WO2012073988A1 - Curable composition, cured article, and method for using curable composition - Google Patents

Curable composition, cured article, and method for using curable composition Download PDF

Info

Publication number
WO2012073988A1
WO2012073988A1 PCT/JP2011/077611 JP2011077611W WO2012073988A1 WO 2012073988 A1 WO2012073988 A1 WO 2012073988A1 JP 2011077611 W JP2011077611 W JP 2011077611W WO 2012073988 A1 WO2012073988 A1 WO 2012073988A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
curable composition
silane compound
carbon atoms
random copolymer
Prior art date
Application number
PCT/JP2011/077611
Other languages
French (fr)
Japanese (ja)
Inventor
幹広 樫尾
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to CN201180057592.5A priority Critical patent/CN103282440B/en
Priority to JP2012546903A priority patent/JP5940456B2/en
Priority to KR1020137013455A priority patent/KR101824289B1/en
Publication of WO2012073988A1 publication Critical patent/WO2012073988A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a curable composition from which a cured product having excellent transparency and heat resistance and high adhesive strength is obtained, a cured product obtained by curing the composition, and an optical element fixing material using the composition.
  • the present invention relates to a method for use as an adhesive for optical devices or a sealant for optical element fixing materials.
  • the curable composition has been improved in various ways depending on the application, and has been widely used industrially as a raw material, an adhesive, a coating agent, and the like for optical parts and molded articles.
  • a curable composition that forms a cured product having excellent transparency is used as a raw material or a coating agent for optical parts
  • a curable composition that forms a cured product having high adhesive strength is used as an adhesive or a coating agent. It is often used preferably.
  • curable compositions have also been used as compositions for optical element fixing materials, such as adhesives for optical element fixing materials and sealing agents for optical element fixing materials, when producing optical element sealing bodies. It is coming.
  • the optical element examples include various lasers such as a semiconductor laser (LD), light emitting elements such as a light emitting diode (LED), a light receiving element, a composite optical element, and an optical integrated circuit.
  • LD semiconductor laser
  • LED light emitting diode
  • a composite optical element a composite optical element
  • optical integrated circuit an optical integrated circuit
  • the cured product of the composition for optical element fixing materials is exposed to higher energy light and higher temperature heat generated from the optical element for a long time, and deteriorates and cracks. The problem of generating or peeling occurred.
  • Patent Documents 1 to 3 propose compositions for optical element fixing materials containing a polysilsesquioxane compound as a main component.
  • a cured product of a composition for optical element fixing materials mainly composed of a polysilsesquioxane compound described in Patent Documents 1 to 3 heat resistance and transparency can be maintained while maintaining sufficient adhesive force. It was sometimes difficult to get.
  • Patent Document 4 proposes an epoxy resin composition using an alicyclic epoxy resin
  • Patent Document 5 proposes an epoxy resin composition containing a polythiol compound. ing.
  • these compositions are used, there is a case where sufficient light deterioration resistance accompanying a change with time cannot be satisfied or the adhesive force is lowered. Therefore, development of a curable composition that is superior in heat resistance and transparency and that can provide a cured product having high adhesive force is eagerly desired.
  • JP 2004-359933 A JP 2005-263869 A JP 2006-328231 A Japanese Patent Laid-Open No. 7-309927 JP 2009-001752 A
  • the present invention has been made in view of the situation of such prior art, and is a curable composition that is excellent in heat resistance and transparency, and that can obtain a cured product having high adhesive strength, and curing the composition. It is an object of the present invention to provide a cured product and a method of using the composition as an adhesive for optical element fixing materials or an encapsulant for optical element fixing materials.
  • the inventors of the present invention have (A) a specific silane compound random copolymer and (B) a composition containing a specific silane coupling agent in a specific ratio.
  • the inventors have found that the cured product has excellent transparency and heat resistance over a long period of time and has high adhesive force even at high temperatures, and has completed the present invention.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • D represents a single bond or a divalent organic group having 1 to 20 carbon atoms which may have a substituent
  • R 2 represents an alkyl group having 1 to 20 carbon atoms or a phenyl group which may have a substituent.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • D represents a single bond or a divalent organic group having 1 to 20 carbon atoms which may have a substituent.
  • R 3 represents an alkyl group having 1 to 6 carbon atoms
  • X 1 represents a halogen atom
  • p represents an integer of 0 to 3.
  • R 2 represents an alkyl group having 1 to 20 carbon atoms or an optionally substituted phenyl group
  • R 4 represents an alkyl group having 1 to 6 carbon atoms
  • X 2 represents a halogen atom.
  • Q represents an integer of 0 to 3.
  • a silane compound random copolymer having a weight average molecular weight of 1,000 to 30,000, obtained by condensing a mixture of silane compounds containing at least one silane compound (2) represented by formula (B): Curability containing a silane coupling agent having a reactive cyclic ether structure in a ratio of (A ′) :( B) 95: 5 to 80:20 in a mass ratio of (A ′) to (B) Composition.
  • (D) an alicyclic acid anhydride having a carboxyl group is contained, and the content of component (D) is 0 part by mass with respect to 100 parts by mass of component (A) or component (A ′).
  • the following [9] and [10] cured products are provided.
  • a method of using the following curable composition of the present invention [11], [12].
  • [11] A method of using the curable composition according to any one of [1] to [7] as an adhesive for an optical element fixing material.
  • [12] A method of using the curable composition according to any one of [1] to [7] as a sealant for an optical element fixing material.
  • the curable composition of the present invention even when irradiated with high energy light or in a high temperature state, it does not color and does not deteriorate transparency, and has excellent transparency over a long period of time. In addition, a cured product having high adhesive strength can be obtained.
  • the curable composition of the present invention can be used when forming an optical element fixing material, and particularly preferably used as an adhesive for an optical element fixing material and an encapsulant for an optical element fixing material. it can.
  • Curable composition of the present invention comprises: (A) In the molecule, the following formulas (i), (ii) and (iii)
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • D represents a single bond or a divalent organic group having 1 to 20 carbon atoms which may have a substituent
  • R 2 represents an alkyl group having 1 to 20 carbon atoms or a phenyl group which may have a substituent.
  • the curable composition of the present invention comprises (i) and a repeating unit represented by the above formulas (i), (ii) and (iii) as the component (A). Having a repeating unit of (ii), (i) and (iii), (ii) and (iii), or (i), (ii) and (iii), and having a weight average molecular weight of 1,000 to 30, 000 is a silane compound random copolymer (hereinafter, sometimes referred to as “silane compound random copolymer (A)”).
  • the silane compound random copolymer (A) may have one type of repeating unit represented by (i), (ii), or (iii), or may have two or more types.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom.
  • alkyl group having 1 to 6 carbon atoms represented by R 1 include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, t-butyl group, i-butyl group, s- Examples thereof include a butyl group, an n-pentyl group, and an n-hexyl group.
  • D represents a single bond or a divalent organic group having 1 to 20 carbon atoms which may have a substituent.
  • the divalent organic group include an alkylene group having 1 to 20 carbon atoms which may have a substituent, an alkenylene group having 2 to 20 carbon atoms which may have a substituent, and a substituent.
  • Examples of the alkylene group of the alkylene group include a methylene group, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group.
  • Examples of the alkenylene group of the alkenylene group include a vinylene group, a propenylene group, a butenylene group, and a pentenylene group.
  • Examples of the alkynylene group of the alkynylene group include an ethynylene group and a propynylene group.
  • Examples of the arylene group of the arylene group include an o-phenylene group, an m-phenylene group, a p-phenylene group, and a 2,6-naphthylene group.
  • Examples of the substituent for the alkylene group, alkenylene group, and alkynylene group include a halogen atom such as a fluorine atom and a chlorine atom; an alkoxy group such as a methoxy group and an ethoxy group; an alkylthio group such as a methylthio group and an ethylthio group; a methoxycarbonyl group; An alkoxycarbonyl group such as an ethoxycarbonyl group; and the like.
  • substituents for the arylene group include: a cyano group; a nitro group; a halogen atom such as a fluorine atom, a chlorine atom and a bromine atom; an alkyl group such as a methyl group and an ethyl group; an alkoxy group such as a methoxy group and an ethoxy group; And alkylthio groups such as ethylthio group; and the like.
  • substituents may be bonded at arbitrary positions in groups such as an alkylene group, an alkenylene group, an alkynylene group, and an arylene group, and a plurality of them may be bonded in the same or different manner.
  • the divalent organic group of ⁇ 20 includes at least one of the above-mentioned substituents (an alkylene group, an alkenylene group, or an alkynylene group) and an arylene group that may have the above-mentioned substituent.
  • substituents include a group in which at least one kind is bonded in series. Specific examples include groups represented by the following formula.
  • D is preferably an alkylene group having 1 to 10 carbon atoms, more preferably an alkylene group having 1 to 6 carbon atoms, and more preferably an alkylene group having 1 to 3 carbon atoms because a cured product having high adhesive strength can be obtained.
  • An alkylene group is particularly preferred.
  • R 2 represents an alkyl group having 1 to 20 carbon atoms or an optionally substituted phenyl group.
  • alkyl group having 1 to 20 carbon atoms represented by R 2 include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, i-butyl group, t- Examples include a butyl group, n-pentyl group, n-hexyl group, n-octyl group, i-octyl group, n-nonyl group, n-decyl group, n-dodecyl group and the like.
  • Examples of the substituent of the phenyl group which may have a substituent represented by R 2 include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, i -Alkyl groups such as butyl, t-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl and i-octyl; alkoxy groups such as methoxy and ethoxy; fluorine atoms And halogen atoms such as chlorine atom.
  • the amount of the group represented by the formula: R 1 —CH (CN) —D— and R 2 can be quantified by, for example, measuring the NMR spectrum of the silane compound random copolymer (A).
  • the weight average molecular weight (Mw) of the silane compound random copolymer (A) is in the range of 1,000 to 30,000, preferably in the range of 1,500 to 6,000. By being in the said range, the hardened
  • a weight average molecular weight (Mw) can be calculated
  • the molecular weight distribution (Mw / Mn) of the silane compound random copolymer (A) is not particularly limited, but is usually 1.0 to 3.0, preferably 1.1 to 2.0. By being in the said range, the hardened
  • the silane compound random copolymer (A) can be used alone or in combination of two or more.
  • the silane compound random copolymer (A) as the component (A) is represented by (A ′) formula (1): R 1 —CH (CN) —D—Si (OR 3 P (X 1 ) 3-p (wherein R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and D represents a single bond or a carbon atom having 1 to 6 carbon atoms which may have a substituent) Represents a divalent organic group of 20.
  • R 3 represents an alkyl group having 1 to 6 carbon atoms
  • X 1 represents a halogen atom
  • p represents an integer of 0 to 3.
  • the silane compound (1) is a compound represented by the formula (1): R 1 —CH (CN) —D—Si (OR 3 ) p (X 1 ) 3-p .
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom. Specific examples include those exemplified as R 1 in the silane compound random copolymer (A).
  • D represents a single bond or a divalent organic group having 1 to 20 carbon atoms which may have a substituent. Specific examples of the divalent organic group include those exemplified as D in the silane compound random copolymer (A).
  • R 3 is methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, i-butyl group, t-butyl group, n-pentyl group, n-hexyl group, etc.
  • X 1 represents a halogen atom such as a fluorine atom, a chlorine atom, or a bromine atom.
  • p represents an integer of 0 to 3. When p is 2 or more, the ORs 3 may be the same or different. When (3-p) is 2 or more, X 1 may be the same or different.
  • silane compound (1) examples include cyanomethyltrimethoxysilane, cyanomethyltriethoxysilane, 1-cyanoethyltrimethoxysilane, 2-cyanoethyltrimethoxysilane, 2-cyanoethyltriethoxysilane, 2-cyanoethyltripropoxysilane.
  • trialkoxysilane compounds are preferred as the silane compound (1) because a cured product having better adhesion can be obtained, or trialkoxysilane compounds having a 2-cyanoethyl group, or 3- Trialkoxysilane compounds having a cyanopropyl group are more preferred.
  • the silane compound (2) is a compound represented by the formula (2): R 2 Si (OR 4 ) q (X 2 ) 3-q .
  • R 2 represents an alkyl group having 1 to 20 carbon atoms or a phenyl group which may have a substituent. Specific examples include those exemplified as R 2 in the silane compound random copolymer (A).
  • R 4 represents the same alkyl group having 1 to 6 carbon atoms as R 3 .
  • X 2 represents the same halogen atom as X 1 .
  • q represents an integer of 0 to 3. When q is 2 or more, OR 4 may be the same or different. When (3-q) is 2 or more, X 2 may be the same or different.
  • silane compound (2) examples include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-butyltriethoxysilane, i-butyltrimethoxy.
  • Alkyltrialkoxysilane compounds such as silane, n-pentyltriethoxysilane, n-hexyltrimethoxysilane, i-octyltriethoxysilane, dodecyltrimethoxysilane, methyldimethoxyethoxysilane, methyldiethoxymethoxysilane;
  • Alkyl halogenoalkoxysilanes such as methylchlorodimethoxysilane, methyldichloromethoxysilane, methyldichloromethoxysilane, methylchlorodiethoxysilane, ethylchlorodimethoxysilane, ethyldichloromethoxysilane, n-propylchlorodimethoxysilane, n-propyldichloromethoxysilane Compounds; Alkyltrihalogenosilane compounds such as methyltrichloros
  • phenyltrimethoxysilane 4-methoxyphenyltrimethoxysilane, 2-chlorophenyltrimethoxysilane, phenyltriethoxysilane, 2-methoxyphenyltriethoxysilane, phenyldimethoxyethoxysilane, phenyldiethoxymethoxysilane
  • phenyltrialkoxysilane compounds Phenylhalogenoalkoxysilane compounds which may have a substituent such as phenylchlorodimethoxysilane, phenyldichloromethoxysilane, phenylchloromethoxyethoxysilane, phenylchlorodiethoxysilane, phenyldichloroethoxysilane
  • a phenyltrihalogenosilane compound which may have a substituent such as phenyltrichlorosilane, phenyltribro
  • the mixture of silane compounds used when producing the silane compound random copolymer (A ′) may be a mixture of the silane compound (1) and the silane compound (2). Although it may be a mixture containing other silane compounds as long as they are not inhibited, a mixture comprising the silane compound (1) and the silane compound (2) is preferable.
  • the method for condensing the mixture of the silane compounds is not particularly limited, but the silane compound (1), the silane compound (2), and other silane compounds as required are dissolved in a solvent, and a predetermined amount of catalyst is added. And a method of stirring at a predetermined temperature.
  • the catalyst used may be either an acid catalyst or a base catalyst.
  • the acid catalyst include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid; organic acids such as methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, acetic acid and trifluoroacetic acid; Can be mentioned.
  • Base catalysts include trimethylamine, triethylamine, lithium diisopropylamide, lithium bis (trimethylsilyl) amide, pyridine, 1,8-diazabicyclo [5.4.0] -7-undecene, aniline, picoline, 1,4-diazabicyclo [2 2.2]
  • Organic bases such as octane and imidazole;
  • Organic salt hydroxides such as tetramethylammonium hydroxide and tetraethylammonium hydroxide;
  • Metals such as sodium methoxide, sodium ethoxide, sodium t-butoxide, and potassium t-butoxide Alcoholates;
  • Metal hydrides such as sodium hydride and calcium hydride;
  • Metal hydroxides such as sodium hydroxide, potassium hydroxide and calcium hydroxide;
  • Metal carbonates such as sodium carbonate, potassium carbonate and magnesium carbonate; Carbonated water And the like are; sodium, metal hydrogen carbonates such as potassium hydrogen carbon
  • the amount of the catalyst used is usually 0.1 parts by mass or more and 10 parts by mass or less, preferably 0.5 parts by mass or more and 5 parts by mass or less with respect to a total of 1 mol of the silane compound.
  • the solvent to be used can be appropriately selected according to the type of the silane compound.
  • water aromatic hydrocarbons such as benzene, toluene and xylene; esters such as methyl acetate, ethyl acetate, propyl acetate and methyl propionate; ketones such as acetone, methyl ethyl ketone, methyl i-butyl ketone and cyclohexanone; methyl And alcohols such as alcohol, ethyl alcohol, n-propyl alcohol, i-propyl alcohol, n-butyl alcohol, i-butyl alcohol, s-butyl alcohol and t-butyl alcohol.
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • esters such as methyl acetate, ethyl acetate, propyl acetate and methyl propionate
  • ketones such as acetone, methyl ethyl ket
  • the amount of the solvent used is such that the total molar amount of the silane compound per liter of solvent is usually 0.1 mol to 10 mol, preferably 0.5 mol to 10 mol.
  • the temperature at which the silane compound is condensed (reacted) is usually in the temperature range from 0 ° C. to the boiling point of the solvent used, preferably in the range of 20 ° C. to 100 ° C. If the reaction temperature is too low, the progress of the condensation reaction may be insufficient. On the other hand, if the reaction temperature is too high, it is difficult to suppress gelation. The reaction is usually completed in 30 minutes to 20 hours.
  • an acid catalyst is used, an alkaline aqueous solution such as sodium hydrogen carbonate is added to the reaction solution.
  • an acid such as hydrochloric acid. Summing is performed, and the salt generated at that time is removed by filtration or washing with water, and the desired silane compound random copolymer can be obtained.
  • the curable composition of the present invention has, as component (B), a silane coupling agent having a reactive cyclic ether structure (hereinafter referred to as “silane coupling agent (B ) "). Since the curable composition of this invention contains a silane coupling agent (B), it can obtain the cured
  • the reactive cyclic ether structure in the silane coupling agent (B) is a structure having a reactive cyclic ether group.
  • the reactive cyclic ether group include an epoxy group; a cyclohexene oxide group such as a 3,4-epoxycyclohexyl group; an oxetanyl group; a tetrahydrofuranyl group; a tetrahydropyranyl group; Among these, an epoxy group, a cyclohexene oxide group, and an oxetanyl group are preferable, a cyclohexene oxide group is more preferable, and a 3,4-epoxycyclohexyl group is particularly preferable.
  • Specific examples of the reactive cyclic ether structure include the following formulas (E1) to (E3)
  • h represents an integer of 1 to 10
  • — (CH 2 ) h — may contain an ether bond (—O—)
  • a group represented by the formula (E2) is preferable, and a group represented by the formula (E2), in which h is an integer of 2 to 8, is particularly preferable.
  • the silane coupling agent (B) is preferably an organosilicon compound having both a reactive cyclic ether structure (E) and a hydrolyzable group (OR b ) in one molecule.
  • the compound represented by (a) is mentioned.
  • E represents a reactive cyclic ether structure
  • R a represents an alkyl group having 1 to 6 carbon atoms or an optionally substituted phenyl group
  • R b represents 1 to 6 carbon atoms.
  • I represents an integer of 1 to 3
  • j represents an integer of 0 to 2
  • k represents an integer of 1 to 3
  • i + j + k 4.
  • the alkyl group having 1 to 6 carbon atoms represented by R a and R b is the same as that exemplified above as the alkyl group having 1 to 6 carbon atoms represented by R 1 .
  • the phenyl group which may have a substituent represented by R a is exemplified above as the phenyl group which may have a substituent represented by R 2 . The same group is mentioned.
  • silane coupling agent (B) represented by the formula (a) include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxy.
  • a silane coupling agent having a cyclohexene oxide group such as silane; Silane coupling agents having a glycidoxy group such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 3-glycidoxypropylmethyldiethoxysilane ; (Oxetane-3-yl) methyltrimethoxysilane, (oxetane-3-yl) methyltriethoxysilane, (oxetane-3-yl) methylmethyldimethoxysilane, (oxetane-3-yl) methylmethyldiethoxysilane, ( Oxetane-3-yl) methylethyldimethoxysilane, (oxetane-3-yl) methylethyldiethoxysilane, (oxetane-3-
  • R b is preferably an alkyl group having 1 to 6 carbon atoms which may have a substituent, such as a methyl group, an ethyl group, a propyl group, or a methoxymethyl group.
  • silane coupling agent represented by the formula (b) examples include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, and the like. It is done.
  • a silane coupling agent (B) can be used individually by 1 type or in combination of 2 or more types.
  • the curable composition of the present invention includes (C) a metal complex compound in which the metal atom is aluminum, zirconium or titanium (hereinafter referred to as “metal complex compound (C)”). It is preferable to contain.
  • metal complex compound (C) a metal complex compound in which the metal atom is aluminum, zirconium or titanium
  • the curing reaction can be promoted, and a cured product having higher adhesive strength can be obtained.
  • Examples of the metal complex compound (C) in which the metal atom is aluminum include diisopropoxy aluminum monooleyl acetoacetate, monoisopropoxy aluminum bis oleyl acetoacetate, monoisopropoxy aluminum monooleate monoethyl acetoacetate, diisopropoxy aluminum mono Aluminum such as lauryl acetoacetate, diisopropoxyaluminum monostearyl acetoacetate, diisopropoxyaluminum monoisostearyl acetoacetate, monoisopropoxyaluminum mono-N-lauroyl- ⁇ -alanate monolauryl acetoacetate, aluminum trisacetylacetonate Acetoacetate complex; monoacetylacetonate aluminum bis (isobutylacetoa Tate) chelates, monoacetylacetonate aluminum bis (2-ethylhexyl acetoacetate) chelates, monoacetylacetonate aluminum bis (dodecyl ace
  • Examples of the metal complex compound (C) in which the metal atom is zirconium include zirconium acylate complexes such as zirconium-sec-butyrate and zirconium diethoxy-tert-butylate; zirconium acetylacetonate complexes such as zirconium tetrakisacetylacetonate; zirconium Zirconium alkoxide complexes such as tetraisopropoxide; and the like.
  • Examples of the metal complex compound (C) in which the metal atom is titanium include titanium tetrapropionate, titanium tetra-n-butyrate, titanium tetra-2-ethylhexanoate, triethanolamine titanium dipropionate, and ammonium lactate ammonium.
  • the metal complex compound (C) can be used alone or in combination of two or more.
  • the content thereof is preferably more than 0 parts by mass and less than 10 parts by mass, more preferably more than 0 parts by mass with respect to 100 parts by mass of the component (A) or the component (A ′). 5 parts by mass or less.
  • the curable composition of the present invention includes (D) an alicyclic acid anhydride having a carboxyl group (hereinafter referred to as “alicyclic acid anhydride (D)”). It is preferable to contain. By using the alicyclic acid anhydride (D), a cured product having higher adhesive strength can be obtained.
  • alicyclic acid anhydride (D) an alicyclic acid anhydride having a carboxyl group.
  • the alicyclic acid anhydride (D) is an alicyclic acid anhydride substituted with at least one carboxyl group.
  • Specific examples of the alicyclic acid anhydride include 3-methyl-1,2,3,6-tetrahydrophthalic anhydride, 4-methyl-1,2,3,6-tetrahydrophthalic anhydride, tetrahydrophthalic anhydride 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride, hexahydrophthalic anhydride, methyl nadic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, norbornane-2,3-dicarboxylic acid Anhydride, methyl-5-norbornene-2,3-dicarboxylic acid anhydride, methyl-norbornane-2,3-dicarboxylic acid anhydride and the like can be mentioned.
  • the carboxyl group may be substituted at any position of the alicycl
  • Examples of the alicyclic acid anhydride (D) include cyclohexane-1,2,4-tricarboxylic acid-1,2 anhydride, cyclohexane-1,2,3-tricarboxylic acid in which a carboxyl group is substituted with hexahydrophthalic anhydride.
  • -1,2 anhydride is preferred, and cyclohexane-1,2,4-tricarboxylic acid-1,2 anhydride is particularly preferred.
  • This compound may exist as a stereoisomer, but may be any isomer.
  • the alicyclic acid anhydride (D) can be used alone or in combination of two or more.
  • the content thereof is preferably more than 0 parts by mass and 10 parts by mass or less, more preferably 0 with respect to 100 parts by mass of the component (A) or the component (A ′). More than 5 parts by mass and less than 5 parts by mass.
  • the curable composition of the present invention may further contain other components in addition to the above components as long as the object of the present invention is not impaired.
  • other components include silane coupling agents other than the above (B), antioxidants, ultraviolet absorbers, light stabilizers, and diluents.
  • the silane coupling agent other than (B) is not particularly limited as long as it is a silane coupling agent other than the silane coupling agent (B) and does not impair the object of the present invention. Especially, it is preferable to use the silane coupling agent which has an acid anhydride structure from a viewpoint from which the hardened
  • silane coupling agent examples include 2-trimethoxysilylethyl succinic anhydride and 3-triethoxysilylpropyl succinic anhydride.
  • the silane coupling agent having an acid anhydride structure can be used alone or in combination of two or more.
  • the usage-amount is 0.1 mass part or more and 25 mass parts or less normally with respect to 100 mass parts of (A) component or (A ') component, Preferably they are 0.5 mass part or more and 15 mass parts or less.
  • the antioxidant is added to prevent oxidative deterioration during heating.
  • examples of the antioxidant include phosphorus antioxidants, phenolic antioxidants, sulfur antioxidants and the like.
  • Examples of phosphorus antioxidants include phosphites and oxaphosphaphenanthrene oxides.
  • phenolic antioxidants include monophenols, bisphenols, and high-molecular phenols.
  • sulfur-based antioxidant include dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyl-3,3′-thiodipropionate.
  • antioxidants can be used alone or in combination of two or more.
  • the usage-amount of antioxidant is 10 mass parts or less normally with respect to 100 mass parts of (A) component or (A ') component.
  • the said ultraviolet absorber is added in order to improve the light resistance of the hardened
  • examples of the ultraviolet absorber include salicylic acids, benzophenones, benzotriazoles, hindered amines and the like.
  • An ultraviolet absorber can be used individually by 1 type or in combination of 2 or more types.
  • the usage-amount of a ultraviolet absorber is 10 mass parts or less normally with respect to 100 mass parts of (A) component or (A ') component.
  • the light stabilizer is added for the purpose of improving the light resistance of the resulting cured product.
  • the light stabilizer include poly [ ⁇ 6- (1,1,3,3, -tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl ⁇ ⁇ (2,2,6 , 6-tetramethyl-4-piperidine) imino ⁇ hexamethylene ⁇ (2,2,6,6-tetramethyl-4-piperidine) imino ⁇ ] and the like.
  • light stabilizers can be used alone or in combination of two or more.
  • the usage-amount of a light stabilizer is 10 mass parts or less normally with respect to 100 mass parts of (A) component or (A ') component.
  • the diluent is added to adjust the viscosity of the curable composition.
  • the diluent include glycerin diglycidyl ether, butanediol diglycidyl ether, diglycidyl aniline, neopentyl glycol glycidyl ether, cyclohexane dimethanol diglycidyl ether, alkylene diglycidyl ether, polyglycol diglycidyl ether, and polypropylene glycol diglycidyl ether.
  • Examples include ether, trimethylolpropane triglycidyl ether, glycerin triglycidyl ether, 4-vinylcyclohexene monooxide, vinylcyclohexene dioxide, methylated vinylcyclohexene dioxide, and the like. These diluents can be used alone or in combination of two or more.
  • the curable composition of the present invention can be obtained, for example, by blending the above-mentioned components (A) and (B) and other components at a predetermined ratio if necessary, and mixing and defoaming by a known method. it can.
  • the curable composition of the present invention obtained as described above, even when irradiated with high energy light or in a high temperature state, it is not colored and the transparency is not lowered, and it is long-term. It is possible to obtain a cured product having excellent transparency and high adhesive strength. Therefore, the curable composition of the present invention is suitably used as a raw material for optical parts and molded articles, an adhesive, a coating agent, and the like. In particular, since the problem relating to deterioration of the optical element fixing material accompanying the increase in luminance of the optical element can be solved, the curable composition of the present invention can be suitably used as a composition for optical element fixing material. it can.
  • the second of the present invention is a cured product obtained by curing the curable composition of the present invention.
  • Heat curing is mentioned as a method of hardening the curable composition of this invention.
  • the heating temperature for curing is usually 100 to 200 ° C., and the heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
  • the cured product of the present invention has excellent transparency over a long period of time, even when irradiated with high energy light or in a high temperature state, without being colored and having a reduced transparency, and High adhesive strength. Therefore, the cured product of the present invention can solve the problem related to the deterioration of the optical element fixing material accompanying the increase in the brightness of the optical element, and therefore can be suitably used as the optical element fixing material. For example, it is suitably used as a raw material, an adhesive, a coating agent, etc. for optical parts and molded products.
  • the cured product obtained by curing the curable composition of the present invention has a high adhesive force, for example, by measuring the adhesive force as follows. That is, the curable composition is applied to the mirror surface of the silicon chip, and the coated surface is placed on the adherend and pressure-bonded, and then heated and cured. This is left for 30 seconds on a measurement stage of a bond tester that has been heated to a predetermined temperature (for example, 23 ° C., 100 ° C.) in advance, and is horizontal to the adhesion surface (shearing) from a position 50 ⁇ m high from the adherend. Direction) and measure the adhesive force between the test piece and the adherend.
  • the adhesive strength of the cured product is preferably 60 N / 2 mm ⁇ or more, more preferably 80 N / 2 mm ⁇ or more at 23 ° C. and 100 ° C.
  • the cured product is excellent in transparency by measuring light transmittance.
  • the light transmittance of the cured product is preferably 80% or more, particularly preferably 86% or more for light with a wavelength of 400 nm, and preferably 87% or more for light with a wavelength of 450 nm.
  • the cured product is excellent in heat resistance since the change in adhesive force and transparency is small even after the cured product is placed at a high temperature.
  • the adhesive force is preferably maintained at 50% or more of the adhesive force at 23 ° C. after being placed at 100 ° C. for 30 seconds, and more preferably 65% or more.
  • the transparency is preferably such that the transmittance at a wavelength of 400 nm is 80% or more of the initial transmittance after being placed at 150 ° C. for 500 hours.
  • the third of the present invention is a method of using the curable composition of the present invention as an adhesive for optical element fixing materials or an encapsulant for optical element fixing materials.
  • optical elements include light emitting elements such as LEDs and LDs, light receiving elements, composite optical elements, and optical integrated circuits.
  • the curable composition of this invention can be used conveniently as an adhesive agent for optical element fixing materials.
  • the composition is applied to one or both adhesive surfaces of a material to be bonded (such as an optical element and its substrate). After the pressure bonding, there is a method in which the material to be bonded is firmly bonded by heat curing.
  • Main substrate materials for bonding optical elements include glass such as soda lime glass and heat-resistant hard glass; ceramics; iron, copper, aluminum, gold, silver, platinum, chromium, titanium, and alloys of these metals , Metals such as stainless steel (SUS302, SUS304, SUS304L, SUS309, etc.); polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, ethylene-vinyl acetate copolymer, polystyrene, polycarbonate, polymethylpentene, polysulfone, polyether ether ketone , Synthetic resins such as polyethersulfone, polyphenylene sulfide, polyetherimide, polyimide, polyamide, acrylic resin, norbornene resin, cycloolefin resin, glass epoxy resin, etc. .
  • the heating temperature at the time of heat curing is usually 100 to 200 ° C. although it depends on the curable composition used.
  • the heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
  • the curable composition of this invention can be used suitably as a sealing agent of an optical element sealing body.
  • the curable composition of the present invention As a method of using the curable composition of the present invention as a sealant for an optical element fixing material, for example, after molding the composition into a desired shape to obtain a molded body containing the optical element, the process itself And the like, and the like.
  • the method for molding the curable composition of the present invention into a desired shape is not particularly limited, and a known molding method such as a normal transfer molding method or a casting method can be employed.
  • the heating temperature at the time of heat curing is usually 100 to 200 ° C. although it depends on the curable composition used.
  • the heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
  • the obtained optical element sealing body uses the curable composition of the present invention, an optical element having a short peak wavelength of 400 to 490 nm, such as white or blue light emitting LED, is used. Also, it is excellent in transparency and heat resistance that does not deteriorate due to heat or light.
  • the weight average molecular weight (Mw) of the silane compound random copolymer obtained in the production example was a standard polystyrene equivalent value, and was measured using the following apparatus and conditions.
  • the mixture was concentrated to 50 ml with an evaporator, 100 ml of ethyl acetate was added, and neutralized with a saturated aqueous sodium hydrogen carbonate solution. After leaving still for a while, the organic layer was fractionated. Next, the organic layer was washed twice with distilled water and then dried over anhydrous magnesium sulfate. After the magnesium sulfate was filtered off, the filtrate was concentrated to 50 ml with an evaporator, dropped into a large amount of n-hexane to precipitate, and the precipitate was separated by decantation.
  • the obtained precipitate was dissolved and recovered in methyl ethyl ketone (MEK), and the solvent was distilled off under reduced pressure with an evaporator, followed by vacuum drying to obtain 13.5 g of a silane compound random copolymer (A1).
  • MEK methyl ethyl ketone
  • the weight average molecular weight (Mw) of the silane compound random copolymer (A1) was 1,900. Moreover, IR spectrum data of a silane compound random copolymer (A1) are shown below. Si—Ph: 698 cm ⁇ 1 , 740 cm ⁇ 1 , Si—O: 1132 cm ⁇ 1 , —CN: 2259 cm ⁇ 1
  • the weight average molecular weight (Mw) of the silane compound random copolymer (A2) was 2,000. Moreover, IR spectrum data of a silane compound random copolymer (A2) are shown below. Si—Ph: 698 cm ⁇ 1 , 740 cm ⁇ 1 , Si—O: 1132 cm ⁇ 1 , —CN: 2255 cm ⁇ 1
  • the obtained precipitate was dissolved and recovered in methyl ethyl ketone (MEK), and the solvent was distilled off under reduced pressure with an evaporator, followed by vacuum drying to obtain 16.3 g of a silane compound random copolymer (A3).
  • MEK methyl ethyl ketone
  • the weight average molecular weight (Mw) of the silane compound random copolymer (A3) was 2,800. Moreover, IR spectrum data of a silane compound random copolymer (A3) are shown below. Si—Ph: 699 cm ⁇ 1 , 741 cm ⁇ 1 , Si—O: 1132 cm ⁇ 1 , epoxy group: 1254 cm ⁇ 1
  • Example 1 10 g of the silane compound random copolymer (A1) obtained in Production Example 1 and 1.0 g of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) as the silane coupling agent (B) was added, and the entire volume was thoroughly mixed and defoamed to obtain a curable composition (1).
  • Example 2 A curable composition (2) was obtained in the same manner as in Example 1, except that the amount of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane in Example 1 was changed to 1.5 g.
  • Example 3 In Example 1, curable in the same manner as in Example 1 except that 10 g of the silane compound random copolymer (A2) obtained in Production Example 2 was used instead of the silane compound random copolymer (A1). A composition (3) was obtained.
  • Example 4 In Example 1, except that 0.01 g of zirconium tetrakisacetylacetonate (manufactured by Tokyo Chemical Industry Co., Ltd.) (described as “C1” in Table 1 below) was added as the metal complex compound (C). Obtained a curable composition (4) in the same manner as in Example 1.
  • Example 5 (Example 5) In Example 4, the curable composition (5) was obtained like Example 4 except having changed the amount of zirconium tetrakis acetylacetonate into 0.05g.
  • Example 6 (Example 6) In Example 4, the curable composition (6) was obtained like Example 4 except having changed the amount of zirconium tetrakis acetylacetonate into 0.1g.
  • Example 7 the curable composition (7) was obtained like Example 4 except having changed the amount of zirconium tetrakis acetylacetonate into 1.0g.
  • Example 8 In Example 1, except that 0.05 g of aluminum trisacetylacetonate (manufactured by Tokyo Chemical Industry Co., Ltd.) (described as “C2” in Table 1 below) was further added as the metal complex compound (C). Obtained a curable composition (8) in the same manner as in Example 1.
  • Example 9 In Example 1, as the metal complex compound (C), titanium dioctyloxybis (octylene glycolate) (manufactured by Matsumoto Fine Chemical Co., Ltd., ORGATICS TC-200) (denoted as “C3” in Table 1 below) A curable composition (9) was obtained in the same manner as in Example 1 except that 0.05 g was added.
  • Example 10 In Example 1, 0.05 g of cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride (manufactured by Mitsubishi Gas Chemical Company) was further added as the alicyclic acid anhydride (D) having a carboxyl group. A curable composition (10) was obtained in the same manner as Example 1 except for the addition.
  • Example 11 A curable composition (11) was prepared in the same manner as in Example 10 except that the amount of cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride was changed to 1.0 g in Example 10. Obtained.
  • Example 3 Comparative Example 3
  • the curable composition was the same as Example 5 except that the silane compound random copolymer (A3) obtained in Production Example 3 was used instead of the silane compound random copolymer (A1).
  • a product (14) was obtained.
  • Example 4 a curable composition was used in the same manner as in Example 10 except that the silane compound random copolymer (A3) obtained in Production Example 3 was used instead of the silane compound random copolymer (A1). A product (15) was obtained.
  • Each of the curable compositions 1 to 15 was applied to a mirror surface of a 2 mm square silicon chip so as to have a thickness of about 2 ⁇ m, and the coated surface was placed on an adherend (silver-plated copper plate) and pressure-bonded. Then, it heat-processed at 180 degreeC for 2 hours, it was made to harden
  • the test piece-attached adherend is left for 30 seconds on a measurement stage of a bond tester (series 4000, manufactured by Daisy) heated in advance to a predetermined temperature (23 ° C., 100 ° C.), and has a height of 50 ⁇ m from the adherend.
  • each of the curable compositions 1 to 15 was poured into a mold so as to have a length of 25 mm, a width of 20 mm, and a thickness of 1 mm, and cured by heating at 140 ° C. for 6 hours to prepare test pieces. With respect to the obtained test piece, the initial transmittance (%) at wavelengths of 400 nm and 450 nm was measured with a spectrophotometer (MPC-3100, manufactured by Shimadzu Corporation).
  • the transmittance at 400 nm was evaluated as “ ⁇ ” when 80% or more, “ ⁇ ” when 70% or more and less than 80%, and “ ⁇ ” when less than 70%.
  • the cured products of the curable compositions 1 to 11 of Examples 1 to 11 are 60 N / 2 mm ⁇ or more at both 23 ° C. and 100 ° C. Is excellent.
  • the initial transmittance at wavelengths of 400 nm and 450 nm and the transmittance after heating are both high, and the initial transparency and heat resistance (transparency after heating) are also excellent.
  • the cured products of the curable compositions 12 and 13 of Comparative Examples 1 and 2 are inferior in adhesiveness. Moreover, the transmittance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)
  • Die Bonding (AREA)
  • Led Device Packages (AREA)
  • Sealing Material Composition (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

