WO2012077779A1 - Die cooling device and die cooling system provided with same - Google Patents

Die cooling device and die cooling system provided with same Download PDF

Info

Publication number
WO2012077779A1
WO2012077779A1 PCT/JP2011/078533 JP2011078533W WO2012077779A1 WO 2012077779 A1 WO2012077779 A1 WO 2012077779A1 JP 2011078533 W JP2011078533 W JP 2011078533W WO 2012077779 A1 WO2012077779 A1 WO 2012077779A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
mold
medium
unit
temperature
Prior art date
Application number
PCT/JP2011/078533
Other languages
French (fr)
Japanese (ja)
Inventor
清水 元治
勇治 和田
Original Assignee
株式会社松井製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社松井製作所 filed Critical 株式会社松井製作所
Publication of WO2012077779A1 publication Critical patent/WO2012077779A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C45/7306Control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76003Measured parameter
    • B29C2945/76006Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76003Measured parameter
    • B29C2945/7604Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76177Location of measurement
    • B29C2945/76297Fluids
    • B29C2945/76304Fluids temperature control fluids

Definitions

  • the present invention relates to a mold cooling apparatus for cooling a mold and a mold cooling system including the mold cooling apparatus.
  • a mold cooling apparatus for supplying a low temperature medium to a medium flow path provided in a mold.
  • a mold cooling device for supplying a low temperature medium to a medium flow path provided in a mold.
  • the mold can be cooled to quickly solidify the molten material, The molding cycle can be shortened.
  • the shape of the molded product (cavity) is complicated, such as when the shape is uneven, a part far from the medium flow path through which the low-temperature medium passes may be generated, and a part that is difficult to cool may be generated.
  • the molded product may be a defective product, and there is a problem that a long cooling time is required.
  • Such a problem can be solved by, for example, forming the medium flow path so as to follow the shape of the cavity.
  • the structure of the mold is complicated, and the medium flow path is divided into a plurality of branches.
  • the low-temperature medium tends to be difficult to flow uniformly.
  • it since it is restricted by an extrusion pin, a guide pin, or the like, it may be difficult to form a complicated medium flow path itself.
  • a sealed chamber is formed in the mold so as to cover an area adjacent to a portion in contact with the heated plastic material (an area where heat should be removed), and a liquid and a liquid are contained in the sealed chamber.
  • a mold filled with steam has been proposed.
  • the mold is provided with condensing means such as a heat exchanger for condensing the steam. According to this mold, it is explained that the liquid boils and evaporates in the high temperature portion of the mold, the temperature of the area can be lowered, and the temperature can be kept uniform.
  • the present invention has been made in view of the above circumstances, and provides a mold cooling apparatus and a mold cooling system including the mold cooling apparatus that can be easily applied to various molds and can easily control the cooling timing.
  • the purpose is to do.
  • a mold cooling apparatus is connected to a hollow portion of a cooling block disposed so as to be embedded in a local part of a mold, and by absorbing heat from the mold.
  • a discharge line that discharges the vaporized medium, a condensing unit that condenses the vaporized medium that has passed through the discharge line, a storage unit that stores the medium condensed in the condensing unit, and a medium in the storage unit that stores the medium in the cooling block.
  • a supply line provided with a medium supply unit for supplying to the hollow part, and each of these parts and each line under reduced pressure controls the operation of the medium supply part, and the hollow part of the cooling block based on a predetermined mold cooling start signal And a controller for supplying the medium.
  • the local portion of the mold can be effectively cooled by supplying the medium to the cooling block disposed in the local portion of the mold.
  • the medium supplied to the hollow portion of the cooling block is evaporated and vaporized by heat transfer from the mold local area to the cooling block, which is heated by the molten material filled in the mold cavity, and cooled by this heat of vaporization.
  • the block is cooled and the mold area can be cooled.
  • this medium is used as a working fluid, and heat is transported like a heat pipe between the hollow part of the cooling block that functions as an evaporation part (heat absorption part) and the condensing part. It becomes possible.
  • each said part (the hollow part of a cooling block, a condensation part, a storage part) and each line (discharge
  • a medium can be evaporated and vaporized at comparatively low temperature. Therefore, the cooling efficiency can be improved.
  • the required amount of medium is small, and the heat transfer type is like a heat pipe, so heat transfer The rate is very good and the cooling block (ie the local part of the mold) can be quickly cooled. As a result, the molding cycle can be shortened.
  • the cooling block is formed according to the shape of the local part of the cavity (parts that are difficult to cool, such as recesses and protrusions), and is arranged so as to be embedded in the mold.
  • the mold cooling device can be used, so it is convenient for various molds without installing heat exchange means etc. in the mold or complicating the internal shape of the mold itself. Can be applied to.
  • a cooling block can be arranged according to various molds, and the mold cooling apparatus can be connected to the mold for use, so that the versatility is high.
  • a control unit that controls the operation of the medium supply unit and supplies the medium to the hollow part of the cooling block based on a predetermined mold cooling start signal is provided, the cooling timing of the local part of the mold is controlled. It can be done easily. As a result, it is possible to control the cooling timing so as not to hinder the fluidity of the molten material, and it is possible to prevent the occurrence of defective products.
  • the predetermined mold cooling start signal may be, for example, a mold closing signal, an injection signal, a pressure holding signal, or the like transmitted from a molding machine such as an injection molding machine.
  • the medium supply may be started after a predetermined delay time has elapsed after receiving these signals.
  • supply of the medium is started after a predetermined delay time has elapsed or a holding pressure signal has been received after receiving a mold closing signal or injection signal so as not to hinder the fluidity of the molten material immediately after injection. You may do it.
  • the medium may be supplied to the hollow portion of the cooling block by supplying a predetermined amount at a time based on the predetermined mold cooling start signal, or intermittently so as to be a predetermined amount. You may make it supply.
  • the decompression means which communicates with the said discharge line and decompresses each said part and each line.
  • the prescribed decompression degree is maintained by operating the decompression means.
  • a vacuum pump or the like provided in a factory or the like where the apparatus is installed may be connected as appropriate so as to reduce the pressure of the respective parts and lines.
  • the pressure gauge provided at an appropriate location is checked, and if the prescribed degree of decompression is not maintained, a vacuum pump is connected to reduce the pressure. You may do it.
  • the degree of decompression of each part and each line by the decompression means may be adjustable.
  • the vaporization temperature (evaporation start temperature) of the medium in the hollow portion of the cooling block by adjusting the degree of pressure reduction according to the cooling target temperature of the mold local area.
  • the cooling temperature of the cooling block (that is, the mold local part) can be adjusted. That is, if the degree of decompression is high (high vacuum), the cooling block can be cooled in a lower temperature range, and if the degree of decompression is low (low vacuum), the cooling block can be cooled in a higher temperature range. it can.
  • the medium supply amount may be adjusted by the medium supply unit to the hollow portion of the cooling block.
  • the medium supplied to the hollow part of the cooling block is vaporized, so that the heat quantity of the cooling block heated by the heat transfer from the mold local area is taken away, so the supply amount of the medium is adjusted.
  • the amount of heat taken from the cooling block that is, the mold local part
  • the cooling capacity (cooling heat quantity) of the mold local by the cooling block can be easily adjusted.
  • the cooling means which cools the said condensation part.
  • the medium can be condensed more quickly and the temperature can be lowered as compared with the case where it is condensed by natural air cooling or the like.
  • various cooling means such as an air cooling type, a gas type and a water cooling type can be adopted.
  • a temperature sensor may be further provided in the condensing unit or the storage unit, and the control unit may perform operation control of the cooling unit based on a temperature detected by the temperature sensor.
  • a surfactant may be added to the medium.
  • the wettability and foaming property of the medium can be improved by the surface active action, and therefore the medium is more easily attached to the inner surface of the hollow portion of the cooling block. Efficiency can be improved. As a result, the local part of the mold can be more effectively cooled by the cooling block.
  • a mold cooling system is connected to a mold cooling apparatus according to the present invention and a discharge line and a supply line of the mold cooling apparatus. And a cooling block disposed so as to be embedded in the local area.
  • the local portion of the mold can be effectively cooled by supplying the medium to the cooling block disposed so as to be embedded in the local portion of the mold, as described above.
  • the cooling block may be provided with a plurality of cooling blocks depending on the shape of the mold cavity. In this case, the number of discharge lines and supply lines corresponding to the number of cooling blocks may be provided.
  • an on-off valve such as an electromagnetic valve for controlling the supply of the medium may be provided in each supply line, and the on-off valve may be individually controlled by the control unit.
  • the cooling timing and the supply amount of the medium can be changed for each cooling block, and as a result, the optimum cooling control according to each cooling block can be executed, and according to the shape of the cavity. It is also possible to perform optimal cooling control.
  • the gate portion along the flow direction of the molten material so as not to impede the fluidity of the molten material that is injected from the nozzle of an injection molding machine or the like, passes through the gate portion of the mold, and is filled in each portion of the cavity.
  • Control that delays the cooling start timing of the cooling block that cools the portion closer to the side than the cooling block that cools the portion closer to the side is also possible. According to this, defects such as flow marks and weld lines are less likely to occur, and the transferability (transfer rate) of the cavity surface to the molded product can be improved.
  • the mold cooling system according to the present invention may further include a second mold cooling device that supplies a low-temperature medium to a medium flow path provided in the mold.
  • the mold cooling apparatus and the mold cooling system including the mold cooling apparatus according to the present invention can be easily applied to various molds and can easily control the cooling timing by adopting the above-described configuration. It can be carried out.
  • FIG. 1 It is a schematic structure figure showing typically an example of a system configuration of a metallic mold cooling system provided with a metallic mold cooling device concerning one embodiment of the present invention. It is a control block diagram of the mold cooling system.
  • (A)-(c) is a time chart for demonstrating an example of the basic operation
  • FIG. 1 are explanatory views for explaining a mold cooling apparatus and a mold cooling system including the mold cooling apparatus according to the present embodiment.
  • a pipeline pipe
  • a mold cooling device (first mold cooling device) 1 according to the present embodiment includes a plurality of cooling blocks 35, 36, 36 arranged to be embedded in a local part of a mold 3 as shown in FIG. 37 shows an example of being incorporated in a part of a mold cooling system A including the second mold cooling device 2.
  • the second mold cooling device 2 includes a storage tank 20 serving as a storage unit that stores a low-temperature medium, and the low-temperature medium stored in the storage tank 20 to the mold 3 via a medium transmission path 22 and a return path 23. And a circulation pump 21 for circulatingly supplying the medium flow passages 30a and 31a.
  • the circulation pump 21 is disposed in the medium delivery path 22, and the temperature of the low-temperature medium on the outlet side (medium delivery side) of the storage tank 20 is upstream of the circulation pump 21 (suction side) of the medium delivery path 22.
  • the return path 23 is provided with a filter.
  • medium transmission path 22 and medium return path 23 are respectively provided with a medium transmission valve such as an electromagnetic valve and a medium return valve. Further, a bypass path that connects the medium transmission path 22 and the return path 23 is provided, and a bypass valve such as an electromagnetic valve is provided in the bypass path.
  • a medium transmission valve such as an electromagnetic valve
  • a bypass path that connects the medium transmission path 22 and the return path 23 is provided, and a bypass valve such as an electromagnetic valve is provided in the bypass path.
  • the storage tank 20 is connected to a medium supply pipe (water supply pipe) connected to a medium supply source (water supply source) and a medium discharge pipe (drainage pipe).
  • the storage tank 20 is provided with heating means such as a heater for heating the low-temperature medium stored in the storage tank 20 and cooling means such as a cooling path for cooling the low-temperature medium.
  • heating means such as a heater for heating the low-temperature medium stored in the storage tank 20
  • cooling means such as a cooling path for cooling the low-temperature medium.
  • a sheathed heater is illustrated as the heating means
  • a helical cooling pipe is illustrated as the cooling means.
  • the water supply pipe and the drain pipe are branched and connected to both ends of the cooling pipe, respectively, and a cooling valve such as an electromagnetic valve constituting a cooling means is provided on the branch pipe on the water supply side. ing.
  • the circulation pump 21, the temperature sensor, the heater, each valve, etc. of the second mold cooling device 2 are not shown, but the CPU provided in the control panel or the like of the second mold cooling device 2 Is connected to a control unit such as a signal line or the like, and the operation of each part of the second mold cooling device 2 is controlled by the CPU according to a predetermined program.
  • the circulation pump 21 is always operated during operation of the second mold cooling device 2, and the storage tank can be established by opening the medium delivery valve and the return valve and closing the bypass valve.
  • the low-temperature medium stored in 20 is circulated and supplied to the medium flow passages 30 a and 31 a provided in the mold 3, and the mold 3 is cooled.
  • the operation of the heater and the cooling valve is controlled based on the temperature detected by the temperature sensor provided in the medium transmission path 22 so that the low temperature medium has a predetermined temperature set in advance.
  • the set temperature of the low-temperature medium depends on the temperature of the molten material such as a resin that is melted and filled, the set temperature of the mold 3, and the like, but may be about 5 ° C. to 90 ° C. If the temperature of the medium stored in the storage tank 20 is lower than the set temperature, the heater is operated and heating is performed. On the other hand, if the temperature is higher than the set temperature, the cooling valve is opened, and the refrigerant (cooling water) is supplied to the cooling pipe for cooling.
  • the cooling means for cooling the low-temperature medium is not limited to one that indirectly exchanges heat with the medium stored in the storage tank 20 through such a cooling path and cools it (indirect cooling).
  • the medium may be cooled (direct cooling) by supplying cold water directly into the storage tank 20.
  • the refrigerant supplied to the cooling means may be cooled by a cooler such as an appropriate chiller according to the set temperature of the low temperature medium, or from a cooling tower installed in a factory or the like.
  • Cold water may be used as a refrigerant, and furthermore, room temperature tap water may be used.
  • the supply valve and the discharge valve provided in the water supply pipe and the drain pipe are opened, and the low temperature medium is stored in the storage tank 20 to a predetermined level, and then the supply valve
  • the discharge valve may be closed. While the second mold cooling apparatus 2 is in operation, the supply of the supply valve is detected by detecting an increase or decrease in the low temperature medium by a level meter, a float switch or the like so that the low temperature medium in the storage tank 20 is maintained at a predetermined level. Further, the discharge valve may be controlled to open and close, and the low temperature medium may be replenished or discharged as appropriate.
  • a pressure gauge for detecting the pressure in the system may be provided as needed.
  • the low temperature medium is not limited to water, and other mediums such as an oil system and an alcohol system may be adopted.
  • the mold 3 includes a fixed mold 30 and a movable mold 31, and the fixed mold 30 and the movable mold 31 include the medium feeding path 22 and the medium returning path 23 of the second mold cooling device 2 described above.
  • Media flow passages 30a and 31a through which a low-temperature medium passes are respectively provided.
  • Reference numeral 38 denotes a temperature sensor that detects the temperature of the mold 3.
  • the fixed mold 30 and the movable mold 31 are provided with nestings 32 and 33 embedded therein, respectively.
  • molded product forming concave portions are formed, and a cavity 34 filled with a molten material such as resin is formed by abutting them.
  • the cavity 34 is filled with a molten material such as a resin melted by a cylinder or the like of the injection molding machine 5 (see FIG. 2) from a nozzle or the like, and molded products are sequentially molded.
  • the shape of the cavity 34 is formed in accordance with the shape of the molded product.
  • a convex portion such as a rib, a boss, or a flange, or a concave groove, such as a casing, a cap, or various parts of a small electronic device.
  • there are fine and extremely uneven shapes such as concave portions.
  • the shape of the cavity 34 for such a molded product is complicated as shown in the figure, and as a result, there are portions that are relatively far from the medium flow paths 30a and 31a provided in the mold 3 and are difficult to cool. Arise.
  • the medium flow passage along such a portion, there are cases where it is difficult as described above, and in the case of molding a small molded product, the passage of the medium is preferably distributed. Formation itself also becomes difficult, and there exists a tendency for the shaping
  • the cavity 3 formed by the fixed mold 30 and the movable mold 31 of the mold 3 (in the illustrated example, the fixed-side insert 32 and the movable-side insert 33) is brought close to the hard-to-cool portion.
  • a plurality of (three in the illustrated example) cooling blocks 35, 36, and 37 (first cooling block 35, second cooling block 36, and third cooling block 37) are embedded in the part (local part and core part). It is arranged.
  • These cooling blocks 35, 36, and 37 have hollow portions 35a, 36a, and 37a, respectively.
  • Such a shape of the cooling blocks 35, 36, and 37 locally cools a portion where the molten material filled in the cavity 34 is difficult to cool, that is, a local portion of the mold 3, according to the shape of the cavity 34.
  • a shape that can be used is sufficient.
  • any shape such as a hollow rod shape, a cylindrical shape, a rectangular tube shape, a cone shape, a truncated cone shape, a hollow annular shape, a hollow angular ring shape, or the like may be used.
  • what is necessary is just to make it provide the cooling block accommodation recess 32a, 32b, 33a according to the shape of these cooling blocks 35,36,37 in the metal mold
  • the cooling block housing recess 32a for receiving the first cooling block 35 and the second cooling block 36 so as to open on the opposite side of the nesting 32 on the fixed side (the side different from the movable side facing surface).
  • the cooling block receiving recess 32b for receiving the third cooling block 37 and receiving the third cooling block 37 so as to open to the movable-side insert 33 on the opposite surface side (side different from the fixed-side facing surface)
  • the example which formed the accommodation recess 33a is shown.
  • the cooling block housing recesses 32 a, 32 b, 33 a are formed in the nestings 32, 33 of the mold 3 having the nesting structure as described above, so that, for example, the cooling block is housed in the fixed mold 30 or the movable mold 31.
  • the supply line 10 and the discharge line 13 of the first mold cooling apparatus 1 are connected to the cooling blocks 35, 36, and 37 described above, respectively.
  • the fixed mold 30 and the movable mold 31 of the mold 3 are formed with passages for arranging the supply lines 10 and the discharge lines 13.
  • the portions of the supply lines 10 and the discharge lines 13 on the cooling block 35, 36, 37 side may be provided directly on the fixed mold 30 or the movable mold 31 of the mold 3.
  • the first mold cooling apparatus 1 includes a discharge line 13, a heat exchange unit 15 having a condensing unit 16 that condenses the medium that has passed through the discharge line 13, and a storage unit that stores the medium condensed in the condensing unit 16 (
  • a trap unit 17, a supply line 10 provided with the medium supply unit 11, a decompression unit 19, and a control panel 4 (see FIG. 2) are provided.
  • the discharge line 13 includes three discharge lines 13A, 13B, and 13C corresponding to the number of the cooling blocks 35, 36, and 37, and one end of each discharge line 13 is a hollow portion of each cooling block 35, 36, and 37. It is connected to each cooling block 35, 36, 37 so that it may face in 35a, 36a, 37a.
  • each discharge line 13A, 13B, 13C is disposed along the upper inner wall surface of the hollow portion 35a, 36a, 37a of each cooling block 35, 36, 37.
  • the other ends of the discharge lines 13A, 13B, and 13C are connected to a manifold portion 16a provided at the upper end of the condensing portion 16.
  • the heat exchanging unit 15 includes a tubular condensing unit 16 that receives the medium that has passed through the manifold unit 16a, an outer tube 15a that is provided so as to cover the periphery of the condensing unit 16 as an inner tube, and cooling that cools the condensing unit 16 And a cooling fan 15b as means.
  • the cooling fan 15b is configured to blow outside air to a blower opening provided at the lower end of the outer tube 15a.
  • an exhaust port for discharging the outside air taken in by the cooling fan 15b is provided at the upper end of the outer tube 15a.
  • the condensing part 16 is made into a long and narrow tubular shape, and a plurality of heat transfer (radiation) fins 16b are provided on the outer periphery thereof.
  • a medium temperature sensor 18 for detecting the temperature of the medium that has passed through the discharge lines 13A, 13B, and 13C is disposed in the manifold section 16a provided at the upper end of the condensing section 16.
  • it is not restricted to the aspect which provided the outer tube
  • the present invention is not limited to such an air cooling type cooling means, and a water cooling type cooling means such as the second mold cooling device 2 may be adopted, or other gas type cooling means may be adopted. It may be.
  • a cooling means for example, the medium can be condensed more quickly and the temperature can be lowered as compared with the case where it is condensed by natural air cooling or the like.
  • such a cooling means is provided if the medium can be condensed and liquefied so that the medium is not boiled in the condensing unit 16 when the condensing unit has a predetermined degree of decompression and the condensing unit is under decompression. It is good also as an aspect condensed by natural cooling (natural air cooling).
  • the storage unit 17 is provided so as to receive a medium flowing down from the lower end of the condensing unit 16, and one end of the supply line 10 is connected to the storage unit 17.
  • the supply line 10 a filter 10 a and a medium supply pump 12 as the medium supply unit 11 are arranged in this order from the storage unit 17 toward the other end (mold 3) side.
  • the medium supply pump 12 employs a mixed flow pump or a centrifugal pump so that the medium and the lines can be supplied (sucked and discharged) under reduced pressure because each part and each line are reduced in pressure as described later. It is preferable.
  • the supply line 10 is branched into three in accordance with the number of cooling blocks 35, 36, and 37 on the downstream side (discharge side) of the medium supply pump 12.
  • the branched supply lines 10A, 10B, and 10C have block opening / closing valves V1, V2, and V3 such as electromagnetic valves as the medium supply unit 11 (first block opening / closing valve V1, second block opening / closing valve V2, and third block). On-off valves V3) are respectively provided.
  • the amount of supply of the medium to the hollow portions 35a, 36a, 37a of the cooling blocks 35, 36, 37 can be adjusted by making it possible to change the setting of the opening / closing modes of these block opening / closing valves V1, V2, V3. It is possible.
  • Each supply line 10A, 10B, 10C is connected to each cooling block 35, 36, 37 so that one end different from each branch side faces the hollow portion 35a, 36a, 37a of each cooling block 35, 36, 37.
  • an example is shown in which one end of each supply line 10A, 10B, 10C is disposed along the lower inner wall surface of the hollow portion 35a, 36a, 37a of each cooling block 35, 36, 37.
  • these each part and each part and each line are connected airtightly.
  • the supply line 10 (10A, 10B, 10C), the hollow portions 35a, 36a, 37a of the cooling blocks 35, 36, 37, the discharge line 13 (13A, 13B, 13C), the condensing unit 16, and These are connected so that the reservoir 17 forms an airtight closed loop.
