WO2012077275A1 - Air-conditioner - Google Patents

Air-conditioner Download PDF

Info

Publication number
WO2012077275A1
WO2012077275A1 PCT/JP2011/006066 JP2011006066W WO2012077275A1 WO 2012077275 A1 WO2012077275 A1 WO 2012077275A1 JP 2011006066 W JP2011006066 W JP 2011006066W WO 2012077275 A1 WO2012077275 A1 WO 2012077275A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
evaporator
air
heat exchange
refrigerant circuit
Prior art date
Application number
PCT/JP2011/006066
Other languages
French (fr)
Japanese (ja)
Inventor
駒野 宏
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN2011800548010A priority Critical patent/CN103210263A/en
Priority to US13/884,830 priority patent/US20130227985A1/en
Publication of WO2012077275A1 publication Critical patent/WO2012077275A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • F25B41/48Arrangements for diverging or converging flows, e.g. branch lines or junctions for flow path resistance control on the downstream side of the diverging point, e.g. by an orifice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • the present invention relates to an air conditioner that cools air supplied to a room through an air passage such as a duct.
  • an air conditioner that cools air supplied to a room through a duct.
  • the air cooled by the air conditioner flows through the duct and is distributed to a plurality of rooms.
  • Patent Document 1 discloses an air conditioner for a ship. The air cooled when passing through the evaporator of the air conditioner flows through the duct and is supplied to a plurality of cabins.
  • the air conditioner of Patent Document 1 is provided with a plurality of compressors and one evaporator.
  • the evaporator is designed so that the refrigerant can be reliably evaporated in a state where all the compressors are operated.
  • the number of compressors operated may be changed according to the air conditioning load. For this reason, in a state where only some of the plurality of compressors are operated, the capacity of the evaporator is relatively excessive. In spite of the reduction in the number of operating compressors, the air conditioning capacity may still be excessive with respect to the air conditioning load, and all compressors may have to be stopped.
  • the present invention has been made in view of such a point, and an object thereof is to reduce the frequency at which all the compressors stop during the operation of the air conditioner and to keep indoor comfort high.
  • the first invention includes an air conditioner (10) that includes a refrigerant circuit (20) that circulates a refrigerant to perform a refrigeration cycle, and that cools air flowing through an air passage connected to an air outlet (102) of a plurality of rooms with the refrigerant. ).
  • a compressor unit (30) having a plurality of compressors (31, 32, 33) connected in parallel to each other, and each connected in parallel to each other, exchange heat between the refrigerant and air.
  • the number of heat exchangers (55, 60, 65) to be changed and the number of evaporators (50) installed in the air passage and the heat exchangers (55, 60, 65) through which the refrigerant passes are changed And a distribution control mechanism (17).
  • a refrigeration cycle is performed in the refrigerant circuit (20).
  • the air is cooled. Air cooled in the evaporator (50) is distributed to a plurality of rooms through an air passage.
  • the compressor unit (30) a plurality of compressors (31, 32, 33) are connected in parallel to each other. When the operating capacity of each compressor (31, 32, 33) is changed or the number of operated compressors (31, 32, 33) is changed, the operating capacity of the compressor unit (30) changes.
  • the evaporator (50) is provided with a plurality of heat exchange parts (55, 60, 65).
  • the plurality of heat exchange parts (55, 60, 65) are connected in parallel to each other. For example, when the refrigerant flows into all the heat exchange parts (55, 60, 65), the refrigerant sent to the evaporator (50) is distributed to each heat exchange part (55, 60, 65) and air It absorbs heat and evaporates.
  • the number of heat exchange parts (55, 60, 65) into which the refrigerant flows is changed by the flow control mechanism (17). If the number of heat exchange parts (55, 60, 65) into which the refrigerant flows is changed, the capacity of the evaporator (50) changes.
  • the flow control mechanism (17) determines the operating capacity of the compressor unit (30) by determining the number of the heat exchange portions (55, 60, 65) through which the refrigerant passes. It will be changed according to.
  • the capacity of the evaporator (50) is changed according to the operating capacity of the compressor unit (30).
  • the operating capacity of the compressor unit (30) changes, the flow rate of the refrigerant passing through the evaporator (50) also changes. For this reason, if the number of heat exchange sections (55, 60, 65) through which the refrigerant passes is changed according to the operating capacity of the compressor unit (30), the flow rate of the refrigerant passing through the evaporator (50) is changed.
  • the capacity of the evaporator (50) can be adjusted.
  • all the compressors (31, 32, 33) provided in the compressor unit (30) have a fixed capacity, and the compressor unit (30) The operation capacity is adjusted by changing the number of compressors (31, 32, 33) to be operated, and the distribution control mechanism (17) is configured to operate the compressor (31, 32, 33). The number of the heat exchangers (55, 60, 65) through which the refrigerant passes is reduced.
  • the operating capacity of the compressor unit (30) is adjusted by changing the number of compressors (31, 32, 33) to be operated. Therefore, the operating capacity of the compressor unit (30) changes in stages.
  • the capacity of the evaporator (50) is reduced by the flow control mechanism (17). That is, when the operating capacity of the compressor unit (30) decreases and the flow rate of the refrigerant passing through the evaporator (50) decreases, the capacity of the evaporator (50) is reduced accordingly.
  • the refrigerant circuit (20) is directed to each heat exchange section (55, 60, 65) of the evaporator (50).
  • One expansion valve (40) for expanding the refrigerant before branching is provided.
  • one expansion valve (40) is provided in the refrigerant circuit (20).
  • the refrigerant circulating in the refrigerant circuit (20) expands when passing through the expansion valve (40), and is then distributed to the heat exchange parts (55, 60, 65) of the evaporator (50).
  • the refrigerant circuit (20) includes one heat exchange section (55, 60, 65) of the evaporator (50).
  • a plurality of branch pipes (26, 27, 28) through which refrigerant branched toward each heat exchange section (55, 60, 65) flows are provided, and each of the branch pipes (26, 27, 28) Are provided with expansion valves (41, 42, 43) for expanding the refrigerant one by one.
  • the refrigerant circuit (20) includes the same number of expansion valves (41, 42, 43) as the heat exchanging units (55, 60, 65) provided in the evaporator (50).
  • the refrigerant circulating in the refrigerant circuit (20) is distributed toward the heat exchange parts (55, 60, 65) of the evaporator (50) and then expands through the expansion valves (41, 42, 43). Then, it flows into the heat exchange part (55, 60, 65) corresponding to the expansion valve (41, 42, 43) that has passed.
  • the capacity of the evaporator (50) changes. For this reason, when the operating capacity of the compressor unit (30) is reduced in order to match the air conditioning capacity of the air conditioner (10) with the air conditioning load, the number of heat exchange parts (55, 60, 65) into which refrigerant flows.
  • the air conditioning capacity of the air conditioner (10) can be reliably reduced.
  • the lower limit of the adjustment range of the air conditioning capacity of the air conditioner (10) can be lowered than before, and all the compressors (31, 32, 33) are stopped during the operation of the air conditioner (10). It is possible to reduce the frequency of occurrence. Therefore, according to the present invention, it is possible to reduce the frequency of occurrence of “a phenomenon in which drain water is re-evaporated and sent to the room when all the compressors (31, 32, 33) are stopped”, and indoor comfort is improved. It can be kept high.
  • the capacity of the evaporator (50) can be adjusted according to the flow rate of the refrigerant. Therefore, according to this invention, the capacity
  • capacitance of an evaporator (50) can be changed appropriately according to the operation capacity of the compressor unit (30) which changes in steps, and the air-conditioning capability of an air conditioning apparatus (10) Can be adjusted more appropriately.
  • the refrigerant flowing into all the heat exchanging parts (55, 60, 65) can be expanded using one expansion valve (40). Therefore, according to this invention, the increase in the number of parts of an air conditioning apparatus (10) can be suppressed.
  • the flow rate of the refrigerant flowing into each heat exchanging portion (55, 60, 65) is set to the expansion valve (41, 42, 43) corresponding to each heat exchanging portion (55, 60, 65). It can be controlled individually by adjusting the opening. Therefore, according to the present invention, it is possible to appropriately adjust the flow rate of the refrigerant flowing through each heat exchange section (55, 60, 65) of the evaporator (50), and to maximize the air conditioning capability of the air conditioner (10). It is possible to make it to the limit.
  • FIG. 1 is a schematic configuration diagram of a marine air conditioning system.
  • FIG. 2 is a schematic configuration diagram of the air conditioner.
  • FIG. 3 is a refrigerant circuit diagram illustrating a main part of the refrigerant circuit according to the first modification of the first embodiment.
  • FIG. 4 is a refrigerant circuit diagram illustrating a main part of the refrigerant circuit according to the first modification of the first embodiment.
  • FIG. 5 is a refrigerant circuit diagram illustrating a main part of the refrigerant circuit according to the second modification of the first embodiment.
  • FIG. 6 is a refrigerant circuit diagram showing a main part of the refrigerant circuit of the second embodiment corresponding to the refrigerant circuit of FIG. FIG.
  • FIG. 7 is a refrigerant circuit diagram illustrating a main part of the refrigerant circuit of the second embodiment corresponding to the refrigerant circuit of FIG. 3.
  • FIG. 8 is a refrigerant circuit diagram illustrating a main part of the refrigerant circuit of the second embodiment corresponding to the refrigerant circuit of FIG. 4.
  • FIG. 9 is a refrigerant circuit diagram illustrating a main part of the refrigerant circuit of the second embodiment corresponding to the refrigerant circuit of FIG. 5.
  • FIG. 10 is a refrigerant circuit diagram showing a main part of a refrigerant circuit of a modification of the second embodiment corresponding to the refrigerant circuit of FIG. FIG.
  • FIG. 11 is a refrigerant circuit diagram illustrating a main part of a refrigerant circuit of a first modified example of the other embodiment corresponding to the refrigerant circuit of FIG. 2.
  • FIG. 12 is a refrigerant circuit diagram illustrating a main part of a refrigerant circuit of a first modified example of the other embodiment corresponding to the refrigerant circuit of FIG. 6.
  • FIG. 13 is a schematic block diagram of the principal part of the evaporator of the 2nd modification of other embodiment corresponding to the evaporator of FIG.
  • Embodiment 1 of the Invention A first embodiment of the present invention will be described.
  • the air conditioner (10) of the present embodiment is provided in a ship air conditioning system and supplies conditioned air to a cabin (103) that is a room.
  • a suction duct (100) and an air supply duct (101) are connected to the casing (11) of the air conditioner (10).
  • the suction duct (100) and the air supply duct (101) are formed in the casing (11) to form an air passage through which air flows together with a space communicating with the suction duct (100) and the air supply duct (101).
  • the intake duct (100) takes in indoor air in the cabin (103) and outdoor outdoor air. A mixed air of indoor air and outdoor air is sent to the air conditioner (10) through the suction duct (100).
  • the air supply duct (101) is connected to the air outlet (102) opening in each cabin (103). The air blown out from the air conditioner (10) is distributed to the plurality of cabins (103) through the air supply duct (101).
  • the air conditioner (10) of this embodiment includes a refrigerant circuit (20), a blower (15), and a controller (16).
  • the refrigerant circuit (20), the blower (15), and the controller (16) are accommodated in the casing (11).
  • a blower (15) and an evaporator (50) of a refrigerant circuit (20) to be described later are arranged in a space communicating with the suction duct (100) and the air supply duct (101). .
  • the refrigerant circuit (20) is provided with a compressor unit (30), a condenser (35), an expansion valve (40), and an evaporator (50).
  • the refrigerant circuit (20) is filled with refrigerant.
  • the refrigerant circuit (20) is a closed circuit configured by connecting a compressor unit (30), a condenser (35), an expansion valve (40), and an evaporator (50) in order by piping.
  • Compressor unit (30) has three compressors (31, 32, 33).
  • the number of compressors (31, 32, 33) provided in the compressor unit (30) is merely an example.
  • Each compressor (31, 32, 33) is a hermetic scroll compressor (31, 32, 33).
  • Each compressor (31, 32, 33) is a fixed capacity type in which the rotation speed cannot be changed.
  • the three compressors (31, 32, 33) are connected in parallel to each other.
  • the suction pipe (31a, 32a, 33a) of each compressor (31, 32, 33) is connected to an outlet pipe (52) of an evaporator (50) described later.
  • the discharge pipes (31b, 32b, 33b) of the compressors (31, 32, 33) are connected to the refrigerant inlet of the condenser (35).
  • Each compressor (31, 32, 33) compresses the refrigerant sucked from the suction pipe (31a, 32a, 33a), and discharges the compressed refrigerant from the discharge pipe (31b, 32b, 33b).
  • the operating capacity of the compressor unit (30) is adjusted by changing the number of operating compressors (31, 32, 33).
  • electromagnetic noise is generated, which may adversely affect wireless communication such as rescue communication.
  • the capacity of the generator may be reduced due to the reverse phase current generated in the inverter.
  • the compressor unit (30) of this embodiment is configured to adjust the operating capacity by changing the number of operating compressors (31, 32, 33).
  • the condenser (35) is a so-called shell-and-tube heat exchanger, and exchanges heat between the refrigerant and cooling water (specifically, water taken from seawater or rivers).
  • the refrigerant outlet of the condenser (35) is connected to the evaporator (50) via the pipe (25).
  • An expansion valve (40) is provided in the middle of the pipe (25).
  • the expansion valve (40) is a so-called temperature automatic expansion valve.
  • the temperature sensing cylinder (40a) of the expansion valve (40) is attached to the outlet pipe (52) of the evaporator (50) and is in contact with the surface of the outlet pipe (52).
  • the downstream portion of the expansion valve (40) is branched into two, and the first branch pipe (26) is connected to one end of the first flow path (56) of the evaporator (50).
  • the second branch pipe (27) is connected to one end of the second flow passage (61) of the evaporator (50).
  • the second branch pipe (27) of the pipe (25) is provided with an electromagnetic valve (70) that constitutes a flow control mechanism (17).
  • the evaporator (50) is a so-called cross fin type fin-and-tube heat exchanger, and is constituted by a copper heat transfer tube and an aluminum fin (51).
  • the evaporator (50) exchanges heat between the refrigerant and air.
  • each heat exchange part (55,60) is comprised by the flow path (56,61) comprised by the heat exchanger tube, and the fin (51) joined to the heat exchanger tube which comprises a flow path (56,61). ing.
  • the fins (51) constituting each heat exchange section (55, 60) are integrated with each other.
  • one end of the first flow passage (56) is connected to the expansion valve (40) via the first branch pipe (26), and one end of the second flow passage (61). Is connected to the expansion valve (40) via the second branch pipe (27).
  • the other end of each flow passage (56, 61) is connected to the outlet pipe (52).
  • the air conditioner (10) is provided with a blown air temperature sensor (81) and an evaporation temperature sensor (82).
  • the blown air temperature sensor (81) is disposed on the downstream side of the evaporator (50) in the air flow path.
  • the blown air temperature sensor (81) measures the temperature of the air that passes through the evaporator (50) and is sent to the air supply duct (101).
  • the evaporation temperature sensor (82) is attached to the heat transfer tube constituting the first flow path (56) of the evaporator (50) and is in contact with the surface of the heat transfer tube.
  • the evaporation temperature sensor (82) measures the surface temperature of the heat transfer tube as the refrigerant evaporation temperature in the evaporator (50).
  • the controller (16) performs an operation for adjusting the operating capacity of the compressor unit (30) and an operation for operating the solenoid valve (70). Specifically, the measured value of the blown air temperature sensor (81) and the measured value of the evaporation temperature sensor (82) are input to the controller (16). Then, the controller (16) adjusts the operating capacity of the compressor unit (30) based on the measured value of the blown air temperature sensor (81), and based on the measured value of the evaporation temperature sensor (82), the solenoid valve ( 70) open and close.
  • the refrigerant that has passed through the expansion valve (40) flows into the evaporator (50). Specifically, a part of the refrigerant that has passed through the expansion valve (40) flows into the first flow passage (56) of the first heat exchange section (55) through the first branch pipe (26) and remains. Flows into the second flow path (61) of the second heat exchange section (60) through the second branch pipe (27).
  • the refrigerant flowing through the flow passages (56, 61) absorbs heat from the air passing between the fins (51) and evaporates, and normally flows into the outlet pipe (52) as superheated steam.
  • the refrigerant sucked into each compressor (31, 32, 33) is compressed and then discharged from each compressor (31, 32, 33).
  • the temperature sensing cylinder (40a) of the expansion valve (40) is attached to the outlet pipe (52) of the evaporator (50). Therefore, the opening degree of the expansion valve (40) is adjusted so that the superheat degree of the refrigerant flowing through the outlet pipe (52) becomes a predetermined target superheat degree. That is, when the degree of superheat of the refrigerant flowing through the outlet pipe (52) is too high, the opening degree of the expansion valve (40) is expanded to lower the degree of superheat. On the other hand, when the degree of superheat of the refrigerant flowing through the outlet pipe (52) is too low, the opening degree of the expansion valve (40) is reduced in order to raise the degree of superheat.
  • the air flow will be described with reference to FIG.
  • the blower (15) is operated.
  • the blower (15) sucks air from the air supply duct (101). For this reason, the indoor air in the cabin (103) and the outdoor air outside the vessel are sucked into the air conditioner (10) through the air supply duct (101).
  • the air sucked into the air conditioner (10) is cooled by the refrigerant while passing through the evaporator (50).
  • the temperature of the air that has passed through the evaporator (50) is lower than the dew point temperature of the air sent to the evaporator (50).
  • the water vapor contained in the air is condensed to become drain water. That is, in the evaporator (50), air is cooled and dehumidified.
  • the cooled and dehumidified air is sent out from the air conditioner (10) to the air supply duct (101).
  • the air flowing through the air supply duct (101) is distributed to the air outlet (102) provided in each cabin (103), and blown out from the air outlet (102) to the cabin (103).
  • the controller (16) adjusts the operating capacity of the compressor unit (30) so that the measured value of the blown air temperature sensor (81) becomes a predetermined set temperature.
  • the controller (16) causes the compressor unit (30) to raise the measured value of the blown air temperature sensor (81).
  • the controller (16) gradually reduces the operating capacity of the compressor unit (30).
  • the controller (16) even when only one of the compressors (31, 32, 33) is operating, if the measured value of the blown air temperature sensor (81) is lower than the set temperature, the controller (16) The compressors (31, 32, 33) are stopped.
  • the controller (16) compresses the compressor unit (30) to reduce the measured value of the blown air temperature sensor (81). Increase the number of machines (31, 32, 33) to be operated one by one. That is, in this case, the controller (16) gradually increases the operation capacity of the compressor unit (30).
  • the controller (16) opens and closes the electromagnetic valve (70) so that the measured value of the evaporation temperature sensor (82) is maintained within a predetermined reference range.
  • the controller (16) closes the solenoid valve (70). .
  • the solenoid valve (70) In the state where the solenoid valve (70) is closed, in the evaporator (50), the refrigerant does not flow into the second flow path (61) of the second heat exchange section (60), and the first heat exchange section (55 The refrigerant flows only into the first flow path (56).
  • the controller (16) closes the solenoid valve (70) in order to reduce the capacity of the evaporator (50).
  • the solenoid valve (70) is closed, the refrigerant flows only into the first flow passage (56), so the capacity of the evaporator (50) is reduced. For this reason, the evaporation temperature of the refrigerant in the evaporator (50) decreases.
  • the controller (16) opens the solenoid valve (70).
  • the solenoid valve (70) In the state where the solenoid valve (70) is opened, in the evaporator (50), the first flow path (56) of the first heat exchange unit (55) and the second flow path ( 61) The refrigerant flows into both.
  • the controller (16) opens the electromagnetic valve (70) in order to increase the capacity of the evaporator (50).
  • the solenoid valve (70) is opened, the refrigerant flows into both the first flow path (56) and the second flow path (61), so the capacity of the evaporator (50) increases. For this reason, the evaporation temperature of the refrigerant in the evaporator (50) increases.
  • the controller (16) adjusts the operating capacity of the compressor unit (30) during the operation of the air conditioner (10).
  • the air conditioner (10) takes in mixed air of indoor air and outdoor air and supplies it to the cabin (103). That is, the air conditioner (10) performs not only cooling of the cabin (103) but also ventilation. Ventilation of the cabin (103) must always be performed regardless of the cooling load of the cabin (103). For this reason, during the operation of the air conditioner (10), the operation of the blower (15) continues even when all the compressors (31, 32, 33) of the compressor unit (30) are stopped. Is done.
  • a temperature automatic expansion valve is used as the expansion valve (40), and the temperature sensing cylinder (40a) of the expansion valve (40) is the outlet of the evaporator (50). It is attached to the pipe (52).
  • the capacity of the evaporator (50) becomes excessive with respect to the flow rate of the refrigerant circulating in the refrigerant circuit (20)
  • the degree of superheat of the refrigerant flowing through the outlet pipe (52) increases, so that the degree of superheat of the refrigerant is reduced.
  • the opening degree of the expansion valve (40) is enlarged.
  • the controller (16) operates the electromagnetic valve (70) based on the measured value of the evaporation temperature sensor (82), and the measured value of the evaporation temperature sensor (82) The number of heat exchanging parts (55, 60) through which the refrigerant flows is changed in the evaporator (50) so that the reference range is maintained.
  • the controller (16) closes the solenoid valve (70), and the refrigerant flows only into the first flow passage (56) of the first heat exchange section (55).
  • the air conditioner (10) of the present embodiment when the operating capacity of the compressor unit (30) decreases and the flow rate of the refrigerant passing through the evaporator (50) decreases, the evaporator (50) Among them, the number of heat exchange parts (55, 60) through which the refrigerant flows is reduced, and the capacity of the evaporator (50) is reduced. Therefore, according to the present embodiment, the capacity of the evaporator (50) can be reduced according to the operating capacity of the compressor unit (30), and the lower limit of the adjustment range of the cooling capacity can be reduced. As a result, the frequency at which all the compressors (31, 32, 33) of the compressor unit (30) are stopped can be reduced, and the indoor comfort is impaired due to the re-evaporation of the drain water. The possibility can be reduced.
  • the opening degree of the expansion valve (40) can be suppressed to a certain level or less, and the flow rate of the refrigerant passing through the evaporator (50) can be reliably reduced.
  • each of the first flow path (56) and the second flow path (61) includes a first path (56a, 61a), a second path (56b, 61b), and a flow divider (57 , 62) and a merging pipe (58, 63).
  • first flow path (56) shown in FIG. 3 one end of each of the first path (56a) and the second path (56b) is connected to the outlet side of the flow divider (57), and each other end joins.
  • the pipe (58) is connected to the outlet pipe (52).
  • the first branch pipe (26) of the pipe (25) is connected to the inlet side of the flow divider (57).
  • each of the first path (61a) and the second path (61b) is connected to the outlet side of the flow divider (62), and each other end. Is connected to the outlet pipe (52) via the junction pipe (63).
  • the second branch pipe (27) of the pipe (25) is connected to the inlet side of the flow divider (62).
  • only the second flow path (61) includes a first path (61a), a second path (61b), a flow divider (62), and a merge pipe (63). .
  • one end of each of the first path (61a) and the second path (61b) is connected to the outlet side of the flow divider (62), and each other end is joined. It is connected to the outlet pipe (52) via the pipe (63).
  • the second branch pipe (27) of the pipe (25) is connected to the inlet side of the flow divider (62).
  • the evaporator (50) of the first embodiment may be provided with three or more heat exchange units (55, 60, 65).
  • the refrigerant circuit (20) in the case where the evaporator (50) is provided with three heat exchange sections (55, 60, 65) will be described with reference to FIG.
  • the pipe (25) connecting the condenser (35) and the evaporator (50) has three branch pipes (26, 27, 28).
  • the first branch pipe (26) is at one end of the first flow path (56) of the first heat exchange section (55), and the second branch pipe (27) is the second flow path (of the second heat exchange section (60)).
  • the third branch pipe (28) is connected to one end of the third flow passage (66) of the third heat exchange section (65).
  • the other end of each flow path (56, 61, 66) is connected to the outlet pipe (52).
  • the first branch valve (27) is provided with the first solenoid valve (71), and the third branch pipe (28) is provided with the second solenoid valve ( 72).
  • the number of heat exchange parts (55, 60, 65) through which the refrigerant flows can be changed in three stages.
  • Embodiment 2 of the Invention A second embodiment of the present invention will be described.
  • the refrigerant circuit (20) of the present embodiment is provided with the same number of expansion valves (41, 42) as the heat exchange parts (55, 60) of the evaporator (50).
  • the refrigerant circuit (20) shown in FIG. 6 is obtained by applying this embodiment to the refrigerant circuit (20) shown in FIG.
  • one expansion valve (41, 42) is provided in each branch pipe (26, 27) of the pipe (25).
  • the second expansion valve (42) is arranged upstream of the electromagnetic valve (70).
  • Each expansion valve (41, 42) of the refrigerant circuit (20) shown in Fig. 6 is a so-called temperature automatic expansion valve.
  • the temperature sensing cylinder (41a) of the first expansion valve (41) provided in the first branch pipe (26) is attached to a pipe constituting the outlet side end of the first flow passage (56). It is in contact with the surface.
  • the opening degree of the first expansion valve (41) is adjusted so that the degree of superheat of the refrigerant flowing out from the first heat exchange section (55) becomes a predetermined target superheat degree.
  • the temperature sensing cylinder (42a) of the second expansion valve (42) provided in the second branch pipe (27) is attached to a pipe constituting the outlet side end of the second flow passage (61). It is in contact with the surface.
  • the opening degree of the second expansion valve (42) is adjusted so that the degree of superheat of the refrigerant flowing out from the second heat exchange unit (60) becomes a predetermined target superheat degree.
  • the refrigerant circuit (20) shown in FIG. 7 is obtained by applying the present embodiment to the refrigerant circuit (20) shown in FIG.
  • one expansion valve (41, 42) is provided in each branch pipe (26, 27) of the pipe (25).
  • the second expansion valve (42) is arranged upstream of the electromagnetic valve (70).
  • the expansion valves (41, 42) of the refrigerant circuit (20) shown in Fig. 7 are so-called temperature automatic expansion valves.
  • the temperature sensing cylinder (41a) of the first expansion valve (41) provided in the first branch pipe (26) is attached to the merging pipe (58) of the first flow passage (56), and this merging pipe (58) Is in contact with the surface.
  • the opening degree of the first expansion valve (41) is adjusted so that the degree of superheat of the refrigerant flowing out from each path (56a, 56b) of the first heat exchange unit (55) becomes a predetermined target superheat degree.
  • the temperature sensing cylinder (42a) of the second expansion valve (42) provided in the second branch pipe (27) is attached to the junction pipe (63) of the second flow passage (61), and this junction pipe (63) Is in contact with the surface.
  • the opening degree of the second expansion valve (42) is adjusted so that the degree of superheat of the refrigerant flowing out from each path (61a, 61b) of the second heat exchange unit (60) becomes a predetermined target superheat degree.
  • a refrigerant circuit (20) shown in FIG. 8 is obtained by applying the present embodiment to the refrigerant circuit (20) shown in FIG.
  • one expansion valve (41, 42) is provided in each branch pipe (26, 27) of the pipe (25).
  • the second expansion valve (42) is arranged upstream of the electromagnetic valve (70).
  • Each expansion valve (41, 42) of the refrigerant circuit (20) shown in Fig. 8 is a so-called temperature automatic expansion valve.
  • the temperature sensing cylinder (41a) of the first expansion valve (41) provided in the first branch pipe (26) is attached to a pipe constituting the outlet side end of the first flow passage (56). It is in contact with the surface.
  • the opening degree of the first expansion valve (41) is adjusted so that the degree of superheat of the refrigerant flowing out from the first heat exchange section (55) becomes a predetermined target superheat degree.
  • the temperature sensing cylinder (42a) of the second expansion valve (42) provided in the second branch pipe (27) is attached to the junction pipe (63) of the second flow passage (61), and this junction pipe (63) Is in contact with the surface.
  • the opening degree of the second expansion valve (42) is adjusted so that the degree of superheat of the refrigerant flowing out from each path (61a, 61b) of the second heat exchange unit (60) becomes a predetermined target superheat
  • the refrigerant circuit (20) shown in FIG. 9 is obtained by applying this embodiment to the refrigerant circuit (20) shown in FIG.
  • one expansion valve (41, 42, 43) is provided in each branch pipe (26, 27, 28) of the pipe (25).
  • the second expansion valve (42) is arranged upstream of the first electromagnetic valve (71).
  • the third expansion valve (43) is disposed on the upstream side of the second electromagnetic valve (72).
  • Each expansion valve (41, 42, 43) of the refrigerant circuit (20) shown in FIG. 9 is a so-called temperature automatic expansion valve.
  • the temperature sensing cylinder (41a) of the first expansion valve (41) provided in the first branch pipe (26) is attached to a pipe constituting the outlet side end of the first flow passage (56). It is in contact with the surface.
  • the opening degree of the first expansion valve (41) is adjusted so that the degree of superheat of the refrigerant flowing out from the first heat exchange section (55) becomes a predetermined target superheat degree.
  • the temperature sensing cylinder (42a) of the second expansion valve (42) provided in the second branch pipe (27) is attached to a pipe constituting the outlet side end of the second flow passage (61). It is in contact with the surface.
  • the opening degree of the second expansion valve (42) is adjusted so that the degree of superheat of the refrigerant flowing out from the second heat exchange unit (60) becomes a predetermined target superheat degree.
  • the temperature sensing cylinder (43a) of the third expansion valve (43) provided in the third branch pipe (28) is attached to a pipe constituting the outlet side end of the third flow passage (66). It is in contact with the surface.
  • the opening degree of the third expansion valve (43) is adjusted so that the degree of superheat of the refrigerant flowing out from the third heat exchange section (65) becomes a predetermined target superheat degree.
  • the refrigerant circuit (20) shown in FIG. 10 is obtained by applying this modification to the refrigerant circuit (20) shown in FIG.
  • the second expansion valve (42) is disposed downstream of the electromagnetic valve (70).
  • the refrigerant circuit (20) illustrated in FIGS. 2 to 10 may be provided with a so-called electronic expansion valve as the expansion valve (40, 41, 42).
  • the refrigerant circuit (20) shown in FIG. 11 is obtained by applying this modification to the refrigerant circuit (20) shown in FIG. 11
  • a refrigerant temperature sensor (85) is attached to the outlet pipe (52) of the evaporator (50).
  • the refrigerant temperature sensor (85) is in contact with the outlet pipe (52), and measures the surface temperature of the outlet pipe (52) as the temperature of the refrigerant flowing in the outlet pipe (52).
  • the degree of superheat of the refrigerant flowing through the outlet pipe (52) can be calculated by subtracting the measured value of the evaporation temperature sensor (82) from the measured value of the refrigerant temperature sensor (85).
  • the controller (16) of the present modified example is shown in FIG.
  • the refrigerant circuit (20) shown in FIG. 12 is obtained by applying this modification to the refrigerant circuit (20) shown in FIG. 12
  • the first refrigerant temperature sensor (86) is attached to the pipe constituting the outlet side end of the first flow passage (56).
  • the first refrigerant temperature sensor (86) is in contact with the pipe, and measures the surface temperature of the pipe as the temperature of the refrigerant flowing out from the first flow passage (56).
  • the degree of superheat of the refrigerant flowing out from the first flow path (56) can be calculated by subtracting the measured value of the evaporation temperature sensor (82) from the measured value of the first refrigerant temperature sensor (86).
  • the controller (16) of the present modified example is arranged so that the value obtained by subtracting the measured value of the evaporation temperature sensor (82) from the measured value of the first refrigerant temperature sensor (86) becomes the predetermined target superheat degree.
  • the second refrigerant temperature sensor (87) is attached to the pipe constituting the outlet side end of the second flow passage (61).
  • the second refrigerant temperature sensor (87) is in contact with the pipe, and measures the surface temperature of the pipe as the temperature of the refrigerant flowing out from the second flow passage (61).
  • the degree of superheat of the refrigerant flowing out from the second flow path (61) can be calculated by subtracting the measurement value of the evaporation temperature sensor (82) from the measurement value of the second refrigerant temperature sensor (87).
  • the controller (16) of the present modified example is arranged so that the value obtained by subtracting the measured value of the evaporation temperature sensor (82) from the measured value of the second refrigerant temperature sensor (87) becomes the predetermined target superheat degree.
  • the solenoid valve (70) is omitted. That is, only the second expansion valve (42) is provided in the second branch pipe (27) of the pipe (25).
  • the second expansion valve (42) also serves as the flow control mechanism (17). That is, the opening degree of the second expansion valve (42), which is an electronic expansion valve, can be arbitrarily set by the control signal from the controller (16). Accordingly, when the refrigerant is allowed to flow only into the first flow passage (56), the controller (16) sets the second expansion valve (42) in a fully closed state.
  • the heat transfer tubes constituting the respective flow passages (56, 61, 66) may be alternately arranged.
  • the evaporator (50) shown in FIG. 13 is obtained by applying this modification to the evaporator (50) shown in FIG.
  • the heat transfer tubes constituting the first flow passage (56) and the heat transfer tubes constituting the second flow passage (61) are alternately arranged in the longitudinal direction of the fin (51). Has been placed.
  • the evaporator (50) of this modification is used, the temperature of the air that has passed through the evaporator (50) can be made uniform even when the refrigerant flows only through the first flow path (56).
  • the controller (16) in each of the above embodiments changes the number of heat exchange sections (55, 60, 65) through which the refrigerant flows in the evaporator (50) based on the evaporation pressure of the refrigerant in the evaporator (50). It may be configured to.
  • this modification is applied to the air conditioning apparatus (10) of Embodiment 1 shown in FIG. 2 will be described.
  • the controller (16) of this modification opens and closes the solenoid valve (70) so that the evaporation pressure of the refrigerant in the evaporator (50) (that is, the low pressure of the refrigeration cycle) is maintained within a predetermined reference range.
  • the controller (16) closes the solenoid valve (70).
  • the solenoid valve (70) in the evaporator (50), the refrigerant does not flow into the second flow path (61) of the second heat exchange section (60), and the first heat exchange section (55 The refrigerant flows only into the first flow path (56).
  • the controller (16) closes the solenoid valve (70) in order to reduce the capacity of the evaporator (50).
  • the solenoid valve (70) is closed, the refrigerant flows only into the first flow passage (56), so the capacity of the evaporator (50) is reduced. For this reason, the evaporation pressure of the refrigerant in the evaporator (50) decreases.
  • the controller (16) opens the solenoid valve (70).
  • the solenoid valve (70) In the state where the solenoid valve (70) is opened, in the evaporator (50), the first flow path (56) of the first heat exchange unit (55) and the second flow path ( 61) The refrigerant flows into both.
  • the controller (16) opens the electromagnetic valve (70) in order to increase the capacity of the evaporator (50).
  • the solenoid valve (70) is opened, the refrigerant flows into both the first flow path (56) and the second flow path (61), so the capacity of the evaporator (50) increases. For this reason, the evaporation pressure of the refrigerant in the evaporator (50) increases.
  • the controller (16) of each of the above embodiments changes the number of heat exchange parts (55, 60, 65) through which the refrigerant flows in the evaporator (50) based on the measured value of the blown air temperature sensor (81). It may be configured to.
  • this modification is applied to the air conditioning apparatus (10) of Embodiment 1 shown in FIG. 2 will be described.
  • the controller (16) of this modified example adjusts the operating capacity of the compressor unit (30) and adjusts the solenoid valve (70) so that the measured value of the blown air temperature sensor (81) becomes a predetermined set temperature. And operation.
  • the controller (16) measures the blown air temperature sensor (81). In order to increase the value, the number of operating compressors (31, 32, 33) in the compressor unit (30) will be reduced one by one. If the measured value of the blown air temperature sensor (81) is still lower than the set temperature even when the number of compressors (31, 32, 33) in the compressor unit (30) becomes one, the controller ( 16) Close the solenoid valve (70).
  • the controller (16) closes the solenoid valve (70) in order to reduce the capacity of the evaporator (50).
  • the solenoid valve (70) is closed, the refrigerant flows only into the first flow passage (56), so the capacity of the evaporator (50) is reduced. For this reason, the temperature of the air which passed the evaporator (50) rises.
  • the controller (16) displays the measured value of the blown air temperature sensor (81). In order to lower it, the number of operating compressors (31, 32, 33) in the compressor unit (30) is increased one by one. If the measured value of the blown air temperature sensor (81) is still higher than the set temperature even when the number of compressors (31, 32, 33) in the compressor unit (30) becomes two, the controller ( 16) Open the solenoid valve (70). In the state where the solenoid valve (70) is opened, in the evaporator (50), the first flow path (56) of the first heat exchange unit (55) and the second flow path ( 61) The refrigerant flows into both.
  • the controller (16) opens the electromagnetic valve (70) in order to increase the capacity of the evaporator (50).
  • the solenoid valve (70) is opened, the refrigerant flows into both the first flow path (56) and the second flow path (61), so the capacity of the evaporator (50) increases. For this reason, the temperature of the air which passed the evaporator (50) falls.
  • the controller (16) of the first embodiment adjusts the operating capacity of the compressor unit (30) so that the measured value of the blown air temperature sensor (81) becomes a predetermined set temperature.
  • the controller (16) closes the solenoid valve (70) at the same time.
  • the controller (16) opens the solenoid valve (70) at the same time when the number of compressors (31, 32, 33) in the compressor unit (30) is increased from one to two. .
  • the present invention is useful for an air conditioner that cools air supplied to a room through a duct.
  • Air Conditioner 17 Flow Control Mechanism 20 Refrigerant Circuit 26 First Branch Pipe 27 Second Branch Pipe 28 Third Branch Pipe 30 Compressor Unit 31 First Compressor 32 Second Compressor 33 Third Compressor 35 Condenser 40 Expansion Valve 41 First expansion valve 42 Second expansion valve 43 Third expansion valve 50 Evaporator 55 First heat exchange section 56 First flow path 60 Second heat exchange section 61 Second flow path 65 Third heat exchange section 66 Third Flow passage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Central Air Conditioning (AREA)

