WO2012075952A1 - Demodulation method and demodulation system of spectral domain communication signal - Google Patents

Demodulation method and demodulation system of spectral domain communication signal Download PDF

Info

Publication number
WO2012075952A1
WO2012075952A1 PCT/CN2011/083682 CN2011083682W WO2012075952A1 WO 2012075952 A1 WO2012075952 A1 WO 2012075952A1 CN 2011083682 W CN2011083682 W CN 2011083682W WO 2012075952 A1 WO2012075952 A1 WO 2012075952A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclic
processing unit
autocorrelation function
order
cyclic delay
Prior art date
Application number
PCT/CN2011/083682
Other languages
French (fr)
Chinese (zh)
Inventor
蒋永磊
郭海友
田金凤
陈华厦
胡宏林
杨旸
熊勇
钱骅
徐景
葛晓光
Original Assignee
中国科学院上海微***与信息技术研究所
上海无线通信研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海微***与信息技术研究所, 上海无线通信研究中心 filed Critical 中国科学院上海微***与信息技术研究所
Publication of WO2012075952A1 publication Critical patent/WO2012075952A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • H04L27/2678Blind, i.e. without using known symbols using cyclostationarities, e.g. cyclic prefix or postfix

Definitions

  • the invention belongs to the technical field of communications, and relates to a demodulation method and a demodulation system for a spectral domain communication signal.
  • Cyclic Delay Diversity has greatly enhanced the existing standard Orthogonal Frequency Division Multiplexing (OFDM) technology. It is capable of obtaining sufficient spatial diversity gain in a richly scattered wireless environment. Cyclic delay processing converts spatial diversity into frequency diversity, adding redundancy to the frequency domain of an OFDM system. Different from Space-Time Block Coding (STBC) and Space-Time Trellis Codes (STTC) technology, cyclic delay diversity technology can be implemented only at the transmitting end, using this enhanced technology. The system maintains compatibility with the standard.
  • STBC Space-Time Block Coding
  • STTC Space-Time Trellis Codes
  • the cyclic delay diversity technique can be integrated into some current broadcast standards (such as DAB, DVB, and DVB-H) and next-generation mobile communication (3GPP-LTE), as well as wireless MAN and LAN standards (such as IEEE802). 11a and HIPERLAN/2).
  • some current broadcast standards such as DAB, DVB, and DVB-H
  • next-generation mobile communication 3GPP-LTE
  • wireless MAN and LAN standards such as IEEE802). 11a and HIPERLAN/2
  • the cyclic delay diversity technique cannot provide both spatial division multiple access and spatial multiplexing.
  • the cyclostationary nature of the CDD-0FDM signal is generally determined by the inherent periodicity of two different processes, which are CP and CDD processing, respectively.
  • the CP and CDD processes respectively induce different cyclostationary components that are separated from each other on the two-dimensional plane of the cyclic frequency and delay parameters.
  • the position and magnitude of the cyclostationary component induced by CDD can vary with cyclic delay parameters and are linearly independent of each other.
  • the cyclostationary characteristics exhibited by the CDD-0FDM signal have been applied to the following two types of spectral domain communication systems. They are spectral domain channel multiplexed transmission based on cyclic delay modulation for single users, and spectrally divided multiple access based on cyclic delay channelization vector for multiple users.
  • a cyclic delay modulation module and a cyclic delay diversity orthogonal frequency division multiplexing transmission module are embedded in a transmitting device of the system; a cyclic delay modulation module is used Mapping the sub-information bit stream into a cyclic delay vector; the cyclic delay diversity orthogonal frequency division multiplexing transmitting module is configured to perform cyclic delay operation on the diversity orthogonal frequency division multiplexing symbol according to the cyclic delay vector, thereby implementing Multiplexing of spectral domain channels.
  • the system embeds a cyclic delay modulation module in the existing CDD-0FDM standard system through a multi-antenna device, modulates the size and position of the cyclic autocorrelation function of the CDD-0FDM signal, and implements an OFDM modulation channel and a cyclic delay modulation channel.
  • the multiplexing solves the problem of multiplexing the spectral domain channel on the multi-carrier frequency domain channel; the system does not consume additional power and bandwidth while obtaining the cyclic delay diversity, and improves the transmission rate of the system.
  • a transmitting device of the system includes a first spectral division multiple access scheduling entity based on a cyclic delay channelization vector, at least one based on cyclic delay channelization a first spectral division multiple access physical layer entity of the vector; the first spectral division multiple access access scheduling entity based on the cyclic delay channelization vector comprises a cyclic delay channelization vector first allocation unit, based on spectral division multiple access a first adaptive modulation unit of the access channel; a first spectral division multiple access physical layer entity based on the cyclic delay channelization vector comprises a buffer unit, a coding and rate matching unit, a quadrature amplitude modulation unit, and a spectrum Multiple access to the processing unit.
  • the system uses a multi-antenna transmitting device to make the cyclic autocorrelation functions of CDD-0FDM signals based on different cyclic delay vectors linearly independent from each other, thereby solving the problem that CDD-0FDM technology cannot achieve space division multiple access.
  • the simplified suboptimal algorithm is often used, and the detection performance is not high, and the demodulation performance of the spectral domain communication signal based on the cyclic delay modulation is not satisfied.
  • the original optimization detection algorithm has high computational complexity and is difficult to apply to actual signal detection or demodulation.
  • the technical problem to be solved by the present invention is to provide a demodulation method for a spectral domain communication signal, and a method for demodulating a spectral domain communication signal.
  • the present invention adopts the following technical solutions.
  • the sampling sequence number of r(«), W M e - ⁇ M, the cyclic delay detection processing unit is connected to the cyclic autocorrelation function estimation value processing unit, and is used to calculate respective corresponding values for different cyclic delay
  • ⁇ , and the corresponding cyclic delay vector is obtained according to the maximum likelihood decision criterion, where ⁇ ⁇ , ⁇ represents a cyclic delay modulation quantity set; the cyclic modulation vector demapping processing unit and The cyclic delay detection processing unit is connected, used The cyclic delay mapping vectors, are recycled flM transmitted modulated signals.
  • the cyclic delay detection processing unit includes a likelihood function processing unit, a maximum value processing unit, and the likelihood function processing unit is connected to the cyclic autocorrelation function estimation value processing unit.
  • the likelihood function processing unit includes a cyclic autocorrelation function processing unit, a subtraction unit, and an estimated error covariance matrix. Processing unit and likelihood function
  • the estimated error ( ⁇ , ⁇ ) of the correlation function obtains the covariance matrix of the cyclic autocorrelation function estimation error
  • the likelihood function calculation processing unit is respectively connected to the subtraction unit and the estimation error covariance matrix processing unit, Obtaining a likelihood function value according to the covariance matrix
  • the estimation error covariance matrix processing unit includes a fourth-order cumulant processing unit, a bi-second cumulant processing unit, a second-order noise mixed cumulant processing unit, and a fourth-order noise cumulant processing unit.
  • the fourth-order cumulant processing unit is configured to perform fourth-order accumulation in the covariance matrix 7
  • the summation operation is processed to obtain a fourth-order cumulant structure and an index a
  • the biquad cumulant processing unit is configured to process the biquad cumulant summation operation in the covariance matrix 7 to obtain a biquad cumulative
  • the second-order noise mixed cumulant processing unit is configured to process the second-order noise mixed cumulant summation operation in the covariance matrix 7 to obtain a noise second-order mixing moment and an index c
  • the fourth-order noise The cumulant processing unit is configured to process the fourth-order noise cumulant summation operation in the covariance matrix ⁇ to obtain a fourth-order cumulant of noise and an index d
  • the periodic block processing unit and the fourth-order cumulant processing unit The second second-order cumulant processing unit, the second-order noise mixed cumulant processing unit, and the fourth-order noise cumulant processing unit are respectively
  • Step 1 The cyclic autocorrelation function estimation unit calculates an estimated value of the corresponding cyclic autocorrelation function according to the received continuous CDM-0FDM cyclic delay modulation signal «) of L OFDM periods.
  • Step 3 The cyclic modulation vector demapping processing unit maps the cyclic delay vector to obtain the transmitted cyclic modulation signal flM .
  • step 2 the obtaining process of the likelihood function is:
  • the cyclic autocorrelation function processing unit obtains a cyclic autocorrelation function for the cyclic delay value
  • the difference covariance unit obtains a covariance matrix ⁇ s q of the cyclic autocorrelation function estimation error, wherein
  • the likelihood function calculation processing unit obtains a likelihood function 1 ⁇ ( «, ⁇ )
  • the detailed acquisition process of the covariance matrix of the cyclic autocorrelation function estimation error is:
  • the covariance matrix 7 has a cycle frequency of; t, ⁇ ., and the delay components are respectively r,, ⁇ .
  • the periodic block processing unit ⁇ the covariance matrix described in step 21) to a second-order cumulative summation operation region in a component whose cycle frequency is /1, ⁇ ., and the delay amount is respectively ⁇
  • the invention has the following advantages: The invention realizes the demodulation of the CDM-0FDM cyclic delay modulation signal, and can be applied to the spectral domain channel multiplexing transmission, and increases the spectrum domain channel without affecting the ordinary OFDM signal transmission. Transmission of one-dimensional spectral domain communication signals, thereby increasing the system capacity of the wireless communication system;
  • the present invention utilizes the periodicity of the covariance matrix of the estimation error of the cyclic autocorrelation function of the CDM-0FDM signal, and adopts a block calculation method to greatly reduce the estimation error covariance matrix. Computational complexity; because it only processes the corresponding summation results with non-zero index values, saving processing time and resources.
  • FIG. 1 is a schematic structural diagram of a demodulation system of a spectral domain communication signal according to the present invention
  • FIG. 2 is a schematic structural diagram of a likelihood function processing unit according to the present invention.
  • FIG. 3 is a schematic structural diagram of an estimation error covariance matrix processing unit according to the present invention.
  • FIG. 4 is an exploded perspective view of a second-order cumulative summation operation region according to the present invention.
  • Cyclic autocorrelation function estimation value processing unit 2. Cyclic delay detection processing unit;
  • Cyclic modulation vector demapping processing unit 6. Cyclic autocorrelation function processing unit;
  • the present invention obtains the likelihood function of each cyclic frequency by calculating the covariance matrix of the cyclic autocorrelation function and its estimation error, and then adopts the maximum likelihood decision criterion.
  • Corresponding cyclic frequency information is obtained, and the information transmitted on the spectral domain channel is demodulated by using the mapping relationship between the cyclic frequency and the spectral domain communication signal, thereby realizing spectral domain communication.
  • the present invention also utilizes the periodicity of the cyclic autocorrelation function based on the simple calculation method of the block decomposition, and simplifies the calculation of the covariance matrix of the estimation error of the cyclic autocorrelation function by using the block calculation method, which greatly reduces the computational complexity. degree.
  • the embodiment provides a demodulation method and a demodulation system for a spectral domain communication signal.
  • the detailed process of the demodulation method is as follows:
  • N is the FFT size
  • N is the number of antennas at the transmitting end
  • ⁇ command ⁇ is the cyclic delay amount of the 7th antenna
  • the demodulation system of the spectral domain communication signal first receives and stores a length of L OFDM periods.
  • the continuous signal r(«) then the cyclic autocorrelation function estimates the estimated value of the cyclic autocorrelation function of r( «) obtained by the processing unit 1 according to equation (3):
  • the cyclic delay detection processing unit 2 is for different cyclic delay values (which can uniquely characterize the cyclic delay amount ⁇ naut ⁇ on each antenna, where ⁇ ⁇ , ⁇ represents a set of cyclic delay modulation quantities, and has 2 ⁇ 0, 1,..., ⁇ -1 ⁇ ), respectively calculate the corresponding likelihood function 1 ⁇ («, ⁇ )
  • C i( « , r ) represents the autocorrelation function of the transmitted signal when the cyclic delay value is present
  • the matrix (the element of the first row of ? can be expressed as:
  • A represents the cycle frequency
  • P represents the window size of the R function
  • the estimated error covariance matrix processing unit 7 in the likelihood function processing unit 3 obtains a covariance matrix 7 of the cyclic autocorrelation function estimation error.
  • the estimated error covariance matrix processing unit 7 passes the fourth-order cumulant processing unit 9, the double second-order cumulant processing unit 10, the second-order noise mixed cumulant processing unit 11, and the fourth-order noise cumulant processing.
  • Unit 12 and using the simple method based on block decomposition used in the periodic block processing unit 13, calculates a covariance matrix of the cyclic autocorrelation function estimation error:
  • Equation (10) is periodic for the time (", ⁇ ,", and the period is ⁇ , that is, when the ⁇ is simultaneously increased, the value of the equation (10) remains unchanged.
  • the cyclic delay value is expressed as the time passing through the channel. Transmitting a signal, representing a noise signal. Based on the periodicity, the periodic block processing unit decomposes the second-order cumulative summation operation region described in the equation (10), and
  • the second-order cumulative summation can be decomposed into the sum of the nine block regions shown in Fig. 4. Due to the periodicity of the error covariance matrix, the result of the second-order cumulative summation over each region remains unchanged as it slides along the diagonal direction, as in the case where the blocks 1, 5, and 9 regions have the same summation result, and the other block 4 and 8 and blocks 2 and 6 are the same respectively. Therefore, the cumulative summation of the original 9 block regions can be obtained by calculating the cumulative summation on the five edge region blocks of blocks 1, 2, 3, 4, and 7 and multiplying them by different block coefficients, wherein, the block Multiply 1 by 3, block 2 and 4 by 2.
  • Equation 10 The first item in the summation number of equation (10) can be further expanded to: E ⁇ 3 ⁇ 4, (", )3 ⁇ 4, (", + ⁇ q ( n j ) ( n j + ⁇ ) ⁇
  • the fourth-order cumulant processing unit is responsible for calculating the first term in equation (12)
  • the second second-order cumulant processing unit is responsible for calculating the second term in equation (12)
  • the second-order noise mixed cumulant processing unit is responsible for calculating the third and fourth terms in equation (10)
  • the fourth-order noise cumulant is responsible for calculating the fifth and sixth items in equation (10).
  • the fourth-order cumulant processing unit is responsible for calculating equation (13),
  • the input parameter 3 includes a channel impulse response / ⁇ and a fourth-order moment of the modulation waveform of the transmitted signal E ⁇
  • the output parameters of the biquad cumulant processing unit include: B1) biquad moment expression (14) in the edge block The summation result on the region (ie, the biquad cumulant); B2) The index b represents the index of the edge block region with non-zero summation results (ie, non-zero biquad cumulants).
  • the second-order noise mixed cumulant processing unit is responsible for calculating the third and fourth terms in equation (10), S ⁇ : (15) wherein, the output parameters of the second-order noise mixed cumulant processing unit include: C1) noise second-order mixed moment expression (15) summation result on the edge block region (ie, second-order noise mixed cumulant ); C2) Index c represents the index of the edge block region with non-zero summation results (ie, non-zero second-order noise mixed cumulants).
  • the fourth-order noise cumulant processing unit is responsible for calculating the last term in equation (10), g ⁇ :
  • the output parameters of the fourth-order noise cumulant processing unit include: D1) the fourth-order moment expression of the noise (16) the summation result on the edge block region (ie, the fourth-order noise cumulant); D2) the index d represents An index of an edge block region that has a non-zero summation result (ie, a non-zero fourth-order noise cumulant).
  • the maximum value processing unit 4 obtains a corresponding cyclic delay vector based on the maximum likelihood decision criterion.
  • the cyclic modulation vector demapping processing unit 5 demaps the cyclic delay vector to obtain a transmitted cyclic modulation signal with a number of transmit antennas of 2, and when the FFT size is 32, each cyclic modulation symbol transmits a 5-bit cycle.
  • the modulation signal f lM is taken as an example.
  • Table 1 shows the mapping relationship between the cyclic modulation signal flM and the cyclic delay value on the transmitting antenna 2 (the transmitting antenna 1 is used as a reference signal, and no cyclic delay shift is performed): Table 1
  • the invention realizes the demodulation of the CDM-0FDM cyclic delay modulation signal, and can be applied to the spectral domain channel multiplexing transmission, and increases the one-dimensional spectral domain communication signal on the spectral domain channel without affecting the ordinary OFDM signal transmission. Transmission, thereby increasing the system capacity of the wireless communication system; and reducing the computational complexity of the original cyclic delay demodulation algorithm, thereby successfully realizing the transmission of the spectral domain communication signal.
  • the present invention proposes a better detection algorithm, improves the detection probability, and realizes reliable transmission of information in the spectral domain communication system, and the proposed simple method is greatly reduced. The complexity of the receiving algorithm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