  • the decompression means 19 is provided so as to communicate with the discharge line 13 and decompresses each part and each line that are airtightly connected as described above.
  • the decompression unit 19 includes a vacuum pump 19a and a vacuum line 19b having one end connected to the vacuum pump 19a and the other end connected to the manifold portion 16a.
  • a pressure sensor 19c, a filter 19d, and a vacuum pump opening / closing valve V4 are arranged in this order from the manifold portion 16a to the vacuum pump 19a.
  • the operation of the vacuum pump 19a and the vacuum pump on / off valve V4 based on the detected pressure of the pressure sensor 19c and the opening / closing mode can be changed, thereby enabling adjustment of the degree of decompression of each of the above parts and each line. Yes.
  • the decompression means 19 By providing such a decompression means 19 in communication with the discharge line 13, if the degree of decompression of each part and each line described above decreases (changes to the low vacuum side (atmospheric pressure side)), the decompression means 19 is activated. By doing so, a predetermined degree of decompression can be maintained.
  • a medium is supplied from a medium supply port provided in the condenser 16 or the storage unit 17 or the like, and a predetermined amount of medium is stored in the storage unit 17 or the like. Also good. Further, during operation of the first mold cooling apparatus 1, the medium increase / decrease is detected by a level meter, a float switch, etc. so that the medium in the storage unit 17 is maintained at a predetermined level, and the medium is appropriately replenished. Or you may make it discharge
  • a relief valve for maintaining the pressure in the system, a safety valve for preventing an abnormal drop in the pressure in the system, and the like may be provided at appropriate positions as necessary. Moreover, you may make it accommodate each part mentioned above of the said 1st mold cooling device 1 in a housing
  • the medium is supplied to the cooling blocks 35, 36, and 37 under reduced pressure as will be described later, and evaporated in the cooling blocks 35, 36, and 37.
  • a medium having a boiling point of 100 ° C. or less under normal pressure such as water or alcohol.
  • a medium having a high boiling point under normal pressure when employed, when the cooling efficiency is increased, the degree of pressure reduction tends to be higher (higher vacuum (more absolute vacuum side)).
  • a surfactant is added to the medium.
  • the addition amount of the surfactant may be set experimentally or empirically according to the type of medium, the type of surfactant, the set temperature of the mold 3, and the like, and may be about several percent. . Further, as such a surfactant, a surfactant contained in a liquid neutral detergent such as a commercially available kitchen detergent may be used, and such a liquid neutral detergent may be added to the medium.
  • a surfactant contained in a liquid neutral detergent such as a commercially available kitchen detergent may be used, and such a liquid neutral detergent may be added to the medium.
  • the control panel 4 has time measuring means, an arithmetic processing unit, and the like.
  • the CPU 40 controls each valve, each device, and each unit of the first mold cooling device 1 according to a predetermined program, and signal lines and the like to the CPU 40.
  • an operation panel 41 and a storage unit 42 as display operation units connected to each other.
  • the CPU 40 is connected to the above-described valves, devices, various sensors, and the like, as well as the injection molding machine 5 and the mold temperature sensor 38, via signal lines and the like.
  • the operation panel 41 sets and inputs various setting operations, pre-set input items (such as mold set temperature, medium set temperature, set pressure, and various set times), and sets various setting conditions and various operation modes. Or display.
  • the storage unit 42 is composed of various memories and the like, and a control program for executing various operations such as setting conditions and input values set and input by an input operation of the operation panel 41 and basic operations described later. Various programs, various preset operating conditions, various data tables, and the like are stored.
  • the control panel 4 may be incorporated in the casing of the first mold cooling device 1 or may be installed on the top or side of the casing. Further, the second mold cooling device 2 is connected to the control panel 4 through a signal line or the like, and the first mold cooling device 1 and the second mold cooling device 2 are controlled in synchronization with each other. It is good also as an aspect. In this case, the control panel of the second mold cooling device 2 may be shared by the control panel 4. In other words, each part of the second mold cooling device 2 may be controlled by the control panel 4.
  • the CPU 40 controls the operation of the decompression means 19 and decompresses each of the above portions and lines. For example, by operating the vacuum pump 19a in accordance with the pressure detected by the pressure sensor 19c and opening the vacuum pump on-off valve V4, the pressure is reduced so that each of the above portions and each line has a predetermined pressure reduction degree.
  • the operation of the medium supply unit 11 is controlled by the CPU 40 under the reduced pressure of these units and lines, and the medium is supplied to the hollow portions 35a, 36a, 37a of the cooling blocks 35, 36, 37.
  • the medium supply pump 12 is operated based on a predetermined mold cooling start signal, and the cooling block opening / closing valves V1, V2, and V3 are opened in a predetermined manner, and the hollow portions 35a of the cooling blocks 35, 36, and 37 are opened.
  • , 36a, 37a are supplied with a predetermined amount of medium.
  • the medium supplied to the hollow portions 35 a, 36 a, 37 a of the cooling blocks 35, 36, 37 is transferred from the mold local area where the heat is increased by a molten material such as resin filled in the cavity 34 of the mold 3.
  • the heat of the inner wall surfaces of the hollow portions 35a, 36a, 37a of the cooling blocks 35, 36, 37 heated by is absorbed, evaporated and vaporized.
  • the cooling blocks 35, 36, and 37 are cooled by the heat of vaporization at this time, and the local portion of the mold 3 is cooled. Further, the medium vaporized by heat absorption from the mold 3 (more specifically, the inner wall surfaces of the hollow portions 35a, 36a, and 37a of the cooling blocks 35, 36, and 37) is discharged through the discharge line 13, and is condensed. To be cooled, condensed and liquefied if necessary, and stored in the storage unit 17.
  • FIG. 3 ON / OFF operation
  • movement of each on-off valve are typically shown.
  • the horizontal axis is the time axis
  • the vertical axis is the detected temperature of the medium temperature sensor 18 provided in the condensing unit 16, and the transition is schematically shown.
  • the horizontal axis is the time axis
  • the vertical axis is the detected pressure of the pressure sensor 19c provided in the vacuum line 19b, and the transition is schematically shown.
  • the mold 3 is closed, a molten material such as a resin is injected into the cavity 34 provided in the mold 3, and filled appropriately.
  • a molten material such as a resin is injected into the cavity 34 provided in the mold 3, and filled appropriately.
  • the mold is opened and the molded product is taken out.
  • a mold cooling process is performed in order to quickly solidify the molten material, and the mold cooling process is performed in order to perform the mold cooling process.
  • the mold cooling system A according to the embodiment is used.
  • the low-temperature medium is circulated and supplied to the medium flow passages 30 a and 31 a provided in the mold 3 in conjunction with the molding operation of the injection molding machine 5.
  • a mold cooling step is performed.
  • the circulation of the low temperature medium may be started based on a mold closing signal, an injection signal, or a pressure holding signal of the injection molding machine 5, and may be started after a predetermined delay time has elapsed from these signals. May be. Further, the circulating supply of the low temperature medium may be continued until a predetermined time elapses, or may be stopped based on a holding pressure signal, a mold opening signal, or the like from the injection molding machine 5. .
  • the mold 3 is replaced with a mode in which the circulation supply to the mold 3 and the circulation through the bypass path are repeatedly executed in conjunction with the molding operation of the injection molding machine 5.
  • the low-temperature medium may be circulated and supplied constantly.
  • the medium is supplied in conjunction with the molding operation of the injection molding machine 5, and the mold cooling process is executed.
  • the medium supply unit 11 is operated and controlled based on the injection signal of the injection molding machine 5, and the medium is supplied to the hollow portions 35a, 36a, 37a of the cooling blocks 35, 36, 37.
  • the medium supply pump 12 of the medium supply unit 11 is operated after a predetermined delay time t1 has elapsed after receiving the injection signal of the injection molding machine 5.
  • This delay time t1 takes into account the volume of the cavity 34 and the time until the medium reaches the hollow portions 35a, 36a, 37a of the cooling blocks 35, 36, 37, etc. It may be determined experimentally or empirically so as not to impede the fluidity of the molten material in the cavity 34 when it is filled (in the initial stage of injection).
  • the cooling block opening / closing valves V1, V2, and V3 are opened.
  • the cooling block opening / closing valves V1, V2, and V3 are opened until a predetermined supply time t2 elapses.
  • the supply time t2 elapses, the medium supply pump 12 is stopped, and the cooling block on-off valves V1, V2, and V3 are closed.
  • the supply amount of the medium to the hollow portions 35a, 36a, 37a of the cooling blocks 35, 36, 37 can be adjusted by changing the setting of the supply time t2.
  • the setting change of the supply time t2 may be made using the operation panel 41, for example.
  • this supply amount is almost entirely vaporized by heat absorption from the local portion of the mold 3 (that is, the inner wall surfaces of the hollow portions 35a, 36a, 37a of the cooling blocks 35, 36, 37), and passes through the discharge line 13. It is preferable to set the amount to be discharged.
  • This supply amount (optimum supply amount) is determined by the volume of the hollow portions 35a, 36a, 37a of the cooling blocks 35, 36, 37, the degree of decompression described later, the mold temperature before and after filling with a molten material such as resin (cooling blocks 35, The amount of heat released from the heat transfer surface (inner wall surfaces of the hollow portions 35a, 36a, 37a of the cooling blocks 35, 36, 37) is calculated based on the heat transfer temperature), and the vaporization of the medium It may be determined experimentally or empirically in consideration of the amount of heat, the target temperature in the local area of the mold 3 after cooling, or the like. The amount of heat released from the heat transfer surface may be calculated based on the temperature detected by a temperature sensor that detects the temperature in the cooling block.
  • this supply amount is too small, it tends to vaporize relatively quickly due to heat absorption from the local part of the mold 3 and a sufficient cooling effect tends not to be exhibited. That is, there is a tendency that the amount of heat taken from the local part of the mold 3 is deficient. If the amount is too large, the amount of medium remaining in the hollow portions 35a, 36a, 37a of the cooling blocks 35, 36, 37 at the end of the mold cooling process by supplying the medium tends to increase. The residual medium is vaporized during the process, and the endothermic action tends to inhibit the fluidity of the molten material. Therefore, the supply amount of the medium may be appropriately determined experimentally or empirically as described above.
  • an air purge line may be appropriately connected to the supply line 10 so that the remaining medium in the hollow portions 35a, 36a, and 37a of the cooling blocks 35, 36, and 37 is purged with air after the mold cooling process is completed.
  • the decompression means 19 may be operated as appropriate so that the above-described parts and lines are maintained at a predetermined degree of decompression.
  • the supply of the medium is not limited to a mode in which the respective cooling block opening / closing valves V1, V2, V3 are opened until the supply time t2 elapses as described above, and each cooling block opening / closing valve is set so as to have a predetermined supply amount. It is good also as an aspect which opens V1, V2, and V3 intermittently.
  • the adjustment of the supply amount of the medium is not limited to the mode of adjusting by changing the setting of the supply time t2, and for example, as the cooling block opening / closing valves V1, V2, V3, opening / closing valves whose opening degree can be adjusted are adopted, The supply amount of the medium may be adjusted by adjusting the opening degree.
  • the supply amount of the medium can be adjusted. Therefore, it is possible to easily adjust the local cooling capacity (cooling heat amount) of the mold 3 by the cooling blocks 35, 36, and 37. That is, the amount of heat of the cooling blocks 35, 36, and 37 heated by heat transfer from the local portion of the mold 3 by vaporizing the medium supplied to the hollow portions 35 a, 36 a, and 37 a of the respective cooling blocks 35, 36, and 37. Therefore, the amount of heat taken from the cooling blocks 35, 36, and 37 (that is, the local part of the mold 3) can be adjusted by adjusting the supply amount of the medium, and the local part of the mold 3 by the cooling blocks 35, 36, and 37 can be adjusted.
  • the cooling capacity can be easily adjusted.
  • the cooling block on-off valves V1, V2, V3 are provided in the supply lines 10A, 10B, 10C connected to the cooling blocks 35, 36, 37, respectively.
  • the cooling timing and the supply amount of the medium can be changed for each cooling block.
  • optimal cooling control corresponding to each cooling block can be executed, and optimal cooling control corresponding to the shape of the cavity 34 can also be performed.
  • the flow of the molten material is injected so as not to hinder the fluidity of the molten material injected from the nozzle of the injection molding machine 5 and passing through the gate portion (not shown) of the mold 3 and filling each portion of the cavity 34.
  • a cooling block (for example, the first and second cooling blocks 35) that cools a portion far from the cooling start timing of the cooling block (for example, the third cooling block 37) that cools the portion near the gate portion along the direction. , 36). According to this, defects such as flow marks and weld lines are less likely to occur, and the transferability (transfer rate) of the cavity surface to the molded product can be improved.
  • the medium supplied to the hollow portions 35a, 36a, and 37a of the cooling blocks 35, 36, and 37 as described above is vaporized by heat absorption from the mold 3, and passes through the discharge lines 13A, 13B, and 13C, and then the condensing unit 16 (Heat exchange part 15).
  • the CPU 40 controls the operation of the cooling fan 15 b based on the temperature detected by the medium temperature sensor 18. That is, when the vaporized medium reaches the manifold portion 16a, the medium temperature rises. If the detected temperature exceeds a preset set temperature (threshold), the cooling fan 15b is activated.
  • the operation of the cooling fan 15b may be continued until the detected temperature falls below the threshold value, or a driving time may be set in advance and stopped after the driving time has elapsed. .
  • a driving time may be set in advance and stopped after the driving time has elapsed.
  • the operation control of the cooling fan 15b as the cooling means for cooling the condensing unit 16 is executed based on the temperature detected by the medium temperature sensor 18, energy saving can be achieved. it can.
  • the operation of the cooling valve such as an electromagnetic valve disposed in the cooling pipe may be controlled as described above. .
  • the pressure sensor 19c monitors the degree of decompression of each part and each line, and the pressure sensor 19c detects the pressure. If the pressure exceeds a preset lower limit pressure (low vacuum side (atmospheric pressure side)) (if the pressure fluctuates to the low vacuum side (atmospheric pressure side)), the pressure reducing means 19 is controlled to reduce pressure. That is, when a predetermined delay time elapses simultaneously with or after the vacuum pump 19a is operated, the vacuum pump on-off valve V4 is opened.
  • the operation of the vacuum pump 19a and the opening of the vacuum pump opening / closing valve V4 may be continued until the pressure detected by the pressure sensor 19c falls below a preset pressure (threshold).
  • a preset pressure threshold
  • the setting change of the set pressure may be made using the operation panel 41, for example.
  • the cooling temperature of the cooling blocks 35, 36, and 37 (that is, the local part of the mold 3) can be adjusted. That is, the vaporization temperature (evaporation start temperature) of the medium in the hollow portions 35 a, 36 a, 37 a of the cooling blocks 35, 36, 37 is adjusted by adjusting the degree of decompression in accordance with the local target temperature of the mold 3 after cooling. ) Can be adjusted. That is, if the degree of decompression is high (high vacuum), the cooling blocks 35, 36, and 37 can be cooled in a lower temperature range, and if the degree of decompression is low (low vacuum), the cooling blocks 35 and 36 are cooled. 37 can be cooled in a higher temperature range.
  • the pressure reduction degree setting range may be a range in which the medium boils in a range of about 30 ° C. to 80 ° C. If the degree of decompression is too high, the cooling block can be further cooled, but there is a tendency that it is necessary to increase the size of the vacuum pump and to increase the cooling capacity (heat radiation capacity) of the condensing part. On the other hand, if the degree of decompression is too low, the cooling efficiency of the mold part by the cooling block tends to be reduced.
  • the local part of metallic mold 3 can be cooled effectively. That is, in this embodiment, the medium is used as a working fluid, and the space between the hollow portions 35a, 36a, 37a of the cooling blocks 35, 36, 37 functioning as an evaporation portion (heat absorption portion) and the condensation portion 16 is like a heat pipe. Since heat is transported, extremely efficient cooling is possible. In addition, since each of the parts 16, 17, 35a, 36a, 37a and the lines 10, 13 is decompressed, the medium can be evaporated and vaporized at a relatively low temperature, thereby improving the cooling efficiency. be able to.
  • the required amount of medium is small, and the heat transfer type is like a heat pipe, so heat transfer The rate is very good, and the cooling blocks 35, 36, and 37 (that is, the local part of the mold 3) can be quickly cooled. As a result, the molding cycle can be shortened.
  • the cooling blocks 35, 36, and 37 are formed according to the shape of the local portion of the cavity 34 (parts that are difficult to cool, such as concave portions and convex portions), and are disposed so as to be embedded in the mold 3. Since the first mold cooling device 1 can be used by connecting the lines 10 and 13 to the blocks 35, 36 and 37, heat exchange means or the like is installed in the mold 3, It can be easily applied to various molds without complicating the internal shape of 3 itself. That is, since the cooling block can be arranged according to various molds, and the first mold cooling apparatus 1 can be connected to this and used, it becomes highly versatile.
  • the CPU 40 controls the operation of the medium supply unit 11 and supplies the medium to the hollow portions 35a, 36a, 37a of the cooling blocks 35, 36, 37 based on a predetermined mold cooling start signal, the mold is provided. 3 local cooling timing can be easily controlled. As a result, as described above, it is possible to control the cooling timing so as not to hinder the fluidity of the molten material, and it is possible to prevent the occurrence of defective products.
  • a surfactant is added to the medium of the first mold cooling device 1. Therefore, since the wettability and foaming property of the medium can be improved by the surface active action, the medium is more likely to adhere to the inner surfaces of the hollow portions 35a, 36a, 37a of the cooling blocks 35, 36, 37. Therefore, the endothermic efficiency can be improved. As a result, the local part of the mold 3 can be more effectively cooled by the cooling blocks 35, 36, and 37. In addition, you may make it perform surface treatment, such as a rough surface process, from a viewpoint of improving wettability etc. to the hollow part 35a, 36a, 37a inner surface of the cooling blocks 35, 36, 37.
  • the mold cooling system A according to the present embodiment is connected to the first mold cooling apparatus 1 and the discharge line 13 and the supply line 10 of the first mold cooling apparatus 1, and is locally connected to the mold 3. And cooling blocks 35, 36, and 37 disposed so as to be embedded therein. Therefore, the local part of the mold 3 can be effectively cooled.
  • the mold cooling system A according to the present embodiment includes a second mold cooling device 2 that supplies a low-temperature medium to the medium flow paths 30 a and 31 a provided in the mold 3.
  • the second mold cooling device 2 by supplying the low temperature medium to the medium flow passages 30a, 31a of the mold 3 by the second mold cooling device 2, most of the mold 3 can be cooled, and the local part of the mold 3 can be cooled by the cooling block 35, 36 and 37 can be effectively cooled, and the portion around the cavity 34 of the mold 3 can be more efficiently cooled.
  • the second mold cooling device 2 is used for cooling the mold 3.
  • the second mold cooling device 2 is used as a mold temperature adjusting device for maintaining the mold 3 at a predetermined temperature. Also good.
  • it may be used as a mold heating / cooling device that performs heating of the mold 3 and cooling of the mold 3 in conjunction with the injection molding operation of the injection molding machine 5.
  • a mold heating device is further incorporated in the mold cooling system A according to the present embodiment, and in conjunction with the injection molding operation of the injection molding machine 5, Alternatively, the high temperature medium and the low temperature medium from the second mold cooling device 2 may be alternately circulated and supplied to the medium flow passages 30a and 31a of the mold 3.
  • a known mold cooling device, a mold heating device, a mold temperature control device or the like is appropriately added to the mold cooling system A according to this embodiment.
  • a mold heating / cooling device may be incorporated.
  • the mold 3 may be heated by self-heating of the molten material injected into the cavity 34 of the mold 3.
  • cooling blocks 35, 36, and 37 are arranged so as to be embedded in a local portion of the mold 3, but depending on the shape of the cavity of the mold, One or a plurality of cooling blocks may be provided.
  • a cooling block housing recess is provided in the mold 3 and the cooling block is disposed so as to be close to the cavity 34 of the mold. It is good also as an aspect arrange
  • the block opening / closing valves V1, V2, and V3 are provided in each of the branched supply lines 10A, 10B, and 10C, but the supply lines 10A, 10B, and 10C It is good also as an aspect which provides a single block on-off valve in the upstream (media supply pump 12 side) of a branch part.
  • decompression means for decompressing each part and each line is provided in communication with the discharge line.
  • decompression means may not be provided.
  • a vacuum pump or the like provided in a factory or the like where the first mold cooling device 1 and the mold cooling system A equipped with the first mold cooling apparatus 1 are appropriately connected, so that each part and each line is decompressed. It may be.
  • the degree of decompression may be reduced due to leakage or the like. Therefore, check the pressure gauge provided at an appropriate place, and if the prescribed degree of decompression is not maintained, connect a vacuum pump. The pressure may be reduced.
  • the example in which the medium temperature sensor 18 that detects the temperature of the medium is provided in the manifold portion 16a of the condensing unit 16 has been described.
  • the medium temperature sensor 18 may be provided in the part, or the medium temperature sensor 18 may be provided in the storage part 17. Even when the medium temperature sensor 18 is provided in the storage unit 17, it is possible to detect an increase in the medium temperature by the flow of the condensed medium, and based on this, the operation control of the cooling fan 15b as the cooling means is executed. Is possible.
  • cooling means for cooling the medium of the storage unit 17 for example, a cooling pipe through which cold air or a refrigerant passes
  • the cooling means is controlled to operate based on the temperature detected by the medium temperature sensor so that the temperature of the medium supplied to the cooling block becomes a predetermined temperature. Also good. According to this, a medium having a more stable temperature can be supplied to the cooling block.
  • the operation control of the cooling means of the heat exchange unit 15 or the storage unit 17 is executed based on the detected pressure of the pressure sensor 19c. Also good. That is, although each part and each line described above are maintained at a predetermined decompression degree, the detected pressure may slightly vary depending on the amount of vaporization of the medium supplied to the cooling block. If the fluctuation amount is not less than a predetermined amount, the cooling means may be operated. Furthermore, in the illustrated example, an example in which the condensing unit 16 and the storage unit 17 are individually provided is shown. However, a trap unit is integrally provided at the lower end of the condensing unit 16, and this trap unit functions as a storage unit. You may do it.
  • the mold cooling device and the mold cooling system including the mold cooling apparatus according to the present invention are not limited to the mode applied to the mold 3 in which a synthetic resin material is injected and filled to mold a synthetic resin molded product.
  • the present invention can also be applied to a mold in which a material is injected and filled to form a molded product.
  • a Mold cooling system 1 1st mold cooling device (mold cooling device) DESCRIPTION OF SYMBOLS 10 Supply line 11 Medium supply part 13 Discharge line 15b Cooling fan (cooling means) DESCRIPTION OF SYMBOLS 16 Condensing part 17 Reserving part 18 Temperature sensor 19 Depressurization means 2 2nd mold cooling device 3 Mold 30a, 31a Medium flow path 35, 36, 37 Cooling block 35a, 36a, 37a Cooling block hollow part 40 CPU (control part) )