Abstract

Provided is an air-conditioner (10), the cooling medium circuit (20) of which is equipped with a compressor unit (30), an evaporator (50), and an electromagnetic valve (70) that constitutes a circulation control mechanism (17). The operating capacity of the compressor unit (30) is adjusted by changing the number of compressors (31, 32, 33) which are operating. The evaporator (50) is provided with a first heat exchange unit (55) and a second heat exchange unit (60). A first circulation path (56) of the first heat exchange unit (55) and a second circulation path (61) of the second heat exchange unit (60) are mutually connected in parallel. When the electromagnetic valve (70) is open, cooling medium flows in both the first circulation path (56) and the second circulation path (61). When the electromagnetic valve (70) is closed, cooling medium flows in only the first circulation path (56).

Description

空気調和装置Air conditioner
 本発明は、ダクト等の空気通路を通って室内へ供給される空気を冷却する空気調和装置に関するものである。 The present invention relates to an air conditioner that cools air supplied to a room through an air passage such as a duct.
 従来より、ダクトを通じて室内へ供給される空気を冷却する空気調和装置が知られている。この空気調和装置によって冷却された空気は、ダクト内を流れて複数の部屋に分配される。 Conventionally, an air conditioner that cools air supplied to a room through a duct is known. The air cooled by the air conditioner flows through the duct and is distributed to a plurality of rooms.
 この種の空気調和装置は、例えば特許文献1に開示されている。この特許文献1には、船舶用の空気調和装置が開示されている。この空気調和装置の蒸発器を通過する際に冷却された空気は、ダクト内を流れて複数の船室へ供給される。 This type of air conditioner is disclosed in Patent Document 1, for example. Patent Document 1 discloses an air conditioner for a ship. The air cooled when passing through the evaporator of the air conditioner flows through the duct and is supplied to a plurality of cabins.
特開2008-008543号公報JP 2008-008543 A
 ところで、特許文献1の空気調和装置には、複数台の圧縮機と、一つの蒸発器とが設けられている。この種の空気調和装置において、蒸発器は、全ての圧縮機が運転された状態で冷媒を確実に蒸発させることができるように設計される。一方、複数台の圧縮機を備えた空気調和装置では、圧縮機の運転台数を空調負荷に応じて変更する場合がある。このため、複数の圧縮機のうち一部だけが運転される状態では、蒸発器の容量が相対的に過大となる。そして、圧縮機の運転台数を減らしたにも拘わらず空調能力が空調負荷に対して依然として過大となり、全ての圧縮機を停止させざるを得なくなる場合がある。 Incidentally, the air conditioner of Patent Document 1 is provided with a plurality of compressors and one evaporator. In this type of air conditioner, the evaporator is designed so that the refrigerant can be reliably evaporated in a state where all the compressors are operated. On the other hand, in an air conditioner including a plurality of compressors, the number of compressors operated may be changed according to the air conditioning load. For this reason, in a state where only some of the plurality of compressors are operated, the capacity of the evaporator is relatively excessive. In spite of the reduction in the number of operating compressors, the air conditioning capacity may still be excessive with respect to the air conditioning load, and all compressors may have to be stopped.
 圧縮機の運転中において、蒸発器では、空気中の水分が凝縮してドレン水となる。一方、空調能力が空調負荷に対して過大であることに起因して全ての圧縮機が停止すると、蒸発器において空気が冷却されなくなる。この状態では、蒸発器の周辺に残存するドレン水が、蒸発器を通過する空気によって暖められて再蒸発し、空気と共に室内へ送られてしまう。このため、室内の湿度が上昇し、快適性を損なうおそれがあった。 During operation of the compressor, moisture in the air condenses into drain water in the evaporator. On the other hand, if all the compressors stop due to the air conditioning capacity being excessive with respect to the air conditioning load, the air is not cooled in the evaporator. In this state, the drain water remaining around the evaporator is warmed by the air passing through the evaporator, re-evaporates, and is sent to the room together with the air. For this reason, there was a possibility that the indoor humidity would rise and impair comfort.
 本発明は、かかる点に鑑みてなされたものであり、その目的は、空気調和装置の運転中に全ての圧縮機が停止する頻度を低くし、室内の快適性を高く保つことにある。 The present invention has been made in view of such a point, and an object thereof is to reduce the frequency at which all the compressors stop during the operation of the air conditioner and to keep indoor comfort high.
 第1の発明は、冷媒を循環させて冷凍サイクルを行う冷媒回路(20)を備え、複数の部屋の吹出口(102)に接続する空気通路を流れる空気を冷媒によって冷却する空気調和装置(10)を対象とする。そして、上記冷媒回路(20)には、互いに並列接続された複数の圧縮機(31,32,33)を有する圧縮機ユニット(30)と、互いに並列接続されてそれぞれが冷媒を空気と熱交換させる複数の熱交換部(55,60,65)を有し、上記空気通路に設置される蒸発器(50)と、冷媒が通過する上記熱交換部(55,60,65)の数を変更するための流通制御機構(17)とが設けられるものである。 The first invention includes an air conditioner (10) that includes a refrigerant circuit (20) that circulates a refrigerant to perform a refrigeration cycle, and that cools air flowing through an air passage connected to an air outlet (102) of a plurality of rooms with the refrigerant. ). In the refrigerant circuit (20), a compressor unit (30) having a plurality of compressors (31, 32, 33) connected in parallel to each other, and each connected in parallel to each other, exchange heat between the refrigerant and air. The number of heat exchangers (55, 60, 65) to be changed and the number of evaporators (50) installed in the air passage and the heat exchangers (55, 60, 65) through which the refrigerant passes are changed And a distribution control mechanism (17).
 第1の発明では、冷媒回路(20)において冷凍サイクルが行われる。冷媒回路(20)の蒸発器(50)では、空気が冷却される。蒸発器(50)において冷却された空気は、空気通路を通って複数の部屋へ分配される。圧縮機ユニット(30)では、複数の圧縮機(31,32,33)が互いに並列接続されている。各圧縮機(31,32,33)の運転容量を変更したり、運転される圧縮機(31,32,33)の台数を変更すると、圧縮機ユニット(30)の運転容量が変化する。蒸発器(50)には、複数の熱交換部(55,60,65)が設けられる。蒸発器(50)において、複数の熱交換部(55,60,65)は、互いに並列に接続されている。例えば、全ての熱交換部(55,60,65)に冷媒が流入する場合、蒸発器(50)へ送られてきた冷媒は、各熱交換部(55,60,65)へ分配され、空気から吸熱して蒸発する。冷媒が流入する熱交換部(55,60,65)の数は、流通制御機構(17)によって変更される。冷媒が流入する熱交換部(55,60,65)の数を変更すれば、蒸発器(50)の容量が変化する。 In the first invention, a refrigeration cycle is performed in the refrigerant circuit (20). In the evaporator (50) of the refrigerant circuit (20), the air is cooled. Air cooled in the evaporator (50) is distributed to a plurality of rooms through an air passage. In the compressor unit (30), a plurality of compressors (31, 32, 33) are connected in parallel to each other. When the operating capacity of each compressor (31, 32, 33) is changed or the number of operated compressors (31, 32, 33) is changed, the operating capacity of the compressor unit (30) changes. The evaporator (50) is provided with a plurality of heat exchange parts (55, 60, 65). In the evaporator (50), the plurality of heat exchange parts (55, 60, 65) are connected in parallel to each other. For example, when the refrigerant flows into all the heat exchange parts (55, 60, 65), the refrigerant sent to the evaporator (50) is distributed to each heat exchange part (55, 60, 65) and air It absorbs heat and evaporates. The number of heat exchange parts (55, 60, 65) into which the refrigerant flows is changed by the flow control mechanism (17). If the number of heat exchange parts (55, 60, 65) into which the refrigerant flows is changed, the capacity of the evaporator (50) changes.
 第2の発明は、上記第1の発明において、上記流通制御機構(17)は、冷媒が通過する上記熱交換部(55,60,65)の数を上記圧縮機ユニット(30)の運転容量に応じて変更するものである。 In a second aspect based on the first aspect, the flow control mechanism (17) determines the operating capacity of the compressor unit (30) by determining the number of the heat exchange portions (55, 60, 65) through which the refrigerant passes. It will be changed according to.
 第2の発明では、圧縮機ユニット(30)の運転容量に応じて蒸発器(50)の容量が変更される。圧縮機ユニット(30)の運転容量が変化すると、蒸発器(50)を通過する冷媒の流量も変化する。このため、圧縮機ユニット(30)の運転容量に応じて冷媒が通過する熱交換部(55,60,65)の数を変更すれば、蒸発器(50)を通過する冷媒の流量に応じて蒸発器(50)の容量を調節できる。 In the second invention, the capacity of the evaporator (50) is changed according to the operating capacity of the compressor unit (30). When the operating capacity of the compressor unit (30) changes, the flow rate of the refrigerant passing through the evaporator (50) also changes. For this reason, if the number of heat exchange sections (55, 60, 65) through which the refrigerant passes is changed according to the operating capacity of the compressor unit (30), the flow rate of the refrigerant passing through the evaporator (50) is changed. The capacity of the evaporator (50) can be adjusted.
 第3の発明は、上記第2の発明において、上記圧縮機ユニット(30)に設けられた全ての圧縮機(31,32,33)が容量固定であり、上記圧縮機ユニット(30)は、運転される圧縮機(31,32,33)の台数を変更することによって運転容量を調節するように構成され、上記流通制御機構(17)は、運転される圧縮機(31,32,33)の台数が減少すると、冷媒が通過する上記熱交換部(55,60,65)の数を削減するものである。 According to a third aspect, in the second aspect, all the compressors (31, 32, 33) provided in the compressor unit (30) have a fixed capacity, and the compressor unit (30) The operation capacity is adjusted by changing the number of compressors (31, 32, 33) to be operated, and the distribution control mechanism (17) is configured to operate the compressor (31, 32, 33). The number of the heat exchangers (55, 60, 65) through which the refrigerant passes is reduced.
 第3の発明において、圧縮機ユニット(30)の運転容量は、運転される圧縮機(31,32,33)の台数を変更することによって調節される。従って、圧縮機ユニット(30)の運転容量は、段階的に変化する。運転される圧縮機(31,32,33)の台数が削減されて圧縮機ユニット(30)の運転容量が低下すると、流通制御機構(17)によって蒸発器(50)の容量が引き下げられる。つまり、圧縮機ユニット(30)の運転容量が低下して蒸発器(50)を通過する冷媒の流量が減少すると、それに応じて蒸発器(50)の容量が引き下げられる。 In the third invention, the operating capacity of the compressor unit (30) is adjusted by changing the number of compressors (31, 32, 33) to be operated. Therefore, the operating capacity of the compressor unit (30) changes in stages. When the number of compressors (31, 32, 33) to be operated is reduced and the operating capacity of the compressor unit (30) is reduced, the capacity of the evaporator (50) is reduced by the flow control mechanism (17). That is, when the operating capacity of the compressor unit (30) decreases and the flow rate of the refrigerant passing through the evaporator (50) decreases, the capacity of the evaporator (50) is reduced accordingly.
 第4の発明は、上記第1~第3の何れか一つの発明において、上記冷媒回路(20)には、上記蒸発器(50)の各熱交換部(55,60,65)へ向かって分岐する前の冷媒を膨張させる一つの膨張弁(40)が設けられるものである。 According to a fourth invention, in any one of the first to third inventions, the refrigerant circuit (20) is directed to each heat exchange section (55, 60, 65) of the evaporator (50). One expansion valve (40) for expanding the refrigerant before branching is provided.
 第4の発明では、一つの膨張弁(40)が冷媒回路(20)に設けられる。冷媒回路(20)を循環する冷媒は、膨張弁(40)を通過する際に膨張し、その後に蒸発器(50)の各熱交換部(55,60,65)へ分配される。 In the fourth invention, one expansion valve (40) is provided in the refrigerant circuit (20). The refrigerant circulating in the refrigerant circuit (20) expands when passing through the expansion valve (40), and is then distributed to the heat exchange parts (55, 60, 65) of the evaporator (50).
 第5の発明は、上記第1~第3の何れか一つの発明において、上記冷媒回路(20)には、上記蒸発器(50)の各熱交換部(55,60,65)に一つずつ接続され、各熱交換部(55,60,65)へ向かって分岐した冷媒が流れる複数の分岐管(26,27,28)が設けられ、上記分岐管(26,27,28)のそれぞれには、冷媒を膨張させる膨張弁(41,42,43)が一つずつ設けられるものである。 According to a fifth aspect of the present invention, in any one of the first to third aspects, the refrigerant circuit (20) includes one heat exchange section (55, 60, 65) of the evaporator (50). A plurality of branch pipes (26, 27, 28) through which refrigerant branched toward each heat exchange section (55, 60, 65) flows are provided, and each of the branch pipes (26, 27, 28) Are provided with expansion valves (41, 42, 43) for expanding the refrigerant one by one.
 第5の発明では、蒸発器(50)に設けられた熱交換部(55,60,65)と同数の膨張弁(41,42,43)が冷媒回路(20)に設けられる。冷媒回路(20)を循環する冷媒は、蒸発器(50)の各熱交換部(55,60,65)へ向かって分配された後に膨張弁(41,42,43)を通過して膨張し、その後、通過した膨張弁(41,42,43)に対応する熱交換部(55,60,65)へ流入する。 In the fifth invention, the refrigerant circuit (20) includes the same number of expansion valves (41, 42, 43) as the heat exchanging units (55, 60, 65) provided in the evaporator (50). The refrigerant circulating in the refrigerant circuit (20) is distributed toward the heat exchange parts (55, 60, 65) of the evaporator (50) and then expands through the expansion valves (41, 42, 43). Then, it flows into the heat exchange part (55, 60, 65) corresponding to the expansion valve (41, 42, 43) that has passed.
 本発明では、冷媒が流入する熱交換部(55,60,65)の数を流通制御機構(17)によって変更すると、蒸発器(50)の容量が変化する。このため、空気調和装置(10)の空調能力を空調負荷に合わせるために圧縮機ユニット(30)の運転容量を削減した場合は、冷媒が流入する熱交換部(55,60,65)の数を削減して蒸発器(50)の容量を引き下げることによって、空気調和装置(10)の空調能力を確実に低下させることができる。その結果、空気調和装置(10)の空調能力の調節範囲の下限を従来よりも引き下げることができ、空気調和装置(10)の運転中に全ての圧縮機(31,32,33)が停止してしまう頻度を低くすることができる。従って、本発明によれば、“全ての圧縮機(31,32,33)が停止した状態でドレン水が再蒸発して室内へ送られる現象”が生じる頻度を低減でき、室内の快適性を高く保つことが可能となる。 In the present invention, when the number of heat exchange parts (55, 60, 65) into which the refrigerant flows is changed by the flow control mechanism (17), the capacity of the evaporator (50) changes. For this reason, when the operating capacity of the compressor unit (30) is reduced in order to match the air conditioning capacity of the air conditioner (10) with the air conditioning load, the number of heat exchange parts (55, 60, 65) into which refrigerant flows By reducing the capacity of the evaporator (50) and reducing the capacity of the air conditioner (10), the air conditioning capacity of the air conditioner (10) can be reliably reduced. As a result, the lower limit of the adjustment range of the air conditioning capacity of the air conditioner (10) can be lowered than before, and all the compressors (31, 32, 33) are stopped during the operation of the air conditioner (10). It is possible to reduce the frequency of occurrence. Therefore, according to the present invention, it is possible to reduce the frequency of occurrence of “a phenomenon in which drain water is re-evaporated and sent to the room when all the compressors (31, 32, 33) are stopped”, and indoor comfort is improved. It can be kept high.
 上記第2の発明では、冷媒が通過する熱交換部(55,60,65)の数を圧縮機ユニット(30)の運転容量に応じて変更しているため、蒸発器(50)を通過する冷媒の流量に応じて蒸発器(50)の容量を調節できる。従って、この発明によれば、蒸発器(50)の容量を適切に設定することができ、空気調和装置(10)の空調能力を一層適切に調節することが可能となる。 In the said 2nd invention, since the number of the heat exchange parts (55, 60, 65) through which a refrigerant passes is changed according to the operation capacity of a compressor unit (30), it passes through an evaporator (50). The capacity of the evaporator (50) can be adjusted according to the flow rate of the refrigerant. Therefore, according to this invention, the capacity | capacitance of an evaporator (50) can be set appropriately and it becomes possible to adjust the air-conditioning capability of an air conditioning apparatus (10) more appropriately.
 上記第3の発明では、運転される圧縮機(31,32,33)の台数が増減すると、それに応じて、冷媒が通過する熱交換部(55,60,65)の数も増減する。従って、この発明によれば、段階的に変化する圧縮機ユニット(30)の運転容量に応じて蒸発器(50)の容量を適切に変更することができ、空気調和装置(10)の空調能力を一層適切に調節することが可能となる。 In the third aspect of the present invention, when the number of operated compressors (31, 32, 33) increases or decreases, the number of heat exchange sections (55, 60, 65) through which the refrigerant passes increases or decreases accordingly. Therefore, according to this invention, the capacity | capacitance of an evaporator (50) can be changed appropriately according to the operation capacity of the compressor unit (30) which changes in steps, and the air-conditioning capability of an air conditioning apparatus (10) Can be adjusted more appropriately.
 上記第4の発明では、一つの膨張弁(40)を用いて全ての熱交換部(55,60,65)へ流入する冷媒を膨張させることができる。従って、この発明によれば、空気調和装置(10)の部品点数の増加を抑制できる。 In the fourth aspect of the invention, the refrigerant flowing into all the heat exchanging parts (55, 60, 65) can be expanded using one expansion valve (40). Therefore, according to this invention, the increase in the number of parts of an air conditioning apparatus (10) can be suppressed.
 上記第5の発明では、各熱交換部(55,60,65)へ流入する冷媒の流量を、各熱交換部(55,60,65)に対応する膨張弁(41,42,43)の開度を調節することによって、個別に制御できる。従って、この発明によれば、蒸発器(50)の各熱交換部(55,60,65)を流れる冷媒の流量を適切に調節することができ、空気調和装置(10)の空調能力を最大限発揮させることが可能となる。 In the fifth aspect of the invention, the flow rate of the refrigerant flowing into each heat exchanging portion (55, 60, 65) is set to the expansion valve (41, 42, 43) corresponding to each heat exchanging portion (55, 60, 65). It can be controlled individually by adjusting the opening. Therefore, according to the present invention, it is possible to appropriately adjust the flow rate of the refrigerant flowing through each heat exchange section (55, 60, 65) of the evaporator (50), and to maximize the air conditioning capability of the air conditioner (10). It is possible to make it to the limit.