A demodulation method and a demodulation system of a spectral domain communication signal are disclosed. The method comprises: Step 1, a cyclic autocorrelation function estimated value processing unit calculating an estimated value of a corresponding cyclic autocorrelation function according to a continuous CDM-OFDM cyclic delay modulation signal with the length of L OFDM cycles; Step 2, a cyclic delay detection processing unit respectively calculating likelihood functions corresponding to different cyclic delay values, and obtaining a corresponding cyclic delay vector according to a maximum likelihood decision criterion; and Step 3, a cyclic modulation vector de-mapping processing unit maps the cyclic delay vector to obtain a cyclic modulation signal to be sent. The present invention can be applied to spectral domain channel multiplexing transmission, and increases the capacity of the system without affecting normal OFDM signal transmission. A block calculation manner is adopted, which greatly reduces calculation complexity and saves processing time and resources.

Description

一种谱域通信信号的解调方法及解调***  Demodulation method and demodulation system for spectral domain communication signal
技术领域 Technical field
本发明属于通信技术领域, 涉及一种谱域通信信号的解调方法及解调***。  The invention belongs to the technical field of communications, and relates to a demodulation method and a demodulation system for a spectral domain communication signal.
背景技术 Background technique
作为一项标准的兼容性好的多天线分集技术, 循环延时分集 (Cyclic Delay Diversity , CDD ) 已经大大增强了现有标准的正交频分复用 (Orthogonal Frequency Division Multiplexing, OFDM) 技术, 使其能够在丰富散射的无线环境中获得足够的空 间分集增益。 循环延时处理能够把空间分集转换为频率分集, 从而在 OFDM***的频域上 加入冗余性。 与空时分组编码 (Space-Time Block Coding , STBC ) 和空时交织编码 ( Space-Time Trellis Codes, STTC) 技术不同的是, 循环延时分集技术仅仅在发送端就 可以实现, 使用该增强技术的***保持了对标准的兼容性。 因此, 循环延时分集技术可以 集成到一些现行的广播标准(例如 DAB、 DVB和 DVB-H)和下一代移动通信(3GPP-LTE)中, 同样也可以应用于无线 MAN和 LAN标准 (例如 IEEE802. 11a和 HIPERLAN/2)。 但是, 循环 延时分集技术不能同时提供空分多址接入功能和空间复用功能。  As a standard compatible multi-antenna diversity technology, Cyclic Delay Diversity (CDD) has greatly enhanced the existing standard Orthogonal Frequency Division Multiplexing (OFDM) technology. It is capable of obtaining sufficient spatial diversity gain in a richly scattered wireless environment. Cyclic delay processing converts spatial diversity into frequency diversity, adding redundancy to the frequency domain of an OFDM system. Different from Space-Time Block Coding (STBC) and Space-Time Trellis Codes (STTC) technology, cyclic delay diversity technology can be implemented only at the transmitting end, using this enhanced technology. The system maintains compatibility with the standard. Therefore, the cyclic delay diversity technique can be integrated into some current broadcast standards (such as DAB, DVB, and DVB-H) and next-generation mobile communication (3GPP-LTE), as well as wireless MAN and LAN standards (such as IEEE802). 11a and HIPERLAN/2). However, the cyclic delay diversity technique cannot provide both spatial division multiple access and spatial multiplexing.
CDD-0FDM信号的循环平稳特性在总体上是由两种不同处理过程的内在周期性决定的, 它们分别是 CP和 CDD处理。 具体而言, CP和 CDD处理分别诱导出不同的、 在循环频率和 延时参数二维平面上相互分离的循环平稳分量。 特别地, 由 CDD诱导的循环平稳分量的位 置和大小可随着循环延时参数的变化而变化, 并相互线性独立。 CDD-0FDM信号所表现出来 的循环平稳特性已应用于下面两类谱域通信***中。 其分别是面向单用户的基于循环延时 调制的谱域信道复用传输, 和面向多用户的基于循环延时信道化矢量的谱分多址接入。  The cyclostationary nature of the CDD-0FDM signal is generally determined by the inherent periodicity of two different processes, which are CP and CDD processing, respectively. Specifically, the CP and CDD processes respectively induce different cyclostationary components that are separated from each other on the two-dimensional plane of the cyclic frequency and delay parameters. In particular, the position and magnitude of the cyclostationary component induced by CDD can vary with cyclic delay parameters and are linearly independent of each other. The cyclostationary characteristics exhibited by the CDD-0FDM signal have been applied to the following two types of spectral domain communication systems. They are spectral domain channel multiplexed transmission based on cyclic delay modulation for single users, and spectrally divided multiple access based on cyclic delay channelization vector for multiple users.
在基于循环延时调制的谱域信道复用传输***中, ***的发射装置中嵌入有循环延时 调制模块、 及循环延时分集正交频分复用发射模块; 循环延时调制模块用以将子信息比特 流映射为循环延时矢量; 循环延时分集正交频分复用发射模块用以根据所述循环延时矢量 对分集正交频分复用符号进行循环延时操作, 从而实现谱域信道的复用。 该***通过多天 线装置, 在现有的 CDD-0FDM标准***中嵌入循环延时调制模块, 调制 CDD-0FDM信号的循 环自相关函数的大小和位置, 实现了 OFDM调制信道和循环延时调制信道的复用, 解决了 在多载波频域信道上复用谱域信道的问题; 该***在获得循环延时分集的同时, 不消耗额 外功率和带宽, 并且提高了***的传输速率。 在基于循环延时信道化矢量的谱分多址接入***中,***的发射装置包括基于循环延 时信道化矢量的第一谱分多址接入调度实体、 至少一基于循环延时信道化矢量的第一谱分 多址接入物理层实体; 其基于循环延时信道化矢量的第一谱分多址接入调度实体包括循环 延时信道化矢量第一分配单元、 基于谱分多址接入信道的第一自适应调制单元; 基于循环 延时信道化矢量的第一谱分多址接入物理层实体包括依次连接的缓存单元、 编码和速率匹 配单元、 正交幅度调制单元、 谱分多址接入处理单元。 该***通过多天线发射装置, 使得 基于不同循环延时矢量的 CDD-0FDM信号的循环自相关函数之间相互线性独立, 从而解决 了 CDD-0FDM技术不能实现空分多址接入的问题。 In a spectral domain channel multiplexing transmission system based on cyclic delay modulation, a cyclic delay modulation module and a cyclic delay diversity orthogonal frequency division multiplexing transmission module are embedded in a transmitting device of the system; a cyclic delay modulation module is used Mapping the sub-information bit stream into a cyclic delay vector; the cyclic delay diversity orthogonal frequency division multiplexing transmitting module is configured to perform cyclic delay operation on the diversity orthogonal frequency division multiplexing symbol according to the cyclic delay vector, thereby implementing Multiplexing of spectral domain channels. The system embeds a cyclic delay modulation module in the existing CDD-0FDM standard system through a multi-antenna device, modulates the size and position of the cyclic autocorrelation function of the CDD-0FDM signal, and implements an OFDM modulation channel and a cyclic delay modulation channel. The multiplexing solves the problem of multiplexing the spectral domain channel on the multi-carrier frequency domain channel; the system does not consume additional power and bandwidth while obtaining the cyclic delay diversity, and improves the transmission rate of the system. In a spectral division multiple access system based on a cyclic delay channelization vector, a transmitting device of the system includes a first spectral division multiple access scheduling entity based on a cyclic delay channelization vector, at least one based on cyclic delay channelization a first spectral division multiple access physical layer entity of the vector; the first spectral division multiple access access scheduling entity based on the cyclic delay channelization vector comprises a cyclic delay channelization vector first allocation unit, based on spectral division multiple access a first adaptive modulation unit of the access channel; a first spectral division multiple access physical layer entity based on the cyclic delay channelization vector comprises a buffer unit, a coding and rate matching unit, a quadrature amplitude modulation unit, and a spectrum Multiple access to the processing unit. The system uses a multi-antenna transmitting device to make the cyclic autocorrelation functions of CDD-0FDM signals based on different cyclic delay vectors linearly independent from each other, thereby solving the problem that CDD-0FDM technology cannot achieve space division multiple access.
在已有的循环特征检测算法中, 往往采用简化次优算法, 检测性能不高, 无法满足基 于循环延时调制的谱域信道复用传输***对谱域通信信号解调性能的要求。原有的最优化 检测算法计算复杂度较高, 难以应用于实际的信号检测或解调。  In the existing cyclic feature detection algorithm, the simplified suboptimal algorithm is often used, and the detection performance is not high, and the demodulation performance of the spectral domain communication signal based on the cyclic delay modulation is not satisfied. The original optimization detection algorithm has high computational complexity and is difficult to apply to actual signal detection or demodulation.
发明内容 Summary of the invention
本发明所要解决的技术问题是: 提供一种谱域通信信号的解调方法, 该方法; 此外, 本发明还提供一种谱域通信信号的解调***。  The technical problem to be solved by the present invention is to provide a demodulation method for a spectral domain communication signal, and a method for demodulating a spectral domain communication signal.
为解决上述技术问题, 本发明采用如下技术方案。  In order to solve the above technical problems, the present invention adopts the following technical solutions.