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

A die cooling device (1) is provided with: a discharge line (13) connected to hollow units (35a, 36a, 37a) of cooling blocks (35, 36, 37) arranged to be embedded in a local portion of a die (3), to discharge a medium vaporized by absorbing heat from the die; a condensation unit (16) for condensing the vaporized medium which has passed through the discharge line; an accumulation unit (17) for accumulating the medium condensed in the condensation unit; a supply line (10) provided with a medium supply unit (11) for supplying the medium in the accumulation unit to the hollow units of the cooling blocks; and a control unit (40) which controls the operation of the medium supply unit when each of the units and lines is under reduced pressure, so that the medium is supplied to the hollow units of the cooling blocks in accordance with a predetermined die cooling start signal.

Description

金型冷却装置及びこれを備えた金型冷却システムMold cooling apparatus and mold cooling system provided with the same
 本発明は、金型を冷却する金型冷却装置及びこれを備えた金型冷却システムに関する。 The present invention relates to a mold cooling apparatus for cooling a mold and a mold cooling system including the mold cooling apparatus.
 従来より、金型に設けられた媒体流通路に低温媒体を供給する金型冷却装置が提案されている。このような金型冷却装置によれば、金型のキャビティーに溶融樹脂等の溶融材料を射出し、充填した後に、金型を冷却することで、溶融材料を迅速に固化させることができ、成形サイクルの短縮化を図ることができるものであった。しかしながら、成形品(キャビティー)の形状に凹凸があるなど形状が複雑な場合などでは、低温媒体が通過する媒体流通路から遠い部分が生じ、部分的に冷え難い部位が生じる場合があった。この結果、成形品が不良品となる場合があり、また、冷却時間を長く要するという問題があった。このような問題は、例えば、媒体流通路をキャビティーの形状に沿わせるように形成することで解消することも考えられるが、金型の構造が複雑化し、また、媒体流通路を複数に分岐させる必要が生じる場合もあり、この場合には低温媒体が均一に流れ難くなる傾向があるという問題があった。また、押出ピンやガイドピン等による制約を受けるため、複雑な媒体流通路を形成すること自体が困難となる場合もあった。 Conventionally, a mold cooling apparatus for supplying a low temperature medium to a medium flow path provided in a mold has been proposed. According to such a mold cooling device, after injecting a molten material such as a molten resin into a mold cavity and filling it, the mold can be cooled to quickly solidify the molten material, The molding cycle can be shortened. However, when the shape of the molded product (cavity) is complicated, such as when the shape is uneven, a part far from the medium flow path through which the low-temperature medium passes may be generated, and a part that is difficult to cool may be generated. As a result, the molded product may be a defective product, and there is a problem that a long cooling time is required. Such a problem can be solved by, for example, forming the medium flow path so as to follow the shape of the cavity. However, the structure of the mold is complicated, and the medium flow path is divided into a plurality of branches. In this case, there is a problem that the low-temperature medium tends to be difficult to flow uniformly. In addition, since it is restricted by an extrusion pin, a guide pin, or the like, it may be difficult to form a complicated medium flow path itself.
 下記特許文献1及び下記特許文献2では、加熱されたプラスチック材料に接する部分に隣接した区域(熱を取り去るべき区域)を覆うように密閉室を金型内部に形成し、この密閉室に液体と蒸気とを満たした金型(モールド)が提案されている。また、この金型には、蒸気を凝縮させる熱交換器等の凝縮手段が設けられている。この金型によれば、金型の高温部分において液体が沸騰、蒸発し、その区域の温度を下げることができ、温度を均一に保つことができる、と説明されている。 In the following patent document 1 and the following patent document 2, a sealed chamber is formed in the mold so as to cover an area adjacent to a portion in contact with the heated plastic material (an area where heat should be removed), and a liquid and a liquid are contained in the sealed chamber. A mold filled with steam has been proposed. The mold is provided with condensing means such as a heat exchanger for condensing the steam. According to this mold, it is explained that the liquid boils and evaporates in the high temperature portion of the mold, the temperature of the area can be lowered, and the temperature can be kept uniform.
特許第4500444号公報Japanese Patent No. 4500494 特表2003-510199号公報Special table 2003-510199 gazette
 しかしながら、上記各特許文献に記載された金型では、金型の構造が複雑化し、また、金型は成形品毎に必要となるため、更なる改善が望まれていた。さらに、金型内部の密閉室に液体及び蒸気を満たして密閉構造としているので、冷却タイミングの制御がし難いという問題があった。 However, in the molds described in each of the above patent documents, the structure of the mold is complicated, and a mold is required for each molded product, so further improvement has been desired. Further, since the sealed chamber inside the mold is filled with liquid and vapor to form a sealed structure, there is a problem that it is difficult to control the cooling timing.
 本発明は、上記実情に鑑みなされたものであり、種々の金型に簡便に適用し得るとともに、冷却タイミングの制御を容易に行い得る金型冷却装置及びこれを備えた金型冷却システムを提供することを目的としている。 The present invention has been made in view of the above circumstances, and provides a mold cooling apparatus and a mold cooling system including the mold cooling apparatus that can be easily applied to various molds and can easily control the cooling timing. The purpose is to do.
 前記目的を達成するために、本発明に係る金型冷却装置は、金型の局部に埋め込まれるようにして配設される冷却ブロックの中空部に接続されるとともに、前記金型からの吸熱により気化した媒体を排出する排出ラインと、この排出ラインを経た気化した媒体を凝縮させる凝縮部と、この凝縮部において凝縮された媒体を貯留する貯留部と、この貯留部の媒体を前記冷却ブロックの中空部に供給する媒体供給部を配した供給ラインと、これら各部及び各ラインが減圧下において、前記媒体供給部を作動制御し、所定の金型冷却開始信号に基づいて前記冷却ブロックの中空部に前記媒体を供給する制御部とを備えていることを特徴とする。 In order to achieve the above object, a mold cooling apparatus according to the present invention is connected to a hollow portion of a cooling block disposed so as to be embedded in a local part of a mold, and by absorbing heat from the mold. A discharge line that discharges the vaporized medium, a condensing unit that condenses the vaporized medium that has passed through the discharge line, a storage unit that stores the medium condensed in the condensing unit, and a medium in the storage unit that stores the medium in the cooling block. A supply line provided with a medium supply unit for supplying to the hollow part, and each of these parts and each line under reduced pressure controls the operation of the medium supply part, and the hollow part of the cooling block based on a predetermined mold cooling start signal And a controller for supplying the medium.
 上記構成とされた本発明では、金型の局部に配設された冷却ブロックに媒体を供給することで、金型の局部を効果的に冷却することができる。つまり、冷却ブロックの中空部に供給された媒体は、金型のキャビティーに充填された溶融材料によって高熱となる金型局部から冷却ブロックへの伝熱によって蒸発、気化し、この気化熱によって冷却ブロックが冷却され、金型局部を冷却することができる。つまりは、この媒体を作動流体として、蒸発部(吸熱部)として機能する冷却ブロックの中空部と上記凝縮部との間をヒートパイプのように熱輸送がなされるので、極めて効率的な冷却が可能となる。
 また、前記各部(冷却ブロックの中空部、凝縮部、貯留部)及び各ライン(排出ライン、供給ライン)が減圧された状態であるので、比較的に低温で媒体を蒸発、気化させることができるため、冷却効率を向上させることができる。
 さらに、例えば、冷却水等を金型の媒体流通路に通過させて冷却するような場合と比べて、媒体の必要量が少なく、また、ヒートパイプのような熱輸送形式であるので、熱伝達率が極めて良く、冷却ブロック(つまりは金型の局部)を迅速に冷却することができる。この結果、成形サイクルを短縮化することができる。
In the present invention configured as described above, the local portion of the mold can be effectively cooled by supplying the medium to the cooling block disposed in the local portion of the mold. In other words, the medium supplied to the hollow portion of the cooling block is evaporated and vaporized by heat transfer from the mold local area to the cooling block, which is heated by the molten material filled in the mold cavity, and cooled by this heat of vaporization. The block is cooled and the mold area can be cooled. In other words, this medium is used as a working fluid, and heat is transported like a heat pipe between the hollow part of the cooling block that functions as an evaporation part (heat absorption part) and the condensing part. It becomes possible.
Moreover, since each said part (the hollow part of a cooling block, a condensation part, a storage part) and each line (discharge | emission line, supply line) are the pressure-reduced states, a medium can be evaporated and vaporized at comparatively low temperature. Therefore, the cooling efficiency can be improved.
Furthermore, for example, compared with the case of cooling by passing cooling water or the like through the medium flow path of the mold, the required amount of medium is small, and the heat transfer type is like a heat pipe, so heat transfer The rate is very good and the cooling block (ie the local part of the mold) can be quickly cooled. As a result, the molding cycle can be shortened.
 さらにまた、冷却ブロックをキャビティーの局部(凹部や凸部等の冷え難い部位)の形状に応じて形成し、金型に埋め込ませるようにして配設し、その冷却ブロックに対して各ラインを接続することで当該金型冷却装置を用いることができるので、金型内に熱交換手段等を設置したり、金型自体の内部形状を複雑化させたりすることなく、種々の金型に簡便に適用することができる。つまりは、種々の金型に応じて冷却ブロックを配設し、これに当該金型冷却装置を接続して使用することができるので、汎用性の高いものとなる。
 また、媒体供給部を作動制御し、所定の金型冷却開始信号に基づいて前記冷却ブロックの中空部に前記媒体を供給する制御部を備えているので、金型の局部の冷却タイミングの制御を容易に行うことができる。この結果、溶融材料の流動性等を阻害しないような冷却タイミングの制御を行うこともでき、不良品等の発生を防止することもできる。
Furthermore, the cooling block is formed according to the shape of the local part of the cavity (parts that are difficult to cool, such as recesses and protrusions), and is arranged so as to be embedded in the mold. By connecting, the mold cooling device can be used, so it is convenient for various molds without installing heat exchange means etc. in the mold or complicating the internal shape of the mold itself. Can be applied to. In other words, a cooling block can be arranged according to various molds, and the mold cooling apparatus can be connected to the mold for use, so that the versatility is high.
In addition, since a control unit that controls the operation of the medium supply unit and supplies the medium to the hollow part of the cooling block based on a predetermined mold cooling start signal is provided, the cooling timing of the local part of the mold is controlled. It can be done easily. As a result, it is possible to control the cooling timing so as not to hinder the fluidity of the molten material, and it is possible to prevent the occurrence of defective products.
 上記所定の金型冷却開始信号は、例えば、射出成形機等の成形機から送信される型閉信号や射出信号、保圧信号等としてもよい。また、これらの信号を受信した後、所定の遅延時間が経過した後に、媒体の供給を開始させるようにしてもよい。好ましくは射出直後の溶融材料の流動性を阻害しないよう、型閉信号若しくは射出信号を受信した後、所定の遅延時間が経過した後に、または保圧信号を受信した後に、媒体の供給を開始させるようにしてもよい。
 また、冷却ブロックの中空部への媒体の供給は、上記所定の金型冷却開始信号に基づいて、一度に所定量を供給するようにしてもよく、または、所定量となるように間欠的に供給するようにしてもよい。
The predetermined mold cooling start signal may be, for example, a mold closing signal, an injection signal, a pressure holding signal, or the like transmitted from a molding machine such as an injection molding machine. Alternatively, the medium supply may be started after a predetermined delay time has elapsed after receiving these signals. Preferably, supply of the medium is started after a predetermined delay time has elapsed or a holding pressure signal has been received after receiving a mold closing signal or injection signal so as not to hinder the fluidity of the molten material immediately after injection. You may do it.
In addition, the medium may be supplied to the hollow portion of the cooling block by supplying a predetermined amount at a time based on the predetermined mold cooling start signal, or intermittently so as to be a predetermined amount. You may make it supply.
 本発明においては、前記排出ラインに連通し、前記各部及び各ラインを減圧する減圧手段を更に備えたものとしてもよい。
 このような構成とした場合には、前記各部及び各ラインの減圧度が低下(低真空側(大気圧側)に変動)すれば、減圧手段を作動させることで所定の減圧度を維持することができる。
 一方、このような減圧手段を設けない場合には、当該装置が設置される工場等に設けられた真空ポンプ等を適宜、接続し、上記各部及び各ラインを減圧するようにしてもよい。この場合、リーク等に起因して減圧度が下がることも考えられるため、適宜箇所に設けられた圧力ゲージ等を確認し、所定の減圧度が維持されていなければ真空ポンプを接続して減圧するようにしてもよい。
In this invention, it is good also as what was further provided with the decompression means which communicates with the said discharge line and decompresses each said part and each line.
In such a configuration, if the degree of decompression of each part and each line decreases (changes to the low vacuum side (atmospheric pressure side)), the prescribed decompression degree is maintained by operating the decompression means. Can do.
On the other hand, when such a pressure reducing means is not provided, a vacuum pump or the like provided in a factory or the like where the apparatus is installed may be connected as appropriate so as to reduce the pressure of the respective parts and lines. In this case, since the degree of decompression may decrease due to leakage or the like, the pressure gauge provided at an appropriate location is checked, and if the prescribed degree of decompression is not maintained, a vacuum pump is connected to reduce the pressure. You may do it.
 また、本発明においては、前記減圧手段による前記各部及び各ラインの減圧度の調整を可能としてもよい。
 このような構成とすれば、金型局部の冷却目標温度等に応じて、減圧度を調整することで、冷却ブロックの中空部における媒体の気化温度(蒸発開始温度)の調整を行うことができ、これにより、冷却ブロック(つまりは金型局部)の冷却温度を調整することができる。つまり、減圧度を高く(高真空に)すれば、冷却ブロックをより低温域で冷却することができ、減圧度を低く(低真空に)すれば、冷却ブロックをより高温域で冷却することができる。
In the present invention, the degree of decompression of each part and each line by the decompression means may be adjustable.
With such a configuration, it is possible to adjust the vaporization temperature (evaporation start temperature) of the medium in the hollow portion of the cooling block by adjusting the degree of pressure reduction according to the cooling target temperature of the mold local area. Thus, the cooling temperature of the cooling block (that is, the mold local part) can be adjusted. That is, if the degree of decompression is high (high vacuum), the cooling block can be cooled in a lower temperature range, and if the degree of decompression is low (low vacuum), the cooling block can be cooled in a higher temperature range. it can.
 また、本発明においては、前記媒体供給部による前記冷却ブロックの中空部への媒体の供給量の調整を可能としてもよい。
 このような構成とすれば、冷却ブロックの中空部に供給された媒体が気化することによって金型局部からの伝熱によって加熱された冷却ブロックの熱量を奪うため、媒体の供給量を調整することで、冷却ブロック(つまりは金型局部)から奪う熱量の調整ができ、冷却ブロックによる金型局部の冷却能力(冷却熱量)の調整を容易に行うことができる。
In the present invention, the medium supply amount may be adjusted by the medium supply unit to the hollow portion of the cooling block.
With such a configuration, the medium supplied to the hollow part of the cooling block is vaporized, so that the heat quantity of the cooling block heated by the heat transfer from the mold local area is taken away, so the supply amount of the medium is adjusted. Thus, the amount of heat taken from the cooling block (that is, the mold local part) can be adjusted, and the cooling capacity (cooling heat quantity) of the mold local by the cooling block can be easily adjusted.
 また、本発明においては、前記凝縮部を冷却する冷却手段を更に備えたものとしてもよい。
 このような構成とすれば、例えば、自然空冷等によって凝縮させるようなものと比べて、より迅速に媒体を凝縮させ、低温にすることができる。この冷却手段としては、空冷式やガス式、水冷式等の種々の冷却手段の採用が可能である。
Moreover, in this invention, it is good also as what further provided the cooling means which cools the said condensation part.
With such a configuration, for example, the medium can be condensed more quickly and the temperature can be lowered as compared with the case where it is condensed by natural air cooling or the like. As this cooling means, various cooling means such as an air cooling type, a gas type and a water cooling type can be adopted.
 また、本発明においては、前記凝縮部または前記貯留部に温度センサーを更に設け、前記制御部が前記温度センサーの検出温度に基づいて前記冷却手段の作動制御を実行するものとしてもよい。
 このような構成とすれば、省エネルギー化を図ることができる。
In the present invention, a temperature sensor may be further provided in the condensing unit or the storage unit, and the control unit may perform operation control of the cooling unit based on a temperature detected by the temperature sensor.
With such a configuration, energy saving can be achieved.
 また、本発明においては、前記媒体に、界面活性剤を添加してもよい。
 このような構成とすれば、界面活性作用により、前記媒体のぬれ性や起泡性等を向上させることができるので、冷却ブロックの中空部内面に該媒体がより付着し易くなることから、吸熱効率を向上させることができる。この結果、金型の局部を冷却ブロックによってより効果的に冷却することができる。
In the present invention, a surfactant may be added to the medium.
With such a configuration, the wettability and foaming property of the medium can be improved by the surface active action, and therefore the medium is more easily attached to the inner surface of the hollow portion of the cooling block. Efficiency can be improved. As a result, the local part of the mold can be more effectively cooled by the cooling block.
 また、上記目的を達成するために、本発明に係る金型冷却システムは、本発明に係る金型冷却装置と、この金型冷却装置の排出ライン及び供給ラインに接続されるとともに、金型の局部に埋め込まれるようにして配設される冷却ブロックとを備えていることを特徴とする。
 上記構成とされた本発明では、上記同様、金型の局部に埋め込まれるようにして配設される冷却ブロックに媒体を供給することで、金型の局部を効果的に冷却することができる。
 この冷却ブロックは、金型のキャビティーの形状に応じて複数個の冷却ブロックを設けるようにしてもよい。この場合、冷却ブロックの個数に応じた本数の排出ライン及び供給ラインを設けるようにすればよい。また、この場合、供給ラインのそれぞれに媒体の供給を制御する電磁弁等の開閉弁を設け、この開閉弁を前記制御部によって個別に作動制御する態様としてもよい。これによれば、冷却ブロック毎に冷却タイミングや媒体の供給量を変更することもでき、この結果、各冷却ブロックに応じた最適な冷却制御を実行することができ、キャビティーの形状に応じた最適な冷却制御を行うことも可能となる。例えば、射出成形機等のノズルから射出されて金型のゲート部を通過し、キャビティーの各部に充填される溶融材料の流動性を阻害しないように、溶融材料の流れ方向に沿ってゲート部側に近い側の部位を冷却する冷却ブロックの冷却開始タイミングを遠い側の部位を冷却する冷却ブロックよりも遅らせるような制御も可能となる。これによれば、フローマークやウェルドライン等の不良が生じ難くなり、成形品へのキャビティー面の転写性(転写率)を向上させることができる。
In order to achieve the above object, a mold cooling system according to the present invention is connected to a mold cooling apparatus according to the present invention and a discharge line and a supply line of the mold cooling apparatus. And a cooling block disposed so as to be embedded in the local area.
In the present invention having the above-described configuration, the local portion of the mold can be effectively cooled by supplying the medium to the cooling block disposed so as to be embedded in the local portion of the mold, as described above.
The cooling block may be provided with a plurality of cooling blocks depending on the shape of the mold cavity. In this case, the number of discharge lines and supply lines corresponding to the number of cooling blocks may be provided. In this case, an on-off valve such as an electromagnetic valve for controlling the supply of the medium may be provided in each supply line, and the on-off valve may be individually controlled by the control unit. According to this, the cooling timing and the supply amount of the medium can be changed for each cooling block, and as a result, the optimum cooling control according to each cooling block can be executed, and according to the shape of the cavity. It is also possible to perform optimal cooling control. For example, the gate portion along the flow direction of the molten material so as not to impede the fluidity of the molten material that is injected from the nozzle of an injection molding machine or the like, passes through the gate portion of the mold, and is filled in each portion of the cavity. Control that delays the cooling start timing of the cooling block that cools the portion closer to the side than the cooling block that cools the portion closer to the side is also possible. According to this, defects such as flow marks and weld lines are less likely to occur, and the transferability (transfer rate) of the cavity surface to the molded product can be improved.
 また、本発明に係る金型冷却システムにおいては、前記金型に設けられた媒体流通路に低温媒体を供給する第2金型冷却装置を更に備えたものとしてもよい。
 このような構成とすれば、上記第2金型冷却装置によって金型の媒体流通路に低温媒体を供給することで、金型の大部分を冷却できるとともに、金型の局部を冷却ブロックによって効果的に冷却することができ、金型のキャビティー周辺部位をより効率的に冷却することができる。
The mold cooling system according to the present invention may further include a second mold cooling device that supplies a low-temperature medium to a medium flow path provided in the mold.
With such a configuration, by supplying a low temperature medium to the medium flow passage of the mold by the second mold cooling device, most of the mold can be cooled, and the local part of the mold can be effected by the cooling block. Therefore, it is possible to cool the peripheral portion of the mold cavity more efficiently.
 本発明に係る金型冷却装置及びこれを備えた金型冷却システムは、上述のような構成としたことで、種々の金型に簡便に適用することができるとともに、冷却タイミングの制御を容易に行うことができる。 The mold cooling apparatus and the mold cooling system including the mold cooling apparatus according to the present invention can be easily applied to various molds and can easily control the cooling timing by adopting the above-described configuration. It can be carried out.
本発明の一実施形態に係る金型冷却装置を備えた金型冷却システムのシステム構成の一例を模式的に示す概略構成図である。It is a schematic structure figure showing typically an example of a system configuration of a metallic mold cooling system provided with a metallic mold cooling device concerning one embodiment of the present invention. 同金型冷却システムの制御ブロック図である。It is a control block diagram of the mold cooling system. (a)~(c)は、同金型冷却システムにおいて実行される基本動作の一例を説明するためのタイムチャートである。(A)-(c) is a time chart for demonstrating an example of the basic operation | movement performed in the same mold cooling system.
 以下に、本発明の実施の形態について、図面を参照しながら説明する。
 図1~図3は、本実施形態に係る金型冷却装置及びこれを備えた金型冷却システムを説明するための説明図である。
 なお、図1においては、媒体等が通過する管路(配管)等を、実線にて模式的に示している。
 本実施形態に係る金型冷却装置(第1金型冷却装置)1は、図1に示すように、金型3の局部に埋め込まれるようにして配設された複数の冷却ブロック35,36,37と、第2金型冷却装置2とを備えた金型冷却システムAの一部に組み込まれた例を示している。
Embodiments of the present invention will be described below with reference to the drawings.
1 to 3 are explanatory views for explaining a mold cooling apparatus and a mold cooling system including the mold cooling apparatus according to the present embodiment.
In FIG. 1, a pipeline (pipe) through which a medium or the like passes is schematically shown by a solid line.
A mold cooling device (first mold cooling device) 1 according to the present embodiment includes a plurality of cooling blocks 35, 36, 36 arranged to be embedded in a local part of a mold 3 as shown in FIG. 37 shows an example of being incorporated in a part of a mold cooling system A including the second mold cooling device 2.
 第2金型冷却装置2は、低温媒体を貯留する貯留部としての貯留タンク20と、この貯留タンク20に貯留された低温媒体を送媒路22及び返媒路23を介して金型3に設けられた媒体流通路30a,31aに循環供給するための循環ポンプ21とを備えている。この循環ポンプ21は、送媒路22に配設され、この送媒路22の循環ポンプ21の上流側(吸込側)には、貯留タンク20の出口側(送媒側)の低温媒体の温度を検出する温度センサーが設けられている。また、返媒路23には、フィルターが設けられている。
 これら送媒路22及び返媒路23には、電磁弁等の送媒弁及び返媒弁がそれぞれに設けられている。また、これら送媒路22と返媒路23とを接続するバイパス路が設けられており、このバイパス路には、電磁弁等のバイパス弁が設けられている。