The present invention is a curable composition containing: (A) a specific silane compound random copolymer and (B) a silane coupling agent having a reactive cyclic ether structure, the mass ratio of (A) and (B) being (A):(B) = 95:5 to 80:20. The present invention is also a cured article formed when the composition is cured, and a method for using the composition as an adhesive or the like for a material with which an optical element is fixed. The present invention provides a curable composition from which a cured article having superior heat resistance and transparency and having high adhesive strength is obtained, a cured article formed when the composition is cured, and a method for using the composition as an adhesive or the like for a material with which an optical element is fixed.

Description

硬化性組成物、硬化物および硬化性組成物の使用方法Curable composition, cured product and method of using curable composition
 本発明は、透明性及び耐熱性に優れ、かつ、高い接着力を有する硬化物が得られる硬化性組成物、該組成物を硬化してなる硬化物、並びに、該組成物を光素子固定材用接着剤又は光素子固定材用封止剤として使用する方法に関する。 The present invention relates to a curable composition from which a cured product having excellent transparency and heat resistance and high adhesive strength is obtained, a cured product obtained by curing the composition, and an optical element fixing material using the composition. The present invention relates to a method for use as an adhesive for optical devices or a sealant for optical element fixing materials.
 これまで、硬化性組成物は用途に応じて様々な改良がなされ、光学部品や成形体の原料、接着剤、コーティング剤等として産業上広く利用されてきている。例えば、透明性に優れる硬化物を形成する硬化性組成物は、光学部品の原料やコーティング剤として、また、高い接着力を有する硬化物を形成する硬化性組成物は、接着剤やコーティング剤として好ましく用いられることが多い。
 また、近年、硬化性組成物は、光素子封止体を製造する際に、光素子固定材用接着剤や光素子固定材用封止剤等の光素子固定材用組成物としても利用されてきている。
Until now, the curable composition has been improved in various ways depending on the application, and has been widely used industrially as a raw material, an adhesive, a coating agent, and the like for optical parts and molded articles. For example, a curable composition that forms a cured product having excellent transparency is used as a raw material or a coating agent for optical parts, and a curable composition that forms a cured product having high adhesive strength is used as an adhesive or a coating agent. It is often used preferably.
In recent years, curable compositions have also been used as compositions for optical element fixing materials, such as adhesives for optical element fixing materials and sealing agents for optical element fixing materials, when producing optical element sealing bodies. It is coming.
 光素子には、半導体レーザー(LD)等の各種レーザーや発光ダイオード(LED)等の発光素子、受光素子、複合光素子、光集積回路等がある。近年においては、発光のピーク波長がより短波長である青色光や白色光の光素子が開発され広く使用されてきている。このような発光のピーク波長の短い発光素子の高輝度化が飛躍的に進み、これに伴い光素子の発熱量がさらに大きくなっていく傾向にある。 Examples of the optical element include various lasers such as a semiconductor laser (LD), light emitting elements such as a light emitting diode (LED), a light receiving element, a composite optical element, and an optical integrated circuit. In recent years, blue and white light optical elements having a shorter peak emission wavelength have been developed and widely used. Such a light emitting element with a short peak wavelength of light emission has been dramatically increased in brightness, and accordingly, the amount of heat generated by the optical element tends to be further increased.
 ところが、近年における光素子の高輝度化に伴い、光素子固定材用組成物の硬化物が、より高いエネルギーの光や光素子から発生するより高温の熱に長時間さらされ、劣化してクラックが発生したり、剥離したりするという問題が生じた。 However, with the recent increase in brightness of optical elements, the cured product of the composition for optical element fixing materials is exposed to higher energy light and higher temperature heat generated from the optical element for a long time, and deteriorates and cracks. The problem of generating or peeling occurred.
 この問題を解決するべく、特許文献1~3において、ポリシルセスキオキサン化合物を主成分とする光素子固定材用組成物が提案されている。
 しかしながら、特許文献1~3に記載されたポリシルセスキオキサン化合物を主成分とする光素子固定材用組成物の硬化物であっても、十分な接着力を保ちつつ、耐熱性及び透明性を得るのは困難な場合があった。
In order to solve this problem, Patent Documents 1 to 3 propose compositions for optical element fixing materials containing a polysilsesquioxane compound as a main component.
However, even a cured product of a composition for optical element fixing materials mainly composed of a polysilsesquioxane compound described in Patent Documents 1 to 3, heat resistance and transparency can be maintained while maintaining sufficient adhesive force. It was sometimes difficult to get.
 また、光素子封止用に用いる組成物として、特許文献4には、脂環式エポキシ樹脂を用いるエポキシ樹脂組成物が、特許文献5には、ポリチオール化合物を含有するエポキシ樹脂組成物が提案されている。
 しかしながら、これらの組成物を用いる場合であっても、経時変化に伴う十分な耐光劣化性を満足することができなかったり、接着力が低下する場合があった。
 従って、耐熱性、透明性により優れ、高い接着力を有する硬化物が得られる硬化性組成物の開発が切望されている。
Moreover, as a composition used for optical element sealing, Patent Document 4 proposes an epoxy resin composition using an alicyclic epoxy resin, and Patent Document 5 proposes an epoxy resin composition containing a polythiol compound. ing.
However, even when these compositions are used, there is a case where sufficient light deterioration resistance accompanying a change with time cannot be satisfied or the adhesive force is lowered.
Therefore, development of a curable composition that is superior in heat resistance and transparency and that can provide a cured product having high adhesive force is eagerly desired.
特開2004-359933号公報JP 2004-359933 A 特開2005-263869号公報JP 2005-263869 A 特開2006-328231号公報JP 2006-328231 A 特開平7-309927号公報Japanese Patent Laid-Open No. 7-309927 特開2009-001752号公報JP 2009-001752 A
 本発明は、かかる従来技術の実情に鑑みてなされたものであり、耐熱性及び透明性に優れ、かつ、高い接着力を有する硬化物が得られる硬化性組成物、該組成物を硬化してなる硬化物、並びに、該組成物を光素子固定材用接着剤又は光素子固定材用封止剤として使用する方法を提供することを課題とする。 The present invention has been made in view of the situation of such prior art, and is a curable composition that is excellent in heat resistance and transparency, and that can obtain a cured product having high adhesive strength, and curing the composition. It is an object of the present invention to provide a cured product and a method of using the composition as an adhesive for optical element fixing materials or an encapsulant for optical element fixing materials.
 本発明者らは上記課題を解決すべく鋭意研究を重ねた結果、(A)特定のシラン化合物ランダム共重合体、及び(B)特定のシランカップリング剤を特定の割合で含有する組成物は、長期にわたって優れた透明性、耐熱性を保ちつつ、かつ、高温においても高い接着力を有する硬化物となることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the inventors of the present invention have (A) a specific silane compound random copolymer and (B) a composition containing a specific silane coupling agent in a specific ratio. The inventors have found that the cured product has excellent transparency and heat resistance over a long period of time and has high adhesive force even at high temperatures, and has completed the present invention.
 かくして本発明の第1によれば、下記〔1〕~〔8〕の硬化性組成物が提供される。
〔1〕(A)分子内に、下記式(i)、(ii)及び(iii)
Thus, according to the first aspect of the present invention, the following curable compositions [1] to [8] are provided.
[1] (A) In the molecule, the following formulas (i), (ii) and (iii)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、Rは、水素原子又は炭素数1~6のアルキル基を表し、Dは、単結合又は置換基を有していてもよい炭素数1~20の2価の有機基を表す。Rは、炭素数1~20のアルキル基又は置換基を有していてもよいフェニル基を表す。)
で表される繰り返し単位のうち、(i)及び(ii)、(i)及び(iii)、(ii)及び(iii)、又は(i)、(ii)及び(iii)の繰り返し単位を有し、重量平均分子量が、1,000~30,000であるシラン化合物ランダム共重合体と、(B)反応性環状エーテル構造を有するシランカップリング剤とを、(A)と(B)の質量比で、(A):(B)=95:5~80:20の割合で含有する硬化性組成物。
〔2〕前記(A)のシラン化合物ランダム共重合体が、式:R-CH(CN)-D-で表される基の存在量(〔R-CH(CN)-D〕)とRの存在量(〔R〕)のモル比で、〔R-CH(CN)-D〕:〔R〕=5:95~50:50のシラン化合物ランダム共重合体である〔1〕に記載の硬化性組成物。
(In the formula, R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and D represents a single bond or a divalent organic group having 1 to 20 carbon atoms which may have a substituent. R 2 represents an alkyl group having 1 to 20 carbon atoms or a phenyl group which may have a substituent.
(I) and (ii), (i) and (iii), (ii) and (iii), or (i), (ii) and (iii) having repeating units And a silane compound random copolymer having a weight average molecular weight of 1,000 to 30,000, and (B) a silane coupling agent having a reactive cyclic ether structure, the masses of (A) and (B). A curable composition containing (A) :( B) in a ratio of 95: 5 to 80:20.
[2] The silane compound random copolymer of the above (A) has a group abundance ([R 1 —CH (CN) -D]) represented by the formula: R 1 —CH (CN) —D— in a molar ratio of the abundance of R 2 ([R 2]), [R 1 -CH (CN) -D]: [R 2] = 5:95 to 50: a silane compound of 50 random copolymer [ [1] The curable composition according to item 1.
〔3〕(A’)式(1):R-CH(CN)-D-Si(OR(X3-p
(式中、Rは、水素原子又は炭素数1~6のアルキル基を表し、Dは、単結合又は置換基を有していてもよい炭素数1~20の2価の有機基を表す。Rは炭素数1~6のアルキル基を表し、Xはハロゲン原子を表し、pは0~3の整数を表す。)
で表されるシラン化合物(1)の少なくとも一種、及び
式(2):RSi(OR(X3-q
(式中、Rは、炭素数1~20のアルキル基又は置換基を有していてもよいフェニル基を表し、Rは炭素数1~6のアルキル基を表し、Xはハロゲン原子を表し、qは0~3の整数を表す。)
で表されるシラン化合物(2)の少なくとも一種を含むシラン化合物の混合物を縮合させて得られる、重量平均分子量が、1,000~30,000であるシラン化合物ランダム共重合体と、(B)反応性環状エーテル構造を有するシランカップリング剤とを、(A’)と(B)の質量比で、(A’):(B)=95:5~80:20の割合で含有する硬化性組成物。
〔4〕前記(A’)のシラン化合物ランダム共重合体が、シラン化合物(1)とシラン化合物(2)とを、モル比で、〔シラン化合物(1)〕:〔シラン化合物(2)〕=5:95~50:50の割合で縮合させて得られるシラン化合物ランダム共重合体である〔3〕に記載の硬化性組成物。
[3] (A ′) Formula (1): R 1 —CH (CN) —D—Si (OR 3 ) p (X 1 ) 3-p
(In the formula, R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and D represents a single bond or a divalent organic group having 1 to 20 carbon atoms which may have a substituent. R 3 represents an alkyl group having 1 to 6 carbon atoms, X 1 represents a halogen atom, and p represents an integer of 0 to 3.)
And at least one silane compound (1) represented by formula (2): R 2 Si (OR 4 ) q (X 2 ) 3-q
(In the formula, R 2 represents an alkyl group having 1 to 20 carbon atoms or an optionally substituted phenyl group, R 4 represents an alkyl group having 1 to 6 carbon atoms, and X 2 represents a halogen atom. Q represents an integer of 0 to 3.)
A silane compound random copolymer having a weight average molecular weight of 1,000 to 30,000, obtained by condensing a mixture of silane compounds containing at least one silane compound (2) represented by formula (B): Curability containing a silane coupling agent having a reactive cyclic ether structure in a ratio of (A ′) :( B) = 95: 5 to 80:20 in a mass ratio of (A ′) to (B) Composition.
[4] The silane compound random copolymer of (A ′) described above has a molar ratio of silane compound (1) and silane compound (2): [silane compound (1)]: [silane compound (2)] = The curable composition according to [3], which is a silane compound random copolymer obtained by condensation at a ratio of 5:95 to 50:50.
〔5〕前記(B)のシランカップリング剤が、シクロヘキセンオキシド基を有するシランカップリング剤である〔1〕~〔4〕のいずれかに記載の硬化性組成物。
〔6〕さらに(C)金属原子がアルミニウム、ジルコニウム又はチタンである金属錯体化合物を含有し、(C)成分の含有量が、(A)成分又は(A’)成分100質量部に対して、0質量部超10質量部以下である〔1〕~〔5〕のいずれかに記載の硬化性組成物。
〔7〕さらに(D)カルボキシル基を有する脂環式酸無水物を含有し、(D)成分の含有量が、(A)成分又は(A’)成分100質量部に対して、0質量部超10質量部以下である〔1〕~〔5〕のいずれかに記載の硬化性組成物。
〔8〕光素子固定材用組成物である〔1〕~〔7〕のいずれかに記載の硬化性組成物。
[5] The curable composition according to any one of [1] to [4], wherein the silane coupling agent (B) is a silane coupling agent having a cyclohexene oxide group.
[6] Further, (C) a metal complex compound in which the metal atom is aluminum, zirconium or titanium is contained, and the content of (C) component is 100 parts by mass of (A) component or (A ′) component, The curable composition according to any one of [1] to [5], which is more than 0 part by mass and not more than 10 parts by mass.
[7] Further, (D) an alicyclic acid anhydride having a carboxyl group is contained, and the content of component (D) is 0 part by mass with respect to 100 parts by mass of component (A) or component (A ′). The curable composition according to any one of [1] to [5], which is super 10 parts by mass or less.
[8] The curable composition according to any one of [1] to [7], which is a composition for an optical element fixing material.
 本発明の第2によれば、下記〔9〕、〔10〕の硬化物が提供される。
〔9〕〔1〕~〔7〕のいずれかに記載の硬化性組成物を硬化してなる硬化物。
〔10〕〔1〕~〔7〕のいずれかに記載の硬化性組成物を硬化してなる硬化物。
According to the second aspect of the present invention, the following [9] and [10] cured products are provided.
[9] A cured product obtained by curing the curable composition according to any one of [1] to [7].
[10] A cured product obtained by curing the curable composition according to any one of [1] to [7].
 本発明の第3によれば、下記〔11〕、〔12〕の本発明の硬化性組成物を使用する方法が提供される。
〔11〕〔1〕~〔7〕のいずれかに記載の硬化性組成物を、光素子固定材用接着剤として使用する方法。
〔12〕〔1〕~〔7〕のいずれかに記載の硬化性組成物を、光素子固定材用封止剤として使用する方法。
According to the third aspect of the present invention, there is provided a method of using the following curable composition of the present invention [11], [12].
[11] A method of using the curable composition according to any one of [1] to [7] as an adhesive for an optical element fixing material.
[12] A method of using the curable composition according to any one of [1] to [7] as a sealant for an optical element fixing material.
 本発明の硬化性組成物によれば、高エネルギーの光が照射される場合や高温状態であっても、着色して透明性が低下したりすることがなく、長期にわたって優れた透明性を有し、かつ、高い接着力を有する硬化物を得ることができる。
 本発明の硬化性組成物は、光素子固定材を形成する際に使用することができ、特に、光素子固定材用接着剤、及び光素子固定材用封止剤として好適に使用することができる。
According to the curable composition of the present invention, even when irradiated with high energy light or in a high temperature state, it does not color and does not deteriorate transparency, and has excellent transparency over a long period of time. In addition, a cured product having high adhesive strength can be obtained.
The curable composition of the present invention can be used when forming an optical element fixing material, and particularly preferably used as an adhesive for an optical element fixing material and an encapsulant for an optical element fixing material. it can.
 以下、本発明を、1)硬化性組成物、2)硬化物、及び、3)硬化性組成物の使用方法、に項分けして詳細に説明する。
1)硬化性組成物
 本発明の硬化性組成物は、
(A)分子内に、下記式(i)、(ii)及び(iii)
Hereinafter, the present invention will be described in detail by dividing it into 1) a curable composition, 2) a cured product, and 3) a method of using the curable composition.
1) Curable composition The curable composition of the present invention comprises:
(A) In the molecule, the following formulas (i), (ii) and (iii)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、Rは、水素原子又は炭素数1~6のアルキル基を表し、Dは、単結合又は置換基を有していてもよい炭素数1~20の2価の有機基を表す。Rは、炭素数1~20のアルキル基又は置換基を有していてもよいフェニル基を表す。)
で表される繰り返し単位のうち、(i)及び(ii)、(i)及び(iii)、(ii)及び(iii)、又は(i)、(ii)及び(iii)の繰り返し単位を有し、重量平均分子量が、1,000~30,000であるシラン化合物ランダム共重合体と、(B)反応性環状エーテル構造を有するシランカップリング剤とを、(A)と(B)の質量比で、(A):(B)=95:5~80:20の割合で含有することを特徴とする。
(In the formula, R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and D represents a single bond or a divalent organic group having 1 to 20 carbon atoms which may have a substituent. R 2 represents an alkyl group having 1 to 20 carbon atoms or a phenyl group which may have a substituent.
(I) and (ii), (i) and (iii), (ii) and (iii), or (i), (ii) and (iii) having repeating units And a silane compound random copolymer having a weight average molecular weight of 1,000 to 30,000, and (B) a silane coupling agent having a reactive cyclic ether structure, the masses of (A) and (B). The ratio is (A) :( B) = 95: 5 to 80:20.
(A)シラン化合物ランダム共重合体
 本発明の硬化性組成物は、(A)成分として、前記式(i)、(ii)及び(iii)で表される繰り返し単位のうち、(i)及び(ii)、(i)及び(iii)、(ii)及び(iii)、又は(i)、(ii)及び(iii)の繰り返し単位を有し、重量平均分子量が、1,000~30,000であるシラン化合物ランダム共重合体(以下、「シラン化合物ランダム共重合体(A)」ということがある。)を含有する。
 シラン化合物ランダム共重合体(A)は、(i)、(ii)、(iii)で表される繰り返し単位をそれぞれ一種有していてもよく、二種以上有していてもよい。
(A) Silane compound random copolymer The curable composition of the present invention comprises (i) and a repeating unit represented by the above formulas (i), (ii) and (iii) as the component (A). Having a repeating unit of (ii), (i) and (iii), (ii) and (iii), or (i), (ii) and (iii), and having a weight average molecular weight of 1,000 to 30, 000 is a silane compound random copolymer (hereinafter, sometimes referred to as “silane compound random copolymer (A)”).
The silane compound random copolymer (A) may have one type of repeating unit represented by (i), (ii), or (iii), or may have two or more types.
 式(i)~(iii)中、Rは、水素原子又は炭素数1~6のアルキル基を表し、水素原子が好ましい。
 Rで表される炭素数1~6のアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基、i-ブチル基、s-ブチル基、n-ペンチル基、n-ヘキシル基等が挙げられる。
In the formulas (i) to (iii), R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom.
Examples of the alkyl group having 1 to 6 carbon atoms represented by R 1 include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, t-butyl group, i-butyl group, s- Examples thereof include a butyl group, an n-pentyl group, and an n-hexyl group.
 Dは単結合又は置換基を有していてもよい炭素数1~20の2価の有機基を表す。
 当該2価の有機基としては、置換基を有していてもよい炭素数1~20のアルキレン基、置換基を有していてもよい炭素数2~20のアルケニレン基、置換基を有していてもよい炭素数2~20のアルキニレン基、置換基を有していてもよい炭素数6~20のアリーレン基、置換基を有していてもよい(アルキレン基、アルケニレン基、又はアルキニレン基)と置換基を有していてもよいアリーレン基との組み合わせからなる、置換基を有していてもよい炭素数7~20の2価の有機基等が挙げられる。
D represents a single bond or a divalent organic group having 1 to 20 carbon atoms which may have a substituent.