図1は、船舶用空調システムの概略構成図である。FIG. 1 is a schematic configuration diagram of a marine air conditioning system. 図2は、空気調和装置の概略構成図である。FIG. 2 is a schematic configuration diagram of the air conditioner. 図3は、実施形態1の変形例1の冷媒回路の要部を示す冷媒回路図である。FIG. 3 is a refrigerant circuit diagram illustrating a main part of the refrigerant circuit according to the first modification of the first embodiment. 図4は、実施形態1の変形例1の冷媒回路の要部を示す冷媒回路図である。FIG. 4 is a refrigerant circuit diagram illustrating a main part of the refrigerant circuit according to the first modification of the first embodiment. 図5は、実施形態1の変形例2の冷媒回路の要部を示す冷媒回路図である。FIG. 5 is a refrigerant circuit diagram illustrating a main part of the refrigerant circuit according to the second modification of the first embodiment. 図6は、図2の冷媒回路に対応する実施形態2の冷媒回路の要部を示す冷媒回路図である。FIG. 6 is a refrigerant circuit diagram showing a main part of the refrigerant circuit of the second embodiment corresponding to the refrigerant circuit of FIG. 図7は、図3の冷媒回路に対応する実施形態2の冷媒回路の要部を示す冷媒回路図である。FIG. 7 is a refrigerant circuit diagram illustrating a main part of the refrigerant circuit of the second embodiment corresponding to the refrigerant circuit of FIG. 3. 図8は、図4の冷媒回路に対応する実施形態2の冷媒回路の要部を示す冷媒回路図である。FIG. 8 is a refrigerant circuit diagram illustrating a main part of the refrigerant circuit of the second embodiment corresponding to the refrigerant circuit of FIG. 4. 図9は、図5の冷媒回路に対応する実施形態2の冷媒回路の要部を示す冷媒回路図である。FIG. 9 is a refrigerant circuit diagram illustrating a main part of the refrigerant circuit of the second embodiment corresponding to the refrigerant circuit of FIG. 5. 図10は、図6の冷媒回路に対応する実施形態2の変形例の冷媒回路の要部を示す冷媒回路図である。FIG. 10 is a refrigerant circuit diagram showing a main part of a refrigerant circuit of a modification of the second embodiment corresponding to the refrigerant circuit of FIG. 図11は、図2の冷媒回路に対応するその他の実施形態の第1変形例の冷媒回路の要部を示す冷媒回路図である。FIG. 11 is a refrigerant circuit diagram illustrating a main part of a refrigerant circuit of a first modified example of the other embodiment corresponding to the refrigerant circuit of FIG. 2. 図12は、図6の冷媒回路に対応するその他の実施形態の第1変形例の冷媒回路の要部を示す冷媒回路図である。FIG. 12 is a refrigerant circuit diagram illustrating a main part of a refrigerant circuit of a first modified example of the other embodiment corresponding to the refrigerant circuit of FIG. 6. 図13は、図2の蒸発器に対応するその他の実施形態の第2変形例の蒸発器の要部の概略構成図である。FIG. 13: is a schematic block diagram of the principal part of the evaporator of the 2nd modification of other embodiment corresponding to the evaporator of FIG.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 《発明の実施形態1》
 本発明の実施形態1について説明する。本実施形態の空気調和装置(10)は、船舶用の空調システムに設けられており、部屋である船室(103)に調和空気を供給する。
Embodiment 1 of the Invention
A first embodiment of the present invention will be described. The air conditioner (10) of the present embodiment is provided in a ship air conditioning system and supplies conditioned air to a cabin (103) that is a room.
 図1に示すように、空気調和装置(10)のケーシング(11)には、吸込ダクト(100)と給気ダクト(101)とが接続されている。吸込ダクト(100)及び給気ダクト(101)は、ケーシング(11)内に形成されて吸込ダクト(100)及び給気ダクト(101)に連通する空間と共に、空気が流れる空気通路を構成している。吸込ダクト(100)には、船室(103)内の室内空気と、屋外の室外空気とが取り込まれる。空気調和装置(10)には、室内空気と室外空気の混合空気が吸込ダクト(100)を通って送られる。給気ダクト(101)は、各船室(103)に開口する吹出口(102)に接続されている。空気調和装置(10)から吹き出された空気は、給気ダクト(101)を通って複数の船室(103)に分配される。 As shown in FIG. 1, a suction duct (100) and an air supply duct (101) are connected to the casing (11) of the air conditioner (10). The suction duct (100) and the air supply duct (101) are formed in the casing (11) to form an air passage through which air flows together with a space communicating with the suction duct (100) and the air supply duct (101). Yes. The intake duct (100) takes in indoor air in the cabin (103) and outdoor outdoor air. A mixed air of indoor air and outdoor air is sent to the air conditioner (10) through the suction duct (100). The air supply duct (101) is connected to the air outlet (102) opening in each cabin (103). The air blown out from the air conditioner (10) is distributed to the plurality of cabins (103) through the air supply duct (101).
 図2に示すように、本実施形態の空気調和装置(10)は、冷媒回路(20)と、送風機(15)と、制御器(16)とを備えている。冷媒回路(20)、送風機(15)、及び制御器(16)は、ケーシング(11)内に収容されている。ケーシング(11)内では、吸込ダクト(100)及び給気ダクト(101)に連通する空間に、送風機(15)と、後述する冷媒回路(20)の蒸発器(50)とが配置されている。 As shown in FIG. 2, the air conditioner (10) of this embodiment includes a refrigerant circuit (20), a blower (15), and a controller (16). The refrigerant circuit (20), the blower (15), and the controller (16) are accommodated in the casing (11). In the casing (11), a blower (15) and an evaporator (50) of a refrigerant circuit (20) to be described later are arranged in a space communicating with the suction duct (100) and the air supply duct (101). .
 冷媒回路(20)には、圧縮機ユニット(30)と、凝縮器(35)と、膨張弁(40)と、蒸発器(50)とが設けられている。また、冷媒回路(20)には、冷媒が充填されている。冷媒回路(20)は、圧縮機ユニット(30)と、凝縮器(35)と、膨張弁(40)と、蒸発器(50)とを順に配管で接続して構成された閉回路である。 The refrigerant circuit (20) is provided with a compressor unit (30), a condenser (35), an expansion valve (40), and an evaporator (50). The refrigerant circuit (20) is filled with refrigerant. The refrigerant circuit (20) is a closed circuit configured by connecting a compressor unit (30), a condenser (35), an expansion valve (40), and an evaporator (50) in order by piping.
 圧縮機ユニット(30)は、三台の圧縮機(31,32,33)を備えている。なお、圧縮機ユニット(30)に設けられた圧縮機(31,32,33)の台数は、単なる一例である。各圧縮機(31,32,33)は、全密閉型のスクロール圧縮機(31,32,33)である。また、各圧縮機(31,32,33)は、回転速度を変更できない容量固定型となっている。 Compressor unit (30) has three compressors (31, 32, 33). The number of compressors (31, 32, 33) provided in the compressor unit (30) is merely an example. Each compressor (31, 32, 33) is a hermetic scroll compressor (31, 32, 33). Each compressor (31, 32, 33) is a fixed capacity type in which the rotation speed cannot be changed.
 圧縮機ユニット(30)において、三台の圧縮機(31,32,33)は、互いに並列に接続されている。具体的に、各圧縮機(31,32,33)の吸入管(31a,32a,33a)は、後述する蒸発器(50)の出口配管(52)に接続されている。また、各圧縮機(31,32,33)の吐出管(31b,32b,33b)は、凝縮器(35)の冷媒入口に接続されている。各圧縮機(31,32,33)は、吸入管(31a,32a,33a)から吸い込んだ冷媒を圧縮し、圧縮した冷媒を吐出管(31b,32b,33b)から吐出する。 In the compressor unit (30), the three compressors (31, 32, 33) are connected in parallel to each other. Specifically, the suction pipe (31a, 32a, 33a) of each compressor (31, 32, 33) is connected to an outlet pipe (52) of an evaporator (50) described later. The discharge pipes (31b, 32b, 33b) of the compressors (31, 32, 33) are connected to the refrigerant inlet of the condenser (35). Each compressor (31, 32, 33) compresses the refrigerant sucked from the suction pipe (31a, 32a, 33a), and discharges the compressed refrigerant from the discharge pipe (31b, 32b, 33b).
 圧縮機ユニット(30)の運転容量は、圧縮機(31,32,33)の運転台数を変更することによって調節される。一般には、インバータを用いて各圧縮機(31,32,33)の回転速度を変更し、それによって圧縮機ユニット(30)の運転容量を調節することが考えられる。ところが、インバータを用いると電磁波ノイズが発生し、救難通信等の無線通信に悪影響を及ぼす可能性がある。また、インバータで生じる逆相電流によって発電機の能力が低下するおそれもある。このため、船舶用の空気調和装置(10)では、圧縮機ユニット(30)の運転容量を調節するためにインバータを用いようとすると、上述したような弊害を解消するための対策が必要となり、その製造コストが大幅に増大してしまう。従って、本実施形態の圧縮機ユニット(30)は、圧縮機(31,32,33)の運転台数を変更することで運転容量を調節するように構成されている。 The operating capacity of the compressor unit (30) is adjusted by changing the number of operating compressors (31, 32, 33). In general, it is conceivable to change the rotational speed of each compressor (31, 32, 33) using an inverter and thereby adjust the operating capacity of the compressor unit (30). However, when an inverter is used, electromagnetic noise is generated, which may adversely affect wireless communication such as rescue communication. In addition, the capacity of the generator may be reduced due to the reverse phase current generated in the inverter. For this reason, in an air conditioner for a ship (10), if an inverter is used to adjust the operating capacity of the compressor unit (30), a measure for eliminating the above-described adverse effects is required. The manufacturing cost is greatly increased. Therefore, the compressor unit (30) of this embodiment is configured to adjust the operating capacity by changing the number of operating compressors (31, 32, 33).
 凝縮器(35)は、いわゆるシェル・アンド・チューブ型の熱交換器であって、冷媒を冷却水(具体的には、海水や河川等から取り込まれた水)と熱交換させる。凝縮器(35)の冷媒出口は、配管(25)を介して蒸発器(50)に接続されている。配管(25)の途中には、膨張弁(40)が設けられている。 The condenser (35) is a so-called shell-and-tube heat exchanger, and exchanges heat between the refrigerant and cooling water (specifically, water taken from seawater or rivers). The refrigerant outlet of the condenser (35) is connected to the evaporator (50) via the pipe (25). An expansion valve (40) is provided in the middle of the pipe (25).
 膨張弁(40)は、いわゆる温度自動膨張弁である。膨張弁(40)の感温筒(40a)は、蒸発器(50)の出口配管(52)に取り付けられ、出口配管(52)の表面と接している。 The expansion valve (40) is a so-called temperature automatic expansion valve. The temperature sensing cylinder (40a) of the expansion valve (40) is attached to the outlet pipe (52) of the evaporator (50) and is in contact with the surface of the outlet pipe (52).
 配管(25)は、膨張弁(40)の下流側の部分が二つに分岐されており、その第1分岐管(26)が蒸発器(50)の第1流通路(56)の一端に、その第2分岐管(27)が蒸発器(50)の第2流通路(61)の一端に、それぞれ接続されている。また、この配管(25)の第2分岐管(27)には、流通制御機構(17)を構成する電磁弁(70)が設けられている。 In the pipe (25), the downstream portion of the expansion valve (40) is branched into two, and the first branch pipe (26) is connected to one end of the first flow path (56) of the evaporator (50). The second branch pipe (27) is connected to one end of the second flow passage (61) of the evaporator (50). The second branch pipe (27) of the pipe (25) is provided with an electromagnetic valve (70) that constitutes a flow control mechanism (17).
 蒸発器(50)は、いわゆるクロスフィン型のフィン・アンド・チューブ熱交換器であって、銅製の伝熱管とアルミニウム製のフィン(51)とによって構成されている。この蒸発器(50)は、冷媒を空気と熱交換させる。 The evaporator (50) is a so-called cross fin type fin-and-tube heat exchanger, and is constituted by a copper heat transfer tube and an aluminum fin (51). The evaporator (50) exchanges heat between the refrigerant and air.
 蒸発器(50)には、第1熱交換部(55)と第2熱交換部(60)とが形成されている。各熱交換部(55,60)は、伝熱管によって構成された流通路(56,61)と、流通路(56,61)を構成する伝熱管に接合されたフィン(51)とによって構成されている。蒸発器(50)において、各熱交換部(55,60)を構成するフィン(51)は、互いに一体となっている。 In the evaporator (50), a first heat exchange part (55) and a second heat exchange part (60) are formed. Each heat exchange part (55,60) is comprised by the flow path (56,61) comprised by the heat exchanger tube, and the fin (51) joined to the heat exchanger tube which comprises a flow path (56,61). ing. In the evaporator (50), the fins (51) constituting each heat exchange section (55, 60) are integrated with each other.
 上述したように、蒸発器(50)では、第1流通路(56)の一端が第1分岐管(26)を介して膨張弁(40)に接続され、第2流通路(61)の一端が第2分岐管(27)を介して膨張弁(40)に接続されている。また、蒸発器(50)において、各流通路(56,61)の他端は、出口配管(52)に接続されている。 As described above, in the evaporator (50), one end of the first flow passage (56) is connected to the expansion valve (40) via the first branch pipe (26), and one end of the second flow passage (61). Is connected to the expansion valve (40) via the second branch pipe (27). In the evaporator (50), the other end of each flow passage (56, 61) is connected to the outlet pipe (52).
 空気調和装置(10)には、吹出風温センサ(81)と、蒸発温度センサ(82)とが設けられている。吹出風温センサ(81)は、空気の流通経路における蒸発器(50)の下流側に配置されている。この吹出風温センサ(81)は、蒸発器(50)を通過して給気ダクト(101)へ送られる空気の温度を計測する。蒸発温度センサ(82)は、蒸発器(50)の第1流通路(56)を構成する伝熱管に取り付けられ、この伝熱管の表面と接している。この蒸発温度センサ(82)は、伝熱管の表面温度を、蒸発器(50)における冷媒の蒸発温度として計測する。 The air conditioner (10) is provided with a blown air temperature sensor (81) and an evaporation temperature sensor (82). The blown air temperature sensor (81) is disposed on the downstream side of the evaporator (50) in the air flow path. The blown air temperature sensor (81) measures the temperature of the air that passes through the evaporator (50) and is sent to the air supply duct (101). The evaporation temperature sensor (82) is attached to the heat transfer tube constituting the first flow path (56) of the evaporator (50) and is in contact with the surface of the heat transfer tube. The evaporation temperature sensor (82) measures the surface temperature of the heat transfer tube as the refrigerant evaporation temperature in the evaporator (50).
 制御器(16)は、圧縮機ユニット(30)の運転容量を調節する動作と、電磁弁(70)を操作する動作とを行う。具体的に、制御器(16)には、吹出風温センサ(81)の計測値と、蒸発温度センサ(82)の計測値とが入力されている。そして、制御器(16)は、吹出風温センサ(81)の計測値に基づいて圧縮機ユニット(30)の運転容量を調節し、蒸発温度センサ(82)の計測値に基づいて電磁弁(70)を開閉する。 The controller (16) performs an operation for adjusting the operating capacity of the compressor unit (30) and an operation for operating the solenoid valve (70). Specifically, the measured value of the blown air temperature sensor (81) and the measured value of the evaporation temperature sensor (82) are input to the controller (16). Then, the controller (16) adjusts the operating capacity of the compressor unit (30) based on the measured value of the blown air temperature sensor (81), and based on the measured value of the evaporation temperature sensor (82), the solenoid valve ( 70) open and close.
  -運転動作-
 空気調和装置(10)の運転動作について説明する。
-Driving operation-
The operation of the air conditioner (10) will be described.
 先ず、冷媒回路(20)の動作について、図2を参照しながら説明する。ここでは、圧縮機ユニット(30)の運転容量が最大であり、電磁弁(70)が開いている状態を例に説明する。 First, the operation of the refrigerant circuit (20) will be described with reference to FIG. Here, an example will be described in which the operating capacity of the compressor unit (30) is maximum and the solenoid valve (70) is open.
 圧縮機ユニット(30)の運転容量が最大の場合は、全ての圧縮機(31,32,33)が運転される。各圧縮機(31,32,33)から吐出された冷媒は、合流した後に凝縮器(35)へ流入し、冷却水へ放熱して凝縮する。凝縮器(35)において凝縮した冷媒は、膨張弁(40)を通過する際に減圧されて気液二相状態となる。 When the operating capacity of the compressor unit (30) is maximum, all the compressors (31, 32, 33) are operated. The refrigerant discharged from the compressors (31, 32, 33) joins and then flows into the condenser (35), dissipates heat to the cooling water, and is condensed. The refrigerant condensed in the condenser (35) is reduced in pressure when passing through the expansion valve (40) to be in a gas-liquid two-phase state.
 膨張弁(40)を通過した冷媒は、蒸発器(50)へ流入する。具体的に、膨張弁(40)を通過した冷媒は、その一部が第1分岐管(26)を通って第1熱交換部(55)の第1流通路(56)へ流入し、残りが第2分岐管(27)を通って第2熱交換部(60)の第2流通路(61)へ流入する。各流通路(56,61)を流れる冷媒は、フィン(51)間を通過する空気から吸熱して蒸発し、通常は過熱蒸気となって出口配管(52)へ流入する。 The refrigerant that has passed through the expansion valve (40) flows into the evaporator (50). Specifically, a part of the refrigerant that has passed through the expansion valve (40) flows into the first flow passage (56) of the first heat exchange section (55) through the first branch pipe (26) and remains. Flows into the second flow path (61) of the second heat exchange section (60) through the second branch pipe (27). The refrigerant flowing through the flow passages (56, 61) absorbs heat from the air passing between the fins (51) and evaporates, and normally flows into the outlet pipe (52) as superheated steam.
 各流通路(56,61)から出口配管(52)へ流入した冷媒は、蒸発器(50)から流出し、その後に三台の圧縮機(31,32,33)に分かれて吸入される。各圧縮機(31,32,33)へ吸入された冷媒は、圧縮された後に各圧縮機(31,32,33)から吐出される。 The refrigerant that has flowed into the outlet pipe (52) from each flow passage (56, 61) flows out of the evaporator (50), and is then sucked into three compressors (31, 32, 33). The refrigerant sucked into each compressor (31, 32, 33) is compressed and then discharged from each compressor (31, 32, 33).
 上述したように、膨張弁(40)の感温筒(40a)は、蒸発器(50)の出口配管(52)に取り付けられている。従って、膨張弁(40)の開度は、出口配管(52)を流れる冷媒の過熱度が所定の目標過熱度となるように調節される。つまり、出口配管(52)を流れる冷媒の過熱度が高すぎる場合は、過熱度を引き下げるために膨張弁(40)の開度が拡大される。一方、出口配管(52)を流れる冷媒の過熱度が低すぎる場合は、過熱度を引き上げるために膨張弁(40)の開度が縮小される。 As described above, the temperature sensing cylinder (40a) of the expansion valve (40) is attached to the outlet pipe (52) of the evaporator (50). Therefore, the opening degree of the expansion valve (40) is adjusted so that the superheat degree of the refrigerant flowing through the outlet pipe (52) becomes a predetermined target superheat degree. That is, when the degree of superheat of the refrigerant flowing through the outlet pipe (52) is too high, the opening degree of the expansion valve (40) is expanded to lower the degree of superheat. On the other hand, when the degree of superheat of the refrigerant flowing through the outlet pipe (52) is too low, the opening degree of the expansion valve (40) is reduced in order to raise the degree of superheat.
