WO2012074047A1 - Polymerizable fluorine-containing hyperbranched polymer and curable composition containing same - Google Patents

Polymerizable fluorine-containing hyperbranched polymer and curable composition containing same Download PDF

Info

Publication number
WO2012074047A1
WO2012074047A1 PCT/JP2011/077790 JP2011077790W WO2012074047A1 WO 2012074047 A1 WO2012074047 A1 WO 2012074047A1 JP 2011077790 W JP2011077790 W JP 2011077790W WO 2012074047 A1 WO2012074047 A1 WO 2012074047A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
branched polymer
highly branched
fluorine
containing highly
Prior art date
Application number
PCT/JP2011/077790
Other languages
French (fr)
Japanese (ja)
Inventor
将幸 原口
元信 松山
小澤 雅昭
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2012546931A priority Critical patent/JP5880870B2/en
Publication of WO2012074047A1 publication Critical patent/WO2012074047A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/002Dendritic macromolecules
    • C08G83/005Hyperbranched macromolecules

Definitions

  • a polymerizable fluorine-containing highly branched polymer obtained by reacting an active hydrogen group-containing fluorine-containing highly branched polymer with a radical polymerizable monomer having an isocyanate group, and the polymerizable fluorine-containing highly branched polymer are added.
  • the present invention relates to a curable composition and a hard coat film obtained from the curable composition.
  • Polymer (polymer) materials are increasingly used in many fields in recent years. Along with this, the characteristics of the surface and interface of the polymer as a matrix, as well as the properties of the polymer, have become important for each field. For example, by using a fluorine compound with low surface energy as a surface modifier, water and oil repellency, antifouling properties, non-adhesiveness, peelability, release properties, slipperiness, wear resistance, antireflection properties Various improvements relating to surface / interface control such as chemical resistance are expected and various proposals have been made.
  • a fluorine compound (fluorine-based surface conditioner) is used for the purpose of flattening (leveling, ie smoothing) the surface of the hard coat layer and imparting antifouling properties.
  • the fluorine compound (fluorine-based surface conditioner) has a function of improving antifouling properties such as fingerprint adhesion and fingerprint wiping properties on the layer surface.
  • the coating film surface that has been coated and formed contains a large amount of fluorine compound added to impart antifouling properties.
  • fluorine compounds have water and oil repellency, In general, it has properties that are difficult to adapt to organic compounds that do not contain, and therefore often affects the original performance of the coating film.
  • coating liquid for forming a hard coat layer specifically, a polymerization type fluorine obtained by reacting a fluorine-containing linear polymer having a fluoroalkyl group and a hydroxyl group with an isocyanate group-containing (meth) acryl monomer.
  • a coating liquid for forming a hard coat layer, to which a surface-active agent is added and which causes little deterioration in surface functionality, is disclosed (Patent Document 1).
  • Patent Document 2 As one surface modification method of a polymer, there is known a method in which a branched polymer is added to a matrix polymer composed of a linear polymer, and the branched polymer is concentrated on the surface of the matrix polymer (Patent Document 2).
  • the present inventors have introduced a highly polymerizable fluorine-containing polymer obtained by introducing a fluoroalkyl group into a highly branched polymer side chain and introducing a radically polymerizable site.
  • a branched polymer as a surface modifier for the hard coat layer, the surface modifier is excellent in dispersibility in the curable composition for forming the hard coat layer, and the hard coat obtained.
  • the present invention provides, as a first aspect, a monomer A having two or more radical polymerizable double bonds in the molecule, and a monomer having a fluoroalkyl group and at least one radical polymerizable double bond in the molecule.
  • the said monomer A is related with the polymerizable fluorine-containing highly branched polymer as described in a 1st viewpoint which is a compound which has any one or both of a vinyl group or a (meth) acryl group.
  • the present invention relates to the polymerizable fluorine-containing highly branched polymer according to the second aspect, in which the monomer A is a divinyl compound or a di (meth) acrylate compound.
  • the present invention relates to the polymerizable fluorine-containing highly branched polymer according to the third aspect, in which the monomer A is ethylene glycol di (meth) acrylate.
  • the present invention relates to the polymerizable fluorine-containing highly branched polymer according to the third aspect, in which the monomer A is divinylbenzene.
  • the present invention relates to the polymerizable fluorine-containing highly branched polymer according to the first aspect, which is obtained using 5 to 300 mol% of the monomer B with respect to the monomer A.
  • the present invention relates to the polymerizable fluorine-containing highly branched polymer according to the sixth aspect, wherein the monomer B is a compound having either one or both of a vinyl group and a (meth) acryl group.
  • the present invention relates to the polymerizable fluorine-containing highly branched polymer according to the seventh aspect, wherein the monomer B is a compound represented by the following formula [1].
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a C 2-12 fluoroalkyl group which may be substituted with a hydroxy group.
  • the present invention relates to the polymerizable fluorine-containing highly branched polymer according to the eighth aspect, in which the monomer B is a compound represented by the following formula [2].
  • the present invention relates to the polymerizable fluorine-containing highly branched polymer according to the first aspect, which is obtained using 5 to 300 mol% of the monomer C with respect to the monomer A.
  • the present invention relates to the polymerizable fluorine-containing highly branched polymer according to the tenth aspect, wherein the monomer C is a compound having either one or both of a vinyl group and a (meth) acryl group.
  • the present invention relates to the polymerizable fluorine-containing highly branched polymer according to the eleventh aspect, wherein the active hydrogen group of the monomer C is a hydroxy group.
  • the present invention relates to the polymerizable fluorine-containing highly branched polymer according to the twelfth aspect, in which the monomer C is a compound represented by the following formula [3].
  • the present invention relates to the polymerizable fluorine-containing highly branched polymer according to any one of the first aspect to the thirteenth aspect, in which the polymerization initiator D is an azo polymerization initiator.
  • the polymerization initiator D is dimethyl 2,2′-azobisisobutyrate.
  • the present invention relates to the polymerizable fluorine-containing highly branched polymer according to the first aspect, which is obtained using 10 to 300 mol% of the monomer E with respect to the monomer C.
  • the present invention relates to the polymerizable fluorine-containing highly branched polymer according to the sixteenth aspect, in which the monomer E is a compound having either one or both of a vinyl group and a (meth) acryl group.
  • the present invention relates to a curable surface modifier comprising the polymerizable fluorine-containing highly branched polymer according to any one of the first aspect to the seventeenth aspect.
  • the present invention relates to a curable composition for coating containing a polymerization initiator that generates radicals by radiation.
  • a curable composition for coating including 0.001 to 20% by mass of (a) a polymerizable fluorine-containing highly branched polymer with respect to the mass of the (b) active energy ray-curable polyfunctional monomer.
  • the present invention relates to a curable composition for coating.
  • the present invention relates to the curable composition for coating according to any one of the nineteenth to twenty-first aspects, further including (d) silica fine particles.
  • the present invention relates to (d) the curable composition for coating according to the twenty-second aspect, in which the silica fine particles have an average particle diameter of 1 to 100 nm.
  • it is related with the cured film obtained from the curable composition for a coating as described in any one of a 19th viewpoint thru
  • a hard coat film comprising a hard coat layer on at least one surface of a film substrate, wherein the hard coat layer is for coating according to any one of the nineteenth aspect to the twenty-third aspect.
  • the present invention relates to a hard coat film formed by a step of applying a curable composition on a film substrate to form a coating film, a step of drying the coating film to remove the solvent, and a step of irradiating the coating film with ultraviolet rays and curing.
  • the present invention relates to the hardcoat film according to the twenty-fifth aspect, wherein the hardcoat layer has a thickness of 1 to 30 ⁇ m.
  • a monomer A having two or more radical polymerizable double bonds in the molecule a monomer B having a fluoroalkyl group and at least one radical polymerizable double bond in the molecule
  • a monomerization initiator D By polymerizing the monomer C having an active hydrogen group and at least one radical polymerizable double bond in the presence of a polymerization initiator D in an amount of 5 to 200 mol% based on the number of moles of the monomer A
  • the present invention relates to a method for producing a polymerizable fluorine-containing highly branched polymer, characterized by reacting the obtained fluorine-containing highly branched polymer with a monomer E having an isocyanate group and at least one radical polymerizable double bond in the molecule.
  • the polymerizable fluorine-containing highly branched polymer of the present invention Since the polymerizable fluorine-containing highly branched polymer of the present invention has positively introduced a branched structure, it has less entanglement between molecules than a linear polymer, exhibits fine particle behavior, and is soluble in organic solvents. And dispersibility with respect to resin is high. For this reason, when the polymerizable fluorine-containing highly branched polymer of the present invention is blended in a hard coat forming composition or the like to form a hard coat layer, the finely branched highly branched polymer is easy on the interface (hard coat layer surface). It is easy to give activity, such as antifouling property, to the resin surface.
  • the polymerizable fluorine-containing highly branched polymer of the present invention has a radically polymerizable site in the polymer side chain, the mixing and dispersibility with the active energy ray-curable monomer is high, and the aggregation of the highly branched polymer is high. Is suppressed, interference color unevenness due to film thickness unevenness during curing is suppressed, and leveling properties are improved. Therefore, by adding the polymerizable fluorine-containing highly branched polymer of the present invention to the composition for forming a hard coat layer, a surface-modified hard coat layer free from interference color unevenness can be obtained.
  • FIG. 1 is a diagram showing a 1 H NMR spectrum of the hyperbranched polymer 1 produced in Example 1.
  • FIG. 2 is a diagram showing a 13 C NMR spectrum of the hyperbranched polymer 1 produced in Example 1.
  • FIG. 3 is a diagram showing a 1 H NMR spectrum of the hyperbranched polymer 2 produced in Example 2.
  • 4 is a diagram showing a 13 C NMR spectrum of the hyperbranched polymer 2 produced in Example 2.
  • FIG. FIG. 5 is a diagram showing a 1 H NMR spectrum of the hyperbranched polymer 3 produced in Example 3.
  • 6 is a diagram showing a 13 C NMR spectrum of the hyperbranched polymer 3 produced in Example 3.
  • FIG. FIG. 7 is a diagram showing the 1 H NMR spectrum of the hyperbranched polymer 4 produced in Example 4.
  • FIG. 1 is a diagram showing a 1 H NMR spectrum of the hyperbranched polymer 1 produced in Example 1.
  • FIG. 2 is a diagram showing a 13 C NMR spectrum of the hyperbranched polymer 1
  • FIG. 8 is a diagram showing a 13 C NMR spectrum of the hyperbranched polymer 4 produced in Example 4.
  • FIG. 9 is a diagram showing a 1 H NMR spectrum of the hyperbranched polymer 5 produced in Comparative Example 1.
  • FIG. 10 is a diagram showing a 13 C NMR spectrum of the hyperbranched polymer 5 produced in Comparative Example 1.
  • the fluorine-containing highly branched polymer of the present invention comprises a monomer A having two or more radical polymerizable double bonds in the molecule, and a monomer B having a fluoroalkyl group and at least one radical polymerizable double bond in the molecule. And a monomer C having an active hydrogen group and at least one radical polymerizable double bond in the molecule in the presence of 5 to 200 mol% of a polymerization initiator D with respect to the number of moles of the monomer A.
  • a polymerizable fluorine-containing highly branched polymer obtained by reacting a fluorine-containing highly branched polymer obtained by polymerizing with a monomer E having an isocyanate group and at least one radical polymerizable double bond in the molecule. is there.
  • the fluorine-containing highly branched polymer of the present invention is a so-called initiator fragment-incorporating type fluorine-containing highly branched polymer, and has a polymerization initiator D fragment used for polymerization at its terminal.
  • the monomer A having two or more radically polymerizable double bonds in the molecule preferably has one or both of a vinyl group and a (meth) acryl group, and in particular, a divinyl compound or di (meta).
  • An acrylate compound is preferred.
  • the (meth) acrylate compound refers to both an acrylate compound and a methacrylate compound.
  • (meth) acrylic acid refers to acrylic acid and methacrylic acid.
  • (A1) Vinyl hydrocarbon: (A1-1) Aliphatic vinyl hydrocarbons; isoprene, butadiene, 3-methyl-1,2-butadiene, 2,3-dimethyl-1,3-butadiene, 1,2-polybutadiene, pentadiene, hexadiene, octadiene (A1-2) Alicyclic vinyl hydrocarbons; cyclopentadiene, cyclohexadiene, cyclooctadiene, norbornadiene, etc.
  • (A6) silicon-containing vinyl compounds Dimethyldivinylsilane, divinylmethylphenylsilane, diphenyldivinylsilane, 1,3-divinyl-1,1,3,3-tetramethyldisilazane, 1,3-divinyl-1,1,3,3-tetraphenyldisilazane
  • (A7) fluorine-containing vinyl compounds such as dietoxydivinylsilane: 1,4-divinylperfluorobutane, 1,4-divinyloctafluorobutane, 1,6-divinylperfluorohexane, 1,6-divinyldodecafluorohexane, 1,8-divinylperfluorooctane, 1,8-divinyl Hexadecafluorooctane, etc.
  • aromatic vinyl hydrocarbon compounds of group (A1-3) vinyl esters, allyl esters, vinyl ethers, allyl ethers and vinyl ketones of group (A2), (meth) acrylic of group (A3).
  • Particularly preferred are divinylbenzene belonging to group (A1-3), diallyl phthalate belonging to group (A2), ethylene glycol di (meth) acrylate belonging to group (A3), 1,3-adamantane dimethanol di (meta).
  • the monomer B having a fluoroalkyl group and at least one radical polymerizable double bond in the molecule preferably has either one or both of a vinyl group and a (meth) acryl group, particularly
  • the compound represented by the formula [1] is preferable, and the compound represented by the formula [2] is more preferable.
  • Examples of such a monomer B include 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3,3-pentafluoropropyl (meth) acrylate, 2- (perfluorobutyl) ethyl ( (Meth) acrylate, 2- (perfluorohexyl) ethyl (meth) acrylate, 2- (perfluorooctyl) ethyl (meth) acrylate, 2- (perfluorodecyl) ethyl (meth) acrylate, 2- (perfluoro-3 -Methylbutyl) ethyl (meth) acrylate, 2- (perfluoro-5-methylhexyl) ethyl (meth) acrylate, 2- (perfluoro-7-methyloctyl) ethyl (meth) acrylate, 1H, 1H, 3H-tetra Fluoropropyl (meth
  • the amount of the monomer B used is 5 to 300 mol%, particularly 10 to 150 mol%, more preferably 20 to 20 mol% with respect to the number of moles of the monomer A used from the viewpoint of reactivity and surface modification effect. It is preferably used in an amount of 100 mol%.
  • the monomer C having an active hydrogen group and at least one radical polymerizable double bond in the molecule is preferably a monomer having one or both of a vinyl group and a (meth) acryl group.
  • the active hydrogen group include a carboxyl group, an amino group, an imino group, a hydroxy group, and a thiol group.
  • a monomer having a hydroxy group is preferable.
  • the monomer C is preferably a compound represented by the formula [3].
  • Examples of such monomer C include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, ethylene glycol mono (meth) acrylate, and polyethylene glycol mono (meth).
  • Examples thereof include hydroxyalkyl (meth) acrylates such as acrylate, propylene glycol mono (meth) acrylate, and polypropylene glycol mono (meth) acrylate.
  • 2-hydroxyethyl (meth) acrylate is preferable.
  • the amount of the monomer C used is 10 to 300 mol%, particularly 20 to 200 mol%, more preferably 20 to 200 mol% with respect to the number of moles of the monomer A used from the viewpoint of reactivity and surface modification. It is preferably used in an amount of 20 to 100 mol%.
  • an azo polymerization initiator is preferably used as the polymerization initiator D in the present invention.
  • the azo polymerization initiator include compounds shown in the following (1) to (6).
  • Azonitrile compound 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 1,1′-azobis ( 1-cyclohexanecarbonitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2- (carbamoylazo) isobutyronitrile and the like;
  • Azoamide compound 2,2′-azobis ⁇ 2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide ⁇ , 2,2′-azobis ⁇ 2-methyl-N- [2- ( 1-hydroxybutyl)] propionamide ⁇ , 2,2′-azobis [2-methyl-N-N
  • Fluoroalkyl group-containing azo polymerization initiator 4,4′-azobis (2-cyanopentanoic acid 2- (perfluoromethyl) ethyl), 4,4′-azobis (4-cyanopentanoic acid 2- ( Perfluorobutyl) ethyl), 4,4′-azobis (2-cyanopentanoic acid 2- (perfluorohexyl) ethyl) and the like.
  • 2,2′-azobis (2-methylbutyronitrile) or dimethyl 2,2′-azobisisobutyrate is preferable from the viewpoint of surface modification, and 2,2′-azobisisobutyric acid is particularly preferable.
  • Dimethyl is preferred.
  • the polymerization initiator D is used in an amount of 5 to 200 mol%, preferably 20 to 200 mol%, more preferably 20 to 100 mol%, based on the number of moles of the monomer A. .
  • the monomer E having an isocyanate group and at least one radical polymerizable double bond in the molecule is preferably a monomer having one or both of a vinyl group and a (meth) acryl group. .
  • Examples of such monomers E include (meth) acryloyl isocyanate; 2- (meth) acryloyloxyethyl isocyanate, 3- (meth) acryloyloxypropyl isocyanate, 2- (meth) acryloyloxy-1-methylethyl isocyanate, 2- And (meth) acryloyloxyalkyl isocyanate such as (meth) acryloyloxy-2-methylethyl isocyanate and 1,1-bis ((meth) acryloyloxymethyl) ethyl isocyanate.
  • Specific examples of these product names include Karenz MOI, AOI, and BEI manufactured by Showa Denko KK.
  • the amount of the monomer E used is 10 to 500 mol% with respect to the number of moles of the monomer C used, particularly from the viewpoint of reactivity, surface modification, and dispersibility with respect to the active energy ray-curable polyfunctional monomer. It is preferably used in an amount of 20 to 250 mol%, more preferably 20 to 200 mol%.
  • the fluorine-containing highly branched polymer of the present invention is a fluorine-containing highly branched polymer obtained by polymerizing the aforementioned monomer A, monomer B, and monomer C in the presence of a predetermined amount of polymerization initiator D with respect to the monomer A. It is obtained by reacting with the above-mentioned monomer E.
  • the manufacturing method of a polymerizable fluorine-containing highly branched polymer is also the object of the present invention.
  • Examples of the polymerization method in the presence of the polymerization initiator D of the monomer A, the monomer B, and the monomer C include known methods such as solution polymerization, dispersion polymerization, precipitation polymerization, and bulk polymerization. Precipitation polymerization is preferred. In particular, it is preferable to carry out the reaction by solution polymerization in an organic solvent from the viewpoint of molecular weight control.
  • organic solvents used here include aromatic hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene, and tetralin; aliphatic or alicyclic hydrocarbon solvents such as n-hexane, n-heptane, mineral spirit, and cyclohexane Solvent: Halogen solvents such as methyl chloride, methyl bromide, methyl iodide, methylene dichloride, chloroform, carbon tetrachloride, trichloroethylene, perchloroethylene, orthodichlorobenzene; ethyl acetate, butyl acetate, methoxybutyl acetate, methyl cellosolve acetate , Ethyl cellosolve acetate, propylene glycol monomethyl ether acetate and other ester-based or ester ether-based solvents; diethyl ether, tetrahydrofuran, 1,4-
  • aromatic hydrocarbon solvents aromatic hydrocarbon solvents, halogen solvents, ester solvents, ether solvents, ketone solvents, alcohol solvents, amide solvents, etc. are preferred, with benzene, toluene, xylene being particularly preferred.
  • Orthodichlorobenzene ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, tetrahydrofuran, 1,4-dioxane, methyl ethyl ketone, methyl isobutyl ketone, methanol, ethanol, n-propanol, isopropanol, n-butanol, Isobutanol, tert-butanol, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and the like.
  • the mass of the organic solvent relative to 1 part by mass of the monomer A is usually 5 to 120 parts by mass, preferably 10 to 110 parts by mass.
  • the polymerization reaction is carried out under normal pressure, under pressure and under pressure, or under reduced pressure, and is preferably carried out under normal pressure in view of simplicity of the apparatus and operation. Further, preferably carried out in an atmosphere of inert gas such as N 2.
  • the polymerization temperature is arbitrary as long as it is not higher than the boiling point of the reaction mixture, but is preferably 50 ° C. or higher and 200 ° C. or lower, more preferably 80 ° C. or higher and 150 ° C. or lower, from the viewpoint of polymerization efficiency and molecular weight control.
  • the temperature is from 130 ° C to 130 ° C.
  • the reaction time varies depending on the reaction temperature, the types and ratios of the monomer A, the monomer B, the monomer C and the polymerization initiator D, the type of polymerization solvent, etc., but cannot be defined unconditionally, but preferably 30 minutes or more and 720 Minutes or less, more preferably 40 minutes or more and 540 minutes or less.
  • the obtained fluorine-containing hyperbranched polymer is collected by an arbitrary method, subjected to post-treatment such as washing as necessary, and then subjected to reaction with the monomer E. Examples of a method for recovering the polymer from the reaction solution include a method such as reprecipitation.
  • the above-mentioned reaction between the fluorine-containing highly branched polymer and the monomer E can be carried out in an organic solvent, and the organic solvent used at this time is not particularly limited as long as it can dissolve the fluorine-containing highly branched polymer and the monomer E.
  • the solvent exemplified in the above [Production of fluorinated hyperbranched polymer] can be used.
  • the above reaction is carried out under normal pressure, under pressure and under pressure, or under reduced pressure, and is preferably carried out under normal pressure in view of simplicity of the apparatus and operation. Further, preferably carried out in an atmosphere of inert gas such as N 2.
  • the polymerization temperature is arbitrary as long as it is not higher than the boiling point of the reaction mixture, but is preferably 30 ° C. or higher and 150 ° C. or lower, more preferably 50 ° C. or higher and 130 ° C. or lower, from the viewpoint of polymerization efficiency and molecular weight control. More preferably, the temperature is from 110 ° C to 110 ° C.
  • the reaction time is preferably 30 minutes or more and 720 minutes or less, more preferably 40 minutes or more and 540 minutes or less.
  • the polymerizable fluorine-containing highly branched polymer of the present invention thus obtained has a weight average molecular weight (Mw) measured in terms of polystyrene by gel permeation chromatography of 1,000 to 400,000, preferably 2,000 to 200,000. It is.
  • Mw weight average molecular weight
  • the polymerizable fluorine-containing highly branched polymer of the present invention is useful as a surface modifier for a photocurable resin, and the curable surface modifier is also an object of the present invention.
  • this invention is a coating containing the above-mentioned (a) polymerizable fluorine-containing highly branched polymer, (b) active energy ray-curable polyfunctional monomer, and (c) a polymerization initiator that generates radicals by active energy rays. It also relates to a curable composition.
  • (B) Active energy ray-curable polyfunctional monomer examples include polyfunctional monomers containing two or more (meth) acryloyl groups such as urethane acrylic, epoxy acrylic, and various (meth) acrylates.
  • active energy ray-curable polyfunctional monomer examples include hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (Meth) acrylate, pentaerythritol di (meth) acrylate monostearate, bisphenol A ethylene glycol adduct (meth) acrylate, bisphenol F ethylene glycol adduct (meth) acrylate, tricyclo [5.2.1.0 2,6 ] Decanemethanol di (meth) acrylate, trishydroxyethyl isocyanurate di (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylol group Panethylene glycol adduct tri (meth) acrylate, trimethylolpropane propylene glycol adduct tri (meth)
  • the blending amounts of the (a) polymerizable fluorine-containing highly branched polymer and (b) the active energy ray-curable polyfunctional monomer are as follows. That is, (b) 0.001 to 20% by mass, preferably 0.005 to 15% by mass, more preferably 0.01 to 10% by mass (a based on the mass of the polyfunctional monomer. ) A polymerizable fluorine-containing highly branched polymer is used.
  • polymerization initiator (c) that generates radicals by active energy rays
  • examples of the polymerization initiator (c) that generates radicals by active energy rays include, for example, alkylphenones, benzophenones, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, and 2,3-dialkyldione compounds. , Disulfide compounds, thiuram compounds, fluoroamine compounds and the like are used. Of these, alkylphenones, particularly ⁇ -hydroxyalkylphenones, are preferably used.
  • 1-hydroxycyclohexyl phenyl ketone 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methylpropionyl) benzyl] phenyl ⁇ -2-methylpropan-1-one and 2- Methyl-1 [4- (methylthio) phenyl] -2-morpholinopropan-1-one is preferred because even a small amount initiates and accelerates the polymerization reaction by irradiation with ionizing radiation.
  • These can be used either alone or in combination. These are commercially available.
  • the (c) polymerization initiator is in an amount of 0.01 to 20% by mass, preferably in an amount of 0.1 to 20% by mass, more preferably relative to the mass of the (b) polyfunctional monomer.
  • the polymerization initiator is used in an amount of 1 to 20% by weight.
  • the curable composition for coating of the present invention may further contain a solvent to form a varnish.
  • the solvent used at this time may be any solvent that can dissolve the components (a) to (c).
  • the solid content in the curable composition for coating of the present invention is, for example, 0.5 to 50% by mass, 1 to 30% by mass, or 1 to 25% by mass.
  • the solid content is obtained by removing the solvent component from all the components of the curable composition for coating.
  • the curable composition for coating of the present invention may contain (d) silica fine particles.
  • the silica fine particles used here preferably have an average particle diameter of 1 to 100 nm. If the average particle diameter exceeds 100 nm, the transparency of the cured film formed by the prepared curable composition may be reduced.
  • the average particle size here is obtained by a direct observation method using a dynamic light scattering method (DLS) or a transmission electron microscope (TEM).
  • the silica fine particle is preferably a colloidal solution, and the colloidal solution may be a dispersion of silica fine particles in a dispersion medium or a commercially available colloidal silica.
  • Examples of the dispersion medium for the silica fine particles include water and an organic solvent.
  • Examples of the organic solvent used for the dispersion medium include alcohols such as methanol, isopropyl alcohol, ethylene glycol, butanol, and ethylene glycol monopropyl ether; ketones such as methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbons such as toluene and xylene.
  • Amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; esters such as ethyl acetate, butyl acetate and ⁇ -butyrolactone; ethers such as tetrahydrofuran and 1,4-dioxane. Of these, alcohols and ketones are preferred. These organic solvents can be used as a dispersion medium alone or in admixture of two or more.
  • the amount of the silica fine particles in the curable composition for coating of the present invention is 5 to 80% by mass, more preferably 5 to 70% by mass, based on the mass of the (b) active energy ray-curable monomer. %, More preferably 5 to 60% by mass.
  • additives that are generally added to the curable composition for coating of the present invention as needed, for example, photosensitizers, polymerization inhibitors, polymerization initiators, as long as the effects of the present invention are not impaired.
  • Leveling agents, surfactants, adhesion-imparting agents, plasticizers, ultraviolet absorbers, antioxidants, storage stabilizers, antistatic agents, inorganic fillers, pigments, dyes, and the like may be appropriately blended.
  • the said curable composition for a coating of this invention can comprise molded articles, such as a cured film and a laminated body, by coating on a base material and making it photopolymerize (harden
  • the cured film thus obtained is also an object of the present invention.
  • the substrate include plastics (polycarbonate, polymethacrylate, polystyrene, polyester, polyolefin, epoxy, melamine, triacetyl cellulose, ABS, AS, norbornene resin, etc.), metal, wood, paper, glass, slate, and the like. Can be mentioned.
  • the shape of these base materials may be a plate shape, a film shape, or a three-dimensional molded body.
  • the coating method of the curable composition for coating of the present invention includes a cast coating method, a spin coating method, a blade coating method, a dip coating method, a roll coating method, a bar coating method, a die coating method, an ink jet method, and a printing method (letter plate, intaglio plate).
  • Lithographic printing, screen printing, etc. can be selected as appropriate, and since it can be applied in a short time, it can be used even in a highly volatile solution, and it has the advantage of being able to perform highly uniform coating. It is desirable to use a coating method.
  • the curable composition for coating used here can be suitably used in the form of the varnish described above.
  • the coating curable composition is filtered in advance using a filter having a pore diameter of about 0.2 ⁇ m and then used for coating.
  • a filter having a pore diameter of about 0.2 ⁇ m and then used for coating.
  • actinic rays include ultraviolet rays, electron beams, and X-rays.
  • a light source used for ultraviolet irradiation sunlight, a chemical lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • the thickness of the film formed by coating is usually 0.01 ⁇ m to 50 ⁇ m, preferably 0.05 ⁇ m to 20 ⁇ m after drying and curing.
  • the coating curable composition of the present invention is applied to a film substrate to form a coating film, the coating film is dried to remove the solvent, and the coating film is irradiated with ultraviolet rays to be cured.
  • a hard coat film provided with a hard coat layer on at least one surface of the film substrate is also an object of the present invention.
  • the base material, the coating-film method, and ultraviolet irradiation used here it is as the base material in the above-mentioned ⁇ cured material>, a coating method, and ultraviolet irradiation.
  • the hard coat layer preferably has a thickness of 1 to 30 ⁇ m.
  • Solvent (2.7 mmol Na 2 CO 3 + 0.3 mmol NaHCO 3 ) / L aqueous solution
  • Detector Electrical conductivity (4)
  • Spin coater Device MS-A100 manufactured by Mikasa Corporation (5)
  • Apparatus J.M. A.
  • Contact angle measurement device VCA Optima manufactured by AST Products Measurement temperature: 20 ° C Measurement method: The measurement medium was dropped onto the surface to be measured, the contact angle after 10 seconds was measured 5 times, and the average value of three values excluding the maximum value and the minimum value was defined as the contact angle value.
  • Glass transition temperature (Tg) measurement Device 1 DSC204 F1 Phoenix (registered trademark) manufactured by NETZSCH (Examples 1 to 4)
  • Apparatus 2 Diamond DSC (Comparative Example 1) manufactured by PerkinElmer Measurement conditions: Under nitrogen atmosphere Temperature rising rate: 5 ° C / min (25 to 160 ° C) (8) 5% weight loss temperature (Td 5% ) measurement device: TG8120 manufactured by Rigaku Corporation Measurement conditions: In air atmosphere Temperature rising rate: 10 ° C / min (25-500 ° C) (9) UV irradiation device Device: H02-L41 manufactured by Eye Graphics Co., Ltd.
  • Intensity 16 mW / cm 2 (365 nm) (10) Bar coater: PM-9050MC manufactured by SMT Co., Ltd. (11) Dryer Device: DRC433FA manufactured by Advantech Toyo Co., Ltd. (12) Spectral reflection film thickness meter Device: F-20 manufactured by Filmetrics Co., Ltd.
  • EGDMA Ethylene glycol dimethacrylate [1G made by Shin-Nakamura Chemical Co., Ltd.]
  • C6FA 2- (perfluorohexyl) ethyl acrylate [FAAC-6 manufactured by Unimatec Co., Ltd.]
  • HEMA 2-hydroxyethyl methacrylate [manufactured by Pure Chemical Co., Ltd.]
  • MAIB Dimethyl 2,2′-azobisisobutyrate [MAIB manufactured by Otsuka Chemical Co., Ltd.]
  • UMA 2-methacryloyloxyethyl isocyanate [Karenz MOI (registered trademark) manufactured by Showa Denko KK]
  • UA 2-acryloyloxyethyl isocyanate [Karenz AOI (registered trademark) manufactured by Showa Denko KK] Irg.
  • Example 1 Synthesis of Hyperbranched Polymer 1
  • a 50 mL reaction flask was charged with 1.8 g (3.0 mmol) of hyperbranched polymer A synthesized according to Synthesis Example 1, 0.11 g (0.72 mmol) of UMA, and 1.8 g of MIBK. Nitrogen was introduced for 5 minutes while stirring to perform nitrogen substitution, and the reaction was carried out at 80 ° C. for 5 hours. Next, the reaction solution was diluted with 1.8 g of MIBK and then added to 91 g of hexane to precipitate the polymer in a slurry state.
  • Example 2 Synthesis of hyperbranched polymer 2 A 50 mL reaction flask was charged with 1.9 g (3.0 mmol) of hyperbranched polymer B synthesized according to Synthesis Example 2, 0.17 g (1.1 mmol) of UMA, and 1.9 g of MIBK. Nitrogen was introduced for 5 minutes while stirring to perform nitrogen substitution, and the reaction was carried out at 80 ° C. for 5 hours. Next, this reaction solution was diluted with 1.9 g of MIBK and then added to 91 g of hexane to precipitate the polymer in a slurry state.
  • Example 3 Synthesis of Hyperbranched Polymer 3
  • a 50 mL reaction flask was charged with 2.3 g (3.0 mmol) of hyperbranched polymer C synthesized according to Synthesis Example 3, 0.28 g (1.8 mmol) of UMA, and 2.3 g of MIBK. Nitrogen was introduced for 5 minutes while stirring to perform nitrogen substitution, and the reaction was carried out at 80 ° C. for 5 hours. Next, this reaction solution was diluted with 2.3 g of MIBK and then added to 91 g of hexane to precipitate the polymer in a slurry state.
  • the slurry was filtered under reduced pressure and vacuum dried to obtain 2.2 g of the target product (highly branched polymer 3) as a white powder (yield 86%).
  • 1 H NMR and 13 C NMR spectra of the obtained target product are shown in FIGS. 5 and 6.
  • the weight average molecular weight Mw measured by polystyrene conversion by GPC of the target object was 4,400, and dispersion degree: Mw / Mn was 1.9.
  • Example 4 Synthesis of hyperbranched polymer 4 A 50 mL reaction flask was charged with 2.3 g (3.0 mmol) of hyperbranched polymer C synthesized in accordance with Synthesis Example 3, 0.25 g (1.8 mmol) of UA, and 2.3 g of MIBK. Nitrogen was introduced for 5 minutes while stirring to perform nitrogen substitution, and the reaction was carried out at 80 ° C. for 5 hours. Next, this reaction solution was diluted with 2.3 g of MIBK and then added to 91 g of hexane to precipitate the polymer in a slurry state.
  • the slurry was filtered under reduced pressure and dried in vacuo to obtain 1.9 g of the target product (highly branched polymer 4) as a white powder (yield 75%).
  • 1 H NMR and 13 C NMR spectra of the obtained target product are shown in FIGS.
  • the weight average molecular weight Mw measured by polystyrene conversion by GPC of the target object was 4,700, and dispersion degree: Mw / Mn was 2.5.
  • the contents were added dropwise from the 100 mL reaction flask charged with EGDMA, C6FA and MAIB to the refluxed toluene in the 200 mL reaction flask using a dropping pump over 30 minutes. After completion of dropping, the mixture was aged for 1 hour. Next, 75 g of toluene was distilled off from this reaction solution using a rotary evaporator, and then the residue was added to 278 g of hexane to precipitate the polymer in a slurry state. The slurry was filtered under reduced pressure and vacuum dried to obtain 4.4 g of the target product (highly branched polymer 5) as a white powder (43% yield).
  • the 1 H NMR and 13 C NMR spectra of the obtained target product are shown in FIGS. 9 and 10. Moreover, the weight average molecular weight Mw measured by polystyrene conversion by GPC of the target object was 6,800, and dispersion degree: Mw / Mn was 1.9.
  • Each highly branched polymer solution is prepared by dissolving 0.25 g of each of the highly branched polymers 1 to 5 obtained in Examples 1 to 4 and Comparative Example 1 in 4.75 g of the solvent shown in Table 2 and filtering the solution. did.
  • This hyperbranched polymer solution was spin-coated on a silicon wafer (slope for 5 seconds, then 1,500 rpm for 30 seconds, then further slope for 5 seconds), and heat-treated at 100 ° C. for 30 minutes to evaporate the solvent and form a film.
  • the refractive index of the obtained thin film at a wavelength of 633 nm and the contact angles of water and diiodomethane were evaluated.
  • the surface energy was calculated from the result of the contact angle.
  • the glass transition temperature (Tg) and 5% weight loss temperature (Td 5% ) of each hyperbranched polymer powder were measured. The obtained results are shown in Table 2.
  • Example 5 Surface modification of hard coat film with polymerizable fluorine-containing highly branched polymer 1.8 g urethane acrylate [manufactured by Nippon Kayaku Co., Ltd. UX-5000], 30% by mass MIBK dispersion [Nissan Chemical Industry ( Co., Ltd. MIBK-SD] 4.0 g, Irg. 184 90 mg, Irg. To a mixed solution of 127 mg of 127 and MIBK of 4.2 g, 30 mg of the hyperbranched polymer 1 obtained in Example 1 was added and dissolved by stirring to prepare a uniform curable composition.
  • This curable composition was applied to a PET film [Cosmo Shine A4100 (thickness: 125 ⁇ m) manufactured by Toyobo Co., Ltd.] subjected to one-side easy adhesion treatment with No.
  • the film was formed by a bar coater using 9 wire bars.
  • the obtained coating film was dried for 3 minutes with a dryer at 80 ° C., and then exposed to UV light with an exposure amount of 1.2 J / cm 2 to produce a hard coat film.
  • the contact angle of oleic acid of the obtained hard coat film was measured to evaluate the antifouling property. Further, the produced hard coat film was placed on a black flat plate, and interference color unevenness was visually evaluated.
  • Example 6 to 8 Surface modification of hard coat film with polymerizable fluorine-containing highly branched polymer Except for using hyperbranched polymers 2 to 4 obtained in Examples 2 to 4 instead of hyperbranched polymer 1, respectively. Were operated and evaluated in the same manner as in Example 5. The results are shown in Table 3.
  • the polymerizable fluorine-containing highly branched polymer of the present invention has a high refractive index and good liquid repellency, and the hard coat film containing the polymer suppresses interference color unevenness. The result that it was possible was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