一种谱域通信信号的解调***, 包括循环自相关函数估计值处理单元, 循环延时检测 处理单元, 循环调制矢量解映射处理单元; 所述循环自相关函数估计值处理单元用以根据 接收到的一段连续的 CDM-0FDM循环延时调制信号 «),计算相应的循环自相关函数的估计 值 = | r(ri) (n + T)W^,其中 φ)为长为 L个 OFDM周期的连续信号, M是一个 OFDM 符号的长度, 《e O, ...,M - e l -M, ...,M - l, 《表示循环频率, ί"表示延时, 《表示连续信号 r(«)的采样序号, WM = e-^M 所述循环延时检测处理单元与所述循环自相关函数估计值处 理单元相连, 用以针对不同的循环延时值 分别计算相应的似然函数 1ηρ^ («, Γ) | }, 并根 据最大似然判决准则得到相应的循环延时矢量 ,其中 ^ δ, β表示循环延时调制量集合; 所述循环调制矢量解映射处理单元与所述循环延时检测处理单元相连, 用以将所述循环延 时矢量 进行映射, 得到所发送的循环调制信号 flMA demodulation system for a spectral domain communication signal, comprising a cyclic autocorrelation function estimation value processing unit, a cyclic delay detection processing unit, and a cyclic modulation vector demapping processing unit; and the cyclic autocorrelation function estimation value processing unit is configured to receive A continuous CDM-0FDM cyclic delay modulation signal «), calculate the corresponding cyclic autocorrelation function estimate = | r (ri) (n + T) W ^, where φ) is longer than L OFDM periods Continuous signal, M is the length of an OFDM symbol, "e O, ..., M - e l -M, ..., M - l, "representing the cyclic frequency, ί" means delay, "representing continuous signal The sampling sequence number of r(«), W M = e - ^ M, the cyclic delay detection processing unit is connected to the cyclic autocorrelation function estimation value processing unit, and is used to calculate respective corresponding values for different cyclic delay values. The function 1ηρ^ («, Γ) | }, and the corresponding cyclic delay vector is obtained according to the maximum likelihood decision criterion, where ^ δ, β represents a cyclic delay modulation quantity set; the cyclic modulation vector demapping processing unit and The cyclic delay detection processing unit is connected, used The cyclic delay mapping vectors, are recycled flM transmitted modulated signals.
作为本发明的一种优选方案, 所述循环延时检测处理单元包括似然函数处理单元, 最 大值处理单元; 所述似然函数处理单元与所述循环自相关函数估计值处理单元相连, 用以 通计过针对不同的循环延时值 分别获得相应的似然函数 1ηρ^(«,Γ) | } ; 所述似然函数处理 单元包括循环自相关函数处理单元、 减法单元、 估计误差协方差矩阵处理单元和似然函数 处 As a preferred solution of the present invention, the cyclic delay detection processing unit includes a likelihood function processing unit, a maximum value processing unit, and the likelihood function processing unit is connected to the cyclic autocorrelation function estimation value processing unit. Take The corresponding likelihood function 1ηρ^(«,Γ) | } is obtained for different cyclic delay values respectively ; the likelihood function processing unit includes a cyclic autocorrelation function processing unit, a subtraction unit, and an estimated error covariance matrix. Processing unit and likelihood function
 Rational
crs (« = ∑C单 (n,T)W Css (a,T)h^_r+a S(T)S(a)获得所述循环延时调制 i
Figure imgf000005_0001
c rs (« = ∑C 单(n,T)WC ss (a,T)h^_ r +a S(T)S(a) obtains the cyclic delay modulation i
Figure imgf000005_0001
号 r(«)针对循环延时值 的循环自相关函数 (α,τ); 其中, Αζ = [/¾ (l),h2 (l),-,h„T (/)]为信道 冲击响应, N表示发送端天线数目, σζ 2表示噪声功率, A+Z— A+Z—表示第 r+/-r阶上的信 道冲击响应的共轭转置, 表示信道的阶数, 当循环延时值为 时的接收信号的自 环 The number r(«) is a cyclic autocorrelation function (α,τ) for the cyclic delay value; where Α ζ = [/3⁄4 (l), h 2 (l), -, h„ T (/)] is the channel Shock response, N represents the number of antennas at the transmitting end, σ ζ 2 represents the noise power, A +Z — A +Z — represents the conjugate transpose of the channel impulse response at the r+ /-rth order, indicating the order of the channel, when The loop delay value is the self-loop of the received signal
相关函数; 发射信号的循环自相关函数为 <? («, =^ ^ ^", C ,r)表示当循环延 时值为 时的发射信号的自相关函数;所述减法单元用以将所述循环自相关函数 (α,τ)与 关 Correlation function; the cyclic autocorrelation function of the transmitted signal is <? («, =^ ^ ^ ^, C , r) represents the autocorrelation function of the transmitted signal when the cyclic delay value is used; Cyclic autocorrelation function (α, τ) and off
所述循环自相关函数的估计值 (« 相减, 输出与循环延时值 对应的循环自相关函数的 估计误差 (« =4(« - (« ;所述估计误差协方差矩阵处理单元用以根据所述循环自 处 The estimated value of the cyclic autocorrelation function (« subtraction, the estimated error of the cyclic autocorrelation function corresponding to the cyclic delay value (« = 4 (« - (« ; the estimated error covariance matrix processing unit is used) According to the loop
相关函数的估计误差 (α,τ)获得循环 自相关函数估计误差的协方差矩阵 理 The estimated error (α, τ) of the correlation function obtains the covariance matrix of the cyclic autocorrelation function estimation error
∑sq , 其 中 , 单∑s q , where, single
Figure imgf000005_0002
J ,
Figure imgf000005_0002
J,
(k,l-M) es (k,2-M) … es (:, -1)T;所述似然函数计算处理单元分别与所述减法单 元和估计误差协方差矩阵处理单元相连, 用以根据所述协方差矩阵 获得似然函数值 式(k, lM) e s (k, 2-M) ... e s (:, -1) T; the likelihood function calculation processing unit is respectively connected to the subtraction unit and the estimation error covariance matrix processing unit, Obtaining a likelihood function value according to the covariance matrix
1 y-msq) ∑q [ -m 1 y- m s q ) ∑ q [ -m
^p{ \sq -exp ¾ 巾 y= y0 Ji ^p{ \s q -exp 3⁄4 towel y= y 0 Ji
det Γ 2 ···
Figure imgf000005_0003
Det Γ 2 ···
Figure imgf000005_0003
m c (k,l-M) c {k,2-M)… β,Μ_\) ; 所述最大值处理单元与所述似然函数处理单 元相连, 用以根据最大似然判决准则获得相应的循环延时矢量 。 Mc (k, lM) c {k, 2-M)... β, Μ_\); the maximum value processing unit is connected to the likelihood function processing unit for obtaining a corresponding cyclic delay according to a maximum likelihood decision criterion Time vector.
作为本发明的另一种优选方案, 所述估计误差协方差矩阵处理单元包括四阶累积量处 理单元, 双二阶累积量处理单元, 二阶噪声混合累积量处理单元, 四阶噪声累积量处理单 元,周期分块处理单元;所述四阶累积量处理单元用以对所述协方差矩阵 7 中的四阶累积 量求和运算进行处理, 获得四阶累积量结构和索引 a; 所述双二阶累积量处理单元用以对 协方差矩阵 7 中的双二阶累积量求和运算进行处理获得双二阶累积量和索引 b; 所述二阶 噪声混合累积量处理单元用以对协方差矩阵 7 中的二阶噪声混合累积量求和运算进行处 理获得噪声二阶混合矩和索引 c; 所述四阶噪声累积量处理单元用以对协方差矩阵 Γ 中的 四阶噪声累积量求和运算进行处理获得噪声四阶累积量和索引 d; 所述周期分块处理单元 与所述四阶累积量处理单元、 双二阶累积量处理单元、 二阶噪声混合累积量处理单元和四 阶噪声累积量处理单元分别相连, 用以基于块状分解的方法对所述四阶累积量、 双二阶累 积量、 噪声二阶混合矩和噪声四阶累积量中的二阶累加求和运算进行分块处理, 获得循环 自相关函数估计误差的协方差矩阵 7 的求和结果。 一种谱域通信信号的解调方法, 包括以下步骤: As another preferred embodiment of the present invention, the estimation error covariance matrix processing unit includes a fourth-order cumulant processing unit, a bi-second cumulant processing unit, a second-order noise mixed cumulant processing unit, and a fourth-order noise cumulant processing unit. a unit, a periodic block processing unit; the fourth-order cumulant processing unit is configured to perform fourth-order accumulation in the covariance matrix 7 The summation operation is processed to obtain a fourth-order cumulant structure and an index a; the biquad cumulant processing unit is configured to process the biquad cumulant summation operation in the covariance matrix 7 to obtain a biquad cumulative And the second-order noise mixed cumulant processing unit is configured to process the second-order noise mixed cumulant summation operation in the covariance matrix 7 to obtain a noise second-order mixing moment and an index c; the fourth-order noise The cumulant processing unit is configured to process the fourth-order noise cumulant summation operation in the covariance matrix Γ to obtain a fourth-order cumulant of noise and an index d; the periodic block processing unit and the fourth-order cumulant processing unit, The second second-order cumulant processing unit, the second-order noise mixed cumulant processing unit, and the fourth-order noise cumulant processing unit are respectively connected to the fourth-order cumulant, the second-order cumulant, and the noise based on the block decomposition method The second-order mixed moment and the second-order cumulative summation operation of the fourth-order cumulant of noise are subjected to block processing to obtain the summation result of the covariance matrix 7 of the estimation error of the cyclic autocorrelation function. A method for demodulating a spectral domain communication signal includes the following steps:
步骤一,循环自相关函数估计值处理单元根据接收到的一段长为 L个 OFDM周期的连续 的 CDM-0FDM循环延时调制信号 «), 计算相应的循环自相关函数的估计值  Step 1: The cyclic autocorrelation function estimation unit calculates an estimated value of the corresponding cyclic autocorrelation function according to the received continuous CDM-0FDM cyclic delay modulation signal «) of L OFDM periods.
(«, ) =— £ {nY (n + τ)Ψ«η, 其中, 《eO,...,M-l,rel-M,...,M-l, M是一个 OFDM符号的长度, 表示循环频率, 《表 示连续信号 r(«)的采样序号, r表示延时, WM =e-m' 步骤二, 循环延时检测处理单元针对不同的循环延时值 分别计算相应的似然函数 \np{cr{a, )\Sq},并根据最大似然判决准则得到相应的循环延时矢量 , = ,其中 ^ρ, δ表示循环延时调制量集合; («, ) = - £ {nY (n + τ)Ψ« η , where "eO,...,Ml,rel-M,...,Ml, M is the length of an OFDM symbol, indicating the cyclic frequency , "Represents the sampling number of the continuous signal r («), r represents the delay, W M = em'. Step 2, the cyclic delay detection processing unit separately calculates the corresponding likelihood function for different cyclic delay values\np{c r {a, )\S q }, and obtain a corresponding cyclic delay vector according to the maximum likelihood decision criterion, = , where ^ρ, δ represents a set of cyclic delay modulation quantities;
步骤三, 循环调制矢量解映射处理单元将所述循环延时矢量 进行映射, 得到所发送 的循环调制信号 flMStep 3: The cyclic modulation vector demapping processing unit maps the cyclic delay vector to obtain the transmitted cyclic modulation signal flM .
作为本发明的一种优选方案, 步骤二中, 所述似然函数的获取过程为:  As a preferred solution of the present invention, in step 2, the obtaining process of the likelihood function is:
1) 循环自相关函数处理单元获得针对循环延时值 的循环自相关函数
Figure imgf000006_0001
1) The cyclic autocorrelation function processing unit obtains a cyclic autocorrelation function for the cyclic delay value
Figure imgf000006_0001
其中, (? («, =^^^(" ^", Αζ =[/¾(/),/¾(/),···, (/)]为信道冲击响应, /=0,WA, ^表示信道的阶数, N表示发送端天线数目, 表示噪声功率, A+Z—表示第 r+/-r阶上 的信道冲击响应的共轭转置, 表示当循环延时值为 时的接收信号 r(«)的自相关函 数; Cs(n, 表示当循环延时值为 5q时的发射信号的自相关函数; Where (? («, =^^^("^", Α ζ =[/3⁄4(/),/3⁄4(/),···, (/)] is the channel impulse response, /=0,W A , ^ denotes the order of the channel, N denotes the number of antennas at the transmitting end, denotes the noise power, A +Z — denotes the r+ /-r step The conjugate transpose of the channel impulse response, representing the autocorrelation function of the received signal r(«) when the cyclic delay value is; C s (n, representing the self-emission of the transmitted signal when the cyclic delay value is 5 q related functions;