Examples of the divalent organic group include an alkylene group having 1 to 20 carbon atoms which may have a substituent, an alkenylene group having 2 to 20 carbon atoms which may have a substituent, and a substituent. May have an alkynylene group having 2 to 20 carbon atoms, an arylene group having 6 to 20 carbon atoms which may have a substituent, and may have a substituent (an alkylene group, an alkenylene group or an alkynylene group) ) And an arylene group which may have a substituent, and a divalent organic group having 7 to 20 carbon atoms which may have a substituent.
 前記アルキレン基のアルキレン基としては、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等が挙げられる。
 前記アルケニレン基のアルケニレン基としては、ビニレン基、プロペニレン基、ブテニレン基、ペンテニレン基等が挙げられる。
 前記アルキニレン基のアルキニレン基としては、エチニレン基、プロピニレン基等が挙げられる。
 前記アリーレン基のアリーレン基としては、o-フェニレン基、m-フェニレン基、p-フェニレン基、2,6-ナフチレン基等が挙げられる。
Examples of the alkylene group of the alkylene group include a methylene group, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group.
Examples of the alkenylene group of the alkenylene group include a vinylene group, a propenylene group, a butenylene group, and a pentenylene group.
Examples of the alkynylene group of the alkynylene group include an ethynylene group and a propynylene group.
Examples of the arylene group of the arylene group include an o-phenylene group, an m-phenylene group, a p-phenylene group, and a 2,6-naphthylene group.
 前記アルキレン基、アルケニレン基、及びアルキニレン基の置換基としては、フッ素原子、塩素原子等のハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;メチルチオ基、エチルチオ基等のアルキルチオ基;メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基;等が挙げられる。 Examples of the substituent for the alkylene group, alkenylene group, and alkynylene group include a halogen atom such as a fluorine atom and a chlorine atom; an alkoxy group such as a methoxy group and an ethoxy group; an alkylthio group such as a methylthio group and an ethylthio group; a methoxycarbonyl group; An alkoxycarbonyl group such as an ethoxycarbonyl group; and the like.
 前記アリーレン基の置換基としては、シアノ基;ニトロ基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メチル基、エチル基等のアルキル基;メトキシ基、エトキシ基等のアルコキシ基;メチルチオ基、エチルチオ基等のアルキルチオ基;等が挙げられる。
 これらの置換基は、アルキレン基、アルケニレン基、アルキニレン基及びアリーレン基等の基において任意の位置に結合していてよく、同一若しくは相異なって複数個が結合していてもよい。
Examples of the substituent for the arylene group include: a cyano group; a nitro group; a halogen atom such as a fluorine atom, a chlorine atom and a bromine atom; an alkyl group such as a methyl group and an ethyl group; an alkoxy group such as a methoxy group and an ethoxy group; And alkylthio groups such as ethylthio group; and the like.
These substituents may be bonded at arbitrary positions in groups such as an alkylene group, an alkenylene group, an alkynylene group, and an arylene group, and a plurality of them may be bonded in the same or different manner.
 置換基を有していてもよい(アルキレン基、アルケニレン基、又はアルキニレン基)と置換基を有していてもよいアリーレン基との組み合わせからなる、置換基を有していてもよい炭素数7~20の2価の有機基としては、前記置換基を有していてもよい(アルキレン基、アルケニレン基、又はアルキニレン基)の少なくとも一種と、前記置換基を有していてもよいアリーレン基の少なくとも一種とが直列に結合した基が挙げられる。具体的には、下記式で表される基が挙げられる。 7 carbon atoms which may have a substituent, which is a combination of an optionally substituted (alkylene group, alkenylene group or alkynylene group) and an arylene group which may have a substituent. The divalent organic group of ˜20 includes at least one of the above-mentioned substituents (an alkylene group, an alkenylene group, or an alkynylene group) and an arylene group that may have the above-mentioned substituent. Examples include a group in which at least one kind is bonded in series. Specific examples include groups represented by the following formula.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 これらの中でも、Dとしては、高い接着力を有する硬化物が得られることから、炭素数1~10のアルキレン基が好ましく、炭素数1~6のアルキレン基がより好ましく、炭素数1~3のアルキレン基が特に好ましい。 Among these, D is preferably an alkylene group having 1 to 10 carbon atoms, more preferably an alkylene group having 1 to 6 carbon atoms, and more preferably an alkylene group having 1 to 3 carbon atoms because a cured product having high adhesive strength can be obtained. An alkylene group is particularly preferred.
 式(i)~(iii)中、Rは、炭素数1~20のアルキル基又は置換基を有していてもよいフェニル基を表す。
 Rで表される炭素数1~20のアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、i-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基等が挙げられる。
In formulas (i) to (iii), R 2 represents an alkyl group having 1 to 20 carbon atoms or an optionally substituted phenyl group.
Examples of the alkyl group having 1 to 20 carbon atoms represented by R 2 include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, i-butyl group, t- Examples include a butyl group, n-pentyl group, n-hexyl group, n-octyl group, i-octyl group, n-nonyl group, n-decyl group, n-dodecyl group and the like.
 Rで表される置換基を有していてもよいフェニル基の置換基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、i-オクチル基等のアルキル基;メトキシ基、エトキシ基等のアルコキシ基;フッ素原子、塩素原子等のハロゲン原子等が挙げられる。
 Rで表される置換基を有していてもよいフェニル基の具体例としては、フェニル基、2-クロロフェニル基、4-メチルフェニル基、3-エチルフェニル基、2,4-ジメチルフェニル基、2-メトキシフェニル基等が挙げられる。
Examples of the substituent of the phenyl group which may have a substituent represented by R 2 include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, i -Alkyl groups such as butyl, t-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl and i-octyl; alkoxy groups such as methoxy and ethoxy; fluorine atoms And halogen atoms such as chlorine atom.
Specific examples of the phenyl group which may have a substituent represented by R 2 include a phenyl group, a 2-chlorophenyl group, a 4-methylphenyl group, a 3-ethylphenyl group, and a 2,4-dimethylphenyl group. And 2-methoxyphenyl group.
 シラン化合物ランダム共重合体(A)においては、式:R-CH(CN)-D-で表される基の存在量(〔R-CH(CN)-D〕)とRの存在量(〔R〕)のモル比が、〔R-CH(CN)-D〕:〔R〕=5:95~50:50が好ましく、10:90~40:60がより好ましい。当該範囲内にあることで、得られる硬化物は透明性及び接着性に優れ、かつ、耐熱性に優れるため高温に置いた後であってもこれらの性質の低下が抑えられる。
 式:R-CH(CN)-D-で表される基及びRの存在量は、例えば、シラン化合物ランダム共重合体(A)のNMRスペクトルを測定して定量することができる。
In the silane compound random copolymer (A), the abundance of the group represented by the formula: R 1 —CH (CN) —D— ([R 1 —CH (CN) -D]) and the presence of R 2 The molar ratio of the amount ([R 2 ]) is preferably [R 1 —CH (CN) —D]: [R 2 ] = 5: 95 to 50:50, more preferably 10:90 to 40:60. By being in the said range, since the obtained hardened | cured material is excellent in transparency and adhesiveness, and is excellent in heat resistance, even after it sets it to high temperature, the fall of these characteristics is suppressed.
The amount of the group represented by the formula: R 1 —CH (CN) —D— and R 2 can be quantified by, for example, measuring the NMR spectrum of the silane compound random copolymer (A).
 シラン化合物ランダム共重合体(A)の重量平均分子量(Mw)は、1,000~30,000の範囲であり、好ましくは1,500~6,000の範囲である。当該範囲内にあることで、組成物の取扱性に優れ、かつ、接着性、耐熱性に優れる硬化物が得られる。重量平均分子量(Mw)は、例えば、テトラヒドロフラン(THF)を溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)による標準ポリスチレン換算値として求めることができる。 The weight average molecular weight (Mw) of the silane compound random copolymer (A) is in the range of 1,000 to 30,000, preferably in the range of 1,500 to 6,000. By being in the said range, the hardened | cured material which is excellent in the handleability of a composition, and excellent in adhesiveness and heat resistance is obtained. A weight average molecular weight (Mw) can be calculated | required as a standard polystyrene conversion value by the gel permeation chromatography (GPC) which uses tetrahydrofuran (THF) as a solvent, for example.
 シラン化合物ランダム共重合体(A)の分子量分布(Mw/Mn)は、特に制限されないが、通常1.0~3.0、好ましくは1.1~2.0の範囲である。当該範囲内にあることで、接着性、耐熱性に優れる硬化物が得られる。 The molecular weight distribution (Mw / Mn) of the silane compound random copolymer (A) is not particularly limited, but is usually 1.0 to 3.0, preferably 1.1 to 2.0. By being in the said range, the hardened | cured material which is excellent in adhesiveness and heat resistance is obtained.
 シラン化合物ランダム共重合体(A)は一種単独で、あるいは二種以上を組み合わせて用いることができる。 The silane compound random copolymer (A) can be used alone or in combination of two or more.
 本発明の硬化性組成物においては、前記(A)成分のシラン化合物ランダム共重合体(A)が、(A’)式(1):R-CH(CN)-D-Si(OR(X3-p(式中、Rは、水素原子又は炭素数1~6のアルキル基を表し、Dは、単結合又は置換基を有していてもよい炭素数1~20の2価の有機基を表す。Rは炭素数1~6のアルキル基を表し、Xはハロゲン原子を表し、pは0~3の整数を表す。)で表されるシラン化合物(1)の少なくとも一種、及び式(2):RSi(OR(X3-q(式中、Rは、炭素数1~20のアルキル基又は置換基を有していてもよいフェニル基を表し、Rは炭素数1~6のアルキル基を表し、Xはハロゲン原子を表し、qは0~3の整数を表す。)で表されるシラン化合物(2)の少なくとも一種を含むシラン化合物の混合物を縮合させて得られる、重量平均分子量が、1,000~30,000であるシラン化合物ランダム共重合体(以下、「シラン化合物ランダム共重合体(A’)」ということがある。)であってもよく、シラン化合物ランダム共重合体(A)が、シラン化合物ランダム共重合体(A’)であることが好ましい。 In the curable composition of the present invention, the silane compound random copolymer (A) as the component (A) is represented by (A ′) formula (1): R 1 —CH (CN) —D—Si (OR 3 P (X 1 ) 3-p (wherein R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and D represents a single bond or a carbon atom having 1 to 6 carbon atoms which may have a substituent) Represents a divalent organic group of 20. R 3 represents an alkyl group having 1 to 6 carbon atoms, X 1 represents a halogen atom, and p represents an integer of 0 to 3. At least one of 1) and formula (2): R 2 Si (OR 4 ) q (X 2 ) 3-q (wherein R 2 has an alkyl group having 1 to 20 carbon atoms or a substituent) represents a phenyl group which may, R 4 represents an alkyl group having 1 to 6 carbon atoms, tables an integer of X 2 represents a halogen atom, q is 0 to 3 Silane compound random copolymer having a weight average molecular weight of 1,000 to 30,000 obtained by condensing a mixture of silane compounds containing at least one of the silane compounds (2) represented by May be referred to as “silane compound random copolymer (A ′)”), and the silane compound random copolymer (A) is preferably a silane compound random copolymer (A ′). .
〔シラン化合物(1)〕
 シラン化合物(1)は、式(1):R-CH(CN)-D-Si(OR(X3-pで表される化合物である。シラン化合物(1)を用いることにより、硬化後においても透明性、接着力が良好なシラン化合物ランダム共重合体を得ることができる。
[Silane compound (1)]
The silane compound (1) is a compound represented by the formula (1): R 1 —CH (CN) —D—Si (OR 3 ) p (X 1 ) 3-p . By using the silane compound (1), it is possible to obtain a silane compound random copolymer having excellent transparency and adhesion even after curing.
 式(1)中、Rは水素原子又は炭素数1~6のアルキル基を表し、水素原子が好ましい。具体例としては、シラン化合物ランダム共重合体(A)におけるRとして例示したものが挙げられる。
 式(1)中、Dは単結合又は置換基を有していてもよい炭素数1~20の2価の有機基を表す。当該2価の有機基の具体例としては、シラン化合物ランダム共重合体(A)におけるDとして例示したものが挙げられる。
In the formula (1), R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom. Specific examples include those exemplified as R 1 in the silane compound random copolymer (A).
In the formula (1), D represents a single bond or a divalent organic group having 1 to 20 carbon atoms which may have a substituent. Specific examples of the divalent organic group include those exemplified as D in the silane compound random copolymer (A).
 Rは、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基等の炭素数1~6のアルキル基を表す。
 Xはフッ素原子、塩素原子、臭素原子等のハロゲン原子を表す。
 pは0~3の整数を表す。
 pが2以上のとき、OR同士は同一であっても相異なっていてもよい。また、(3-p)が2以上のとき、X同士は同一であっても相異なっていてもよい。
R 3 is methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, i-butyl group, t-butyl group, n-pentyl group, n-hexyl group, etc. Represents an alkyl group having 1 to 6 carbon atoms.
X 1 represents a halogen atom such as a fluorine atom, a chlorine atom, or a bromine atom.
p represents an integer of 0 to 3.
When p is 2 or more, the ORs 3 may be the same or different. When (3-p) is 2 or more, X 1 may be the same or different.
 シラン化合物(1)の具体例としては、シアノメチルトリメトキシシラン、シアノメチルトリエトキシシラン、1-シアノエチルトリメトキシシラン、2-シアノエチルトリメトキシシラン、2-シアノエチルトリエトキシシラン、2-シアノエチルトリプロポキシシラン、3-シアノプロピルトリメトキシシラン、3-シアノプロピルトリエトキシシラン、3-シアノプロピルトリプロポキシシラン、3-シアノプロピルトリブトキシシラン、4-シアノブチルトリメトキシシラン、5-シアノペンチルトリメトキシシラン、2-シアノプロピルトリメトキシシラン、2-(シアノメトキシ)エチルトリメトキシシラン、2-(2-シアノエトキシ)エチルトリメトキシシラン、o-(シアノメチル)フェニルトリプロポキシシラン、m-(シアノメチル)フェニルトリメトキシシラン、p-(シアノメチル)フェニルトリエトキシシラン、p-(2-シアノエチル)フェニルトリメトキシシラン等のトリアルコキシシラン化合物類; Specific examples of the silane compound (1) include cyanomethyltrimethoxysilane, cyanomethyltriethoxysilane, 1-cyanoethyltrimethoxysilane, 2-cyanoethyltrimethoxysilane, 2-cyanoethyltriethoxysilane, 2-cyanoethyltripropoxysilane. 3-cyanopropyltrimethoxysilane, 3-cyanopropyltriethoxysilane, 3-cyanopropyltripropoxysilane, 3-cyanopropyltributoxysilane, 4-cyanobutyltrimethoxysilane, 5-cyanopentyltrimethoxysilane, 2 -Cyanopropyltrimethoxysilane, 2- (cyanomethoxy) ethyltrimethoxysilane, 2- (2-cyanoethoxy) ethyltrimethoxysilane, o- (cyanomethyl) phenyltripropoxysilane, m (Cyanomethyl) phenyl trimethoxy silane, p-(cyanomethyl) phenyl triethoxysilane, p-(2-cyanoethyl) trialkoxysilane compounds such as phenyltrimethoxysilane;
 シアノメチルトリクロロシラン、シアノメチルブロモジメトキシシラン、2-シアノエチルジクロロメトキシシラン、2-シアノエチルジクロロエトキシシラン、3-シアノプロピルトリクロロシラン、3-シアノプロピルトリブロモシラン、3-シアノプロピルジクロロメトキシシラン、3-シアノプロピルジクロロエトキシシラン、3-シアノプロピルクロロジメトキシシラン、3-シアノプロピルクロロジエトキシシラン、4-シアノブチルクロロジエトキシシラン、3-シアノ-n-ブチルクロロジエトキシシラン、2-(2-シアノエトキシ)エチルトリクロロシラン、2-(2-シアノエトキシ)エチルブロモジエトキシシラン、2-(2-シアノエトキシ)エチルジクロロプロポキシシラン、o-(2-シアノエチル)フェニルトリクロロシラン、m-(2-シアノエチル)フェニルメトキシジブロモシラン、p-(2-シアノエチル)フェニルジメトキシクロロシラン、p-(2-シアノエチル)フェニルトリブロモシラン等のハロゲノシラン化合物類;等が挙げられる。
 これらのシラン化合物(1)は一種単独で、或いは二種以上を組み合わせて用いることができる。
Cyanomethyltrichlorosilane, cyanomethylbromodimethoxysilane, 2-cyanoethyldichloromethoxysilane, 2-cyanoethyldichloroethoxysilane, 3-cyanopropyltrichlorosilane, 3-cyanopropyltribromosilane, 3-cyanopropyldichloromethoxysilane, 3- Cyanopropyldichloroethoxysilane, 3-cyanopropylchlorodimethoxysilane, 3-cyanopropylchlorodiethoxysilane, 4-cyanobutylchlorodiethoxysilane, 3-cyano-n-butylchlorodiethoxysilane, 2- (2-cyano Ethoxy) ethyltrichlorosilane, 2- (2-cyanoethoxy) ethylbromodiethoxysilane, 2- (2-cyanoethoxy) ethyldichloropropoxysilane, o- (2-cyanoethyl) pheny Trichlorosilane, m-(2-cyanoethyl) phenylmethoxy dibromo silane, p-(2-cyanoethyl) phenyl dimethoxy chlorosilane, p-(2-cyanoethyl) halosilane compounds such as phenyltriethoxysilane bromo silane; and the like.
These silane compounds (1) can be used singly or in combination of two or more.
 これらの中でも、シラン化合物(1)としては、より優れた接着性を有する硬化物が得られることから、トリアルコキシシラン化合物類が好ましく、2-シアノエチル基を有するトリアルコキシシラン化合物類、又は3-シアノプロピル基を有するトリアルコキシシラン化合物類がより好ましい。 Of these, trialkoxysilane compounds are preferred as the silane compound (1) because a cured product having better adhesion can be obtained, or trialkoxysilane compounds having a 2-cyanoethyl group, or 3- Trialkoxysilane compounds having a cyanopropyl group are more preferred.
〔シラン化合物(2)〕
 シラン化合物(2)は、式(2):RSi(OR(X3-qで表される化合物である。
 式(2)中、Rは、炭素数1~20のアルキル基又は置換基を有していてもよいフェニル基を表す。具体例としては、シラン化合物ランダム共重合体(A)におけるRとして例示したものが挙げられる。
[Silane compound (2)]
The silane compound (2) is a compound represented by the formula (2): R 2 Si (OR 4 ) q (X 2 ) 3-q .
In formula (2), R 2 represents an alkyl group having 1 to 20 carbon atoms or a phenyl group which may have a substituent. Specific examples include those exemplified as R 2 in the silane compound random copolymer (A).
 Rは、前記Rと同様の炭素数1~6のアルキル基を表す。
 Xは、前記Xと同様のハロゲン原子を表す。
 qは0~3のいずれかの整数を表す。
 qが2以上のとき、OR同士は同一であっても相異なっていてもよい。また、(3-q)が2以上のとき、X同士は同一であっても相異なっていてもよい。
R 4 represents the same alkyl group having 1 to 6 carbon atoms as R 3 .
X 2 represents the same halogen atom as X 1 .
q represents an integer of 0 to 3.
When q is 2 or more, OR 4 may be the same or different. When (3-q) is 2 or more, X 2 may be the same or different.
 シラン化合物(2)の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-ブチルトリエトキシシラン、i-ブチルトリメトキシシラン、n-ペンチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、i-オクチルトリエトキシシラン、ドデシルトリメトキシシラン、メチルジメトキシエトキシシラン、メチルジエトキシメトキシシラン等のアルキルトリアルコキシシラン化合物類;
 メチルクロロジメトキシシラン、メチルジクロロメトキシシラン、メチルジクロロメトキシシラン、メチルクロロジエトキシシラン、エチルクロロジメトキシシラン、エチルジクロロメトキシシラン、n-プロピルクロロジメトキシシラン、n-プロピルジクロロメトキシシラン等のアルキルハロゲノアルコキシシラン化合物類;
 メチルトリクロロシラン、メチルトリブロモシラン、エチルトリクロロシラン、エチルトリブロモシラン、n-プロピルトリクロロシラン等のアルキルトリハロゲノシラン化合物類;
Specific examples of the silane compound (2) include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-butyltriethoxysilane, i-butyltrimethoxy. Alkyltrialkoxysilane compounds such as silane, n-pentyltriethoxysilane, n-hexyltrimethoxysilane, i-octyltriethoxysilane, dodecyltrimethoxysilane, methyldimethoxyethoxysilane, methyldiethoxymethoxysilane;
Alkyl halogenoalkoxysilanes such as methylchlorodimethoxysilane, methyldichloromethoxysilane, methyldichloromethoxysilane, methylchlorodiethoxysilane, ethylchlorodimethoxysilane, ethyldichloromethoxysilane, n-propylchlorodimethoxysilane, n-propyldichloromethoxysilane Compounds;
Alkyltrihalogenosilane compounds such as methyltrichlorosilane, methyltribromosilane, ethyltrichlorosilane, ethyltribromosilane, n-propyltrichlorosilane;
 フェニルトリメトキシシラン、4-メトキシフェニルトリメトキシシラン、2-クロロフェニルトリメトキシシラン、フェニルトリエトキシシラン、2-メトキシフェニルトリエトキシシラン、フェニルジメトキシエトキシシラン、フェニルジエトキシメトキシシラン等の置換基を有していてもよいフェニルトリアルコキシシラン化合物類;
 フェニルクロロジメトキシシラン、フェニルジクロロメトキシシラン、フェニルクロロメトキシエトキシシラン、フェニルクロロジエトキシシラン、フェニルジクロロエトキシシラン等の置換基を有していてもよいフェニルハロゲノアルコキシシラン化合物類;
 フェニルトリクロロシラン、フェニルトリブロモシラン、4-メトキシフェニルトリクロロシラン、フェニルトリクロロシラン、2-エトキシフェニルトリクロロシラン、2-クロロフェニルトリクロロシラン等の置換基を有していてもよいフェニルトリハロゲノシラン化合物;が挙げられる。
 これらのシラン化合物(2)は一種単独で、或いは二種以上を組み合わせて用いることができる。
Has substituents such as phenyltrimethoxysilane, 4-methoxyphenyltrimethoxysilane, 2-chlorophenyltrimethoxysilane, phenyltriethoxysilane, 2-methoxyphenyltriethoxysilane, phenyldimethoxyethoxysilane, phenyldiethoxymethoxysilane Optionally phenyltrialkoxysilane compounds;