[Problem] To provide a surface-modifying agent which has good dispersibility in a material that forms a hard coat layer, which gives excellent anti-fouling properties in an obtained hard coat layer, which has little deterioration of surface characteristics of the hard coat layer, which has high leveling properties and which does not generate interference-color irregularities, and a curable composition that forms a hard coat layer containing the surface-modifying agent. [Solution] Provided is a polymerizable fluorine-containing hyperbranched polymer obtained by reacting a fluorine-containing hyperbranched polymer (which is obtained by polymerizing a monomer (A) having two or more radically polymerizable double bonds in the molecule, a monomer (B) having a fluoroalkyl group and at least one radically polymerizable double bond in the molecule and a monomer (C) having an active hydrogen group and at least one radically polymerizable double bond in the molecule in the presence of 5 to 200 mol.%, relative to the number of moles of the monomer (A), of a polymerization initiator (D)) with a monomer (E) having an isocyanate group and at least one radically polymerizable double bond in the molecule; also provided is a curable surface-modifying agent comprising the hyperbranched polymer, and a curable composition for coating that contains the hyperbranched polymer.

Description

重合性含フッ素高分岐ポリマー及びそれを含む硬化性組成物Polymerizable fluorine-containing hyperbranched polymer and curable composition containing the same
 本発明は、活性水素基含有含フッ素高分岐ポリマーと、イソシアネート基を有するラジカル重合性モノマーとを反応させることで得られる重合性含フッ素高分岐ポリマー、該重合性含フッ素高分岐ポリマーを添加した硬化性組成物、及び該硬化性組成物から得られるハードコートフィルムに関する。 In the present invention, a polymerizable fluorine-containing highly branched polymer obtained by reacting an active hydrogen group-containing fluorine-containing highly branched polymer with a radical polymerizable monomer having an isocyanate group, and the polymerizable fluorine-containing highly branched polymer are added. The present invention relates to a curable composition and a hard coat film obtained from the curable composition.
 ポリマー(高分子)材料は、近年、多分野でますます利用されている。それに伴い、それぞれの分野に応じて、マトリクスとしてのポリマーの性状とともに、その表面や界面の特性が重要となっている。例えば、表面エネルギーの低いフッ素系化合物を表面改質剤として用いることにより、撥水撥油性、防汚性、非粘着性、剥離性、離型性、滑り性、耐磨耗性、反射防止特性、耐薬品性などの表面・界面制御に関する特性の向上が期待され、種々提案されている。 Polymer (polymer) materials are increasingly used in many fields in recent years. Along with this, the characteristics of the surface and interface of the polymer as a matrix, as well as the properties of the polymer, have become important for each field. For example, by using a fluorine compound with low surface energy as a surface modifier, water and oil repellency, antifouling properties, non-adhesiveness, peelability, release properties, slipperiness, wear resistance, antireflection properties Various improvements relating to surface / interface control such as chemical resistance are expected and various proposals have been made.
 LCD(液晶表示装置)、PDP(プラズマディスプレイ)、タッチパネルなどの各種ディスプレイの表面には、傷付き防止のためのハードコート層を具備する各種プラスチックフィルムが使用されている。しかし、ハードコート層は指紋痕や汚れが付着しやすく、付着した指紋痕や汚れが簡単に除去できなかった。そのため、ディスプレイの画像の視認性が著しく損なわれたり、ディスプレイの美観が損なわれたりするという問題があった。特にタッチパネル表面は、直に人が手で触れるものであるため、とりわけ指紋痕が付着しにくく、かつ付着した場合には除去しやすいことが強く望まれている。 Various plastic films having a hard coat layer for preventing scratches are used on the surfaces of various displays such as LCD (liquid crystal display), PDP (plasma display), and touch panel. However, fingerprint marks and dirt are easily attached to the hard coat layer, and the attached fingerprint marks and dirt cannot be easily removed. For this reason, there has been a problem that the visibility of the image on the display is remarkably impaired or the aesthetic appearance of the display is impaired. In particular, since the surface of the touch panel is directly touched by a human hand, it is strongly desired that fingerprint marks are particularly difficult to adhere to and easy to remove when attached.
 このようなハードコート層を有する反射防止フィルムにおいて、ハードコート層の表面を平坦化(レベリング、即ちなめらかにする)し、かつ防汚性を付与する目的で、フッ素化合物(フッ素系表面調整剤)をハードコート層形成用塗布液に添加してハードコート層を形成する方法が提案されている。フッ素化合物(フッ素系表面調整剤)は、層表面の指紋付着性及び指紋拭き取り性等の防汚性を向上させる機能を有する。しかし多くの場合、コーティングし成膜された塗膜表面には、防汚性を付与するために添加されたフッ素化合物が多量に存在するが、フッ素化合物は撥水・撥油性を有する一方、フッ素を含まない有機化合物に対して一般的に馴染みにくい性質を有するため、塗膜本来の性能に影響を及ぼすことも多い。 In such an antireflection film having a hard coat layer, a fluorine compound (fluorine-based surface conditioner) is used for the purpose of flattening (leveling, ie smoothing) the surface of the hard coat layer and imparting antifouling properties. There has been proposed a method of forming a hard coat layer by adding to a coating liquid for forming a hard coat layer. The fluorine compound (fluorine-based surface conditioner) has a function of improving antifouling properties such as fingerprint adhesion and fingerprint wiping properties on the layer surface. However, in many cases, the coating film surface that has been coated and formed contains a large amount of fluorine compound added to impart antifouling properties. However, while fluorine compounds have water and oil repellency, In general, it has properties that are difficult to adapt to organic compounds that do not contain, and therefore often affects the original performance of the coating film.
 上述のハードコート層形成用塗布液としては、具体的には、フルオロアルキル基及び水酸基を有する含フッ素直鎖状ポリマーと、イソシアネート基含有(メタ)アクリルモノマーとを反応させて得られる重合型フッ素系界面活性剤を添加した、表面機能性の劣化が少ないハードコート層形成用塗布液が開示されている(特許文献1)。
 一方、ポリマーの表面改質方法の一つとして、線状ポリマーからなるマトリクスポリマーに分岐ポリマーを添加し、該分岐ポリマーを該マトリクスポリマー表面に濃縮させる方法が知られている(特許文献2)。
As the above-mentioned coating liquid for forming a hard coat layer, specifically, a polymerization type fluorine obtained by reacting a fluorine-containing linear polymer having a fluoroalkyl group and a hydroxyl group with an isocyanate group-containing (meth) acryl monomer. A coating liquid for forming a hard coat layer, to which a surface-active agent is added and which causes little deterioration in surface functionality, is disclosed (Patent Document 1).
On the other hand, as one surface modification method of a polymer, there is known a method in which a branched polymer is added to a matrix polymer composed of a linear polymer, and the branched polymer is concentrated on the surface of the matrix polymer (Patent Document 2).
特開2007-246696号公報JP 2007-246696 A 国際公開第2007/049608号パンフレットInternational Publication No. 2007/0449608 Pamphlet
 上述の通り、フッ素化合物(フッ素系表面調整剤)をハードコート層形成用塗布液に添加してハードコート層の表面を改質する方法は種々提案されているが、そのほとんどがレベリング性に起因する干渉色ムラに課題があり、より干渉色ムラのないハードコート層が望まれていた。
 すなわち、ハードコート層を形成する材料への分散性が良好であり、得られるハードコート層の防汚性に優れ、その表面特性の劣化が少なく、しかも高いレベリング性で干渉色ムラを発生しない表面改質剤、及びそれを含むハードコート層を形成するための硬化性組成物が求められていた。
As described above, various methods for modifying the surface of the hard coat layer by adding a fluorine compound (fluorine-based surface conditioner) to the coating solution for forming the hard coat layer have been proposed, but most of them are due to leveling properties. There is a problem with the interference color unevenness, and a hard coat layer without interference color unevenness has been desired.
That is, a surface that has good dispersibility in the material forming the hard coat layer, excellent antifouling properties of the resulting hard coat layer, little deterioration of the surface characteristics, and high leveling properties that do not cause interference color unevenness There has been a demand for a curable composition for forming a modifier and a hard coat layer containing the same.
 本発明者らは、上記の課題を解決するために鋭意検討した結果、高分岐ポリマー側鎖にフルオロアルキル基を導入すると共に、ラジカル重合性の部位を導入することにより得られる重合性含フッ素高分岐ポリマーをハードコート層向けの表面改質剤として採用することにより、該表面改質剤がハードコート層を形成するための硬化性組成物への分散性に優れるものとなり、また得られるハードコート層が防汚性に優れ、さらにレベリング剤によらずとも高いレベリング性を達成できることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have introduced a highly polymerizable fluorine-containing polymer obtained by introducing a fluoroalkyl group into a highly branched polymer side chain and introducing a radically polymerizable site. By employing a branched polymer as a surface modifier for the hard coat layer, the surface modifier is excellent in dispersibility in the curable composition for forming the hard coat layer, and the hard coat obtained The present inventors have found that the layer has excellent antifouling properties and can achieve high leveling properties regardless of the leveling agent, thereby completing the present invention.
 すなわち、本発明は、第1観点として、分子内に2個以上のラジカル重合性二重結合を有するモノマーAと、分子内にフルオロアルキル基及び少なくとも1個のラジカル重合性二重結合を有するモノマーBと、分子内に活性水素基及び少なくとも1個のラジカル重合性二重結合を有するモノマーCとを、該モノマーAのモル数に対して、5乃至200モル%量の重合開始剤Dの存在下で重合させることにより得られる含フッ素高分岐ポリマーと、分子内にイソシアネート基及び少なくとも1個のラジカル重合性二重結合を有するモノマーEとを反応させることにより得られる重合性含フッ素高分岐ポリマーに関する。
 第2観点として、前記モノマーAが、ビニル基又は(メタ)アクリル基の何れか一方又は双方を有する化合物である、第1観点に記載の重合性含フッ素高分岐ポリマーに関する。
 第3観点として、前記モノマーAが、ジビニル化合物又はジ(メタ)アクリレート化合物である、第2観点に記載の重合性含フッ素高分岐ポリマーに関する。
 第4観点として、前記モノマーAがエチレングリコールジ(メタ)アクリレートである、第3観点に記載の重合性含フッ素高分岐ポリマーに関する。
 第5観点として、前記モノマーAがジビニルベンゼンである、第3観点に記載の重合性含フッ素高分岐ポリマーに関する。
 第6観点として、前記モノマーAに対して5乃至300モル%量の前記モノマーBを用いて得られる、第1観点に記載の重合性含フッ素高分岐ポリマーに関する。
 第7観点として、前記モノマーBが、ビニル基又は(メタ)アクリル基の何れか一方又は双方を有する化合物である、第6観点に記載の重合性含フッ素高分岐ポリマーに関する。
 第8観点として、前記モノマーBが下記式[1]で表される化合物である、第7観点に記載の重合性含フッ素高分岐ポリマーに関する。
Figure JPOXMLDOC01-appb-C000004
(式中、R1は水素原子又はメチル基を表し、R2はヒドロキシ基で置換されていてもよい炭素原子数2乃至12のフルオロアルキル基を表す。)
 第9観点として、前記モノマーBが下記式[2]で表される化合物である、第8観点に記載の重合性含フッ素高分岐ポリマーに関する。
Figure JPOXMLDOC01-appb-C000005
(式中、R1は前記式[1]における定義と同じ意味を表し、Xは水素原子又はフッ素原子を表し、mは1又は2を表し、nは0乃至5の整数を表す。)
 第10観点として、前記モノマーAに対して5乃至300モル%量の前記モノマーCを用いて得られる、第1観点に記載の重合性含フッ素高分岐ポリマーに関する。
 第11観点として、前記モノマーCが、ビニル基又は(メタ)アクリル基の何れか一方又は双方を有する化合物である、第10観点に記載の重合性含フッ素高分岐ポリマーに関する。
 第12観点として、前記モノマーCの活性水素基がヒドロキシ基である、第11観点に記載の重合性含フッ素高分岐ポリマーに関する。
 第13観点として、前記モノマーCが下記式[3]で表される化合物である第12観点に記載の重合性含フッ素高分岐ポリマーに関する。
Figure JPOXMLDOC01-appb-C000006
(式中、R3は水素原子又はメチル基を表し、Lはエーテル結合を含んでいてもよい炭素原子数1乃至6のアルキレン基を表す。)
 第14観点として、前記重合開始剤Dがアゾ系重合開始剤である、第1観点乃至第13観点のうち何れか一項に記載の重合性含フッ素高分岐ポリマーに関する。
 第15観点として、前記重合開始剤Dが2,2'-アゾビスイソ酪酸ジメチルである、第14観点に記載の重合性含フッ素高分岐ポリマーに関する。
 第16観点として、前記モノマーCに対して10乃至300モル%量の前記モノマーEを用いて得られる、第1観点に記載の重合性含フッ素高分岐ポリマーに関する。
 第17観点として、前記モノマーEが、ビニル基又は(メタ)アクリル基の何れか一方又は双方を有する化合物である、第16観点に記載の重合性含フッ素高分岐ポリマーに関する。
 第18観点として、第1観点乃至第17観点のうち何れか一項に記載の重合性含フッ素高分岐ポリマーからなる、硬化性表面改質剤に関する。
 第19観点として、(a)第1観点乃至第17観点のうち何れか一項に記載の重合性含フッ素高分岐ポリマー、(b)活性エネルギー線硬化性多官能モノマー、及び(c)活性エネルギー線によりラジカルを発生する重合開始剤を含む、コーティング用硬化性組成物に関する。
 第20観点として、前記(b)活性エネルギー線硬化性多官能モノマーの質量に対して0.001乃至20質量%量の(a)重合性含フッ素高分岐ポリマーを含む、第19観点に記載のコーティング用硬化性組成物に関する。
 第21観点として、さらに溶媒を含む、第19観点又は第20観点に記載のコーティング用硬化性組成物に関する。
 第22観点として、さらに(d)シリカ微粒子を含む、第19観点乃至第21観点のうち何れか一項に記載のコーティング用硬化性組成物に関する。
 第23観点として、前記(d)シリカ微粒子が1乃至100nmの平均粒子径を有する、第22観点に記載のコーティング用硬化性組成物に関する。
 第24観点として、第19観点乃至第23観点のうち何れか一項に記載のコーティング用硬化性組成物より得られる硬化膜に関する。
 第25観点として、フィルム基材の少なくとも一方の面にハードコート層を備えるハードコートフィルムであって、該ハードコート層が、第19観点乃至第23観点のうち何れか一項に記載のコーティング用硬化性組成物をフィルム基材上に塗布し塗膜を形成する工程、塗膜を乾燥し溶媒を除去する工程、塗膜に紫外線を照射し硬化する工程により形成されている、ハードコートフィルムに関する。
 第26観点として、前記ハードコート層が1乃至30μmの膜厚を有する、第25観点に記載のハードコートフィルムに関する。
 第27観点として、分子内に2個以上のラジカル重合性二重結合を有するモノマーAと、分子内にフルオロアルキル基及び少なくとも1個のラジカル重合性二重結合を有するモノマーBと、分子内に活性水素基及び少なくとも1個のラジカル重合性二重結合を有するモノマーCとを、該モノマーAのモル数に対して、5乃至200モル%量の重合開始剤Dの存在下で重合させることにより得られる含フッ素高分岐ポリマーと、分子内にイソシアネート基及び少なくとも1個のラジカル重合性二重結合を有するモノマーEとを反応させることを特徴とする、重合性含フッ素高分岐ポリマーの製造方法に関する。
That is, the present invention provides, as a first aspect, a monomer A having two or more radical polymerizable double bonds in the molecule, and a monomer having a fluoroalkyl group and at least one radical polymerizable double bond in the molecule. Presence of the polymerization initiator D in an amount of 5 to 200 mol% of B and the monomer C having an active hydrogen group and at least one radical polymerizable double bond in the molecule with respect to the number of moles of the monomer A Polymerizable fluorine-containing highly branched polymer obtained by reacting a fluorine-containing highly branched polymer obtained by polymerizing with a monomer E having an isocyanate group and at least one radically polymerizable double bond in the molecule About.
As a 2nd viewpoint, the said monomer A is related with the polymerizable fluorine-containing highly branched polymer as described in a 1st viewpoint which is a compound which has any one or both of a vinyl group or a (meth) acryl group.
As a third aspect, the present invention relates to the polymerizable fluorine-containing highly branched polymer according to the second aspect, in which the monomer A is a divinyl compound or a di (meth) acrylate compound.
As a fourth aspect, the present invention relates to the polymerizable fluorine-containing highly branched polymer according to the third aspect, in which the monomer A is ethylene glycol di (meth) acrylate.
As a fifth aspect, the present invention relates to the polymerizable fluorine-containing highly branched polymer according to the third aspect, in which the monomer A is divinylbenzene.
As a sixth aspect, the present invention relates to the polymerizable fluorine-containing highly branched polymer according to the first aspect, which is obtained using 5 to 300 mol% of the monomer B with respect to the monomer A.
As a seventh aspect, the present invention relates to the polymerizable fluorine-containing highly branched polymer according to the sixth aspect, wherein the monomer B is a compound having either one or both of a vinyl group and a (meth) acryl group.
As an eighth aspect, the present invention relates to the polymerizable fluorine-containing highly branched polymer according to the seventh aspect, wherein the monomer B is a compound represented by the following formula [1].
Figure JPOXMLDOC01-appb-C000004
(In the formula, R 1 represents a hydrogen atom or a methyl group, and R 2 represents a C 2-12 fluoroalkyl group which may be substituted with a hydroxy group.)
As a ninth aspect, the present invention relates to the polymerizable fluorine-containing highly branched polymer according to the eighth aspect, in which the monomer B is a compound represented by the following formula [2].
Figure JPOXMLDOC01-appb-C000005
(Wherein R 1 represents the same meaning as defined in Formula [1], X represents a hydrogen atom or a fluorine atom, m represents 1 or 2, and n represents an integer of 0 to 5).
As a tenth aspect, the present invention relates to the polymerizable fluorine-containing highly branched polymer according to the first aspect, which is obtained using 5 to 300 mol% of the monomer C with respect to the monomer A.
As an eleventh aspect, the present invention relates to the polymerizable fluorine-containing highly branched polymer according to the tenth aspect, wherein the monomer C is a compound having either one or both of a vinyl group and a (meth) acryl group.
As a twelfth aspect, the present invention relates to the polymerizable fluorine-containing highly branched polymer according to the eleventh aspect, wherein the active hydrogen group of the monomer C is a hydroxy group.
As a thirteenth aspect, the present invention relates to the polymerizable fluorine-containing highly branched polymer according to the twelfth aspect, in which the monomer C is a compound represented by the following formula [3].
Figure JPOXMLDOC01-appb-C000006
(In the formula, R 3 represents a hydrogen atom or a methyl group, and L represents an alkylene group having 1 to 6 carbon atoms which may contain an ether bond.)
As a fourteenth aspect, the present invention relates to the polymerizable fluorine-containing highly branched polymer according to any one of the first aspect to the thirteenth aspect, in which the polymerization initiator D is an azo polymerization initiator.
A fifteenth aspect relates to the polymerizable fluorine-containing highly branched polymer according to the fourteenth aspect, wherein the polymerization initiator D is dimethyl 2,2′-azobisisobutyrate.
As a sixteenth aspect, the present invention relates to the polymerizable fluorine-containing highly branched polymer according to the first aspect, which is obtained using 10 to 300 mol% of the monomer E with respect to the monomer C.
As a seventeenth aspect, the present invention relates to the polymerizable fluorine-containing highly branched polymer according to the sixteenth aspect, in which the monomer E is a compound having either one or both of a vinyl group and a (meth) acryl group.
As an eighteenth aspect, the present invention relates to a curable surface modifier comprising the polymerizable fluorine-containing highly branched polymer according to any one of the first aspect to the seventeenth aspect.
As a nineteenth aspect, (a) the polymerizable fluorine-containing highly branched polymer according to any one of the first to seventeenth aspects, (b) an active energy ray-curable polyfunctional monomer, and (c) active energy The present invention relates to a curable composition for coating containing a polymerization initiator that generates radicals by radiation.
As a twentieth aspect, according to the nineteenth aspect, including 0.001 to 20% by mass of (a) a polymerizable fluorine-containing highly branched polymer with respect to the mass of the (b) active energy ray-curable polyfunctional monomer. The present invention relates to a curable composition for coating.
