepared by using the same
KR100743502B1 (en) * 2006-08-23 2007-07-27 전북대학교산학협력단 Method of manufacturing for nano size particles by electrospinning
KR20090055934A (en) * 2007-11-29 2009-06-03 주식회사 엘지화학 Nozzle block for preventing nozzles from getting blocked and polluted and bottom-up electrospinning device with the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103325716A (en) * 2013-05-31 2013-09-25 华中科技大学 Method and device for manufacturing welding points of chip-level device
CN103757719A (en) * 2014-02-12 2014-04-30 厦门大学 Fiber felt manufacturing device

Also Published As

Publication number Publication date
KR101040057B1 (en) 2011-06-09
JP2012122149A (en) 2012-06-28
JP5698508B2 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
WO2012077868A1 (en) Method and device for manufacturing nanofiber
WO2012077867A1 (en) Nanofiber manufacturing device
WO2014171625A1 (en) Electrospinning apparatus
WO2012128472A2 (en) Apparatus for manufacturing separator
WO2014171624A1 (en) Electrospinning apparatus
WO2021112394A1 (en) Nozzle block provided with nozzle clogging prevention means, and electrospinning device including same
WO2012111930A2 (en) Electrospinning apparatus, and apparatus for manufacturing nanofibers
WO2015016450A1 (en) Multi-layered nanofiber filter medium using electro-blowing, melt-blowing or electrospinning, and method for manufacturing same
WO2012077872A1 (en) Nanofiber manufacturing device
WO2012002754A2 (en) Filter media for a liquid filter using an electrospun nanofiber web, method for manufacturing same, and liquid filter using same
WO2012077873A1 (en) Method and device for manufacturing nanofibers
WO2010143914A2 (en) Injection nozzle for electrospinning and electrospinning device using the same
KR20070047282A (en) Improved electroblowing web formation process
WO2014196689A1 (en) Method for manufacturing asymmetric polyvinlylidenefluoride hollow fiber membrane and hollow fiber membrane manufactured therefrom
WO2015160027A1 (en) Environment-friendly short fiber non-woven fabric and method for manufacturing same
WO2017065564A1 (en) Liquid drug-filtering filter medium, method for producing same, and liquid drug-filtering filter module comprising same
WO2012077864A1 (en) Field emission device and nanofiber manufacturing device
WO2015002418A1 (en) Centrifugal spinning apparatus
WO2018199355A1 (en) Spinning apparatus for producing two-ingredient composite nanofibers, and method for producing two-ingredient composite nanofibers using same
WO2015076460A1 (en) Electrospinning device for manufacturing nanofiber
WO2012077870A1 (en) Nanofiber manufacturing device
WO2017183765A1 (en) Fine dust blocking window filter and method for manufacturing same
WO2012128473A2 (en) Apparatus for manufacturing separator
WO2019203483A1 (en) Electrospinning apparatus for producing ultrafine fibers having improved charged solution control structure and solution transfer pump therefor
WO2012077871A1 (en) Nanofiber manufaturing device and air supply device therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11847099

Country of ref document: EP

Kind code of ref document: A1