Phenylhalogenoalkoxysilane compounds which may have a substituent such as phenylchlorodimethoxysilane, phenyldichloromethoxysilane, phenylchloromethoxyethoxysilane, phenylchlorodiethoxysilane, phenyldichloroethoxysilane;
A phenyltrihalogenosilane compound which may have a substituent such as phenyltrichlorosilane, phenyltribromosilane, 4-methoxyphenyltrichlorosilane, phenyltrichlorosilane, 2-ethoxyphenyltrichlorosilane, 2-chlorophenyltrichlorosilane; Can be mentioned.
These silane compounds (2) can be used singly or in combination of two or more.
〔シラン化合物の混合物〕
 シラン化合物ランダム共重合体(A’)を製造する際に用いられるシラン化合物の混合物としては、シラン化合物(1)及びシラン化合物(2)からなる混合物であっても、さらに、本発明の目的を阻害しない範囲でその他のシラン化合物を含む混合物であってもよいが、シラン化合物(1)及びシラン化合物(2)からなる混合物が好ましい。
[A mixture of silane compounds]
The mixture of silane compounds used when producing the silane compound random copolymer (A ′) may be a mixture of the silane compound (1) and the silane compound (2). Although it may be a mixture containing other silane compounds as long as they are not inhibited, a mixture comprising the silane compound (1) and the silane compound (2) is preferable.
 シラン化合物(1)とシラン化合物(2)との使用割合は、モル比で、〔シラン化合物(1)〕:〔シラン化合物(2)〕=5:95~50:50であるのが好ましく、10:90~40:60がより好ましい。 The use ratio of the silane compound (1) and the silane compound (2) is preferably a molar ratio of [silane compound (1)]: [silane compound (2)] = 5:95 to 50:50, 10:90 to 40:60 is more preferable.
 前記シラン化合物の混合物を縮合させる方法としては、特に制限はないが、シラン化合物(1)、シラン化合物(2)、及び所望によりその他のシラン化合物を溶媒に溶解し、所定量の触媒を添加し、所定温度で撹拌する方法が挙げられる。 The method for condensing the mixture of the silane compounds is not particularly limited, but the silane compound (1), the silane compound (2), and other silane compounds as required are dissolved in a solvent, and a predetermined amount of catalyst is added. And a method of stirring at a predetermined temperature.
 用いる触媒は、酸触媒及び塩基触媒のいずれであってもよい。
 酸触媒としては、塩酸、硫酸、硝酸、リン酸等の無機酸;メタンスルホン酸、トリフルロロメタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、酢酸、トリフルオロ酢酸等の有機酸;等が挙げられる。
The catalyst used may be either an acid catalyst or a base catalyst.
Examples of the acid catalyst include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid; organic acids such as methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, acetic acid and trifluoroacetic acid; Can be mentioned.
 塩基触媒としては、トリメチルアミン、トリエチルアミン、リチウムジイソプロピルアミド、リチウムビス(トリメチルシリル)アミド、ピリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、アニリン、ピコリン、1,4-ジアザビシクロ[2.2.2]オクタン、イミダゾール等の有機塩基;水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム等の有機塩水酸化物;ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムt-ブトキシド、カリウムt-ブトキシド等の金属アルコラート;水素化ナトリウム、水素化カルシウム等の金属水素化物;水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等の金属水酸化物;炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム等の金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム等の金属炭酸水素塩;等が挙げられる。 Base catalysts include trimethylamine, triethylamine, lithium diisopropylamide, lithium bis (trimethylsilyl) amide, pyridine, 1,8-diazabicyclo [5.4.0] -7-undecene, aniline, picoline, 1,4-diazabicyclo [2 2.2] Organic bases such as octane and imidazole; Organic salt hydroxides such as tetramethylammonium hydroxide and tetraethylammonium hydroxide; Metals such as sodium methoxide, sodium ethoxide, sodium t-butoxide, and potassium t-butoxide Alcoholates; Metal hydrides such as sodium hydride and calcium hydride; Metal hydroxides such as sodium hydroxide, potassium hydroxide and calcium hydroxide; Metal carbonates such as sodium carbonate, potassium carbonate and magnesium carbonate; Carbonated water And the like are; sodium, metal hydrogen carbonates such as potassium hydrogen carbonate.
 触媒の使用量は、シラン化合物の合計1モルに対して、通常、0.1質量部以上10質量部以下、好ましくは0.5質量部以上5質量部以下である。 The amount of the catalyst used is usually 0.1 parts by mass or more and 10 parts by mass or less, preferably 0.5 parts by mass or more and 5 parts by mass or less with respect to a total of 1 mol of the silane compound.
 用いる溶媒は、シラン化合物の種類等に応じて、適宜選択することができる。例えば、水;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル等のエステル類;アセトン、メチルエチルケトン、メチルi-ブチルケトン、シクロヘキサノン等のケトン類;メチルアルコール、エチルアルコール、n-プロピルアルコール、i-プロピルアルコール、n-ブチルアルコール、i-ブチルアルコール、s-ブチルアルコール、t-ブチルアルコール等のアルコール類;等が挙げられる。これらの溶媒は一種単独で、或いは二種以上を混合して用いることができる。 The solvent to be used can be appropriately selected according to the type of the silane compound. For example, water; aromatic hydrocarbons such as benzene, toluene and xylene; esters such as methyl acetate, ethyl acetate, propyl acetate and methyl propionate; ketones such as acetone, methyl ethyl ketone, methyl i-butyl ketone and cyclohexanone; methyl And alcohols such as alcohol, ethyl alcohol, n-propyl alcohol, i-propyl alcohol, n-butyl alcohol, i-butyl alcohol, s-butyl alcohol and t-butyl alcohol. These solvents can be used alone or in combination of two or more.
 溶媒の使用量は、溶媒1リットルあたり、シラン化合物の総モル量が、通常0.1mol~10mol、好ましくは0.5mol~10molとなる量である。 The amount of the solvent used is such that the total molar amount of the silane compound per liter of solvent is usually 0.1 mol to 10 mol, preferably 0.5 mol to 10 mol.
 シラン化合物を縮合(反応)させるときの温度は、通常0℃から用いる溶媒の沸点までの温度範囲、好ましくは20℃~100℃の範囲である。反応温度があまりに低いと縮合反応の進行が不十分となる場合がある。一方、反応温度が高くなりすぎるとゲル化抑制が困難となる。反応は、通常30分から20時間で完結する。 The temperature at which the silane compound is condensed (reacted) is usually in the temperature range from 0 ° C. to the boiling point of the solvent used, preferably in the range of 20 ° C. to 100 ° C. If the reaction temperature is too low, the progress of the condensation reaction may be insufficient. On the other hand, if the reaction temperature is too high, it is difficult to suppress gelation. The reaction is usually completed in 30 minutes to 20 hours.
 反応終了後は、酸触媒を用いた場合は、反応溶液に炭酸水素ナトリウム等のアルカリ水溶液を添加することにより、塩基触媒を用いた場合は、反応溶液に塩酸等の酸を添加することにより中和を行い、その際に生じる塩をろ別又は水洗等により除去し、目的とするシラン化合物ランダム共重合体を得ることができる。 After completion of the reaction, when an acid catalyst is used, an alkaline aqueous solution such as sodium hydrogen carbonate is added to the reaction solution. When a base catalyst is used, the reaction solution is added with an acid such as hydrochloric acid. Summing is performed, and the salt generated at that time is removed by filtration or washing with water, and the desired silane compound random copolymer can be obtained.
(B)反応性環状エーテル構造を有するシランカップリング剤
 本発明の硬化性組成物は、(B)成分として、反応性環状エーテル構造を有するシランカップリング剤(以下、「シランカップリング剤(B)」ということがある。)を含む。本発明の硬化性組成物は、シランカップリング剤(B)を含有するため、相分離(白濁)することなく、透明性に優れ、高い接着力を有する硬化物を得ることができる。
(B) Silane Coupling Agent Having Reactive Cyclic Ether Structure The curable composition of the present invention has, as component (B), a silane coupling agent having a reactive cyclic ether structure (hereinafter referred to as “silane coupling agent (B ) "). Since the curable composition of this invention contains a silane coupling agent (B), it can obtain the cured | curing material which is excellent in transparency, and has high adhesive force, without carrying out phase separation (white turbidity).
 シランカップリング剤(B)における反応性環状エーテル構造は、反応性環状エーテル基を有する構造である。反応性環状エーテル基としては、例えば、エポキシ基;3,4-エポキシシクロヘキシル基などのシクロヘキセンオキシド基;オキセタニル基;テトラヒドロフラニル基;テトラヒドロピラニル基;等が挙げられる。これらの中でも、エポキシ基、シクロヘキセンオキシド基、オキセタニル基が好ましく、シクロヘキセンオキシド基がより好ましく、3,4-エポキシシクロヘキシル基が特に好ましい。
 反応性環状エーテル構造の具体例としては、下記式(E1)~(E3)
The reactive cyclic ether structure in the silane coupling agent (B) is a structure having a reactive cyclic ether group. Examples of the reactive cyclic ether group include an epoxy group; a cyclohexene oxide group such as a 3,4-epoxycyclohexyl group; an oxetanyl group; a tetrahydrofuranyl group; a tetrahydropyranyl group; Among these, an epoxy group, a cyclohexene oxide group, and an oxetanyl group are preferable, a cyclohexene oxide group is more preferable, and a 3,4-epoxycyclohexyl group is particularly preferable.
Specific examples of the reactive cyclic ether structure include the following formulas (E1) to (E3)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、hは、1~10の整数を表し、-(CH-中に、エーテル結合(-O-)が含まれていてもよい。)で表される基が挙げられる。
 なかでも、式(E2)で表される基が好ましく、式(E2)で表される基であって、hが2~8の整数である基が特に好ましい。
(Wherein, h represents an integer of 1 to 10, and — (CH 2 ) h — may contain an ether bond (—O—)).
Of these, a group represented by the formula (E2) is preferable, and a group represented by the formula (E2), in which h is an integer of 2 to 8, is particularly preferable.
 シランカップリング剤(B)としては、一つの分子中に、反応性環状エーテル構造(E)と、加水分解性基(OR)の両者を併せ持つ有機ケイ素化合物が好ましく、具体的には下記式(a)で表される化合物が挙げられる。 The silane coupling agent (B) is preferably an organosilicon compound having both a reactive cyclic ether structure (E) and a hydrolyzable group (OR b ) in one molecule. The compound represented by (a) is mentioned.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(a)中、Eは反応性環状エーテル構造を表し、Rは炭素数1~6のアルキル基又は置換基を有していてもよいフェニル基を表し、Rは炭素数1~6のアルキル基を表し、iは1~3の整数を表し、jは0~2の整数を表し、kは1~3の整数を表し、i+j+k=4である。 In the formula (a), E represents a reactive cyclic ether structure, R a represents an alkyl group having 1 to 6 carbon atoms or an optionally substituted phenyl group, and R b represents 1 to 6 carbon atoms. I represents an integer of 1 to 3, j represents an integer of 0 to 2, k represents an integer of 1 to 3, and i + j + k = 4.
 式(a)中、R、Rで表される炭素数1~6のアルキル基としては、前記Rで表される炭素数1~6のアルキル基として先に例示したのと同様の基が挙げられ、前記Rで表される置換基を有していてもよいフェニル基としては、前記Rで表される置換基を有していてもよいフェニル基として先に例示したのと同様の基が挙げられる。 In the formula (a), the alkyl group having 1 to 6 carbon atoms represented by R a and R b is the same as that exemplified above as the alkyl group having 1 to 6 carbon atoms represented by R 1 . The phenyl group which may have a substituent represented by R a is exemplified above as the phenyl group which may have a substituent represented by R 2 . The same group is mentioned.
 前記式(a)で表されるシランカップリング剤(B)の具体例としては、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシランなどのシクロヘキセンオキシド基を有するシランカップリング剤;
3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン等のグリシドキシ基を有するシランカップリング剤;
(オキセタン-3-イル)メチルトリメトキシシラン、(オキセタン-3-イル)メチルトリエトキシシラン、(オキセタン-3-イル)メチルメチルジメトキシシラン、(オキセタン-3-イル)メチルメチルジエトキシシラン、(オキセタン-3-イル)メチルエチルジメトキシシラン、(オキセタン-3-イル)メチルエチルジエトキシシラン、(オキセタン-3-イル)メチルフェニルジメトキシシラン、(オキセタン-3-イル)メチルフェニルジエトキシシラン、2-(オキセタン-3’-イル)エチルトリメトキシシラン、2-(オキセタン-3’-イル)エチルトリエトキシシランなどのオキセタニル基を有するシランカップリング剤;等が挙げられる。
 これらの中でも、入手容易性、及びより高い接着力を有する硬化物を得ることができる観点から、下記式(b)で表される化合物が好ましい。
Specific examples of the silane coupling agent (B) represented by the formula (a) include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxy. A silane coupling agent having a cyclohexene oxide group such as silane;
Silane coupling agents having a glycidoxy group such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 3-glycidoxypropylmethyldiethoxysilane ;
(Oxetane-3-yl) methyltrimethoxysilane, (oxetane-3-yl) methyltriethoxysilane, (oxetane-3-yl) methylmethyldimethoxysilane, (oxetane-3-yl) methylmethyldiethoxysilane, ( Oxetane-3-yl) methylethyldimethoxysilane, (oxetane-3-yl) methylethyldiethoxysilane, (oxetane-3-yl) methylphenyldimethoxysilane, (oxetane-3-yl) methylphenyldiethoxysilane, 2 Silane coupling agents having an oxetanyl group such as-(oxetane-3'-yl) ethyltrimethoxysilane and 2- (oxetane-3'-yl) ethyltriethoxysilane;
Among these, the compound represented by the following formula (b) is preferable from the viewpoint of availability and a cured product having higher adhesive strength.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(b)中、E2、R、i、j、kは前記と同じ意味を表す。Rとしては、メチル基、エチル基、プロピル基、メトキシメチル基等の、置換基を有していてもよい炭素数1~6のアルキル基が好ましい。 In formula (b), E2, Rb , i, j, k represent the same meaning as described above. R b is preferably an alkyl group having 1 to 6 carbon atoms which may have a substituent, such as a methyl group, an ethyl group, a propyl group, or a methoxymethyl group.
 式(b)で表されるシランカップリング剤の具体例としては、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等が挙げられる。
 シランカップリング剤(B)は一種単独で、或いは二種以上を組み合わせて用いることができる。
Specific examples of the silane coupling agent represented by the formula (b) include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, and the like. It is done.
A silane coupling agent (B) can be used individually by 1 type or in combination of 2 or more types.
 本発明の硬化性組成物は、前記(A)及び(B)成分を、(A)と(B)の質量比で、(A):(B)=95:5~80:20の割合で含有する。
 このような割合で(A)及び(B)成分を用いることにより、透明性、接着性に優れ、さらに耐熱性に優れ、高温にしても接着力が低下しにくい硬化物が得られる硬化性組成物を得ることができる。当該観点から、(A):(B)=95:5~85:15の割合が好ましく、92:8~87:13の割合が特に好ましい。
In the curable composition of the present invention, the components (A) and (B) are mixed in a mass ratio of (A) and (B) at a ratio of (A) :( B) = 95: 5 to 80:20. contains.
By using the components (A) and (B) at such a ratio, a curable composition that provides a cured product that is excellent in transparency and adhesiveness, is excellent in heat resistance, and does not easily deteriorate in adhesive strength even at high temperatures. You can get things. From this viewpoint, a ratio of (A) :( B) = 95: 5 to 85:15 is preferable, and a ratio of 92: 8 to 87:13 is particularly preferable.
 本発明の硬化性組成物は、(A)及び(B)成分に加えて、(C)金属原子がアルミニウム、ジルコニウム又はチタンである金属錯体化合物(以下、「金属錯体化合物(C)」ということがある。)を含有することが好ましい。金属錯体化合物(C)を用いることにより硬化反応を促進することができ、より接着力の高い硬化物が得られる。 In addition to the components (A) and (B), the curable composition of the present invention includes (C) a metal complex compound in which the metal atom is aluminum, zirconium or titanium (hereinafter referred to as “metal complex compound (C)”). It is preferable to contain. By using the metal complex compound (C), the curing reaction can be promoted, and a cured product having higher adhesive strength can be obtained.
 金属原子がアルミニウムである金属錯体化合物(C)としては、ジイソプロポキシアルミニウムモノオレイルアセトアセテート、モノイソプロポキシアルミニウムビスオレイルアセトアセテート、モノイソプロポキシアルミニウムモノオレエートモノエチルアセトアセテート、ジイソプロポキシアルミニウムモノラウリルアセトアセテート、ジイソプロポキシアルミニウムモノステアリルアセトアセテート、ジイソプロポキシアルミニウムモノイソステアリルアセトアセテート、モノイソプロポキシアルミニウムモノ-N-ラウロイル-β-アラネートモノラウリルアセトアセテート、アルミニウムトリスアセチルアセトネート等のアルミニウムのアセトアセテート錯体;モノアセチルアセトネートアルミニウムビス(イソブチルアセトアセテート)キレート、モノアセチルアセトネートアルミニウムビス(2-エチルヘキシルアセトアセテート)キレート、モノアセチルアセトネートアルミニウムビス(ドデシルアセトアセテート)キレート、モノアセチルアセトネートアルミニウムビス(オレイルアセトアセテート)キレート等のアルミニウムのアセチルアセトネート錯体;等が挙げられる。 Examples of the metal complex compound (C) in which the metal atom is aluminum include diisopropoxy aluminum monooleyl acetoacetate, monoisopropoxy aluminum bis oleyl acetoacetate, monoisopropoxy aluminum monooleate monoethyl acetoacetate, diisopropoxy aluminum mono Aluminum such as lauryl acetoacetate, diisopropoxyaluminum monostearyl acetoacetate, diisopropoxyaluminum monoisostearyl acetoacetate, monoisopropoxyaluminum mono-N-lauroyl-β-alanate monolauryl acetoacetate, aluminum trisacetylacetonate Acetoacetate complex; monoacetylacetonate aluminum bis (isobutylacetoa Tate) chelates, monoacetylacetonate aluminum bis (2-ethylhexyl acetoacetate) chelates, monoacetylacetonate aluminum bis (dodecyl acetoacetate) chelates, monoacetylacetonate aluminum bis (oleyl acetoacetate) chelates, etc. Nate complex; and the like.
 金属原子がジルコニウムである金属錯体化合物(C)としては、ジルコニウム-sec-ブチレート、ジルコニウムジエトキシ-tert-ブチレート等のジルコニウムのアシレート錯体;ジルコニウムテトラキスアセチルアセトネート等のジルコニウムのアセチルアセトネート錯体;ジルコニウムテトライソプロポキサイド等のジルコニウムのアルコキシド錯体;等が挙げられる。 Examples of the metal complex compound (C) in which the metal atom is zirconium include zirconium acylate complexes such as zirconium-sec-butyrate and zirconium diethoxy-tert-butylate; zirconium acetylacetonate complexes such as zirconium tetrakisacetylacetonate; zirconium Zirconium alkoxide complexes such as tetraisopropoxide; and the like.
 金属原子がチタンである金属錯体化合物(C)としては、チタニウムテトラプロピオネート、チタニウムテトラ-n-ブチレート、チタニウムテトラ-2-エチルヘキサノエート、トリエタノールアミンチタニウムジプロピオネート、チタニウムラクテートのアンモニウム塩等のチタンのアシレート錯体;テトラオクチレングリコールチタネート、チタニウムジオクチロキシビス(オクチレングリコレート)等のチタンのグリコレート錯体;が挙げられる。 Examples of the metal complex compound (C) in which the metal atom is titanium include titanium tetrapropionate, titanium tetra-n-butyrate, titanium tetra-2-ethylhexanoate, triethanolamine titanium dipropionate, and ammonium lactate ammonium. Examples include titanium acylate complexes such as salts; titanium glycolate complexes such as tetraoctylene glycol titanate and titanium dioctyloxybis (octylene glycolate).
 金属錯体化合物(C)は、一種単独で、或いは二種以上を組み合わせて用いることができる。金属錯体化合物(C)を用いる場合、その含有量は、(A)成分又は(A’)成分100質量部に対して、好ましくは0質量部超10質量部以下、より好ましくは0質量部超5質量部以下である。 The metal complex compound (C) can be used alone or in combination of two or more. When the metal complex compound (C) is used, the content thereof is preferably more than 0 parts by mass and less than 10 parts by mass, more preferably more than 0 parts by mass with respect to 100 parts by mass of the component (A) or the component (A ′). 5 parts by mass or less.
 本発明の硬化性組成物は、(A)及び(B)成分に加えて、(D)カルボキシル基を有する脂環式酸無水物(以下、「脂環式酸無水物(D)」ということがある。)を含有することが好ましい。脂環式酸無水物(D)を用いることにより、より接着力の高い硬化物が得られる。 In addition to the components (A) and (B), the curable composition of the present invention includes (D) an alicyclic acid anhydride having a carboxyl group (hereinafter referred to as “alicyclic acid anhydride (D)”). It is preferable to contain. By using the alicyclic acid anhydride (D), a cured product having higher adhesive strength can be obtained.