As a 21st viewpoint, it is related with the curable composition for a coating as described in a 19th viewpoint or a 20th viewpoint further containing a solvent.
As a twenty-second aspect, the present invention relates to the curable composition for coating according to any one of the nineteenth to twenty-first aspects, further including (d) silica fine particles.
As a twenty-third aspect, the present invention relates to (d) the curable composition for coating according to the twenty-second aspect, in which the silica fine particles have an average particle diameter of 1 to 100 nm.
As a 24th viewpoint, it is related with the cured film obtained from the curable composition for a coating as described in any one of a 19th viewpoint thru | or a 23rd viewpoint.
As a twenty-fifth aspect, a hard coat film comprising a hard coat layer on at least one surface of a film substrate, wherein the hard coat layer is for coating according to any one of the nineteenth aspect to the twenty-third aspect. The present invention relates to a hard coat film formed by a step of applying a curable composition on a film substrate to form a coating film, a step of drying the coating film to remove the solvent, and a step of irradiating the coating film with ultraviolet rays and curing. .
As a twenty-sixth aspect, the present invention relates to the hardcoat film according to the twenty-fifth aspect, wherein the hardcoat layer has a thickness of 1 to 30 μm.
As a twenty-seventh aspect, a monomer A having two or more radical polymerizable double bonds in the molecule, a monomer B having a fluoroalkyl group and at least one radical polymerizable double bond in the molecule, By polymerizing the monomer C having an active hydrogen group and at least one radical polymerizable double bond in the presence of a polymerization initiator D in an amount of 5 to 200 mol% based on the number of moles of the monomer A The present invention relates to a method for producing a polymerizable fluorine-containing highly branched polymer, characterized by reacting the obtained fluorine-containing highly branched polymer with a monomer E having an isocyanate group and at least one radical polymerizable double bond in the molecule. .
 本発明の重合性含フッ素高分岐ポリマーは、積極的に枝分かれ構造を導入しているため、線状高分子と比較して分子間の絡み合いが少なく、微粒子的挙動を示し、有機溶媒に対する溶解性及び樹脂に対する分散性が高い。このため本発明の重合性含フッ素高分岐ポリマーを、ハードコート形成用組成物等に配合し、ハードコート層を形成する際、微粒子状の該高分岐ポリマーは界面(ハードコート層表面)に容易に移動して、樹脂表面に防汚性等の活性を付与しやすい。
 また、本発明の重合性含フッ素高分岐ポリマーは、そのポリマー側鎖にラジカル重合性の部位を有することから、活性エネルギー線硬化性モノマーとの混合・分散性が高く、該高分岐ポリマーの凝集が抑制され、硬化時の膜厚ムラに起因する干渉色ムラを抑制し、レベリング性が向上する。
 従って、本発明の重合性含フッ素高分岐ポリマーをハードコート層形成用組成物に添加することで、干渉色ムラのない表面改質されたハードコート層を得ることができる。
Since the polymerizable fluorine-containing highly branched polymer of the present invention has positively introduced a branched structure, it has less entanglement between molecules than a linear polymer, exhibits fine particle behavior, and is soluble in organic solvents. And dispersibility with respect to resin is high. For this reason, when the polymerizable fluorine-containing highly branched polymer of the present invention is blended in a hard coat forming composition or the like to form a hard coat layer, the finely branched highly branched polymer is easy on the interface (hard coat layer surface). It is easy to give activity, such as antifouling property, to the resin surface.
In addition, since the polymerizable fluorine-containing highly branched polymer of the present invention has a radically polymerizable site in the polymer side chain, the mixing and dispersibility with the active energy ray-curable monomer is high, and the aggregation of the highly branched polymer is high. Is suppressed, interference color unevenness due to film thickness unevenness during curing is suppressed, and leveling properties are improved.
Therefore, by adding the polymerizable fluorine-containing highly branched polymer of the present invention to the composition for forming a hard coat layer, a surface-modified hard coat layer free from interference color unevenness can be obtained.
図1は、実施例1で製造した高分岐ポリマー1の1H NMRスペクトルを示す図である。1 is a diagram showing a 1 H NMR spectrum of the hyperbranched polymer 1 produced in Example 1. FIG. 図2は、実施例1で製造した高分岐ポリマー1の13C NMRスペクトルを示す図である。2 is a diagram showing a 13 C NMR spectrum of the hyperbranched polymer 1 produced in Example 1. FIG. 図3は、実施例2で製造した高分岐ポリマー2の1H NMRスペクトルを示す図である。FIG. 3 is a diagram showing a 1 H NMR spectrum of the hyperbranched polymer 2 produced in Example 2. 図4は、実施例2で製造した高分岐ポリマー2の13C NMRスペクトルを示す図である。4 is a diagram showing a 13 C NMR spectrum of the hyperbranched polymer 2 produced in Example 2. FIG. 図5は、実施例3で製造した高分岐ポリマー3の1H NMRスペクトルを示す図である。FIG. 5 is a diagram showing a 1 H NMR spectrum of the hyperbranched polymer 3 produced in Example 3. 図6は、実施例3で製造した高分岐ポリマー3の13C NMRスペクトルを示す図である。6 is a diagram showing a 13 C NMR spectrum of the hyperbranched polymer 3 produced in Example 3. FIG. 図7は、実施例4で製造した高分岐ポリマー4の1H NMRスペクトルを示す図である。FIG. 7 is a diagram showing the 1 H NMR spectrum of the hyperbranched polymer 4 produced in Example 4. 図8は、実施例4で製造した高分岐ポリマー4の13C NMRスペクトルを示す図である。FIG. 8 is a diagram showing a 13 C NMR spectrum of the hyperbranched polymer 4 produced in Example 4. 図9は、比較例1で製造した高分岐ポリマー5の1H NMRスペクトルを示す図である。FIG. 9 is a diagram showing a 1 H NMR spectrum of the hyperbranched polymer 5 produced in Comparative Example 1. 図10は、比較例1で製造した高分岐ポリマー5の13C NMRスペクトルを示す図である。FIG. 10 is a diagram showing a 13 C NMR spectrum of the hyperbranched polymer 5 produced in Comparative Example 1.
<重合性含フッ素高分岐ポリマー>
 本発明の含フッ素高分岐ポリマーは、分子内に2個以上のラジカル重合性二重結合を有するモノマーAと、分子内にフルオロアルキル基及び少なくとも1個のラジカル重合性二重結合を有するモノマーBと、分子内に活性水素基及び少なくとも1個のラジカル重合性二重結合を有するモノマーCとを、該モノマーAのモル数に対して、5乃至200モル%量の重合開始剤Dの存在下で重合させることにより得られる含フッ素高分岐ポリマーと、分子内にイソシアネート基及び少なくとも1個のラジカル重合性二重結合を有するモノマーEとを反応させることにより得られる重合性含フッ素高分岐ポリマーである。また本発明の含フッ素高分岐ポリマーは、いわゆる開始剤断片組込み型含フッ素高分岐ポリマーであり、その末端に重合に使用した重合開始剤Dの断片を有している。
<Polymerizable fluorine-containing highly branched polymer>
The fluorine-containing highly branched polymer of the present invention comprises a monomer A having two or more radical polymerizable double bonds in the molecule, and a monomer B having a fluoroalkyl group and at least one radical polymerizable double bond in the molecule. And a monomer C having an active hydrogen group and at least one radical polymerizable double bond in the molecule in the presence of 5 to 200 mol% of a polymerization initiator D with respect to the number of moles of the monomer A. A polymerizable fluorine-containing highly branched polymer obtained by reacting a fluorine-containing highly branched polymer obtained by polymerizing with a monomer E having an isocyanate group and at least one radical polymerizable double bond in the molecule. is there. The fluorine-containing highly branched polymer of the present invention is a so-called initiator fragment-incorporating type fluorine-containing highly branched polymer, and has a polymerization initiator D fragment used for polymerization at its terminal.
[モノマーA]
 本発明において、分子内に2個以上のラジカル重合性二重結合を有するモノマーAは、ビニル基又は(メタ)アクリル基の何れか一方又は双方を有することが好ましく、特にジビニル化合物又はジ(メタ)アクリレート化合物であることが好ましい。なお、本発明では(メタ)アクリレート化合物とは、アクリレート化合物とメタクリレート化合物の両方をいう。例えば(メタ)アクリル酸は、アクリル酸とメタクリル酸をいう。
[Monomer A]
In the present invention, the monomer A having two or more radically polymerizable double bonds in the molecule preferably has one or both of a vinyl group and a (meth) acryl group, and in particular, a divinyl compound or di (meta). ) An acrylate compound is preferred. In the present invention, the (meth) acrylate compound refers to both an acrylate compound and a methacrylate compound. For example, (meth) acrylic acid refers to acrylic acid and methacrylic acid.
 このようなモノマーAとしては、例えば、以下の(A1)乃至(A7)に示した有機化合物が例示される。
(A1)ビニル系炭化水素:
(A1-1)脂肪族ビニル系炭化水素類;イソプレン、ブタジエン、3-メチル-1,2-ブタジエン、2,3-ジメチル-1,3-ブタジエン、1,2-ポリブタジエン、ペンタジエン、ヘキサジエン、オクタジエン等
(A1-2)脂環式ビニル系炭化水素;シクロペンタジエン、シクロヘキサジエン、シクロオクタジエン、ノルボルナジエン等
(A1-3)芳香族ビニル系炭化水素;ジビニルベンゼン、ジビニルトルエン、ジビニルキシレン、トリビニルベンゼン、ジビニルビフェニル、ジビニルナフタレン、ジビニルフルオレン、ジビニルカルバゾール、ジビニルピリジン等
(A2)ビニルエステル、アリルエステル、ビニルエーテル、アリルエーテル、ビニルケトン:
(A2-1)ビニルエステル;アジピン酸ジビニル、マレイン酸ジビニル、フタル酸ジビニル、イソフタル酸ジビニル、イタコン酸ジビニル、ビニル(メタ)アクリレート等
(A2-2)アリルエステル;マレイン酸ジアリル、フタル酸ジアリル、イソフタル酸ジアリル、アジピン酸ジアリル、アリル(メタ)アクリレート等
(A2-3)ビニルエーテル;ジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル等
(A2-4)アリルエーテル;ジアリルエーテル、ジアリルオキシエタン、トリアリルオキシエタン、テトラアリルオキシエタン、テトラアリルオキシプロパン、テトラアリルオキシブタン、テトラメタリルオキシエタン等
(A2-5)ビニルケトン;ジビニルケトン、ジアリルケトン等
(A3)(メタ)アクリル酸エステル:
エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、アルコキシチタントリ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、2-メチル-1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、トリシクロ[5.2.1.02,6]デカンジメタノールジ(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート、2-ヒドロキシ-1-アクリロイルオキシ-3-メタクリロイルオキシプロパン、2-ヒドロキシ-1,3-ジ(メタ)アクリロイルオキシプロパン、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレン、ウンデシレノキシエチレングリコールジ(メタ)アクリレート、ビス[4-(メタ)アクリロイルチオフェニル]スルフィド、ビス[2-(メタ)アクリロイルチオエチル]スルフィド、1,3-アダマンタンジオールジ(メタ)アクリレート、1,3-アダマンタンジメタノールジ(メタ)アクリレート等
(A4)ポリアルキレングリコール鎖を有するビニル系化合物:
ポリエチレングリコール(分子量300)ジ(メタ)アクリレート、ポリプロピレングリコール(分子量500)ジ(メタ)アクリレート等
(A5)含窒素ビニル系化合物:
ジアリルアミン、ジアリルイソシアヌレート、ジアリルシアヌレート、メチレンビス(メタ)アクリルアミド、ビスマレイミド等
(A6)含ケイ素ビニル系化合物:
ジメチルジビニルシラン、ジビニルメチルフェニルシラン、ジフェニルジビニルシラン、1,3-ジビニル-1,1,3,3-テトラメチルジシラザン、1,3-ジビニル-1,1,3,3-テトラフェニルジシラザン、ジエトキジビニルシラン等
(A7)含フッ素ビニル系化合物:
1,4-ジビニルパーフルオロブタン、1,4-ジビニルオクタフルオロブタン、1,6-ジビニルパーフルオロヘキサン、1,6-ジビニルドデカフルオロヘキサン、1,8-ジビニルパーフルオロオクタン、1,8-ジビニルヘキサデカフルオロオクタン等
As such a monomer A, the organic compound shown to the following (A1) thru | or (A7) is illustrated, for example.
(A1) Vinyl hydrocarbon:
(A1-1) Aliphatic vinyl hydrocarbons; isoprene, butadiene, 3-methyl-1,2-butadiene, 2,3-dimethyl-1,3-butadiene, 1,2-polybutadiene, pentadiene, hexadiene, octadiene (A1-2) Alicyclic vinyl hydrocarbons; cyclopentadiene, cyclohexadiene, cyclooctadiene, norbornadiene, etc. (A1-3) aromatic vinyl hydrocarbons; divinylbenzene, divinyltoluene, divinylxylene, trivinylbenzene , Divinylbiphenyl, divinylnaphthalene, divinylfluorene, divinylcarbazole, divinylpyridine, etc. (A2) Vinyl esters, allyl esters, vinyl ethers, allyl ethers, vinyl ketones:
(A2-1) Vinyl ester; divinyl adipate, divinyl maleate, divinyl phthalate, divinyl isophthalate, divinyl itaconate, vinyl (meth) acrylate, etc. (A2-2) allyl ester; diallyl maleate, diallyl phthalate, Diallyl isophthalate, diallyl adipate, allyl (meth) acrylate, etc. (A2-3) vinyl ether; divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, etc. (A2-4) allyl ether; diallyl ether, diallyloxyethane, tri Allyloxyethane, tetraallyloxyethane, tetraallyloxypropane, tetraallyloxybutane, tetramethallyloxyethane, etc. (A2-5) vinyl ketone; divinyl ketone, diallyl Tons, etc. (A3) (meth) acrylic acid ester:
Ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) Acrylate, glycerol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, alkoxytitanium tri (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 2-methyl-1,8-octanediol di (meth) ) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, tricyclo [5.2.1.0 2,6] decanedimethanol di ( ) Acrylate, dioxane glycol di (meth) acrylate, 2-hydroxy-1-acryloyloxy-3-methacryloyloxypropane, 2-hydroxy-1,3-di (meth) acryloyloxypropane, 9,9-bis [4 -(2- (meth) acryloyloxyethoxy) phenyl] fluorene, undecylenoxyethylene glycol di (meth) acrylate, bis [4- (meth) acryloylthiophenyl] sulfide, bis [2- (meth) acryloylthioethyl ] Sulphides, 1,3-adamantanediol di (meth) acrylate, 1,3-adamantane dimethanol di (meth) acrylate, etc. (A4) Vinyl compounds having a polyalkylene glycol chain:
Polyethylene glycol (molecular weight 300) di (meth) acrylate, polypropylene glycol (molecular weight 500) di (meth) acrylate, etc. (A5) Nitrogen-containing vinyl compounds:
Diallylamine, diallyl isocyanurate, diallyl cyanurate, methylene bis (meth) acrylamide, bismaleimide, etc. (A6) silicon-containing vinyl compounds:
Dimethyldivinylsilane, divinylmethylphenylsilane, diphenyldivinylsilane, 1,3-divinyl-1,1,3,3-tetramethyldisilazane, 1,3-divinyl-1,1,3,3-tetraphenyldisilazane (A7) fluorine-containing vinyl compounds such as dietoxydivinylsilane:
1,4-divinylperfluorobutane, 1,4-divinyloctafluorobutane, 1,6-divinylperfluorohexane, 1,6-divinyldodecafluorohexane, 1,8-divinylperfluorooctane, 1,8-divinyl Hexadecafluorooctane, etc.
 これらのうち好ましいものは、上記(A1-3)群の芳香族ビニル系炭化水素化合物、(A2)群のビニルエステル、アリルエステル、ビニルエーテル、アリルエーテル及びビニルケトン、(A3)群の(メタ)アクリル酸エステル、(A4)群のポリアルキレングリコール鎖を有するビニル系化合物、並びに(A5)群の含窒素ビニル系化合物である。特に好ましいのは、(A1-3)群に属するジビニルベンゼン、(A2)群に属するフタル酸ジアリル、(A3)群に属するエチレングリコールジ(メタ)アクリレート、1,3-アダマンタンジメタノールジ(メタ)アクリレート、トリシクロ[5.2.1.02,6]デカンジメタノールジ(メタ)アクリレート並びに(A5)群に属するメチレンビス(メタ)アクリルアミドである。これらの中でも特にジビニルベンゼン及びエチレングリコールジ(メタ)アクリレートが好ましい。 Of these, preferred are the aromatic vinyl hydrocarbon compounds of group (A1-3), vinyl esters, allyl esters, vinyl ethers, allyl ethers and vinyl ketones of group (A2), (meth) acrylic of group (A3). An acid ester, a vinyl compound having a polyalkylene glycol chain of (A4) group, and a nitrogen-containing vinyl compound of (A5) group. Particularly preferred are divinylbenzene belonging to group (A1-3), diallyl phthalate belonging to group (A2), ethylene glycol di (meth) acrylate belonging to group (A3), 1,3-adamantane dimethanol di (meta). ) Acrylate, tricyclo [5.2.1.0 2,6 ] decandimethanol di (meth) acrylate, and methylenebis (meth) acrylamide belonging to group (A5). Among these, divinylbenzene and ethylene glycol di (meth) acrylate are particularly preferable.
[モノマーB]
 本発明において、分子内にフルオロアルキル基及び少なくとも1個のラジカル重合性二重結合を有するモノマーBは、好ましくはビニル基又は(メタ)アクリル基の何れか一方又は双方を有することが好ましく、特に前記式[1]で表される化合物が好ましく、より好ましくは式[2]で表される化合物であることが望ましい。
[Monomer B]
In the present invention, the monomer B having a fluoroalkyl group and at least one radical polymerizable double bond in the molecule preferably has either one or both of a vinyl group and a (meth) acryl group, particularly The compound represented by the formula [1] is preferable, and the compound represented by the formula [2] is more preferable.
 このようなモノマーBとしては、例えば2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3,3-ペンタフルオロプロピル(メタ)アクリレート、2-(パーフルオロブチル)エチル(メタ)アクリレート、2-(パーフルオロヘキシル)エチル(メタ)アクリレート、2-(パーフルオロオクチル)エチル(メタ)アクリレート、2-(パーフルオロデシル)エチル(メタ)アクリレート、2-(パーフルオロ-3-メチルブチル)エチル(メタ)アクリレート、2-(パーフルオロ-5-メチルヘキシル)エチル(メタ)アクリレート、2-(パーフルオロ-7-メチルオクチル)エチル(メタ)アクリレート、1H,1H,3H-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、1H,1H,7H-ドデカフルオロヘプチル(メタ)アクリレート、1H,1H,9H-ヘキサデカフルオロノニル(メタ)アクリレート、1H-1-(トリフルオロメチル)トリフルオロエチル(メタ)アクリレート、1H,1H,3H-ヘキサフルオロブチル(メタ)アクリレート、3-パーフルオロブチル-2-ヒドロキシプロピル(メタ)アクリレート、3-パーフルオロヘキシル-2-ヒドロキシプロピル(メタ)アクリレート、3-パーフルオロオクチル-2-ヒドロキシプロピル(メタ)アクリレート、3-(パーフルオロ-3-メチルブチル)-2-ヒドロキシプロピル(メタ)アクリレート、3-(パーフルオロ-5-メチルヘキシル)-2-ヒドロキシプロピル(メタ)アクリレート、及び3-(パーフルオロ-7-メチルオクチル)-2-ヒドロキシプロピル(メタ)アクリレート等が挙げられる。 Examples of such a monomer B include 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3,3-pentafluoropropyl (meth) acrylate, 2- (perfluorobutyl) ethyl ( (Meth) acrylate, 2- (perfluorohexyl) ethyl (meth) acrylate, 2- (perfluorooctyl) ethyl (meth) acrylate, 2- (perfluorodecyl) ethyl (meth) acrylate, 2- (perfluoro-3 -Methylbutyl) ethyl (meth) acrylate, 2- (perfluoro-5-methylhexyl) ethyl (meth) acrylate, 2- (perfluoro-7-methyloctyl) ethyl (meth) acrylate, 1H, 1H, 3H-tetra Fluoropropyl (meth) acrylate, 1H, 1H, 5H-octaful Lopentyl (meth) acrylate, 1H, 1H, 7H-dodecafluoroheptyl (meth) acrylate, 1H, 1H, 9H-hexadecafluorononyl (meth) acrylate, 1H-1- (trifluoromethyl) trifluoroethyl (meth) Acrylate, 1H, 1H, 3H-hexafluorobutyl (meth) acrylate, 3-perfluorobutyl-2-hydroxypropyl (meth) acrylate, 3-perfluorohexyl-2-hydroxypropyl (meth) acrylate, 3-perfluoro Octyl-2-hydroxypropyl (meth) acrylate, 3- (perfluoro-3-methylbutyl) -2-hydroxypropyl (meth) acrylate, 3- (perfluoro-5-methylhexyl) -2-hydroxypropyl (meth) Accel Relay , And 3- (perfluoro-7-methyl-octyl) -2-hydroxypropyl (meth) acrylate.
 本発明において、モノマーBの使用量は、反応性や表面改質効果の観点から、前記モノマーAの使用モル数に対して5乃至300モル%、特に10乃至150モル%、さらに好ましくは20乃至100モル%の量で使用することが好ましい。 In the present invention, the amount of the monomer B used is 5 to 300 mol%, particularly 10 to 150 mol%, more preferably 20 to 20 mol% with respect to the number of moles of the monomer A used from the viewpoint of reactivity and surface modification effect. It is preferably used in an amount of 100 mol%.
[モノマーC]
 本発明において、分子内に活性水素基及び少なくとも1個のラジカル重合性二重結合を有するモノマーCは、好ましくはビニル基又は(メタ)アクリル基の何れか一方又は双方を有するモノマーであることが好ましい。
 また、前記活性水素基としては、カルボキシル基、アミノ基、イミノ基、ヒドロキシ基、チオール基等が挙げられるが、本発明においてはヒドロキシ基を有するモノマーであることが好ましい。
 特に、モノマーCは前記式[3]で表される化合物が好ましい。
[Monomer C]
In the present invention, the monomer C having an active hydrogen group and at least one radical polymerizable double bond in the molecule is preferably a monomer having one or both of a vinyl group and a (meth) acryl group. preferable.
Examples of the active hydrogen group include a carboxyl group, an amino group, an imino group, a hydroxy group, and a thiol group. In the present invention, a monomer having a hydroxy group is preferable.
In particular, the monomer C is preferably a compound represented by the formula [3].