The second mold cooling device 2 includes a storage tank 20 serving as a storage unit that stores a low-temperature medium, and the low-temperature medium stored in the storage tank 20 to the mold 3 via a medium transmission path 22 and a return path 23. And a circulation pump 21 for circulatingly supplying the medium flow passages 30a and 31a. The circulation pump 21 is disposed in the medium delivery path 22, and the temperature of the low-temperature medium on the outlet side (medium delivery side) of the storage tank 20 is upstream of the circulation pump 21 (suction side) of the medium delivery path 22. There is provided a temperature sensor for detecting. The return path 23 is provided with a filter.
These medium transmission path 22 and medium return path 23 are respectively provided with a medium transmission valve such as an electromagnetic valve and a medium return valve. Further, a bypass path that connects the medium transmission path 22 and the return path 23 is provided, and a bypass valve such as an electromagnetic valve is provided in the bypass path.
 貯留タンク20には、媒体供給源(給水源)に接続された媒体供給管路(給水管)と、媒体排出管路(排水管)とが接続されている。また、この貯留タンク20には、当該貯留タンク20に貯留された低温媒体を加熱するヒーター等の加熱手段と低温媒体を冷却する冷却路等の冷却手段とが設けられている。図例では、加熱手段としてシーズヒーターを例示し、冷却手段として螺旋状の冷却管を例示している。この冷却管の両端には、上記給水管と上記排水管とが分岐してそれぞれに接続されており、給水側の分岐管路には、冷却手段を構成する電磁弁等の冷却弁が設けられている。 The storage tank 20 is connected to a medium supply pipe (water supply pipe) connected to a medium supply source (water supply source) and a medium discharge pipe (drainage pipe). The storage tank 20 is provided with heating means such as a heater for heating the low-temperature medium stored in the storage tank 20 and cooling means such as a cooling path for cooling the low-temperature medium. In the figure, a sheathed heater is illustrated as the heating means, and a helical cooling pipe is illustrated as the cooling means. The water supply pipe and the drain pipe are branched and connected to both ends of the cooling pipe, respectively, and a cooling valve such as an electromagnetic valve constituting a cooling means is provided on the branch pipe on the water supply side. ing.
 当該第2金型冷却装置2の上記した循環ポンプ21や温度センサー、ヒーター、各弁等は、図示は省略しているが、当該第2金型冷却装置2の制御盤等に設けられたCPU等の制御部に信号線等を介して接続されており、このCPUによって所定のプログラムに従って当該第2金型冷却装置2の各部の作動制御がなされる。当該第2金型冷却装置2の稼働中は原則的には常時、循環ポンプ21の作動がなされており、上記送媒弁及び返媒弁を開、上記バイパス弁を閉とすれば、貯留タンク20に貯留された低温媒体が金型3に設けられた媒体流通路30a,31aに循環供給され、金型3の冷却がなされる。一方、上記バイパス弁を開、上記送媒弁及び返媒弁を閉とすれば、金型3への低温媒体の供給が停止され、貯留タンク20の低温媒体はバイパス路を経て循環する。このような切り替えは、後述する射出成形機5の成形動作に連動させて切り替えるようにしてもよい。 The circulation pump 21, the temperature sensor, the heater, each valve, etc. of the second mold cooling device 2 are not shown, but the CPU provided in the control panel or the like of the second mold cooling device 2 Is connected to a control unit such as a signal line or the like, and the operation of each part of the second mold cooling device 2 is controlled by the CPU according to a predetermined program. In principle, the circulation pump 21 is always operated during operation of the second mold cooling device 2, and the storage tank can be established by opening the medium delivery valve and the return valve and closing the bypass valve. The low-temperature medium stored in 20 is circulated and supplied to the medium flow passages 30 a and 31 a provided in the mold 3, and the mold 3 is cooled. On the other hand, when the bypass valve is opened and the medium delivery valve and the return valve are closed, the supply of the low temperature medium to the mold 3 is stopped, and the low temperature medium in the storage tank 20 is circulated through the bypass path. Such switching may be performed in conjunction with a molding operation of an injection molding machine 5 described later.
 また、低温媒体が予め設定された所定温度となるように、送媒路22に設けられた温度センサーの検出温度に基づいて、上記ヒーター及び上記冷却弁の作動制御がなされる。この低温媒体の設定温度は、溶融されて充填される樹脂等の溶融材料の温度や金型3の設定温度等にもよるが、例えば、5℃~90℃程度としてもよい。
 貯留タンク20に貯留された媒体温度が設定温度よりも低ければ、上記ヒーターを稼動させて加熱がなされる。一方、設定温度よりも高ければ、上記冷却弁を開放させ、冷媒(冷却水)を上記冷却管に送給させて冷却がなされる。なお、この低温媒体を冷却する冷却手段としては、このような冷却路によって貯留タンク20に貯留された媒体と間接的に熱交換を行い冷却するもの(間接冷却)に限られず、例えば、媒体が水の場合には、冷水を直接的に貯留タンク20内に供給することで媒体を冷却(直接冷却)するものとしてもよい。
 また、上記冷却手段に供給する冷媒としては、低温媒体の設定温度に応じて、適宜のチラー等の冷却器等によって冷却されたものとしてもよく、または、工場等に設置されるクーリングタワー等からの冷水を冷媒としてもよく、さらには、常温の水道水としてもよい。
The operation of the heater and the cooling valve is controlled based on the temperature detected by the temperature sensor provided in the medium transmission path 22 so that the low temperature medium has a predetermined temperature set in advance. The set temperature of the low-temperature medium depends on the temperature of the molten material such as a resin that is melted and filled, the set temperature of the mold 3, and the like, but may be about 5 ° C. to 90 ° C.
If the temperature of the medium stored in the storage tank 20 is lower than the set temperature, the heater is operated and heating is performed. On the other hand, if the temperature is higher than the set temperature, the cooling valve is opened, and the refrigerant (cooling water) is supplied to the cooling pipe for cooling. The cooling means for cooling the low-temperature medium is not limited to one that indirectly exchanges heat with the medium stored in the storage tank 20 through such a cooling path and cools it (indirect cooling). In the case of water, the medium may be cooled (direct cooling) by supplying cold water directly into the storage tank 20.
Moreover, the refrigerant supplied to the cooling means may be cooled by a cooler such as an appropriate chiller according to the set temperature of the low temperature medium, or from a cooling tower installed in a factory or the like. Cold water may be used as a refrigerant, and furthermore, room temperature tap water may be used.
 なお、当該第2金型冷却装置2の起動時には、上記給水管及び排水管に設けられた供給弁及び排出弁を開放させ、低温媒体を貯留タンク20に所定レベルまで貯留させた後に、供給弁及び排出弁を閉止させるようにしてもよい。また、当該第2金型冷却装置2の稼働中は、貯留タンク20における低温媒体が所定レベルに維持されるように、低温媒体の増減等をレベル計やフロートスイッチ等によって検出し、上記供給弁及び排出弁を開閉制御し、適宜、低温媒体を補給乃至は排出させるようにしてもよい。
 また、系内の圧力を検出する圧力計や、系内の圧力を維持するリリーフバルブ、系内の圧力の異常上昇を防止する安全弁等を必要に応じて適所に設けるようにしてもよい。
 また、低温媒体としては、水に限られず、油系、アルコール系等の他の媒体を採用するようにしてもよい。
 また、当該第2金型冷却装置2の上記した各部を、筐体(ケーシング)内に収容するようにしてもよい。
When the second mold cooling device 2 is started, the supply valve and the discharge valve provided in the water supply pipe and the drain pipe are opened, and the low temperature medium is stored in the storage tank 20 to a predetermined level, and then the supply valve In addition, the discharge valve may be closed. While the second mold cooling apparatus 2 is in operation, the supply of the supply valve is detected by detecting an increase or decrease in the low temperature medium by a level meter, a float switch or the like so that the low temperature medium in the storage tank 20 is maintained at a predetermined level. Further, the discharge valve may be controlled to open and close, and the low temperature medium may be replenished or discharged as appropriate.
In addition, a pressure gauge for detecting the pressure in the system, a relief valve for maintaining the pressure in the system, a safety valve for preventing an abnormal increase in the pressure in the system, and the like may be provided as needed.
Further, the low temperature medium is not limited to water, and other mediums such as an oil system and an alcohol system may be adopted.
Moreover, you may make it accommodate each above-mentioned part of the said 2nd mold cooling device 2 in a housing | casing (casing).
 金型3は、固定型30と可動型31とを有しており、これら固定型30及び可動型31には、上記した第2金型冷却装置2の送媒路22及び返媒路23が接続されて低温媒体が通過する媒体流通路30a,31aがそれぞれに設けられている。なお、符号38は、金型3の温度を検出する温度センサーである。
 本実施形態では、これら固定型30及び可動型31には、入れ子32,33がそれぞれに埋め込まれるようにして設けられている。これら入れ子32,33の対向面には、成形品造形凹部がそれぞれに形成されており、これらを突き合わせることで樹脂等の溶融材料が充填されるキャビティー34が形成される。このキャビティー34に、射出成形機5(図2参照)のシリンダ等で溶融された樹脂等の溶融材料がノズル等から射出されて充填され、成形品が逐次、成形される。
The mold 3 includes a fixed mold 30 and a movable mold 31, and the fixed mold 30 and the movable mold 31 include the medium feeding path 22 and the medium returning path 23 of the second mold cooling device 2 described above. Media flow passages 30a and 31a through which a low-temperature medium passes are respectively provided. Reference numeral 38 denotes a temperature sensor that detects the temperature of the mold 3.
In the present embodiment, the fixed mold 30 and the movable mold 31 are provided with nestings 32 and 33 embedded therein, respectively. On the opposing surfaces of the inserts 32 and 33, molded product forming concave portions are formed, and a cavity 34 filled with a molten material such as resin is formed by abutting them. The cavity 34 is filled with a molten material such as a resin melted by a cylinder or the like of the injection molding machine 5 (see FIG. 2) from a nozzle or the like, and molded products are sequentially molded.
 キャビティー34の形状は、成形品の形状に合わせて形成されるものであるが、小型電子機器等のケーシングやキャップ、各種部品等のようにリブやボス、フランジ等の凸部や、凹溝等の凹部等、細かく極端な凹凸形状がある場合もある。このような成形品のためのキャビティー34の形状は、図例のように複雑化し、これによって金型3に設けられた媒体流通路30a,31aから比較的に遠くなり、冷え難くなる部位が生じる。このような部位に媒体流通路を沿わせるようにして形成することも考えられるが、上述のように困難な場合があり、特に小型の成形品を成形する場合には、媒体を流通させる通路の形成自体も困難になり、当該部位(局部)の冷却不足による成形不良が発生したり、冷却時間が長期化したりする傾向がある。 The shape of the cavity 34 is formed in accordance with the shape of the molded product. However, a convex portion such as a rib, a boss, or a flange, or a concave groove, such as a casing, a cap, or various parts of a small electronic device. In some cases, there are fine and extremely uneven shapes such as concave portions. The shape of the cavity 34 for such a molded product is complicated as shown in the figure, and as a result, there are portions that are relatively far from the medium flow paths 30a and 31a provided in the mold 3 and are difficult to cool. Arise. Although it is conceivable to form the medium flow passage along such a portion, there are cases where it is difficult as described above, and in the case of molding a small molded product, the passage of the medium is preferably distributed. Formation itself also becomes difficult, and there exists a tendency for the shaping | molding defect by the insufficient cooling of the said site | part (local part) to generate | occur | produce, or for cooling time to be prolonged.
 そこで、本実施形態では、金型3の固定型30及び可動型31(図例では、固定側の入れ子32及び可動側の入れ子33)によって形成されるキャビティー34の冷え難い部位に近接させた部位(局部、コア部)に、複数(図例では3つ)の冷却ブロック35,36,37(第1冷却ブロック35、第2冷却ブロック36、第3冷却ブロック37)を埋め込ませるようにして配設している。これら冷却ブロック35,36,37は、中空部35a,36a,37aをそれぞれに有している。
 このような冷却ブロック35,36,37の形状は、キャビティー34の形状に応じて、キャビティー34内に充填された溶融材料の冷え難い部位、つまり、金型3の局部を局所的に冷却し得るような形状とすればよい。例えば、中空棒状や円筒形状、角筒形状、錐形状、錐台形状、中空円環形状、中空角環形状等、どのような形状でもよく、中空部を有したものとすればよい。そして、これら冷却ブロック35,36,37の形状に応じた冷却ブロック収容凹所32a,32b,33aを金型3に設けるようにすればよい。
Therefore, in this embodiment, the cavity 3 formed by the fixed mold 30 and the movable mold 31 of the mold 3 (in the illustrated example, the fixed-side insert 32 and the movable-side insert 33) is brought close to the hard-to-cool portion. A plurality of (three in the illustrated example) cooling blocks 35, 36, and 37 (first cooling block 35, second cooling block 36, and third cooling block 37) are embedded in the part (local part and core part). It is arranged. These cooling blocks 35, 36, and 37 have hollow portions 35a, 36a, and 37a, respectively.
Such a shape of the cooling blocks 35, 36, and 37 locally cools a portion where the molten material filled in the cavity 34 is difficult to cool, that is, a local portion of the mold 3, according to the shape of the cavity 34. A shape that can be used is sufficient. For example, any shape such as a hollow rod shape, a cylindrical shape, a rectangular tube shape, a cone shape, a truncated cone shape, a hollow annular shape, a hollow angular ring shape, or the like may be used. And what is necessary is just to make it provide the cooling block accommodation recess 32a, 32b, 33a according to the shape of these cooling blocks 35,36,37 in the metal mold | die 3. FIG.
 図例では、固定側の入れ子32に、反対向面側(可動側対向面とは異なる側)に開口するように、第1冷却ブロック35を受け入れる冷却ブロック収容凹所32aと第2冷却ブロック36を受け入れる冷却ブロック収容凹所32bとをそれぞれ形成し、可動側の入れ子33に、反対向面側(固定側対向面とは異なる側)に開口するように、第3冷却ブロック37を受け入れる冷却ブロック収容凹所33aを形成した例を示している。このように入れ子構造とされた金型3の入れ子32,33に冷却ブロック収容凹所32a,32b,33aを形成する態様とすることで、例えば、固定型30乃至は可動型31に冷却ブロック収容凹所を直接的に形成する態様に比べて、これらを容易に形成することができる。
 また、上記した冷却ブロック35,36,37には、第1金型冷却装置1の供給ライン10及び排出ライン13がそれぞれに接続されている。金型3の固定型30及び可動型31には、これら各供給ライン10及び各排出ライン13を配設するための通路が形成されている。なお、これら各供給ライン10及び各排出ライン13の冷却ブロック35,36,37側の部位を金型3の固定型30乃至は可動型31に直接的に設けたものとしてもよい。
In the illustrated example, the cooling block housing recess 32a for receiving the first cooling block 35 and the second cooling block 36 so as to open on the opposite side of the nesting 32 on the fixed side (the side different from the movable side facing surface). The cooling block receiving recess 32b for receiving the third cooling block 37 and receiving the third cooling block 37 so as to open to the movable-side insert 33 on the opposite surface side (side different from the fixed-side facing surface) The example which formed the accommodation recess 33a is shown. The cooling block housing recesses 32 a, 32 b, 33 a are formed in the nestings 32, 33 of the mold 3 having the nesting structure as described above, so that, for example, the cooling block is housed in the fixed mold 30 or the movable mold 31. These can be easily formed as compared with the embodiment in which the recess is directly formed.
Further, the supply line 10 and the discharge line 13 of the first mold cooling apparatus 1 are connected to the cooling blocks 35, 36, and 37 described above, respectively. The fixed mold 30 and the movable mold 31 of the mold 3 are formed with passages for arranging the supply lines 10 and the discharge lines 13. The portions of the supply lines 10 and the discharge lines 13 on the cooling block 35, 36, 37 side may be provided directly on the fixed mold 30 or the movable mold 31 of the mold 3.
 第1金型冷却装置1は、排出ライン13と、この排出ライン13を経た媒体を凝縮させる凝縮部16を有した熱交換部15と、凝縮部16において凝縮された媒体を貯留する貯留部(トラップ部)17と、媒体供給部11を配した供給ライン10と、減圧手段19と、制御盤4(図2参照)とを備えている。
 排出ライン13は、本実施形態では、冷却ブロック35,36,37の個数に合わせて三本の排出ライン13A,13B,13Cからなり、それぞれの一端が各冷却ブロック35,36,37の中空部35a,36a,37a内に臨むように各冷却ブロック35,36,37に接続されている。図例では、各排出ライン13A,13B,13Cの一端部を各冷却ブロック35,36,37の中空部35a,36a,37aの上内壁面に沿わせるように配設した例を示している。各排出ライン13A,13B,13Cの他端は、凝縮部16の上端に設けられたマニホールド部16aに接続されている。
The first mold cooling apparatus 1 includes a discharge line 13, a heat exchange unit 15 having a condensing unit 16 that condenses the medium that has passed through the discharge line 13, and a storage unit that stores the medium condensed in the condensing unit 16 ( A trap unit 17, a supply line 10 provided with the medium supply unit 11, a decompression unit 19, and a control panel 4 (see FIG. 2) are provided.
In this embodiment, the discharge line 13 includes three discharge lines 13A, 13B, and 13C corresponding to the number of the cooling blocks 35, 36, and 37, and one end of each discharge line 13 is a hollow portion of each cooling block 35, 36, and 37. It is connected to each cooling block 35, 36, 37 so that it may face in 35a, 36a, 37a. In the example shown in the figure, one end of each discharge line 13A, 13B, 13C is disposed along the upper inner wall surface of the hollow portion 35a, 36a, 37a of each cooling block 35, 36, 37. The other ends of the discharge lines 13A, 13B, and 13C are connected to a manifold portion 16a provided at the upper end of the condensing portion 16.
 熱交換部15は、マニホールド部16aを経た媒体を受け入れる管状の凝縮部16と、この凝縮部16を内管としてその周囲を覆うように設けられた外管15aと、凝縮部16を冷却する冷却手段としての冷却ファン15bとを有している。冷却ファン15bは、図例では、外管15aの下端に設けられた送風口へ外気を送風する構成とされている。また、外管15aの上端には、冷却ファン15bによって取り込まれた外気を排出する排気口が設けられている。
 凝縮部16は、上下に細長管状とされ、その外周には、複数の伝熱(放熱)フィン16bが設けられている。この凝縮部16の上端に設けられたマニホールド部16aには、各排出ライン13A,13B,13Cを経た媒体の温度を検出するための媒体温度センサー18が配設されている。なお、凝縮部16を内管として冷却用空気を通過させる外管を設けた態様に限られず、冷却用空気を通過させる内管の外周に凝縮部となる外管を設けた態様としてもよい。また、このような空冷式の冷却手段に限られず、上記第2金型冷却装置2のような水冷式の冷却手段を採用するようにしてもよく、その他、ガス式の冷却手段を採用するようにしてもよい。このような冷却手段を設けることで、例えば、自然空冷等によって凝縮させるようなものと比べて、より迅速に媒体を凝縮させ、低温にすることができる。なお、後記するように所定の減圧度とされて当該凝縮部が減圧下において、当該凝縮部16において媒体が沸騰しないように媒体を凝縮させて液化可能であれば、このような冷却手段を設けずに自然冷却(自然空冷)により凝縮させる態様としてもよい。
 貯留部17は、凝縮部16の下端から流下する媒体を受け入れるように設けられており、この貯留部17に供給ライン10の一端が接続されている。
The heat exchanging unit 15 includes a tubular condensing unit 16 that receives the medium that has passed through the manifold unit 16a, an outer tube 15a that is provided so as to cover the periphery of the condensing unit 16 as an inner tube, and cooling that cools the condensing unit 16 And a cooling fan 15b as means. In the illustrated example, the cooling fan 15b is configured to blow outside air to a blower opening provided at the lower end of the outer tube 15a. Further, an exhaust port for discharging the outside air taken in by the cooling fan 15b is provided at the upper end of the outer tube 15a.
The condensing part 16 is made into a long and narrow tubular shape, and a plurality of heat transfer (radiation) fins 16b are provided on the outer periphery thereof. A medium temperature sensor 18 for detecting the temperature of the medium that has passed through the discharge lines 13A, 13B, and 13C is disposed in the manifold section 16a provided at the upper end of the condensing section 16. In addition, it is not restricted to the aspect which provided the outer tube | pipe which allows the cooling air to pass using the condensation part 16 as an inner pipe, It is good also as an aspect which provided the outer tube | pipe which becomes a condensing part in the outer periphery of the inner tube | pipe which allows cooling air to pass through. Further, the present invention is not limited to such an air cooling type cooling means, and a water cooling type cooling means such as the second mold cooling device 2 may be adopted, or other gas type cooling means may be adopted. It may be. By providing such a cooling means, for example, the medium can be condensed more quickly and the temperature can be lowered as compared with the case where it is condensed by natural air cooling or the like. As will be described later, such a cooling means is provided if the medium can be condensed and liquefied so that the medium is not boiled in the condensing unit 16 when the condensing unit has a predetermined degree of decompression and the condensing unit is under decompression. It is good also as an aspect condensed by natural cooling (natural air cooling).
The storage unit 17 is provided so as to receive a medium flowing down from the lower end of the condensing unit 16, and one end of the supply line 10 is connected to the storage unit 17.
 供給ライン10には、フィルター10aと媒体供給部11としての媒体供給ポンプ12とが貯留部17から他端(金型3)側に向けてこの順に配設されている。媒体供給ポンプ12は、本実施形態では、後記するように各部及び各ラインが減圧されるため、減圧下において媒体を供給(吸い込み、吐出)し得るよう、斜流ポンプや遠心ポンプなどを採用することが好ましい。
 供給ライン10は、本実施形態では、媒体供給ポンプ12の下流側(吐出側)において冷却ブロック35,36,37の個数に合わせて三本に分岐されている。分岐された各供給ライン10A,10B,10Cには、媒体供給部11としての電磁弁等のブロック開閉弁V1,V2,V3(第1ブロック開閉弁V1、第2ブロック開閉弁V2、第3ブロック開閉弁V3)がそれぞれに配設されている。本実施形態では、これらブロック開閉弁V1,V2,V3の開閉態様を設定変更可能とすることで、冷却ブロック35,36,37の中空部35a,36a,37aへの媒体の供給量の調整を可能としている。
In the supply line 10, a filter 10 a and a medium supply pump 12 as the medium supply unit 11 are arranged in this order from the storage unit 17 toward the other end (mold 3) side. In the present embodiment, the medium supply pump 12 employs a mixed flow pump or a centrifugal pump so that the medium and the lines can be supplied (sucked and discharged) under reduced pressure because each part and each line are reduced in pressure as described later. It is preferable.
In the present embodiment, the supply line 10 is branched into three in accordance with the number of cooling blocks 35, 36, and 37 on the downstream side (discharge side) of the medium supply pump 12. The branched supply lines 10A, 10B, and 10C have block opening / closing valves V1, V2, and V3 such as electromagnetic valves as the medium supply unit 11 (first block opening / closing valve V1, second block opening / closing valve V2, and third block). On-off valves V3) are respectively provided. In the present embodiment, the amount of supply of the medium to the hollow portions 35a, 36a, 37a of the cooling blocks 35, 36, 37 can be adjusted by making it possible to change the setting of the opening / closing modes of these block opening / closing valves V1, V2, V3. It is possible.
 各供給ライン10A,10B,10Cは、それぞれの分岐側とは異なる一端が各冷却ブロック35,36,37の中空部35a,36a,37a内に臨むように各冷却ブロック35,36,37に接続されている。図例では、各供給ライン10A,10B,10Cの一端部を各冷却ブロック35,36,37の中空部35a,36a,37aの下内壁面に沿わせるように配設した例を示している。
 なお、これら各部同士及び各部と各ラインとは気密的に連結されている。つまり、本実施形態では、供給ライン10(10A,10B,10C)、各冷却ブロック35,36,37の中空部35a,36a,37a、排出ライン13(13A,13B,13C)、凝縮部16及び貯留部17が気密的に閉ループを形成するようにこれらを連結している。
Each supply line 10A, 10B, 10C is connected to each cooling block 35, 36, 37 so that one end different from each branch side faces the hollow portion 35a, 36a, 37a of each cooling block 35, 36, 37. Has been. In the illustrated example, an example is shown in which one end of each supply line 10A, 10B, 10C is disposed along the lower inner wall surface of the hollow portion 35a, 36a, 37a of each cooling block 35, 36, 37.
In addition, these each part and each part and each line are connected airtightly. That is, in this embodiment, the supply line 10 (10A, 10B, 10C), the hollow portions 35a, 36a, 37a of the cooling blocks 35, 36, 37, the discharge line 13 (13A, 13B, 13C), the condensing unit 16, and These are connected so that the reservoir 17 forms an airtight closed loop.
 減圧手段19は、排出ライン13に連通するように設けられ、上記のように気密的に連結された各部及び各ラインを減圧する。この減圧手段19は、本実施形態では、真空ポンプ19aと、この真空ポンプ19aに一端が接続され、他端がマニホールド部16aに接続された真空ライン19bとを備えている。この真空ライン19bには、圧力センサー19cとフィルター19dと真空ポンプ開閉弁V4とがマニホールド部16aから真空ポンプ19aに向けてこの順に配設されている。本実施形態では、この圧力センサー19cの検出圧力に基づく真空ポンプ19a及び真空ポンプ開閉弁V4の作動及び開閉態様を設定変更可能とすることで、上記各部及び各ラインの減圧度の調整を可能としている。