 脂環式酸無水物(D)は、少なくとも一つのカルボキシル基が置換した脂環式酸無水物である。
 脂環式酸無水物の具体例としては、3-メチル-1,2,3,6-テトラヒドロ無水フタル酸、4-メチル-1,2,3,6-テトラヒドロ無水フタル酸、テトラヒドロ無水フタル酸、3-メチル-ヘキサヒドロ無水フタル酸、4-メチル-ヘキサヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水メチルナジック酸、5-ノルボルネン-2,3-ジカルボン酸無水物、ノルボルナン-2,3-ジカルボン酸無水物、メチル-5-ノルボルネン-2,3-ジカルボン酸無水物、メチル-ノルボルナン-2,3-ジカルボン酸無水物等が挙げられる。
 カルボキシル基は、脂環式酸無水物の脂環式構造の任意の位置で置換してよく、置換位置や置換するカルボキシル基の数は特に限定されない。
The alicyclic acid anhydride (D) is an alicyclic acid anhydride substituted with at least one carboxyl group.
Specific examples of the alicyclic acid anhydride include 3-methyl-1,2,3,6-tetrahydrophthalic anhydride, 4-methyl-1,2,3,6-tetrahydrophthalic anhydride, tetrahydrophthalic anhydride 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride, hexahydrophthalic anhydride, methyl nadic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, norbornane-2,3-dicarboxylic acid Anhydride, methyl-5-norbornene-2,3-dicarboxylic acid anhydride, methyl-norbornane-2,3-dicarboxylic acid anhydride and the like can be mentioned.
The carboxyl group may be substituted at any position of the alicyclic structure of the alicyclic acid anhydride, and the position of substitution and the number of carboxyl groups to be substituted are not particularly limited.
 脂環式酸無水物(D)としては、ヘキサヒドロ無水フタル酸にカルボキシル基が置換した、シクロヘキサン-1,2,4-トリカルボン酸-1,2無水物、シクロヘキサン-1,2,3-トリカルボン酸-1,2無水物が好ましく、シクロヘキサン-1,2,4-トリカルボン酸-1,2無水物が特に好ましい。この化合物は、立体異性体が存在し得るが、いずれの異性体であってもよい。 Examples of the alicyclic acid anhydride (D) include cyclohexane-1,2,4-tricarboxylic acid-1,2 anhydride, cyclohexane-1,2,3-tricarboxylic acid in which a carboxyl group is substituted with hexahydrophthalic anhydride. -1,2 anhydride is preferred, and cyclohexane-1,2,4-tricarboxylic acid-1,2 anhydride is particularly preferred. This compound may exist as a stereoisomer, but may be any isomer.
 脂環式酸無水物(D)は、一種単独で、或いは二種以上を組み合わせて用いることができる。脂環式酸無水物(D)を用いる場合、その含有量は、(A)成分又は(A’)成分100質量部に対して、好ましくは0質量部超10質量部以下、より好ましくは0質量部超5質量部以下である。 The alicyclic acid anhydride (D) can be used alone or in combination of two or more. When the alicyclic acid anhydride (D) is used, the content thereof is preferably more than 0 parts by mass and 10 parts by mass or less, more preferably 0 with respect to 100 parts by mass of the component (A) or the component (A ′). More than 5 parts by mass and less than 5 parts by mass.
 本発明の硬化性組成物には、本発明の目的を阻害しない範囲で、上記成分に、さらに他の成分を含有させてもよい。
 他の成分としては、前記(B)以外のシランカップリング剤、酸化防止剤、紫外線吸収剤、光安定剤、希釈剤等が挙げられる。
The curable composition of the present invention may further contain other components in addition to the above components as long as the object of the present invention is not impaired.
Examples of other components include silane coupling agents other than the above (B), antioxidants, ultraviolet absorbers, light stabilizers, and diluents.
 前記(B)以外のシランカップリング剤としては、シランカップリング剤(B)以外のシランカップリング剤であって、本発明の目的を阻害しないものであれば特に制約はない。なかでも、より接着力の高い硬化物が得られる観点から、酸無水物構造を有するシランカップリング剤を用いるのが好ましい。 The silane coupling agent other than (B) is not particularly limited as long as it is a silane coupling agent other than the silane coupling agent (B) and does not impair the object of the present invention. Especially, it is preferable to use the silane coupling agent which has an acid anhydride structure from a viewpoint from which the hardened | cured material with higher adhesive force is obtained.
 シランカップリング剤の具体例としては、2-トリメトキシシリルエチル無水コハク酸、3-トリエトキシシリルプロピル無水コハク酸等が挙げられる。 Specific examples of the silane coupling agent include 2-trimethoxysilylethyl succinic anhydride and 3-triethoxysilylpropyl succinic anhydride.
 酸無水物構造を有するシランカップリング剤は一種単独で、或いは二種以上を組み合わせて用いることができる。
 酸無水物構造を有するシランカップリング剤を使用する場合、その使用量は、(A)成分又は(A’)成分100質量部に対して、通常、0.1質量部以上25質量部以下、好ましくは0.5質量部以上15質量部以下である。
The silane coupling agent having an acid anhydride structure can be used alone or in combination of two or more.
When using the silane coupling agent which has an acid anhydride structure, the usage-amount is 0.1 mass part or more and 25 mass parts or less normally with respect to 100 mass parts of (A) component or (A ') component, Preferably they are 0.5 mass part or more and 15 mass parts or less.
 前記酸化防止剤は、加熱時の酸化劣化を防止するために添加される。酸化防止剤としては、リン系酸化防止剤、フェノール系酸化防止剤、硫黄系酸化防止剤等が挙げられる。 The antioxidant is added to prevent oxidative deterioration during heating. Examples of the antioxidant include phosphorus antioxidants, phenolic antioxidants, sulfur antioxidants and the like.
 リン系酸化防止剤としては、ホスファイト類、オキサホスファフェナントレンオキサイド類等が挙げられる。
 フェノール系酸化防止剤としては、モノフェノール類、ビスフェノール類、高分子型フェノール類等が挙げられる。
 硫黄系酸化防止剤としては、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリル-3,3’-チオジプロピオネート等が挙げられる。
Examples of phosphorus antioxidants include phosphites and oxaphosphaphenanthrene oxides.
Examples of phenolic antioxidants include monophenols, bisphenols, and high-molecular phenols.
Examples of the sulfur-based antioxidant include dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyl-3,3′-thiodipropionate.
 これら酸化防止剤は一種単独で、或いは二種以上を組み合わせて用いることができる。酸化防止剤の使用量は、(A)成分又は(A’)成分100質量部に対して、通常、10質量部以下である。 These antioxidants can be used alone or in combination of two or more. The usage-amount of antioxidant is 10 mass parts or less normally with respect to 100 mass parts of (A) component or (A ') component.
 前記紫外線吸収剤は、得られる硬化物の耐光性を向上させる目的で添加される。
 紫外線吸収剤としては、サリチル酸類、ベンゾフェノン類、ベンゾトリアゾール類、ヒンダードアミン類等が挙げられる。
 紫外線吸収剤は一種単独で、或いは二種以上を組み合わせて用いることができる。
 紫外線吸収剤の使用量は、(A)成分又は(A’)成分100質量部に対して、通常、10質量部以下である。
The said ultraviolet absorber is added in order to improve the light resistance of the hardened | cured material obtained.
Examples of the ultraviolet absorber include salicylic acids, benzophenones, benzotriazoles, hindered amines and the like.
An ultraviolet absorber can be used individually by 1 type or in combination of 2 or more types.
The usage-amount of a ultraviolet absorber is 10 mass parts or less normally with respect to 100 mass parts of (A) component or (A ') component.
 前記光安定剤は、得られる硬化物の耐光性を向上させる目的で添加される。
 光安定剤としては、例えば、ポリ[{6-(1,1,3,3,-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジン)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジン)イミノ}]等のヒンダードアミン類等が挙げられる。
The light stabilizer is added for the purpose of improving the light resistance of the resulting cured product.
Examples of the light stabilizer include poly [{6- (1,1,3,3, -tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2,2,6 , 6-tetramethyl-4-piperidine) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidine) imino}] and the like.
 これらの光安定剤は一種単独で、或いは二種以上を組み合わせて用いることができる。
 光安定剤の使用量は、(A)成分又は(A’)成分100質量部に対して、通常、10質量部以下である。
These light stabilizers can be used alone or in combination of two or more.
The usage-amount of a light stabilizer is 10 mass parts or less normally with respect to 100 mass parts of (A) component or (A ') component.
 前記希釈剤は、硬化性組成物の粘度を調整するため添加される。
 希釈剤としては、例えば、グリセリンジグリシジルエーテル、ブタンジオールジグリシジルエーテル、ジグリシジルアニリン、ネオペンチルグリコールグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、アルキレンジグリシジルエーテル、ポリグリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセリントリグリシジルエーテル、4-ビニルシクロヘキセンモノオキサイド、ビニルシクロヘキセンジオキサイド、メチル化ビニルシクロヘキセンジオキサイド等が挙げられる。
 これらの希釈剤は一種単独で、或いは二種以上を組み合わせて用いることができる。
The diluent is added to adjust the viscosity of the curable composition.
Examples of the diluent include glycerin diglycidyl ether, butanediol diglycidyl ether, diglycidyl aniline, neopentyl glycol glycidyl ether, cyclohexane dimethanol diglycidyl ether, alkylene diglycidyl ether, polyglycol diglycidyl ether, and polypropylene glycol diglycidyl ether. Examples include ether, trimethylolpropane triglycidyl ether, glycerin triglycidyl ether, 4-vinylcyclohexene monooxide, vinylcyclohexene dioxide, methylated vinylcyclohexene dioxide, and the like.
These diluents can be used alone or in combination of two or more.
 本発明の硬化性組成物は、例えば、前記(A)、(B)成分、及び、所望により他の成分を所定割合で配合して、公知の方法により混合、脱泡することにより得ることができる。 The curable composition of the present invention can be obtained, for example, by blending the above-mentioned components (A) and (B) and other components at a predetermined ratio if necessary, and mixing and defoaming by a known method. it can.
 以上のようにして得られる本発明の硬化性組成物によれば、高エネルギーの光が照射される場合や高温状態であっても、着色して透明性が低下したりすることがなく、長期にわたって優れた透明性を有し、かつ、高い接着力を有する硬化物を得ることができる。
 したがって、本発明の硬化性組成物は、光学部品や成形体の原料、接着剤、コーティング剤等として好適に使用される。特に、光素子の高輝度化に伴う、光素子固定材の劣化に関する問題を解決することができることから、本発明の硬化性組成物は、光素子固定材用組成物として好適に使用することができる。
According to the curable composition of the present invention obtained as described above, even when irradiated with high energy light or in a high temperature state, it is not colored and the transparency is not lowered, and it is long-term. It is possible to obtain a cured product having excellent transparency and high adhesive strength.
Therefore, the curable composition of the present invention is suitably used as a raw material for optical parts and molded articles, an adhesive, a coating agent, and the like. In particular, since the problem relating to deterioration of the optical element fixing material accompanying the increase in luminance of the optical element can be solved, the curable composition of the present invention can be suitably used as a composition for optical element fixing material. it can.
2)硬化物
 本発明の第2は、本発明の硬化性組成物を硬化してなる硬化物である。
 本発明の硬化性組成物を硬化する方法としては加熱硬化が挙げられる。硬化するときの加熱温度は、通常、100~200℃であり、加熱時間は、通常10分から20時間、好ましくは30分から10時間である。
2) Cured product The second of the present invention is a cured product obtained by curing the curable composition of the present invention.
Heat curing is mentioned as a method of hardening the curable composition of this invention. The heating temperature for curing is usually 100 to 200 ° C., and the heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
 本発明の硬化物は、高エネルギーの光が照射される場合や高温状態であっても、着色して透明性が低下したりすることがなく、長期にわたって優れた透明性を有し、かつ、高い接着力を有する。
 したがって、本発明の硬化物は、光素子の高輝度化に伴う光素子固定材の劣化に関する問題を解決することができることから、光素子固定材として好適に使用することができる。例えば、光学部品や成形体の原料、接着剤、コーティング剤等として好適に使用される。
The cured product of the present invention has excellent transparency over a long period of time, even when irradiated with high energy light or in a high temperature state, without being colored and having a reduced transparency, and High adhesive strength.
Therefore, the cured product of the present invention can solve the problem related to the deterioration of the optical element fixing material accompanying the increase in the brightness of the optical element, and therefore can be suitably used as the optical element fixing material. For example, it is suitably used as a raw material, an adhesive, a coating agent, etc. for optical parts and molded products.
 本発明の硬化性組成物を硬化してなる硬化物が高い接着力を有することは、例えば、次のようにして接着力を測定することで確認することができる。すなわち、シリコンチップのミラー面に硬化性組成物を塗布し、塗布面を被着体の上に載せ圧着し、加熱処理して硬化させる。これを、予め所定温度(例えば、23℃、100℃)に加熱したボンドテスターの測定ステージ上に30秒間放置し、被着体から50μmの高さの位置より、接着面に対し水平方法(せん断方向)に応力をかけ、試験片と被着体との接着力を測定する。
 硬化物の接着力は、23℃および100℃において60N/2mm□以上であることが好ましく、80N/2mm□以上であることがより好ましい。
It can be confirmed that the cured product obtained by curing the curable composition of the present invention has a high adhesive force, for example, by measuring the adhesive force as follows. That is, the curable composition is applied to the mirror surface of the silicon chip, and the coated surface is placed on the adherend and pressure-bonded, and then heated and cured. This is left for 30 seconds on a measurement stage of a bond tester that has been heated to a predetermined temperature (for example, 23 ° C., 100 ° C.) in advance, and is horizontal to the adhesion surface (shearing) from a position 50 μm high from the adherend. Direction) and measure the adhesive force between the test piece and the adherend.
The adhesive strength of the cured product is preferably 60 N / 2 mm □ or more, more preferably 80 N / 2 mm □ or more at 23 ° C. and 100 ° C.
 前記硬化物が透明性に優れることは、光透過率を測定することで確認することができる。硬化物の光透過率は、波長400nmの光では、80%以上が好ましく、86%以上が特に好ましく、波長450nmの光では、87%以上が好ましい。 It can be confirmed that the cured product is excellent in transparency by measuring light transmittance. The light transmittance of the cured product is preferably 80% or more, particularly preferably 86% or more for light with a wavelength of 400 nm, and preferably 87% or more for light with a wavelength of 450 nm.
 前記硬化物が耐熱性に優れることは、硬化物を高温下に置いた後であっても接着力や透明性の変化が小さいことから確認することができる。接着力は、100℃に30秒置いた後に、23℃における接着力の50%以上の接着力を保持することが好ましく、65%以上の接着力を保持することがより好ましい。透明性は、150℃で500時間置いた後に、波長400nmの透過率が初期透過率の80%以上であることが好ましい。 It can be confirmed that the cured product is excellent in heat resistance since the change in adhesive force and transparency is small even after the cured product is placed at a high temperature. The adhesive force is preferably maintained at 50% or more of the adhesive force at 23 ° C. after being placed at 100 ° C. for 30 seconds, and more preferably 65% or more. The transparency is preferably such that the transmittance at a wavelength of 400 nm is 80% or more of the initial transmittance after being placed at 150 ° C. for 500 hours.
3)硬化性組成物の使用方法
 本発明の第3は、本発明の硬化性組成物を、光素子固定材用接着剤又は光素子固定材用封止剤として使用する方法である。
 光素子としては、LED、LD等の発光素子、受光素子、複合光素子、光集積回路等が挙げられる。
3) Method of using curable composition The third of the present invention is a method of using the curable composition of the present invention as an adhesive for optical element fixing materials or an encapsulant for optical element fixing materials.
Examples of optical elements include light emitting elements such as LEDs and LDs, light receiving elements, composite optical elements, and optical integrated circuits.
〈光素子固定材用接着剤〉
 本発明の硬化性組成物は、光素子固定材用接着剤として好適に使用することができる。
<Adhesive for optical element fixing material>
The curable composition of this invention can be used conveniently as an adhesive agent for optical element fixing materials.
 本発明の硬化性組成物を光素子固定材用接着剤として使用する方法としては、接着の対象とする材料(光素子とその基板等)の一方又は両方の接着面に該組成物を塗布し、圧着した後、加熱硬化させ、接着の対象とする材料同士を強固に接着させる方法が挙げられる。 As a method of using the curable composition of the present invention as an adhesive for an optical element fixing material, the composition is applied to one or both adhesive surfaces of a material to be bonded (such as an optical element and its substrate). After the pressure bonding, there is a method in which the material to be bonded is firmly bonded by heat curing.
 光素子を接着するための主な基板材料としては、ソーダライムガラス、耐熱性硬質ガラス等のガラス類;セラミックス;鉄、銅、アルミニウム、金、銀、白金、クロム、チタン及びこれらの金属の合金、ステンレス(SUS302、SUS304、SUS304L、SUS309等)等の金属類;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、エチレン-酢酸ビニル共重合体、ポリスチレン、ポリカーボネート、ポリメチルペンテン、ポリスルホン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリイミド、ポリアミド、アクリル樹脂、ノルボルネン系樹脂、シクロオレフィン樹脂、ガラスエポキシ樹脂等の合成樹脂;等が挙げられる。 Main substrate materials for bonding optical elements include glass such as soda lime glass and heat-resistant hard glass; ceramics; iron, copper, aluminum, gold, silver, platinum, chromium, titanium, and alloys of these metals , Metals such as stainless steel (SUS302, SUS304, SUS304L, SUS309, etc.); polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, ethylene-vinyl acetate copolymer, polystyrene, polycarbonate, polymethylpentene, polysulfone, polyether ether ketone , Synthetic resins such as polyethersulfone, polyphenylene sulfide, polyetherimide, polyimide, polyamide, acrylic resin, norbornene resin, cycloolefin resin, glass epoxy resin, etc. .
 加熱硬化させる際の加熱温度は、用いる硬化性組成物等にもよるが、通常、100~200℃である。加熱時間は、通常10分から20時間、好ましくは30分から10時間である。 The heating temperature at the time of heat curing is usually 100 to 200 ° C. although it depends on the curable composition used. The heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
〈光素子固定材用封止剤〉
 本発明の硬化性組成物は、光素子封止体の封止剤として好適に用いることができる。
<Sealant for optical element fixing material>
The curable composition of this invention can be used suitably as a sealing agent of an optical element sealing body.
 本発明の硬化性組成物を光素子固定材用封止剤として使用する方法としては、例えば、該組成物を所望の形状に成形して、光素子を内包した成形体を得た後、そのものを加熱硬化させることにより光素子封止体を製造する方法等が挙げられる。
 本発明の硬化性組成物を所望の形状に成形する方法としては、特に限定されるものではなく、通常のトランスファー成形法や、注型法等の公知のモールド法を採用できる。
As a method of using the curable composition of the present invention as a sealant for an optical element fixing material, for example, after molding the composition into a desired shape to obtain a molded body containing the optical element, the process itself And the like, and the like.
The method for molding the curable composition of the present invention into a desired shape is not particularly limited, and a known molding method such as a normal transfer molding method or a casting method can be employed.
 加熱硬化する際の加熱温度は、用いる硬化性組成物等にもよるが、通常、100~200℃である。加熱時間は、通常10分から20時間、好ましくは30分から10時間である。 The heating temperature at the time of heat curing is usually 100 to 200 ° C. although it depends on the curable composition used. The heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