 このようなモノマーCとしては、例えば2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、エチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、プロピレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレートが挙げられ、中でも、2-ヒドロキシエチル(メタ)アクリレートが好ましい。 Examples of such monomer C include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, ethylene glycol mono (meth) acrylate, and polyethylene glycol mono (meth). Examples thereof include hydroxyalkyl (meth) acrylates such as acrylate, propylene glycol mono (meth) acrylate, and polypropylene glycol mono (meth) acrylate. Among them, 2-hydroxyethyl (meth) acrylate is preferable.
 本発明において、モノマーCの使用量は、反応性や表面改質の観点から、前記モノマーAの使用モル数に対して前記モノマーC 10乃至300モル%、特に20乃至200モル%、さらに好ましくは20乃至100モル%の量で使用することが好ましい。 In the present invention, the amount of the monomer C used is 10 to 300 mol%, particularly 20 to 200 mol%, more preferably 20 to 200 mol% with respect to the number of moles of the monomer A used from the viewpoint of reactivity and surface modification. It is preferably used in an amount of 20 to 100 mol%.
[重合開始剤D]
 本発明における重合開始剤Dとしては、好ましくはアゾ系重合開始剤が用いられる。アゾ系重合開始剤としては、例えば以下の(1)乃至(6)に示す化合物を挙げることができる。
(1)アゾニトリル化合物:
2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、1,1’-アゾビス(1-シクロヘキサンカルボニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2-(カルバモイルアゾ)イソブチロニトリル等;
(2)アゾアミド化合物:
2,2’-アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド}、2,2’-アゾビス{2-メチル-N-[2-(1-ヒドロキシブチル)]プロピオンアミド}、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス[N-(2-プロペニル)-2-メチルプロピオンアミド]、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、2,2’-アゾビス(N-シクロヘキシル-2-メチルプロピオンアミド)等;
(3)環状アゾアミジン化合物:
2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジスルフェートジヒドレート、2,2’-アゾビス[2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン]ジヒドロクロリド、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2'-アゾビス(1-イミノ-1-ピロリジノ-2-メチルプロパン)ジヒドロクロリド等;
(4)アゾアミジン化合物:
2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]テトラヒドレート等;
(5)その他:
2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノバレリン酸)、2,2’-アゾビス(2,4,4-トリメチルペンタン)、1,1’-アゾビス(1-アセトキシ-1-フェニルエタン)、ジメチル1,1’-アゾビス(1-シクロヘキサンカルボキシレート)、4,4’-アゾビス(4-シアノペンタン酸)等。
(6)フルオルアルキル基含有アゾ系重合開始剤
4,4’-アゾビス(4-シアノペンタン酸2-(パーフルオロメチル)エチル)、4,4’-アゾビス(4-シアノペンタン酸2-(パーフルオロブチル)エチル)、4,4’-アゾビス(4-シアノペンタン酸2-(パーフルオロヘキシル)エチル)等。
[Polymerization initiator D]
As the polymerization initiator D in the present invention, an azo polymerization initiator is preferably used. Examples of the azo polymerization initiator include compounds shown in the following (1) to (6).
(1) Azonitrile compound:
2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 1,1′-azobis ( 1-cyclohexanecarbonitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2- (carbamoylazo) isobutyronitrile and the like;
(2) Azoamide compound:
2,2′-azobis {2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide}, 2,2′-azobis {2-methyl-N- [2- ( 1-hydroxybutyl)] propionamide}, 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) propionamide], 2,2′-azobis [N- (2-propenyl) -2- Methylpropionamide], 2,2′-azobis (N-butyl-2-methylpropionamide), 2,2′-azobis (N-cyclohexyl-2-methylpropionamide) and the like;
(3) Cyclic azoamidine compound:
2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] disulfate dihydrate, 2,2′-azobis [2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane] dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) Propane], 2,2′-azobis (1-imino-1-pyrrolidino-2-methylpropane) dihydrochloride, etc .;
(4) Azoamidine compound:
2,2′-azobis (2-methylpropionamidine) dihydrochloride, 2,2′-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] tetrahydrate, etc .;
(5) Other:
Dimethyl 2,2′-azobisisobutyrate, 4,4′-azobis (4-cyanovaleric acid), 2,2′-azobis (2,4,4-trimethylpentane), 1,1′-azobis (1-acetoxy- 1-phenylethane), dimethyl 1,1′-azobis (1-cyclohexanecarboxylate), 4,4′-azobis (4-cyanopentanoic acid) and the like.
(6) Fluoroalkyl group-containing azo polymerization initiator 4,4′-azobis (2-cyanopentanoic acid 2- (perfluoromethyl) ethyl), 4,4′-azobis (4-cyanopentanoic acid 2- ( Perfluorobutyl) ethyl), 4,4′-azobis (2-cyanopentanoic acid 2- (perfluorohexyl) ethyl) and the like.
 上記アゾ系重合開始剤の中でも、表面改質の観点から、2,2’-アゾビス(2-メチルブチロニトリル)又は2,2’-アゾビスイソ酪酸ジメチルが好ましく、特に2,2’-アゾビスイソ酪酸ジメチルが好ましい。 Among the above azo polymerization initiators, 2,2′-azobis (2-methylbutyronitrile) or dimethyl 2,2′-azobisisobutyrate is preferable from the viewpoint of surface modification, and 2,2′-azobisisobutyric acid is particularly preferable. Dimethyl is preferred.
 前記重合開始剤Dは、前記モノマーAのモル数に対して、5乃至200モル%の量で使用され、好ましくは20乃至200モル%、より好ましくは20乃至100モル%の量で使用される。 The polymerization initiator D is used in an amount of 5 to 200 mol%, preferably 20 to 200 mol%, more preferably 20 to 100 mol%, based on the number of moles of the monomer A. .
[モノマーE]
 本発明において、分子内にイソシアネート基及び少なくとも1個のラジカル重合性二重結合を有するモノマーEは、好ましくはビニル基又は(メタ)アクリル基の何れか一方又は双方を有するモノマーであることが好ましい。
[Monomer E]
In the present invention, the monomer E having an isocyanate group and at least one radical polymerizable double bond in the molecule is preferably a monomer having one or both of a vinyl group and a (meth) acryl group. .
 このようなモノマーEとしては、(メタ)アクリロイルイソシアネート;2-(メタ)アクリロイルオキシエチルイソシアネート、3-(メタ)アクリロイルオキシプロピルイソシアネート、2-(メタ)アクリロイルオキシ-1-メチルエチルイソシアネート、2-(メタ)アクリロイルオキシ-2-メチルエチルイソシアネート、1,1-ビス((メタ)アクリロイルオキシメチル)エチルイソシアネート等の(メタ)アクリロイルオキシアルキルイソシアネート挙げられる。これらの具体的な製品名としては、例えば、昭和電工(株)製のカレンズMOI、AOI、BEI等があげられる。 Examples of such monomers E include (meth) acryloyl isocyanate; 2- (meth) acryloyloxyethyl isocyanate, 3- (meth) acryloyloxypropyl isocyanate, 2- (meth) acryloyloxy-1-methylethyl isocyanate, 2- And (meth) acryloyloxyalkyl isocyanate such as (meth) acryloyloxy-2-methylethyl isocyanate and 1,1-bis ((meth) acryloyloxymethyl) ethyl isocyanate. Specific examples of these product names include Karenz MOI, AOI, and BEI manufactured by Showa Denko KK.
 本発明において、モノマーEの使用量は、反応性や表面改質、活性エネルギー線硬化性多官能モノマーに対する分散性の観点から、前記モノマーCの使用モル数に対して10乃至500モル%、特に20乃至250モル%、さらに好ましくは20乃至200モル%量で使用することが好ましい。 In the present invention, the amount of the monomer E used is 10 to 500 mol% with respect to the number of moles of the monomer C used, particularly from the viewpoint of reactivity, surface modification, and dispersibility with respect to the active energy ray-curable polyfunctional monomer. It is preferably used in an amount of 20 to 250 mol%, more preferably 20 to 200 mol%.
<重合性含フッ素高分岐ポリマーの製造方法>
 本発明の含フッ素高分岐ポリマーは、前述のモノマーA、モノマーB及びモノマーCを、該モノマーAに対して所定量の重合開始剤Dの存在下で重合させて得られる含フッ素高分岐ポリマーを、前述のモノマーEとを反応させることによって得られる。
 なお、重合性含フッ素高分岐ポリマーの製造方法も本発明の対象である。
<Method for producing polymerizable fluorine-containing highly branched polymer>
The fluorine-containing highly branched polymer of the present invention is a fluorine-containing highly branched polymer obtained by polymerizing the aforementioned monomer A, monomer B, and monomer C in the presence of a predetermined amount of polymerization initiator D with respect to the monomer A. It is obtained by reacting with the above-mentioned monomer E.
In addition, the manufacturing method of a polymerizable fluorine-containing highly branched polymer is also the object of the present invention.
[含フッ素高分岐ポリマーの製造]
 前述のモノマーA、モノマーB及びモノマーCの重合開始剤Dの存在下での重合方法としては公知の方法、例えば溶液重合、分散重合、沈殿重合、及び塊状重合等が挙げられ、中でも溶液重合又は沈殿重合が好ましい。特に分子量制御の点から、有機溶媒中での溶液重合によって反応を実施することが好ましい。
 このとき用いられる有機溶媒としては、ベンゼン、トルエン、キシレン、エチルベンゼン、テトラリン等の芳香族炭化水素系溶媒;n-ヘキサン、n-ヘプタン、ミネラルスピリット、シクロヘキサン等の脂肪族又は脂環式炭化水素系溶媒;塩化メチル、臭化メチル、ヨウ化メチル、メチレンジクロライド、クロロホルム、四塩化炭素、トリクロロエチレン、パークロロエチレン、オルトジクロロベンゼン等のハロゲン系溶媒;酢酸エチル、酢酸ブチル、メトキシブチルアセテート、メチルセロソルブアセテート、エチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート等のエステル系又はエステルエーテル系溶媒;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のエーテル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジ-n-ブチルケトン、シクロヘキサノン等のケトン系溶媒;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、tert-ブタノール、2-エチルヘキシルアルコール、ベンジルアルコール、エチレングリコール等のアルコール系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;N-メチル-2-ピロリドン等の複素環式化合物系溶媒、並びにこれらの2種以上の混合溶媒が挙げられる。
 これらのうち好ましいのは、芳香族炭化水素系溶媒、ハロゲン系溶媒、エステル系溶媒、エーテル系溶媒、ケトン系溶媒、アルコール系溶媒、アミド系溶媒等であり、特に好ましいものはベンゼン、トルエン、キシレン、オルトジクロロベンゼン、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、テトラヒドロフラン、1,4-ジオキサン、メチルエチルケトン、メチルイソブチルケトン、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、tert-ブタノール、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等である。
 前記重合反応を有機溶媒の存在下で行う場合、前記モノマーAの1質量部に対する前記有機溶媒の質量は、通常5乃至120質量部であり、好ましくは10乃至110質量部である。
 重合反応は常圧、加圧密閉下、又は減圧下で行われ、装置及び操作の簡便さから常圧下で行うのが好ましい。また、N2等の不活性ガス雰囲気下で行うのが好ましい。
 重合温度は、反応混合物の沸点以下であれば任意であるが、重合効率と分子量調節の点から、好ましくは50℃以上200℃以下であり、さらに好ましくは80℃以上150℃以下であり、80℃以上130℃以下がより好ましい。
 反応時間は、反応温度や、モノマーA、モノマーB、モノマーC及び重合開始剤Dの種類及び割合、重合溶媒種等によって変動するものであるため一概には規定できないが、好ましくは30分以上720分以下、より好ましくは40分以上540分以下である。
 重合反応の終了後、得られた含フッ素高分岐ポリマーを任意の方法で回収し、必要に応じて洗浄等の後処理を行ない、続いてモノマーEとの反応に供する。反応溶液から高分子を回収する方法としては、再沈殿等の方法が挙げられる。
[Production of fluorine-containing highly branched polymers]
Examples of the polymerization method in the presence of the polymerization initiator D of the monomer A, the monomer B, and the monomer C include known methods such as solution polymerization, dispersion polymerization, precipitation polymerization, and bulk polymerization. Precipitation polymerization is preferred. In particular, it is preferable to carry out the reaction by solution polymerization in an organic solvent from the viewpoint of molecular weight control.
Examples of organic solvents used here include aromatic hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene, and tetralin; aliphatic or alicyclic hydrocarbon solvents such as n-hexane, n-heptane, mineral spirit, and cyclohexane Solvent: Halogen solvents such as methyl chloride, methyl bromide, methyl iodide, methylene dichloride, chloroform, carbon tetrachloride, trichloroethylene, perchloroethylene, orthodichlorobenzene; ethyl acetate, butyl acetate, methoxybutyl acetate, methyl cellosolve acetate , Ethyl cellosolve acetate, propylene glycol monomethyl ether acetate and other ester-based or ester ether-based solvents; diethyl ether, tetrahydrofuran, 1,4-dioxane, methyl cellosolve, ethyl cello Ether solvents such as rub, butyl cellosolve, propylene glycol monomethyl ether; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, di-n-butyl ketone, cyclohexanone; methanol, ethanol, n-propanol, isopropanol, n-butanol, iso Alcohol solvents such as butanol, tert-butanol, 2-ethylhexyl alcohol, benzyl alcohol and ethylene glycol; amide solvents such as N, N-dimethylformamide and N, N-dimethylacetamide; sulfoxide solvents such as dimethyl sulfoxide; N A heterocyclic compound solvent such as -methyl-2-pyrrolidone, and a mixed solvent of two or more thereof.
Of these, aromatic hydrocarbon solvents, halogen solvents, ester solvents, ether solvents, ketone solvents, alcohol solvents, amide solvents, etc. are preferred, with benzene, toluene, xylene being particularly preferred. Orthodichlorobenzene, ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, tetrahydrofuran, 1,4-dioxane, methyl ethyl ketone, methyl isobutyl ketone, methanol, ethanol, n-propanol, isopropanol, n-butanol, Isobutanol, tert-butanol, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and the like.
When the polymerization reaction is carried out in the presence of an organic solvent, the mass of the organic solvent relative to 1 part by mass of the monomer A is usually 5 to 120 parts by mass, preferably 10 to 110 parts by mass.
The polymerization reaction is carried out under normal pressure, under pressure and under pressure, or under reduced pressure, and is preferably carried out under normal pressure in view of simplicity of the apparatus and operation. Further, preferably carried out in an atmosphere of inert gas such as N 2.
The polymerization temperature is arbitrary as long as it is not higher than the boiling point of the reaction mixture, but is preferably 50 ° C. or higher and 200 ° C. or lower, more preferably 80 ° C. or higher and 150 ° C. or lower, from the viewpoint of polymerization efficiency and molecular weight control. More preferably, the temperature is from 130 ° C to 130 ° C.
The reaction time varies depending on the reaction temperature, the types and ratios of the monomer A, the monomer B, the monomer C and the polymerization initiator D, the type of polymerization solvent, etc., but cannot be defined unconditionally, but preferably 30 minutes or more and 720 Minutes or less, more preferably 40 minutes or more and 540 minutes or less.
After the completion of the polymerization reaction, the obtained fluorine-containing hyperbranched polymer is collected by an arbitrary method, subjected to post-treatment such as washing as necessary, and then subjected to reaction with the monomer E. Examples of a method for recovering the polymer from the reaction solution include a method such as reprecipitation.
[重合性含フッ素高分岐ポリマーの製造]
 前述の含フッ素高分岐ポリマーと、モノマーEとの反応は、有機溶媒中で実施され得、このとき用いられる有機溶媒としては、含フッ素高分岐ポリマーとモノマーEとを溶解できるものであれば特に限定されず、例えば先の[含フッ素高分岐ポリマーの製造]で例示した溶媒を使用できる。
 上記反応は常圧、加圧密閉下、又は減圧下で行われ、装置及び操作の簡便さから常圧下で行うのが好ましい。また、N2等の不活性ガス雰囲気下で行うのが好ましい。
 重合温度は、反応混合物の沸点以下であれば任意であるが、重合効率と分子量調節の点から、好ましくは30℃以上150℃以下であり、さらに好ましくは50℃以上130℃以下であり、50℃以上110℃以下がより好ましい。また反応時間は、好ましくは30分以上720分以下、より好ましくは40分以上540分以下である。
 重合反応の終了後、得られた重合性含フッ素高分岐ポリマーを再沈殿等の任意の方法で回収し、必要に応じて洗浄等の後処理を行う。
[Production of polymerizable fluorine-containing highly branched polymer]
The above-mentioned reaction between the fluorine-containing highly branched polymer and the monomer E can be carried out in an organic solvent, and the organic solvent used at this time is not particularly limited as long as it can dissolve the fluorine-containing highly branched polymer and the monomer E. Without limitation, for example, the solvent exemplified in the above [Production of fluorinated hyperbranched polymer] can be used.
The above reaction is carried out under normal pressure, under pressure and under pressure, or under reduced pressure, and is preferably carried out under normal pressure in view of simplicity of the apparatus and operation. Further, preferably carried out in an atmosphere of inert gas such as N 2.
The polymerization temperature is arbitrary as long as it is not higher than the boiling point of the reaction mixture, but is preferably 30 ° C. or higher and 150 ° C. or lower, more preferably 50 ° C. or higher and 130 ° C. or lower, from the viewpoint of polymerization efficiency and molecular weight control. More preferably, the temperature is from 110 ° C to 110 ° C. The reaction time is preferably 30 minutes or more and 720 minutes or less, more preferably 40 minutes or more and 540 minutes or less.
After the completion of the polymerization reaction, the obtained polymerizable fluorine-containing hyperbranched polymer is recovered by any method such as reprecipitation, and post-treatment such as washing is performed as necessary.
 こうして得られる本発明の重合性含フッ素高分岐ポリマーのゲル浸透クロマトグラフィーによるポリスチレン換算で測定される重量平均分子量(Mw)は、1,000乃至400,000、好ましくは2,000乃至200,000である。 The polymerizable fluorine-containing highly branched polymer of the present invention thus obtained has a weight average molecular weight (Mw) measured in terms of polystyrene by gel permeation chromatography of 1,000 to 400,000, preferably 2,000 to 200,000. It is.
<硬化性表面改質剤及びコーティング用硬化性組成物>
 本発明の重合性含フッ素高分岐ポリマーは、光硬化性樹脂の表面改質剤として有用であり、該硬化性表面改質剤も本発明の対象である。
 そして、本発明は、前述の(a)重合性含フッ素高分岐ポリマー、(b)活性エネルギー線硬化性多官能モノマー、及び(c)活性エネルギー線によりラジカルを発生する重合開始剤を含む、コーティング用硬化性組成物にも関する。
<Curable surface modifier and curable composition for coating>
The polymerizable fluorine-containing highly branched polymer of the present invention is useful as a surface modifier for a photocurable resin, and the curable surface modifier is also an object of the present invention.
And this invention is a coating containing the above-mentioned (a) polymerizable fluorine-containing highly branched polymer, (b) active energy ray-curable polyfunctional monomer, and (c) a polymerization initiator that generates radicals by active energy rays. It also relates to a curable composition.
[(b)活性エネルギー線硬化性多官能モノマー]
 前記(b)活性エネルギー線硬化性多官能モノマーとしては、ウレタンアクリル系、エポキシアクリル系、各種(メタ)アクリレート系等の(メタ)アクリロイル基を2個以上含有する多官能モノマー等が挙げられる。
 上記活性エネルギー線硬化性多官能モノマーの一例として、ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレートモノステアレート、ビスフェノールAエチレングリコール付加物(メタ)アクリレート、ビスフェノールFエチレングリコール付加物(メタ)アクリレート、トリシクロ[5.2.1.02,6]デカンメタノールジ(メタ)アクリレート、トリスヒドロキシエチルイソシアヌレートジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレングリコール付加物トリ(メタ)アクリレート、トリメチロールプロパンプロピレングリコール付加物トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート、トリスヒドロキシエチルイソシアヌレートトリ(メタ)アクリレート、変性ε-カプロラクトントリ(メタ)アクリレート、トリメチロールプロパンエトキシトリ(メタ)アクリレート、グリセリンプロピレングリコール付加物トリス(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールエチレングリコール付加物テトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサペンタ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、不飽和ポリエステルなどが挙げられる。
[(B) Active energy ray-curable polyfunctional monomer]
Examples of the (b) active energy ray-curable polyfunctional monomer include polyfunctional monomers containing two or more (meth) acryloyl groups such as urethane acrylic, epoxy acrylic, and various (meth) acrylates.