2) 差协方差 理单元获得循环自相关函数估计误差的协方差矩阵 sq , 其 中 ,2) The difference covariance unit obtains a covariance matrix s q of the cyclic autocorrelation function estimation error, wherein
Figure imgf000007_0001
J , εδ t =「 (k,l-M) εδ (k,2-M) … es (:, -1)T; εδ {α,τ) = cr{a,r)-crs (α,τ)为在循环延时值为 5q 时的循环自相关函数估计误差;
Figure imgf000007_0001
J , ε δ t = " (k, lM) ε δ (k, 2-M) ... e s (:, -1)T; ε δ {α,τ) = c r {a,r)-c rs (α, τ) is the cyclic autocorrelation function estimation error when the cyclic delay value is 5 q ;
3)似然函数计算处理单元获得与循环延时值 相应的似然函数 1ηρ^(«,Γ)| }, 其中, 3) The likelihood function calculation processing unit obtains a likelihood function 1ηρ^(«, Γ )| } corresponding to the loop delay value, wherein
1 y~msq ) ∑s^ [ -m 1 y~ m s q ) ∑s^ [ -m
\np{cr{a, )\Sq} = \np{y\Sq -exp \np{c r {a, )\S q } = \np{y\S q -exp
det Γ 2  Det Γ 2
Figure imgf000007_0002
) 作为本发明的另一种优选方案,所述循环自相关函数估计误差的协方差矩阵 的详细 获取过程为:
Figure imgf000007_0002
As another preferred embodiment of the present invention, the detailed acquisition process of the covariance matrix of the cyclic autocorrelation function estimation error is:
21) 所述协方差矩阵 7 在循环频率分别为; t,^., 延时量分别为 r,,^.时的分量为: = E{ (cr ,Γ,)- c¾ { t , r,. ))(cr (kj ,Tj)- c¾ { j , Tj ))' } 21) The covariance matrix 7 has a cycle frequency of; t, ^., and the delay components are respectively r,, ^. The components are: = E{ (c r , Γ,) - c 3⁄4 { t , r,. ))(c r (kj ,Tj)- c 3⁄4 { j , Tj ))' }
E{¾, («,)¾, (", + ^M, («, +^)}- E{3⁄4, («,)3⁄4, (", + ^M, («, +^)}-
E{¾, (",)¾, (", + ^,)}E{¾, +^)} E{3⁄4, (",)3⁄4, (", + ^,)}E{3⁄4, +^)}
+E{¾, (",■ ) (nj )}^(«, + - rij - τί )σ] +E{3⁄4, (",■ ) ( n j )}^(«, + - rij - τ ί )σ]
L2M 1 ∑∑ L 2 M 1 ∑∑
+Ε{ , (",■ + ) ¾, (nj + ) -η^σ] +Ε{ , (",■ + ) 3⁄4, ( n j + ) -η^σ]
+Ε{ζ(",· )ζ' (",■ + τ,. )ζ' {nj )z{nj + r } +Ε{ζ(",· )ζ'(",■ + τ,. )ζ' {n j )z{n j + r }
- (r,.) (r,)az 4 其中, , =0,1,···,Μ— 1, τίί = - + 1,- + 2,···, -1; - (r,.) (r,)a z 4 where, , =0,1,···,Μ— 1, τ ίί = - + 1,- + 2,···, -1;
22) 所述周期分块处理单元将步骤 21) 所述的协方差矩阵 Γ 在循环频率分别为/ 1,^., 延时量分别为^^时的分量中的二阶累加求和运算区域进行分解, 分解过程为: 首先设立 以 为横坐标以 为纵坐标的坐标轴,其中 = 0X-,ML-l, 与 nj均表示时间采样序号; 然后将坐标轴上由坐标 (《, , ^.)表征的矩形区域在横坐标和纵坐标上分别以间隔 M进行 分割, 并分别以坐标( ^)表示各个分割后的块状区域, 其中 = _ 7ΟΟΓ(«,./Μ), p = floor(nj IM) , oor(xx)表示不超过 xx的最大整数, 从而将所述的协方差矩阵 Γ 中 的二阶累加求和运算区域分解为一系列块状区域( (^^ = 0,— - 1)上的求和运算; 22) The periodic block processing unit Γ the covariance matrix described in step 21) to a second-order cumulative summation operation region in a component whose cycle frequency is /1, ^., and the delay amount is respectively ^^ To perform the decomposition, the decomposition process is as follows: First, set the coordinate axis that the abscissa is the ordinate, where = 0X-, ML-l, and nj both represent the time sample number; then the coordinate is on the coordinate (", , ^.) The characterized rectangular regions are divided by the interval M on the abscissa and the ordinate, respectively, and the divided block regions are respectively represented by coordinates (^), where = _ 7ΟΟΓ(«,./Μ), p = floor( nj IM) , oor(xx) represents the largest integer not exceeding xx, thereby decomposing the second-order cumulative summation operation region in the covariance matrix Γ into a series of block regions ( (^^ = The summation operation on 0, — - 1);
23 ) 将二阶累加求和运算区域中沿着坐标轴的每个边缘块状区域的求和结果分别乘以 相应的块系数, 其中每个边缘块状区域的系数为 we gfe = J - |^ - p| ; 所述二阶累加求和运 算区域的求和结果即等于每个所述边缘块状区域的求和结果与其相应块系数的乘积的累 加和。 本发明的有益效果在于: 本发明实现了对 CDM-0FDM循环延时调制信号的解调, 可应 用于谱域信道复用传输, 在不影响普通 OFDM信号传输的同时, 在谱域信道上增加一维谱 域通信信号的传输, 从而增加无线通信***的***容量; 23) multiplying the summation result of each edge block region along the coordinate axis in the second-order cumulative sum operation region by the corresponding block coefficient, wherein the coefficient of each edge block region is we gfe = J - | ^ - p| ; The summation result of the second-order cumulative sum operation area is equal to the cumulative sum of the product of the summation result of each of the edge block regions and its corresponding block coefficient. The invention has the following advantages: The invention realizes the demodulation of the CDM-0FDM cyclic delay modulation signal, and can be applied to the spectral domain channel multiplexing transmission, and increases the spectrum domain channel without affecting the ordinary OFDM signal transmission. Transmission of one-dimensional spectral domain communication signals, thereby increasing the system capacity of the wireless communication system;
本发明的另一有益效果在于: 本发明利用 CDM-0FDM信号的循环自相关函数的估计误 差的协方差矩阵的周期性, 采用了分块计算的方式, 较大地降低了估计误差协方差矩阵的 计算复杂度; 由于其只对拥有非零索引值的相应求和结果进行处理, 从而节省了处理时间 及资源。  Another advantageous effect of the present invention is that: the present invention utilizes the periodicity of the covariance matrix of the estimation error of the cyclic autocorrelation function of the CDM-0FDM signal, and adopts a block calculation method to greatly reduce the estimation error covariance matrix. Computational complexity; because it only processes the corresponding summation results with non-zero index values, saving processing time and resources.
附图说明 DRAWINGS
图 1为本发明所述的谱域通信信号的解调***的结构示意图;  1 is a schematic structural diagram of a demodulation system of a spectral domain communication signal according to the present invention;
图 2为本发明所述的似然函数处理单元的结构示意图;  2 is a schematic structural diagram of a likelihood function processing unit according to the present invention;
图 3为本发明所述的估计误差协方差矩阵处理单元的结构示意图;  3 is a schematic structural diagram of an estimation error covariance matrix processing unit according to the present invention;
图 4为本发明所述的二阶累加求和运算区域的分解示意图。  4 is an exploded perspective view of a second-order cumulative summation operation region according to the present invention.
主要组件符号说明:  Main component symbol description:
I、 循环自相关函数估计值处理单元; 2、 循环延时检测处理单元;  I. Cyclic autocorrelation function estimation value processing unit; 2. Cyclic delay detection processing unit;
3、 似然函数处理单元; 4、 最大值处理单元;  3. likelihood function processing unit; 4. maximum processing unit;
5、 循环调制矢量解映射处理单元; 6、 循环自相关函数处理单元;  5. Cyclic modulation vector demapping processing unit; 6. Cyclic autocorrelation function processing unit;
7、 估计误差协方差矩阵处理单元; 8、 似然函数计算处理单元;  7. Estimating error covariance matrix processing unit; 8. likelihood function calculation processing unit;
9、 四阶累积量处理单元;  9, fourth-order cumulant processing unit;
I I、 二阶噪声混合累积量处理单元;  I I, second-order noise mixed cumulant processing unit;
13、 周期分块处理单元。 具体实施方式 13. Periodic block processing unit. Detailed ways
本发明根据循环自相关函数的估计误差呈复正太分布的统计特性, 通过计算循环自相 关函数及其估计误差的协方差矩阵, 得到每个循环频率的似然函数, 然后采用最大似然判 决准则得到相应的循环频率信息, 利用循环频率与谱域通信信号间的映射关系解调得到谱 域信道上所传输的信息, 从而实现了谱域通信。 此外, 本发明还基于块状分解的简便计算 方法利用循环自相关函数的周期性, 通过采用分块计算的方法简化了循环自相关函数估计 误差的协方差矩阵的计算, 较大地减少了计算复杂度。 下面结合附图对本发明的具体实施 方式作进一步详细说明。 实施例  According to the statistical property of the complex error distribution of the cyclic autocorrelation function, the present invention obtains the likelihood function of each cyclic frequency by calculating the covariance matrix of the cyclic autocorrelation function and its estimation error, and then adopts the maximum likelihood decision criterion. Corresponding cyclic frequency information is obtained, and the information transmitted on the spectral domain channel is demodulated by using the mapping relationship between the cyclic frequency and the spectral domain communication signal, thereby realizing spectral domain communication. In addition, the present invention also utilizes the periodicity of the cyclic autocorrelation function based on the simple calculation method of the block decomposition, and simplifies the calculation of the covariance matrix of the estimation error of the cyclic autocorrelation function by using the block calculation method, which greatly reduces the computational complexity. degree. The specific embodiments of the present invention will be further described in detail below with reference to the accompanying drawings. Example
本实施例提供一种谱域通信信号的解调方法及解调***, 该解调方法的详细过程如 下:  The embodiment provides a demodulation method and a demodulation system for a spectral domain communication signal. The detailed process of the demodulation method is as follows:
1) 首先根据接收到的一段连续的 CDM-0FDM循环延时调制信号, 计算相应的循环自相 关函数的估计值。 详细计算过程如下:  1) First, calculate the estimated value of the corresponding cyclic autocorrelation function based on the received continuous CDM-0FDM cyclic delay modulation signal. The detailed calculation process is as follows:
所述连续的 CDM-0FDM循环延时调制信号可表示为: ") = (H)M) C, ) (1)
Figure imgf000009_0001
其中, N表示 FFT大小, N表示发送端的天线数目, Δ„τ表示第《7个天线的循环延时量, 1<»ΓΤ , M =N + NG , 表示 CP长度, 表示第 /个 OFDM符号第个子载波上传输的调制 信号, g(«)= M— ), 其中
The continuous CDM-0FDM cyclic delay modulation signal can be expressed as: ") = (H)M) C , ) (1)
Figure imgf000009_0001
Where N is the FFT size, N is the number of antennas at the transmitting end, Δ„ τ is the cyclic delay amount of the 7th antenna, 1<» ΓΤ , M =N + N G , indicating the CP length, indicating a modulated signal transmitted on the first subcarrier of OFDM symbols, g(«)= M — ), where
「1 η = Τ,,Τ,+\,··· Τ /ri、 else (2) 如图 1所示,所述谱域通信信号的解调***首先接收并存储一段长为 L个 OFDM周期的 连续信号 r(«), 然后所述循环自相关函数估计值处理单元 1根据式 (3) 获得的 r(«)的循环 自相关函数的估计值: "1 η = Τ, Τ, +\,··· Τ /ri , else (2) As shown in Figure 1, the demodulation system of the spectral domain communication signal first receives and stores a length of L OFDM periods. The continuous signal r(«), then the cyclic autocorrelation function estimates the estimated value of the cyclic autocorrelation function of r(«) obtained by the processing unit 1 according to equation (3):