 得られる光素子封止体は、本発明の硬化性組成物を用いているので、光素子に、白色や青色発光LED等の、発光のピーク波長が400~490nmと短波長のものを用いても、熱や光により着色劣化することがない透明性、耐熱性に優れるものである。 Since the obtained optical element sealing body uses the curable composition of the present invention, an optical element having a short peak wavelength of 400 to 490 nm, such as white or blue light emitting LED, is used. Also, it is excellent in transparency and heat resistance that does not deteriorate due to heat or light.
 次に実施例及び比較例により本発明を更に詳細に説明するが、本発明は下記の実施例に限定されるものではない。 Next, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to the following examples.
(重量平均分子量測定)
 製造例で得たシラン化合物ランダム共重合体の重量平均分子量(Mw)は標準ポリスチレン換算値とし、以下の装置及び条件にて測定した。
 装置名:HLC-8220GPC、東ソー社製
 カラム:TSKgelGMHXL→TSKgelGMHXL→TSKgel2000HXL
 溶媒:テトラヒドロフラン
 測定温度:40℃
 流速:1ml/分
 検出器:示差屈折計
(Weight average molecular weight measurement)
The weight average molecular weight (Mw) of the silane compound random copolymer obtained in the production example was a standard polystyrene equivalent value, and was measured using the following apparatus and conditions.
Device name: HLC-8220GPC, manufactured by Tosoh Corporation Column: TSKgelGMHXL → TSKgelGMMHXL → TSKgel2000HXL
Solvent: Tetrahydrofuran Measurement temperature: 40 ° C
Flow rate: 1 ml / min Detector: Differential refractometer
(IRスペクトルの測定)
 製造例で得たシラン化合物ランダム共重合体のIRスペクトルは、以下の装置を使用して測定した。
フーリエ変換赤外分光光度計(Spectrum100、パーキンエルマー社製)
(Measurement of IR spectrum)
The IR spectrum of the silane compound random copolymer obtained in Production Example was measured using the following apparatus.
Fourier transform infrared spectrophotometer (Spectrum 100, manufactured by PerkinElmer)
(製造例1)
 300mlのナス型フラスコに、フェニルトリメトキシシラン(東京化成工業社製)20.2g(102mmol)と、2-シアノエチルトリメトキシシラン(アヅマックス社製)3.15g(18mmol)、溶媒としてアセトン96ml、蒸留水24mlを仕込んだ後、攪拌しながら、触媒としてリン酸(関東化学社製)0.15g(1.5mmol)を加え、室温でさらに16時間攪拌を継続した。
(Production Example 1)
In a 300 ml eggplant-shaped flask, 20.2 g (102 mmol) of phenyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.), 3.15 g (18 mmol) of 2-cyanoethyltrimethoxysilane (manufactured by Amax Co.), 96 ml of acetone as a solvent, distilled After charging 24 ml of water, 0.15 g (1.5 mmol) of phosphoric acid (manufactured by Kanto Chemical Co., Inc.) was added as a catalyst while stirring, and stirring was continued at room temperature for another 16 hours.
 反応終了後、エバポレーターで50mlまで濃縮し、酢酸エチル100mlを加え、飽和炭酸水素ナトリウム水溶液にて中和した。しばらく静置した後、有機層を分取した。次いで、有機層を蒸留水にて2回洗浄した後、無水硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別後、ろ液をエバポレーターにて50mlまで濃縮し、これを多量のn-ヘキサン中に滴下して沈殿させ、沈殿物をデカンテーションにより分離した。得られた沈殿物をメチルエチルケトン(MEK)に溶解して回収し、エバポレーターで溶媒を減圧留去し、真空乾燥することにより、シラン化合物ランダム共重合体(A1)13.5gを得た。 After completion of the reaction, the mixture was concentrated to 50 ml with an evaporator, 100 ml of ethyl acetate was added, and neutralized with a saturated aqueous sodium hydrogen carbonate solution. After leaving still for a while, the organic layer was fractionated. Next, the organic layer was washed twice with distilled water and then dried over anhydrous magnesium sulfate. After the magnesium sulfate was filtered off, the filtrate was concentrated to 50 ml with an evaporator, dropped into a large amount of n-hexane to precipitate, and the precipitate was separated by decantation. The obtained precipitate was dissolved and recovered in methyl ethyl ketone (MEK), and the solvent was distilled off under reduced pressure with an evaporator, followed by vacuum drying to obtain 13.5 g of a silane compound random copolymer (A1).
 シラン化合物ランダム共重合体(A1)の重量平均分子量(Mw)は1,900であった。
 また、シラン化合物ランダム共重合体(A1)のIRスペクトルデータを以下に示す。
Si-Ph:698cm-1,740cm-1,Si-O:1132cm-1,-CN:2259cm-1
The weight average molecular weight (Mw) of the silane compound random copolymer (A1) was 1,900.
Moreover, IR spectrum data of a silane compound random copolymer (A1) are shown below.
Si—Ph: 698 cm −1 , 740 cm −1 , Si—O: 1132 cm −1 , —CN: 2259 cm −1
(製造例2)
 製造例1において、フェニルトリメトキシシランの使用量を16.7g(84mmol)とし、2-シアノエチルトリメトキシシランの使用量を6.31g(36mmol)とした以外は製造例1と同様にして、シラン化合物ランダム共重合体(A2)12.9gを得た。
(Production Example 2)
In the same manner as in Production Example 1, except that the amount of phenyltrimethoxysilane used was 16.7 g (84 mmol) and the amount of 2-cyanoethyltrimethoxysilane used was 6.31 g (36 mmol), 12.9 g of compound random copolymer (A2) was obtained.
 シラン化合物ランダム共重合体(A2)の重量平均分子量(Mw)は2,000であった。
 また、シラン化合物ランダム共重合体(A2)のIRスペクトルデータを以下に示す。
Si-Ph:698cm-1,740cm-1,Si-O:1132cm-1,-CN:2255cm-1
The weight average molecular weight (Mw) of the silane compound random copolymer (A2) was 2,000.
Moreover, IR spectrum data of a silane compound random copolymer (A2) are shown below.
Si—Ph: 698 cm −1 , 740 cm −1 , Si—O: 1132 cm −1 , —CN: 2255 cm −1
(製造例3)
 300mlのナス型フラスコに、フェニルトリメトキシシラン(東京化成工業社製)11.9g(60mmol)と、3-グリシドキシプロピルトリメトキシシラン(東京化成工業社製)14.2g(60mmol)、溶媒としてトルエン60ml、蒸留水30mlを仕込んだ後、攪拌しながら、触媒としてリン酸(関東化学社製)0.15g(1.5mmol)を加え、室温でさらに16時間攪拌を継続した。
(Production Example 3)
In a 300 ml eggplant-shaped flask, 11.9 g (60 mmol) of phenyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.), 14.2 g (60 mmol) of 3-glycidoxypropyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.), solvent After adding 60 ml of toluene and 30 ml of distilled water, 0.15 g (1.5 mmol) of phosphoric acid (manufactured by Kanto Chemical Co., Inc.) was added as a catalyst while stirring, and stirring was continued for another 16 hours at room temperature.
 反応終了後、反応混合物に酢酸エチル100mlを加え、飽和炭酸水素ナトリウム水溶液にて中和した。しばらく静置した後、有機層を分取した。次いで、有機層を蒸留水にて2回洗浄した後、無水硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別後、ろ液をエバポレーターにて50mlまで濃縮し、これを多量のn-ヘキサン中に滴下して沈殿させ、沈殿物をデカンテーションにより分離した。得られた沈殿物をメチルエチルケトン(MEK)に溶解して回収し、エバポレーターで溶媒を減圧留去し、真空乾燥することにより、シラン化合物ランダム共重合体(A3)16.3gを得た。 After completion of the reaction, 100 ml of ethyl acetate was added to the reaction mixture and neutralized with a saturated aqueous sodium hydrogen carbonate solution. After leaving still for a while, the organic layer was fractionated. Next, the organic layer was washed twice with distilled water and then dried over anhydrous magnesium sulfate. After the magnesium sulfate was filtered off, the filtrate was concentrated to 50 ml with an evaporator, dropped into a large amount of n-hexane to precipitate, and the precipitate was separated by decantation. The obtained precipitate was dissolved and recovered in methyl ethyl ketone (MEK), and the solvent was distilled off under reduced pressure with an evaporator, followed by vacuum drying to obtain 16.3 g of a silane compound random copolymer (A3).
 シラン化合物ランダム共重合体(A3)の重量平均分子量(Mw)は2,800であった。
 また、シラン化合物ランダム共重合体(A3)のIRスペクトルデータを以下に示す。
Si-Ph:699cm-1,741cm-1,Si-O:1132cm-1,エポキシ基:1254cm-1
The weight average molecular weight (Mw) of the silane compound random copolymer (A3) was 2,800.
Moreover, IR spectrum data of a silane compound random copolymer (A3) are shown below.
Si—Ph: 699 cm −1 , 741 cm −1 , Si—O: 1132 cm −1 , epoxy group: 1254 cm −1
(実施例1)
 製造例1で得たシラン化合物ランダム共重合体(A1)10gに、シランカップリング剤(B)として2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(東京化成工業社製)1.0gを加え、全容を十分に混合、脱泡することにより、硬化性組成物(1)を得た。
Example 1
10 g of the silane compound random copolymer (A1) obtained in Production Example 1 and 1.0 g of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) as the silane coupling agent (B) Was added, and the entire volume was thoroughly mixed and defoamed to obtain a curable composition (1).
(実施例2)
 実施例1において、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランの量を1.5gに変更したこと以外は、実施例1と同様にして硬化性組成物(2)を得た。
(Example 2)
A curable composition (2) was obtained in the same manner as in Example 1, except that the amount of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane in Example 1 was changed to 1.5 g.
(実施例3)
 実施例1において、シラン化合物ランダム共重合体(A1)の代わりに、製造例2で得たシラン化合物ランダム共重合体(A2)10gを用いたこと以外は、実施例1と同様にして硬化性組成物(3)を得た。
(Example 3)
In Example 1, curable in the same manner as in Example 1 except that 10 g of the silane compound random copolymer (A2) obtained in Production Example 2 was used instead of the silane compound random copolymer (A1). A composition (3) was obtained.
(実施例4)
 実施例1において、金属錯体化合物(C)として、さらに、ジルコニウムテトラキスアセチルアセトネート(東京化成工業社製)(下記第1表中、「C1」と記載する。)0.01gを加えたこと以外は、実施例1と同様にして硬化性組成物(4)を得た。
Example 4
In Example 1, except that 0.01 g of zirconium tetrakisacetylacetonate (manufactured by Tokyo Chemical Industry Co., Ltd.) (described as “C1” in Table 1 below) was added as the metal complex compound (C). Obtained a curable composition (4) in the same manner as in Example 1.
(実施例5)
 実施例4において、ジルコニウムテトラキスアセチルアセトネートの量を0.05gに変更したこと以外は、実施例4と同様にして硬化性組成物(5)を得た。
(Example 5)
In Example 4, the curable composition (5) was obtained like Example 4 except having changed the amount of zirconium tetrakis acetylacetonate into 0.05g.
(実施例6)
 実施例4において、ジルコニウムテトラキスアセチルアセトネートの量を0.1gに変更したこと以外は、実施例4と同様にして硬化性組成物(6)を得た。
(Example 6)
In Example 4, the curable composition (6) was obtained like Example 4 except having changed the amount of zirconium tetrakis acetylacetonate into 0.1g.
(実施例7)
 実施例4において、ジルコニウムテトラキスアセチルアセトネートの量を1.0gに変更したこと以外は、実施例4と同様にして硬化性組成物(7)を得た。
(Example 7)
In Example 4, the curable composition (7) was obtained like Example 4 except having changed the amount of zirconium tetrakis acetylacetonate into 1.0g.
(実施例8)
 実施例1において、金属錯体化合物(C)として、さらに、アルミニウムトリスアセチルアセトネート(東京化成工業社製)(下記第1表中、「C2」と記載する。)0.05gを加えたこと以外は、実施例1と同様にして硬化性組成物(8)を得た。
(Example 8)
In Example 1, except that 0.05 g of aluminum trisacetylacetonate (manufactured by Tokyo Chemical Industry Co., Ltd.) (described as “C2” in Table 1 below) was further added as the metal complex compound (C). Obtained a curable composition (8) in the same manner as in Example 1.
(実施例9)
 実施例1において、金属錯体化合物(C)として、さらに、チタニウムジオクチロキシビス(オクチレングリコレート)(マツモトファインケミカル社製、オルガチックスTC-200)(下記第1表中、「C3」と記載する。)0.05gを加えたこと以外は、実施例1と同様にして硬化性組成物(9)を得た。
Example 9
In Example 1, as the metal complex compound (C), titanium dioctyloxybis (octylene glycolate) (manufactured by Matsumoto Fine Chemical Co., Ltd., ORGATICS TC-200) (denoted as “C3” in Table 1 below) A curable composition (9) was obtained in the same manner as in Example 1 except that 0.05 g was added.
(実施例10)
 実施例1において、カルボキシル基を有する脂環式酸無水物(D)として、さらに、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物(三菱ガス化学社製)0.05gを加えたこと以外は、実施例1と同様にして硬化性組成物(10)を得た。
(Example 10)
In Example 1, 0.05 g of cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride (manufactured by Mitsubishi Gas Chemical Company) was further added as the alicyclic acid anhydride (D) having a carboxyl group. A curable composition (10) was obtained in the same manner as Example 1 except for the addition.
(実施例11)
 実施例10において、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物の量を1.0gに変更したこと以外は、実施例10と同様にして硬化性組成物(11)を得た。
(Example 11)
A curable composition (11) was prepared in the same manner as in Example 10 except that the amount of cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride was changed to 1.0 g in Example 10. Obtained.
(比較例1)
 実施例1において、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランの量を0.1gに変更したこと以外は、実施例1と同様にして硬化性組成物(12)を得た。
(Comparative Example 1)
A curable composition (12) was obtained in the same manner as in Example 1 except that the amount of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane in Example 1 was changed to 0.1 g.
(比較例2)
 実施例1において、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランの量を3.0gに変更したこと以外は、実施例1と同様にして硬化性組成物(13)を得た。
(Comparative Example 2)
A curable composition (13) was obtained in the same manner as in Example 1, except that the amount of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane in Example 1 was changed to 3.0 g.
(比較例3)
 実施例5において、シラン化合物ランダム共重合体(A1)の代わりに、製造例3で得たシラン化合物ランダム共重合体(A3)を用いたこと以外は、実施例5と同様にして硬化性組成物(14)を得た。
(Comparative Example 3)
In Example 5, the curable composition was the same as Example 5 except that the silane compound random copolymer (A3) obtained in Production Example 3 was used instead of the silane compound random copolymer (A1). A product (14) was obtained.
(比較例4)
 実施例10において、シラン化合物ランダム共重合体(A1)の代わりに、製造例3で得たシラン化合物ランダム共重合体(A3)を用いたこと以外は、実施例10と同様にして硬化性組成物(15)を得た。
(Comparative Example 4)
In Example 10, a curable composition was used in the same manner as in Example 10 except that the silane compound random copolymer (A3) obtained in Production Example 3 was used instead of the silane compound random copolymer (A1). A product (15) was obtained.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実施例1~11及び比較例1~4で得た硬化性組成物1~15の硬化物につき、下記のようにして、接着力、初期透過率、及び加熱後透過率を測定し、接着耐熱性、初期透明性、耐熱性(加熱後透明性)を評価した。
 測定結果及び評価を下記第2表に示す。
For the cured products of the curable compositions 1 to 15 obtained in Examples 1 to 11 and Comparative Examples 1 to 4, the adhesive strength, initial transmittance, and transmittance after heating were measured as follows, and the adhesive heat resistance was measured. Property, initial transparency, and heat resistance (transparency after heating) were evaluated.
The measurement results and evaluation are shown in Table 2 below.
(接着力試験)
 2mm角のシリコンチップのミラー面に、硬化性組成物1~15のそれぞれを厚さが約2μmになるよう塗布し、塗布面を被着体(銀メッキ銅板)の上に載せ圧着した。その後、180℃で2時間加熱処理して硬化させて試験片付被着体を得た。この試験片付被着体を、予め所定温度(23℃、100℃)に加熱したボンドテスター(シリーズ4000、デイジ社製)の測定ステージ上に30秒間放置し、被着体から50μmの高さの位置より、スピード200μm/sで接着面に対し水平方法(せん断方向)に応力をかけ、23℃及び100℃における、試験片と被着体との接着力を測定した(N/2mm□)。
(Adhesion test)
Each of the curable compositions 1 to 15 was applied to a mirror surface of a 2 mm square silicon chip so as to have a thickness of about 2 μm, and the coated surface was placed on an adherend (silver-plated copper plate) and pressure-bonded. Then, it heat-processed at 180 degreeC for 2 hours, it was made to harden | cure, and the adherend with a test piece was obtained. The test piece-attached adherend is left for 30 seconds on a measurement stage of a bond tester (series 4000, manufactured by Daisy) heated in advance to a predetermined temperature (23 ° C., 100 ° C.), and has a height of 50 μm from the adherend. From the position, stress was applied in a horizontal direction (shear direction) to the bonding surface at a speed of 200 μm / s, and the adhesive force between the test piece and the adherend at 23 ° C. and 100 ° C. was measured (N / 2 mm □). .
(接着耐熱性)
 100℃における接着力試験において、接着力が、80N/2mm□以上である場合を「○」、60N/2mm□以上80N/2mm□未満である場合を「△」、60N/2mm□未満である場合を「×」と評価した。
(Adhesive heat resistance)
In the adhesive strength test at 100 ° C., the case where the adhesive strength is 80 N / 2 mm □ or more is “◯”, the case where it is 60 N / 2 mm □ or more and less than 80 N / 2 mm □ is “△”, and is less than 60 N / 2 mm □ The case was evaluated as “x”.
(初期透過率の測定)
 硬化性組成物1~15のそれぞれを、長さ25mm、幅20mm、厚さ1mmとなるように鋳型に流し込み、140℃で6時間加熱して硬化させ、試験片をそれぞれ作製した。得られた試験片につき、分光光度計(MPC-3100、島津製作所社製)にて、波長400nm、450nmの初期透過率(%)を測定した。
(Measurement of initial transmittance)
Each of the curable compositions 1 to 15 was poured into a mold so as to have a length of 25 mm, a width of 20 mm, and a thickness of 1 mm, and cured by heating at 140 ° C. for 6 hours to prepare test pieces. With respect to the obtained test piece, the initial transmittance (%) at wavelengths of 400 nm and 450 nm was measured with a spectrophotometer (MPC-3100, manufactured by Shimadzu Corporation).
(初期透明性)
 初期透過率測定において、400nmの透過率が80%以上を「○」、70%以上80%未満を「△」、70%未満を「×」と評価した。
(Initial transparency)
In the initial transmittance measurement, the transmittance at 400 nm was evaluated as “◯” when 80% or more, “Δ” when 70% or more and less than 80%, and “×” when less than 70%.
(加熱後の透過率の測定)
 初期透過率を測定した各試験片を150℃のオーブンに500時間投入し、再度、波長400nm、450nmの透過率(%)を測定した。これを加熱後透過率とした。
(Measurement of transmittance after heating)
Each test piece whose initial transmittance was measured was placed in an oven at 150 ° C. for 500 hours, and the transmittance (%) at wavelengths of 400 nm and 450 nm was measured again. This was defined as the transmittance after heating.
〔耐熱性(加熱後透明性)〕
 加熱後透過率測定において、400nmの透過率が、初期透過率の80%以上であれば「○」、70%以上80%未満であれば「△」、70%未満であれば「×」と評価した。
[Heat resistance (transparency after heating)]
In the transmittance measurement after heating, if the transmittance at 400 nm is 80% or more of the initial transmittance, “◯”, if it is 70% or more and less than 80%, “Δ”, if it is less than 70%, “×”. evaluated.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 第2表から分るように、実施例1~11の硬化性組成物1~11の硬化物は、23℃と100℃の両方において、60N/2mm□以上であり、接着性及び接着耐熱性に優れている。また、波長400nm、450nmの初期透過率、加熱後透過率がいずれも高く、初期透明性、耐熱性(加熱後透明性)にも優れている。 As can be seen from Table 2, the cured products of the curable compositions 1 to 11 of Examples 1 to 11 are 60 N / 2 mm □ or more at both 23 ° C. and 100 ° C. Is excellent. In addition, the initial transmittance at wavelengths of 400 nm and 450 nm and the transmittance after heating are both high, and the initial transparency and heat resistance (transparency after heating) are also excellent.
 一方、比較例1、2の硬化性組成物12、13の硬化物は、接着性に劣っている。また、比較例3,4の硬化性組成物14、15の硬化物は、加熱することで透過率が大きく低下する。 On the other hand, the cured products of the curable compositions 12 and 13 of Comparative Examples 1 and 2 are inferior in adhesiveness. Moreover, the transmittance | permeability falls greatly by the hardened | cured material of the curable compositions 14 and 15 of Comparative Examples 3 and 4 by heating.