Examples of the active energy ray-curable polyfunctional monomer include hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (Meth) acrylate, pentaerythritol di (meth) acrylate monostearate, bisphenol A ethylene glycol adduct (meth) acrylate, bisphenol F ethylene glycol adduct (meth) acrylate, tricyclo [5.2.1.0 2,6 ] Decanemethanol di (meth) acrylate, trishydroxyethyl isocyanurate di (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylol group Panethylene glycol adduct tri (meth) acrylate, trimethylolpropane propylene glycol adduct tri (meth) acrylate, pentaerythritol tri (meth) acrylate, tris (meth) acryloyloxyethyl phosphate, trishydroxyethyl isocyanurate tri (meth) ) Acrylate, modified ε-caprolactone tri (meth) acrylate, trimethylolpropane ethoxytri (meth) acrylate, glycerin propylene glycol adduct tris (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol ethylene glycol adduct tetra ( (Meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol hexapenta Meth) acrylate, dipentaerythritol monohydroxy penta (meth) acrylate, urethane (meth) acrylate, epoxy (meth) acrylates, polyester (meth) acrylates, and unsaturated polyesters.
 本発明のコーティング用硬化性組成物において、上記(a)重合性含フッ素高分岐ポリマーと(b)活性エネルギー線硬化性多官能モノマーの配合量は以下のとおりである。すなわち、(b)多官能モノマーの質量に対して、0.001乃至20質量%量の、好ましくは0.005乃至15質量%量の、より好ましくは0.01乃至10質量%量の(a)重合性含フッ素高分岐ポリマーを使用する。 In the curable composition for coating of the present invention, the blending amounts of the (a) polymerizable fluorine-containing highly branched polymer and (b) the active energy ray-curable polyfunctional monomer are as follows. That is, (b) 0.001 to 20% by mass, preferably 0.005 to 15% by mass, more preferably 0.01 to 10% by mass (a based on the mass of the polyfunctional monomer. ) A polymerizable fluorine-containing highly branched polymer is used.
[(c)活性エネルギー線によりラジカルを発生する重合開始剤]
 前記(c)活性エネルギー線によりラジカルを発生する重合開始剤としては、例えば、アルキルフェノン類、ベンゾフェノン類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物、2,3-ジアルキルジオン化合物類、ジスルフィド化合物類、チウラム化合物類、フルオロアミン化合物等が用いられる。中でもアルキルフェノン類、特にα-ヒドロキシアルキルフェノン類を使用することが好ましい。より具体的には、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル]フェニル}-2-メチルプロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、ベンジルジメチルケトン、1-(4-ドデシルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタノン、2-ジメチルアミノ-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、2,4,6-トリメチルベンゾイルジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、2-ベンゾイルオキシイミノ-1-[4-(フェニルチオ)フェニル]オクタン-1-オン、1-{1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エチリデンアミノオキシ}エタノン、ベンゾフェノン等を例示できる。これらのうちでも、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル]フェニル}-2-メチルプロパン-1-オン及び2-メチル-1[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オンは、少量でも電離放射線の照射による重合反応を開始し促進するため好ましい。これらは、いずれか一方を単独で、又は両方を組み合わせて用いることができる。これらは市販品として入手可能である。
[(C) Polymerization initiator that generates radicals by active energy rays]
Examples of the polymerization initiator (c) that generates radicals by active energy rays include, for example, alkylphenones, benzophenones, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, and 2,3-dialkyldione compounds. , Disulfide compounds, thiuram compounds, fluoroamine compounds and the like are used. Of these, alkylphenones, particularly α-hydroxyalkylphenones, are preferably used. More specifically, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-1- {4- [4- (2-hydroxy-2-methylpropionyl) benzyl] phenyl} -2-methylpropan-1-one, 2 -Methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, benzyldimethylketone, 1- (4-dodecylphenyl) -2-hydroxy-2-methylpropan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 2,2-dimethoxy-1,2-diphenyl Ethane-1-one, 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one, -Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone, 2-dimethylamino-2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl ] -1-butanone, 2,4,6-trimethylbenzoyldiphenyl-phosphine oxide, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, 2-benzoyloxyimino-1- [4- (phenylthio) Examples include phenyl] octan-1-one, 1- {1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] ethylideneaminooxy} ethanone, benzophenone, and the like. Among these, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-1- {4- [4- (2-hydroxy-2-methylpropionyl) benzyl] phenyl} -2-methylpropan-1-one and 2- Methyl-1 [4- (methylthio) phenyl] -2-morpholinopropan-1-one is preferred because even a small amount initiates and accelerates the polymerization reaction by irradiation with ionizing radiation. These can be used either alone or in combination. These are commercially available.
 前記(c)重合開始剤は、前記(b)多官能モノマーの質量に対して、0.01乃至20質量%量にて、好ましくは0.1乃至20質量%の量にて、より好ましくは1乃至20質量%の量にて、重合開始剤を使用する。 The (c) polymerization initiator is in an amount of 0.01 to 20% by mass, preferably in an amount of 0.1 to 20% by mass, more preferably relative to the mass of the (b) polyfunctional monomer. The polymerization initiator is used in an amount of 1 to 20% by weight.
[溶媒]
 本発明のコーティング用硬化性組成物は、さらに溶媒を含みてワニスの形態としていてもよい。
 この時用いられる溶媒としては、前記(a)乃至(c)成分を溶解するものであればよく、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、及びγ-ブチロラクトン等を用いることができる。これらの溶媒は単独または2種以上の組合せで使用することができる。
 本発明のコーティング用硬化性組成物における固形分は、例えば0.5乃至50質量%、1乃至30質量%、又は1乃至25質量%である。ここで固形分とはコーティング用硬化性組成物の全成分から溶媒成分を除いたものである。
[solvent]
The curable composition for coating of the present invention may further contain a solvent to form a varnish.
The solvent used at this time may be any solvent that can dissolve the components (a) to (c). For example, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether , Diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol propyl ether acetate, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, ethyl 2-hydroxypropionate, 2 -Ethyl hydroxy-2-methylpropionate, ethyl ethoxyacetate, hydride Ethyl xyacetate, methyl 2-hydroxy-3-methylbutanoate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, ethyl 3-ethoxypropionate, methyl 3-ethoxypropionate, methyl pyruvate, ethyl pyruvate, Ethyl acetate, butyl acetate, ethyl lactate, butyl lactate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, γ-butyrolactone, and the like can be used. These solvents can be used alone or in combination of two or more.
The solid content in the curable composition for coating of the present invention is, for example, 0.5 to 50% by mass, 1 to 30% by mass, or 1 to 25% by mass. Here, the solid content is obtained by removing the solvent component from all the components of the curable composition for coating.
[(d)シリカ微粒子]
 さらに本発明のコーティング用硬化性組成物は、(d)シリカ微粒子を含んでいても良い。
 ここで用いられるシリカ微粒子は、その平均粒子径が1乃至100nmであることが好ましい。平均粒子径が100nmを超えると、調製される硬化性組成物によって形成される硬化膜の透明性が低下する虞がある。なおここでいう平均粒子径とは、動的光散乱法(DLS)、透過型電子顕微鏡(TEM)による直接観察法により得られたものである。
 前記シリカ微粒子としてはコロイド溶液のものが好ましく、該コロイド溶液は、シリカ微粒子を分散媒に分散させたものでもよいし、市販品のコロイダルシリカであってもよい。本発明においては、シリカ微粒子を硬化性組成物に含有させることにより、形成される硬化膜の表面形状やその他の機能を付与することが可能となる。
[(D) Silica fine particles]
Furthermore, the curable composition for coating of the present invention may contain (d) silica fine particles.
The silica fine particles used here preferably have an average particle diameter of 1 to 100 nm. If the average particle diameter exceeds 100 nm, the transparency of the cured film formed by the prepared curable composition may be reduced. The average particle size here is obtained by a direct observation method using a dynamic light scattering method (DLS) or a transmission electron microscope (TEM).
The silica fine particle is preferably a colloidal solution, and the colloidal solution may be a dispersion of silica fine particles in a dispersion medium or a commercially available colloidal silica. In the present invention, it is possible to impart the surface shape of the formed cured film and other functions by including silica fine particles in the curable composition.
 前述のシリカ微粒子の分散媒としては、水及び有機溶媒を挙げることができ、特に本発明においては、有機溶媒に分散させたオルガノシリカゾルを用いることが好ましい。
 ここで分散媒に用いる有機溶媒としては、メタノール、イソプロピルアルコール、エチレングリコール、ブタノール、エチレングリコールモノプロピルエーテル等のアルコール類;メチルエチルケトン、メチルイソブチルケトン等のケトン類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド類;酢酸エチル、酢酸ブチル、γ-ブチロラクトン等のエステル類;テトラヒドロフラン、1,4-ジオキサン等のエ-テル類を挙げることができる。これらの中で、アルコール類及びケトン類が好ましい。これら有機溶媒は、単独でまたは2種以上を混合して分散媒として使用することができる。
Examples of the dispersion medium for the silica fine particles include water and an organic solvent. In the present invention, it is preferable to use an organosilica sol dispersed in an organic solvent.
Examples of the organic solvent used for the dispersion medium include alcohols such as methanol, isopropyl alcohol, ethylene glycol, butanol, and ethylene glycol monopropyl ether; ketones such as methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbons such as toluene and xylene. Amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; esters such as ethyl acetate, butyl acetate and γ-butyrolactone; ethers such as tetrahydrofuran and 1,4-dioxane. Of these, alcohols and ketones are preferred. These organic solvents can be used as a dispersion medium alone or in admixture of two or more.
 シリカ微粒子が含まれる場合、本発明のコーティング用硬化性組成物におけるシリカ微粒子の量は、(b)活性エネルギー線硬化性モノマーの質量に対して5乃至80質量%、より好ましくは5乃至70質量%、さらに好ましくは5乃至60質量%である。 When silica fine particles are contained, the amount of the silica fine particles in the curable composition for coating of the present invention is 5 to 80% by mass, more preferably 5 to 70% by mass, based on the mass of the (b) active energy ray-curable monomer. %, More preferably 5 to 60% by mass.
[その他添加剤]
 さらに、本発明のコーティング用硬化性組成物には、本発明の効果を損なわない限り、必要に応じて一般的に添加される添加剤、例えば、光増感剤、重合禁止剤、重合開始剤、レベリング剤、界面活性剤、密着性付与剤、可塑剤、紫外線吸収剤、酸化防止剤、貯蔵安定剤、帯電防止剤、無機充填剤、顔料、染料等を適宜配合してよい。
[Other additives]
Furthermore, additives that are generally added to the curable composition for coating of the present invention as needed, for example, photosensitizers, polymerization inhibitors, polymerization initiators, as long as the effects of the present invention are not impaired. , Leveling agents, surfactants, adhesion-imparting agents, plasticizers, ultraviolet absorbers, antioxidants, storage stabilizers, antistatic agents, inorganic fillers, pigments, dyes, and the like may be appropriately blended.
<硬化物>
 本発明の上記コーティング用硬化性組成物は、基材上にコーティングして光重合(硬化)させることにより、硬化膜や積層体などの成形品を成すことができる。こうして得られる硬化膜もまた、本発明の対象である。
 前記基材としては、例えば、プラスチック(ポリカーボネート、ポリメタクリレート、ポリスチレン、ポリエステル、ポリオレフィン、エポキシ、メラミン、トリアセチルセルロース、ABS、AS、ノルボルネン系樹脂等)、金属、木材、紙、ガラス、スレート等を挙げることができる。これら基材の形状は板状、フィルム状又は3次元成形体でもよい。
 本発明のコーティング用硬化性組成物のコーティング方法は、キャストコート法、スピンコート法、ブレードコート法、ディップコート法、ロールコート法、バーコート法、ダイコート法、インクジェット法、印刷法(凸版、凹版、平版、スクリーン印刷等)等を適宜選択し得、中でも短時間で塗布できることから揮発性の高い溶液であっても利用でき、また、均一性の高い塗布を行うことができるという利点より、スピンコート法を用いることが望ましい。ここで用いるコーティング用硬化性組成物は、前述のワニスの形態にあるものを好適に使用できる。なお事前に孔径が0.2μm程度のフィルタなどを用いてコーティング用硬化性組成物を濾過した後、コーティングに供することが好ましい。
 コーティング後、好ましくは続いてホットプレート又はオーブン等で予備乾燥した後、紫外線等の活性光線を照射して光硬化させる。活性光線としては、紫外線、電子線、X線等が挙げられる。紫外線照射に用いる光源としては、太陽光線、ケミカルランプ、低圧水銀灯、高圧水銀灯、メタルハライドランプ、キセノンランプ等が使用できる。
 その後、ポストベークを行うことにより、具体的にはホットプレート、オーブンなどを用いて加熱することにより重合を完結させることができる。
 なお、コーティングによる膜の厚さは、乾燥、硬化後において、通常0.01μm乃至50μm、好ましくは0.05μm乃至20μmである。
<Hardened product>
The said curable composition for a coating of this invention can comprise molded articles, such as a cured film and a laminated body, by coating on a base material and making it photopolymerize (harden | cure). The cured film thus obtained is also an object of the present invention.
Examples of the substrate include plastics (polycarbonate, polymethacrylate, polystyrene, polyester, polyolefin, epoxy, melamine, triacetyl cellulose, ABS, AS, norbornene resin, etc.), metal, wood, paper, glass, slate, and the like. Can be mentioned. The shape of these base materials may be a plate shape, a film shape, or a three-dimensional molded body.
The coating method of the curable composition for coating of the present invention includes a cast coating method, a spin coating method, a blade coating method, a dip coating method, a roll coating method, a bar coating method, a die coating method, an ink jet method, and a printing method (letter plate, intaglio plate). Lithographic printing, screen printing, etc.) can be selected as appropriate, and since it can be applied in a short time, it can be used even in a highly volatile solution, and it has the advantage of being able to perform highly uniform coating. It is desirable to use a coating method. The curable composition for coating used here can be suitably used in the form of the varnish described above. It is preferable that the coating curable composition is filtered in advance using a filter having a pore diameter of about 0.2 μm and then used for coating.
After coating, preferably followed by preliminary drying with a hot plate or oven, etc., followed by irradiation with actinic rays such as ultraviolet rays for photocuring. Examples of actinic rays include ultraviolet rays, electron beams, and X-rays. As a light source used for ultraviolet irradiation, sunlight, a chemical lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, a metal halide lamp, a xenon lamp, or the like can be used.
Thereafter, post-baking is performed, and specifically, the polymerization can be completed by heating using a hot plate, an oven or the like.
The thickness of the film formed by coating is usually 0.01 μm to 50 μm, preferably 0.05 μm to 20 μm after drying and curing.
<ハードコートフィルム>
 また本発明の上記コーティング用硬化性組成物をフィルム基材上に塗布し塗膜を形成する工程、塗膜を乾燥し溶媒を除去する工程、塗膜に紫外線を照射し硬化する工程により形成されている、フィルム基材の少なくとも一方の面にハードコート層を備えるハードコートフィルムもまた本発明の対象である。
 ここで使用する基材や塗膜方法、紫外線照射については、前述の<硬化物>における基材、コーティング方法、紫外線照射の通りである。
 なお、前記ハードコートフィルムにおいて、ハードコート層の膜厚が1乃至30μmであることが好ましい。
<Hard coat film>
The coating curable composition of the present invention is applied to a film substrate to form a coating film, the coating film is dried to remove the solvent, and the coating film is irradiated with ultraviolet rays to be cured. A hard coat film provided with a hard coat layer on at least one surface of the film substrate is also an object of the present invention.
About the base material, the coating-film method, and ultraviolet irradiation used here, it is as the base material in the above-mentioned <cured material>, a coating method, and ultraviolet irradiation.
In the hard coat film, the hard coat layer preferably has a thickness of 1 to 30 μm.
 以下、実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
 なお、実施例において、試料の調製及び物性の分析に用いた装置及び条件は、以下の通りである。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limited to the following Example.
In the examples, the apparatus and conditions used for sample preparation and physical property analysis are as follows.
(1)ゲル浸透クロマトグラフィー(GPC)
 装置:東ソー(株)製 HLC-8220GPC
 カラム:Shodex KF-804L、KF-805L
 カラム温度:40℃
 溶媒:テトラヒドロフラン
 検出器:RI
(2)1H NMRスペクトル及び13C NMRスペクトル
 装置:日本電子(株)製 JNM-ECA700
 溶媒:CDCl3
 内部標準:テトラメチルシラン
(3)イオンクロマトグラフィー(フッ素定量分析)
 装置:日本ダイオネクス(株)製 ICS-1500
 溶媒:(2.7mmol Na2CO3 + 0.3mmol NaHCO3)/L 水溶液
 検出器:電気伝導度
(4)スピンコーター
 装置:ミカサ(株)製 MS-A100
(5)エリプソメトリー(屈折率及び膜厚測定)
 装置:J.A.Woollam社製 EC-400
(6)接触角測定
 装置:AST Products社製 VCA Optima
 測定温度:20℃
 測定法:測定媒体を被測定表面へ滴下し10秒後の接触角を5回測定し、最大値と最小値を除いた3値の平均値を接触角値とした。
(7)ガラス転移温度(Tg)測定
 装置1:NETZSCH社製 DSC204 F1 Phoenix(登録商標)(実施例1~4)
 装置2:PerkinElmer社製 Diamond DSC(比較例1)
 測定条件:窒素雰囲気下
 昇温速度:5℃/分(25~160℃)
(8)5%重量減少時温度(Td5%)測定
 装置:(株)リガク製 TG8120
 測定条件:空気雰囲気下
 昇温速度:10℃/分(25~500℃)
(9)UV照射装置
 装置:アイグラフィックス(株)製 H02-L41
 強度:16mW/cm2(365nm)
(10)バーコーター
 装置:(株)エスエムテー製 PM-9050MC
(11)乾燥器
 装置:アドバンテック東洋(株)製 DRC433FA
(12)分光反射膜厚計
 装置:フィルメトリクス(株)製 F-20
(1) Gel permeation chromatography (GPC)
Equipment: HLC-8220GPC manufactured by Tosoh Corporation
Column: Shodex KF-804L, KF-805L
Column temperature: 40 ° C
Solvent: Tetrahydrofuran Detector: RI
(2) 1 H NMR spectrum and 13 C NMR spectrum Apparatus: JNM-ECA700 manufactured by JEOL Ltd.
Solvent: CDCl 3
Internal standard: Tetramethylsilane (3) ion chromatography (fluorine quantitative analysis)
Equipment: ICS-1500 manufactured by Nippon Dionex Co., Ltd.
Solvent: (2.7 mmol Na 2 CO 3 + 0.3 mmol NaHCO 3 ) / L aqueous solution Detector: Electrical conductivity (4) Spin coater Device: MS-A100 manufactured by Mikasa Corporation
(5) Ellipsometry (refractive index and film thickness measurement)
Apparatus: J.M. A. EC-400 manufactured by Woollam
(6) Contact angle measurement device: VCA Optima manufactured by AST Products
Measurement temperature: 20 ° C
Measurement method: The measurement medium was dropped onto the surface to be measured, the contact angle after 10 seconds was measured 5 times, and the average value of three values excluding the maximum value and the minimum value was defined as the contact angle value.
(7) Glass transition temperature (Tg) measurement Device 1: DSC204 F1 Phoenix (registered trademark) manufactured by NETZSCH (Examples 1 to 4)
Apparatus 2: Diamond DSC (Comparative Example 1) manufactured by PerkinElmer
Measurement conditions: Under nitrogen atmosphere Temperature rising rate: 5 ° C / min (25 to 160 ° C)
(8) 5% weight loss temperature (Td 5% ) measurement device: TG8120 manufactured by Rigaku Corporation
Measurement conditions: In air atmosphere Temperature rising rate: 10 ° C / min (25-500 ° C)
(9) UV irradiation device Device: H02-L41 manufactured by Eye Graphics Co., Ltd.
Intensity: 16 mW / cm 2 (365 nm)
(10) Bar coater: PM-9050MC manufactured by SMT Co., Ltd.
(11) Dryer Device: DRC433FA manufactured by Advantech Toyo Co., Ltd.