LM-1  LM-1
(", ) =—∑ r(")r * (" + T)WM = cr r) + ε(α, τ) (3) 其中, 《eO,...,M-l,rel-M,...,M-l, 表示循环频率, r表示延时, M是一个 OFDM符 号的长度, 《表示连续信号 r(«)的采样序号, WM =e-^M(", ) = -∑ r(")r * (" + T)WM = c r r) + ε(α, τ) (3) where, "eO,...,Ml,rel-M,. .., Ml, represents the cycle frequency, r represents the delay, M is an OFDM symbol The length of the number, "the sampling number indicating the continuous signal r («), W M = e - ^ M ;
2) 然后根据不同的循环延时矢量, 分别计算相应的循环自相关函数, 以及循环自相 关函数的估计误差的协方差矩阵, 利用循环自相关函数的估计误差呈复正太分布的统计特 性, 得到针对不同循环延时矢量的似然函数。 详细计算过程如下:  2) Then according to different cyclic delay vectors, calculate the corresponding cyclic autocorrelation function and the covariance matrix of the estimated error of the cyclic autocorrelation function, and use the statistical property of the complex error of the estimated error of the cyclic autocorrelation function to obtain A likelihood function for different cyclic delay vectors. The detailed calculation process is as follows:
循环延时检测处理单元 2针对不同的循环延时值 ( 可以唯一表征各天线上的循环 延时量 Δ„τ, 其中^ ρ,ρ表示循环延时调制量集合, 并且有2^{0,1,...,^-1}), 分别计算相 应的似然函数 1ηρ^(«,Γ)| }。 如图 2所示, 似然函数处理单元 3中的循环自相关函数处理 单 6元利用式 (4) 得到接收信号 (即信号 r(«) ) 针对循环延时值 的循环自相关函数: c¾ (a,T) = -^∑ ¾ («,T)¾ The cyclic delay detection processing unit 2 is for different cyclic delay values (which can uniquely characterize the cyclic delay amount Δ„ τ on each antenna, where ^ ρ, ρ represents a set of cyclic delay modulation quantities, and has 2^{0, 1,...,^-1}), respectively calculate the corresponding likelihood function 1ηρ^(«,Γ)| }. As shown in Fig. 2, the cyclic autocorrelation function processing unit 6 in the likelihood function processing unit 3 The element uses equation (4) to obtain the cyclic autocorrelation function of the received signal (ie signal r(«)) for the cyclic delay value: c 3⁄4 (a,T) = -^∑ 3⁄4 («,T)3⁄4
M  M
(4)
Figure imgf000010_0001
其中, (/),···, (/)]为信道冲击响应, / = ο,ι,··· , 4为信道的阶数, 表 示发送端天线数目, σζ 2表示噪声功率, A+Z—表示第 r+/-r阶上的信道冲击响应的共轭转置, Crs (« 表示当循环延时值为 时的接收信号的自相关函数, (? 表示发射信号的循环 自相关函数为;
Figure imgf000010_0002
(4)
Figure imgf000010_0001
Where (/), ···, (/)] is the channel impulse response, / = ο,ι,··· , 4 is the order of the channel, indicating the number of antennas at the transmitting end, σ ζ 2 indicates the noise power, A +Z — represents the conjugate transpose of the channel impulse response at the r+/- rth order, C rs (« represents the autocorrelation function of the received signal when the cyclic delay value is present, (? represents the cyclic autocorrelation of the transmitted signal) Function is
Figure imgf000010_0002
其中, Ci(«,r)表示当循环延时值为 时的发射信号的自相关函数, 矩阵 (? 的第 行第 ·列的元素可表示为: Where C i( « , r ) represents the autocorrelation function of the transmitted signal when the cyclic delay value is present, and the matrix (the element of the first row of ? can be expressed as:
0<τ = Δ. 丄『 F ί" = ΔΛ,· <0 0<τ = Δ. 丄『 F ί" = Δ Λ ,· <0
丄 F (6) 丄 F (6)
0<T = N + Aii <M-l 0<T = N + A ii <Ml
1  1
Ύ M l-M< = Aji-N <Q Ύ M lM< = A ji -N <Q
else
Figure imgf000011_0001
Else
Figure imgf000011_0001
M n=0 sin(^/ )  M n=0 sin(^/ )
A表示循环频率, P表示 R函数的窗口大小, 所述循环自相关函数 (« 与所述循环 自相关函数估计值 (« 相减, 得到相应循环延时值 的循环自相关函数的估计误差 ε, (α,τ) ; 另一方面, 所述似然函数处理单元 3中的估计误差协方差矩阵处理单元 7得到循 环自相关函数估计误差的协方差矩阵 7 。 最后, 似然函数计算处理单元 8根据式 (8)得到 相应的似然函数值:
Figure imgf000011_0002
其中, = [ >ί - JM-I J' yk=[cr{ -M),cr{k,2-M),--,cr{k - )]T »
A represents the cycle frequency, P represents the window size of the R function, and the cyclic autocorrelation function (« is compared with the estimated value of the cyclic autocorrelation function («, the estimated error ε of the cyclic autocorrelation function of the corresponding cyclic delay value is obtained) (α, τ); on the other hand, the estimated error covariance matrix processing unit 7 in the likelihood function processing unit 3 obtains a covariance matrix 7 of the cyclic autocorrelation function estimation error. Finally, the likelihood function calculation processing unit 8 obtain the corresponding likelihood function value according to formula (8):
Figure imgf000011_0002
Where = [ > ί - JM-I J' y k = [c r { -M),c r {k,2-M),--,c r {k - )] T »
m E{JI¾}: m ,M- 1 m l-M) crg (k,2-M) ··· c¾ (/t, -l)m E{JI3⁄4} : m ,M- 1 m lM) c rg (k,2-M) ··· c 3⁄4 (/t, -l)
Figure imgf000011_0003
Figure imgf000011_0003
如图 3所示, 所述估计误差协方差矩阵处理单元 7通过四阶累积量处理单元 9、 双二 阶累积量处理单元 10、二阶噪声混合累积量处理单元 11以及四阶噪声累积量处理单元 12, 并利用周期分块处理单元 13 中所使用的基于块状分解的简便方法, 计算循环自相关函数 估计误差的协方差矩阵 :
Figure imgf000011_0004
As shown in FIG. 3, the estimated error covariance matrix processing unit 7 passes the fourth-order cumulant processing unit 9, the double second-order cumulant processing unit 10, the second-order noise mixed cumulant processing unit 11, and the fourth-order noise cumulant processing. Unit 12, and using the simple method based on block decomposition used in the periodic block processing unit 13, calculates a covariance matrix of the cyclic autocorrelation function estimation error:
Figure imgf000011_0004
其中, = ,,… 、 J, k = [eSq ( l-M) eSq (k,2-M) … (:, -1)J。 由式(9) 可以看出, 估计误差的协方差矩阵 是一个 MPM-DXMPM-I)的矩阵, 并且, 它在循环 频率分别为 Λ., 延时量分别为 r,,^.时的分量为: = E{(cr(:,.,r,.)-c¾ (^.,r,.))(cr(^.,r,)-c¾ (:,,r,))*} (10) Where = , ,..., J, k = [e Sq ( lM) e Sq (k,2-M) ... (:, -1)J. It can be seen from equation (9) that the covariance matrix of the estimation error is a matrix of MPM-DXMPM-I), and its component at the cyclic frequency is Λ., and the delay amounts are respectively r, , ^. for: = E{(c r (:,.,r,.)-c 3⁄4 (^.,r,.))(c r (^.,r,)-c 3⁄4 (:,,r,))*} (10)
E{¾, («,)¾, (", + ^M, («, +^)}- E{3⁄4, («,)3⁄4, (", + ^M, («, +^)}-
E{¾, (",)¾, (", + ^,)}E{¾, +^)} E{3⁄4, (",)3⁄4, (", + ^,)}E{3⁄4, +^)}
+E{¾, (",■ )¾, (nj ))S(ni + r,. - rij - Tj )σ] +E{3⁄4, (",■ )3⁄4, ( n j ))S(n i + r,. - rij - Tj )σ]
L2M ∑∑ 1 +E{x («,. + r,.)x (nj + r -η^σ] L 2 M ∑∑ 1 +E{x («,. + r,.)x (n j + r -η^σ]
+Ε{ζ(",· )ζ' (",■ + τ,. )ζ' {nj )z{nj + r } +Ε{ζ(",· )ζ'(",■ + τ,. )ζ' {n j )z{n j + r }
- (r,.) (r,)az 4 - (r,.) (r,)a z 4
其中, k kj =0,1,··.,Μ-1, Γ,.,Γ, =-Μ + 1,-Μ + 2,··.,Μ-1。可以证明式(10)针对时间 (",·," 呈 周期性, 周期为 Μ, 即当 分别同时增加 Μ时, 式(10)的值保持不变。 表示循环延 时值为 时经过信道的发送信号, 表示噪声信号。 基于这一周期性, 所述周期分块处 理单元将式 ( 10 ) 所述的二阶累加求和运算区域进行分解, 将坐标轴上由  Where k kj =0,1,··.,Μ-1, Γ,.,Γ, =-Μ + 1,-Μ + 2,··.,Μ-1. It can be proved that the equation (10) is periodic for the time (", ·,", and the period is Μ, that is, when the Μ is simultaneously increased, the value of the equation (10) remains unchanged. The cyclic delay value is expressed as the time passing through the channel. Transmitting a signal, representing a noise signal. Based on the periodicity, the periodic block processing unit decomposes the second-order cumulative summation operation region described in the equation (10), and
=0,1,··.,Μ -1)表征的矩形区域在横坐标和纵坐标上分别以间隔 M进行分割, 并 分别以( ,ρ)来表示各个块状区域, ^^q = flooTini/M), p = floor(n}. I M) , oor(xx)表 示不超过 xx的最大整数, 从而将式 (10) 中的二阶累加求和分解为一系列块状区域 =0,1,··.,Μ -1) The rectangular region characterized by the interval is divided by the interval M on the abscissa and the ordinate, and each block region is represented by ( , ρ), ^^q = flooTi Ni /M), p = floor(n } . IM) , oor(xx) represents the largest integer not exceeding xx, thus decomposing the second-order cumulative summation in equation (10) into a series of block regions
= 0,…, -1)上的求和。 再利用式 (10) 的周期性可以发现, 同一对角线上的块 状区域 (即 g = p的那些块状区域) 上的求和结果相同, 因此只需要计算由坐标  = 0, ..., -1) on the sum. Reusing the periodicity of equation (10), it can be found that the summation results on the block-like regions on the same diagonal (ie those with g = p) are the same, so only the coordinates are calculated.
(q, p)(q = 0; p = 0,…, J - 1)以及坐标( p)(q = 1, · · ·, J - 1; p = 0)表征的紧靠纵坐标以及横坐 标的几个块状区域 (以下简称边缘块状区域) 上的求和运算, 然后将每个边缘块状区域的 求和结果分别乘以相应的块系数, 其中每个边缘块状区域的系数为 wegfe = J-|^-p|, 从 而使计算复杂度由 O( )下降为 O(2J-1), 极大地降低了计算复杂度。 (q, p) (q = 0; p = 0,..., J - 1) and the coordinates ( p ) (q = 1, · · ·, J - 1; p = 0) characterize the ordinate and the horizontal a summation operation on several block regions of the coordinates (hereinafter referred to as edge block regions), and then multiplying the summation results of each edge block region by corresponding block coefficients, wherein the coefficients of each edge block region For wegfe = J-|^-p|, the computational complexity is reduced from O() to O(2J-1), which greatly reduces the computational complexity.
如图 4所示, 以 J=3为例, 二阶累加求和可分解为计算图 4所示的 9个块状区域的求 和。 由于误差协方差矩阵的周期性, 每一块区域上的二阶累加求和所得结果在沿着对角线 方向滑动时保持不变, 如其中块 1, 5, 9区域求和结果相同, 另外块 4和 8以及块 2和 6 都分别相同。 因此, 原本 9个块状区域的累加求和可通过计算块 1, 2, 3, 4, 7等 5个边 缘区域块上的累加求和, 再分别乘以不同的块系数得到, 其中, 块 1乘以 3, 块 2和 4乘 以 2。  As shown in Fig. 4, taking J=3 as an example, the second-order cumulative summation can be decomposed into the sum of the nine block regions shown in Fig. 4. Due to the periodicity of the error covariance matrix, the result of the second-order cumulative summation over each region remains unchanged as it slides along the diagonal direction, as in the case where the blocks 1, 5, and 9 regions have the same summation result, and the other block 4 and 8 and blocks 2 and 6 are the same respectively. Therefore, the cumulative summation of the original 9 block regions can be obtained by calculating the cumulative summation on the five edge region blocks of blocks 1, 2, 3, 4, and 7 and multiplying them by different block coefficients, wherein, the block Multiply 1 by 3, block 2 and 4 by 2.