Claims (12)

  1.  (A)分子内に、下記式(i)、(ii)及び(iii)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは、水素原子又は炭素数1~6のアルキル基を表し、Dは、単結合又は置換基を有していてもよい炭素数1~20の2価の有機基を表す。Rは、炭素数1~20のアルキル基又は置換基を有していてもよいフェニル基を表す。)
    で表される繰り返し単位のうち、(i)及び(ii)、(i)及び(iii)、(ii)及び(iii)、又は(i)、(ii)及び(iii)の繰り返し単位を有し、重量平均分子量が、1,000~30,000であるシラン化合物ランダム共重合体と、
    (B)反応性環状エーテル構造を有するシランカップリング剤と
    を、(A)と(B)の質量比で、(A):(B)=95:5~80:20の割合で含有する硬化性組成物。
    (A) In the molecule, the following formulas (i), (ii) and (iii)
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and D represents a single bond or a divalent organic group having 1 to 20 carbon atoms which may have a substituent. R 2 represents an alkyl group having 1 to 20 carbon atoms or a phenyl group which may have a substituent.
    (I) and (ii), (i) and (iii), (ii) and (iii), or (i), (ii) and (iii) A silane compound random copolymer having a weight average molecular weight of 1,000 to 30,000,
    (B) Curing containing a silane coupling agent having a reactive cyclic ether structure in a mass ratio of (A) and (B) in a ratio of (A) :( B) = 95: 5 to 80:20 Sex composition.
  2.  前記(A)のシラン化合物ランダム共重合体が、式:R-CH(CN)-D-で表される基の存在量(〔R-CH(CN)-D〕)とRの存在量(〔R〕)のモル比で、〔R-CH(CN)-D〕:〔R〕=5:95~50:50のシラン化合物ランダム共重合体である請求項1に記載の硬化性組成物。 The silane compound random copolymer of (A) described above is represented by the amount of the group represented by the formula: R 1 —CH (CN) —D— ([R 1 —CH (CN) —D]) and R 2 The silane compound random copolymer of [R 1 —CH (CN) —D]: [R 2 ] = 5: 95 to 50:50 in a molar ratio of the abundance ([R 2 ]). The curable composition as described.
  3.  (A’)式(1):R-CH(CN)-D-Si(OR(X3-p
    (式中、Rは、水素原子又は炭素数1~6のアルキル基を表し、Dは、単結合又は置換基を有していてもよい炭素数1~20の2価の有機基を表す。Rは炭素数1~6のアルキル基を表し、Xはハロゲン原子を表し、pは0~3の整数を表す。)
    で表されるシラン化合物(1)の少なくとも一種、及び
    式(2):RSi(OR(X3-q
    (式中、Rは、炭素数1~20のアルキル基又は置換基を有していてもよいフェニル基を表し、Rは炭素数1~6のアルキル基を表し、Xはハロゲン原子を表し、qは0~3の整数を表す。)
    で表されるシラン化合物(2)の少なくとも一種を含むシラン化合物の混合物を縮合させて得られる、重量平均分子量が、1,000~30,000であるシラン化合物ランダム共重合体と、
    (B)反応性環状エーテル構造を有するシランカップリング剤と
    を、(A’)と(B)の質量比で、(A’):(B)=95:5~80:20の割合で含有する硬化性組成物。
    (A ′) Formula (1): R 1 —CH (CN) —D—Si (OR 3 ) p (X 1 ) 3-p
    (In the formula, R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and D represents a single bond or a divalent organic group having 1 to 20 carbon atoms which may have a substituent. R 3 represents an alkyl group having 1 to 6 carbon atoms, X 1 represents a halogen atom, and p represents an integer of 0 to 3.)
    And at least one silane compound (1) represented by formula (2): R 2 Si (OR 4 ) q (X 2 ) 3-q
    (In the formula, R 2 represents an alkyl group having 1 to 20 carbon atoms or an optionally substituted phenyl group, R 4 represents an alkyl group having 1 to 6 carbon atoms, and X 2 represents a halogen atom. Q represents an integer of 0 to 3.)
    A silane compound random copolymer having a weight average molecular weight of 1,000 to 30,000, obtained by condensing a mixture of silane compounds containing at least one of the silane compounds (2) represented by:
    (B) A silane coupling agent having a reactive cyclic ether structure is contained in a mass ratio of (A ′) and (B) in a ratio of (A ′) :( B) = 95: 5 to 80:20 A curable composition.
  4.  前記(A’)のシラン化合物ランダム共重合体が、シラン化合物(1)とシラン化合物(2)とを、モル比で、〔シラン化合物(1)〕:〔シラン化合物(2)〕=5:95~50:50の割合で縮合させて得られるシラン化合物ランダム共重合体である請求項3に記載の硬化性組成物。 In the silane compound random copolymer (A ′), the silane compound (1) and the silane compound (2) are in a molar ratio of [silane compound (1)]: [silane compound (2)] = 5: The curable composition according to claim 3, which is a silane compound random copolymer obtained by condensation at a ratio of 95 to 50:50.
  5.  前記(B)のシランカップリング剤が、シクロヘキセンオキシド基を有するシランカップリング剤である請求項1~4のいずれかに記載の硬化性組成物。 The curable composition according to any one of claims 1 to 4, wherein the silane coupling agent (B) is a silane coupling agent having a cyclohexene oxide group.
  6.  さらに(C)金属原子がアルミニウム、ジルコニウム又はチタンである金属錯体化合物を含有し、(C)成分の含有量が、(A)成分又は(A’)成分100質量部に対して、0質量部超10質量部以下である請求項1~5のいずれかに記載の硬化性組成物。 Further, (C) a metal complex compound in which the metal atom is aluminum, zirconium or titanium is contained, and the content of component (C) is 0 part by mass with respect to 100 parts by mass of component (A) or component (A ′). The curable composition according to any one of claims 1 to 5, which is super 10 parts by mass or less.
  7.  さらに(D)カルボキシル基を有する脂環式酸無水物を含有し、(D)成分の含有量が、(A)成分又は(A’)成分100質量部に対して、0質量部超10質量部以下である請求項1~5のいずれかに記載の硬化性組成物。 Furthermore, (D) the alicyclic acid anhydride which has a carboxyl group is contained, and content of (D) component is more than 0 mass part 10 mass with respect to 100 mass parts of (A) component or (A ') component. The curable composition according to any one of claims 1 to 5, wherein the curable composition is at most parts.
  8.  光素子固定材用組成物である請求項1~7のいずれかに記載の硬化性組成物。 The curable composition according to any one of claims 1 to 7, which is a composition for an optical element fixing material.
  9.  請求項1~7のいずれかに記載の硬化性組成物を硬化してなる硬化物。 A cured product obtained by curing the curable composition according to any one of claims 1 to 7.
  10.  光素子固定材である請求項9に記載の硬化物。 10. The cured product according to claim 9, which is an optical element fixing material.
  11.  請求項1~7のいずれかに記載の硬化性組成物を、光素子固定材用接着剤として使用する方法。 A method of using the curable composition according to any one of claims 1 to 7 as an adhesive for an optical element fixing material.
  12.  請求項1~7のいずれかに記載の硬化性組成物を、光素子固定材用封止剤として使用する方法。 A method of using the curable composition according to any one of claims 1 to 7 as an encapsulant for an optical element fixing material.
PCT/JP2011/077611 2010-11-30 2011-11-30 Curable composition, cured article, and method for using curable composition WO2012073988A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180057592.5A CN103282440B (en) 2010-11-30 2011-11-30 The using method of solidification compound, cured article and solidification compound
JP2012546903A JP5940456B2 (en) 2010-11-30 2011-11-30 Curable composition, cured product and method of using curable composition
KR1020137013455A KR101824289B1 (en) 2010-11-30 2011-11-30 Curable composition, cured article, and method for using curable composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-267740 2010-11-30
JP2010267740 2010-11-30