 次に、空気の流れについて、図1を参照しながら説明する。空気調和装置(10)の運転中には、送風機(15)が運転される。送風機(15)は、給気ダクト(101)から空気を吸い込む。このため、空気調和装置(10)には、船室(103)内の室内空気と船外の室外空気とが、給気ダクト(101)を通って吸い込まれる。 Next, the air flow will be described with reference to FIG. During the operation of the air conditioner (10), the blower (15) is operated. The blower (15) sucks air from the air supply duct (101). For this reason, the indoor air in the cabin (103) and the outdoor air outside the vessel are sucked into the air conditioner (10) through the air supply duct (101).
 空気調和装置(10)に吸い込まれた空気は、蒸発器(50)を通過する間に冷媒によって冷却される。通常、蒸発器(50)を通過した空気の温度は、蒸発器(50)へ送られる空気の露点温度よりも低くなる。このため、蒸発器(50)では、空気に含まれる水蒸気が凝縮してドレン水となる。つまり、蒸発器(50)では、空気の冷却と除湿が行われる。冷却され且つ除湿された空気は、空気調和装置(10)から給気ダクト(101)へ送り出される。給気ダクト(101)を流れる空気は、各船室(103)に設けられた吹出口(102)へ分配され、吹出口(102)から船室(103)へ吹き出される。 The air sucked into the air conditioner (10) is cooled by the refrigerant while passing through the evaporator (50). Usually, the temperature of the air that has passed through the evaporator (50) is lower than the dew point temperature of the air sent to the evaporator (50). For this reason, in the evaporator (50), the water vapor contained in the air is condensed to become drain water. That is, in the evaporator (50), air is cooled and dehumidified. The cooled and dehumidified air is sent out from the air conditioner (10) to the air supply duct (101). The air flowing through the air supply duct (101) is distributed to the air outlet (102) provided in each cabin (103), and blown out from the air outlet (102) to the cabin (103).
  -制御器の動作-
 制御器(16)が行う動作について説明する。
-Controller operation-
The operation performed by the controller (16) will be described.
 先ず、圧縮機ユニット(30)の運転容量を調節する動作について説明する。制御器(16)は、吹出風温センサ(81)の計測値が所定の設定温度となるように、圧縮機ユニット(30)の運転容量を調節する。 First, the operation of adjusting the operating capacity of the compressor unit (30) will be described. The controller (16) adjusts the operating capacity of the compressor unit (30) so that the measured value of the blown air temperature sensor (81) becomes a predetermined set temperature.
 具体的に、吹出風温センサ(81)の計測値が設定温度よりも低い場合、制御器(16)は、吹出風温センサ(81)の計測値を引き上げるために、圧縮機ユニット(30)における圧縮機(31,32,33)の運転台数を一台ずつ減らしてゆく。つまり、この場合、制御器(16)は、圧縮機ユニット(30)の運転容量を、段階的に低下させてゆく。また、圧縮機(31,32,33)のうちの一台だけが運転されている状態でも吹出風温センサ(81)の計測値が設定温度よりも低い場合、制御器(16)は、全ての圧縮機(31,32,33)を停止させる。 Specifically, when the measured value of the blown air temperature sensor (81) is lower than the set temperature, the controller (16) causes the compressor unit (30) to raise the measured value of the blown air temperature sensor (81). We will reduce the number of compressors (31, 32, 33) in the factory one by one. That is, in this case, the controller (16) gradually reduces the operating capacity of the compressor unit (30). In addition, even when only one of the compressors (31, 32, 33) is operating, if the measured value of the blown air temperature sensor (81) is lower than the set temperature, the controller (16) The compressors (31, 32, 33) are stopped.
 一方、吹出風温センサ(81)の計測値が設定温度よりも高い場合、制御器(16)は、吹出風温センサ(81)の計測値を引き下げるために、圧縮機ユニット(30)における圧縮機(31,32,33)の運転台数を一台ずつ増やしてゆく。つまり、この場合、制御器(16)は、圧縮機ユニット(30)の運転容量を、段階的に増加させてゆく。 On the other hand, when the measured value of the blown air temperature sensor (81) is higher than the set temperature, the controller (16) compresses the compressor unit (30) to reduce the measured value of the blown air temperature sensor (81). Increase the number of machines (31, 32, 33) to be operated one by one. That is, in this case, the controller (16) gradually increases the operation capacity of the compressor unit (30).
 次に、電磁弁(70)を操作する動作について説明する。制御器(16)は、蒸発温度センサ(82)の計測値が所定の基準範囲に保たれるように、電磁弁(70)を開閉する。 Next, the operation of operating the solenoid valve (70) will be described. The controller (16) opens and closes the electromagnetic valve (70) so that the measured value of the evaporation temperature sensor (82) is maintained within a predetermined reference range.
 具体的に、電磁弁(70)が開放されている状態で蒸発温度センサ(82)の計測値が基準範囲の上限値を上回ると、制御器(16)は、電磁弁(70)を閉鎖する。電磁弁(70)が閉鎖された状態において、蒸発器(50)では、第2熱交換部(60)の第2流通路(61)へは冷媒が流入せず、第1熱交換部(55)の第1流通路(56)だけに冷媒が流入する。 Specifically, when the measured value of the evaporation temperature sensor (82) exceeds the upper limit value of the reference range with the solenoid valve (70) opened, the controller (16) closes the solenoid valve (70). . In the state where the solenoid valve (70) is closed, in the evaporator (50), the refrigerant does not flow into the second flow path (61) of the second heat exchange section (60), and the first heat exchange section (55 The refrigerant flows only into the first flow path (56).
 圧縮機ユニット(30)の運転容量が小さい状態で電磁弁(70)が開いていると、冷媒回路(20)を循環する冷媒の流量に対して蒸発器(50)の容量が過大となり、蒸発器(50)における冷媒の蒸発温度が上昇する可能性が高い。そこで、このような場合、制御器(16)は、蒸発器(50)の容量を引き下げるために、電磁弁(70)を閉鎖する。電磁弁(70)が閉鎖されると、第1流通路(56)だけに冷媒が流入するため、蒸発器(50)の容量が小さくなる。このため、蒸発器(50)における冷媒の蒸発温度が低下してゆく。 If the solenoid valve (70) is open when the operating capacity of the compressor unit (30) is small, the capacity of the evaporator (50) will be excessive with respect to the flow rate of the refrigerant circulating in the refrigerant circuit (20), causing evaporation. The evaporation temperature of the refrigerant in the vessel (50) is likely to rise. Therefore, in such a case, the controller (16) closes the solenoid valve (70) in order to reduce the capacity of the evaporator (50). When the solenoid valve (70) is closed, the refrigerant flows only into the first flow passage (56), so the capacity of the evaporator (50) is reduced. For this reason, the evaporation temperature of the refrigerant in the evaporator (50) decreases.
 一方、電磁弁(70)が閉鎖されている状態で蒸発温度センサ(82)の計測値が基準範囲の下限値を下回ると、制御器(16)は、電磁弁(70)を開放する。電磁弁(70)が開放された状態において、蒸発器(50)では、第1熱交換部(55)の第1流通路(56)と第2熱交換部(60)の第2流通路(61)の両方に冷媒が流入する。 On the other hand, when the measured value of the evaporation temperature sensor (82) falls below the lower limit value of the reference range with the solenoid valve (70) closed, the controller (16) opens the solenoid valve (70). In the state where the solenoid valve (70) is opened, in the evaporator (50), the first flow path (56) of the first heat exchange unit (55) and the second flow path ( 61) The refrigerant flows into both.
 圧縮機ユニット(30)の運転容量が大きい状態で電磁弁(70)が閉じていると、冷媒回路(20)を循環する冷媒の流量に対して蒸発器(50)の容量が過小となり、蒸発器(50)における冷媒の蒸発温度が低下する可能性が高い。そこで、このような場合、制御器(16)は、蒸発器(50)の容量を引き上げるために、電磁弁(70)を開放する。電磁弁(70)が開放されると、第1流通路(56)と第2流通路(61)の両方に冷媒が流入するため、蒸発器(50)の容量が大きくなる。このため、蒸発器(50)における冷媒の蒸発温度が上昇してゆく。 If the solenoid valve (70) is closed while the operating capacity of the compressor unit (30) is large, the capacity of the evaporator (50) becomes too small relative to the flow rate of the refrigerant circulating in the refrigerant circuit (20), causing evaporation. The evaporation temperature of the refrigerant in the vessel (50) is likely to be reduced. Therefore, in such a case, the controller (16) opens the electromagnetic valve (70) in order to increase the capacity of the evaporator (50). When the solenoid valve (70) is opened, the refrigerant flows into both the first flow path (56) and the second flow path (61), so the capacity of the evaporator (50) increases. For this reason, the evaporation temperature of the refrigerant in the evaporator (50) increases.
  -実施形態1の効果-
 上述したように、空気調和装置(10)の運転中には、制御器(16)が圧縮機ユニット(30)の運転容量を調節する。そして、船室(103)の冷房負荷が非常に小さい場合には、空気調和装置(10)の運転中であっても、圧縮機ユニット(30)の全ての圧縮機(31,32,33)が停止することがある。一方、空気調和装置(10)は、室内空気と室外空気の混合空気を取り込んで船室(103)へ供給している。つまり、この空気調和装置(10)は、船室(103)の冷房だけでなく、換気も行っている。船室(103)の換気は、船室(103)の冷房負荷の如何に拘わらず、常に行われる必要がある。このため、空気調和装置(10)の運転中には、圧縮機ユニット(30)の全ての圧縮機(31,32,33)が停止した状態であっても、送風機(15)の運転が継続される。
-Effect of Embodiment 1-
As described above, the controller (16) adjusts the operating capacity of the compressor unit (30) during the operation of the air conditioner (10). When the cooling load of the cabin (103) is very small, all the compressors (31, 32, 33) of the compressor unit (30) are in operation even when the air conditioner (10) is in operation. May stop. On the other hand, the air conditioner (10) takes in mixed air of indoor air and outdoor air and supplies it to the cabin (103). That is, the air conditioner (10) performs not only cooling of the cabin (103) but also ventilation. Ventilation of the cabin (103) must always be performed regardless of the cooling load of the cabin (103). For this reason, during the operation of the air conditioner (10), the operation of the blower (15) continues even when all the compressors (31, 32, 33) of the compressor unit (30) are stopped. Is done.
 全ての圧縮機(31,32,33)が停止した状態では、蒸発器(50)に冷媒が供給されず、蒸発器(50)における空気の冷却は行われない。一方、蒸発器(50)の表面やその周辺には、圧縮機(31,32,33)の運転中に生成したドレン水が残存している。全ての圧縮機(31,32,33)が停止した状態で蒸発器(50)を空気が通過すると、蒸発器(50)やその周辺のドレン水は、空気によって暖められて再蒸発し、空気と共に船室(103)へ送られてしまう。このため、空気調和装置(10)の運転中に圧縮機ユニット(30)の全ての圧縮機(31,32,33)が停止すると、船室(103)へ供給される空気の湿度が高くなり、船室(103)内の快適性が損なわれるおそれがある。 In the state where all the compressors (31, 32, 33) are stopped, the refrigerant is not supplied to the evaporator (50), and the air is not cooled in the evaporator (50). On the other hand, drain water generated during the operation of the compressor (31, 32, 33) remains on the surface of the evaporator (50) and its periphery. When air passes through the evaporator (50) with all the compressors (31, 32, 33) stopped, the evaporator (50) and the drain water around it are warmed and re-evaporated by the air. And sent to the cabin (103). For this reason, if all the compressors (31, 32, 33) of the compressor unit (30) are stopped during the operation of the air conditioner (10), the humidity of the air supplied to the cabin (103) increases. The comfort in the cabin (103) may be impaired.
 特に、船舶用の空気調和装置(10)では、圧縮機ユニット(30)の運転容量を調節するためにインバータを使用することがコスト的に困難であり、従って、通常は、圧縮機(31,32,33)の運転台数を変更することによって圧縮機ユニット(30)の運転容量が調節される。このため、圧縮機ユニット(30)の運転容量を細かく調節するのが困難であり、圧縮機ユニット(30)の全ての圧縮機(31,32,33)が停止した状態となる頻度が多かった。 In particular, in an air conditioner (10) for a ship, it is difficult to use an inverter to adjust the operating capacity of the compressor unit (30). Therefore, the compressor (31, The operating capacity of the compressor unit (30) is adjusted by changing the number of operating units 32, 33). For this reason, it is difficult to finely adjust the operating capacity of the compressor unit (30), and all the compressors (31, 32, 33) of the compressor unit (30) are frequently stopped. .
 更に、本実施形態の空気調和装置(10)では、膨張弁(40)として温度自動膨張弁が用いられており、膨張弁(40)の感温筒(40a)が蒸発器(50)の出口配管(52)に取り付けられている。冷媒回路(20)を循環する冷媒の流量に対して蒸発器(50)の容量が過大になると、出口配管(52)を流れる冷媒の過熱度が大きくなるため、冷媒の過熱度を引き下げるために膨張弁(40)の開度が拡大される。ところが、膨張弁(40)の開度が大きい状態では、圧縮機(31,32,33)の運転台数を減らしても、蒸発器(50)を通過する冷媒の流量を充分に削減することが困難である。このため、空気調和装置(10)の冷房能力の調節範囲の下限を充分に引き下げることが困難であり、そのことも、圧縮機ユニット(30)の全ての圧縮機(31,32,33)が停止した状態となる頻度が多い原因となっていた。 Furthermore, in the air conditioner (10) of the present embodiment, a temperature automatic expansion valve is used as the expansion valve (40), and the temperature sensing cylinder (40a) of the expansion valve (40) is the outlet of the evaporator (50). It is attached to the pipe (52). When the capacity of the evaporator (50) becomes excessive with respect to the flow rate of the refrigerant circulating in the refrigerant circuit (20), the degree of superheat of the refrigerant flowing through the outlet pipe (52) increases, so that the degree of superheat of the refrigerant is reduced. The opening degree of the expansion valve (40) is enlarged. However, when the opening degree of the expansion valve (40) is large, the flow rate of the refrigerant passing through the evaporator (50) can be sufficiently reduced even if the number of operating compressors (31, 32, 33) is reduced. Have difficulty. For this reason, it is difficult to sufficiently lower the lower limit of the adjustment range of the cooling capacity of the air conditioner (10), which also means that all the compressors (31, 32, 33) of the compressor unit (30) This was the cause of the frequent frequency of stopping.
 本実施形態の空気調和装置(10)において、制御器(16)は、蒸発温度センサ(82)の計測値に基づいて電磁弁(70)を操作し、蒸発温度センサ(82)の計測値が基準範囲に保たれるように、蒸発器(50)のうち冷媒が流通する熱交換部(55,60)の数を変更している。従って、例えば圧縮機ユニット(30)における圧縮機(31,32,33)の運転台数が一台となり、蒸発器(50)における冷媒の蒸発温度が上昇して基準範囲の上限値を超えると、制御器(16)が電磁弁(70)を閉鎖し、第1熱交換部(55)の第1流通路(56)だけに冷媒が流入する。 In the air conditioner (10) of the present embodiment, the controller (16) operates the electromagnetic valve (70) based on the measured value of the evaporation temperature sensor (82), and the measured value of the evaporation temperature sensor (82) The number of heat exchanging parts (55, 60) through which the refrigerant flows is changed in the evaporator (50) so that the reference range is maintained. Therefore, for example, when the number of operating compressors (31, 32, 33) in the compressor unit (30) becomes one unit and the evaporation temperature of the refrigerant in the evaporator (50) rises and exceeds the upper limit of the reference range, The controller (16) closes the solenoid valve (70), and the refrigerant flows only into the first flow passage (56) of the first heat exchange section (55).
 このように、本実施形態の空気調和装置(10)では、圧縮機ユニット(30)の運転容量が小さくなって蒸発器(50)を通過する冷媒の流量が減少すると、蒸発器(50)のうち冷媒が流通する熱交換部(55,60)の数が減少し、蒸発器(50)の容量が引き下げられる。従って、本実施形態によれば、圧縮機ユニット(30)の運転容量に応じて蒸発器(50)の容量を引き下げることが可能となり、冷房能力の調節範囲の下限を低下させることができる。その結果、圧縮機ユニット(30)の全ての圧縮機(31,32,33)が停止した状態となる頻度を減らすことができ、ドレン水の再蒸発に起因して室内の快適性が損なわれる可能性を低くすることができる。 Thus, in the air conditioner (10) of the present embodiment, when the operating capacity of the compressor unit (30) decreases and the flow rate of the refrigerant passing through the evaporator (50) decreases, the evaporator (50) Among them, the number of heat exchange parts (55, 60) through which the refrigerant flows is reduced, and the capacity of the evaporator (50) is reduced. Therefore, according to the present embodiment, the capacity of the evaporator (50) can be reduced according to the operating capacity of the compressor unit (30), and the lower limit of the adjustment range of the cooling capacity can be reduced. As a result, the frequency at which all the compressors (31, 32, 33) of the compressor unit (30) are stopped can be reduced, and the indoor comfort is impaired due to the re-evaporation of the drain water. The possibility can be reduced.
 また、蒸発器(50)を通過する冷媒の流量が減少した場合に、蒸発器(50)のうち冷媒が流通する熱交換部(55,60)の数が減少すると、蒸発器(50)の出口配管(52)を流れる冷媒の過熱度の過度な上昇が抑えられる。このため、膨張弁(40)の開度をある程度以下に抑えることができ、蒸発器(50)を通過する冷媒の流量を確実に低減することができる。 Further, when the flow rate of the refrigerant passing through the evaporator (50) decreases, if the number of heat exchange parts (55, 60) through which the refrigerant flows in the evaporator (50) decreases, the evaporator (50) An excessive increase in the degree of superheat of the refrigerant flowing through the outlet pipe (52) is suppressed. For this reason, the opening degree of the expansion valve (40) can be suppressed to a certain level or less, and the flow rate of the refrigerant passing through the evaporator (50) can be reliably reduced.
  -実施形態1の変形例1-
 上記実施形態1の蒸発器(50)では、第1熱交換部(55)の第1流通路(56)と第2熱交換部(60)の第2流通路(61)の一方または両方が、複数のパス(56a,56b,61a,61b)を備えていてもよい。
Modification 1 of Embodiment 1—
In the evaporator (50) of the first embodiment, one or both of the first flow passage (56) of the first heat exchange section (55) and the second flow passage (61) of the second heat exchange section (60) are provided. A plurality of paths (56a, 56b, 61a, 61b) may be provided.