 このような減圧手段19を排出ライン13に連通させて設けることで、上記した各部及び各ラインの減圧度が低下(低真空側(大気圧側)に変動)すれば、当該減圧手段19を作動させることで所定の減圧度を維持することができる。
The decompression means 19 is provided so as to communicate with the discharge line 13 and decompresses each part and each line that are airtightly connected as described above. In this embodiment, the decompression unit 19 includes a vacuum pump 19a and a vacuum line 19b having one end connected to the vacuum pump 19a and the other end connected to the manifold portion 16a. In the vacuum line 19b, a pressure sensor 19c, a filter 19d, and a vacuum pump opening / closing valve V4 are arranged in this order from the manifold portion 16a to the vacuum pump 19a. In the present embodiment, the operation of the vacuum pump 19a and the vacuum pump on / off valve V4 based on the detected pressure of the pressure sensor 19c and the opening / closing mode can be changed, thereby enabling adjustment of the degree of decompression of each of the above parts and each line. Yes.
By providing such a decompression means 19 in communication with the discharge line 13, if the degree of decompression of each part and each line described above decreases (changes to the low vacuum side (atmospheric pressure side)), the decompression means 19 is activated. By doing so, a predetermined degree of decompression can be maintained.
 なお、当該第1金型冷却装置1の起動時には、凝縮部16乃至は貯留部17等に設けた媒体供給口から媒体を供給し、所定量の媒体を貯留部17等に貯留させるようにしてもよい。また、当該第1金型冷却装置1の稼働中は、貯留部17における媒体が所定レベルに維持されるように、媒体の増減等をレベル計やフロートスイッチ等によって検出し、適宜、媒体を補給乃至は排出させるようにしてもよい。この場合には、系内(上記各部及び各ライン)の減圧度が維持されるように供給管乃至は排出管を接続する態様としてもよい。
 また、系内の圧力を維持するリリーフバルブ、系内の圧力の異常降下を防止する安全弁等を必要に応じて適所に設けるようにしてもよい。
 また、当該第1金型冷却装置1の上記した各部を、筐体(ケーシング)内に収容するようにしてもよい。
When the first mold cooling apparatus 1 is activated, a medium is supplied from a medium supply port provided in the condenser 16 or the storage unit 17 or the like, and a predetermined amount of medium is stored in the storage unit 17 or the like. Also good. Further, during operation of the first mold cooling apparatus 1, the medium increase / decrease is detected by a level meter, a float switch, etc. so that the medium in the storage unit 17 is maintained at a predetermined level, and the medium is appropriately replenished. Or you may make it discharge | emit. In this case, it is good also as an aspect which connects a supply pipe | tube thru | or a discharge pipe so that the pressure_reduction | reduced_pressure degree in a system (the said each part and each line) may be maintained.
In addition, a relief valve for maintaining the pressure in the system, a safety valve for preventing an abnormal drop in the pressure in the system, and the like may be provided at appropriate positions as necessary.
Moreover, you may make it accommodate each part mentioned above of the said 1st mold cooling device 1 in a housing | casing (casing).
 また、当該第1金型冷却装置1に採用される媒体としては、後記するように減圧下において媒体を各冷却ブロック35,36,37に供給し、各冷却ブロック35,36,37内において蒸発、気化させる際に、効率的な冷却を行う観点等から、水、アルコール系等の常圧下(大気圧下)における沸点が100℃以下の媒体とすることが好ましい。つまりは、常圧下における沸点が高い媒体を採用した場合において冷却効率を高める場合には、減圧度をより高める(より高真空(より絶対真空側)にする)必要がある傾向があるため、常圧下(大気圧下)における沸点が100℃以下の媒体とすることが好ましい。
 また、本実施形態では、媒体に界面活性剤を添加している。この界面活性剤の添加量は、媒体の種類や界面活性剤の種類、金型3の設定温度等に応じて実験的乃至は経験的に設定するようにすればよく、数%程度としてもよい。また、このような界面活性剤としては、市販の台所用洗剤等の液体中性洗剤に含まれる界面活性剤としてもよく、このような液体中性洗剤を媒体に添加するようにしてもよい。
In addition, as a medium employed in the first mold cooling apparatus 1, the medium is supplied to the cooling blocks 35, 36, and 37 under reduced pressure as will be described later, and evaporated in the cooling blocks 35, 36, and 37. From the viewpoint of efficient cooling during vaporization, it is preferable to use a medium having a boiling point of 100 ° C. or less under normal pressure (under atmospheric pressure) such as water or alcohol. In other words, when a medium having a high boiling point under normal pressure is employed, when the cooling efficiency is increased, the degree of pressure reduction tends to be higher (higher vacuum (more absolute vacuum side)). It is preferable to use a medium having a boiling point of 100 ° C. or lower under pressure (under atmospheric pressure).
In this embodiment, a surfactant is added to the medium. The addition amount of the surfactant may be set experimentally or empirically according to the type of medium, the type of surfactant, the set temperature of the mold 3, and the like, and may be about several percent. . Further, as such a surfactant, a surfactant contained in a liquid neutral detergent such as a commercially available kitchen detergent may be used, and such a liquid neutral detergent may be added to the medium.
 制御盤4は、計時手段や演算処理部等を有し、当該第1金型冷却装置1の上記した各弁や各機器、各部を所定のプログラムに従って制御するCPU40と、このCPU40に信号線等を介してそれぞれ接続された表示操作部としての操作パネル41及び記憶部42とを備えている。このCPU40には、図2に示すように、信号線等を介して、上記した各弁や各機器、各種センサー等、さらには射出成形機5及び金型温度センサー38が接続されている。
 操作パネル41は、各種設定操作や、事前設定入力項目(金型設定温度や媒体設定温度、設定圧力、各種設定時間など)などを設定、入力したり、各種設定条件や、各種運転モードなどを表示したりする。
 記憶部42は、各種メモリ等から構成されており、操作パネル41の入力操作等により設定、入力された設定条件や入力値、後記する基本動作などの種々の動作を実行するための制御プログラムなどの各種プログラム、予め設定された各種動作条件や各種データテーブル等が格納される。
The control panel 4 has time measuring means, an arithmetic processing unit, and the like. The CPU 40 controls each valve, each device, and each unit of the first mold cooling device 1 according to a predetermined program, and signal lines and the like to the CPU 40. Are provided with an operation panel 41 and a storage unit 42 as display operation units connected to each other. As shown in FIG. 2, the CPU 40 is connected to the above-described valves, devices, various sensors, and the like, as well as the injection molding machine 5 and the mold temperature sensor 38, via signal lines and the like.
The operation panel 41 sets and inputs various setting operations, pre-set input items (such as mold set temperature, medium set temperature, set pressure, and various set times), and sets various setting conditions and various operation modes. Or display.
The storage unit 42 is composed of various memories and the like, and a control program for executing various operations such as setting conditions and input values set and input by an input operation of the operation panel 41 and basic operations described later. Various programs, various preset operating conditions, various data tables, and the like are stored.
 なお、この制御盤4は、当該第1金型冷却装置1の筐体に組み込むようにしてもよく、筐体の上部や側部等に設置するようにしてもよい。また、この制御盤4に信号線等を介して第2金型冷却装置2を接続し、当該第1金型冷却装置1と第2金型冷却装置2とを同期的に連動させて制御する態様としてもよい。この場合、第2金型冷却装置2の制御盤を当該制御盤4によって兼用する態様としてもよい。つまりは、第2金型冷却装置2の各部を当該制御盤4によって制御等する態様としてもよい。 The control panel 4 may be incorporated in the casing of the first mold cooling device 1 or may be installed on the top or side of the casing. Further, the second mold cooling device 2 is connected to the control panel 4 through a signal line or the like, and the first mold cooling device 1 and the second mold cooling device 2 are controlled in synchronization with each other. It is good also as an aspect. In this case, the control panel of the second mold cooling device 2 may be shared by the control panel 4. In other words, each part of the second mold cooling device 2 may be controlled by the control panel 4.
 上記構成とされた本実施形態に係る第1金型冷却装置1においては、CPU40によって減圧手段19の作動制御がなされ、上記した各部及び各ラインが減圧される。例えば、圧力センサー19cの検出圧力に応じて真空ポンプ19aを作動させ、真空ポンプ開閉弁V4を開放させることで、上記した各部及び各ラインが所定の減圧度となるように減圧される。
 また、これら各部及び各ラインが減圧下において、CPU40によって媒体供給部11の作動制御がなされ、各冷却ブロック35,36,37の中空部35a,36a,37aに媒体が供給される。例えば、所定の金型冷却開始信号に基づいて媒体供給ポンプ12を作動させ、各冷却ブロック開閉弁V1,V2,V3を所定態様で開放させて、各冷却ブロック35,36,37の中空部35a,36a,37aに所定量の媒体が供給される。各冷却ブロック35,36,37の中空部35a,36a,37aに供給された媒体は、金型3のキャビティー34に充填された樹脂等の溶融材料によって高熱となる金型局部からの伝熱によって加熱される冷却ブロック35,36,37の中空部35a,36a,37aの内壁面の熱を吸熱し、蒸発して気化する。この際の気化熱によって冷却ブロック35,36,37が冷却され、金型3の局部の冷却がなされる。また、金型3(より特定的には冷却ブロック35,36,37の中空部35a,36a,37aの内壁面)からの吸熱により気化した媒体は、排出ライン13を経て排出され、凝縮部16に至り、必要により冷却されて凝縮して液化し、貯留部17に貯留される。
In the first mold cooling apparatus 1 according to the present embodiment having the above-described configuration, the CPU 40 controls the operation of the decompression means 19 and decompresses each of the above portions and lines. For example, by operating the vacuum pump 19a in accordance with the pressure detected by the pressure sensor 19c and opening the vacuum pump on-off valve V4, the pressure is reduced so that each of the above portions and each line has a predetermined pressure reduction degree.
The operation of the medium supply unit 11 is controlled by the CPU 40 under the reduced pressure of these units and lines, and the medium is supplied to the hollow portions 35a, 36a, 37a of the cooling blocks 35, 36, 37. For example, the medium supply pump 12 is operated based on a predetermined mold cooling start signal, and the cooling block opening / closing valves V1, V2, and V3 are opened in a predetermined manner, and the hollow portions 35a of the cooling blocks 35, 36, and 37 are opened. , 36a, 37a are supplied with a predetermined amount of medium. The medium supplied to the hollow portions 35 a, 36 a, 37 a of the cooling blocks 35, 36, 37 is transferred from the mold local area where the heat is increased by a molten material such as resin filled in the cavity 34 of the mold 3. The heat of the inner wall surfaces of the hollow portions 35a, 36a, 37a of the cooling blocks 35, 36, 37 heated by is absorbed, evaporated and vaporized. The cooling blocks 35, 36, and 37 are cooled by the heat of vaporization at this time, and the local portion of the mold 3 is cooled. Further, the medium vaporized by heat absorption from the mold 3 (more specifically, the inner wall surfaces of the hollow portions 35a, 36a, and 37a of the cooling blocks 35, 36, and 37) is discharged through the discharge line 13, and is condensed. To be cooled, condensed and liquefied if necessary, and stored in the storage unit 17.
 次に、本実施形態に係る金型冷却システムAにおいて実行される基本動作の一例を図3に基づいて説明する。
 なお、図3では、各機器のON/OFF動作や各開閉弁の開閉動作を模式的に図示している。また、図3(b)に示すグラフでは、横軸を時間軸、縦軸を凝縮部16に設けた媒体温度センサー18の検出温度とし、その推移を模式的に示している。また、図3(c)に示すグラフでは、横軸を時間軸、縦軸を真空ライン19bに設けた圧力センサー19cの検出圧力とし、その推移を模式的に示している。
Next, an example of a basic operation executed in the mold cooling system A according to the present embodiment will be described based on FIG.
In addition, in FIG. 3, ON / OFF operation | movement of each apparatus and the opening / closing operation | movement of each on-off valve are typically shown. In the graph shown in FIG. 3B, the horizontal axis is the time axis, and the vertical axis is the detected temperature of the medium temperature sensor 18 provided in the condensing unit 16, and the transition is schematically shown. In the graph shown in FIG. 3 (c), the horizontal axis is the time axis, and the vertical axis is the detected pressure of the pressure sensor 19c provided in the vacuum line 19b, and the transition is schematically shown.
 まず、射出成形機5においては、図示は省略しているが、金型3を型閉し、金型3に設けられたキャビティー34に樹脂等の溶融材料を射出し、充填して適宜、保圧し、溶融材料が固化すれば、型開し、成形品の取り出しがなされる。このような一連の射出成形工程において、溶融材料をキャビティー34に充填した後、迅速に溶融材料を固化させるために、金型冷却工程が実行され、この金型冷却工程を実行するために本実施形態に係る金型冷却システムAが用いられる。図示は省略しているが、第2金型冷却装置2においては、射出成形機5の成形動作に連動させて、金型3に設けられた媒体流通路30a,31aに低温媒体の循環供給がなされ、金型冷却工程が実行される。この低温媒体の循環供給は、射出成形機5の型閉信号や射出信号、保圧信号に基づいて開始させるようにしてもよく、これらの信号から所定の遅延時間が経過した後に開始させるようにしてもよい。また、この低温媒体の循環供給は、所定時間が経過するまで継続させるようにしてもよく、また、射出成形機5からの保圧信号や型開信号等に基づいて停止させるようにしてもよい。または、第2金型冷却装置2においては、射出成形機5の成形動作に連動させて、金型3への循環供給とバイパス路を経た循環とを繰り返し実行する態様に代えて、金型3へ常時、低温媒体を循環供給させる態様としてもよい。 First, in the injection molding machine 5, although not shown, the mold 3 is closed, a molten material such as a resin is injected into the cavity 34 provided in the mold 3, and filled appropriately. When the pressure is maintained and the molten material is solidified, the mold is opened and the molded product is taken out. In such a series of injection molding processes, after the molten material is filled into the cavity 34, a mold cooling process is performed in order to quickly solidify the molten material, and the mold cooling process is performed in order to perform the mold cooling process. The mold cooling system A according to the embodiment is used. Although not shown, in the second mold cooling device 2, the low-temperature medium is circulated and supplied to the medium flow passages 30 a and 31 a provided in the mold 3 in conjunction with the molding operation of the injection molding machine 5. A mold cooling step is performed. The circulation of the low temperature medium may be started based on a mold closing signal, an injection signal, or a pressure holding signal of the injection molding machine 5, and may be started after a predetermined delay time has elapsed from these signals. May be. Further, the circulating supply of the low temperature medium may be continued until a predetermined time elapses, or may be stopped based on a holding pressure signal, a mold opening signal, or the like from the injection molding machine 5. . Alternatively, in the second mold cooling device 2, the mold 3 is replaced with a mode in which the circulation supply to the mold 3 and the circulation through the bypass path are repeatedly executed in conjunction with the molding operation of the injection molding machine 5. Alternatively, the low-temperature medium may be circulated and supplied constantly.
 第1金型冷却装置1においては、図3(a)に示すように、射出成形機5の成形動作に連動させて、媒体の供給がなされ、金型冷却工程が実行される。本動作例では、射出成形機5の射出信号に基づいて媒体供給部11を作動制御し、各冷却ブロック35,36,37の中空部35a,36a,37aに媒体を供給する態様としている。また、本動作例では、射出成形機5の射出信号を受信した後、所定の遅延時間t1が経過した後に媒体供給部11の媒体供給ポンプ12を作動させるようにしている。この遅延時間t1は、キャビティー34の容積や各冷却ブロック35,36,37の中空部35a,36a,37aに媒体が到達するまでの時間等を考慮して、樹脂等の溶融材料がキャビティー34に充填される際(射出初期)に溶融材料のキャビティー34内における流動性を阻害しないよう、実験的乃至は経験的に定めるようにしてもよい。 In the first mold cooling device 1, as shown in FIG. 3A, the medium is supplied in conjunction with the molding operation of the injection molding machine 5, and the mold cooling process is executed. In this operation example, the medium supply unit 11 is operated and controlled based on the injection signal of the injection molding machine 5, and the medium is supplied to the hollow portions 35a, 36a, 37a of the cooling blocks 35, 36, 37. In this operation example, the medium supply pump 12 of the medium supply unit 11 is operated after a predetermined delay time t1 has elapsed after receiving the injection signal of the injection molding machine 5. This delay time t1 takes into account the volume of the cavity 34 and the time until the medium reaches the hollow portions 35a, 36a, 37a of the cooling blocks 35, 36, 37, etc. It may be determined experimentally or empirically so as not to impede the fluidity of the molten material in the cavity 34 when it is filled (in the initial stage of injection).
 また、媒体供給ポンプ12を作動させると同時にまたは作動させた後に所定の遅延時間が経過すれば、各冷却ブロック開閉弁V1,V2,V3を開とする。本動作例では、これら冷却ブロック開閉弁V1,V2,V3を所定の供給時間t2が経過するまで開放させるようにしている。この供給時間t2が経過すれば、媒体供給ポンプ12を停止させ、また、各冷却ブロック開閉弁V1,V2,V3を閉とする。本動作例では、この供給時間t2を設定変更することで、冷却ブロック35,36,37の中空部35a,36a,37aへの媒体の供給量の調整を可能としている。この供給時間t2の設定変更は、例えば、操作パネル41を用いてなされるものとしてもよい。また、この供給量は、金型3の局部(つまりは、冷却ブロック35,36,37の中空部35a,36a,37aの内壁面)からの吸熱により略全量が気化し、排出ライン13を経て排出される量とすることが好ましい。この供給量(最適供給量)は、各冷却ブロック35,36,37の中空部35a,36a,37aの容積や後記する減圧度、樹脂等の溶融材料充填前後の金型温度(冷却ブロック35,36,37への伝熱温度)等に基づいて伝熱面(冷却ブロック35,36,37の中空部35a,36a,37aの内壁面)から放出される熱量を算出し、これと媒体の気化熱量や冷却後の金型3の局部の目標温度等を考慮して実験的乃至は経験的に定めるようにしてもよい。また、上記伝熱面から放出される熱量は、冷却ブロック内の温度を検出する温度センサーを設け、この温度センサーの検出温度に基づいて算出するようにしてもよい。 Further, when a predetermined delay time elapses at the same time as or after the medium supply pump 12 is operated, the cooling block opening / closing valves V1, V2, and V3 are opened. In this operation example, the cooling block opening / closing valves V1, V2, and V3 are opened until a predetermined supply time t2 elapses. When the supply time t2 elapses, the medium supply pump 12 is stopped, and the cooling block on-off valves V1, V2, and V3 are closed. In this operation example, the supply amount of the medium to the hollow portions 35a, 36a, 37a of the cooling blocks 35, 36, 37 can be adjusted by changing the setting of the supply time t2. The setting change of the supply time t2 may be made using the operation panel 41, for example. Further, this supply amount is almost entirely vaporized by heat absorption from the local portion of the mold 3 (that is, the inner wall surfaces of the hollow portions 35a, 36a, 37a of the cooling blocks 35, 36, 37), and passes through the discharge line 13. It is preferable to set the amount to be discharged. This supply amount (optimum supply amount) is determined by the volume of the hollow portions 35a, 36a, 37a of the cooling blocks 35, 36, 37, the degree of decompression described later, the mold temperature before and after filling with a molten material such as resin (cooling blocks 35, The amount of heat released from the heat transfer surface (inner wall surfaces of the hollow portions 35a, 36a, 37a of the cooling blocks 35, 36, 37) is calculated based on the heat transfer temperature), and the vaporization of the medium It may be determined experimentally or empirically in consideration of the amount of heat, the target temperature in the local area of the mold 3 after cooling, or the like. The amount of heat released from the heat transfer surface may be calculated based on the temperature detected by a temperature sensor that detects the temperature in the cooling block.
 また、この供給量は、少なすぎれば金型3の局部からの吸熱により比較的に迅速に気化して十分な冷却効果が発揮され難い傾向がある。つまりは、金型3の局部から奪う熱量に不足が生じる傾向がある。また、多すぎれば、当該媒体の供給による金型冷却工程終了時に冷却ブロック35,36,37の中空部35a,36a,37a内に残る媒体量が多くなる傾向があり、これにより、次の射出工程時に残媒体が気化し、その吸熱作用により溶融材料の流動性を阻害する傾向がある。従って、上記のように媒体の供給量を適宜、実験的乃至は経験的に定めるようにしてもよい。なお、比較的に少量の残媒体であれば、型開や取り出し工程時に気化するため、このような傾向は少なくなる。
 また、供給ライン10に適宜、エアパージラインを接続し、当該金型冷却工程終了後に冷却ブロック35,36,37の中空部35a,36a,37a内の残媒体をエアパージするようにしてもよい。この場合は、上記した各部及び各ラインが所定の減圧度に維持されるように適宜、減圧手段19を作動させるようにすればよい。
Moreover, if this supply amount is too small, it tends to vaporize relatively quickly due to heat absorption from the local part of the mold 3 and a sufficient cooling effect tends not to be exhibited. That is, there is a tendency that the amount of heat taken from the local part of the mold 3 is deficient. If the amount is too large, the amount of medium remaining in the hollow portions 35a, 36a, 37a of the cooling blocks 35, 36, 37 at the end of the mold cooling process by supplying the medium tends to increase. The residual medium is vaporized during the process, and the endothermic action tends to inhibit the fluidity of the molten material. Therefore, the supply amount of the medium may be appropriately determined experimentally or empirically as described above. In addition, since a relatively small amount of remaining medium is vaporized at the time of mold opening or taking out process, such a tendency is reduced.
Further, an air purge line may be appropriately connected to the supply line 10 so that the remaining medium in the hollow portions 35a, 36a, and 37a of the cooling blocks 35, 36, and 37 is purged with air after the mold cooling process is completed. In this case, the decompression means 19 may be operated as appropriate so that the above-described parts and lines are maintained at a predetermined degree of decompression.
 また、媒体の供給は、上記のように供給時間t2が経過するまで各冷却ブロック開閉弁V1,V2,V3を開放させる態様に限られず、所定の供給量となるように、各冷却ブロック開閉弁V1,V2,V3を間欠的に開放させる態様としてもよい。
 また、媒体の供給量の調整は、供給時間t2を設定変更することで調整する態様に限られず、例えば、各冷却ブロック開閉弁V1,V2,V3として開度調整可能な開閉弁を採用し、その開度を調整することで媒体の供給量の調整を行うものとしてもよい。
Further, the supply of the medium is not limited to a mode in which the respective cooling block opening / closing valves V1, V2, V3 are opened until the supply time t2 elapses as described above, and each cooling block opening / closing valve is set so as to have a predetermined supply amount. It is good also as an aspect which opens V1, V2, and V3 intermittently.
Further, the adjustment of the supply amount of the medium is not limited to the mode of adjusting by changing the setting of the supply time t2, and for example, as the cooling block opening / closing valves V1, V2, V3, opening / closing valves whose opening degree can be adjusted are adopted, The supply amount of the medium may be adjusted by adjusting the opening degree.
 このように本動作例においては、媒体の供給量の調整を可能としている。従って、冷却ブロック35,36,37による金型3の局部の冷却能力(冷却熱量)の調整を容易に行うことができる。つまり、各冷却ブロック35,36,37の中空部35a,36a,37aに供給された媒体が気化することによって金型3の局部から伝熱によって加熱された冷却ブロック35,36,37の熱量を奪うため、媒体の供給量を調整することで、冷却ブロック35,36,37(つまりは金型3の局部)から奪う熱量の調整ができ、冷却ブロック35,36,37による金型3の局部の冷却能力の調整を容易に行うことができる。
 また、本実施形態では、複数の冷却ブロック35,36,37のそれぞれに接続される複数の供給ライン10A,10B,10Cのそれぞれに冷却ブロック開閉弁V1,V2,V3を設けているので、これら各冷却ブロック開閉弁V1,V2,V3を個別に制御することで、冷却ブロック毎に冷却タイミングや媒体の供給量を変更することもできる。これによれば、各冷却ブロックに応じた最適な冷却制御を実行することができ、キャビティー34の形状に応じた最適な冷却制御を行うことも可能となる。例えば、射出成形機5のノズルから射出されて金型3のゲート部(不図示)を通過し、キャビティー34の各部に充填される溶融材料の流動性を阻害しないように、溶融材料の流れ方向に沿ってゲート部側に近い側の部位を冷却する冷却ブロック(例えば、第3冷却ブロック37)の冷却開始タイミングを遠い側の部位を冷却する冷却ブロック(例えば、第1,2冷却ブロック35,36)よりも遅らせるような制御も可能となる。これによれば、フローマークやウェルドライン等の不良が生じ難くなり、成形品へのキャビティー面の転写性(転写率)を向上させることができる。
As described above, in this operation example, the supply amount of the medium can be adjusted. Therefore, it is possible to easily adjust the local cooling capacity (cooling heat amount) of the mold 3 by the cooling blocks 35, 36, and 37. That is, the amount of heat of the cooling blocks 35, 36, and 37 heated by heat transfer from the local portion of the mold 3 by vaporizing the medium supplied to the hollow portions 35 a, 36 a, and 37 a of the respective cooling blocks 35, 36, and 37. Therefore, the amount of heat taken from the cooling blocks 35, 36, and 37 (that is, the local part of the mold 3) can be adjusted by adjusting the supply amount of the medium, and the local part of the mold 3 by the cooling blocks 35, 36, and 37 can be adjusted. The cooling capacity can be easily adjusted.