式(10)求和号内的第一项可以进一步展开为: E{¾, (", )¾, (", + ^ q (nj ) (nj +^)} The first item in the summation number of equation (10) can be further expanded to: E{3⁄4, (", )3⁄4, (", + ^ q ( n j ) ( n j +^)}
=∑∑ ( ∑∑¾2 ( )∑∑K„ (h)∑∑K4 ( ) (11) =∑∑ ( ∑∑3⁄4 2 ( )∑∑K„ (h)∑∑K 4 ( ) (11)
4 4  4 4
xE{ {η{ - lx ) (/7y + rf - 12 ) (rij - 13 ) + τ H =∑∑ )∑∑K !2)∑∑h: !3)∑∑i 4( , 进一步展开式 (11)可得: xE{ {η { - l x ) (/7 y + r f - 1 2 ) (rij - 1 3 ) + τ H =∑∑ )∑∑K ! 2 )∑∑h: ! 3 )∑∑i 4 ( , Further development (11) is available:
。 4 4  . 4 4
Ε{¾, («,)¾, (", + ^Μ,Ε{3⁄4, («,)3⁄4, (", + ^Μ,
'T2 («,. + τ,. - /2 )5 3 (rij - /3 4 (rij +Tj-l4)} ' T2 («,. + τ,. - / 2 )5 3 (rij - / 3 4 (rij +Tj-l 4 )}
Figure imgf000013_0001
Figure imgf000013_0001
■2 ¾ (-Δ ι + Δ„ + Α - Αητι -ll +l2+l,-l4- τ,.. ■ 2 3⁄4 (-Δ ι + Δ„ + Α - Α ητι -l l + l 2 +l, -l 4 - τ,..
NtN^  NtN^
: ^ g(njγ- mM)g(nj + τί -/2 - mM)g nj -/3 - mM)g nj + ry. -/4 - mM、 : ^ g(n jγ - mM)g(n j + τ ί -/ 2 - mM)gn j -/ 3 - mM)gn j + r y . -/ 4 - mM,
1 °°,  1,
+ H x SN2 - Δ„Γ4 - + nj +/2-/4- τ,. + j ) + H x S N2 - Δ„ Γ4 - + nj +/ 2 -/ 4 - τ,. + j )
∑ + - - m1M)g(nj + r -/4- OT2M) (12)
Figure imgf000013_0002
∑ + - - m 1 M)g(n j + r -/ 4 - OT 2 M) (12)
Figure imgf000013_0002
+ E{x ",■ +r,.)}E{x (" x ( ij +Tj)} 式(12)最后一项 (即第三项) E{x («,.+r,.)}E¾ («. +r,)}与式(10)中求和号内 的第二项相互抵消。 而所述四阶累积量处理单元负责计算式(12)中的第一项, 所述双二阶 累积量处理单元负责计算式(12)中的第二项, 所述二阶噪声混合累积量处理单元负责计算 式(10)中的第三、 四项, 所述四阶噪声累积量处理单元负责计算式(10)中的第五、 六项。  + E{x ",■ +r,.)}E{x (" x ( ij +Tj)} The last term of equation (12) (ie the third term) E{x («,.+r,.) }E3⁄4 («. +r,)} and the second term in the summation number in equation (10) cancel each other out. The fourth-order cumulant processing unit is responsible for calculating the first term in equation (12), The second second-order cumulant processing unit is responsible for calculating the second term in equation (12), and the second-order noise mixed cumulant processing unit is responsible for calculating the third and fourth terms in equation (10), the fourth-order noise cumulant The processing unit is responsible for calculating the fifth and sixth items in equation (10).
所述四阶累积量处理单元负责计算式(13),  The fourth-order cumulant processing unit is responsible for calculating equation (13),
E k„ "2 ¾(-Δ„ +Δ„τ +Δ„ -Δ - j + /2 + /3 - /4 - τ,. -E k„ "2 3⁄4(-Δ„ +Δ„ τ +Δ„ -Δ - j + / 2 + / 3 - / 4 - τ,. -
H (13)H (13)
: ^ g(nj—l「 mM)g(nj + τ,. -/2 - mM)g(nj -/3 - mM)g(nj + r mM、 : ^ g(n j —l “ mM)g(n j + τ,. -/ 2 - mM)g(n j -/ 3 - mM)g(n j + r mM,
其中, 输入参数 3包括信道冲击响应/ ^和发射信号的调制波形的四阶矩 E{|CiH四 阶累积量处理单元的输出参数包括: A1) 四阶矩表达式 (13) 在边缘块状区域上的求和结 果 (即四阶累积量); A2) 索引 a则表示拥有非零求和结果 (即非零四阶累积量) 的边缘 块状区域的索引。 Wherein, the input parameter 3 includes a channel impulse response / ^ and a fourth-order moment of the modulation waveform of the transmitted signal E{| Ci H fourth-order cumulant processing unit output parameters include: A1) fourth-order moment expression (13) at the edge block The summation result on the region (ie, the fourth-order cumulant); A2) The index a indicates the edge with a non-zero summation result (ie, a non-zero fourth-order cumulant) The index of the block area.
(- Δ , + „ +",■ ~nj -k+ )∑ 8(ni ~k -mxM)g(nj _/3 -mxM)(- Δ , + „ +", ■ ~ n j -k+ )∑ 8( n i ~k -m x M)g(n j _/ 3 -m x M)
H x δΝ2 - Α„τ4 - «,. + +/2 -/4 - Γ,. + Tj ) (14) x g(ni + τ{ -l2 m1M)g(nj + j -/4 /w2 ) 其中, 输入参数 4主要是信道冲击响应 。 所述双二阶累积量处理单元的输出参数包 括: B1) 双二阶矩表达式 (14) 在边缘块状区域上的求和结果 (即双二阶累积量); B2) 索引 b则表示拥有非零求和结果 (即非零双二阶累积量) 的边缘块状区域的索引。 H x δ Ν2 - Α„ τ4 - «,. + +/ 2 -/ 4 - Γ,. + T j ) (14) xg(n i + τ { -l 2 m 1 M)g(n j + j - / 4 / w 2 ) where the input parameter 4 is mainly the channel impulse response. The output parameters of the biquad cumulant processing unit include: B1) biquad moment expression (14) in the edge block The summation result on the region (ie, the biquad cumulant); B2) The index b represents the index of the edge block region with non-zero summation results (ie, non-zero biquad cumulants).
所述二阶噪声混合累积量处理单元负责计算式(10)中第三、 四项, S卩:
Figure imgf000014_0001
(15) 其中, 所述二阶噪声混合累积量处理单元的输出参数包括: C1) 噪声二阶混合矩表达 式 (15) 在边缘块状区域上的求和结果 (即二阶噪声混合累积量); C2) 索引 c 则表示拥 有非零求和结果 (即非零二阶噪声混合累积量) 的边缘块状区域的索引。
The second-order noise mixed cumulant processing unit is responsible for calculating the third and fourth terms in equation (10), S卩:
Figure imgf000014_0001
(15) wherein, the output parameters of the second-order noise mixed cumulant processing unit include: C1) noise second-order mixed moment expression (15) summation result on the edge block region (ie, second-order noise mixed cumulant ); C2) Index c represents the index of the edge block region with non-zero summation results (ie, non-zero second-order noise mixed cumulants).
所述四阶噪声累积量处理单元负责计算式 (10) 中最后一项, g卩:  The fourth-order noise cumulant processing unit is responsible for calculating the last term in equation (10), g卩:
Ε{ζ(«, *(«,· + Γ, *( ( +τί)}-δτ1)δτίΕ{ζ(«, *(«,· + Γ, *( ( +τ ί )}-δτ 1 )δτ ί
(16) (16)
0, else 其中,输入参数 5为噪声功率 σζ 2。所述四阶噪声累积量处理单元的输出参数包括: D1) 噪声四阶矩表达式 (16)在边缘块状区域上的求和结果 (即四阶噪声累积量); D2)索引 d 则表示拥有非零求和结果 (即非零四阶噪声累积量) 的边缘块状区域的索引。 0, else where input parameter 5 is the noise power σ ζ 2 . The output parameters of the fourth-order noise cumulant processing unit include: D1) the fourth-order moment expression of the noise (16) the summation result on the edge block region (ie, the fourth-order noise cumulant); D2) the index d represents An index of an edge block region that has a non-zero summation result (ie, a non-zero fourth-order noise cumulant).
由于本实施例中只对拥有非零索引值的相应求和结果进行处理, 从而节省了处理时间 及资源。  Since only the corresponding summation result having the non-zero index value is processed in this embodiment, the processing time and resources are saved.
3) 最后通过最大似然判决准则解调出相应的循环调制量。  3) Finally, the corresponding cyclic modulation amount is demodulated by the maximum likelihood decision criterion.
最大值处理单元 4根据最大似然判决准则得到相应的循环延时矢量 。 最终, 循环调 制矢量解映射处理单元 5将所述循环延时矢量 进行解映射, 得到所发送的循环调制信号 以发射天线数为 2, FFT大小为 32时, 每个循环调制符号发送 5比特循环调制信号 flM为例, 表 1给出了循环调制信号 flM与发射天线 2上的循环延时值 (发射天线 1作为 参照信号, 不做循环延时移位) 的映射关系为: 表 1 The maximum value processing unit 4 obtains a corresponding cyclic delay vector based on the maximum likelihood decision criterion. Finally, the cyclic modulation vector demapping processing unit 5 demaps the cyclic delay vector to obtain a transmitted cyclic modulation signal with a number of transmit antennas of 2, and when the FFT size is 32, each cyclic modulation symbol transmits a 5-bit cycle. The modulation signal f lM is taken as an example. Table 1 shows the mapping relationship between the cyclic modulation signal flM and the cyclic delay value on the transmitting antenna 2 (the transmitting antenna 1 is used as a reference signal, and no cyclic delay shift is performed): Table 1
Figure imgf000015_0001
10100 20
Figure imgf000015_0001
10100 20
10101 21 10101 21
10110 22 10110 22
10111 23 10111 23
11000 24 11000 24
11001 25 11001 25
11010 26 11010 26
11011 27 11011 27
11100 28 11100 28
11101 29 11101 29
11110 30 11110 30
11111 31 11111 31
本发明实现了对 CDM-0FDM循环延时调制信号的解调, 可应用于谱域信道复用传输, 在不影响普通 OFDM信号传输的同时, 在谱域信道上增加一维谱域通信信号的传输, 从而 增加无线通信***的***容量; 并且降低了原有循环延时解调算法的计算复杂度, 从而成 功地实现谱域通信信号的传输。 此外, 本发明在现有的循环特征检测算法的基础上, 提出 了更优的检测算法, 提高了检测概率, 实现了谱域通信***信息的可靠传输, 同时所提出 的简便方法极大地降低了接收算法的复杂度。 The invention realizes the demodulation of the CDM-0FDM cyclic delay modulation signal, and can be applied to the spectral domain channel multiplexing transmission, and increases the one-dimensional spectral domain communication signal on the spectral domain channel without affecting the ordinary OFDM signal transmission. Transmission, thereby increasing the system capacity of the wireless communication system; and reducing the computational complexity of the original cyclic delay demodulation algorithm, thereby successfully realizing the transmission of the spectral domain communication signal. In addition, based on the existing cyclic feature detection algorithm, the present invention proposes a better detection algorithm, improves the detection probability, and realizes reliable transmission of information in the spectral domain communication system, and the proposed simple method is greatly reduced. The complexity of the receiving algorithm.
这里本发明的描述和应用是说明性的, 并非想将本发明的范围限制在上述实施例中。 这里所披露的实施例的变形和改变是可能的, 对于那些本领域的普通技术人员来说实施例 的替换和等效的各种部件是公知的。 本领域技术人员应该清楚的是, 在不脱离本发明的精 神或本质特征的情况下, 本发明可以以其他形式、 结构、 布置、 比例, 以及用其他元件、 材料和部件来实现。 The description and application of the present invention are intended to be illustrative, and not intended to limit the scope of the invention. Variations and modifications of the embodiments disclosed herein are possible, and various alternative and equivalent components of the embodiments are well known to those of ordinary skill in the art. It is apparent to those skilled in the art that the present invention may be embodied in other forms, structures, arrangements, ratios, and other elements, materials and components without departing from the spirit or essential characteristics of the invention.