 図3に示す一例では、第1流通路(56)と第2流通路(61)のそれぞれが、第1パス(56a,61a)と、第2パス(56b,61b)と、分流器(57,62)と、合流管(58,63)とを備えている。図3に示す第1流通路(56)において、第1パス(56a)及び第2パス(56b)は、それぞれの一端が分流器(57)の出口側に接続され、それぞれの他端が合流管(58)を介して出口配管(52)に接続される。分流器(57)の入口側には、配管(25)の第1分岐管(26)が接続される。一方、同図に示す第2流通路(61)において、第1パス(61a)及び第2パス(61b)は、それぞれの一端が分流器(62)の出口側に接続され、それぞれの他端が合流管(63)を介して出口配管(52)に接続される。分流器(62)の入口側には、配管(25)の第2分岐管(27)が接続される。 In the example shown in FIG. 3, each of the first flow path (56) and the second flow path (61) includes a first path (56a, 61a), a second path (56b, 61b), and a flow divider (57 , 62) and a merging pipe (58, 63). In the first flow path (56) shown in FIG. 3, one end of each of the first path (56a) and the second path (56b) is connected to the outlet side of the flow divider (57), and each other end joins. The pipe (58) is connected to the outlet pipe (52). The first branch pipe (26) of the pipe (25) is connected to the inlet side of the flow divider (57). On the other hand, in the second flow path (61) shown in the figure, one end of each of the first path (61a) and the second path (61b) is connected to the outlet side of the flow divider (62), and each other end. Is connected to the outlet pipe (52) via the junction pipe (63). The second branch pipe (27) of the pipe (25) is connected to the inlet side of the flow divider (62).
 図4に示す一例では、第2流通路(61)だけが、第1パス(61a)と、第2パス(61b)と、分流器(62)と、合流管(63)とを備えている。図4に示す第2流通路(61)において、第1パス(61a)及び第2パス(61b)は、それぞれの一端が分流器(62)の出口側に接続され、それぞれの他端が合流管(63)を介して出口配管(52)に接続される。分流器(62)の入口側には、配管(25)の第2分岐管(27)が接続される。 In the example shown in FIG. 4, only the second flow path (61) includes a first path (61a), a second path (61b), a flow divider (62), and a merge pipe (63). . In the second flow path (61) shown in FIG. 4, one end of each of the first path (61a) and the second path (61b) is connected to the outlet side of the flow divider (62), and each other end is joined. It is connected to the outlet pipe (52) via the pipe (63). The second branch pipe (27) of the pipe (25) is connected to the inlet side of the flow divider (62).
  -実施形態1の変形例2-
 上記実施形態1の蒸発器(50)には、三つ以上の熱交換部(55,60,65)が設けられていてもよい。このでは、蒸発器(50)に三つの熱交換部(55,60,65)が設けられている場合の冷媒回路(20)について、図5を参照しながら説明する。
—Modification 2 of Embodiment 1
The evaporator (50) of the first embodiment may be provided with three or more heat exchange units (55, 60, 65). Here, the refrigerant circuit (20) in the case where the evaporator (50) is provided with three heat exchange sections (55, 60, 65) will be described with reference to FIG.
 本変形例の冷媒回路(20)において、凝縮器(35)と蒸発器(50)を繋ぐ配管(25)は、膨張弁(40)の下流側の部分が三つの分岐管(26,27,28)に分かれている。第1分岐管(26)は第1熱交換部(55)の第1流通路(56)の一端に、第2分岐管(27)は第2熱交換部(60)の第2流通路(61)の一端に、第3分岐管(28)は第3熱交換部(65)の第3流通路(66)の一端に、それぞれ接続される。各流通路(56,61,66)の他端は、出口配管(52)に接続されている。また、本変形例の冷媒回路(20)の配管(25)では、第2分岐管(27)に第1電磁弁(71)が設けられ、第3分岐管(28)に第2電磁弁(72)が設けられている。本変形例の蒸発器(50)では、冷媒が流通する熱交換部(55,60,65)の数が、三段階に変更可能となっている。 In the refrigerant circuit (20) of this modification, the pipe (25) connecting the condenser (35) and the evaporator (50) has three branch pipes (26, 27, 28). The first branch pipe (26) is at one end of the first flow path (56) of the first heat exchange section (55), and the second branch pipe (27) is the second flow path (of the second heat exchange section (60)). 61), the third branch pipe (28) is connected to one end of the third flow passage (66) of the third heat exchange section (65). The other end of each flow path (56, 61, 66) is connected to the outlet pipe (52). Further, in the pipe (25) of the refrigerant circuit (20) of the present modification, the first branch valve (27) is provided with the first solenoid valve (71), and the third branch pipe (28) is provided with the second solenoid valve ( 72). In the evaporator (50) of this modification, the number of heat exchange parts (55, 60, 65) through which the refrigerant flows can be changed in three stages.
 《発明の実施形態2》
 本発明の実施形態2について説明する。本実施形態の冷媒回路(20)には、蒸発器(50)の熱交換部(55,60)と同数の膨張弁(41,42)が設けられている。
<< Embodiment 2 of the Invention >>
A second embodiment of the present invention will be described. The refrigerant circuit (20) of the present embodiment is provided with the same number of expansion valves (41, 42) as the heat exchange parts (55, 60) of the evaporator (50).
 図6に示す冷媒回路(20)は、図2に示す冷媒回路(20)に本実施形態を適用したものである。図6の冷媒回路(20)では、配管(25)の各分岐管(26,27)に膨張弁(41,42)が一つずつ設けられている。配管(25)の第2分岐管(27)において、第2膨張弁(42)は、電磁弁(70)の上流側に配置されている。 The refrigerant circuit (20) shown in FIG. 6 is obtained by applying this embodiment to the refrigerant circuit (20) shown in FIG. In the refrigerant circuit (20) of FIG. 6, one expansion valve (41, 42) is provided in each branch pipe (26, 27) of the pipe (25). In the second branch pipe (27) of the pipe (25), the second expansion valve (42) is arranged upstream of the electromagnetic valve (70).
 図6に示す冷媒回路(20)の各膨張弁(41,42)は、いわゆる温度自動膨張弁である。第1分岐管(26)に設けられた第1膨張弁(41)の感温筒(41a)は、第1流通路(56)の出口側端部を構成する配管に取り付けられ、この配管の表面と接している。第1膨張弁(41)の開度は、第1熱交換部(55)から流出する冷媒の過熱度が所定の目標過熱度となるように調節される。第2分岐管(27)に設けられた第2膨張弁(42)の感温筒(42a)は、第2流通路(61)の出口側端部を構成する配管に取り付けられ、この配管の表面と接している。第2膨張弁(42)の開度は、第2熱交換部(60)から流出する冷媒の過熱度が所定の目標過熱度となるように調節される。 Each expansion valve (41, 42) of the refrigerant circuit (20) shown in Fig. 6 is a so-called temperature automatic expansion valve. The temperature sensing cylinder (41a) of the first expansion valve (41) provided in the first branch pipe (26) is attached to a pipe constituting the outlet side end of the first flow passage (56). It is in contact with the surface. The opening degree of the first expansion valve (41) is adjusted so that the degree of superheat of the refrigerant flowing out from the first heat exchange section (55) becomes a predetermined target superheat degree. The temperature sensing cylinder (42a) of the second expansion valve (42) provided in the second branch pipe (27) is attached to a pipe constituting the outlet side end of the second flow passage (61). It is in contact with the surface. The opening degree of the second expansion valve (42) is adjusted so that the degree of superheat of the refrigerant flowing out from the second heat exchange unit (60) becomes a predetermined target superheat degree.
 図7に示す冷媒回路(20)は、図3に示す冷媒回路(20)に本実施形態を適用したものである。図7の冷媒回路(20)では、配管(25)の各分岐管(26,27)に膨張弁(41,42)が一つずつ設けられている。配管(25)の第2分岐管(27)において、第2膨張弁(42)は、電磁弁(70)の上流側に配置されている。 The refrigerant circuit (20) shown in FIG. 7 is obtained by applying the present embodiment to the refrigerant circuit (20) shown in FIG. In the refrigerant circuit (20) of FIG. 7, one expansion valve (41, 42) is provided in each branch pipe (26, 27) of the pipe (25). In the second branch pipe (27) of the pipe (25), the second expansion valve (42) is arranged upstream of the electromagnetic valve (70).
 図7に示す冷媒回路(20)の各膨張弁(41,42)は、いわゆる温度自動膨張弁である。第1分岐管(26)に設けられた第1膨張弁(41)の感温筒(41a)は、第1流通路(56)の合流管(58)に取り付けられ、この合流管(58)の表面と接している。第1膨張弁(41)の開度は、第1熱交換部(55)の各パス(56a,56b)から流出した冷媒の過熱度が所定の目標過熱度となるように調節される。第2分岐管(27)に設けられた第2膨張弁(42)の感温筒(42a)は、第2流通路(61)の合流管(63)に取り付けられ、この合流管(63)の表面と接している。第2膨張弁(42)の開度は、第2熱交換部(60)の各パス(61a,61b)から流出した冷媒の過熱度が所定の目標過熱度となるように調節される。 The expansion valves (41, 42) of the refrigerant circuit (20) shown in Fig. 7 are so-called temperature automatic expansion valves. The temperature sensing cylinder (41a) of the first expansion valve (41) provided in the first branch pipe (26) is attached to the merging pipe (58) of the first flow passage (56), and this merging pipe (58) Is in contact with the surface. The opening degree of the first expansion valve (41) is adjusted so that the degree of superheat of the refrigerant flowing out from each path (56a, 56b) of the first heat exchange unit (55) becomes a predetermined target superheat degree. The temperature sensing cylinder (42a) of the second expansion valve (42) provided in the second branch pipe (27) is attached to the junction pipe (63) of the second flow passage (61), and this junction pipe (63) Is in contact with the surface. The opening degree of the second expansion valve (42) is adjusted so that the degree of superheat of the refrigerant flowing out from each path (61a, 61b) of the second heat exchange unit (60) becomes a predetermined target superheat degree.
 図8に示す冷媒回路(20)は、図4に示す冷媒回路(20)に本実施形態を適用したものである。図8の冷媒回路(20)では、配管(25)の各分岐管(26,27)に膨張弁(41,42)が一つずつ設けられている。配管(25)の第2分岐管(27)において、第2膨張弁(42)は、電磁弁(70)の上流側に配置されている。 A refrigerant circuit (20) shown in FIG. 8 is obtained by applying the present embodiment to the refrigerant circuit (20) shown in FIG. In the refrigerant circuit (20) of FIG. 8, one expansion valve (41, 42) is provided in each branch pipe (26, 27) of the pipe (25). In the second branch pipe (27) of the pipe (25), the second expansion valve (42) is arranged upstream of the electromagnetic valve (70).
 図8に示す冷媒回路(20)の各膨張弁(41,42)は、いわゆる温度自動膨張弁である。第1分岐管(26)に設けられた第1膨張弁(41)の感温筒(41a)は、第1流通路(56)の出口側端部を構成する配管に取り付けられ、この配管の表面と接している。第1膨張弁(41)の開度は、第1熱交換部(55)から流出する冷媒の過熱度が所定の目標過熱度となるように調節される。第2分岐管(27)に設けられた第2膨張弁(42)の感温筒(42a)は、第2流通路(61)の合流管(63)に取り付けられ、この合流管(63)の表面と接している。第2膨張弁(42)の開度は、第2熱交換部(60)の各パス(61a,61b)から流出した冷媒の過熱度が所定の目標過熱度となるように調節される。 Each expansion valve (41, 42) of the refrigerant circuit (20) shown in Fig. 8 is a so-called temperature automatic expansion valve. The temperature sensing cylinder (41a) of the first expansion valve (41) provided in the first branch pipe (26) is attached to a pipe constituting the outlet side end of the first flow passage (56). It is in contact with the surface. The opening degree of the first expansion valve (41) is adjusted so that the degree of superheat of the refrigerant flowing out from the first heat exchange section (55) becomes a predetermined target superheat degree. The temperature sensing cylinder (42a) of the second expansion valve (42) provided in the second branch pipe (27) is attached to the junction pipe (63) of the second flow passage (61), and this junction pipe (63) Is in contact with the surface. The opening degree of the second expansion valve (42) is adjusted so that the degree of superheat of the refrigerant flowing out from each path (61a, 61b) of the second heat exchange unit (60) becomes a predetermined target superheat degree.
 図9に示す冷媒回路(20)は、図5に示す冷媒回路(20)に本実施形態を適用したものである。図9の冷媒回路(20)では、配管(25)の各分岐管(26,27,28)に膨張弁(41,42,43)が一つずつ設けられている。配管(25)の第2分岐管(27)において、第2膨張弁(42)は、第1電磁弁(71)の上流側に配置されている。また、配管(25)の第3分岐管(28)において、第3膨張弁(43)は、第2電磁弁(72)の上流側に配置されている。 The refrigerant circuit (20) shown in FIG. 9 is obtained by applying this embodiment to the refrigerant circuit (20) shown in FIG. In the refrigerant circuit (20) of FIG. 9, one expansion valve (41, 42, 43) is provided in each branch pipe (26, 27, 28) of the pipe (25). In the second branch pipe (27) of the pipe (25), the second expansion valve (42) is arranged upstream of the first electromagnetic valve (71). Further, in the third branch pipe (28) of the pipe (25), the third expansion valve (43) is disposed on the upstream side of the second electromagnetic valve (72).
 図9に示す冷媒回路(20)の各膨張弁(41,42,43)は、いわゆる温度自動膨張弁である。第1分岐管(26)に設けられた第1膨張弁(41)の感温筒(41a)は、第1流通路(56)の出口側端部を構成する配管に取り付けられ、この配管の表面と接している。第1膨張弁(41)の開度は、第1熱交換部(55)から流出する冷媒の過熱度が所定の目標過熱度となるように調節される。第2分岐管(27)に設けられた第2膨張弁(42)の感温筒(42a)は、第2流通路(61)の出口側端部を構成する配管に取り付けられ、この配管の表面と接している。第2膨張弁(42)の開度は、第2熱交換部(60)から流出する冷媒の過熱度が所定の目標過熱度となるように調節される。第3分岐管(28)に設けられた第3膨張弁(43)の感温筒(43a)は、第3流通路(66)の出口側端部を構成する配管に取り付けられ、この配管の表面と接している。第3膨張弁(43)の開度は、第3熱交換部(65)から流出する冷媒の過熱度が所定の目標過熱度となるように調節される。 Each expansion valve (41, 42, 43) of the refrigerant circuit (20) shown in FIG. 9 is a so-called temperature automatic expansion valve. The temperature sensing cylinder (41a) of the first expansion valve (41) provided in the first branch pipe (26) is attached to a pipe constituting the outlet side end of the first flow passage (56). It is in contact with the surface. The opening degree of the first expansion valve (41) is adjusted so that the degree of superheat of the refrigerant flowing out from the first heat exchange section (55) becomes a predetermined target superheat degree. The temperature sensing cylinder (42a) of the second expansion valve (42) provided in the second branch pipe (27) is attached to a pipe constituting the outlet side end of the second flow passage (61). It is in contact with the surface. The opening degree of the second expansion valve (42) is adjusted so that the degree of superheat of the refrigerant flowing out from the second heat exchange unit (60) becomes a predetermined target superheat degree. The temperature sensing cylinder (43a) of the third expansion valve (43) provided in the third branch pipe (28) is attached to a pipe constituting the outlet side end of the third flow passage (66). It is in contact with the surface. The opening degree of the third expansion valve (43) is adjusted so that the degree of superheat of the refrigerant flowing out from the third heat exchange section (65) becomes a predetermined target superheat degree.
  -実施形態2の変形例-
 本実施形態の冷媒回路(20)では、配管(25)の分岐管(27,28)における膨張弁(42,43)と電磁弁(71,72)の位置が入れ替わっていてもよい。
-Modification of Embodiment 2-
In the refrigerant circuit (20) of the present embodiment, the positions of the expansion valve (42, 43) and the electromagnetic valve (71, 72) in the branch pipe (27, 28) of the pipe (25) may be switched.
 図10に示す冷媒回路(20)は、図6に示す冷媒回路(20)に本変形例を適用したものである。図10の冷媒回路(20)の第2分岐管(27)では、電磁弁(70)の下流側に第2膨張弁(42)が配置される。 The refrigerant circuit (20) shown in FIG. 10 is obtained by applying this modification to the refrigerant circuit (20) shown in FIG. In the second branch pipe (27) of the refrigerant circuit (20) of FIG. 10, the second expansion valve (42) is disposed downstream of the electromagnetic valve (70).
 《その他の実施形態》
  -第1変形例-
 図2~図10に記載された冷媒回路(20)には、膨張弁(40,41,42)として、いわゆる電子膨張弁が設けられていてもよい。
<< Other Embodiments >>
-First modification-
The refrigerant circuit (20) illustrated in FIGS. 2 to 10 may be provided with a so-called electronic expansion valve as the expansion valve (40, 41, 42).
 図11に示す冷媒回路(20)は、図2に示す冷媒回路(20)に本変形例を適用したものである。 The refrigerant circuit (20) shown in FIG. 11 is obtained by applying this modification to the refrigerant circuit (20) shown in FIG.
 図11に示す冷媒回路(20)では、蒸発器(50)の出口配管(52)に冷媒温度センサ(85)が取り付けられている。この冷媒温度センサ(85)は、出口配管(52)と接しており、出口配管(52)の表面温度を、出口配管(52)内を流れる冷媒の温度として計測する。出口配管(52)を流れる冷媒の過熱度は、冷媒温度センサ(85)の計測値から蒸発温度センサ(82)の計測値を差し引くことによって算出できる。そこで、本変形例の制御器(16)は、冷媒温度センサ(85)の計測値から蒸発温度センサ(82)の計測値を差し引いた値が所定の目標過熱度となるように、図11に示す冷媒回路(20)の膨張弁(40)の開度を調節する。 In the refrigerant circuit (20) shown in FIG. 11, a refrigerant temperature sensor (85) is attached to the outlet pipe (52) of the evaporator (50). The refrigerant temperature sensor (85) is in contact with the outlet pipe (52), and measures the surface temperature of the outlet pipe (52) as the temperature of the refrigerant flowing in the outlet pipe (52). The degree of superheat of the refrigerant flowing through the outlet pipe (52) can be calculated by subtracting the measured value of the evaporation temperature sensor (82) from the measured value of the refrigerant temperature sensor (85). In view of this, the controller (16) of the present modified example is shown in FIG. 11 so that a value obtained by subtracting the measured value of the evaporation temperature sensor (82) from the measured value of the refrigerant temperature sensor (85) becomes the predetermined target superheat degree. The opening degree of the expansion valve (40) of the refrigerant circuit (20) shown is adjusted.
 図12に示す冷媒回路(20)は、図6に示す冷媒回路(20)に本変形例を適用したものである。 The refrigerant circuit (20) shown in FIG. 12 is obtained by applying this modification to the refrigerant circuit (20) shown in FIG.