In the present embodiment, the cooling block on-off valves V1, V2, V3 are provided in the supply lines 10A, 10B, 10C connected to the cooling blocks 35, 36, 37, respectively. By individually controlling the cooling block on / off valves V1, V2, and V3, the cooling timing and the supply amount of the medium can be changed for each cooling block. According to this, optimal cooling control corresponding to each cooling block can be executed, and optimal cooling control corresponding to the shape of the cavity 34 can also be performed. For example, the flow of the molten material is injected so as not to hinder the fluidity of the molten material injected from the nozzle of the injection molding machine 5 and passing through the gate portion (not shown) of the mold 3 and filling each portion of the cavity 34. A cooling block (for example, the first and second cooling blocks 35) that cools a portion far from the cooling start timing of the cooling block (for example, the third cooling block 37) that cools the portion near the gate portion along the direction. , 36). According to this, defects such as flow marks and weld lines are less likely to occur, and the transferability (transfer rate) of the cavity surface to the molded product can be improved.
 上記のように冷却ブロック35,36,37の中空部35a,36a,37aに供給された媒体は、金型3からの吸熱によって気化し、各排出ライン13A,13B,13Cを経て、凝縮部16(熱交換部15)に至る。
 熱交換部15においては、図3(b)に示すように、媒体温度センサー18の検出温度に基づいて冷却ファン15bの作動制御がCPU40によってなされる。つまり、気化した媒体がマニホールド部16aに至れば、媒体温度が上昇する。そして、検出温度が予め設定された設定温度(閾値)を上回れば、冷却ファン15bを作動させる。この冷却ファン15bの作動は、上記検出温度が上記閾値を下回るまで継続させるようにしてもよく、または、予め駆動時間を設定しておき、その駆動時間が経過した後に停止させるようにしてもよい。
 このように本動作例においては、媒体温度センサー18の検出温度に基づいて凝縮部16を冷却する冷却手段としての冷却ファン15bの作動制御を実行するようにしているので、省エネルギー化を図ることができる。
 なお、熱交換部15の冷却手段として、水冷式の冷却手段を採用した場合には、冷却管に配設された電磁弁等の冷却弁を、上記のように作動制御するようにしてもよい。
The medium supplied to the hollow portions 35a, 36a, and 37a of the cooling blocks 35, 36, and 37 as described above is vaporized by heat absorption from the mold 3, and passes through the discharge lines 13A, 13B, and 13C, and then the condensing unit 16 (Heat exchange part 15).
In the heat exchange unit 15, as shown in FIG. 3B, the CPU 40 controls the operation of the cooling fan 15 b based on the temperature detected by the medium temperature sensor 18. That is, when the vaporized medium reaches the manifold portion 16a, the medium temperature rises. If the detected temperature exceeds a preset set temperature (threshold), the cooling fan 15b is activated. The operation of the cooling fan 15b may be continued until the detected temperature falls below the threshold value, or a driving time may be set in advance and stopped after the driving time has elapsed. .
As described above, in this operation example, since the operation control of the cooling fan 15b as the cooling means for cooling the condensing unit 16 is executed based on the temperature detected by the medium temperature sensor 18, energy saving can be achieved. it can.
In addition, when a water-cooling type cooling unit is employed as the cooling unit of the heat exchange unit 15, the operation of the cooling valve such as an electromagnetic valve disposed in the cooling pipe may be controlled as described above. .
 また、当該第1金型冷却装置1の稼働中は、図3(c)に示すように、圧力センサー19cによって上記した各部及び各ラインの減圧度を監視しており、この圧力センサー19cの検出圧力が予め設定された所定の下限圧力(低真空側(大気圧側))を上回れば(低真空側(大気圧側)に変動すれば)、減圧手段19を作動制御し、減圧する。つまり、真空ポンプ19aを作動させると同時にまたは作動させた後に所定の遅延時間が経過すれば、真空ポンプ開閉弁V4を開とする。この真空ポンプ19aの作動及び真空ポンプ開閉弁V4の開放は、圧力センサー19cの検出圧力が予め設定された設定圧力(閾値)を下回るまで継続させるようにしてもよい。本動作例では、この設定圧力の設定変更を行うことで、上記した各部及び各ラインの減圧度の調整を可能としている。この設定圧力の設定変更は、例えば、操作パネル41を用いてなされるものとしてもよい。 Further, during the operation of the first mold cooling device 1, as shown in FIG. 3C, the pressure sensor 19c monitors the degree of decompression of each part and each line, and the pressure sensor 19c detects the pressure. If the pressure exceeds a preset lower limit pressure (low vacuum side (atmospheric pressure side)) (if the pressure fluctuates to the low vacuum side (atmospheric pressure side)), the pressure reducing means 19 is controlled to reduce pressure. That is, when a predetermined delay time elapses simultaneously with or after the vacuum pump 19a is operated, the vacuum pump on-off valve V4 is opened. The operation of the vacuum pump 19a and the opening of the vacuum pump opening / closing valve V4 may be continued until the pressure detected by the pressure sensor 19c falls below a preset pressure (threshold). In this operation example, by changing the setting of the set pressure, it is possible to adjust the decompression degree of each part and each line described above. The setting change of the set pressure may be made using the operation panel 41, for example.
 このように減圧度の調整を可能とすることで、冷却ブロック35,36,37(つまりは金型3の局部)の冷却温度を調整することができる。つまり、冷却後の金型3の局部の目標温度等に応じて、減圧度を調整することで、冷却ブロック35,36,37の中空部35a,36a,37aにおける媒体の気化温度(蒸発開始温度)の調整を行うことができる。つまりは、減圧度を高く(高真空に)すれば、冷却ブロック35,36,37をより低温域で冷却することができ、減圧度を低く(低真空に)すれば、冷却ブロック35,36,37をより高温域で冷却することができる。この減圧度の設定範囲は、媒体を水(清水)とした場合を例にすれば、該媒体が30℃~80℃程度の範囲で沸騰するような範囲としてもよい。この減圧度を高真空にしすぎれば、冷却ブロックをより冷却することができるが、真空ポンプの大型化や凝縮部の冷却能力(放熱能力)を高める必要が生じる傾向がある。一方、減圧度を低真空にしすぎれば、冷却ブロックによる金型局部の冷却効率が低下する傾向がある。 Thus, by allowing the pressure reduction degree to be adjusted, the cooling temperature of the cooling blocks 35, 36, and 37 (that is, the local part of the mold 3) can be adjusted. That is, the vaporization temperature (evaporation start temperature) of the medium in the hollow portions 35 a, 36 a, 37 a of the cooling blocks 35, 36, 37 is adjusted by adjusting the degree of decompression in accordance with the local target temperature of the mold 3 after cooling. ) Can be adjusted. That is, if the degree of decompression is high (high vacuum), the cooling blocks 35, 36, and 37 can be cooled in a lower temperature range, and if the degree of decompression is low (low vacuum), the cooling blocks 35 and 36 are cooled. 37 can be cooled in a higher temperature range. For example, when the medium is water (fresh water), the pressure reduction degree setting range may be a range in which the medium boils in a range of about 30 ° C. to 80 ° C. If the degree of decompression is too high, the cooling block can be further cooled, but there is a tendency that it is necessary to increase the size of the vacuum pump and to increase the cooling capacity (heat radiation capacity) of the condensing part. On the other hand, if the degree of decompression is too low, the cooling efficiency of the mold part by the cooling block tends to be reduced.
 以上のように、本実施形態に係る第1金型冷却装置1によれば、金型3の局部を効果的に冷却することができる。つまり、本実施形態では、媒体を作動流体として、蒸発部(吸熱部)として機能する冷却ブロック35,36,37の中空部35a,36a,37aと凝縮部16との間をヒートパイプのように熱輸送がなされるので、極めて効率的な冷却が可能となる。
 また、上記した各部16,17,35a,36a,37a及び各ライン10,13が減圧された状態であるので、比較的に低温で媒体を蒸発、気化させることができるため、冷却効率を向上させることができる。
 さらに、例えば、冷却水等を金型の媒体流通路に通過させて冷却するような場合と比べて、媒体の必要量が少なく、また、ヒートパイプのような熱輸送形式であるので、熱伝達率が極めて良く、冷却ブロック35,36,37(つまりは金型3の局部)を迅速に冷却することができる。この結果、成形サイクルを短縮化することができる。
As mentioned above, according to the 1st metal mold cooling device 1 concerning this embodiment, the local part of metallic mold 3 can be cooled effectively. That is, in this embodiment, the medium is used as a working fluid, and the space between the hollow portions 35a, 36a, 37a of the cooling blocks 35, 36, 37 functioning as an evaporation portion (heat absorption portion) and the condensation portion 16 is like a heat pipe. Since heat is transported, extremely efficient cooling is possible.
In addition, since each of the parts 16, 17, 35a, 36a, 37a and the lines 10, 13 is decompressed, the medium can be evaporated and vaporized at a relatively low temperature, thereby improving the cooling efficiency. be able to.
Furthermore, for example, compared with the case of cooling by passing cooling water or the like through the medium flow path of the mold, the required amount of medium is small, and the heat transfer type is like a heat pipe, so heat transfer The rate is very good, and the cooling blocks 35, 36, and 37 (that is, the local part of the mold 3) can be quickly cooled. As a result, the molding cycle can be shortened.
 さらにまた、冷却ブロック35,36,37をキャビティー34の局部(凹部や凸部等の冷え難い部位)の形状に応じて形成し、金型3に埋め込ませるようにして配設し、その冷却ブロック35,36,37に対して各ライン10,13を接続することで当該第1金型冷却装置1を用いることができるので、金型3内に熱交換手段等を設置したり、金型3自体の内部形状を複雑化させたりすることなく、種々の金型に簡便に適用することができる。つまりは、種々の金型に応じて冷却ブロックを配設し、これに当該第1金型冷却装置1を接続して使用することができるので、汎用性の高いものとなる。
 また、媒体供給部11を作動制御し、所定の金型冷却開始信号に基づいて冷却ブロック35,36,37の中空部35a,36a,37aに媒体を供給するCPU40を備えているので、金型3の局部の冷却タイミングの制御を容易に行うことができる。この結果、上述のように、溶融材料の流動性等を阻害しないような冷却タイミングの制御を行うこともでき、不良品等の発生を防止することもできる。
Furthermore, the cooling blocks 35, 36, and 37 are formed according to the shape of the local portion of the cavity 34 (parts that are difficult to cool, such as concave portions and convex portions), and are disposed so as to be embedded in the mold 3. Since the first mold cooling device 1 can be used by connecting the lines 10 and 13 to the blocks 35, 36 and 37, heat exchange means or the like is installed in the mold 3, It can be easily applied to various molds without complicating the internal shape of 3 itself. That is, since the cooling block can be arranged according to various molds, and the first mold cooling apparatus 1 can be connected to this and used, it becomes highly versatile.
In addition, since the CPU 40 controls the operation of the medium supply unit 11 and supplies the medium to the hollow portions 35a, 36a, 37a of the cooling blocks 35, 36, 37 based on a predetermined mold cooling start signal, the mold is provided. 3 local cooling timing can be easily controlled. As a result, as described above, it is possible to control the cooling timing so as not to hinder the fluidity of the molten material, and it is possible to prevent the occurrence of defective products.
 また、本実施形態では、第1金型冷却装置1の媒体に、界面活性剤を添加している。従って、界面活性作用により、媒体のぬれ性や起泡性等を向上させることができるので、冷却ブロック35,36,37の中空部35a,36a,37a内面に該媒体がより付着し易くなることから、吸熱効率を向上させることができる。この結果、金型3の局部を冷却ブロック35,36,37によってより効果的に冷却することができる。なお、冷却ブロック35,36,37の中空部35a,36a,37a内面に、ぬれ性等を向上させる観点から粗面処理等の表面処理を施すようにしてもよい。 In this embodiment, a surfactant is added to the medium of the first mold cooling device 1. Therefore, since the wettability and foaming property of the medium can be improved by the surface active action, the medium is more likely to adhere to the inner surfaces of the hollow portions 35a, 36a, 37a of the cooling blocks 35, 36, 37. Therefore, the endothermic efficiency can be improved. As a result, the local part of the mold 3 can be more effectively cooled by the cooling blocks 35, 36, and 37. In addition, you may make it perform surface treatment, such as a rough surface process, from a viewpoint of improving wettability etc. to the hollow part 35a, 36a, 37a inner surface of the cooling blocks 35, 36, 37.
 また、本実施形態に係る金型冷却システムAは、第1金型冷却装置1と、この第1金型冷却装置1の排出ライン13及び供給ライン10に接続されるとともに、金型3の局部に埋め込まれるようにして配設される冷却ブロック35,36,37とを備えている。従って、金型3の局部を効果的に冷却することができる。
 また、本実施形態に係る金型冷却システムAは、金型3に設けられた媒体流通路30a,31aに低温媒体を供給する第2金型冷却装置2を備えている。従って、第2金型冷却装置2によって金型3の媒体流通路30a,31aに低温媒体を供給することで、金型3の大部分を冷却できるとともに、金型3の局部を冷却ブロック35,36,37によって効果的に冷却することができ、金型3のキャビティー34周辺部位をより効率的に冷却することができる。
In addition, the mold cooling system A according to the present embodiment is connected to the first mold cooling apparatus 1 and the discharge line 13 and the supply line 10 of the first mold cooling apparatus 1, and is locally connected to the mold 3. And cooling blocks 35, 36, and 37 disposed so as to be embedded therein. Therefore, the local part of the mold 3 can be effectively cooled.
In addition, the mold cooling system A according to the present embodiment includes a second mold cooling device 2 that supplies a low-temperature medium to the medium flow paths 30 a and 31 a provided in the mold 3. Accordingly, by supplying the low temperature medium to the medium flow passages 30a, 31a of the mold 3 by the second mold cooling device 2, most of the mold 3 can be cooled, and the local part of the mold 3 can be cooled by the cooling block 35, 36 and 37 can be effectively cooled, and the portion around the cavity 34 of the mold 3 can be more efficiently cooled.
 なお、本実施形態では、第2金型冷却装置2を、金型3の冷却に用いた例を示しているが、金型3を所定温度に維持する金型温度調節装置として用いるようにしてもよい。または、射出成形機5の射出成形動作に連動させて、金型3の加熱と金型3の冷却とを実行する金型加熱冷却装置として用いるようにしてもよい。または、第2金型冷却装置2に加えて、金型加熱装置を本実施形態に係る金型冷却システムAに更に組み込み、射出成形機5の射出成形動作に連動させて、金型加熱装置からの高温媒体と第2金型冷却装置2からの低温媒体とを交互に金型3の媒体流通路30a,31aに循環供給する態様としてもよい。さらには、上記のような第2金型冷却装置2に代えて、本実施形態に係る金型冷却システムAに適宜、公知の金型冷却装置、金型加熱装置、金型温度調節装置乃至は金型加熱冷却装置を組み込むようにしてもよい。
 また、このような第2金型冷却装置2等を組み込まずに、第1金型冷却装置1によって金型3の局部のみを冷却するものとしてもよい。このような場合には、金型3のキャビティー34に射出された溶融材料の自己熱によって金型3の加熱がなされるものとしてもよい。
In the present embodiment, the second mold cooling device 2 is used for cooling the mold 3. However, the second mold cooling device 2 is used as a mold temperature adjusting device for maintaining the mold 3 at a predetermined temperature. Also good. Alternatively, it may be used as a mold heating / cooling device that performs heating of the mold 3 and cooling of the mold 3 in conjunction with the injection molding operation of the injection molding machine 5. Alternatively, in addition to the second mold cooling device 2, a mold heating device is further incorporated in the mold cooling system A according to the present embodiment, and in conjunction with the injection molding operation of the injection molding machine 5, Alternatively, the high temperature medium and the low temperature medium from the second mold cooling device 2 may be alternately circulated and supplied to the medium flow passages 30a and 31a of the mold 3. Furthermore, in place of the second mold cooling device 2 as described above, a known mold cooling device, a mold heating device, a mold temperature control device or the like is appropriately added to the mold cooling system A according to this embodiment. A mold heating / cooling device may be incorporated.
Moreover, it is good also as what cools only the local part of the metal mold | die 3 with the 1st metal mold cooling apparatus 1, without incorporating such 2nd metal mold cooling apparatus 2 grade | etc.,. In such a case, the mold 3 may be heated by self-heating of the molten material injected into the cavity 34 of the mold 3.
 また、本実施形態では、金型3の局部に埋め込ませるようにして3つの冷却ブロック35,36,37を配設した例を示しているが、金型のキャビティーの形状に応じて、単一または複数の冷却ブロックを配設する態様としてもよい。
 さらに、本実施形態では、金型3に冷却ブロック収容凹所を設け、金型のキャビティー34に近接させるようにして冷却ブロックを配設した例を示しているが、冷却ブロックの一部がキャビティー面を構成するように配設する態様としてもよい。この場合には、冷却ブロックのキャビティー面を適宜、成形する成形品の表面形状に応じて鏡面加工を施したり、粗面加工を施したりするようにしてもよい。
 さらにまた、本実施形態では、分岐させた複数の供給ライン10A,10B,10Cのそれぞれにブロック開閉弁V1,V2,V3を設けた例を示しているが、これら供給ライン10A,10B,10Cの分岐部の上流側(媒体供給ポンプ12側)に単一のブロック開閉弁を設ける態様としてもよい。
Further, in the present embodiment, an example is shown in which three cooling blocks 35, 36, and 37 are arranged so as to be embedded in a local portion of the mold 3, but depending on the shape of the cavity of the mold, One or a plurality of cooling blocks may be provided.
Further, in the present embodiment, an example is shown in which a cooling block housing recess is provided in the mold 3 and the cooling block is disposed so as to be close to the cavity 34 of the mold. It is good also as an aspect arrange | positioned so that a cavity surface may be comprised. In this case, the cavity surface of the cooling block may be appropriately mirror-finished or roughened according to the surface shape of the molded product to be molded.
Furthermore, in the present embodiment, an example is shown in which the block opening / closing valves V1, V2, and V3 are provided in each of the branched supply lines 10A, 10B, and 10C, but the supply lines 10A, 10B, and 10C It is good also as an aspect which provides a single block on-off valve in the upstream (media supply pump 12 side) of a branch part.
 また、本実施形態では、上記した各部及び各ラインを減圧する減圧手段を排出ラインに連通させて設けた例を示しているが、このような減圧手段を備えないものとしてもよい。この場合は、当該第1金型冷却装置1及びこれを備えた金型冷却システムAが設置される工場等に設けられた真空ポンプ等を適宜、接続し、上記各部及び各ラインを減圧するようにしてもよい。また、この場合、リーク等に起因して減圧度が下がることも考えられるため、適宜箇所に設けられた圧力ゲージ等を確認し、所定の減圧度が維持されていなければ真空ポンプを接続して減圧するようにしてもよい。 In this embodiment, an example is shown in which the above-described decompression means for decompressing each part and each line is provided in communication with the discharge line. However, such decompression means may not be provided. In this case, a vacuum pump or the like provided in a factory or the like where the first mold cooling device 1 and the mold cooling system A equipped with the first mold cooling apparatus 1 are appropriately connected, so that each part and each line is decompressed. It may be. In this case, the degree of decompression may be reduced due to leakage or the like. Therefore, check the pressure gauge provided at an appropriate place, and if the prescribed degree of decompression is not maintained, connect a vacuum pump. The pressure may be reduced.
 さらに、本実施形態では、凝縮部16のマニホールド部16aに媒体の温度を検出する媒体温度センサー18を設けた例について説明したが、図1の二点鎖線で示すように、凝縮部16の上端部に媒体温度センサー18を設けるようにしてもよく、または、貯留部17に媒体温度センサー18を設けるようにしてもよい。貯留部17に媒体温度センサー18を設けた場合にも、凝縮した媒体の流下によって媒体温度の上昇を検出することができ、これに基づいて冷却手段としての冷却ファン15bの作動制御を実行することは可能である。また、このように貯留部17の媒体温度を検出する媒体温度センサー18を設けた場合には、貯留部17の媒体を冷却する冷却手段(例えば、冷風や冷媒が通過する冷却管等)を貯留部17に設け、冷却ブロックに供給する媒体の温度が所定温度となるように媒体温度センサーの検出温度に基づいてこの冷却手段(冷却ファンや冷却管の冷却弁等)を作動制御するようにしてもよい。これによれば、より安定した温度の媒体を冷却ブロックに供給することができる。 Furthermore, in the present embodiment, the example in which the medium temperature sensor 18 that detects the temperature of the medium is provided in the manifold portion 16a of the condensing unit 16 has been described. However, as indicated by a two-dot chain line in FIG. The medium temperature sensor 18 may be provided in the part, or the medium temperature sensor 18 may be provided in the storage part 17. Even when the medium temperature sensor 18 is provided in the storage unit 17, it is possible to detect an increase in the medium temperature by the flow of the condensed medium, and based on this, the operation control of the cooling fan 15b as the cooling means is executed. Is possible. Further, when the medium temperature sensor 18 for detecting the medium temperature of the storage unit 17 is provided as described above, cooling means for cooling the medium of the storage unit 17 (for example, a cooling pipe through which cold air or a refrigerant passes) is stored. The cooling means (cooling fan, cooling valve for cooling pipe, etc.) is controlled to operate based on the temperature detected by the medium temperature sensor so that the temperature of the medium supplied to the cooling block becomes a predetermined temperature. Also good. According to this, a medium having a more stable temperature can be supplied to the cooling block.
 さらには、媒体の温度を検出する媒体温度センサー18を設ける態様に変えて、圧力センサー19cの検出圧力に基づいて、熱交換部15乃至は貯留部17の冷却手段の作動制御を実行する態様としてもよい。つまり、上記した各部及び各ラインは所定の減圧度に維持されているが、冷却ブロックに供給された媒体の気化量によっては僅かに検出圧力に変動が生じることもあるため、それを検出し、その変動量が所定以上であれば、上記冷却手段を作動させるような態様としてもよい。
 さらにまた、図例では、凝縮部16と貯留部17とを個別に設けた例を示しているが、凝縮部16の下端にトラップ部を一体的に設け、このトラップ部を貯留部として機能させるようにしてもよい。
 また、本発明に係る金型冷却装置及びこれを備えた金型冷却システムは、合成樹脂材料が射出、充填されて合成樹脂成形品を成形する金型3に適用される態様に限られず、その他の材料が射出、充填されて成形品を成形する金型にも適用が可能である。
Furthermore, instead of providing the medium temperature sensor 18 for detecting the temperature of the medium, the operation control of the cooling means of the heat exchange unit 15 or the storage unit 17 is executed based on the detected pressure of the pressure sensor 19c. Also good. That is, although each part and each line described above are maintained at a predetermined decompression degree, the detected pressure may slightly vary depending on the amount of vaporization of the medium supplied to the cooling block. If the fluctuation amount is not less than a predetermined amount, the cooling means may be operated.
Furthermore, in the illustrated example, an example in which the condensing unit 16 and the storage unit 17 are individually provided is shown. However, a trap unit is integrally provided at the lower end of the condensing unit 16, and this trap unit functions as a storage unit. You may do it.
In addition, the mold cooling device and the mold cooling system including the mold cooling apparatus according to the present invention are not limited to the mode applied to the mold 3 in which a synthetic resin material is injected and filled to mold a synthetic resin molded product. The present invention can also be applied to a mold in which a material is injected and filled to form a molded product.
 A           金型冷却システム
 1           第1金型冷却装置(金型冷却装置)
 10          供給ライン
 11          媒体供給部
 13          排出ライン
 15b         冷却ファン(冷却手段)
 16          凝縮部
 17          貯留部
 18          温度センサー
 19          減圧手段
 2           第2金型冷却装置
 3           金型
 30a,31a     媒体流通路
 35,36,37    冷却ブロック
 35a,36a,37a 冷却ブロックの中空部
 40          CPU(制御部)
A Mold cooling system 1 1st mold cooling device (mold cooling device)
DESCRIPTION OF SYMBOLS 10 Supply line 11 Medium supply part 13 Discharge line 15b Cooling fan (cooling means)
DESCRIPTION OF SYMBOLS 16 Condensing part 17 Reserving part 18 Temperature sensor 19 Depressurization means 2 2nd mold cooling device 3 Mold 30a, 31a Medium flow path 35, 36, 37 Cooling block 35a, 36a, 37a Cooling block hollow part 40 CPU (control part) )