Publications (1)

Publication Number Publication Date
WO2012073988A1 true WO2012073988A1 (en) 2012-06-07

Family

ID=46171916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077611 WO2012073988A1 (en) 2010-11-30 2011-11-30 Curable composition, cured article, and method for using curable composition

Country Status (5)

Country Link
JP (1) JP5940456B2 (en)
KR (1) KR101824289B1 (en)
CN (1) CN103282440B (en)
TW (1) TWI537339B (en)
WO (1) WO2012073988A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069508A1 (en) * 2012-10-30 2014-05-08 リンテック株式会社 Curable polysilsesquioxane compound, method for producing same, curable composition, cured product, and method for using curable composition or like
WO2014133103A1 (en) * 2013-02-28 2014-09-04 リンテック株式会社 Curable composition, cured product, method for using curable composition, photoelement sealing body and method for producing photoelement sealing body
WO2015041339A1 (en) * 2013-09-20 2015-03-26 リンテック株式会社 Curable composition, cured product, and method for using curable composition
WO2015041344A1 (en) * 2013-09-20 2015-03-26 リンテック株式会社 Curable composition, cured product, and method for using curable composition
WO2015170709A1 (en) * 2014-05-07 2015-11-12 リンテック株式会社 Curable polysilsesquioxane compound, production method thereof, curable composition, cured product and use method of curable composition, etc.
WO2015170710A1 (en) * 2014-05-07 2015-11-12 リンテック株式会社 Curable polysilsesquioxane compound, production method thereof, curable composition, cured product and use method of curable composition
WO2016013625A1 (en) * 2014-07-23 2016-01-28 リンテック株式会社 Curable composition, method for manufacturing curable composition, cured product, method for using curable composition, and optical device
CN105745253A (en) * 2013-09-20 2016-07-06 琳得科株式会社 Curable composition, curing product, and method for using curable composition
KR20200131228A (en) 2018-03-12 2020-11-23 린텍 가부시키가이샤 Curable composition, cured product, method of producing cured product, and method of using curable composition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI678387B (en) * 2014-08-26 2019-12-01 日商琳得科股份有限公司 Curable composition, method for producing curable composition, cured product, method for using curable composition, and optical device
KR101887993B1 (en) 2016-07-27 2018-08-13 주식회사 엘지화학 Photo-curable resin composition and use of the same
TWI825299B (en) * 2019-03-26 2023-12-11 日商琳得科股份有限公司 Curable composition, cured product and method of using curable composition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160734A (en) * 1997-08-14 1999-03-05 Showa Denko Kk Polymer, resist resin composition and formation of pattern using the same
JP2008260894A (en) * 2007-04-13 2008-10-30 Kaneka Corp Curing agent and adhesive curing composition
JP2009059651A (en) * 2007-09-03 2009-03-19 Osaka City Silsesquioxane based insulating material
WO2009101753A1 (en) * 2008-02-14 2009-08-20 Lintec Corporation Molding material composed of polyorganosiloxane compound, sealing material, and sealed optical device
WO2009104505A1 (en) * 2008-02-19 2009-08-27 リンテック株式会社 Adhesive mainly composed of polyorganosiloxane compound
WO2009119634A1 (en) * 2008-03-26 2009-10-01 リンテック株式会社 Fixing material comprising silane compound polymer and photonic device sealed body
WO2011099501A1 (en) * 2010-02-10 2011-08-18 リンテック株式会社 Curable composition, cured article, and use of curable composition
WO2011111673A1 (en) * 2010-03-09 2011-09-15 リンテック株式会社 Curable composition, hardened material, and method for using curable composition
WO2011111667A1 (en) * 2010-03-08 2011-09-15 リンテック株式会社 Curable composition, hardened material, and method for using curable composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160734A (en) * 1997-08-14 1999-03-05 Showa Denko Kk Polymer, resist resin composition and formation of pattern using the same
JP2008260894A (en) * 2007-04-13 2008-10-30 Kaneka Corp Curing agent and adhesive curing composition
JP2009059651A (en) * 2007-09-03 2009-03-19 Osaka City Silsesquioxane based insulating material
WO2009101753A1 (en) * 2008-02-14 2009-08-20 Lintec Corporation Molding material composed of polyorganosiloxane compound, sealing material, and sealed optical device
WO2009104505A1 (en) * 2008-02-19 2009-08-27 リンテック株式会社 Adhesive mainly composed of polyorganosiloxane compound
WO2009119634A1 (en) * 2008-03-26 2009-10-01 リンテック株式会社 Fixing material comprising silane compound polymer and photonic device sealed body
WO2011099501A1 (en) * 2010-02-10 2011-08-18 リンテック株式会社 Curable composition, cured article, and use of curable composition
WO2011111667A1 (en) * 2010-03-08 2011-09-15 リンテック株式会社 Curable composition, hardened material, and method for using curable composition
WO2011111673A1 (en) * 2010-03-09 2011-09-15 リンテック株式会社 Curable composition, hardened material, and method for using curable composition

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104781309A (en) * 2012-10-30 2015-07-15 琳得科株式会社 Curable polysilsesquioxane compound, method for producing same, curable composition, cured product, and method for using curable composition or like
JP5550162B1 (en) * 2012-10-30 2014-07-16 リンテック株式会社 Curable polysilsesquioxane compound, production method thereof, curable composition, cured product, and method of using curable composition, etc.
WO2014069508A1 (en) * 2012-10-30 2014-05-08 リンテック株式会社 Curable polysilsesquioxane compound, method for producing same, curable composition, cured product, and method for using curable composition or like
US9487627B2 (en) 2012-10-30 2016-11-08 Lintec Corporation Curable polysilsesquioxane compound, method for producing same, curable composition, cured product, and method for using curable composition or the like
JPWO2014133103A1 (en) * 2013-02-28 2017-02-02 リンテック株式会社 Curable composition, cured product, method of using curable composition, optical element sealing body and method for producing the same
WO2014133103A1 (en) * 2013-02-28 2014-09-04 リンテック株式会社 Curable composition, cured product, method for using curable composition, photoelement sealing body and method for producing photoelement sealing body
CN105121555B (en) * 2013-02-28 2018-09-18 琳得科株式会社 Solidification compound, solidfied material, the application method of solidification compound and optical element seal and its manufacturing method
US9783715B2 (en) 2013-02-28 2017-10-10 Lintec Corporation Curable composition, cured product, method for using curable composition, photoelement sealing body and method for producing photoelement sealing body
CN105121555A (en) * 2013-02-28 2015-12-02 琳得科株式会社 Curable composition, cured product, method for using curable composition, photoelement sealing body and method for producing photoelement sealing body
WO2015041339A1 (en) * 2013-09-20 2015-03-26 リンテック株式会社 Curable composition, cured product, and method for using curable composition
CN105745253A (en) * 2013-09-20 2016-07-06 琳得科株式会社 Curable composition, curing product, and method for using curable composition
WO2015041344A1 (en) * 2013-09-20 2015-03-26 リンテック株式会社 Curable composition, cured product, and method for using curable composition
JP5976963B2 (en) * 2014-05-07 2016-08-24 リンテック株式会社 Curable polysilsesquioxane compound, method for producing the same, curable composition, cured product, and method of using curable composition
JP5981668B2 (en) * 2014-05-07 2016-08-31 リンテック株式会社 Curable polysilsesquioxane compound, production method thereof, curable composition, cured product, and method of using curable composition, etc.
US10370498B2 (en) 2014-05-07 2019-08-06 Lintec Corporation Curable polysilsesquioxane compound, production method thereof, curable composition, cured product and use method of curable composition
US10113035B2 (en) 2014-05-07 2018-10-30 Lintec Corporation Curable polysilsesquioxane compound, production method therefor, curable composition, cured product and use method of curable composition
WO2015170710A1 (en) * 2014-05-07 2015-11-12 リンテック株式会社 Curable polysilsesquioxane compound, production method thereof, curable composition, cured product and use method of curable composition
WO2015170709A1 (en) * 2014-05-07 2015-11-12 リンテック株式会社 Curable polysilsesquioxane compound, production method thereof, curable composition, cured product and use method of curable composition, etc.
WO2016013625A1 (en) * 2014-07-23 2016-01-28 リンテック株式会社 Curable composition, method for manufacturing curable composition, cured product, method for using curable composition, and optical device
US10308850B2 (en) 2014-07-23 2019-06-04 Lintec Corporation Curable composition, method for manufacturing curable composition, cured product, method for using curable composition, and optical device
JP6009120B2 (en) * 2014-07-23 2016-10-19 リンテック株式会社 Curable composition, method for producing curable composition, cured product, method for using curable composition, and optical device
KR20200131228A (en) 2018-03-12 2020-11-23 린텍 가부시키가이샤 Curable composition, cured product, method of producing cured product, and method of using curable composition

Also Published As

Publication number Publication date
CN103282440B (en) 2016-01-20
JP5940456B2 (en) 2016-06-29
TW201237103A (en) 2012-09-16
TWI537339B (en) 2016-06-11
KR20140006795A (en) 2014-01-16
KR101824289B1 (en) 2018-01-31
CN103282440A (en) 2013-09-04
JPWO2012073988A1 (en) 2014-05-19

Similar Documents

Publication Publication Date Title
JP5940456B2 (en) Curable composition, cured product and method of using curable composition
JP5744221B2 (en) Curable composition, cured product and method of using curable composition
JP5725479B2 (en) Curable composition, cured product and method of using curable composition
JP5550162B1 (en) Curable polysilsesquioxane compound, production method thereof, curable composition, cured product, and method of using curable composition, etc.
JP6779235B2 (en) Curable composition, method of producing curable composition, cured product, method of using curable composition, and optical device
JP6761491B2 (en) Curable Compositions, Curables and How to Use Curable Compositions
JP5762401B2 (en) Curable composition, cured product and method of using curable composition
JP6046898B2 (en) Curable composition, cured product and method of using curable composition
JP6228591B2 (en) Curable composition, cured product, method of using curable composition, optical element sealing body and method for producing the same
JP5700689B2 (en) Curable composition, cured product and method of using curable composition
JP6430388B2 (en) Curable composition, cured product and method of using curable composition
WO2015041344A1 (en) Curable composition, cured product, and method for using curable composition
KR102672356B1 (en) Curable composition, method of producing the curable composition, cured product, method of using the curable composition, and optical device
WO2015041343A1 (en) Curable composition, cured product, and method for using curable composition
WO2015041340A1 (en) Silane compound polymer, curable composition, cured product, and method for using cured composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11845121

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012546903

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137013455

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11845121

Country of ref document: EP

Kind code of ref document: A1