 図12に示す冷媒回路(20)では、第1流通路(56)の出口側端部を構成する配管に第1冷媒温度センサ(86)が取り付けられている。第1冷媒温度センサ(86)は、配管と接しており、この配管の表面温度を、第1流通路(56)から流出する冷媒の温度として計測する。第1流通路(56)から流出する冷媒の過熱度は、第1冷媒温度センサ(86)の計測値から蒸発温度センサ(82)の計測値を差し引くことによって算出できる。そこで、本変形例の制御器(16)は、第1冷媒温度センサ(86)の計測値から蒸発温度センサ(82)の計測値を差し引いた値が所定の目標過熱度となるように、図12に示す冷媒回路(20)の第1膨張弁(41)の開度を調節する。 In the refrigerant circuit (20) shown in FIG. 12, the first refrigerant temperature sensor (86) is attached to the pipe constituting the outlet side end of the first flow passage (56). The first refrigerant temperature sensor (86) is in contact with the pipe, and measures the surface temperature of the pipe as the temperature of the refrigerant flowing out from the first flow passage (56). The degree of superheat of the refrigerant flowing out from the first flow path (56) can be calculated by subtracting the measured value of the evaporation temperature sensor (82) from the measured value of the first refrigerant temperature sensor (86). Therefore, the controller (16) of the present modified example is arranged so that the value obtained by subtracting the measured value of the evaporation temperature sensor (82) from the measured value of the first refrigerant temperature sensor (86) becomes the predetermined target superheat degree. The opening degree of the first expansion valve (41) of the refrigerant circuit (20) shown in FIG.
 また、図12に示す冷媒回路(20)では、第2流通路(61)の出口側端部を構成する配管に第2冷媒温度センサ(87)が取り付けられている。第2冷媒温度センサ(87)は、配管と接しており、この配管の表面温度を、第2流通路(61)から流出する冷媒の温度として計測する。第2流通路(61)から流出する冷媒の過熱度は、第2冷媒温度センサ(87)の計測値から蒸発温度センサ(82)の計測値を差し引くことによって算出できる。そこで、本変形例の制御器(16)は、第2冷媒温度センサ(87)の計測値から蒸発温度センサ(82)の計測値を差し引いた値が所定の目標過熱度となるように、図12に示す冷媒回路(20)の第2膨張弁(42)の開度を調節する。 Further, in the refrigerant circuit (20) shown in FIG. 12, the second refrigerant temperature sensor (87) is attached to the pipe constituting the outlet side end of the second flow passage (61). The second refrigerant temperature sensor (87) is in contact with the pipe, and measures the surface temperature of the pipe as the temperature of the refrigerant flowing out from the second flow passage (61). The degree of superheat of the refrigerant flowing out from the second flow path (61) can be calculated by subtracting the measurement value of the evaporation temperature sensor (82) from the measurement value of the second refrigerant temperature sensor (87). Therefore, the controller (16) of the present modified example is arranged so that the value obtained by subtracting the measured value of the evaporation temperature sensor (82) from the measured value of the second refrigerant temperature sensor (87) becomes the predetermined target superheat degree. The opening degree of the second expansion valve (42) of the refrigerant circuit (20) shown in FIG.
 また、図12に示す冷媒回路(20)では、電磁弁(70)が省略されている。つまり、配管(25)の第2分岐管(27)には、第2膨張弁(42)だけが設けられている。この冷媒回路(20)では、第2膨張弁(42)が流通制御機構(17)を兼ねている。つまり、電子膨張弁である第2膨張弁(42)の開度は、制御器(16)からの制御信号によって任意に設定できる。従って、第1流通路(56)だけに冷媒を流入させる場合、制御器(16)は、第2膨張弁(42)を全閉状態に設定する。 In the refrigerant circuit (20) shown in FIG. 12, the solenoid valve (70) is omitted. That is, only the second expansion valve (42) is provided in the second branch pipe (27) of the pipe (25). In the refrigerant circuit (20), the second expansion valve (42) also serves as the flow control mechanism (17). That is, the opening degree of the second expansion valve (42), which is an electronic expansion valve, can be arbitrarily set by the control signal from the controller (16). Accordingly, when the refrigerant is allowed to flow only into the first flow passage (56), the controller (16) sets the second expansion valve (42) in a fully closed state.
  -第2変形例-
 図2~図10に記載された蒸発器(50)では、各流通路(56,61,66)を構成する伝熱管が交互に配置されていてもよい。
-Second modification-
In the evaporator (50) described in FIGS. 2 to 10, the heat transfer tubes constituting the respective flow passages (56, 61, 66) may be alternately arranged.
 図13に示す蒸発器(50)は、図2に示す蒸発器(50)に本変形例を適用したものである。図13に示す蒸発器(50)では、第1流通路(56)を構成する伝熱管と、第2流通路(61)を構成する伝熱管とが、フィン(51)の長手方向において交互に配置されている。本変形例の蒸発器(50)を用いると、第1流通路(56)だけに冷媒が流れる状態においても、蒸発器(50)を通過した空気の温度を均一化することが可能となる。 The evaporator (50) shown in FIG. 13 is obtained by applying this modification to the evaporator (50) shown in FIG. In the evaporator (50) shown in FIG. 13, the heat transfer tubes constituting the first flow passage (56) and the heat transfer tubes constituting the second flow passage (61) are alternately arranged in the longitudinal direction of the fin (51). Has been placed. When the evaporator (50) of this modification is used, the temperature of the air that has passed through the evaporator (50) can be made uniform even when the refrigerant flows only through the first flow path (56).
  -第3変形例-
 上記各実施形態の制御器(16)は、蒸発器(50)における冷媒の蒸発圧力に基づいて、蒸発器(50)において冷媒が流通する熱交換部(55,60,65)の数を変更するように構成されていてもよい。ここでは、本変形例を図2に示す実施形態1の空気調和装置(10)に適用した場合について説明する。
-Third modification-
The controller (16) in each of the above embodiments changes the number of heat exchange sections (55, 60, 65) through which the refrigerant flows in the evaporator (50) based on the evaporation pressure of the refrigerant in the evaporator (50). It may be configured to. Here, the case where this modification is applied to the air conditioning apparatus (10) of Embodiment 1 shown in FIG. 2 will be described.
 本変形例の制御器(16)は、蒸発器(50)における冷媒の蒸発圧力(即ち、冷凍サイクルの低圧)が所定の基準範囲に保たれるように、電磁弁(70)を開閉する。 The controller (16) of this modification opens and closes the solenoid valve (70) so that the evaporation pressure of the refrigerant in the evaporator (50) (that is, the low pressure of the refrigeration cycle) is maintained within a predetermined reference range.
 具体的に、電磁弁(70)が開放されている状態で冷媒の蒸発圧力が基準範囲の上限値を上回ると、制御器(16)は、電磁弁(70)を閉鎖する。電磁弁(70)が閉鎖された状態において、蒸発器(50)では、第2熱交換部(60)の第2流通路(61)へは冷媒が流入せず、第1熱交換部(55)の第1流通路(56)だけに冷媒が流入する。 Specifically, when the evaporation pressure of the refrigerant exceeds the upper limit value of the reference range with the solenoid valve (70) being opened, the controller (16) closes the solenoid valve (70). In the state where the solenoid valve (70) is closed, in the evaporator (50), the refrigerant does not flow into the second flow path (61) of the second heat exchange section (60), and the first heat exchange section (55 The refrigerant flows only into the first flow path (56).
 圧縮機ユニット(30)の運転容量が小さい状態で電磁弁(70)が開いていると、冷媒回路(20)を循環する冷媒の流量に対して蒸発器(50)の容量が過大となり、蒸発器(50)における冷媒の蒸発圧力が上昇する可能性が高い。そこで、このような場合、制御器(16)は、蒸発器(50)の容量を引き下げるために、電磁弁(70)を閉鎖する。電磁弁(70)が閉鎖されると、第1流通路(56)だけに冷媒が流入するため、蒸発器(50)の容量が小さくなる。このため、蒸発器(50)における冷媒の蒸発圧力が低下してゆく。 If the solenoid valve (70) is open when the operating capacity of the compressor unit (30) is small, the capacity of the evaporator (50) will be excessive with respect to the flow rate of the refrigerant circulating in the refrigerant circuit (20), causing evaporation. The evaporation pressure of the refrigerant in the vessel (50) is likely to rise. Therefore, in such a case, the controller (16) closes the solenoid valve (70) in order to reduce the capacity of the evaporator (50). When the solenoid valve (70) is closed, the refrigerant flows only into the first flow passage (56), so the capacity of the evaporator (50) is reduced. For this reason, the evaporation pressure of the refrigerant in the evaporator (50) decreases.
 一方、電磁弁(70)が閉鎖されている状態で蒸発器(50)における冷媒の蒸発圧力が基準範囲の下限値を下回ると、制御器(16)は、電磁弁(70)を開放する。電磁弁(70)が開放された状態において、蒸発器(50)では、第1熱交換部(55)の第1流通路(56)と第2熱交換部(60)の第2流通路(61)の両方に冷媒が流入する。 On the other hand, when the evaporation pressure of the refrigerant in the evaporator (50) falls below the lower limit of the reference range with the solenoid valve (70) closed, the controller (16) opens the solenoid valve (70). In the state where the solenoid valve (70) is opened, in the evaporator (50), the first flow path (56) of the first heat exchange unit (55) and the second flow path ( 61) The refrigerant flows into both.
 圧縮機ユニット(30)の運転容量が大きい状態で電磁弁(70)が閉じていると、冷媒回路(20)を循環する冷媒の流量に対して蒸発器(50)の容量が過小となり、蒸発器(50)における冷媒の蒸発圧力が低下する可能性が高い。そこで、このような場合、制御器(16)は、蒸発器(50)の容量を引き上げるために、電磁弁(70)を開放する。電磁弁(70)が開放されると、第1流通路(56)と第2流通路(61)の両方に冷媒が流入するため、蒸発器(50)の容量が大きくなる。このため、蒸発器(50)における冷媒の蒸発圧力が上昇してゆく。 If the solenoid valve (70) is closed while the operating capacity of the compressor unit (30) is large, the capacity of the evaporator (50) becomes too small relative to the flow rate of the refrigerant circulating in the refrigerant circuit (20), causing evaporation. There is a high possibility that the evaporation pressure of the refrigerant in the vessel (50) will decrease. Therefore, in such a case, the controller (16) opens the electromagnetic valve (70) in order to increase the capacity of the evaporator (50). When the solenoid valve (70) is opened, the refrigerant flows into both the first flow path (56) and the second flow path (61), so the capacity of the evaporator (50) increases. For this reason, the evaporation pressure of the refrigerant in the evaporator (50) increases.
  -第4変形例-
 上記各実施形態の制御器(16)は、吹出風温センサ(81)の計測値に基づいて、蒸発器(50)において冷媒が流通する熱交換部(55,60,65)の数を変更するように構成されていてもよい。ここでは、本変形例を図2に示す実施形態1の空気調和装置(10)に適用した場合について説明する。
-Fourth modification-
The controller (16) of each of the above embodiments changes the number of heat exchange parts (55, 60, 65) through which the refrigerant flows in the evaporator (50) based on the measured value of the blown air temperature sensor (81). It may be configured to. Here, the case where this modification is applied to the air conditioning apparatus (10) of Embodiment 1 shown in FIG. 2 will be described.
 本変形例の制御器(16)は、吹出風温センサ(81)の計測値が所定の設定温度となるように、圧縮機ユニット(30)の運転容量の調節と、電磁弁(70)の操作とを行う。 The controller (16) of this modified example adjusts the operating capacity of the compressor unit (30) and adjusts the solenoid valve (70) so that the measured value of the blown air temperature sensor (81) becomes a predetermined set temperature. And operation.
 具体的に、電磁弁(70)が開放されている状態で吹出風温センサ(81)の計測値が設定温度よりも低い場合、制御器(16)は、吹出風温センサ(81)の計測値を引き上げるために、圧縮機ユニット(30)における圧縮機(31,32,33)の運転台数を一台ずつ減らしてゆく。そして、圧縮機ユニット(30)における圧縮機(31,32,33)の運転台数が一台になっても依然として吹出風温センサ(81)の計測値が設定温度よりも低い場合、制御器(16)は、電磁弁(70)を閉鎖する。電磁弁(70)が閉鎖された状態において、蒸発器(50)では、第2熱交換部(60)の第2流通路(61)へは冷媒が流入せず、第1熱交換部(55)の第1流通路(56)だけに冷媒が流入する。 Specifically, when the measured value of the blown air temperature sensor (81) is lower than the set temperature with the solenoid valve (70) open, the controller (16) measures the blown air temperature sensor (81). In order to increase the value, the number of operating compressors (31, 32, 33) in the compressor unit (30) will be reduced one by one. If the measured value of the blown air temperature sensor (81) is still lower than the set temperature even when the number of compressors (31, 32, 33) in the compressor unit (30) becomes one, the controller ( 16) Close the solenoid valve (70). In the state where the solenoid valve (70) is closed, in the evaporator (50), the refrigerant does not flow into the second flow path (61) of the second heat exchange section (60), and the first heat exchange section (55 The refrigerant flows only into the first flow path (56).
 圧縮機(31,32,33)のうちの一台だけが運転されている状態で電磁弁(70)が開いていると、蒸発器(50)の容量が大きすぎるため、蒸発器(50)を通過した空気の温度が依然として設定温度よりも低いままとなる可能性が高い。そこで、このような場合、制御器(16)は、蒸発器(50)の容量を引き下げるために、電磁弁(70)を閉鎖する。電磁弁(70)が閉鎖されると、第1流通路(56)だけに冷媒が流入するため、蒸発器(50)の容量が小さくなる。このため、蒸発器(50)を通過した空気の温度が上昇してゆく。 If only one of the compressors (31, 32, 33) is in operation and the solenoid valve (70) is open, the capacity of the evaporator (50) is too large and the evaporator (50) The temperature of the air that has passed through is still likely to remain below the set temperature. Therefore, in such a case, the controller (16) closes the solenoid valve (70) in order to reduce the capacity of the evaporator (50). When the solenoid valve (70) is closed, the refrigerant flows only into the first flow passage (56), so the capacity of the evaporator (50) is reduced. For this reason, the temperature of the air which passed the evaporator (50) rises.
 一方、電磁弁(70)が閉鎖されている状態で吹出風温センサ(81)の計測値が設定温度よりも高い場合、制御器(16)は、吹出風温センサ(81)の計測値を引き下げるために、圧縮機ユニット(30)における圧縮機(31,32,33)の運転台数を一台ずつ増やしてゆく。そして、圧縮機ユニット(30)における圧縮機(31,32,33)の運転台数が二台になっても依然として吹出風温センサ(81)の計測値が設定温度よりも高い場合、制御器(16)は、電磁弁(70)を開放する。電磁弁(70)が開放された状態において、蒸発器(50)では、第1熱交換部(55)の第1流通路(56)と第2熱交換部(60)の第2流通路(61)の両方に冷媒が流入する。 On the other hand, if the measured value of the blown air temperature sensor (81) is higher than the set temperature when the solenoid valve (70) is closed, the controller (16) displays the measured value of the blown air temperature sensor (81). In order to lower it, the number of operating compressors (31, 32, 33) in the compressor unit (30) is increased one by one. If the measured value of the blown air temperature sensor (81) is still higher than the set temperature even when the number of compressors (31, 32, 33) in the compressor unit (30) becomes two, the controller ( 16) Open the solenoid valve (70). In the state where the solenoid valve (70) is opened, in the evaporator (50), the first flow path (56) of the first heat exchange unit (55) and the second flow path ( 61) The refrigerant flows into both.
 圧縮機(31,32,33)のうちの二台が運転されている状態で電磁弁(70)が閉じていると、冷媒回路(20)を循環する冷媒の流量に対して蒸発器(50)の容量が過小となり、蒸発器(50)を通過した空気の温度が依然として設定温度よりも高いままとなる可能性が高い。そこで、このような場合、制御器(16)は、蒸発器(50)の容量を引き上げるために、電磁弁(70)を開放する。電磁弁(70)が開放されると、第1流通路(56)と第2流通路(61)の両方に冷媒が流入するため、蒸発器(50)の容量が大きくなる。このため、蒸発器(50)を通過した空気の温度が低下してゆく。 When the solenoid valve (70) is closed while two of the compressors (31, 32, 33) are in operation, the evaporator (50 ) And the temperature of the air that has passed through the evaporator (50) is still likely to remain higher than the set temperature. Therefore, in such a case, the controller (16) opens the electromagnetic valve (70) in order to increase the capacity of the evaporator (50). When the solenoid valve (70) is opened, the refrigerant flows into both the first flow path (56) and the second flow path (61), so the capacity of the evaporator (50) increases. For this reason, the temperature of the air which passed the evaporator (50) falls.
  -第5変形例-
 上記各実施形態の制御器(16)は、圧縮機ユニット(30)における圧縮機(31,32,33)の運転台数を変更すると同時に、蒸発器(50)において冷媒が流通する熱交換部(55,60,65)の数を変更するように構成されていてもよい。ここでは、本変形例を図2に示す実施形態1の空気調和装置(10)に適用した場合について説明する。
-Fifth modification-
The controller (16) of each of the embodiments described above changes the number of operating compressors (31, 32, 33) in the compressor unit (30), and at the same time, heat exchanger ( 55, 60, 65) may be changed. Here, the case where this modification is applied to the air conditioning apparatus (10) of Embodiment 1 shown in FIG. 2 will be described.
 上述したように、実施形態1の制御器(16)は、吹出風温センサ(81)の計測値が所定の設定温度となるように、圧縮機ユニット(30)の運転容量を調節する。そして、制御器(16)は、圧縮機ユニット(30)における圧縮機(31,32,33)の運転台数を二台から一台に減らしたときは、それと同時に電磁弁(70)を閉鎖する。また、制御器(16)は、圧縮機ユニット(30)における圧縮機(31,32,33)の運転台数を一台から二台に増やしたときは、それと同時に電磁弁(70)を開放する。 As described above, the controller (16) of the first embodiment adjusts the operating capacity of the compressor unit (30) so that the measured value of the blown air temperature sensor (81) becomes a predetermined set temperature. When the number of compressors (31, 32, 33) in the compressor unit (30) is reduced from two to one, the controller (16) closes the solenoid valve (70) at the same time. . The controller (16) opens the solenoid valve (70) at the same time when the number of compressors (31, 32, 33) in the compressor unit (30) is increased from one to two. .
 なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 In addition, the above embodiment is an essentially preferable example, and is not intended to limit the scope of the present invention, its application, or its use.
 以上説明したように、本発明は、ダクトを通じて室内へ供給される空気を冷却する空気調和装置について有用である。 As described above, the present invention is useful for an air conditioner that cools air supplied to a room through a duct.
 10  空気調和装置
 17  流通制御機構
 20  冷媒回路
 26  第1分岐管
 27  第2分岐管
 28  第3分岐管
 30  圧縮機ユニット
 31  第1圧縮機
 32  第2圧縮機
 33  第3圧縮機
 35  凝縮器
 40  膨張弁
 41  第1膨張弁
 42  第2膨張弁
 43  第3膨張弁
 50  蒸発器
 55  第1熱交換部
 56  第1流通路
 60  第2熱交換部
 61  第2流通路
 65  第3熱交換部
 66  第3流通路
10 Air Conditioner 17 Flow Control Mechanism 20 Refrigerant Circuit 26 First Branch Pipe 27 Second Branch Pipe 28 Third Branch Pipe 30 Compressor Unit 31 First Compressor 32 Second Compressor 33 Third Compressor 35 Condenser 40 Expansion Valve 41 First expansion valve 42 Second expansion valve 43 Third expansion valve 50 Evaporator 55 First heat exchange section 56 First flow path 60 Second heat exchange section 61 Second flow path 65 Third heat exchange section 66 Third Flow passage