Claims (9)

  1.  金型の局部に埋め込まれるようにして配設される冷却ブロックの中空部に接続されるとともに、前記金型からの吸熱により気化した媒体を排出する排出ラインと、この排出ラインを経た気化した媒体を凝縮させる凝縮部と、この凝縮部において凝縮された媒体を貯留する貯留部と、この貯留部の媒体を前記冷却ブロックの中空部に供給する媒体供給部を配した供給ラインと、これら各部及び各ラインが減圧下において、前記媒体供給部を作動制御し、所定の金型冷却開始信号に基づいて前記冷却ブロックの中空部に前記媒体を供給する制御部とを備えていることを特徴とする金型冷却装置。 A discharge line that is connected to a hollow portion of a cooling block that is disposed so as to be embedded in a local part of the mold, and that discharges a medium vaporized by heat absorption from the mold, and a vaporized medium that has passed through the discharge line A condensing unit for condensing, a storing unit for storing a medium condensed in the condensing unit, a supply line for supplying a medium supplying unit for supplying the medium in the storing unit to the hollow part of the cooling block, Each line includes a control unit that controls the operation of the medium supply unit under reduced pressure, and supplies the medium to the hollow portion of the cooling block based on a predetermined mold cooling start signal. Mold cooling device.
  2.  請求項1において、
     前記排出ラインに連通し、前記各部及び各ラインを減圧する減圧手段を更に備えていることを特徴とする金型冷却装置。
    In claim 1,
    A mold cooling apparatus, further comprising a decompression unit communicating with the discharge line and decompressing each part and each line.
  3.  請求項2において、
     前記減圧手段による前記各部及び各ラインの減圧度の調整が可能とされていることを特徴とする金型冷却装置。
    In claim 2,
    The mold cooling apparatus, wherein the decompression means can adjust the degree of decompression of each part and each line.
  4.  請求項1乃至3のいずれか1項において、
     前記媒体供給部による前記冷却ブロックの中空部への媒体の供給量の調整が可能とされていることを特徴とする金型冷却装置。
    In any one of Claims 1 thru | or 3,
    The mold cooling apparatus, wherein the medium supply unit can adjust the amount of medium supplied to the hollow portion of the cooling block.
  5.  請求項1乃至4のいずれか1項において、
     前記凝縮部を冷却する冷却手段を更に備えていることを特徴とする金型冷却装置。
    In any one of Claims 1 thru | or 4,
    A mold cooling apparatus further comprising a cooling means for cooling the condensing part.
  6.  請求項5において、
     前記凝縮部または前記貯留部に温度センサーを更に設け、
     前記制御部は、前記温度センサーの検出温度に基づいて前記冷却手段の作動制御を実行することを特徴とする金型冷却装置。
    In claim 5,
    A temperature sensor is further provided in the condensing part or the storage part,
    The mold cooling apparatus according to claim 1, wherein the control unit performs operation control of the cooling unit based on a temperature detected by the temperature sensor.
  7.  請求項1乃至6のいずれか1項において、
     前記媒体には、界面活性剤が添加されていることを特徴とする金型冷却装置。
    In any one of Claims 1 thru | or 6,
    A mold cooling apparatus, wherein a surfactant is added to the medium.
  8.  請求項1乃至7のいずれか1項に記載の金型冷却装置と、この金型冷却装置の排出ライン及び供給ラインに接続されるとともに、金型の局部に埋め込まれるようにして配設される冷却ブロックとを備えていることを特徴とする金型冷却システム。 The mold cooling apparatus according to any one of claims 1 to 7, and a discharge line and a supply line of the mold cooling apparatus, and are arranged so as to be embedded in a local part of the mold. A mold cooling system comprising a cooling block.
  9.  請求項8において、
     前記金型に設けられた媒体流通路に低温媒体を供給する第2金型冷却装置を更に備えていることを特徴とする金型冷却システム。
    In claim 8,
    The mold cooling system further comprising a second mold cooling device for supplying a low-temperature medium to a medium flow path provided in the mold.
PCT/JP2011/078533 2010-12-09 2011-12-09 Die cooling device and die cooling system provided with same WO2012077779A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010274588A JP2012121245A (en) 2010-12-09 2010-12-09 Mold cooling device and mold cooling system having the same
JP2010-274588 2010-12-09