Claims

权利要求书 Claim
1、 一种谱域通信信号的解调***, 其特征在于, 所述解调***包括: A demodulation system for a spectral domain communication signal, characterized in that the demodulation system comprises:
循环自相关函数估计值处理单元, 用以根据接收到的一段连续的 CDM-0FDM 循环延时调制信号 n) , 计算相应的循环 自相关函数的估计值 cr {a, r)=— £ r(n)r' (n + T)W^, 其中 为长为 L个 OFDM周期的连续信号, M是 一个 OFDM符号的长度, a e0,...,Af - el-Af,...,Af -l, 《表示循环频率, r表示延 时, 表示连续信号 的采样序号, WM =e- 'M ; 循环延时检测处理单元, 与所述循环自相关函数估计值处理单元相连, 用以 针对不同的循环延时值 分别计算相应的似然函数 lnp^^^l ^ , 并根据最大 似然判决准则得到相应的循环延时矢量 = ^| e , 其中, β表示循环延时调 制量集合; A cyclic autocorrelation function estimation value processing unit is configured to calculate an estimated value of the corresponding cyclic autocorrelation function c r {a, r)=− £ r according to the received continuous CDM-0FDM cyclic delay modulation signal n) (n)r' (n + T)W^, where is a continuous signal of length L OFDM periods, M is the length of one OFDM symbol, ae 0,...,Af - e l-Af,... , Af -l, "represents the cyclic frequency, r represents the delay, represents the sampling number of the continuous signal, W M = e - ' M ; the cyclic delay detection processing unit is connected to the cyclic autocorrelation function estimation value processing unit, It is used to calculate the corresponding likelihood function lnp^^^l ^ for different cyclic delay values, and obtain the corresponding cyclic delay vector = ^| e according to the maximum likelihood decision criterion, where β represents cyclic delay modulation Quantity set
循环调制矢量解映射处理单元, 与所述循环延时检测处理单元相连, 用以将 所述循环延时矢量 进行映射, 得到所发送的循环调制信号 DMThe cyclic modulation vector demapping processing unit is connected to the cyclic delay detection processing unit for mapping the cyclic delay vector to obtain the transmitted cyclic modulation signal DM .
2、 根据权利要求 1所述的谱域通信信号的解调***, 其特征在于, 所述循环延 时检测处理单元包括: 2. The demodulation system of the spectral domain communication signal according to claim 1, wherein the cyclic delay detection processing unit comprises:
似然函数处理单元, 与所述循环自相关函数估计值处理单元相连, 用以通过 针对不同的循环延时值 分别获得相应的似然函数 lnp^^^l 所述似然函 数处理单元包括循环自相关函数处理单元、减法单元、估计误差协方差矩阵处理 单元和似然函数计算处理单元; 所述循环自相关函数处理单元利用式 («, ) = ^-∑ Crs (n, T)W- = X W g Css (a, T)h^_r + σ δ{τ)δ{α)获得所述循环 a likelihood function processing unit, coupled to the cyclic autocorrelation function estimation value processing unit, for respectively obtaining a corresponding likelihood function lnp^^^1 for different cyclic delay values, wherein the likelihood function processing unit includes a loop An autocorrelation function processing unit, a subtraction unit, an estimated error covariance matrix processing unit, and a likelihood function calculation processing unit; the cyclic autocorrelation function processing unit uses a formula («, ) = ^-∑ C rs (n, T)W - = XW g C ss (a, T)h^_ r + σ δ{τ)δ{α) to obtain the cycle
1 +l-Lh q 延时调制信号 针对循环延时值 的循环自相关函数 C^ (α,τ); 其中, 1 + lL h q delay modulation signal for the cyclic delay value of the cyclic autocorrelation function C ^ (α, τ);
/¾=[/¾(/),/¾(/),···, /^(/)]为信道冲击响应, ^表示发送端天线数目, 表示噪声 功率, 表示第 r+Z-r阶上的信道冲击响应的共轭转置, 表示信道的阶数, ( 当循环延时值为 时的接收信号的自相关函数; 发射信号的循环自相关 函数为 , C 表示当循环延时值为 时的发射信号的
Figure imgf000018_0001
/3⁄4=[/3⁄4(/),/3⁄4(/),···, /^(/)] is the channel impulse response, ^ indicates the number of antennas at the transmitting end, indicating the noise power, indicating the r+Zr order Conjugate transposition of channel impulse response, indicating the order of the channel, (The autocorrelation function of the received signal when the cyclic delay value is; the cyclic autocorrelation function of the transmitted signal is, C represents the transmitted signal when the cyclic delay value is
Figure imgf000018_0001
自相关函数; 所述减法单元用以将所述循环自相关函数 ^ 与所述循环自相 关函数的估计值 相减,输出与循环延时值 对应的循环自相关函数的估计 误差 (a,T) =cr(a,T)-£rs (α,τ) 所述估计误差协方差矩阵处理单元用以根据所述 循环自相关函数的估计误差 获得循环自相关函数估计误差的协方差矩阵 An autocorrelation function; the subtracting unit is configured to subtract the estimated value of the cyclic autocorrelation function and the cyclic autocorrelation function, and output an estimated error of the cyclic autocorrelation function corresponding to the cyclic delay value (a, T =c r (a,T)-£ rs (α,τ) The estimation error covariance matrix processing unit is configured to obtain a covariance matrix of the cyclic autocorrelation function estimation error according to the estimation error of the cyclic autocorrelation function
1 1 1 1
= Ei( EW)( EW)"liJ= =iE }, 其中, =[ 。 · , 」 ,= E i( E W)( E W)" liJ= = i E }, where =[ . . , , " ,
S^k =[£gq(k,l-M) £gq(k,2-M) … (fe,M-l)]T ; 所述似然函数计算处理单元分别与 所述减法单元和估计误差协方差矩阵处理单元相连, 用以根据所述协方差矩阵 S ^ k =[ £gq (k,lM) £gq (k,2-M) (fe,Ml)] T ; the likelihood function calculation processing unit and the subtraction unit and the estimation error covariance matrix, respectively Processing units are connected to be used according to the covariance matrix
1 -ms I ∑g [y1 -m s I ∑g [y
s获得似然函数值 lnp^l^ exp s obtains the likelihood function value lnp^l^ exp
{2π)Μ{2Μ-ι)ά&ί[Σχ 2 {2π) Μ{2Μ - ι) ά & ί[Σ χ 2
yk = [cr(k,l-M),cr(k,2-M),---,cr(k,M -ΐ)]
Figure imgf000018_0002
y k = [c r (k,lM),c r (k,2-M),---,c r (k,M -ΐ)]
Figure imgf000018_0002
c ~rs (k,l-M) c ~rs (k,2-M) ■■■ c ~rs (k,M -1) 最大值处理单元, 与所述似然函数处理单元相连, 用以根据最大似然判决准 则获得相应的循环延时矢量 。 c ~ rs (k,lM) c ~ rs (k,2-M) ■■■ c ~ rs (k,M -1) maximum processing unit, connected to the likelihood function processing unit, for The likelihood decision criterion obtains a corresponding cyclic delay vector.
3、 根据权利要求 2所述的谱域通信信号的解调***, 其特征在于, 所述估计误 差协方差矩阵处理单元包括: The demodulation system of the spectral domain communication signal according to claim 2, wherein the estimation error covariance matrix processing unit comprises:
四阶累积量处理单元, 用以对所述协方差矩阵 中的四阶累积量求和运算 进行处理, 获得四阶累积量结构和索引 a;  a fourth-order cumulant processing unit for processing a fourth-order cumulant summation operation in the covariance matrix to obtain a fourth-order cumulant structure and an index a;
双二阶累积量处理单元, 用以对协方差矩阵 中的双二阶累积量求和运算 进行处理获得双二阶累积量和索引 b;  a second second-order cumulant processing unit for processing the biquad cumulant summation operation in the covariance matrix to obtain a biquad cumulant and an index b;
二阶噪声混合累积量处理单元, 用以对协方差矩阵 中的二阶噪声混合累 积量求和运算进行处理获得噪声二阶混合矩和索引 C; Second-order noise mixed cumulant processing unit for mixing second-order noise in a covariance matrix The product quantity summation operation is processed to obtain the second-order noise moment of the noise and the index C;
四阶噪声累积量处理单元, 用以对协方差矩阵 中的四阶噪声累积量求和 运算进行处理获得噪声四阶累积量和索引  A fourth-order noise cumulant processing unit for processing the fourth-order noise cumulant summation operation in the covariance matrix to obtain a fourth-order cumulant and index of noise
周期分块处理单元, 与所述四阶累积量处理单元、 双二阶累积量处理单元、 二阶噪声混合累积量处理单元和四阶噪声累积量处理单元分别相连,用以基于块 状分解的方法对所述四阶累积量、双二阶累积量、噪声二阶混合矩和噪声四阶累 积量中的二阶累加求和运算进行分块处理,获得循环自相关函数估计误差的协方 差矩阵 的求和结果。  a periodic block processing unit, connected to the fourth-order cumulant processing unit, the second-order cumulant processing unit, the second-order noise mixed cumulant processing unit, and the fourth-order noise cumulant processing unit, respectively, for block-based decomposition The method performs block processing on the fourth-order cumulant, the second-order cumulant, the second-order noise, and the fourth-order cumulant of the fourth-order cumulant, and obtains the covariance matrix of the estimated error of the cyclic autocorrelation function. The result of the summation.
4、 一种谱域通信信号的解调方法, 其特征在于, 包括以下步骤: 4. A method for demodulating a spectral domain communication signal, comprising the steps of:
步骤一, 循环自相关函数估计值处理单元根据接收到的一段长为 个 OFDM 周期的连续的 CDM-0FDM循环延时调制信号 r(n), 计算相应的循环自相关函数的 估计值 Step 1: The cyclic autocorrelation function estimation unit calculates an estimated value of the corresponding cyclic autocorrelation function according to the received continuous CDM-0FDM cyclic delay modulation signal r( n ) of one OFDM period.
(a, r)=—∑ r(n)r (n + τψ^, 其中, a e0,...,M- el-M,...,M-l, M是一个 OFDM符号的长度, α表示循 环频率, 《表示连续信号 的采样序号, r表示延时, WM =e-^'M ; 步骤二,循环延时检测处理单元针对不同的循环延时值 分别计算相应的似 然函数 lnp^^^l ^, 并根据最大似然判决准则得到相应的循环延时矢量 , S =
Figure imgf000019_0001
, 其中, β表示循环延时调制量集合;
(a, r)=—∑ r(n)r (n + τψ^, where ae 0,...,M- e lM,...,Ml, M is the length of one OFDM symbol, α represents a loop Frequency, "represents the sampling number of the continuous signal, r represents the delay, W M = e -^'M; Step 2, the cyclic delay detection processing unit separately calculates the corresponding likelihood function lnp^^ for different cyclic delay values ^l ^, and get the corresponding cyclic delay vector according to the maximum likelihood decision criterion, S =
Figure imgf000019_0001
Where β represents a set of cyclic delay modulation quantities;
步骤三, 循环调制矢量解映射处理单元将所述循环延时矢量 进行映射, 得 到所发送的循环调制信号 DMStep 3: The cyclic modulation vector demapping processing unit maps the cyclic delay vector to obtain the transmitted cyclic modulation signal DM .
5、 根据权利要求 4所述的谱域通信信号的解调方法, 其特征在于, 步骤二中, 所述似然函数的获取过程为: The method for demodulating a spectral domain communication signal according to claim 4, wherein in the second step, the obtaining process of the likelihood function is:
1) 循环自相关函数处理单元获得针对循环延时值 的循环自相关函数 c ~rs (a,T)= ^Crs (n,r)W^ =^Ψ^1 ∑ CS6 (a,r)h^_r + σζ 2δ(τ)δ(α) , 1) The cyclic autocorrelation function processing unit obtains a cyclic autocorrelation function for the cyclic delay value c ~ rs ( a , T )= ^C rs (n,r)W^ =^Ψ^ 1 ∑ C S6 (a,r )h^_ r + σ ζ 2 δ(τ)δ(α) ,
1 +l-Lh q 其中, (α,τ) = , /¾=[/¾(/),/¾(/),···, (0]为信道冲击响应,
Figure imgf000020_0001
1 +lL h q Where (α,τ) = , /3⁄4=[/3⁄4(/),/3⁄4(/),···, (0) is the channel impulse response,
Figure imgf000020_0001
1 =0,1,… , L¾表示信道的阶数, ^表示发送端天线数目, 表示噪声功率, d 表示第 r+ _r阶上的信道冲击响应的共轭转置, 表示当循环延时值为 时 的接收信号 )的自相关函数; 表示当循环延时值为 Sq时的发射信号的自 相关函数; 1 =0,1,... , L 3⁄4 denotes the order of the channel, ^ denotes the number of antennas at the transmitting end, denotes the noise power, and d denotes the conjugate transpose of the channel impulse response at the r+ _th order, indicating the cyclic delay value An autocorrelation function of the received signal); an autocorrelation function representing the transmitted signal when the cyclic delay value is S q ;
2) 估计误差协方差矩阵处理单元获得循环自相关函数估计误差的协方差矩 阵 = E{( EW)( Ewr = }= E{ },其中, =[ ·» .ι k = (k,l-M) eSq (k,2-M) … ¾ (k, M - l) ; ^ (a, τ) = cr (a, r) - c {a, 为在循环 延时值为 Sq时的循环自相关函数估计误差; 2) The estimated error covariance matrix processing unit obtains the covariance matrix of the cyclic autocorrelation function estimation error = E {( E W)( E wr = }= E { }, where =[ ·» .ι k = (k , lM) e Sq (k,2-M) ... 3⁄4 (k, M - l) ; ^ (a, τ) = c r (a, r) - c {a, for the cyclic delay value S q Time loop autocorrelation function estimation error;
3) 似然函数计算处理单元获得与循环延时值 相应的似然函数 α,τ)\δ \ , 其中, 3) The likelihood function calculation processing unit obtains a likelihood function α, τ)\δ \ corresponding to the cyclic delay value, wherein
Figure imgf000020_0002
Figure imgf000020_0002
' ,0 c ~rs (k,l-M) c ~rs (k,2-M) ■■■ c ~rs (k,M -1) ' ,0 c ~ rs (k,lM) c ~ rs (k,2-M) ■■■ c ~ rs (k,M -1)
6、 根据权利要求 5所述的谱域通信信号的解调方法, 其特征在于, 所述循环自 相关函数估计误差的协方差矩阵 的详细获取过程为: 6. The demodulation method of a spectral domain communication signal according to claim 5, wherein the detailed acquisition process of the covariance matrix of the cyclic autocorrelation function estimation error is:
21) 所述协方差矩阵^ 在循环频率分别为 fe,,^, 延时量分别为^ 时的分 = E{(cr(ki,Ti)-SrSq(ki,Ti ))(cr (k] c (k] , r ))* } 21) The covariance matrix ^ is in the case where the cycle frequency is fe,, ^, and the delay amount is ^ = E{(c r (k i ,T i )-S rSq (k i ,T i ))(c r (k ] c (k ] , r ))* }
Figure imgf000021_0001
Figure imgf000021_0001
其中, ki,kj =0,1,···, -l , τι] = - +1,- +2,···, -1 ; Where k i ,k j =0,1,····, -l , τ ι] = - +1,- +2,···, -1 ;
22) 所述周期分块处理单元将步骤 21) 所述的协方差矩阵 在循环频率分 别为 fe, , 延时量分别为^ 时的分量中的二阶累加求和运算区域进行分解, 分 解过程为: 首先设立以《; 为横坐标以 为纵坐标的坐标轴, 其中 «,, =0,1,...,ML-1, 《;与 均表示时间采样序号;然后将坐标轴上由坐标 (《, , nj) 表征的矩形区域在横坐标和纵坐标上分别以间隔 M进行分割, 并分别以坐标 表示各个分割后的块状区域, 其中 g = /¾or(«;/M), p = flooring M) , /¾or( )表示不超过; α的最大整数,从而将所述的协方差矩阵 中的二阶累加 求和运算区域分解为一系列块状区域 (^,ρ)上的求和运算,其中 / = 0,一,£-1;22) The periodic block processing unit decomposes the covariance matrix described in step 21) in a second-order cumulative summation operation region in a component whose cycle frequency is fe, and the delay amount is respectively ^, and the decomposition process as follows: first, the establishment of "; the abscissa ordinate axis that, where« ,, = 0,1, ..., ML -1, "; and each represents a number of time samples; then, by the coordinate axes The rectangular region represented by (", , nj ) is divided by the interval M on the abscissa and the ordinate, respectively, and each segmented block region is represented by coordinates, where g = /3⁄4or(« ; /M), p = flooring M) , /3⁄4or( ) means not exceeding; the largest integer of α, thus decomposing the second-order cumulative summation operation region in the covariance matrix into a series of block regions (^, ρ) And operation, where / = 0, one, £-1;
23)将二阶累加求和运算区域中沿着坐标轴的每个边缘块状区域的求和结果 分别乘以相应的块系数, 其中每个边缘块状区域的系数为
Figure imgf000021_0002
所 述二阶累加求和运算区域的求和结果即等于每个所述边缘块状区域的求和结果 与其相应块系数的乘积的累加和。
23) multiplying the summation result of each edge block region along the coordinate axis in the second-order cumulative sum operation region by the corresponding block coefficient, wherein the coefficient of each edge block region is
Figure imgf000021_0002
The summation result of the second-order cumulative sum operation area is equal to the cumulative sum of the product of the summation result of each of the edge block regions and its corresponding block coefficient.
PCT/CN2011/083682 2010-12-08 2011-12-08 Demodulation method and demodulation system of spectral domain communication signal WO2012075952A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010578177.1 2010-12-08
CN201010578177.1A CN102546502B (en) 2010-12-08 2010-12-08 The demodulation method of a kind of spectral domain signal of communication and demodulating system