(12) Spectral reflection film thickness meter Device: F-20 manufactured by Filmetrics Co., Ltd.
 また、略記号は以下の意味を表す。
EGDMA:エチレングリコールジメタクリレート[新中村化学工業(株)製 1G]
C6FA:2-(パーフルオロヘキシル)エチルアクリレート[ユニマテック(株)製 FAAC-6]
HEMA:2-ヒドロキシエチルメタクリレート[純正化学(株)製]
MAIB:2,2’-アゾビスイソ酪酸ジメチル[大塚化学(株)製 MAIB]
UMA:2-メタクリロイルオキシエチルイソシアネート[昭和電工(株)製 カレンズMOI(登録商標)]
UA:2-アクリロイルオキシエチルイソシアネート[昭和電工(株)製 カレンズAOI(登録商標)]
Irg.127:2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル]フェニル}-2-メチル-プロパン-1-オン[BASFジャパン(株)製 Irgacure127]
Irg.184:1-ヒドロキシシクロヘキシルフェニルケトン[BASFジャパン(株)製 Irgacure184]
MIBK:メチルイソブチルケトン
PGME:プロピレングリコールモノメチルエーテル
PGMEA:プロピレングリコールモノメチルエーテルアセテート
Abbreviations represent the following meanings.
EGDMA: Ethylene glycol dimethacrylate [1G made by Shin-Nakamura Chemical Co., Ltd.]
C6FA: 2- (perfluorohexyl) ethyl acrylate [FAAC-6 manufactured by Unimatec Co., Ltd.]
HEMA: 2-hydroxyethyl methacrylate [manufactured by Pure Chemical Co., Ltd.]
MAIB: Dimethyl 2,2′-azobisisobutyrate [MAIB manufactured by Otsuka Chemical Co., Ltd.]
UMA: 2-methacryloyloxyethyl isocyanate [Karenz MOI (registered trademark) manufactured by Showa Denko KK]
UA: 2-acryloyloxyethyl isocyanate [Karenz AOI (registered trademark) manufactured by Showa Denko KK]
Irg. 127: 2-hydroxy-1- {4- [4- (2-hydroxy-2-methylpropionyl) benzyl] phenyl} -2-methyl-propan-1-one [Irgacure 127 manufactured by BASF Japan Ltd.]
Irg. 184: 1-hydroxycyclohexyl phenyl ketone [Irgacure 184 manufactured by BASF Japan Ltd.]
MIBK: methyl isobutyl ketone PGME: propylene glycol monomethyl ether PGMEA: propylene glycol monomethyl ether acetate
[合成例1]ヒドロキシ基含有高分岐ポリマーAの合成
 300mLの反応フラスコに、MIBK71gを仕込み、撹拌しながら5分間窒素を流し込み、内液が還流するまで(およそ温度115℃)加熱した。
 別の100mLの反応フラスコに、EGDMA4.0g(20mmol)、C6FA5.0g(12mmol)、HEMA0.8g(6mmol)、MAIB2.8g(12mmol)及びMIBK71gを仕込み、撹拌しながら5分間窒素を流し込み窒素置換を行い、氷浴にて0℃まで冷却を行った。
 前述の300mL反応フラスコ中の還流してあるMIBK中に、EGDMA、C6FA、HEMA及びMAIBが仕込まれた前記100mLの反応フラスコから、滴下ポンプを用いて、内容物を30分間かけて滴下した。滴下終了後、1時間熟成させた。
 次に、この反応液からロータリーエバポレーターを用いてMIBK71gを留去後、ヘキサン278gに添加してポリマーをスラリー状態で沈殿させた。このスラリーを減圧濾過し、真空乾燥して、白色粉末のヒドロキシ基含有高分岐ポリマーA7.2gを得た(収率59%)。
[Synthesis Example 1] Synthesis of hydroxy group-containing hyperbranched polymer A Into a 300 mL reaction flask, 71 g of MIBK was charged, and nitrogen was poured for 5 minutes while stirring, and the mixture was heated until the internal liquid was refluxed (approximately 115 ° C.).
In a separate 100 mL reaction flask, EGDMA 4.0 g (20 mmol), C6FA 5.0 g (12 mmol), HEMA 0.8 g (6 mmol), MAIB 2.8 g (12 mmol) and MIBK 71 g were charged, and nitrogen was poured for 5 minutes while stirring. And cooled to 0 ° C. in an ice bath.
The contents were added dropwise from the 100 mL reaction flask charged with EGDMA, C6FA, HEMA and MAIB into the refluxed MIBK in the 300 mL reaction flask using a dropping pump over 30 minutes. After completion of dropping, the mixture was aged for 1 hour.
Next, 71 g of MIBK was distilled off from this reaction solution using a rotary evaporator, and then added to 278 g of hexane to precipitate the polymer in a slurry state. This slurry was filtered under reduced pressure and vacuum-dried to obtain 7.2 g of a white powdery hydroxy group-containing hyperbranched polymer A (yield 59%).
[実施例1]高分岐ポリマー1の合成
 50mLの反応フラスコに、合成例1に従って合成した高分岐ポリマーA1.8g(3.0mmol)、UMA0.11g(0.72mmol)及びMIBK1.8gを仕込み、撹拌しながら5分間窒素を流し込み窒素置換を行い、80℃で5時間反応させた。
 次に、この反応液をMIBK1.8gで希釈後、ヘキサン91gに添加してポリマーをスラリー状態で沈殿させた。このスラリーを減圧濾過し、真空乾燥して、白色粉末の目的物(高分岐ポリマー1)1.6gを得た(収率80%)。
 得られた目的物の1H NMR及び13C NMRスペクトルを図1及び図2に示す。また、目的物のGPCによるポリスチレン換算で測定される重量平均分子量Mwは5,100、分散度:Mw(重量平均分子量)/Mn(数平均分子量)は1.5であった。
Example 1 Synthesis of Hyperbranched Polymer 1 A 50 mL reaction flask was charged with 1.8 g (3.0 mmol) of hyperbranched polymer A synthesized according to Synthesis Example 1, 0.11 g (0.72 mmol) of UMA, and 1.8 g of MIBK. Nitrogen was introduced for 5 minutes while stirring to perform nitrogen substitution, and the reaction was carried out at 80 ° C. for 5 hours.
Next, the reaction solution was diluted with 1.8 g of MIBK and then added to 91 g of hexane to precipitate the polymer in a slurry state. This slurry was filtered under reduced pressure and vacuum dried to obtain 1.6 g of the desired product (highly branched polymer 1) as a white powder (yield 80%).
1 H NMR and 13 C NMR spectra of the obtained target product are shown in FIGS. 1 and 2. Moreover, the weight average molecular weight Mw measured by polystyrene conversion by GPC of the target product was 5,100, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.5.
[合成例2]ヒドロキシ基含有高分岐ポリマーBの合成
 C6FAの仕込量を5.3g(13mmol)に、HEMAの仕込量を1.3g(10mmol)にそれぞれ変更した以外は合成例1と同様に操作し、白色粉末のヒドロキシ基含有高分岐ポリマーB7.9gを得た(収率61%)。
[Synthesis Example 2] Synthesis of hydroxy group-containing hyperbranched polymer B As in Synthesis Example 1, except that the amount of C6FA charged was changed to 5.3 g (13 mmol) and the amount of HEMA charged was changed to 1.3 g (10 mmol). Operation was carried out to obtain 7.9 g of a white powdery hydroxy group-containing highly branched polymer B (yield 61%).
[実施例2]高分岐ポリマー2の合成
 50mLの反応フラスコに、合成例2に従って合成した高分岐ポリマーB1.9g(3.0mmol)、UMA0.17g(1.1mmol)及びMIBK1.9gを仕込み、撹拌しながら5分間窒素を流し込み窒素置換を行い、80℃で5時間反応させた。
 次に、この反応液をMIBK1.9gで希釈後、ヘキサン91gに添加してポリマーをスラリー状態で沈殿させた。このスラリーを減圧濾過し、真空乾燥して、白色粉末の目的物(高分岐ポリマー2)1.6gを得た(収率78%)。
 得られた目的物の1H NMR及び13C NMRスペクトルを図3及び図4に示す。また、目的物のGPCによるポリスチレン換算で測定される重量平均分子量Mwは5,000、分散度:Mw/Mnは1.7であった。
[Example 2] Synthesis of hyperbranched polymer 2 A 50 mL reaction flask was charged with 1.9 g (3.0 mmol) of hyperbranched polymer B synthesized according to Synthesis Example 2, 0.17 g (1.1 mmol) of UMA, and 1.9 g of MIBK. Nitrogen was introduced for 5 minutes while stirring to perform nitrogen substitution, and the reaction was carried out at 80 ° C. for 5 hours.
Next, this reaction solution was diluted with 1.9 g of MIBK and then added to 91 g of hexane to precipitate the polymer in a slurry state. This slurry was filtered under reduced pressure and dried under vacuum to obtain 1.6 g of the desired product (highly branched polymer 2) as a white powder (yield 78%).
The 1 H NMR and 13 C NMR spectra of the obtained target product are shown in FIGS. 3 and 4. Moreover, the weight average molecular weight Mw measured by polystyrene conversion by GPC of the target object was 5,000, and dispersion degree: Mw / Mn was 1.7.
[合成例3]ヒドロキシ基含有高分岐ポリマーCの合成
 C6FAの仕込量を6.2g(15mmol)に、HEMAの仕込量を2.6g(20mmol)にそれぞれ変更した以外は合成例1と同様に操作し、白色粉末のヒドロキシ基含有高分岐ポリマーC10.2gを得た(収率67%)。
[Synthesis Example 3] Synthesis of Hyperbranched Polymer C Containing Hydroxy Group Same as Synthesis Example 1 except that the amount of C6FA charged was changed to 6.2 g (15 mmol) and the amount of HEMA charged was changed to 2.6 g (20 mmol). Operation was performed to obtain 10.2 g of a white powdery hydroxy group-containing highly branched polymer C (yield 67%).
[実施例3]高分岐ポリマー3の合成
 50mLの反応フラスコに、合成例3に従って合成した高分岐ポリマーC2.3g(3.0mmol)、UMA0.28g(1.8mmol)及びMIBK2.3gを仕込み、撹拌しながら5分間窒素を流し込み窒素置換を行い、80℃で5時間反応させた。
 次に、この反応液をMIBK2.3gで希釈後、ヘキサン91gに添加してポリマーをスラリー状態で沈殿させた。このスラリーを減圧濾過し、真空乾燥して、白色粉末の目的物(高分岐ポリマー3)2.2gを得た(収率86%)。
 得られた目的物の1H NMR及び13C NMRスペクトルを図5及び図6に示す。また、目的物のGPCによるポリスチレン換算で測定される重量平均分子量Mwは4,400、分散度:Mw/Mnは1.9であった。
Example 3 Synthesis of Hyperbranched Polymer 3 A 50 mL reaction flask was charged with 2.3 g (3.0 mmol) of hyperbranched polymer C synthesized according to Synthesis Example 3, 0.28 g (1.8 mmol) of UMA, and 2.3 g of MIBK. Nitrogen was introduced for 5 minutes while stirring to perform nitrogen substitution, and the reaction was carried out at 80 ° C. for 5 hours.
Next, this reaction solution was diluted with 2.3 g of MIBK and then added to 91 g of hexane to precipitate the polymer in a slurry state. The slurry was filtered under reduced pressure and vacuum dried to obtain 2.2 g of the target product (highly branched polymer 3) as a white powder (yield 86%).
1 H NMR and 13 C NMR spectra of the obtained target product are shown in FIGS. 5 and 6. Moreover, the weight average molecular weight Mw measured by polystyrene conversion by GPC of the target object was 4,400, and dispersion degree: Mw / Mn was 1.9.
[実施例4]高分岐ポリマー4の合成
 50mLの反応フラスコに、合成例3に従って合成した高分岐ポリマーC2.3g(3.0mmol)、UA0.25g(1.8mmol)及びMIBK2.3gを仕込み、撹拌しながら5分間窒素を流し込み窒素置換を行い、80℃で5時間反応させた。
 次に、この反応液をMIBK2.3gで希釈後、ヘキサン91gに添加してポリマーをスラリー状態で沈殿させた。このスラリーを減圧濾過し、真空乾燥して、白色粉末の目的物(高分岐ポリマー4)1.9gを得た(収率75%)。
 得られた目的物の1H NMR及び13C NMRスペクトルを図7及び図8に示す。また、目的物のGPCによるポリスチレン換算で測定される重量平均分子量Mwは4,700、分散度:Mw/Mnは2.5であった。
[Example 4] Synthesis of hyperbranched polymer 4 A 50 mL reaction flask was charged with 2.3 g (3.0 mmol) of hyperbranched polymer C synthesized in accordance with Synthesis Example 3, 0.25 g (1.8 mmol) of UA, and 2.3 g of MIBK. Nitrogen was introduced for 5 minutes while stirring to perform nitrogen substitution, and the reaction was carried out at 80 ° C. for 5 hours.
Next, this reaction solution was diluted with 2.3 g of MIBK and then added to 91 g of hexane to precipitate the polymer in a slurry state. The slurry was filtered under reduced pressure and dried in vacuo to obtain 1.9 g of the target product (highly branched polymer 4) as a white powder (yield 75%).
1 H NMR and 13 C NMR spectra of the obtained target product are shown in FIGS. Moreover, the weight average molecular weight Mw measured by polystyrene conversion by GPC of the target object was 4,700, and dispersion degree: Mw / Mn was 2.5.
[比較例1]高分岐ポリマー5の合成
 200mLの反応フラスコに、トルエン44gを仕込み、撹拌しながら5分間窒素を流し込み、内液が還流するまで(およそ温度110℃)加熱した。
 別の100mLの反応フラスコに、EGDMA4.0g(20mmol)、C6FA4.2g(10mmol)、MAIB2.8g(12mmol)及びトルエン44gを仕込み、撹拌しながら5分間窒素を流し込み窒素置換を行い、氷浴にて0℃まで冷却を行った。
 前述の200mL反応フラスコ中の還流してあるトルエン中に、EGDMA、C6FA及びMAIBが仕込まれた前記100mLの反応フラスコから、滴下ポンプを用いて、内容物を30分間かけて滴下した。滴下終了後、1時間熟成させた。
 次に、この反応液からロータリーエバポレーターを用いてトルエン75gを留去後、その残渣をヘキサン278gに添加してポリマーをスラリー状態で沈殿させた。このスラリーを減圧濾過し、真空乾燥して、白色粉末の目的物(高分岐ポリマー5)4.4gを得た(収率43%)。
 得られた目的物の1H NMR及び13C NMRスペクトルを図9及び図10に示す。また、目的物のGPCによるポリスチレン換算で測定される重量平均分子量Mwは6,800、分散度:Mw/Mnは1.9であった。
[Comparative Example 1] Synthesis of hyperbranched polymer 5 A 200 mL reaction flask was charged with 44 g of toluene, and nitrogen was poured for 5 minutes with stirring, followed by heating until the internal solution was refluxed (approximately 110 ° C).
In a separate 100 mL reaction flask, EGDMA 4.0 g (20 mmol), C6FA 4.2 g (10 mmol), MAIB 2.8 g (12 mmol) and 44 g of toluene were charged, and nitrogen was purged for 5 minutes while stirring. And cooled to 0 ° C.
The contents were added dropwise from the 100 mL reaction flask charged with EGDMA, C6FA and MAIB to the refluxed toluene in the 200 mL reaction flask using a dropping pump over 30 minutes. After completion of dropping, the mixture was aged for 1 hour.
Next, 75 g of toluene was distilled off from this reaction solution using a rotary evaporator, and then the residue was added to 278 g of hexane to precipitate the polymer in a slurry state. The slurry was filtered under reduced pressure and vacuum dried to obtain 4.4 g of the target product (highly branched polymer 5) as a white powder (43% yield).
The 1 H NMR and 13 C NMR spectra of the obtained target product are shown in FIGS. 9 and 10. Moreover, the weight average molecular weight Mw measured by polystyrene conversion by GPC of the target object was 6,800, and dispersion degree: Mw / Mn was 1.9.
 実施例1乃至4及び比較例1で得られた高分岐ポリマー1乃至5の、各モノマー及び開始剤の種類及びモノマーAに対する仕込量[mol%](モノマーB、モノマーC、重合開始剤D)及びモノマーCに対する仕込み量[mol%](モノマーE)、重量平均分子量Mw、分散度Mw/Mn、13C NMRスペクトルから算出したフッ素モノマー(モノマーB)導入量[mol%]、並びにフッ素定量分析から算出したフッ素原子含有量[質量%]を表1に示す。 Charge amount [mol%] of monomer and initiator and monomer A of hyperbranched polymers 1 to 5 obtained in Examples 1 to 4 and Comparative Example 1 (monomer B, monomer C, polymerization initiator D) And monomer C charge amount [mol%] (monomer E), weight average molecular weight Mw, dispersity Mw / Mn, fluorine monomer (monomer B) introduction amount [mol%] calculated from 13 C NMR spectrum, and fluorine quantitative analysis Table 1 shows the fluorine atom content [mass%] calculated from the above.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
[各高分岐ポリマーの物性評価]
 実施例1乃至4及び比較例1で得られた高分岐ポリマー1乃至5の各0.25gを、表2に記載の溶媒4.75gに溶解させフィルタろ過を行い、各高分岐ポリマー溶液を調製した。この高分岐ポリマー溶液をシリコンウェハー上にスピンコーティング(slope5秒間、次いで1,500rpm30秒間、さらにslope5秒間)し、100℃にて30分間の熱処理を行うことにより溶媒を蒸発させて、成膜した。
 得られた薄膜の波長633nmにおける屈折率、並びに水及びジヨードメタンの接触角の評価を行った。また接触角の結果から表面エネルギーを算出した。さらに、各高分岐ポリマー粉末のガラス転移温度(Tg)及び5%重量減少温度(Td5%)を測定した。得られた結果を表2に示す。
[Evaluation of physical properties of each hyperbranched polymer]
Each highly branched polymer solution is prepared by dissolving 0.25 g of each of the highly branched polymers 1 to 5 obtained in Examples 1 to 4 and Comparative Example 1 in 4.75 g of the solvent shown in Table 2 and filtering the solution. did. This hyperbranched polymer solution was spin-coated on a silicon wafer (slope for 5 seconds, then 1,500 rpm for 30 seconds, then further slope for 5 seconds), and heat-treated at 100 ° C. for 30 minutes to evaporate the solvent and form a film.
The refractive index of the obtained thin film at a wavelength of 633 nm and the contact angles of water and diiodomethane were evaluated. The surface energy was calculated from the result of the contact angle. Furthermore, the glass transition temperature (Tg) and 5% weight loss temperature (Td 5% ) of each hyperbranched polymer powder were measured. The obtained results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
[実施例5]重合性含フッ素高分岐ポリマーによるハードコート膜の表面改質
 ウレタンアクリレート[日本化薬(株)製 UX-5000]1.8g、シリカゾル30質量%MIBK分散液[日産化学工業(株)製 MIBK-SD]4.0g、Irg.184 90mg、Irg.127 90mg及びMIBK4.2gの混合液へ、実施例1で得られた高分岐ポリマー1 30mgを添加し、撹拌して溶解させ、均一な硬化性組成物を調製した。
 この硬化性組成物を、片面易接着処理を施したPETフィルム[東洋紡(株)製 コスモシャインA4100(厚さ125μm)]上に、No.9のワイヤーバーを使用してバーコーターで成膜した。得られた塗膜を80℃の乾燥器で3分間乾燥させた後、露光量1.2J/cm2のUV光を照射し露光することでハードコート膜を作製した。
 得られたハードコート膜のオレイン酸の接触角を測定し、防汚性を評価した。また、作製したハードコート膜を黒い平板上に置き、目視にて干渉色ムラを評価した。さらに、干渉色ムラの評価として、分光反射膜厚計により反射スペクトルの反射率差を測定した。得られた結果を表3に示す。
[目視による干渉色ムラの評価基準]
 ○:干渉色ムラが認められない
 △:干渉色ムラがわずかに認められる
 ×:干渉色ムラが認められる
[Example 5] Surface modification of hard coat film with polymerizable fluorine-containing highly branched polymer 1.8 g urethane acrylate [manufactured by Nippon Kayaku Co., Ltd. UX-5000], 30% by mass MIBK dispersion [Nissan Chemical Industry ( Co., Ltd. MIBK-SD] 4.0 g, Irg. 184 90 mg, Irg. To a mixed solution of 127 mg of 127 and MIBK of 4.2 g, 30 mg of the hyperbranched polymer 1 obtained in Example 1 was added and dissolved by stirring to prepare a uniform curable composition.
This curable composition was applied to a PET film [Cosmo Shine A4100 (thickness: 125 μm) manufactured by Toyobo Co., Ltd.] subjected to one-side easy adhesion treatment with No. The film was formed by a bar coater using 9 wire bars. The obtained coating film was dried for 3 minutes with a dryer at 80 ° C., and then exposed to UV light with an exposure amount of 1.2 J / cm 2 to produce a hard coat film.
The contact angle of oleic acid of the obtained hard coat film was measured to evaluate the antifouling property. Further, the produced hard coat film was placed on a black flat plate, and interference color unevenness was visually evaluated. Further, as an evaluation of the interference color unevenness, the reflectance difference of the reflection spectrum was measured with a spectral reflection film thickness meter. The obtained results are shown in Table 3.
[Evaluation criteria for visual interference color unevenness]
○: Interference color unevenness is not observed Δ: Interference color unevenness is slightly recognized ×: Interference color unevenness is recognized
[実施例6乃至8]重合性含フッ素高分岐ポリマーによるハードコート膜の表面改質
 高分岐ポリマー1に替えて、実施例2乃至4で得られた高分岐ポリマー2乃至4をそれぞれ使用した以外は実施例5と同様に操作、評価した。結果を表3にあわせて示す。
[Examples 6 to 8] Surface modification of hard coat film with polymerizable fluorine-containing highly branched polymer Except for using hyperbranched polymers 2 to 4 obtained in Examples 2 to 4 instead of hyperbranched polymer 1, respectively. Were operated and evaluated in the same manner as in Example 5. The results are shown in Table 3.
[比較例2]重合性基を有さない高分岐ポリマーによるハードコート膜の表面改質
 高分岐ポリマー1に替えて、比較例1で得られた高分岐ポリマー5を使用した以外は実施例5と同様に操作、評価した。結果を表3にあわせて示す。
[Comparative Example 2] Surface modification of hard coat film with highly branched polymer having no polymerizable group Example 5 except that the highly branched polymer 5 obtained in Comparative Example 1 was used in place of the highly branched polymer 1 Were operated and evaluated in the same manner. The results are shown in Table 3.
[比較例3]表面改質剤を添加しないハードコート膜の表面特性
 高分岐ポリマー1を添加しない以外は実施例5と同様に操作、評価した。結果を表3にあわせて示す。
[Comparative Example 3] Surface Properties of Hard Coat Film without Addition of Surface Modification Agent The same operation and evaluation as in Example 5 were conducted except that hyperbranched polymer 1 was not added. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 実施例の結果に示すように、本発明の重合性含フッ素高分岐ポリマーは、高い屈折率と良好な撥液性を有し、また、該ポリマーを配合したハードコート膜は干渉色ムラを抑制できるとする結果が得られた。 As shown in the results of Examples, the polymerizable fluorine-containing highly branched polymer of the present invention has a high refractive index and good liquid repellency, and the hard coat film containing the polymer suppresses interference color unevenness. The result that it was possible was obtained.