Publications (1)

Publication Number Publication Date
WO2012077779A1 true WO2012077779A1 (en) 2012-06-14

Family

ID=46207261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078533 WO2012077779A1 (en) 2010-12-09 2011-12-09 Die cooling device and die cooling system provided with same

Country Status (2)

Country Link
JP (1) JP2012121245A (en)
WO (1) WO2012077779A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3582942A4 (en) * 2017-02-16 2021-01-13 Billio Pty Ltd Cooling system for moulds
CN113977892A (en) * 2021-10-30 2022-01-28 浙江吉尚汽车部件有限公司 Auxiliary shaping method and auxiliary shaping device for injection molding

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06203157A (en) * 1992-10-14 1994-07-22 Fujitsu Ltd Method for processing color image and device thereof
JP5991678B2 (en) * 2013-10-07 2016-09-14 株式会社松井製作所 Mold cooling system and mold cooling method
JP6532189B2 (en) * 2014-03-25 2019-06-19 住友重機械工業株式会社 Injection molding machine
EP3524403A1 (en) * 2018-02-13 2019-08-14 G. A. Röders GmbH & Co. KG Druck- & Spritzguss Device and method for cooling a casting mould
JP2020046978A (en) * 2018-09-19 2020-03-26 株式会社松井製作所 Temperature control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353016A (en) * 1986-08-22 1988-03-07 Toyo Mach & Metal Co Ltd Form molding machine
JPH07285131A (en) * 1994-04-15 1995-10-31 Tlv Co Ltd Steam heating, vaporizing and cooling device for die
JPH08200915A (en) * 1995-01-30 1996-08-09 Ikegami Kanagata Kogyo Kk Cooler
WO2002000375A1 (en) * 2000-06-29 2002-01-03 Ryobi Ltd. Die cast mold cooling mechanism

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353016A (en) * 1986-08-22 1988-03-07 Toyo Mach & Metal Co Ltd Form molding machine
JPH07285131A (en) * 1994-04-15 1995-10-31 Tlv Co Ltd Steam heating, vaporizing and cooling device for die
JPH08200915A (en) * 1995-01-30 1996-08-09 Ikegami Kanagata Kogyo Kk Cooler
WO2002000375A1 (en) * 2000-06-29 2002-01-03 Ryobi Ltd. Die cast mold cooling mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3582942A4 (en) * 2017-02-16 2021-01-13 Billio Pty Ltd Cooling system for moulds
CN113977892A (en) * 2021-10-30 2022-01-28 浙江吉尚汽车部件有限公司 Auxiliary shaping method and auxiliary shaping device for injection molding

Also Published As

Publication number Publication date
JP2012121245A (en) 2012-06-28

Similar Documents

Publication Publication Date Title
WO2012077779A1 (en) Die cooling device and die cooling system provided with same
JP5991678B2 (en) Mold cooling system and mold cooling method
EP1109656B1 (en) Temperature control method and apparatus
JP5954334B2 (en) System for mold temperature control
JP5294501B2 (en) Mold temperature controller
JP5250223B2 (en) Temperature control method and temperature control device for molding die
KR101195999B1 (en) Injection mold apparatus
JP2017094489A (en) Die cooling system and die cooling method
JP6145252B2 (en) COOLING METHOD, COOLING DEVICE CONTROL DEVICE AND COOLING DEVICE
CN105745503A (en) Single-circuit refrigeration appliance
KR20090051942A (en) Water tank for refrigerator and refrigerator having the same
JP2008105271A (en) Mold heating/cooling system using superheated steam
JP2016030393A (en) Device and method for mold temperature adjustment
ITBO20060815A1 (en) METHOD OF PASTEURIZATION AND RESTORATION OF THE FRIGORIGEN CYCLE IN A REFRIGERATING MACHINE FOR THE PRODUCTION OF GRANITE AND SIMILAR AND MACHINE FOR THE EXECUTION OF THIS METHOD.
EP3582942B1 (en) Cooling system for moulds
KR101793667B1 (en) Injection molding apparatus and Method for controlling injection molding apparatus
JP2007050324A (en) Heating/cooling device
JP5423847B2 (en) Temperature control system
KR101700761B1 (en) Refrigerator
JP2019078466A (en) Ice-maker
KR101551865B1 (en) Control method for refrigerator
JP6966924B2 (en) Ice machine
KR200340803Y1 (en) Device of Equalizing a Temperature in the Chamber of a Sterilizer
JPH07285132A (en) Steam heating, vaporizing and cooling device for die
JP5432588B2 (en) Evaporative cooling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11846180

Country of ref document: EP

Kind code of ref document: A1