Publications (1)

Publication Number Publication Date
WO2012075952A1 true WO2012075952A1 (en) 2012-06-14

Family

ID=46206630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083682 WO2012075952A1 (en) 2010-12-08 2011-12-08 Demodulation method and demodulation system of spectral domain communication signal

Country Status (2)

Country Link
CN (1) CN102546502B (en)
WO (1) WO2012075952A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104301272B (en) * 2013-07-17 2019-01-22 上海无线通信研究中心 The detection method of statistics spectral domain transmission signal based on Cyclic Autocorrelation Function
CN105827552B (en) * 2015-01-08 2019-03-15 上海无线通信研究中心 A kind of detection method of the statistics spectral domain signal of adaptive channel rate of change
CN114285710B (en) * 2021-12-28 2023-09-15 北京升哲科技有限公司 CPM signal modulation index estimation method, device, equipment and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002025857A1 (en) * 2000-09-22 2002-03-28 Telefonaktiebolaget L M Ericsson (Publ) Cyclic delay diversity for mitigating isi in ofdm systems
CN1980209A (en) * 2005-12-05 2007-06-13 松下电器产业株式会社 Random-cycle time-delay diversity orthogonal frequency division multiplexing transmission method
CN101453257A (en) * 2007-12-03 2009-06-10 国家广播电影电视总局广播科学研究院 Differential space-time transmission diversity system in multi-carrier modulation system and implementing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7809046B2 (en) * 2007-10-03 2010-10-05 Agere Systems Inc. Timing-offset estimation in modulated signals using weighted correlation values
CN101340416B (en) * 2008-08-28 2011-02-16 北京交通大学 Synchronization and channel response estimation method suitable for OFDM system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002025857A1 (en) * 2000-09-22 2002-03-28 Telefonaktiebolaget L M Ericsson (Publ) Cyclic delay diversity for mitigating isi in ofdm systems
CN1980209A (en) * 2005-12-05 2007-06-13 松下电器产业株式会社 Random-cycle time-delay diversity orthogonal frequency division multiplexing transmission method
CN101453257A (en) * 2007-12-03 2009-06-10 国家广播电影电视总局广播科学研究院 Differential space-time transmission diversity system in multi-carrier modulation system and implementing method

Also Published As

Publication number Publication date
CN102546502B (en) 2016-08-03
CN102546502A (en) 2012-07-04

Similar Documents

Publication Publication Date Title
Liu et al. Semi-blind receivers for joint symbol and channel estimation in space-time-frequency MIMO-OFDM systems
de Almeida et al. Overview of tensor decompositions with applications to communications
CN106534030B (en) A kind of channel estimation methods based on joint training sequence and pilot tone in 802.11n multiple antennas ofdm system
WO2007137484A1 (en) A channel estimation method and the device thereof
CN101615983A (en) The obtaining of characteristic vector that is used for spatial manipulation in the MIMO communication system
JP2010515286A (en) Signal processing system and method for multi-sector wireless communication system
CN105915473B (en) A kind of estimation of ofdm system parametric channel and equalization methods based on compressed sensing technology
WO2011054279A1 (en) Multi-antenna channel estimation method based on polyphase decomposition
WO2011035594A1 (en) Demodulation method and demodulator for orthogonal frequency division multiplexing - multiple input multiple output system
EP2399372B1 (en) OFDM receiver having a plurality of FFTS according to G-Rake structure
Sure et al. A pilot aided channel estimator using DFT based time interpolator for massive MIMO-OFDM systems
TW201115990A (en) Methods and systems for low-complexity channel estimator in OFDM/OFDMA systems
TWI400902B (en) Method and apparatus for demapping symbol in multi-input multi-output communication system
WO2012075952A1 (en) Demodulation method and demodulation system of spectral domain communication signal
EP1901505A2 (en) Wireless communication apparatus
JP5599877B2 (en) Data demodulation method and demodulator based on downlink transmission diversity mode of LTE system
WO2015188385A1 (en) Method for hybrid analog and digital precoding for use in large-scale mimo system
CN104301272B (en) The detection method of statistics spectral domain transmission signal based on Cyclic Autocorrelation Function
JP5123295B2 (en) Method and apparatus for space / time / frequency coding
WO2014044172A1 (en) Radio communication system receiver and diversity combining method therefor
TW200926702A (en) Apparatus and method for measuring channel state information
CN114389655B (en) Detection method for incoherent coding of large-scale MIMO system under related channel
WO2012045244A1 (en) Method and device for low complexity and high performance channel estimation
US20140219370A1 (en) Signal processing in a cooperative ofdm communication system
WO2012048560A1 (en) Method and device for interference rejection combination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11847798

Country of ref document: EP

Kind code of ref document: A1