Claims (27)

  1. 分子内に2個以上のラジカル重合性二重結合を有するモノマーAと、分子内にフルオロアルキル基及び少なくとも1個のラジカル重合性二重結合を有するモノマーBと、分子内に活性水素基及び少なくとも1個のラジカル重合性二重結合を有するモノマーCとを、該モノマーAのモル数に対して、5乃至200モル%量の重合開始剤Dの存在下で重合させることにより得られる含フッ素高分岐ポリマーと、分子内にイソシアネート基及び少なくとも1個のラジカル重合性二重結合を有するモノマーEとを反応させることにより得られる重合性含フッ素高分岐ポリマー。 A monomer A having two or more radically polymerizable double bonds in the molecule, a monomer B having at least one radically polymerizable double bond in the molecule, an active hydrogen group and at least one in the molecule Fluorine-containing polymer obtained by polymerizing monomer C having one radical polymerizable double bond in the presence of 5 to 200 mol% of polymerization initiator D with respect to the number of moles of monomer A A polymerizable fluorine-containing highly branched polymer obtained by reacting a branched polymer with a monomer E having an isocyanate group and at least one radical polymerizable double bond in the molecule.
  2. 前記モノマーAが、ビニル基又は(メタ)アクリル基の何れか一方又は双方を有する化合物である、請求項1に記載の重合性含フッ素高分岐ポリマー。 The polymerizable fluorine-containing highly branched polymer according to claim 1, wherein the monomer A is a compound having one or both of a vinyl group and a (meth) acryl group.
  3. 前記モノマーAが、ジビニル化合物又はジ(メタ)アクリレート化合物である、請求項2に記載の重合性含フッ素高分岐ポリマー。 The polymerizable fluorine-containing highly branched polymer according to claim 2, wherein the monomer A is a divinyl compound or a di (meth) acrylate compound.
  4. 前記モノマーAがエチレングリコールジ(メタ)アクリレートである、請求項3に記載の重合性含フッ素高分岐ポリマー。 The polymerizable fluorine-containing highly branched polymer according to claim 3, wherein the monomer A is ethylene glycol di (meth) acrylate.
  5. 前記モノマーAがジビニルベンゼンである、請求項3に記載の重合性含フッ素高分岐ポリマー。 The polymerizable fluorine-containing highly branched polymer according to claim 3, wherein the monomer A is divinylbenzene.
  6. 前記モノマーAに対して5乃至300モル%量の前記モノマーBを用いて得られる、請求項1に記載の重合性含フッ素高分岐ポリマー。 The polymerizable fluorine-containing highly branched polymer according to claim 1, which is obtained using 5 to 300 mol% of the monomer B with respect to the monomer A.
  7. 前記モノマーBが、ビニル基又は(メタ)アクリル基の何れか一方又は双方を有する化合物である、請求項6に記載の重合性含フッ素高分岐ポリマー。 The polymerizable fluorine-containing highly branched polymer according to claim 6, wherein the monomer B is a compound having one or both of a vinyl group and a (meth) acryl group.
  8. 前記モノマーBが下記式[1]で表される化合物である、請求項7に記載の重合性含フッ素高分岐ポリマー。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は水素原子又はメチル基を表し、R2はヒドロキシ基で置換されていてもよい炭素原子数2乃至12のフルオロアルキル基を表す。)
    The polymerizable fluorine-containing highly branched polymer according to claim 7, wherein the monomer B is a compound represented by the following formula [1].
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 represents a hydrogen atom or a methyl group, and R 2 represents a fluoroalkyl group having 2 to 12 carbon atoms which may be substituted with a hydroxy group.)
  9. 前記モノマーBが下記式[2]で表される化合物である、請求項8に記載の重合性含フッ素高分岐ポリマー。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1は前記式[1]における定義と同じ意味を表し、Xは水素原子又はフッ素原子を表し、mは1又は2を表し、nは0乃至5の整数を表す。)
    The polymerizable fluorine-containing highly branched polymer according to claim 8, wherein the monomer B is a compound represented by the following formula [2].
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 1 represents the same meaning as defined in Formula [1], X represents a hydrogen atom or a fluorine atom, m represents 1 or 2, and n represents an integer of 0 to 5).
  10. 前記モノマーAに対して5乃至300モル%量の前記モノマーCを用いて得られる、請求項1に記載の重合性含フッ素高分岐ポリマー。 The polymerizable fluorine-containing highly branched polymer according to claim 1, obtained by using 5 to 300 mol% of the monomer C with respect to the monomer A.
  11. 前記モノマーCが、ビニル基又は(メタ)アクリル基の何れか一方又は双方を有する化合物である、請求項10に記載の重合性含フッ素高分岐ポリマー。 The polymerizable fluorine-containing highly branched polymer according to claim 10, wherein the monomer C is a compound having one or both of a vinyl group and a (meth) acryl group.
  12. 前記モノマーCの活性水素基がヒドロキシ基である、請求項11に記載の重合性含フッ素高分岐ポリマー。 The polymerizable fluorine-containing highly branched polymer according to claim 11, wherein the active hydrogen group of the monomer C is a hydroxy group.
  13. 前記モノマーCが下記式[3]で表される化合物である、請求項12に記載の重合性含フッ素高分岐ポリマー。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R3は水素原子又はメチル基を表し、Lはエーテル結合を含んでいてもよい炭素原子数1乃至6のアルキレン基を表す。)
    The polymerizable fluorine-containing highly branched polymer according to claim 12, wherein the monomer C is a compound represented by the following formula [3].
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R 3 represents a hydrogen atom or a methyl group, and L represents an alkylene group having 1 to 6 carbon atoms which may contain an ether bond.)
  14. 前記重合開始剤Dがアゾ系重合開始剤である、請求項1乃至請求項13のうち何れか一項に記載の重合性含フッ素高分岐ポリマー。 The polymerizable fluorine-containing highly branched polymer according to any one of claims 1 to 13, wherein the polymerization initiator D is an azo polymerization initiator.
  15. 前記重合開始剤Dが2,2'-アゾビスイソ酪酸ジメチルである、請求項14に記載の重合性含フッ素高分岐ポリマー。 The polymerizable fluorine-containing highly branched polymer according to claim 14, wherein the polymerization initiator D is dimethyl 2,2'-azobisisobutyrate.
  16. 前記モノマーCに対して10乃至300モル%量の前記モノマーEを用いて得られる、請求項1に記載の重合性含フッ素高分岐ポリマー。 The polymerizable fluorine-containing highly branched polymer according to claim 1, which is obtained using 10 to 300 mol% of the monomer E with respect to the monomer C.
  17. 前記モノマーEが、ビニル基又は(メタ)アクリル基の何れか一方又は双方を有する化合物である、請求項16に記載の重合性含フッ素高分岐ポリマー。 The polymerizable fluorine-containing highly branched polymer according to claim 16, wherein the monomer E is a compound having one or both of a vinyl group and a (meth) acryl group.
  18. 請求項1乃至請求項17のうち何れか一項に記載の重合性含フッ素高分岐ポリマーからなる、硬化性表面改質剤。 A curable surface modifier comprising the polymerizable fluorine-containing highly branched polymer according to any one of claims 1 to 17.
  19. (a)請求項1乃至請求項17のうち何れか一項に記載の重合性含フッ素高分岐ポリマー、(b)活性エネルギー線硬化性多官能モノマー、及び(c)活性エネルギー線によりラジカルを発生する重合開始剤を含む、コーティング用硬化性組成物。 A radical is generated by the polymerizable fluorine-containing highly branched polymer according to any one of claims 1 to 17, (b) an active energy ray-curable polyfunctional monomer, and (c) an active energy ray. A curable composition for coating comprising a polymerization initiator.
  20. 前記(b)活性エネルギー線硬化性多官能モノマーの質量に対して0.001乃至20質量%量の(a)重合性含フッ素高分岐ポリマーを含む、請求項19に記載のコーティング用硬化性組成物。 The curable composition for coating according to claim 19, comprising 0.001 to 20% by mass of (a) a polymerizable fluorine-containing highly branched polymer based on the mass of the (b) active energy ray-curable polyfunctional monomer. object.
  21. さらに溶媒を含む、請求項19又は請求項20に記載のコーティング用硬化性組成物。 The curable composition for coating according to claim 19 or 20, further comprising a solvent.
  22. さらに(d)シリカ微粒子を含む、請求項19乃至請求項21のうち何れか一項に記載のコーティング用硬化性組成物。 The curable composition for coating according to any one of claims 19 to 21, further comprising (d) silica fine particles.
  23. 前記(d)シリカ微粒子が1乃至100nmの平均粒子径を有する、請求項22に記載のコーティング用硬化性組成物。 The curable composition for coating according to claim 22, wherein (d) the silica fine particles have an average particle diameter of 1 to 100 nm.
  24. 請求項19乃至請求項23のうち何れか一項に記載のコーティング用硬化性組成物より得られる硬化膜。 A cured film obtained from the curable composition for coating according to any one of claims 19 to 23.
  25. フィルム基材の少なくとも一方の面にハードコート層を備えるハードコートフィルムであって、該ハードコート層が、請求項19乃至請求項23のうち何れか一項に記載のコーティング用硬化性組成物をフィルム基材上に塗布し塗膜を形成する工程、塗膜を乾燥し溶媒を除去する工程、塗膜に紫外線を照射し硬化する工程により形成されている、ハードコートフィルム。 A hard coat film comprising a hard coat layer on at least one surface of a film substrate, wherein the hard coat layer comprises the curable composition for coating according to any one of claims 19 to 23. A hard coat film formed by a step of coating on a film substrate to form a coating film, a step of drying the coating film to remove the solvent, and a step of irradiating the coating film with ultraviolet rays and curing.
  26. 前記ハードコート層が1乃至30μmの膜厚を有する、請求項25に記載のハードコートフィルム。 The hard coat film according to claim 25, wherein the hard coat layer has a thickness of 1 to 30 μm.
  27. 分子内に2個以上のラジカル重合性二重結合を有するモノマーAと、分子内にフルオロアルキル基及び少なくとも1個のラジカル重合性二重結合を有するモノマーBと、分子内に活性水素基及び少なくとも1個のラジカル重合性二重結合を有するモノマーCとを、該モノマーAのモル数に対して、5乃至200モル%量の重合開始剤Dの存在下で重合させることにより得られる含フッ素高分岐ポリマーと、分子内にイソシアネート基及び少なくとも1個のラジカル重合性二重結合を有するモノマーEとを反応させることを特徴とする、重合性含フッ素高分岐ポリマーの製造方法。 A monomer A having two or more radically polymerizable double bonds in the molecule, a monomer B having at least one radically polymerizable double bond in the molecule, an active hydrogen group and at least one in the molecule Fluorine-containing polymer obtained by polymerizing monomer C having one radical polymerizable double bond in the presence of 5 to 200 mol% of polymerization initiator D with respect to the number of moles of monomer A A method for producing a polymerizable fluorine-containing highly branched polymer, comprising reacting a branched polymer with a monomer E having an isocyanate group and at least one radical polymerizable double bond in the molecule.
PCT/JP2011/077790 2010-12-01 2011-12-01 Polymerizable fluorine-containing hyperbranched polymer and curable composition containing same WO2012074047A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012546931A JP5880870B2 (en) 2010-12-01 2011-12-01 Polymerizable fluorine-containing hyperbranched polymer and curable composition containing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-268821 2010-12-01
JP2010268821 2010-12-01