Claims (5)

  1.  冷媒を循環させて冷凍サイクルを行う冷媒回路(20)を備え、複数の部屋の吹出口(102)に接続する空気通路を流れる空気を冷媒によって冷却する空気調和装置(10)であって、
     上記冷媒回路(20)には、
      互いに並列接続された複数の圧縮機(31,32,33)を有する圧縮機ユニット(30)と、
      互いに並列接続されてそれぞれが冷媒を空気と熱交換させる複数の熱交換部(55,60,65)を有し、上記空気通路に設置される蒸発器(50)と、
      冷媒が通過する上記熱交換部(55,60,65)の数を変更するための流通制御機構(17)とが設けられている
    ことを特徴とする空気調和装置。
    An air conditioner (10) comprising a refrigerant circuit (20) that circulates a refrigerant to perform a refrigeration cycle, and that cools the air flowing through an air passage connected to the air outlets (102) of a plurality of rooms with the refrigerant,
    The refrigerant circuit (20)
    A compressor unit (30) having a plurality of compressors (31, 32, 33) connected in parallel to each other;
    An evaporator (50) connected in parallel to each other, each having a plurality of heat exchange portions (55, 60, 65) for exchanging heat between the refrigerant and air;
    An air conditioner comprising a flow control mechanism (17) for changing the number of the heat exchange parts (55, 60, 65) through which the refrigerant passes.
  2.  請求項1において、
     上記流通制御機構(17)は、冷媒が通過する上記熱交換部(55,60,65)の数を上記圧縮機ユニット(30)の運転容量に応じて変更する
    ことを特徴とする空気調和装置。
    In claim 1,
    The air flow control mechanism (17) changes the number of the heat exchange parts (55, 60, 65) through which the refrigerant passes according to the operating capacity of the compressor unit (30). .
  3.  請求項2において、
     上記圧縮機ユニット(30)に設けられた全ての圧縮機(31,32,33)が容量固定であり、
     上記圧縮機ユニット(30)は、運転される圧縮機(31,32,33)の台数を変更することによって運転容量を調節するように構成され、
     上記流通制御機構(17)は、運転される圧縮機(31,32,33)の台数が減少すると、冷媒が通過する上記熱交換部(55,60,65)の数を削減する
    ことを特徴とする空気調和装置。
    In claim 2,
    The capacity of all the compressors (31, 32, 33) provided in the compressor unit (30) is fixed,
    The compressor unit (30) is configured to adjust the operating capacity by changing the number of compressors (31, 32, 33) to be operated,
    The flow control mechanism (17) is characterized in that, when the number of operated compressors (31, 32, 33) decreases, the number of the heat exchange parts (55, 60, 65) through which the refrigerant passes is reduced. Air conditioner.
  4.  請求項1乃至3の何れか一つにおいて、
     上記冷媒回路(20)には、上記蒸発器(50)の各熱交換部(55,60,65)へ向かって分岐する前の冷媒を膨張させる一つの膨張弁(40)が設けられている
    ことを特徴とする空気調和装置。
    In any one of Claims 1 thru | or 3,
    The refrigerant circuit (20) is provided with one expansion valve (40) for expanding the refrigerant before branching toward the heat exchange parts (55, 60, 65) of the evaporator (50). An air conditioner characterized by that.
  5.  請求項1乃至3の何れか一つにおいて、
     上記冷媒回路(20)には、上記蒸発器(50)の各熱交換部(55,60,65)に一つずつ接続され、各熱交換部(55,60,65)へ向かって分岐した冷媒が流れる複数の分岐管(26,27,28)が設けられ、
     上記分岐管(26,27,28)のそれぞれには、冷媒を膨張させる膨張弁(41,42,43)が一つずつ設けられている
    ことを特徴とする空気調和装置。
    In any one of Claims 1 thru | or 3,
    The refrigerant circuit (20) is connected to each heat exchange part (55, 60, 65) of the evaporator (50) one by one and branches toward each heat exchange part (55, 60, 65). A plurality of branch pipes (26, 27, 28) through which the refrigerant flows are provided,
    Each of the branch pipes (26, 27, 28) is provided with one expansion valve (41, 42, 43) for expanding the refrigerant.
PCT/JP2011/006066 2010-12-08 2011-10-28 Air-conditioner WO2012077275A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800548010A CN103210263A (en) 2010-12-08 2011-10-28 Air-conditioner
US13/884,830 US20130227985A1 (en) 2010-12-08 2011-10-28 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-274004 2010-12-08
JP2010274004A JP2012122670A (en) 2010-12-08 2010-12-08 Air conditioner