Publications (1)

Publication Number Publication Date
WO2012074047A1 true WO2012074047A1 (en) 2012-06-07

Family

ID=46171972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077790 WO2012074047A1 (en) 2010-12-01 2011-12-01 Polymerizable fluorine-containing hyperbranched polymer and curable composition containing same

Country Status (2)

Country Link
JP (1) JP5880870B2 (en)
WO (1) WO2012074047A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014008607A (en) * 2012-06-27 2014-01-20 Daicel Corp Hard coat film and manufacturing method thereof
JP2014095803A (en) * 2012-11-09 2014-05-22 Samsung R&D Institute Japan Co Ltd Resin membrane and manufacturing method of resin membrane
JP2015528049A (en) * 2012-07-24 2015-09-24 スリーエム イノベイティブ プロパティズ カンパニー Curable antifouling composition, method of use, and article
JP2016040343A (en) * 2014-08-12 2016-03-24 株式会社きもと Surface protective film, and hard coat film with surface protective film
JP2016121206A (en) * 2014-12-24 2016-07-07 Dic株式会社 Active energy ray-curable resin composition, coating material containing the same, its coating film, and laminated film having the coating film
CN109929066A (en) * 2017-12-15 2019-06-25 上海飞凯光电材料股份有限公司 A kind of UV-cured resin, preparation method, coating
US10487165B2 (en) * 2014-07-18 2019-11-26 Fujifilm Corporation Polymer, composition, optical film, and liquid crystal display device
CN112745731A (en) * 2021-01-19 2021-05-04 敬青梅 Hyperbranched polymer-containing waterborne antifouling composite coating and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063461A (en) * 1998-08-26 2000-02-29 Dainippon Printing Co Ltd Photocurable resin composition and formation of uneven pattern
JP2004346231A (en) * 2003-05-23 2004-12-09 Daikin Ind Ltd Coating composition
WO2007069703A1 (en) * 2005-12-15 2007-06-21 Asahi Glass Company, Limited Fluorine-containing polymer, negative photosensitive composition and partition wall
JP2010163521A (en) * 2009-01-14 2010-07-29 Sumitomo Chemical Co Ltd Resin composition for insulating layer
JP2010196044A (en) * 2009-01-30 2010-09-09 Dic Corp Fluorine-containing radically polymerizing copolymer, active energy ray-curing resin composition using the same and method of manufacturing fluorine-containing radically polymerizing copolymer
JP2011508251A (en) * 2007-12-12 2011-03-10 スリーエム イノベイティブ プロパティズ カンパニー Hard coat comprising perfluoropolyether polymer with poly (alkylene oxide) repeat units

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063461A (en) * 1998-08-26 2000-02-29 Dainippon Printing Co Ltd Photocurable resin composition and formation of uneven pattern
JP2004346231A (en) * 2003-05-23 2004-12-09 Daikin Ind Ltd Coating composition
WO2007069703A1 (en) * 2005-12-15 2007-06-21 Asahi Glass Company, Limited Fluorine-containing polymer, negative photosensitive composition and partition wall
JP2011508251A (en) * 2007-12-12 2011-03-10 スリーエム イノベイティブ プロパティズ カンパニー Hard coat comprising perfluoropolyether polymer with poly (alkylene oxide) repeat units
JP2010163521A (en) * 2009-01-14 2010-07-29 Sumitomo Chemical Co Ltd Resin composition for insulating layer
JP2010196044A (en) * 2009-01-30 2010-09-09 Dic Corp Fluorine-containing radically polymerizing copolymer, active energy ray-curing resin composition using the same and method of manufacturing fluorine-containing radically polymerizing copolymer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014008607A (en) * 2012-06-27 2014-01-20 Daicel Corp Hard coat film and manufacturing method thereof
JP2015528049A (en) * 2012-07-24 2015-09-24 スリーエム イノベイティブ プロパティズ カンパニー Curable antifouling composition, method of use, and article
JP2014095803A (en) * 2012-11-09 2014-05-22 Samsung R&D Institute Japan Co Ltd Resin membrane and manufacturing method of resin membrane
US10487165B2 (en) * 2014-07-18 2019-11-26 Fujifilm Corporation Polymer, composition, optical film, and liquid crystal display device
JP2016040343A (en) * 2014-08-12 2016-03-24 株式会社きもと Surface protective film, and hard coat film with surface protective film
JP2016121206A (en) * 2014-12-24 2016-07-07 Dic株式会社 Active energy ray-curable resin composition, coating material containing the same, its coating film, and laminated film having the coating film
CN109929066A (en) * 2017-12-15 2019-06-25 上海飞凯光电材料股份有限公司 A kind of UV-cured resin, preparation method, coating
CN112745731A (en) * 2021-01-19 2021-05-04 敬青梅 Hyperbranched polymer-containing waterborne antifouling composite coating and preparation method thereof

Also Published As

Publication number Publication date
JPWO2012074047A1 (en) 2014-05-19
JP5880870B2 (en) 2016-03-09

Similar Documents

Publication Publication Date Title
JP5880871B2 (en) Curable composition for coating containing fluorine-containing hyperbranched polymer
JP5880870B2 (en) Polymerizable fluorine-containing hyperbranched polymer and curable composition containing the same
JP6795793B2 (en) Silicon-containing highly branched polymer
JP6292419B2 (en) Lipophilic hyperbranched polymer and photopolymerizable composition containing the same
WO2014054698A1 (en) Curable composition including silicon-containing highly-branched polymer
JP2009287017A (en) Active energy ray-curable resin composition, cured product and article
WO2013077451A1 (en) Reactive fluorinated hyperbranched polymer and curable composition containing same
JP6871526B2 (en) Hydrophilic fluorine-containing highly branched polymer and polymerizable composition containing the same
WO2015199032A1 (en) Lipophilic hyperbranched polymer and polymerizable composition containing same
WO2014171552A1 (en) Water-slipping film-forming composition comprising alicyclic group-containing polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846038

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012546931

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11846038

Country of ref document: EP

Kind code of ref document: A1