Publications (1)

Publication Number Publication Date
WO2012077275A1 true WO2012077275A1 (en) 2012-06-14

Family

ID=46206791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006066 WO2012077275A1 (en) 2010-12-08 2011-10-28 Air-conditioner

Country Status (4)

Country Link
US (1) US20130227985A1 (en)
JP (1) JP2012122670A (en)
CN (1) CN103210263A (en)
WO (1) WO2012077275A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014029316A1 (en) * 2012-08-21 2014-02-27 Wang Lingfei Heat pump with defrosting structure and defrosting method thereof
JP2015175532A (en) * 2014-03-13 2015-10-05 新晃工業株式会社 Heat exchanger of air conditioner

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1857363A1 (en) * 2006-05-19 2007-11-21 Lebrun Nimy Temperature regulating device
CN105509261B (en) * 2014-09-26 2019-11-26 美的集团武汉制冷设备有限公司 The control method of air conditioner and air conditioner
WO2016135842A1 (en) * 2015-02-24 2016-09-01 三菱電機株式会社 Refrigeration apparatus
JP6766518B2 (en) * 2015-09-30 2020-10-14 ダイキン工業株式会社 Marine refrigeration equipment
WO2018008139A1 (en) * 2016-07-08 2018-01-11 三菱電機株式会社 Refrigeration cycle apparatus and air-conditioning apparatus provided with same
US10415856B2 (en) * 2017-04-05 2019-09-17 Lennox Industries Inc. Method and apparatus for part-load optimized refrigeration system with integrated intertwined row split condenser coil
JP6888068B2 (en) * 2019-11-08 2021-06-16 三菱電機株式会社 Refrigeration cycle device and air conditioner equipped with it
CN111879045A (en) * 2020-07-27 2020-11-03 珠海格力电器股份有限公司 Display cabinet with dehumidification effect and control method
CN111878980A (en) * 2020-07-31 2020-11-03 广东美的暖通设备有限公司 Air conditioner, control method of air conditioner, and computer-readable storage medium
CN112432390B (en) * 2020-10-30 2022-08-19 青岛海尔空调器有限总公司 Heat exchanger for indoor unit and air conditioner
EP4086535A1 (en) * 2021-05-04 2022-11-09 Rhoss S.p.A. Heat pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107458U (en) * 1980-01-21 1981-08-20
JP2000304302A (en) * 1999-04-19 2000-11-02 Daikin Ind Ltd Air conditioner
JP2001227799A (en) * 2000-02-18 2001-08-24 Fujitsu General Ltd Multi-chamber type air conditioner
JP2005225329A (en) * 2004-02-12 2005-08-25 Calsonic Kansei Corp Air conditioner
JP2009036414A (en) * 2007-07-31 2009-02-19 Kimura Kohki Co Ltd Heat pump-type dry air conditioning system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108965A (en) * 1985-11-08 1987-05-20 三洋電機株式会社 Refrigerator
AU618534B2 (en) * 1987-06-17 1992-01-02 Mitsubishi Denki Kabushiki Kaisha Air conditioner
JPH0275861A (en) * 1988-09-09 1990-03-15 Nissin Kogyo Kk Method and apparatus for preventing refrigerant gas of evaporator and refrigerating compressor from abnormally overheating
JP3296089B2 (en) * 1994-06-10 2002-06-24 株式会社島津製作所 Heat exchanger
CN2628926Y (en) * 2002-05-09 2004-07-28 李国强 Series output energy controlling domestic central air conditioner
KR101073501B1 (en) * 2004-05-18 2011-10-17 삼성전자주식회사 A air conditioner for multi-step driving
JP4767047B2 (en) * 2006-03-13 2011-09-07 三菱電機株式会社 Air conditioner
JP2007309582A (en) * 2006-05-18 2007-11-29 Calsonic Kansei Corp Evaporator
JP2009192090A (en) * 2008-02-12 2009-08-27 Denso Corp Refrigerating cycle device
JP5018584B2 (en) * 2008-03-24 2012-09-05 株式会社デンソー Refrigeration cycle equipment with regenerator
JP2010249452A (en) * 2009-04-17 2010-11-04 Mitsubishi Electric Corp Air conditioner
CN101846413B (en) * 2010-05-26 2012-01-25 南车株洲电力机车有限公司 Unitary air-conditioning unit of subway vehicle and control method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107458U (en) * 1980-01-21 1981-08-20
JP2000304302A (en) * 1999-04-19 2000-11-02 Daikin Ind Ltd Air conditioner
JP2001227799A (en) * 2000-02-18 2001-08-24 Fujitsu General Ltd Multi-chamber type air conditioner
JP2005225329A (en) * 2004-02-12 2005-08-25 Calsonic Kansei Corp Air conditioner
JP2009036414A (en) * 2007-07-31 2009-02-19 Kimura Kohki Co Ltd Heat pump-type dry air conditioning system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014029316A1 (en) * 2012-08-21 2014-02-27 Wang Lingfei Heat pump with defrosting structure and defrosting method thereof
CN103629862A (en) * 2012-08-21 2014-03-12 王陵飞 Heat pump with defrosting structure and defrosting method
JP2015175532A (en) * 2014-03-13 2015-10-05 新晃工業株式会社 Heat exchanger of air conditioner

Also Published As

Publication number Publication date
CN103210263A (en) 2013-07-17
US20130227985A1 (en) 2013-09-05
JP2012122670A (en) 2012-06-28

Similar Documents

Publication Publication Date Title
WO2012077275A1 (en) Air-conditioner
US8047011B2 (en) Refrigeration system
JP6685409B2 (en) Air conditioner
JP6595205B2 (en) Refrigeration cycle equipment
JP5472391B2 (en) Container refrigeration equipment
JPWO2018002983A1 (en) Refrigeration cycle equipment
JP2008121985A (en) Heat exchange system
JP2007333219A (en) Multi-type air-conditioning system
CN112437856B (en) Air conditioner
JP2008157557A (en) Air-conditioning system
JP2006071137A (en) Refrigeration unit
JPWO2012085965A1 (en) Air conditioner
JP2007232265A (en) Refrigeration unit
JP6577264B2 (en) Air conditioner
JP2009139012A (en) Refrigeration air conditioning apparatus
JP2012137241A (en) Air-conditioning apparatus
JP2013002749A (en) Air conditioning device
JP2018071864A (en) Air conditioner
JP2005291553A (en) Multiple air conditioner
JP2014134366A (en) Separation-type air conditioner
WO2015166541A1 (en) Outdoor unit
JP2015222157A (en) Air conditioning device
CN113272598B (en) Air conditioner
JP2018096575A (en) Freezer
WO2021014520A1 (en) Air-conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846264

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13884830

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011846264

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE