WO2012073437A1 - Optical film, image display device, and image display device comprising touch panel - Google Patents

Optical film, image display device, and image display device comprising touch panel Download PDF

Info

Publication number
WO2012073437A1
WO2012073437A1 PCT/JP2011/006394 JP2011006394W WO2012073437A1 WO 2012073437 A1 WO2012073437 A1 WO 2012073437A1 JP 2011006394 W JP2011006394 W JP 2011006394W WO 2012073437 A1 WO2012073437 A1 WO 2012073437A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
optical film
functional layer
mass
base film
Prior art date
Application number
PCT/JP2011/006394
Other languages
French (fr)
Japanese (ja)
Inventor
岡野 賢
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012546678A priority Critical patent/JP5971121B2/en
Publication of WO2012073437A1 publication Critical patent/WO2012073437A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/16Optical coatings produced by application to, or surface treatment of, optical elements having an anti-static effect, e.g. electrically conducting coatings

Definitions

  • the present invention relates to an image display device including an optical film, an image display device, and a touch panel.
  • liquid crystal display devices have attracted attention as image display elements, and as one of their uses, application to portable electronic notebooks, portable multimedia devices, and the like is expected.
  • a liquid crystal display element with a transparent touch panel mounted thereon particularly a resistive film type touch panel
  • This resistive film type touch panel generally has a hard coat layer on one side of a film substrate (hereinafter referred to as a hard coat film) and an indium-tin oxide (hereinafter referred to as “ITO”) on the other side.
  • a hard coat film a film substrate
  • ITO indium-tin oxide
  • a panel plate serving as an upper electrode having a conductive film, and a panel plate serving as a lower electrode having a conductive film such as ITO on one surface of a transparent substrate such as a glass substrate via a spacer are usually manufactured separately by a manufacturer that provides a hard coat layer on a film substrate to produce a hard coat film, a manufacturer that provides a conductive film such as ITO on a glass substrate, and a manufacturer that assembles these. Has been.
  • hard coat films used in touch panels are actually used in many cases having a hard coat layer on both sides of a film substrate from the viewpoint of ITO adhesion and curl prevention.
  • Patent Document 1 discloses a technique for preventing blocking by forming surface irregularities having a protruding shape to prevent sticking between films.
  • Patent Document 1 forms surface irregularities having a protrusion shape on a hard coat film by using a curable resin composition for a hard coat layer containing a resin having two or more reactive functional groups and fine particles bonded with a fluorine compound.
  • Patent Document 2 discloses that a technique for forming surface irregularities having a protrusion shape by phase separation of a resin can be used for preventing blocking.
  • a technique for forming surface irregularities having a protrusion shape by phase separation of a resin can be used for preventing blocking.
  • flexibility flexibility
  • the surface unevenness having a protrusion shape is formed by adding phase separation of the resin and further fine particles, there is a problem in that the visibility of the display image is lowered due to the internal haze of the hard coat layer.
  • a method for forming a concavo-convex structure for preventing blocking a method of providing a concavo-convex structure on a film with a surface transfer roll having a concavo-convex structure on the surface is known.
  • the surface transfer roll usually has a roll shape having a diameter of about 5 cm. Therefore, when a concavo-convex structure is formed on a long roll, the surface transfer roll has a period of about 15 cm. Therefore, when unevenness is formed with a surface transfer roll on a very long long film, it is clear that the period of the uneven structure partially matches between the laminated films, causing partial blocking It has become.
  • an object of the present invention is to provide an optical film that prevents blocking and has excellent flexibility, and an optical film that has almost no haze due to internal scattering. Furthermore, it aims at providing the liquid crystal display device containing the image display apparatus which is excellent in the visibility using this optical film, and the touch panel excellent in the damage and peeling of the surface by pen sliding at the time of information input.
  • An optical film according to one aspect of the present invention is an optical film having a hard coat layer on one surface of a base film and a functional layer on the other surface, the functional layer having a period in the length direction. It has no irregular protrusion shape and is substantially free of fine particles or non-reactive polymer.
  • the protrusion shape forming the surface irregularities of the functional layer according to the present invention is an irregular shape having no period in the length direction.
  • the optical film described above has almost no haze due to internal scattering, it provides an image display device that has excellent visibility when used in an image display device and does not cause eye fatigue even when viewed for a long time. Can do.
  • the surface film of a liquid crystal display device including a touch panel can provide an optical film excellent in pen sliding resistance assuming an operating environment in which a pen, a finger, or the like is pushed when inputting information.
  • FIG. 1 is an explanatory view of a protrusion according to the present invention.
  • FIG. 2 is an example when the optical film of the present invention is used for a touch panel.
  • FIG. 3 is a schematic diagram of a liquid crystal display device with a touch panel.
  • FIG. 4 shows the surface of the functional layer 1 of the optical film 1 of the example observed with an optical interference type surface roughness meter.
  • FIG. 5 is a schematic diagram of a conductive optical film.
  • FIG. 6 is a schematic diagram of a resistive film type touch panel.
  • FIG. 7 is a schematic diagram of the inner touch panel.
  • the optical film of the present invention is an optical film having a hard coat layer on one surface on a film substrate and a functional layer on the other surface, and the functional layer has no periodicity in the length direction. It has a characteristic protrusion shape and is substantially free of fine particles or non-reactive polymer.
  • the optical film of the present invention has an optical film that is prevented from blocking in a state where the film is wound in a roll shape and has excellent flexibility, and an optical film free from haze due to internal scattering. It is to provide.
  • the functional layer according to the present invention is composed only of highly compatible resin components without containing fine particles or non-reactive polymer, it is difficult to cause deterioration in the durability test, and durability for outdoor use is assumed.
  • An optical film having excellent flexibility after the property test can be provided.
  • the protrusion shape forming the surface irregularities of the functional layer is not formed by adding fine particles or by molding, and therefore has an irregular state, and the hard coat layer and the functional layer are Even when they are overlapped, the stress is easily dispersed, and an excellent anti-blocking effect can be obtained.
  • an optical film excellent in pen sliding resistance can be provided as a liquid crystal display device including a touch panel.
  • the functional layer which is one feature of the optical film of the present invention will be described.
  • the functional layer has an irregular protrusion shape having no period in the length direction forming the surface irregularities, and is substantially free of fine particles or non-reactive polymer.
  • a length direction means the film forming direction where the composition coating liquid was cast at the time of manufacture of an optical film.
  • “Substantially not contained” means that the content of the fine particles or incompatible resin is 0.01% by mass or less based on the solid content of the functional layer.
  • Non-reactive polymers are compounds that do not have a functional group (polymerizable group) such as an unsaturated double bond, and specifically include (meth) acrylic monomers, acrylic monomers, and copolymerizable monomers. Examples thereof include thermoplastic acrylic resins and cellulose ester resins, which will be described later in terms of a polymer and a base film. Examples of the fine particles include fine particles such as inorganic fine particles and organic fine particles.
  • the inorganic fine particles include silicon oxide, magnesium oxide, and calcium carbonate.
  • the organic particles include polymethacrylic acid methyl acrylate resin powder, acrylic styrene resin powder, polymethyl methacrylate resin powder, polystyrene resin powder, and melamine resin powder. Next, the protrusion shape will be described.
  • the protrusion shape of the present invention is an irregularly shaped protrusion having no period in the length direction.
  • the “irregularly shaped protrusion having no period in the length direction” of the present invention is an irregular shape in which the surface unevenness is not determined in shape or size in the width direction of the film.
  • protrusion shape of the present invention for example, protrusions having different widths and heights such as (a) and (b) shown in FIG. 1 are exemplified as irregularly shaped protrusions, but are not limited thereto.
  • the “irregular arrangement” means that the irregularly-protruding protrusions are not regularly arranged (for example, at regular intervals), but are irregularly arranged at random intervals, It may be isotropic or anisotropic. In addition, protrusions appear on the surface of the functional layer that is not in contact with the base film.
  • the arithmetic average roughness Ra (JIS B0601: 1994) of the functional layer is preferably 130 nm or less, particularly preferably 10 to 130 nm.
  • the arithmetic average roughness Ra within the above range is preferable in that not only the objective effect of the present invention is suitably obtained in a more severe durability test, but also excellent adhesion.
  • the height of the protrusion shape for obtaining the arithmetic average roughness Ra is preferably 2 nm to 4 ⁇ m.
  • the width of the protrusion shape is 50 nm to 300 ⁇ m, preferably 50 nm to 100 ⁇ m.
  • the height and width of the protrusion shape can be obtained from cross-sectional observation. In order to make it easier to understand, FIG. As shown in FIG. 1, the height and width of the protrusion shape are obtained by drawing a center line a on the cross-sectional observation image and forming two peaks b and c and a center line a forming a mountain ridge. The distance between the intersections can be determined as the protrusion size width t, and the distance from the peak to the center line a can be determined as the protrusion size height h.
  • the 10-point average roughness Rz of the functional layer is preferably 10 times or less of the centerline average roughness Ra.
  • the average mountain / valley distance Sm is preferably 5 to 150 ⁇ m, more preferably 20 to 100 ⁇ m.
  • the standard deviation of the height of the convex portion from the deepest portion of the concave and convex portions is preferably 0.5 ⁇ m or less.
  • the standard deviation of the average mountain-valley distance Sm with respect to the center line is preferably 20 ⁇ m or less, and the surface with an inclination angle of 0 to 5 degrees is preferably 10% or more.
  • the arithmetic average roughness Ra, the average mountain valley distance Sm, and the 10-point average roughness Rz are values measured with an optical interference surface roughness meter (for example, RST / PLUS, manufactured by WYKO) according to JIS B0601: 1994. It is.
  • the kurtosis Rku of the functional layer is preferably 3 or less.
  • the kurtosis Rku is a parameter that defines the shape of the convex portion of the concavo-convex shape. The larger the value of the kurtosis Rku, the more the shape of the convex portion of the concavo-convex shape is a pointed shape like a needle. It will be. When the kurtosis Rku exceeds 3, white blurring tends to occur.
  • the kurtosis Rku of the functional layer is more preferably 1.5 to 2.8.
  • the absolute value of the surface distortion Rsk is preferably 1 or less.
  • the skewness Rsk is a parameter indicating the ratio of the convex portion and the concave portion with respect to the average surface of the concavo-convex shape. If there are many convex portions with respect to the average surface, it becomes a positive value and is concave with respect to the average surface If there are many parts, it will become a large negative value. When the absolute value of the skewness Rsk exceeds 1, white blurring tends to occur. The absolute value of the skewness Rsk is preferably 0.01 to 0.5. The kurtosis Rku and the skewness Rsk can be measured using the optical interference surface roughness meter.
  • the optical film of the present invention preferably has an image clarity (transmission image clarity) according to JIS-K7105 of 5 to 90% when measured with an optical comb width of 0.5 mm, and more preferably 5 to 80%. %, Particularly preferably 5 to 60%.
  • image clarity transmission image clarity
  • the protrusion shape may be obtained by, for example, increasing the processing temperature of the rate-decreasing drying section in the drying process of the functional layer coating composition. It can be obtained by a method of controlling, generating a convection of a resin film, creating a non-uniform state on the surface of the functional layer, curing in this non-uniform surface state, and forming a coating film. By forming the coating film by such a method, the film strength of the functional layer is improved. Moreover, the method of controlling the processing temperature of the decreasing rate drying area in the drying process of a functional layer coating composition to high temperature conditions is preferable at the point which is excellent also in productivity.
  • the functional layer according to the present invention preferably contains an actinic radiation curable resin. That is, it is preferable that the main component is a resin that is cured through a crosslinking reaction by irradiation with active rays (also called active energy rays) such as ultraviolet rays and electron beams.
  • active rays also called active energy rays
  • the actinic radiation curable resin a component containing a monomer having an ethylenically unsaturated double bond is preferably used. These resins are cured by irradiating active rays such as ultraviolet rays and electron beams to form an active ray curable resin layer.
  • active rays also called active energy rays
  • Typical examples of the actinic radiation curable resin include ultraviolet curable resins and electron beam curable resins.
  • resins cured by ultraviolet irradiation have excellent mechanical film strength (abrasion resistance, pencil hardness).
  • the ultraviolet curable resin include an ultraviolet curable acrylate resin, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, and an ultraviolet ray.
  • a curable epoxy resin or the like is preferably used. Of these, ultraviolet curable acrylate resins are preferred.
  • polyfunctional acrylate is preferable.
  • the polyfunctional acrylate is preferably selected from the group consisting of pentaerythritol polyfunctional acrylate, dipentaerythritol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, and dipentaerythritol polyfunctional methacrylate.
  • the polyfunctional acrylate is a compound having two or more acryloyloxy groups or methacryloyloxy groups in the molecule.
  • polyfunctional acrylate monomer examples include ethylene glycol diacrylate, diethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, and tetramethylolmethane triacrylate.
  • Pentaerythrit Preferred examples include tetratetraacrylate, pentaerythritol tetraacrylate, glycerin triacrylate, dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, and active energy ray-curable isocyanurate derivatives. It is done.
  • the active energy ray-curable isocyanurate derivative is not particularly limited as long as it is a compound having a structure in which one or more ethylenically unsaturated groups are bonded to the isocyanuric acid skeleton, but three or more in the same molecule.
  • a compound having an ethylenically unsaturated group and one or more isocyanurate rings is preferred.
  • Adekaoptomer KR / BY series KR-400, KR-410, KR-550, KR-566, KR-567, BY-320B (manufactured by ADEKA Corporation); 101-KK, A-101-WS, C-302, C-401-N, C-501, M-101, M-102, T-102, D-102, NS-101, FT-102Q8, MAG- 1-P20, AG-106, M-101-C (manufactured by Guangei Chemical Co., Ltd.); Seika Beam PHC2210 (S), PHC X-9 (K-3), PHC2213, DP-10, DP-20, DP- 30, P1000, P1100, P1200, P1300, P1400, P1500, P1600, SCR900 (manufactured by Dainichi Seika Kogyo Co., Ltd.); KRM7033, KRM 039, KRM 7130, KRM 7131, UV
  • the actinic radiation curable resin may be used alone or in combination of two or more.
  • the viscosity at 25 ° C. of the actinic radiation curable resin is preferably 20 mPa ⁇ s or more and 2000 mPa ⁇ s or less.
  • the viscosity of the resin is 30 mPa ⁇ s or more, a monomer having a high functionality can be used, and sufficiently excellent curability can be obtained.
  • the viscosity is 2000 mPa ⁇ s or less, the resin is used in the drying step. Sufficient fluidity of the composition (composition comprising an active ray curable resin and an additive other than a solvent) is easily obtained.
  • the viscosity of the actinic radiation curable resin can be measured using a B-type viscometer under the condition of 25 ° C. after stirring and mixing the resin with a disper.
  • low viscosity resins examples include glycerin triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate and the like.
  • the viscosity can be measured using a B-type viscometer at 25 ° C.
  • the functional layer may further contain a monofunctional acrylate.
  • Monofunctional acrylates include isobornyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, isostearyl acrylate, benzyl acrylate, ethyl carbitol acrylate, phenoxyethyl acrylate, lauryl acrylate, isooctyl acrylate, tetrahydrofurfuryl acrylate, behenyl Examples thereof include acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, cyclohexyl acrylate, and the like.
  • Such monofunctional acrylates can be obtained from Nippon Kasei Kogyo Co., Ltd., Shin-Nakamura Chemical Co., Ltd., Osaka Organic Chemical Co., Ltd., etc.
  • polyfunctional acrylate When a monofunctional acrylate is used, it is preferable that polyfunctional acrylate: monofunctional acrylate is contained in a mass ratio of polyfunctional acrylate to monofunctional acrylate of 80:20 to 99: 1.
  • the functional layer contains a photopolymerization initiator in order to accelerate the curing of the actinic radiation curable resin.
  • the amount of the photopolymerization initiator is preferably 20: 100 to 0.01: 100 in terms of mass ratio.
  • Specific examples of the photopolymerization initiator include alkylphenone series, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, ⁇ -amyloxime ester, thioxanthone, and derivatives thereof, but are not particularly limited thereto. Is not to be done.
  • photopolymerization initiators Commercially available products may be used as such photopolymerization initiators, and preferred examples include Irgacure 184, Irgacure 907, and Irgacure 651 manufactured by BASF Japan.
  • the functional layer may contain a conductive agent in order to impart antistatic properties.
  • a conductive agent include metal oxide fine particles or ⁇ -conjugated conductive polymers.
  • An ionic liquid is also preferably used as the conductive compound.
  • the functional layer may contain a silicone-based surfactant, a fluorine-based surfactant, an anionic surfactant, and a fluorine-siloxane graft polymer from the viewpoint of coatability.
  • the functional layer may contain a compound having an HLB value of 3 to 18.
  • a compound having an HLB value of 3 to 18 will be described.
  • the HLB value is Hydrophile-Lipophile-Balance, hydrophilic-lipophilic-balance, and is a value indicating the degree of hydrophilicity or lipophilicity of a compound. The smaller the HLB value, the higher the lipophilicity, and the higher the value, the higher the hydrophilicity.
  • the HLB value can be obtained by the following calculation formula.
  • HLB value 20 ⁇ total formula weight of hydrophilic part / molecular weight
  • Emulgen 102KG (6.3), Emulgen 103 (8.1), Emulgen 104P (9.6), Emulgen 105 (9.7), Emulgen 106 (10.5), Emulgen 108 (12 .1), Emulgen 109P (13.6), Emulgen 120 (15.3), Emulgen 123P (16.9), Emulgen 147 (16.3), Emulgen 210P (10.7), Emulgen 220 (14.2) ), Emulgen 306P (9.4), Emulgen 320P (13.9), Emulgen 404 (8.8), Emulgen 408 (10.0), Emulgen 409PV (12.0), Emulgen 420 (13.6), Emulgen 430 (16.2), Emulgen 705 (10.5), Emulgen 707 (12.1), Emulgen 7 9 (13.3), Emulgen 1108 (13.5), Emulgen 1118S-70 (16.4), Emulgen 1135S-70 (17.9), Emulgen 2020G-HA (13.0), Emulgen
  • Emulgen LS-106 (12.5), Emulgen LS-110 (13.4), Emulgen LS-114 (14.0), manufactured by Nissin Chemical Industry Co., Ltd .: Surfinol 104E (4), Surfy Nord 104H (4), Surfinol 104A (4), Surfinol 104BC (4), Surfinol 104DPM (4), Surfinol 104PA (4), Surfinol 104PG-50 (4), Surfinol 104S (4), Surfinol 420 (4), Surfinol 440 (8), Surfinol 465 13), Surfinol 485 (17), Surfinol SE (6), manufactured by Shin-Etsu Chemical Co., Ltd .: X-22-4272 (7), X-22-6266 (8), KF-351 (12), KF-352 (7), KF-353 (10), KF-354L (16), KF-355A (12), KF-615A (10), KF-945 (4), KF-618
  • silicone surfactant examples include polyether-modified silicone, and the KF series manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
  • acrylic copolymer examples include commercially available compounds such as BYK-350 and BYK-352 manufactured by BYK Japan.
  • fluorosurfactant examples include MegaFuck® RS series manufactured by DIC Corporation, MegaFuck F-444 MegaFuck F-556, and the like.
  • the fluorine-siloxane graft polymer refers to a copolymer polymer obtained by grafting polysiloxane and / or organopolysiloxane containing siloxane and / or organosiloxane alone on at least a fluorine resin.
  • fluorine-siloxane graft polymers can be prepared by methods as described in the examples below.
  • commercially available products include ZX-022H, ZX-007C, ZX-049, ZX-047-D manufactured by Fuji Kasei Kogyo Co., Ltd.
  • the functional layer may further contain an ultraviolet absorber described in the base film described later. When the ultraviolet absorber is contained, the film is preferably composed of two or more functional layers, and the functional layer in contact with the base film preferably contains the ultraviolet absorber.
  • the ultraviolet absorber: functional layer constituting resin is contained in a mass ratio of 0.01: 100 to 10: 100.
  • the thickness of the functional layer in contact with the base film is preferably in the range of 0.05 to 2 ⁇ m.
  • Two or more stacked layers may be formed by sequential multilayers or by simultaneous multilayers.
  • the simultaneous multi-layering is a method of forming a functional layer by applying two or more functional layers on a base film in a wet-on-wet manner without going through a drying step.
  • the layers are stacked one after another with an extrusion coater or simultaneously with a slot die having a plurality of slits. Can be done.
  • the functional layer is a functional layer composition obtained by diluting the above-mentioned components forming the functional layer with a solvent that swells or partially dissolves the base film, and this functional layer composition is formed into a film by the following method. It is preferably provided by applying, drying and curing on a substrate.
  • Solvents include ketones (methyl ethyl ketone, acetone, cyclohexanone, methyl isobutyl ketone, etc.), acetate esters (methyl acetate, ethyl acetate, butyl acetate, etc.), alcohols (methanol, ethanol, etc.), glycol ethers (propylene glycol monomethyl ether, diethylene glycol monomethyl) Ethers, etc.) are preferred, and among these solvents, ketones, esters and glycol ethers are preferred.
  • the functional layer composition is applied to the base film, and then the functional layer composition In the process of forming the functional layer while the solvent evaporates, convection of the resin is likely to occur, and as a result, the surface roughness is irregular in the longitudinal direction and has irregular projections on the base film. This is preferable because it easily develops and the arithmetic average roughness Ra is easy to control.
  • the coating amount of the functional layer composition forming the functional layer is suitably 0.1 to 40 ⁇ m, preferably 0.5 to 30 ⁇ m, as the wet film thickness.
  • the average film thickness is suitably 0.05 to 20 ⁇ m, preferably 1 to 10 ⁇ m, as a dry film thickness.
  • known methods such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, and an ink jet method can be used.
  • the functional layer is coated with a functional layer composition that forms a functional layer using these coating methods, dried after application, and irradiated with actinic radiation (also referred to as UV curing treatment), and further if necessary.
  • the heat treatment temperature after UV curing is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and particularly preferably 120 ° C. or higher.
  • Drying is preferably performed by high-temperature treatment at a temperature of 90 ° C. or higher in the rate of drying section. More preferably, the temperature of the decreasing rate drying section is 90 ° C or higher and 140 ° C or lower.
  • the temperature of the rate-decreasing drying section high-temperature treatment, convection occurs in the coating resin during the formation of the functional layer, so that irregular surface roughness is likely to appear on the surface of the functional layer, and the arithmetic mean described above This is preferable because it is easy to control the roughness Ra.
  • the drying process changes from a constant state to a gradually decreasing state when drying starts.
  • the decreasing section is called the decreasing rate drying section.
  • the constant rate drying section the amount of heat flowing in is all consumed for solvent evaporation on the coating film surface, and when the solvent on the coating film surface decreases, the evaporation surface moves from the surface to the inside and enters the decreasing rate drying section. Thereafter, the temperature of the coating film surface rises and approaches the hot air temperature, so that the temperature of the actinic radiation curable resin composition rises, the resin viscosity decreases, and the fluidity increases.
  • any light source that generates ultraviolet rays can be used without limitation.
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is usually 50 to 1000 mJ / cm 2 , preferably 50 to 300 mJ / cm 2 .
  • the tension to be applied is preferably 30 to 300 N / m.
  • the method for applying the tension is not particularly limited, and the tension may be applied in the conveying direction on the back roll, or the tension may be applied in the width direction or biaxial direction by a tenter. Thereby, a film having further excellent flatness can be obtained.
  • the hard coat layer As a component which forms a hard-coat layer, the component described by description of the functional layer can be used.
  • the film thickness is preferably in the range described above for the functional layer.
  • the hard coat layer can be formed by a method of coating, drying, curing, and heat-treating, if necessary, on the film substrate on which the functional layer is provided.
  • the hard coat layer has an arithmetic average roughness Ra of preferably less than 10 nm, and more preferably less than 2 nm. If Ra is the said range, a very smooth surface will be obtained and the visibility at the time of using for an image display apparatus will be obtained suitably.
  • the haze resulting from internal scattering of the optical film (hereinafter also referred to as internal haze) is preferably 0 to 1%. By satisfactorily suppressing internal scattering, excellent visibility can be obtained when the optical film according to the present invention is used in an image display device.
  • the internal haze can be measured by the following procedure. A few drops of silicone oil are dropped on the front and back surfaces of the optical film so that they are optically intimately attached from the front and back with two 1 mm thick glass plates (micro slide glass, product number S9111, manufactured by Matsunami Glass Industry Co., Ltd.) In this state, haze (Ha) is measured according to JIS K7136.
  • the internal haze (Hi) is calculated by subtracting the glass haze (Hb) from the haze (Ha).
  • the internal haze of the optical film is preferably 0.2 to 20%.
  • the optical film in the present invention has a pencil hardness, which is an index of hardness, of H or higher, more preferably 3H or higher. If it is 3H or more, it exhibits excellent mechanical properties when used as a surface protective film for large image display devices and digital signage image display devices that are often used in outdoor applications.
  • the pencil hardness is determined by adjusting the humidity of the produced optical film at a temperature of 23 ° C. and a relative humidity of 55% for 2 hours or more, and then using a test pencil specified by JIS S 6006 under a load of 500 g. It is the value which measured the functional layer according to the pencil hardness evaluation method prescribed
  • the base film is easy to manufacture, easily adheres to the functional layer and the hard coat layer, and has optical isotropy.
  • cellulose ester film such as triacetyl cellulose film, cellulose acetate propionate film, cellulose diacetate film, cellulose acetate butyrate film, polyethylene terephthalate, polyethylene naphthalate, etc.
  • Polyester film such as phthalate, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene film, polypropylene film, cellophane, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, Shinji Otectic polystyrene film, norbornene resin film, polymethylpente Films, polyether ketone films, polyether ketone imide film, a polyamide film, a fluorine resin film, nylon film, can be used cycloolefin polymer film, a polymethylmethacrylate film, or an acrylic film.
  • cellulose ester films for example, Konica Minoltac KC8UX, KC4UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC4UE, KC4UE, and KC12UR (above, manufactured by Konica Minolta Opto, Polycarbonate Film)
  • An olefin polymer film and a polyester film are preferable, and in the present invention, the cellulose ester film is preferable from the viewpoint of ease of obtaining the above-described protrusion shape from the functional layer, productivity, and cost.
  • the refractive index of the base film is preferably 1.30 to 1.70, and more preferably 1.40 to 1.65.
  • the refractive index is measured by the method of JIS K7142 using an Abbe refractometer 2T manufactured by Atago Co., Ltd.
  • the cellulose ester film is not particularly limited as long as it has the above properties, but the cellulose ester resin (hereinafter also referred to as cellulose ester) is preferably a lower fatty acid ester of cellulose.
  • the lower fatty acid in the lower fatty acid ester of cellulose means a fatty acid having 6 or less carbon atoms.
  • mixed fatty acid esters such as cellulose acetate butyrate can be used.
  • cellulose lower fatty acid esters particularly preferably used are cellulose diacetate, cellulose triacetate, and cellulose acetate propionate. These cellulose esters can be used alone or in combination.
  • Cellulose diacetate preferably has an average degree of acetylation (amount of bound acetic acid) of 51.0 to 56.0%.
  • Commercially available products include L20, L30, L40, and L50 manufactured by Daicel Corporation, and Ca398-3, Ca398-6, Ca398-10, Ca398-30, and Ca394-60S manufactured by Eastman Chemical Japan Co., Ltd. Can be mentioned.
  • the cellulose triacetate preferably has an average degree of acetylation (bound acetic acid amount) of 54.0 to 62.5%, and more preferably cellulose triacetate having an average degree of acetylation of 58.0 to 62.5%. is there.
  • Cellulose triacetate has an acetyl group substitution degree of 2.80 to 2.95, a number average molecular weight (Mn) of 125,000 or more and less than 155000, a weight average molecular weight (Mw) of 265,000 or more and less than 310,000, Mw Cellulose triacetate A / Mn of 1.9 to 2.1, acetyl group substitution degree of 2.75 to 2.90, Mn of 155000 or more and less than 180,000, Mw of 290000 or more and less than 360,000 It is preferable to contain cellulose triacetate B having Mw / Mn of 1.8 to 2.0.
  • Cellulose acetate propionate has an acyl group having 2 to 4 carbon atoms as a substituent, and when the substitution degree of acetyl group is X and the substitution degree of propionyl group or butyryl group is Y, the following formula (I ) And (II) are preferably satisfied at the same time.
  • the Mn and Mw of the cellulose ester can be measured using high performance liquid chromatography.
  • the measurement conditions are as follows.
  • Solvent Methylene chloride Column: Shodex K806, K805, K803G (Used by connecting three Showa Denko Co., Ltd.) Column temperature: 25 ° C Sample concentration: 0.1% by mass Detector: RI Model 504 (GL Science Co., Ltd.) Pump: L6000 (manufactured by Hitachi, Ltd.) Flow rate: 1.0 ml / min Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corporation) A calibration curve of 13 samples with Mw of 1,000,000 to 500 was used. The 13 samples are preferably used at approximately equal intervals.
  • the base film contains a thermoplastic acrylic resin and a cellulose ester resin, and the mass ratio of the thermoplastic acrylic resin and the cellulose ester resin is 95: 5 to 50:50 of the thermoplastic acrylic resin: cellulose ester resin.
  • a cellulose ester resin / thermoplastic acrylic resin-containing film may be used.
  • Acrylic resin includes methacrylic resin.
  • the acrylic resin is not particularly limited but is preferably composed of 50 to 99% by mass of methyl methacrylate units and 1 to 50% by mass of other monomer units copolymerizable therewith.
  • Examples of other copolymerizable monomers include alkyl methacrylates having 2 to 18 alkyl carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, alkyl acrylates such as acrylic acid and methacrylic acid.
  • Unsaturated group-containing divalent carboxylic acids such as saturated acid, maleic acid, fumaric acid and itaconic acid, aromatic vinyl compounds such as styrene and ⁇ -methylstyrene, ⁇ , ⁇ -unsaturated nitriles such as acrylonitrile and methacrylonitrile, Examples thereof include maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride and the like, and these can be used alone or in combination of two or more monomers.
  • methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like are preferable from the viewpoint of thermal decomposition resistance and fluidity of the copolymer.
  • n-Butyl acrylate is particularly preferably used.
  • Mw is preferably from 80000 to 500000, more preferably from 110000 to 500000.
  • the Mw of the acrylic resin can be measured by gel permeation chromatography.
  • a polymerization method of an acrylic resin You may employ
  • the polymerization initiator a normal peroxide polymerization initiator and an azo polymerization initiator can be used, and a redox polymerization initiator can also be used.
  • Regarding the polymerization temperature 30 to 100 ° C. can be employed for suspension or emulsion polymerization, and 80 to 160 ° C. can be employed for bulk or solution polymerization.
  • polymerization can be carried out using a chain transfer agent such as an alkyl mercaptan.
  • chain transfer agents can also be used.
  • Delpet 60N, 80N (Asahi Kasei Chemicals Co., Ltd.), Dianal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electric Chemical Co., Ltd.), etc. are used. be able to.
  • Two or more acrylic resins can be used in combination.
  • the acrylic resin may be a graft copolymer obtained by grafting a (meth) acrylic resin to a copolymer of (meth) acrylic rubber and an aromatic vinyl compound.
  • a copolymer of (meth) acrylic rubber and an aromatic vinyl compound forms a core, and the (meth) acrylic resin forms a shell around the copolymer.
  • -A shell-type graft copolymer is preferred.
  • the total mass of the acrylic resin and the cellulose ester resin in the base film is preferably 55% by mass or more of the base film, more preferably 60% by mass or more, and particularly preferably 70% by mass or more.
  • the base film may be configured to contain resins and additives other than thermoplastic acrylic resins and cellulose ester resins.
  • the base film may contain acrylic particles from the viewpoint of improving brittleness.
  • An acrylic particle represents the acrylic component which exists in the state of particle
  • the acrylic particles are not particularly limited, but are preferably multi-layered acrylic granular composites.
  • multi-layered acrylic granular composites include “Metablene” manufactured by Mitsubishi Rayon Co., Ltd., “Kaneace” manufactured by Kaneka Chemical Co., Ltd., “Paraloid” manufactured by Kureha Chemical Industry Co., Ltd., Rohm and Examples include “Acryloid” manufactured by Haas, “Staffyroid” manufactured by Gantz Kasei Kogyo Co., Ltd., “Parapet SA” manufactured by Kuraray Co., Ltd., and the like. These may be used alone or in combination of two or more.
  • the refractive index of the mixture of the acrylic resin and the cellulose ester resin is close to the refractive index of the acrylic particles in order to obtain a highly transparent film.
  • the refractive index difference between the acrylic particles and the acrylic resin is preferably 0.05 or less, more preferably 0.02 or less, and still more preferably 0.01 or less.
  • the acrylic fine particles have a total mass ratio of acrylic fine particles: acrylic resin and cellulose ester resin in the range of 0.5: 100 to 30: 100 with respect to the total mass of the acrylic resin and cellulose ester resin constituting the film.
  • the content is preferably from the viewpoint that the intended effect is better exhibited, and more preferably, the total mass of the acrylic fine particles: acrylic resin and cellulose ester resin is in the range of 1.0: 100 to 15: 100.
  • the base film according to the present embodiment includes, for example, silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydrated calcium silicate, silica It is preferable to contain a matting agent such as inorganic fine particles such as aluminum oxide, magnesium silicate and calcium phosphate, and a crosslinked polymer.
  • silicon dioxide is preferably used because it can reduce the haze of the film.
  • the primary average particle diameter of the fine particles is preferably 20 nm or less, more preferably 5 to 16 nm, and particularly preferably 5 to 12 nm.
  • a plasticizer can also be used in combination with the base film in order to improve the fluidity and flexibility of the composition.
  • the plasticizer include phthalate esters, fatty acid esters, trimellitic esters, phosphate esters, polyesters, sugar esters, acrylic polymers, and the like. Of these, polyester, sugar ester and acrylic polymer plasticizers are preferably used. Polyester plasticizers are superior in non-migration and extraction resistance compared to phthalate ester plasticizers such as dioctyl phthalate. It can be applied to a wide range of uses by selecting or using these plasticizers according to the use.
  • the acrylic polymer is preferably a homopolymer or copolymer of acrylic acid or methacrylic acid alkyl ester.
  • acrylate monomer examples include methyl acrylate, ethyl acrylate, propyl acrylate (i-, n-), butyl acrylate (n-, i-, s-, t-), pentyl acrylate ( n-, i-, s-), hexyl acrylate (n-, i-), heptyl acrylate (n-, i-), octyl acrylate (n-, i-), nonyl acrylate (n-, i-), myristyl acrylate (n-, i-), acrylic acid (2-ethylhexyl), acrylic acid ( ⁇ -caprolactone), acrylic acid (2-hydroxyethyl), acrylic acid (2-hydroxypropyl), acrylic Acid (3-hydroxypropyl), acrylic acid (4-hydroxybutyl), acrylic acid (2-hydroxybutyl), acrylic acid (2-methoxyethyl), acrylic acid 2-ethoxyethyl), etc., or
  • the acrylic polymer is a homopolymer or copolymer of the above-mentioned monomers, but the acrylic acid methyl ester monomer unit is preferably 30% by mass or more, and the methacrylic acid methyl ester monomer unit is preferably 40% by mass or more. In particular, a homopolymer of methyl acrylate or methyl methacrylate is preferred.
  • the polyester plasticizer is a reaction product of a monovalent or tetravalent carboxylic acid and a monovalent or hexavalent alcohol, and is mainly obtained by reacting a divalent carboxylic acid with a glycol.
  • Representative divalent carboxylic acids include glutaric acid, itaconic acid, adipic acid, phthalic acid, azelaic acid, sebacic acid and the like.
  • the polyester plasticizer is preferably an aromatic terminal ester plasticizer.
  • the aromatic terminal ester plasticizer is preferably an ester compound having a structure obtained by reacting phthalic acid, adipic acid, at least one benzene monocarboxylic acid and at least one alkylene glycol having 2 to 12 carbon atoms. It is sufficient that the structure of such a compound has an adipic acid residue and a phthalic acid residue. When manufacturing an ester compound, you may make it react as an acid anhydride or esterified substance of dicarboxylic acid.
  • benzene monocarboxylic acid component examples include benzoic acid, para-tert-butylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethylbenzoic acid, ethylbenzoic acid, normal propylbenzoic acid, aminobenzoic acid, acetoxybenzoic acid and the like. Most preferred is benzoic acid. Moreover, these can each be used as a 1 type, or 2 or more types of mixture.
  • alkylene glycol component having 2 to 12 carbon atoms examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,2-propanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 2,2-diethyl-1 , 3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-dimethylolheptane), 3-methyl-1,5-pentane Diol, 1,6-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl 1,3-he
  • 1,2-propylene glycol is particularly preferred. These glycols may be used as one kind or a mixture of two or more kinds.
  • the aromatic terminal ester plasticizer may be either an oligoester type or a polyester type, and the molecular weight is preferably in the range of 100 to 10,000, but is preferably in the range of 350 to 3000.
  • the acid value is 1.5 mgKOH / g or less, the hydroxyl value is 25 mgKOH / g or less, more preferably the acid value is 0.5 mgKOH / g or less, and the hydroxyl value is 15 mgKOH / g or less.
  • the sugar ester compound is a compound obtained by esterifying all or a part of OH groups of sugars such as the following monosaccharides, disaccharides, trisaccharides or oligosaccharides. ) And the like.
  • R 1 to R 8 represent a substituted or unsubstituted alkylcarbonyl group having 2 to 22 carbon atoms, or a substituted or unsubstituted arylcarbonyl group having 2 to 22 carbon atoms, and R 1 to R 8 May be the same or different.
  • the base film preferably contains an ultraviolet absorber.
  • the ultraviolet absorber include benzotriazole-based, 2-hydroxybenzophenone-based, and salicylic acid phenyl ester-based ultraviolet absorbers.
  • 2- (5-methyl-2-hydroxyphenyl) benzotriazole 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2H-benzotriazole
  • 2- (3 Triazoles such as 5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone
  • Benzophenones such as
  • UV absorbers with a molecular weight of 400 or more are difficult to volatilize at high boiling points and are difficult to disperse even during high temperature molding, so that the weather resistance can be effectively improved with a relatively small amount of addition. Can do.
  • Examples of the ultraviolet absorber having a molecular weight of 400 or more include 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2-benzotriazole, 2,2-methylenebis [4- (1, 1,3,3-tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol], bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis ( Hindered amines such as 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonic acid Bis (1,2,2,6,6-pentamethyl-4-piperidyl), 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl L] -4- [3- (3,5-di-t-butyl
  • 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2-benzotriazole and 2,2-methylenebis [4- (1,1,3,3- Tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol] is particularly preferred.
  • Commercially available products may be used, and for example, TINUVIN such as TINUVIN 109, TINUVIN 171, TINUVIN 234, TINUVIN 326, TINUVIN 327, TINUVIN 328, and TINUVIN 928 manufactured by BASF Japan Ltd. can be preferably used.
  • antioxidants can also be added to the base film in order to improve the thermal decomposability and thermal colorability during molding. It is also possible to add an antistatic agent to give the base film antistatic performance.
  • a flame retardant acrylic resin composition containing a phosphorus flame retardant may be used.
  • Phosphorus flame retardants used here include red phosphorus, triaryl phosphate ester, diaryl phosphate ester, monoaryl phosphate ester, aryl phosphonate compound, aryl phosphine oxide compound, condensed aryl phosphate ester, halogenated alkyl phosphorus. Examples thereof include one or a mixture of two or more selected from acid esters, halogen-containing condensed phosphates, halogen-containing condensed phosphonates, halogen-containing phosphites, and the like.
  • triphenyl phosphate 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, phenylphosphonic acid, tris ( ⁇ -chloroethyl) phosphate, tris (dichloropropyl) Examples thereof include phosphate and tris (tribromoneopentyl) phosphate.
  • the softening point of the base film an image display device typified by a liquid crystal display device has been increased in size, and the luminance of the backlight light source has been increasing, and in addition to outdoor applications such as digital signage.
  • the base film has a heat resistance of 105 to 145 ° C., particularly 110 to 130. It is preferable that it is ° C.
  • a Tensilon tester (ORIENTEC Co., RTC-1225A) is used to cut out the optical film at 120 mm (length) ⁇ 10 mm (width) and pull it with a tension of 10 N.
  • the temperature can be continuously increased at a temperature increase rate of 30 ° C./min, and the temperature at 9 N can be measured three times, and the average value can be obtained.
  • the glass transition temperature is determined by using a differential scanning calorimeter (DSC-7, manufactured by Perkin Elmer) at a heating rate of 20 ° C./min, and determined in accordance with JIS K7121 (1987). Tmg).
  • the substrate film preferably has a defect of 5 ⁇ m or more in diameter of 1 piece / 10 cm square or less. More preferably, it is 0.5 piece / 10 cm square or less, more preferably 0.1 piece / 10 cm square or less.
  • the diameter of the defect indicates the diameter when the defect is circular, and when the defect is not circular, the range of the defect is determined by observing with a microscope by the following method, and the maximum diameter (diameter of circumscribed circle) is determined.
  • the range of the defect is the size of the shadow when the defect is observed with the transmitted light of the differential interference microscope when the defect is a bubble or a foreign object.
  • the defect is a change in the surface shape such as transfer of a roll flaw or an abrasion
  • the size can be confirmed by observing the defect with the reflected light of a differential interference microscope.
  • the film may be broken and the productivity may be lowered with the defects as a starting point.
  • the diameter of a defect becomes 5 micrometers or more, it can confirm visually by polarizing plate observation etc., and when used as an optical member, a bright spot may arise.
  • the coating film may not be formed uniformly, resulting in defects (coating defects).
  • the defect is a void in the film (foaming defect) generated due to the rapid evaporation of the solvent in the drying process of the solution casting, a foreign substance in the film forming stock solution, or a foreign substance mixed in the film forming process. This refers to the foreign matter (foreign matter defect) in the film.
  • the base film preferably has a breaking elongation in at least one direction of 10% or more, more preferably 20% or more, in the measurement based on JIS-K7127-1999.
  • the upper limit of the elongation at break is not particularly limited, but is practically about 250%. In order to increase the elongation at break, it is effective to suppress defects in the film caused by foreign matter and foaming.
  • the base film preferably has a total light transmittance of 90% or more, more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%.
  • the haze value is preferably 2% or less, more preferably 1.5% or less.
  • the total light transmittance and haze value can be measured according to JIS K7361 and JIS K7136.
  • the substrate film has an in-plane retardation Ro of 0 to 5 nm and a thickness direction retardation Rth of ⁇ 10 to 10 nm at a wavelength of 590 nm. Further, Rth is more preferably in the range of ⁇ 5 to 5 nm.
  • Ro and Rth are values defined by the following formulas (III) and (IV).
  • Formula (III) Ro (nx ⁇ ny) ⁇ d
  • Rth ⁇ (nx + ny) / 2 ⁇ nz ⁇ ⁇ d (Where nx is the refractive index in the slow axis direction in the base film surface, ny is the refractive index in the direction perpendicular to the slow axis in the base film surface, and nz is the refractive index in the thickness direction of the base film) , D represents the thickness (nm) of the base film, respectively).
  • the retardation can be obtained at a wavelength of 590 nm in an environment of 23 ° C. and 55% RH (relative humidity) using, for example, KOBRA-21ADH (manufactured by Oji Scientific Instruments).
  • a substrate film controlled to the above-mentioned retardation because it is easy to obtain the objective effect of the present invention in a more severe durability test and is excellent in visibility when used for an inner touch panel or the like.
  • Retardation can be adjusted by the kind and addition amount of a plasticizer mentioned above, the film thickness of a base film, stretching conditions, and the like.
  • a production method such as an inflation method, a T-die method, a calendar method, a cutting method, a casting method, an emulsion method, a hot press method, or the like can be used.
  • Organic solvents useful for forming a resin solution (dope composition) when a base film is produced by a solution casting film forming method simultaneously dissolve resins such as acrylic resin and cellulose ester resin, and other additives. If it does, it can be used without limitation.
  • a chlorinated organic solvent methylene chloride
  • a non-chlorinated organic solvent methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, tert-butan
  • methylene chloride, methyl acetate, ethyl acetate may be used preferably acetone.
  • the solvent is preferably a dope composition in which a total of 15 to 45% by mass of a resin such as an acrylic resin or a cellulose ester resin and other additives are dissolved.
  • solution casting film forming method a step of preparing a dope by dissolving a resin and an additive in a solvent, a step of casting the dope on a belt-shaped or drum-shaped metal support, and drying the cast dope as a web It is performed by the process of carrying out, the process of peeling from a metal support body, the process of extending
  • a stainless steel belt or a drum whose surface is plated with a casting is preferably used.
  • the cast width can be 1 ⁇ 4m.
  • the surface temperature of the metal support in the casting step is set to ⁇ 50 ° C. to below the temperature at which the solvent boils and does not foam. A higher temperature is preferred because the web can be dried faster, but if it is too high, the web may foam or the flatness may deteriorate.
  • a preferable support temperature is appropriately determined at 0 to 100 ° C., and more preferably 5 to 30 ° C.
  • the method for controlling the temperature of the metal support is not particularly limited, and there are a method of blowing warm air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short.
  • the amount of residual solvent when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass or 60 to It is 130% by mass, particularly preferably 20 to 30% by mass or 70 to 120% by mass.
  • the amount of residual solvent is defined by the following formula.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100
  • M is the mass of a sample collected during or after the production of the web or film
  • N is the mass after heating M at 115 ° C. for 1 hour.
  • the web is peeled from the metal support, and further dried, and the residual solvent amount is preferably 1% by mass or less, more preferably 0.1% by mass or less, Particularly preferred is 0 to 0.01% by mass or less.
  • a roll drying method (a method in which webs are alternately passed through a plurality of rolls arranged above and below) and a method in which the web is dried while being conveyed by a tenter method are employed.
  • the film can be sequentially or simultaneously stretched in the longitudinal direction (MD direction) and the lateral direction (TD direction).
  • the draw ratios in the biaxial directions perpendicular to each other are preferably in the range of 1.0 to 2.0 times in the MD direction and 1.05 to 2.0 times in the TD direction, respectively. It is preferably performed in the range of 1.0 to 1.5 times and 1.05 to 2.0 times in the TD direction.
  • a method in which peripheral speed differences are applied to a plurality of rolls and a roll peripheral speed difference is used to stretch in the MD direction both ends of the web are fixed with clips and pins, and the distance between the clips and pins is increased in the traveling direction.
  • a tenter it may be a pin tenter or a clip tenter.
  • the film transport tension in the film forming process such as a tenter depends on the temperature, but is preferably 120 to 200 N / m, and more preferably 140 to 200 N / m. 140 to 160 N / m is most preferable.
  • the stretching temperature is (Tg-30) to (Tg + 100) ° C., more preferably (Tg-20) to (Tg + 80) ° C., and more preferably (Tg-5), where Tg is the glass transition temperature of the base film. ⁇ (Tg + 20) ° C.
  • the Tg of the base film can be controlled by the type of material constituting the film and the ratio of the constituting materials.
  • the Tg when the film is dried is preferably 110 ° C. or higher, more preferably 120 ° C. or higher. Especially preferably, it is 150 degreeC or more.
  • the glass transition temperature is preferably 190 ° C. or lower, more preferably 170 ° C. or lower.
  • the Tg of the film can be determined by the method described in JIS K7121.
  • the surface is preferably roughened.
  • the slipperiness is improved and the surface workability, particularly the adhesion of the antiglare layer is improved.
  • the base film may be formed by a melt casting film forming method.
  • the melt casting film forming method means that a composition containing an additive such as a resin and a plasticizer is heated and melted to a temperature showing fluidity, and then cast.
  • the melt extrusion method is preferable from the viewpoint of mechanical strength and surface accuracy. It is preferable that a plurality of raw materials used for melt extrusion are usually kneaded in advance and pelletized.
  • Pelletization may be performed by a known method. For example, dry cellulose ester, plasticizer, and other additives are fed to an extruder with a feeder and kneaded using a single-screw or twin-screw extruder, and formed into a strand from a die. It can be done by extrusion, water cooling or air cooling and cutting.
  • Additives may be mixed before being supplied to the extruder, or may be supplied by individual feeders.
  • a small amount of additives such as particles and antioxidants are preferably mixed in advance in order to mix uniformly.
  • the extruder is preferably processed at a temperature as low as possible so that it can be pelletized so that the shearing force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.).
  • a temperature as low as possible so that it can be pelletized so that the shearing force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.).
  • the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.).
  • a twin screw extruder it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
  • Film formation is performed using the pellets obtained as described above.
  • the raw material powder can be directly fed to the extruder by a feeder without being pelletized to form a film as it is.
  • the pellets are melted at a temperature of about 200 to 300 ° C, filtered through a leaf disk filter, etc. to remove foreign matter, and then formed into a film from the T die. Then, the film is nipped with a cooling roll and an elastic touch roll and solidified on the cooling roll to form a film.
  • the extrusion flow rate is preferably adjusted stably by introducing a gear pump or the like.
  • a stainless fiber sintered filter is preferably used as a filter used for removing foreign substances.
  • the stainless steel fiber sintered filter is a united stainless steel fiber body that is intricately intertwined and compressed, and the contact points are sintered and integrated. The density of the fiber is changed depending on the thickness of the fiber and the amount of compression, and the filtration accuracy is improved. Can be adjusted.
  • Additives such as plasticizers and particles may be mixed with the resin in advance, or may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as a static mixer.
  • the film temperature on the touch roll side when the film is nipped between the cooling roll and the elastic touch roll is preferably set to Tg or more (Tg + 110 ° C.) or less of the film.
  • a well-known roll can be used for the roll which has the elastic body surface used for such a purpose.
  • the elastic touch roll is also called a pinching rotator.
  • As the elastic touch roll a commercially available one can be used.
  • the film obtained as described above is stretched by the stretching operation after passing through the step of contacting the cooling roll.
  • the stretching method a known roll stretching machine or tenter can be preferably used.
  • the stretching temperature is usually preferably in the temperature range of Tg to (Tg + 60) ° C. of the resin constituting the film.
  • the end Before winding, the end may be slit and cut to the product width, and knurled (embossed) may be applied to both ends to prevent sticking or scratching during winding.
  • the knurling method can be performed by heating or pressurizing using a metal ring having an uneven pattern on the side surface. Note that the gripping portions of the clips at both ends of the film are usually cut out and reused because the film is deformed and cannot be used as a product.
  • the film thickness of the substrate film in the present embodiment is not particularly limited, but is preferably 10 to 250 ⁇ m, more preferably 10 to 100 ⁇ m, and still more preferably 20 to 60 ⁇ m. By setting it as the said range, it is excellent in the handleability of a base film.
  • the width of the substrate film according to the present invention is preferably 1 to 4 m, more preferably 1.4 to 4 m, and still more preferably 1.6 to 3 m. If it exceeds 4 m, conveyance becomes difficult.
  • the length of the base film is preferably 1000 to 10,000 m, more preferably 3000 to 8000 m. By setting it as the range of the said length, it is excellent in the processability in application
  • the arithmetic average roughness Ra of the base film is preferably 2.0 to 4.0 nm, more preferably 2.5 to 3.5 nm.
  • the arithmetic average roughness Ra can be measured according to JIS B0601: 1994.
  • the optical film of the present invention can be provided with other layers such as an antireflection layer and a transparent conductive thin layer.
  • the optical film according to the present invention can be used as an antireflection film having an external light antireflection function by coating an antireflection layer on a hard coat layer or a functional upper layer.
  • the antireflection layer is preferably laminated in consideration of the refractive index, the film thickness, the number of layers, the layer order, and the like so that the reflectance is reduced by optical interference.
  • the antireflection layer is composed of a low refractive index layer having a refractive index lower than that of the protective film as a support, or a combination of a high refractive index layer and a low refractive index layer having a higher refractive index than that of the protective film as a support. It is preferable.
  • an antireflection layer composed of three or more refractive index layers, and three layers having different refractive indexes from the support side are divided into medium refractive index layers (high refractive index layers having a higher refractive index than the support).
  • medium refractive index layers high refractive index layers having a higher refractive index than the support.
  • an antireflection layer having a layer structure of four or more layers in which two or more high refractive index layers and two or more low refractive index layers are alternately laminated is also preferably used.
  • the layer structure of the antireflection film the following structure is conceivable, but is not limited thereto.
  • the low refractive index layer preferably contains silica-based fine particles, and the refractive index is preferably in the range of 1.30 to 1.45 as measured at 23 ° C. and wavelength of 550 nm.
  • the film thickness of the low refractive index layer is preferably 5 nm to 0.5 ⁇ m, more preferably 10 nm to 0.3 ⁇ m, and most preferably 30 nm to 0.2 ⁇ m.
  • the composition for forming a low refractive index layer preferably contains at least one kind of particles having an outer shell layer and porous or hollow inside as silica-based fine particles.
  • particles (hollow silica-based fine particles) that have an outer shell layer and are porous or hollow inside are preferable.
  • composition for forming a low refractive index layer may contain an organosilicon compound represented by the following general formula (OSi-1), a hydrolyzate thereof, or a polycondensate thereof.
  • OSi-1 organosilicon compound represented by the following general formula (OSi-1)
  • hydrolyzate thereof a hydrolyzate thereof
  • polycondensate thereof a polycondensate thereof.
  • R represents an alkyl group having 1 to 4 carbon atoms. Specifically, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane and the like are preferably used.
  • a solvent and if necessary, a silane coupling agent, a curing agent, a surfactant and the like may be added.
  • it may contain a thermosetting and / or photocurable compound mainly containing a fluorine-containing compound containing a fluorine atom in a range of 35 to 80% by mass and containing a crosslinkable or polymerizable functional group.
  • a fluorine-containing polymer or a fluorine-containing sol-gel compound is a fluorine-containing sol-gel compound.
  • fluorine-containing polymer examples include a hydrolyzed product and a dehydrated condensate of a perfluoroalkyl group-containing silane compound (for example, (heptadecafluoro-1,1,2,2-tetrahydrodecyl) triethoxysilane), as well as a fluorine-containing monomer.
  • fluorine-containing copolymers having units and cross-linking reactive units as constituent units.
  • the refractive index of the high refractive index layer is preferably adjusted to a range of 1.4 to 2.2 as measured at 23 ° C. and a wavelength of 550 nm.
  • the thickness of the high refractive index layer is preferably 5 nm to 1 ⁇ m, more preferably 10 nm to 0.2 ⁇ m, and most preferably 30 nm to 0.1 ⁇ m.
  • the refractive index can be adjusted by adding metal oxide fine particles and the like.
  • the metal oxide fine particles to be used preferably have a refractive index of 1.80 to 2.60, more preferably 1.85 to 2.50.
  • the kind of metal oxide fine particles is not particularly limited, and Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P and S
  • a metal oxide having at least one element selected from the group consisting of Al, In, Sn, Sb, Nb, a halogen element, Ta and the like is doped with a trace amount of atoms. May be. A mixture of these may also be used.
  • at least one metal oxide fine particle selected from zirconium oxide, antimony oxide, tin oxide, zinc oxide, ITO, antimony-doped tin oxide (ATO), and zinc antimonate is used as a main component. preferable. In particular, it is preferable to contain zinc antimonate particles.
  • the average particle diameter of the primary particles of these metal oxide fine particles is in the range of 10 to 200 nm, particularly preferably 10 to 150 nm.
  • the average particle diameter of the metal oxide fine particles can be measured from an electron micrograph taken with a scanning electron microscope (SEM) or the like. You may measure by the particle size distribution meter etc. which utilize a dynamic light scattering method, a static light scattering method, etc. If the particle size is too small, aggregation tends to occur and the dispersibility deteriorates. If the particle size is too large, the haze is remarkably increased.
  • the shape of the metal oxide fine particles is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape, a needle shape, or an indefinite shape.
  • the metal oxide fine particles may be surface-treated with an organic compound.
  • an organic compound By modifying the surface of the metal oxide fine particles with an organic compound, the dispersion stability in an organic solvent is improved, the dispersion particle size can be easily controlled, and aggregation and sedimentation over time can be suppressed. . Therefore, the surface modification amount with a preferable organic compound is 0.1% to 5% by mass, more preferably 0.5% to 3% by mass with respect to the metal oxide fine particles.
  • the organic compound used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents, and titanate coupling agents. Of these, silane coupling agents are preferred. Two or more kinds of surface treatments may be combined.
  • the high refractive index layer may contain a ⁇ -conjugated conductive polymer.
  • the ⁇ -conjugated conductive polymer can be used as long as it is an organic polymer having a main chain composed of a ⁇ -conjugated system. Examples thereof include polythiophenes, polypyrroles, polyanilines, polyphenylenes, polyacetylenes, polyphenylene vinylenes, polyacenes, polythiophene vinylenes, and copolymers thereof. From the viewpoint of ease of polymerization and stability, polythiophenes, polyanilines, and polyacetylenes are preferable.
  • the ⁇ -conjugated conductive polymer can provide sufficient conductivity and solubility in a binder resin even if it is not substituted, but in order to further improve conductivity and solubility, an alkyl group, a carboxy group, a sulfo group, an alkoxy group.
  • a functional group such as a group, a hydroxy group, or a cyano group may be introduced.
  • you may contain an ionic compound.
  • the ionic compound examples include imidazolium-based, pyridium-based, alicyclic amine-based, aliphatic amine-based, aliphatic phosphonium-based cations and inorganic ion-based compounds such as BF 4 ⁇ and PF 6 ⁇ , CF 3 SO 2 ⁇ , and the like. , (CF 3 SO 2 ) 2 N ⁇ , CF 3 CO 2 —, etc.
  • the ratio of the polymer to the binder is preferably 10 to 400 parts by mass with respect to 100 parts by mass of the polymer, and particularly preferably 100 to 200 parts by mass of the binder with respect to 100 parts by mass of the polymer.
  • a transparent conductive thin layer may be formed on the hard coat layer or the functional layer.
  • the transparent conductive thin layer to be provided generally known transparent conductive materials can be used.
  • a transparent conductive material such as indium oxide, tin oxide, ITO, gold, silver, or palladium can be used. These can be formed as a thin film on the hard coat layer by vacuum deposition, sputtering, ion plating, solution coating, or the like.
  • a transparent conductive material that is excellent in transparency and conductivity, and that has a main component of any of indium oxide, tin oxide, and ITO obtained at a relatively low cost can be suitably used.
  • the thickness of the transparent conductive thin film varies depending on the material to be applied, it cannot be said unconditionally.
  • the surface resistivity is 1000 ⁇ or less, preferably 500 ⁇ or less. A range of 20 nm or more and 80 nm or less, preferably 70 nm or less is preferable. In such a thin film, visible light interference fringes due to uneven thickness of the transparent conductive thin layer are unlikely to occur.
  • the optical film of this invention is preferable at the point by which the performance excellent in visibility (clearness) is exhibited by using it for an image display apparatus.
  • an image display device a reflection type, a transmission type, a transflective type liquid crystal display device, a liquid crystal display device of various driving methods such as a TN type, an STN type, an OCB type, a VA type, an IPS type, and an ECB type, an organic EL display Examples thereof include a device and a plasma display.
  • the optical film of the present invention is used for a touch panel member of a liquid crystal display device including a touch panel, it is preferable in terms of excellent visibility and durability against pen input (scratches due to sliding, etc.).
  • FIG. 1 An example when used for a touch panel is shown in FIG.
  • the transparent conductive thin film 12 is formed on the transparent optical film 11 of the present invention, and this is opposed to the glass substrate 13 on which the transparent conductive thin film 15 is formed with a certain interval so that the transparent conductive thin films face each other.
  • the resistive film type touch panel 10 can be configured. Electrodes (not shown) are arranged at the ends of the optical film 11 and the glass substrate 13. When the user presses down the optical film 11 with the transparent conductive thin film 12 with a finger or a pen, the transparent conductive thin film 12 comes into contact with the transparent conductive thin film 15 on the glass substrate 13. The pressed position is detected by electrically detecting this contact through the electrode at the end.
  • a liquid crystal display device with a touch panel can be configured by mounting the touch panel 10 of FIG. 2 on a color liquid crystal display panel 20.
  • optical film image display device
  • liquid crystal display device The technical features of the optical film, image display device and liquid crystal display device are summarized below.
  • An optical film according to one aspect of the present invention is an optical film having a hard coat layer on one surface of a base film and a functional layer on the other surface, the functional layer having a period in the length direction. It has no irregular protrusion shape and is substantially free of fine particles or non-reactive polymer.
  • the functional layer is composed only of highly compatible resin components that do not contain fine particles, etc., there is no deterioration in the durability test, and it is excellent even after the durability test assuming outdoor use. It is preferable at the point which can provide the optical film which has flexibility.
  • the optical film described above has almost no haze due to internal scattering, it provides an image display device that has excellent visibility when used in an image display device and does not cause eye fatigue even when viewed for a long time. It is preferable at the point which can do.
  • the surface film of a liquid crystal display device including a touch panel is preferable in that it can provide an optical film excellent in pen sliding resistance assuming an operating environment in which a pen, a finger, or the like is pushed when inputting information.
  • the arithmetic average roughness Ra of the protrusion shape of the functional layer is preferably 10 to 130 nm. According to this configuration, in a more severe durability test, the object and effects of the present invention can be suitably obtained, and this is preferable in terms of excellent adhesion.
  • the functional layer contains at least an actinic radiation curable resin, and the viscosity of the actinic radiation curable resin is in the range of 20 to 2000 mPa ⁇ s. According to this structure, it is preferable at the point which can obtain the optical film which was especially excellent in coexistence of blocking resistance and flexibility.
  • the arithmetic average roughness Ra of the hard coat layer is preferably less than 2 nm. According to this configuration, a very smooth surface is obtained, which is preferable in that visibility when used in an image display device can be suitably obtained.
  • the in-plane retardation Ro is 0 to 5 nm and the retardation Rth in the thickness direction is ⁇ 10 to 10 nm at a wavelength of 590 nm of the base film.
  • the base film is preferably a cellulose ester film. According to this configuration, it is preferable from the viewpoint of ease of obtaining the protrusion shape of the present invention, manufacturability, and cost.
  • An image display device according to an aspect of the present invention includes any one of the above optical films in its configuration. This configuration is preferable in that it can provide an image display device that does not cause eye fatigue even when viewed for a long time.
  • An image display device according to an aspect of the present invention is an image display device including a touch panel, and the structure of the touch panel includes any one of the optical films described above. This configuration is preferable in that it can provide an image display device including a touch panel that is excellent in scratching and peeling of the surface due to pen sliding during information input.
  • Example 1 ⁇ Preparation of base film 1> (Preparation of silicon dioxide dispersion) Aerosil R812 (Nippon Aerosil Co., Ltd., average primary particle diameter of 7 nm) 10 parts by mass Ethanol 90 parts by mass The above was stirred and mixed with a dissolver for 30 minutes, and then dispersed with Manton Gorin. 88 parts by mass of methylene chloride was added to the silicon dioxide dispersion while stirring, and the mixture was stirred and mixed with a dissolver for 30 minutes to prepare a silicon dioxide dispersion dilution. The mixture was filtered with a fine particle dispersion dilution filter (Advantech Toyo Co., Ltd .: polypropylene wind cartridge filter TCW-PPS-1N).
  • a fine particle dispersion dilution filter Advancedtech Toyo Co., Ltd .: polypropylene wind cartridge filter TCW-PPS-1N).
  • Dope composition 1 90 parts by mass of cellulose triacetate (cellulose triacetate synthesized from linter cotton, acetyl group substitution degree 2.88, Mn: 140000) Polyester plasticizer (B-5) 10 parts by weight Tinuvin 928 (manufactured by BASF Japan Ltd.) 2.5 parts by weight Silicon dioxide dispersion diluent 4 parts by weight Methylene chloride 432 parts by weight Ethanol 38 parts by weight The solution was completely dissolved while being heated and stirred, and Azumi Filter Paper No. No. 24 was used for filtration to prepare a dope composition 1.
  • the belt was cast evenly on a stainless steel band support using a belt casting apparatus.
  • the solvent was evaporated until the residual solvent amount reached 100%, and the web was peeled from the stainless steel band support.
  • Solvent in the web of cellulose ester film is evaporated at 35 ° C, slit to 1.65m width, and dried at 160 ° C while stretching with a tenter at 1.15 times in the TD direction and 1.01 times in the MD direction. It was.
  • the residual solvent amount at the start of drying was 20%. Then, after being dried for 15 minutes while being transported in a drying device at 120 ° C.
  • the base film 1 was obtained.
  • the residual solvent amount of the base film was 0.2%, the film thickness was 40 ⁇ m, and the winding number was 6000 m.
  • the following functional layer composition 1 filtered through a polypropylene filter having a pore size of 0.2 ⁇ m is applied using a vacuum extrusion coater, and dried at a constant rate. After drying at a section temperature of 105 ° C. and a reduced rate drying section temperature of 105 ° C., the irradiance of the irradiated part is 100 mW / cm 2 using an ultraviolet lamp while purging with nitrogen so that the atmosphere has an oxygen concentration of 1.0% by volume or less.
  • the coating layer was cured with an irradiation dose of 0.3 J / cm 2 to form a functional layer 1 having a dry film thickness of 6.5 ⁇ m.
  • the film on which the functional layer 1 was formed was inverted with a turn bar, and the following hard coat layer composition was filtered through a polypropylene filter having a pore diameter of 0.2 ⁇ m on the surface opposite to the surface on which the functional layer 1 was provided.
  • the product is coated on a cellulose triacetate film using a vacuum extrusion coater, dried at a constant rate drying zone temperature of 115 ° C.
  • FIG. 1 As a result of observing the surface of the functional layer 1 of the optical film 1 with an optical interference type surface roughness meter (New View 5030, manufactured by Zygo), irregular projection shapes irregularly in the length direction and width as shown in FIG. It turns out that it is arranged in the direction.
  • optical interference type surface roughness meter New View 5030, manufactured by Zygo
  • Radical polymerizable fluororesin (A): Cefal coat CF-803 (hydroxyl group (hydroxyl group) value 60, Mn: 15,000; manufactured by Central Glass Co., Ltd.)
  • One-end radical-polymerizable polysiloxane (B): Silaplane FM-0721 (Mn: 5,000; manufactured by Chisso Corporation)
  • Radical polymerization initiator Perbutyl O (t-butylperoxy-2-ethylhexanoate; manufactured by NOF Corporation)
  • Curing agent Sumidur N3200 (biuret type prepolymer of hexamethylene diisocyanate; manufactured by Sumika Bayer Urethane Co., Ltd.)
  • Reactive group-containing resin 100 parts by mass of dipentaerythritol hexaacrylate (NK ester A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.) (Photopolymerization initiator) Irgacure 184 (manufactured by BASF Japan) 5 parts by mass (leveling agent) Fluorine-siloxane graft polymer (35% by mass) 1.5 parts by mass (solvent) Propylene glycol monomethyl ether 10 parts by weight Methyl acetate 45 parts by weight Methyl ethyl ketone 45 parts by weight
  • optical film 2 was produced in the same manner except that the functional composition 1 was changed to the following functional composition 2 and the decreasing rate drying zone temperature was changed to 95 ° C.
  • Reactive group-containing resin 80 parts by mass of trimethylolpropane triacrylate (Light acrylate TMP-A, manufactured by Kyoeisha Chemical Co., Ltd.) 20 parts by mass of 4-hydroxybutyl acrylate (4-HBA, manufactured by Osaka Organic Chemical Industry Co., Ltd.) (Photopolymerization initiator) Irgacure 184 (manufactured by BASF Japan) 5 parts by mass (leveling agent) Polyether-modified silicone (trade name: KF-352, manufactured by Shin-Etsu Chemical Co., Ltd.) 1.5 parts by mass (solvent) Propylene glycol monomethyl ether 10 parts by weight Methyl acetate 45 parts by weight Methyl ethyl ketone 45 parts by weight
  • optical film 3 was produced in the same manner except that the functional layer composition 1 was changed to the following functional layer composition 4 and the decreasing rate drying zone temperature was changed to 100 ° C.
  • Reactive group-containing resin 100 parts by mass of ethoxylated pentaerythritol tetraacrylate (NK ester ATM-4E, manufactured by Shin-Nakamura Chemical Co., Ltd.) (Photopolymerization initiator) Irgacure 184 (manufactured by BASF Japan) 5 parts by mass (leveling agent) Polyether-modified silicone (trade name: KF-352, manufactured by Shin-Etsu Chemical Co., Ltd.) 1.5 parts by mass (solvent) Propylene glycol monomethyl ether 10 parts by weight Methyl acetate 45 parts by weight Methyl ethyl ketone 45 parts by weight
  • optical film 4 was produced in the same manner except that the functional layer composition 1 was changed to the following functional layer composition 4 and the decreasing rate drying zone temperature was changed to 130 ° C.
  • Reactive group-containing resin 100 parts by mass of dipentaerythritol penta / hexaacrylate (NK ester A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.) (Photopolymerization initiator) Irgacure 184 (manufactured by BASF Japan) 5 parts by mass (leveling agent) Polyether-modified silicone (trade name: KF-352, manufactured by Shin-Etsu Chemical Co., Ltd.) 1.5 parts by mass (solvent) Propylene glycol monomethyl ether 10 parts by weight Methyl acetate 45 parts by weight Methyl ethyl ketone 45 parts by weight
  • optical film 5 was produced in the same manner except that the functional layer composition 1 was changed to the following functional layer composition 5 and the decreasing rate drying zone temperature was changed to 120 ° C.
  • optical film 6 was produced in the same manner except that the functional layer composition 1 was changed to the following functional layer composition 6 and the decreasing rate drying zone temperature was changed to 95 ° C.
  • optical film 7 was produced in the same manner except that the functional layer composition 1 was changed to the following functional layer composition 7 and the decreasing rate drying zone temperature was changed to 135 ° C.
  • ACA cyclomer P (ACA) Z320
  • MMA polymethyl methacrylate
  • the functional layer composition 1 was changed to the functional layer composition 10 prepared in the same manner as in Example 5 of JP-A-2007-182519, and the drying temperature was further changed to JP-A-2007-182519.
  • the optical film 10 was produced in the same manner except that the temperature was changed to 80 ° C., which was the same as Example 5 of the publication.
  • [Functional layer composition 10] (Preparation of unsaturated double bond-containing acrylic copolymer) A mixture consisting of 187.2 g of isobornyl methacrylate, 2.8 g of methyl methacrylate and 10.0 g of methacrylic acid was mixed. This mixture was mixed with 360 g of propylene glycol monomethyl ether heated to 110 ° C. under a nitrogen atmosphere in a 1000 ml reaction vessel equipped with a stirring blade, a nitrogen introducing tube, a cooling tube and a dropping funnel. At the same time as an 80.0 g solution of propylene glycol monomethyl ether containing 2.0 g of ate, the solution was dropped at a constant rate over 3 hours, and then reacted at 110 ° C. for 1 hour.
  • the illuminance of the irradiated part is 100 mW / cm 2 and the irradiation amount is 0.3 J / cm 2 using an ultraviolet lamp.
  • the coating layer was cured to form a functional layer 11 having a dry film thickness of 6.5 ⁇ m.
  • the film on which the functional layer is formed is inverted by a turn bar, and the hard coat layer composition prepared with the optical film 1 is made of polypropylene having a pore diameter of 0.2 ⁇ m on the surface opposite to the surface on which the functional layer 11 is provided.
  • the material filtered through a filter is applied onto the base film 1 using a vacuum extrusion coater, dried at a constant rate drying zone temperature of 115 ° C. and a reduced rate drying zone temperature of 115 ° C., and then irradiated with an ultraviolet lamp.
  • the irradiation amount was 0.15 J / cm 2
  • the coating layer was cured to form a hard coat layer having a dry film thickness of 5 ⁇ m.
  • FIG. As a result of observing the surface of the functional layer 11 of the optical film 11 with an optical interference type surface roughness meter (New View 5030, manufactured by Zygo), protrusion shapes having a period in the length direction were arranged.
  • a fluorinated silica fine particle dispersion was prepared in the same manner as in Production Example 1 of JP 2010-241937.
  • the prepared silica fine particle dispersion and the reactive group-containing resin were stirred and mixed to prepare a functional layer composition 12.
  • the optical film 12 was obtained in the same manner as the production of the optical film 1 except that the drying temperature was changed to 70 ° C. as in Example 3 of JP2010-241937. .
  • [Functional layer composition 12] (Preparation of fluorinated silica fine particle dispersion) Silica fine particles SP-03F (manufactured by Fuso Chemical Industry Co., Ltd., particle size 0.2-0.3 ⁇ m) 3.00 g and KBM7103 (manufactured by Shin-Etsu Chemical Co., Ltd., fluoroalkylalkoxysilane) 0.15 g, MIBK 26.85 g Were mixed. This mixed component and zirconia beads having a particle diameter of 0.1 mm are mixed and dispersed for 3 hours, after which the zirconia beads are removed, and the dispersion is further heated at 50 ° C. for 1 hour to obtain a fluorine-treated silica fine particle dispersion. Got.
  • Optical film a. Measurement of Arithmetic Average Roughness Ra
  • the functional layers and hard coat layers of the optical films 1 to 12 prepared above were measured 10 times using an optical interference type surface roughness meter (RST / PLUS, manufactured by WYKO), The arithmetic average roughness Ra of each functional layer and hard coat layer was determined from the average of the measurement results.
  • the arithmetic average roughness Ra of the hard coat layers of the optical films 1 to 12 was all 1.5 nm.
  • the results of arithmetic average roughness Ra of each functional layer are shown in Table 1.
  • the optical films 1 to 13 produced above are cut out in a size of 10 cm ⁇ 10 cm, and are cycled for 500 cycles in a cycle thermo (alternatively left at ⁇ 40 ° C. for 30 minutes and then at 85 ° C. for 30 minutes) assuming outdoor use. After the charging, it was stored in a constant temperature bath at 85 ° C. and a relative humidity of 90% for 550 hours, and further irradiated with light for 165 hours with a light resistance tester (eye super UV tester, manufactured by Iwasaki Electric Co., Ltd.). Next, after each of the optical films 1 to 12 after the durability test was conditioned for 14 hours in an atmosphere of 23 ° C.
  • a cylinder using a type 1 test apparatus in accordance with JIS K5600-5-1 The flexibility (numerical diameter of the mandrel) was evaluated by the type mandrel method. It shows that it is excellent in the flexibility, so that the numerical value of the diameter of a mandrel is low.
  • the cylindrical mandrel has a diameter of only 2 mm, so a 1 mm diameter was prototyped.
  • The diameter of a cylindrical mandrel with a blocking resistance of ⁇ and a flexible evaluation is 2 mm or less.
  • The diameter of a cylindrical mandrel with a blocking resistance of ⁇ and a flexible evaluation is 2 mm or less. Or, blocking resistance.
  • the diameter of the cylindrical mandrel evaluated for flexibility and the flexibility is 3 mm or more and 6 mm or less ⁇ : The blocking resistance is ⁇ or less, or the diameter of the cylindrical mandrel for flexibility evaluation is 8 mm or more
  • the functional layer is irregular in the length direction (has a period. No)
  • An optical film excellent in both blocking resistance and flexibility could be obtained by having a projection shape and substantially not containing fine particles or non-reactive polymer.
  • the functional layer contains an actinic radiation curable resin containing a reactive group, and the actinic radiation curable resin has a viscosity in the range of 20 to 3000 mPa ⁇ s, thereby preventing blocking and flexibility. It was possible to obtain an optical film particularly excellent in both of the above.
  • Example 2 Optical films 13 to 17 were produced in the same manner as in the production of the optical film 1 of Example 1, except that the decreasing rate drying zone temperature of the functional layer was changed as described in Table 2. Next, with respect to the optical film 1 and the optical films 13 to 17 produced in Example 1, the storage period of the blocking resistance evaluation was changed to 30 days, and the adhesion evaluation was further performed in the same manner as in Example 1. And evaluated. The obtained results are shown in Table 2.
  • Adhesion evaluation after endurance weather resistance test
  • the optical film 1 and the optical films 13 to 17 were cut out in a size of 10 cm ⁇ 10 cm, stored for 100 hours in an environment of ozone 10 ppm, 30 ° C., 60% RH, assuming outdoor use, and cycle thermo ( ⁇ 500 cycles were carried out at 40 ° C. for 45 minutes and then 110 ° C. for 45 minutes alternately, and further irradiated with light for 200 hours with a light resistance tester (I Super UV Tester, manufactured by Iwasaki Electric Co., Ltd.).
  • the arithmetic average roughness Ra of the protrusion shape of the functional layer is set to 10 to 130 nm, so that the blocking resistance is flexible even after a more severe durability test. It can be seen that it exhibits particularly excellent performance in coexistence of properties. Furthermore, it exhibits excellent performance in adhesion after the weather resistance test.
  • Example 3 In the preparation of the dope composition 1 for the base film 1 of Example 1, the amount of the polyester plasticizer (B-5) added was changed to 5 parts by mass, and 13 parts by mass of the acrylic polymer 1 synthesized below was further added. Dope composition 2 was prepared in the same manner except that it was added. Subsequently, in the production of the base film 1, the base films 2 to 5 were produced in the same manner except that the stretching conditions in the TD direction by the tenter were changed as described in Table 3. The prepared base films 2 to 5 were provided with a hard coat layer and a functional layer in the same manner as the production of the optical film 17 of Example 2, and optical films 18 to 21 were produced.
  • a conductive thin film was formed on the produced optical films 18 to 21 and the optical film 1 by the following method to produce the conductive optical films 18 to 21 and the conductive optical film 1.
  • a conductive thin film 33 of indium tin oxide (ITO) having a surface resistivity of about 400 ⁇ is provided on both surfaces of the optical films 18 to 21 and the functional layer 31 and the hard coat layer 32 of the optical film 1 using a sputtering method. Conductive optical films 18 to 21 and conductive optical film 1 having the configuration shown in FIG. 6 were produced.
  • ITO indium tin oxide
  • FIG. 7 is a schematic diagram of the inner touch panel P.
  • the dot touch panel 14 is formed in advance on the surface of the two conductive optical films provided with the conductive thin film 33 on the hard coat layer 32 of the conductive optical film, and then the inner touch panel P was made.
  • the produced optical films 18 to 21 and the optical film 1 were evaluated in the same manner as in Example 2. Moreover, the retardation of the base film was measured by the following method. Furthermore, the visibility of the inner touch panel produced using the conductive optical films 18 to 21 and the conductive optical film 1 was evaluated under the following conditions. The obtained results are shown in Table 3.
  • In-plane retardation Ro and thickness direction retardation Rth measurement automatic birefringence meter KOBRA-21ADH (manufactured by Oji Scientific Instruments Co., Ltd.) is used for three-dimensional refraction at a wavelength of 590 nm in an environment of 23 ° C. and 55% RH.
  • the refractive index nx, ny, and nz in the vertical, horizontal, and thickness directions were determined, and Ro and Rth were determined from the following formulas.
  • the obtained inner touch panel was incorporated under the upper surface side polarizing plate of the liquid crystal display device having the configuration of the upper surface side polarizing plate / liquid crystal cell / lower surface side polarizing plate to produce a liquid crystal display device, and in a dark room, The inner touch panel was viewed on a black display screen while changing the front direction and the visual field direction, and the visibility was evaluated according to the following criteria.
  • the optical film of the present invention using a base film in which the in-plane retardation Ro is adjusted to 0 to 5 nm and the retardation in the thickness direction is within a range of ⁇ 10 to 10 nm is flexible and has blocking resistance even after a more severe durability test. It can be seen that it exhibits particularly excellent performance in coexistence of properties. Furthermore, it exhibits excellent performance in adhesion after the weather resistance test.
  • a conductive optical film using the optical film of the present invention comprising a base film in which the in-plane retardation Ro is adjusted to 0 to 5 nm and the thickness direction retardation is adjusted to a range of ⁇ 10 to 10 nm is used for the inner touch panel.
  • Example 4 ⁇ Preparation of conductive optical films 1-12> A transparent conductive thin film of indium tin oxide (ITO) having a surface resistivity of about 400 ⁇ is provided on the hard coat layers of the optical films 1 to 12 by sputtering, and the conductive optical film 1 having the configuration shown in FIG. To 12 were produced.
  • ITO indium tin oxide
  • ⁇ Preparation of resistive touch panel liquid crystal display devices 1 to 13> The conductive hard coat film of a commercially available resistive film type touch panel liquid crystal display device (model name: LCD-USB10XB-T, manufactured by IO Data Equipment Co., Ltd.) is peeled off, and each of the produced conductive optical films 1 to 12 is prepared. As shown in FIG. 6, the functional layer is bonded to the viewing side to produce resistive film type touch panel liquid crystal display devices 1 to 12, and the following items are evaluated. Table 4 shows the results.
  • the resistance film type touch panel liquid crystal display device using the conductive optical film of the present invention was excellent in both visibility and pen sliding resistance.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Position Input By Displaying (AREA)
  • Polarising Elements (AREA)

Abstract

To provide an optical film which has excellent blocking prevention properties and flexibility; to provide an optical film which scarcely suffers from haze caused by internal scattering; and to provide an image display device which uses the optical film and has excellent visibility and a liquid crystal display device which comprises a touch panel that has excellent pen sliding properties during when information is input. Specifically provided is an optical film, which comprises a hard coat layer on one surface of a film base and a functional layer on the other surface of the film base, and which is characterized in that the functional layer has an irregular projected pattern, which does not have a cycle in the longitudinal direction, and does not substantially contain fine particles or a non-reactive polymer.

Description

光学フィルム、画像表示装置及びタッチパネルを含む画像表示装置Image display device including optical film, image display device, and touch panel
 本発明は、光学フィルム、画像表示装置及びタッチパネルを含む画像表示装置に関する。 The present invention relates to an image display device including an optical film, an image display device, and a touch panel.
 近年、画像表示素子として液晶表示装置が注目され、その用途の1つとして、携帯用電子手帳、携帯用マルチメディア機器等への応用が期待されている。これらの携帯用電子手帳、携帯用マルチメディア機器等の入力装置としては、液晶表示素子の上に透明なタッチパネルを載せたもの、なかでも抵抗膜方式のタッチパネルが主流となっている。この抵抗膜方式のタッチパネルとしては、一般にフィルム基材の一方の面にハードコート層を有し(以下、ハードコートフィルムという)、もう一方の面にインジウム-スズ酸化物(以下、「ITO」という)等の導電性膜を有した上部電極となるパネル板と、ガラス基板等の透明基材の一方の面にITO等の導電性膜を有した下部電極となるパネル板とをスペーサを介して対向配置したものが使用されている。このようなタッチパネルは、通常、フィルム基材にハードコート層を設けてハードコートフィルムを製造するメーカーと、ガラス基板にITO等の導電性膜を設けるメーカーと、これらを組み立てるメーカーとに分かれて製造されている。 In recent years, liquid crystal display devices have attracted attention as image display elements, and as one of their uses, application to portable electronic notebooks, portable multimedia devices, and the like is expected. As input devices for these portable electronic notebooks, portable multimedia devices, etc., a liquid crystal display element with a transparent touch panel mounted thereon, particularly a resistive film type touch panel, has become the mainstream. This resistive film type touch panel generally has a hard coat layer on one side of a film substrate (hereinafter referred to as a hard coat film) and an indium-tin oxide (hereinafter referred to as “ITO”) on the other side. ) And a panel plate serving as an upper electrode having a conductive film, and a panel plate serving as a lower electrode having a conductive film such as ITO on one surface of a transparent substrate such as a glass substrate via a spacer. The opposite ones are used. Such touch panels are usually manufactured separately by a manufacturer that provides a hard coat layer on a film substrate to produce a hard coat film, a manufacturer that provides a conductive film such as ITO on a glass substrate, and a manufacturer that assembles these. Has been.
 一方、タッチパネルで使用されるハードコートフィルムは、ITOの接着性やカール防止という観点から、実際には、フィルム基材の両面にハードコート層を有するものが多く使用されている。 On the other hand, hard coat films used in touch panels are actually used in many cases having a hard coat layer on both sides of a film substrate from the viewpoint of ITO adhesion and curl prevention.
 このようなハードコートフィルムは、ディスプレイ画像の視認性や輝度を保つために、高透明であることが要求されているので、ハードコートフィルムの両面は、非常に平滑な面となっている。このため、ハードコートフィルムの製造時にロール状で巻き取る際にブロッキング(フィルム同士の貼りつき)が生じる問題があった。ブロッキングが生じたハードコートフィルムをITO等の導電性膜を設けるメーカーで使用すると、貼りついたハードコートフィルムを剥がす際に大きな騒音が発生し、作業環境が著しく悪化してしまう問題がある。また、貼りついたハードコートフィルムを剥がす際に静電気が発生し、粉塵を引き付けてしまう問題がある。更に、このようなハードコートフィルムを用いてタッチパネルを製造すると、ハードコートフィルムにブロッキングパターンが生じているため、ディスプレイ画面の美観が著しく損なわれる問題がある。 Since such a hard coat film is required to be highly transparent in order to maintain the visibility and brightness of the display image, both sides of the hard coat film are very smooth surfaces. For this reason, there has been a problem that blocking (sticking between films) occurs when a hard coat film is wound in a roll shape. When the hard coat film in which blocking occurs is used by a manufacturer that provides a conductive film such as ITO, there is a problem that a large noise is generated when the attached hard coat film is peeled off and the working environment is remarkably deteriorated. In addition, there is a problem that static electricity is generated when the hard coat film adhered is peeled off and attracts dust. Furthermore, when a touch panel is manufactured using such a hard coat film, since the blocking pattern is generated in the hard coat film, there is a problem that the appearance of the display screen is remarkably impaired.
 このため、突起形状を有した表面凹凸を形成することで、フィルム同士の貼り付きを防止することによりブロッキングを防止する技術が、例えば特許文献1に開示されている。特許文献1は、2つ以上の反応性官能基を有する樹脂とフッ素化合物が結合した微粒子とを含むハードコート層用硬化性樹脂組成物により、ハードコートフィルムに突起形状を有する表面凹凸を形成する技術に関する。また、例えば特許文献2には、樹脂の相分離によって、突起形状を有する表面凹凸を形成する技術がブロッキング防止に利用できることが開示されている。しかしながら、前記した技術では、ブロッキングは、突起形状によってある程度改善されるものの、耐久性試験後に可とう性(屈曲性)が劣化する問題がある。また、樹脂の相分離や更に微粒子を添加して、突起形状を有する表面凹凸を形成しているため、ハードコート層の内部ヘイズの影響によりディスプレイ画像の視認性の低下を招く問題がある。 For this reason, for example, Patent Document 1 discloses a technique for preventing blocking by forming surface irregularities having a protruding shape to prevent sticking between films. Patent Document 1 forms surface irregularities having a protrusion shape on a hard coat film by using a curable resin composition for a hard coat layer containing a resin having two or more reactive functional groups and fine particles bonded with a fluorine compound. Regarding technology. For example, Patent Document 2 discloses that a technique for forming surface irregularities having a protrusion shape by phase separation of a resin can be used for preventing blocking. However, in the above-described technique, although blocking is improved to some extent by the protrusion shape, there is a problem that flexibility (flexibility) deteriorates after the durability test. Further, since the surface unevenness having a protrusion shape is formed by adding phase separation of the resin and further fine particles, there is a problem in that the visibility of the display image is lowered due to the internal haze of the hard coat layer.
 また、ブロッキング防止の為の凹凸構造を形成するための方法としては、表面に凹凸構造が設けられた表面転写ロールでフィルムに凹凸構造を設ける方法が知られている。しかしながら、通常、表面転写ロールは5cm程度の直径を持つロール形状である為、長尺状のロールに凹凸構造を形成した場合には、15cm程度の周期を有する形状となる。そのため、非常に長い長尺状のフィルムに表面転写ロールで凹凸を形成した場合には、積層されたフィルム間で部分的に凹凸構造の周期が一致してしまい、一部ブロッキングを引き起こすことが明らかになっている。 Also, as a method for forming a concavo-convex structure for preventing blocking, a method of providing a concavo-convex structure on a film with a surface transfer roll having a concavo-convex structure on the surface is known. However, the surface transfer roll usually has a roll shape having a diameter of about 5 cm. Therefore, when a concavo-convex structure is formed on a long roll, the surface transfer roll has a period of about 15 cm. Therefore, when unevenness is formed with a surface transfer roll on a very long long film, it is clear that the period of the uneven structure partially matches between the laminated films, causing partial blocking It has become.
特開2010-241937号公報JP 2010-241937 A 特開2007-182519号公報JP 2007-182519 A
 従って本発明は、ブロッキングを防止し、可とう性に優れた光学フィルムを提供すること、また内部散乱に起因するヘイズが殆どない光学フィルムを提供することを目的とする。更に、該光学フィルムを用いた視認性に優れる画像表示装置、情報入力時のペン摺動による表面の傷つきや剥がれに優れるタッチパネルを含む液晶表示装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an optical film that prevents blocking and has excellent flexibility, and an optical film that has almost no haze due to internal scattering. Furthermore, it aims at providing the liquid crystal display device containing the image display apparatus which is excellent in the visibility using this optical film, and the touch panel excellent in the damage and peeling of the surface by pen sliding at the time of information input.
 本発明の上記目的は以下の構成により達成される。 The above object of the present invention is achieved by the following configuration.
 本発明の一局面による光学フィルムは、基材フィルム上の一方の面にハードコート層、及びもう一方の面に機能性層を有する光学フィルムにおいて、該機能性層が長さ方向に周期を持たない不規則な突起形状を有し、かつ微粒子又は非反応性ポリマーを実質的に含有しないことを特徴とする。 An optical film according to one aspect of the present invention is an optical film having a hard coat layer on one surface of a base film and a functional layer on the other surface, the functional layer having a period in the length direction. It has no irregular protrusion shape and is substantially free of fine particles or non-reactive polymer.
 本発明に係る機能性層の表面凹凸を形成する突起形状は、長さ方向に周期を持たない不規則な形状である。これによりハードコート層は非常に平滑な面をしているが、ハードコート層と機能性層が重なり有った場合(フィルム同士が重なり合った場合)でも、応力が分散しやすい。その結果、フィルムをロール状に巻いた状態でのブロッキング防止の効果に加え、機能性層は微粒子等を含まずに相溶性の高い樹脂成分だけで構成されているため、耐久性試験においても劣化等が生じず、屋外使用を想定した耐久性試験後も優れた可とう性を有する光学フィルムを提供することができる。 The protrusion shape forming the surface irregularities of the functional layer according to the present invention is an irregular shape having no period in the length direction. Thereby, although the hard coat layer has a very smooth surface, even when the hard coat layer and the functional layer are overlapped (when the films are overlapped), the stress is easily dispersed. As a result, in addition to the anti-blocking effect when the film is wound in a roll shape, the functional layer is composed of only highly compatible resin components that do not contain fine particles etc. Thus, an optical film having excellent flexibility even after a durability test assuming outdoor use can be provided.
 更に、前記した光学フィルムは内部散乱に起因するヘイズが殆どない為、画像表示装置に用いた際に視認性に優れ、長時間見ていても目の疲れることがない画像表示装置を提供することができる。また、タッチパネルを含む液晶表示装置の表面用フィルムは、情報入力時にペンや指等が押し込まれる動作環境を想定した耐ペン摺動性にも優れた光学フィルムを提供することができる。 Furthermore, since the optical film described above has almost no haze due to internal scattering, it provides an image display device that has excellent visibility when used in an image display device and does not cause eye fatigue even when viewed for a long time. Can do. Moreover, the surface film of a liquid crystal display device including a touch panel can provide an optical film excellent in pen sliding resistance assuming an operating environment in which a pen, a finger, or the like is pushed when inputting information.
図1は、本発明に係る突起の説明図である。FIG. 1 is an explanatory view of a protrusion according to the present invention. 図2は、本発明の光学フィルムをタッチパネルに用いた場合の一例である。FIG. 2 is an example when the optical film of the present invention is used for a touch panel. 図3は、タッチパネル付き液晶表示装置の模式図である。FIG. 3 is a schematic diagram of a liquid crystal display device with a touch panel. 図4は、実施例の光学フィルム1の機能性層1表面を光学干渉式表面粗さ計で観察したものである。FIG. 4 shows the surface of the functional layer 1 of the optical film 1 of the example observed with an optical interference type surface roughness meter. 図5は、導電性光学フィルムの模式図である。FIG. 5 is a schematic diagram of a conductive optical film. 図6は、抵抗膜方式タッチパネルの概略図である。FIG. 6 is a schematic diagram of a resistive film type touch panel. 図7は、インナータッチパネルの模式図である。FIG. 7 is a schematic diagram of the inner touch panel.
 以下、本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, although the form for implementing this invention is demonstrated in detail, this invention is not limited to these.
 本発明の光学フィルムは、フィルム基材上の一方の面にハードコート層、及びもう一方の面に機能性層を有する光学フィルムにおいて、該機能性層が長さ方向に周期を持たない不規則な突起形状を有し、かつ微粒子又は非反応性ポリマーを実質的に含有しないことを特徴とする。本発明の光学フィルムは、かかる構成の時に、フィルムをロール状に巻いた状態でのブロッキングが防止され、かつ、可とう性に優れた光学フィルム、及び内部散乱に起因するヘイズのない光学フィルムを提供するものである。 The optical film of the present invention is an optical film having a hard coat layer on one surface on a film substrate and a functional layer on the other surface, and the functional layer has no periodicity in the length direction. It has a characteristic protrusion shape and is substantially free of fine particles or non-reactive polymer. The optical film of the present invention has an optical film that is prevented from blocking in a state where the film is wound in a roll shape and has excellent flexibility, and an optical film free from haze due to internal scattering. It is to provide.
 本発明に係る機能性層は微粒子又は非反応性ポリマーを含まずに、相溶性の高い樹脂成分だけで構成されているため、耐久性試験においても劣化等が生じ難く、屋外使用を想定した耐久性試験後も優れた可とう性を有した光学フィルムを提供できる。また、機能性層の表面凹凸を形成する突起形状は、微粒子を含有させたり、型付け等によって形成されたものではないため、不規則な状態を有しており、ハードコート層と機能性層が重なりあった場合でも、応力が分散しやすく、優れたブロッキング防止の効果が得られるものである。 Since the functional layer according to the present invention is composed only of highly compatible resin components without containing fine particles or non-reactive polymer, it is difficult to cause deterioration in the durability test, and durability for outdoor use is assumed. An optical film having excellent flexibility after the property test can be provided. In addition, the protrusion shape forming the surface irregularities of the functional layer is not formed by adding fine particles or by molding, and therefore has an irregular state, and the hard coat layer and the functional layer are Even when they are overlapped, the stress is easily dispersed, and an excellent anti-blocking effect can be obtained.
 また、微粒子又は非反応性ポリマーを含まないため、内部散乱に起因するヘイズが殆どなく、視認性に優れた画像表示装置を提供することができる。更に、タッチパネルを含む液晶表示装置として耐ペン摺動性に優れた光学フィルムを提供することができる。 Further, since it does not contain fine particles or a non-reactive polymer, it is possible to provide an image display device having almost no haze due to internal scattering and excellent visibility. Furthermore, an optical film excellent in pen sliding resistance can be provided as a liquid crystal display device including a touch panel.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 <光学フィルム>
 (微粒子、非反応性ポリマー)
 先ずは、本発明の光学フィルムの一つの特徴である機能性層について説明する。機能性層は、表面凹凸を形成する長さ方向に周期を持たない不規則な突起形状を有し、微粒子又は非反応性ポリマーを実質的に含有しないことを特徴とする。なお、長さ方向とは、光学フィルムの製造時、その組成物塗布液が流延された製膜方向をいう。なお、「実質的に含有しない」とは、当該微粒子や非相溶性である樹脂の含有量が、機能性層の固形分に対して、0.01質量%以下であることを表す。但し、機能性層と基材との界面においては、機能性層を形成する際に基材表面付近の構成成分が機能性層側に抽出される場合があるが、基材から抽出された成分が機能性層と基材との界面付近に局在する場合は、この部分を除くものとする。非反応性ポリマーとしては、不飽和二重結合等の官能基(重合性基)を有さない化合物であり、具体的には(メタ)アクリル系やアクリル系の単量体、共重合性単量体、基材フィルムで後述する熱可塑性アクリル樹脂、セルロースエステル樹脂等が挙げられる。微粒子としては、無機微粒子や有機微粒子といった微粒子が挙げられる。具体的には無機微粒子としては、酸化珪素、酸化マグネシウム、炭酸カルシウム等を挙げることができる。また、有機粒子としては、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、ポリスチレン系樹脂粉末、又はメラミン系樹脂粉末等を挙げることができる。次に突起形状について説明する。
<Optical film>
(Fine particles, non-reactive polymer)
First, the functional layer which is one feature of the optical film of the present invention will be described. The functional layer has an irregular protrusion shape having no period in the length direction forming the surface irregularities, and is substantially free of fine particles or non-reactive polymer. In addition, a length direction means the film forming direction where the composition coating liquid was cast at the time of manufacture of an optical film. “Substantially not contained” means that the content of the fine particles or incompatible resin is 0.01% by mass or less based on the solid content of the functional layer. However, at the interface between the functional layer and the base material, the constituent components near the base material surface may be extracted to the functional layer side when forming the functional layer, but the components extracted from the base material Is localized in the vicinity of the interface between the functional layer and the substrate. Non-reactive polymers are compounds that do not have a functional group (polymerizable group) such as an unsaturated double bond, and specifically include (meth) acrylic monomers, acrylic monomers, and copolymerizable monomers. Examples thereof include thermoplastic acrylic resins and cellulose ester resins, which will be described later in terms of a polymer and a base film. Examples of the fine particles include fine particles such as inorganic fine particles and organic fine particles. Specific examples of the inorganic fine particles include silicon oxide, magnesium oxide, and calcium carbonate. Examples of the organic particles include polymethacrylic acid methyl acrylate resin powder, acrylic styrene resin powder, polymethyl methacrylate resin powder, polystyrene resin powder, and melamine resin powder. Next, the protrusion shape will be described.
 (表面形状)
 本発明の突起形状は、長さ方向に周期を持たない不規則な形状の突起をしている。本発明の「長さ方向に周期を持たない不規則な形状の突起」とは、表面凹凸がフィルムの幅手方向にも形や大きさが定まらない不規則な形状であり、表面転写ロールにより形成された表面凹凸のようなフィルムの長さ方向に周期を持たない形状の突起をさす。本発明の突起形状としては、例えば、図1に示す(a)や(b)といった幅や高さの異なる突起が、不規則な形状の突起として例示されるが、これらには限定されない。また、「不規則な配置」とは、前記不規則な傾向の突起が規則的に(例えば、等間隔等で)配置されているのではなく、ランダムな間隔で不規則に配置されており、等方的であっても、異方的であってもよい。なお、突起は基材フィルムと接していない機能性層の表面上に現れる。
(Surface shape)
The protrusion shape of the present invention is an irregularly shaped protrusion having no period in the length direction. The “irregularly shaped protrusion having no period in the length direction” of the present invention is an irregular shape in which the surface unevenness is not determined in shape or size in the width direction of the film. A protrusion having a shape that does not have a period in the length direction of the film, such as a surface irregularity formed. As the protrusion shape of the present invention, for example, protrusions having different widths and heights such as (a) and (b) shown in FIG. 1 are exemplified as irregularly shaped protrusions, but are not limited thereto. The “irregular arrangement” means that the irregularly-protruding protrusions are not regularly arranged (for example, at regular intervals), but are irregularly arranged at random intervals, It may be isotropic or anisotropic. In addition, protrusions appear on the surface of the functional layer that is not in contact with the base film.
 長さ方向に周期を持たない不規則な突起形状を有することで、ロール状にフィルムを巻き取り、フィルム同士が重なりあった場合でも突起形状が重なり合うことなく、ブロッキング防止の効果が得られると推定される。このため、例えば表面転写ロールを押し当てて表面に突起を形成させる方法では、幅方向には、不規則な突起形状を形成できるが、長さ方向には一定の周期を有する突起形状しか得られない為、本発明の目的効果は得られない。 Estimated to have an anti-blocking effect without overlapping the protrusion shape even when the film is rolled up by winding the film in a roll shape by having an irregular protrusion shape having no period in the length direction Is done. For this reason, for example, in the method of forming protrusions on the surface by pressing the surface transfer roll, irregular protrusion shapes can be formed in the width direction, but only protrusion shapes having a fixed period in the length direction can be obtained. Therefore, the object effect of the present invention cannot be obtained.
 機能性層の算術平均粗さRa(JIS B0601:1994)は、130nm以下が好ましく、特に好ましくは10~130nmである。前記範囲の算術平均粗さRaとすることで、より過酷な耐久性試験において、本発明の目的効果が好適に得られるばかりか、密着性にも優れる点で好ましい。 The arithmetic average roughness Ra (JIS B0601: 1994) of the functional layer is preferably 130 nm or less, particularly preferably 10 to 130 nm. The arithmetic average roughness Ra within the above range is preferable in that not only the objective effect of the present invention is suitably obtained in a more severe durability test, but also excellent adhesion.
 この算術平均粗さRaとするための突起形状の高さは2nm~4μm、が好ましい。また、突起形状の幅は50nm~300μm、好ましくは、50nm~100μmである。上記突起形状の高さ、及び幅は断面観察から求めることができる。よりわかりやすくするために、図1に突起の説明図を示す。図1に示されているように、上記突起形状の高さ、及び幅は、断面観察の画像に中心線aを引き、山の麓を形成する線b、cと中心線aとの2つの交点の距離を、突起サイズの幅tとし、山頂と中心線aまでの距離を突起サイズの高さhとして求めることができる。 The height of the protrusion shape for obtaining the arithmetic average roughness Ra is preferably 2 nm to 4 μm. The width of the protrusion shape is 50 nm to 300 μm, preferably 50 nm to 100 μm. The height and width of the protrusion shape can be obtained from cross-sectional observation. In order to make it easier to understand, FIG. As shown in FIG. 1, the height and width of the protrusion shape are obtained by drawing a center line a on the cross-sectional observation image and forming two peaks b and c and a center line a forming a mountain ridge. The distance between the intersections can be determined as the protrusion size width t, and the distance from the peak to the center line a can be determined as the protrusion size height h.
 機能性層の10点平均粗さRzは、中心線平均粗さRaの10倍以下が好ましい。平均山谷距離Smは、5~150μmが好ましく、より好ましくは20~100μmである。凹凸最深部からの凸部高さの標準偏差は、0.5μm以下が好ましい。中心線を基準とした平均山谷距離Smの標準偏差は、20μm以下が好ましく、傾斜角0~5度の面は、10%以上が好ましい。前記した算術平均粗さRa、平均山谷距離Sm、10点平均粗さRzは、JIS B0601:1994に準じて光学干渉式表面粗さ計(例えば、RST/PLUS、WYKO社製)で測定した値である。 The 10-point average roughness Rz of the functional layer is preferably 10 times or less of the centerline average roughness Ra. The average mountain / valley distance Sm is preferably 5 to 150 μm, more preferably 20 to 100 μm. The standard deviation of the height of the convex portion from the deepest portion of the concave and convex portions is preferably 0.5 μm or less. The standard deviation of the average mountain-valley distance Sm with respect to the center line is preferably 20 μm or less, and the surface with an inclination angle of 0 to 5 degrees is preferably 10% or more. The arithmetic average roughness Ra, the average mountain valley distance Sm, and the 10-point average roughness Rz are values measured with an optical interference surface roughness meter (for example, RST / PLUS, manufactured by WYKO) according to JIS B0601: 1994. It is.
 また、機能性層の尖度Rkuは3以下が好ましい。尖度Rkuとは、凹凸形状の凸状部分の形状を規定するパラメータであり、この尖度Rkuの値が大きい程、凹凸形状の凸状部分の形状は、針のように尖った形状であることとなる。尖度Rkuが3を超えるものは、白ボケが発生しやすい。機能性層の尖度Rkuは、更に好ましくは1.5~2.8である。また、表面の歪度Rskの絶対値は1以下であることが好ましい。前記歪度Rskは、凹凸形状の平均面に対する凸状部分と凹状部分との割合を示すパラメータであり、平均面に対して凸状部分が多いとプラスに大きな値となり、平均面に対して凹状部分が多いとマイナスに大きな値となる。歪度Rskの絶対値が1を超えるものは、白ボケが発生しやすい。歪度Rskの絶対値は、好ましくは0.01~0.5である。なお、尖度Rku及び歪度Rskは、上記光学干渉式表面粗さ計を用いて計測できる。 Further, the kurtosis Rku of the functional layer is preferably 3 or less. The kurtosis Rku is a parameter that defines the shape of the convex portion of the concavo-convex shape. The larger the value of the kurtosis Rku, the more the shape of the convex portion of the concavo-convex shape is a pointed shape like a needle. It will be. When the kurtosis Rku exceeds 3, white blurring tends to occur. The kurtosis Rku of the functional layer is more preferably 1.5 to 2.8. The absolute value of the surface distortion Rsk is preferably 1 or less. The skewness Rsk is a parameter indicating the ratio of the convex portion and the concave portion with respect to the average surface of the concavo-convex shape. If there are many convex portions with respect to the average surface, it becomes a positive value and is concave with respect to the average surface If there are many parts, it will become a large negative value. When the absolute value of the skewness Rsk exceeds 1, white blurring tends to occur. The absolute value of the skewness Rsk is preferably 0.01 to 0.5. The kurtosis Rku and the skewness Rsk can be measured using the optical interference surface roughness meter.
 本発明の光学フィルムは、JIS-K7105に準じた像鮮明性(透過写像性)が、光学くし幅0.5mmで測定したときに5~90%となることが好ましく、更に好ましくは5~80%、特に好ましくは5~60%であり、前記範囲とすることで、画像ボケ、暗室でのコントラスト低下の抑制効果が得られる。 The optical film of the present invention preferably has an image clarity (transmission image clarity) according to JIS-K7105 of 5 to 90% when measured with an optical comb width of 0.5 mm, and more preferably 5 to 80%. %, Particularly preferably 5 to 60%. By setting the content in the above range, the effect of suppressing the image blur and the contrast decrease in the dark room can be obtained.
 なお、上述したような特徴を有する機能性層の詳細については後述するが、上記突起形状(表面凹凸)は、例えば、機能性層塗布組成物の乾燥工程における減率乾燥区間の処理温度を高温制御し、樹脂の塗膜対流を発生させ、機能性層表面に不均一な状態を作り、この不均一な表面状態で硬化し、塗膜を形成する方法等によって得ることができる。このような方法で塗膜を形成することで、機能性層の膜強度が向上する。また、機能性層塗布組成物の乾燥工程における減率乾燥区間の処理温度を高温条件に制御する方法は、生産性にも優れる点で好ましい。 The details of the functional layer having the above-described characteristics will be described later. For example, the protrusion shape (surface irregularity) may be obtained by, for example, increasing the processing temperature of the rate-decreasing drying section in the drying process of the functional layer coating composition. It can be obtained by a method of controlling, generating a convection of a resin film, creating a non-uniform state on the surface of the functional layer, curing in this non-uniform surface state, and forming a coating film. By forming the coating film by such a method, the film strength of the functional layer is improved. Moreover, the method of controlling the processing temperature of the decreasing rate drying area in the drying process of a functional layer coating composition to high temperature conditions is preferable at the point which is excellent also in productivity.
 (機能性層)
 本発明に係る機能性層は活性線硬化樹脂を含有することが好ましい。すなわち、紫外線や電子線のような活性線(活性エネルギー線ともいう)照射により、架橋反応を経て硬化する樹脂を主たる成分とすることが好ましい。活性線硬化樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられる。これらの樹脂に対して、紫外線や電子線のような活性線を照射することにより硬化させて、活性線硬化樹脂層が形成される。活性線硬化樹脂としては、紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する樹脂が機械的膜強度(耐擦傷性、鉛筆硬度)に優れる点から好ましい。紫外線硬化性樹脂としては、例えば、紫外線硬化型アクリレート系樹脂、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、又は紫外線硬化型エポキシ樹脂等が好ましく用いられる。中でも紫外線硬化型アクリレート系樹脂が好ましい。
(Functional layer)
The functional layer according to the present invention preferably contains an actinic radiation curable resin. That is, it is preferable that the main component is a resin that is cured through a crosslinking reaction by irradiation with active rays (also called active energy rays) such as ultraviolet rays and electron beams. As the actinic radiation curable resin, a component containing a monomer having an ethylenically unsaturated double bond is preferably used. These resins are cured by irradiating active rays such as ultraviolet rays and electron beams to form an active ray curable resin layer. Typical examples of the actinic radiation curable resin include ultraviolet curable resins and electron beam curable resins. However, resins cured by ultraviolet irradiation have excellent mechanical film strength (abrasion resistance, pencil hardness). To preferred. Examples of the ultraviolet curable resin include an ultraviolet curable acrylate resin, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, and an ultraviolet ray. A curable epoxy resin or the like is preferably used. Of these, ultraviolet curable acrylate resins are preferred.
 紫外線硬化型アクリレート系樹脂としては、多官能アクリレートが好ましい。該多官能アクリレートとしては、ペンタエリスリトール多官能アクリレート、ジペンタエリスリトール多官能アクリレート、ペンタエリスリトール多官能メタクリレート、及びジペンタエリスリトール多官能メタクリレートよりなる群から選ばれることが好ましい。ここで、多官能アクリレートとは、分子中に2個以上のアクリロイルオキシ基又はメタクロイルオキシ基を有する化合物である。多官能アクリレートのモノマーとしては、例えばエチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールトリ/テトラアクリレート(ペンタエリスリトールトリアクリレートとペンタエリスリトールテトラアクリレートの混合物)、ジトリメチロールプロパンテトラアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、ペンタエリスリトールテトラアクリレート、グリセリントリアクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、活性エネルギー線硬化型のイソシアヌレート誘導体等が好ましく挙げられる。 As the ultraviolet curable acrylate resin, polyfunctional acrylate is preferable. The polyfunctional acrylate is preferably selected from the group consisting of pentaerythritol polyfunctional acrylate, dipentaerythritol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, and dipentaerythritol polyfunctional methacrylate. Here, the polyfunctional acrylate is a compound having two or more acryloyloxy groups or methacryloyloxy groups in the molecule. Examples of the polyfunctional acrylate monomer include ethylene glycol diacrylate, diethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, and tetramethylolmethane triacrylate. , Tetramethylol methane tetraacrylate, pentaglycerol triacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate, pentaerythritol tri / tetraacrylate (mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate), ditrimethylolpropane tetraacrylate, ethoxylation Pentaerythrit Preferred examples include tetratetraacrylate, pentaerythritol tetraacrylate, glycerin triacrylate, dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, and active energy ray-curable isocyanurate derivatives. It is done.
 活性エネルギー線硬化型のイソシアヌレート誘導体としては、イソシアヌル酸骨格に1個以上のエチレン性不飽和基が結合した構造を有する化合物であればよく、特に制限はないが、同一分子内に3個以上のエチレン性不飽和基及び1個以上のイソシアヌレート環を有する化合物が好ましい。 The active energy ray-curable isocyanurate derivative is not particularly limited as long as it is a compound having a structure in which one or more ethylenically unsaturated groups are bonded to the isocyanuric acid skeleton, but three or more in the same molecule. A compound having an ethylenically unsaturated group and one or more isocyanurate rings is preferred.
 これらの市販品としては、アデカオプトマーKR・BYシリーズ:KR-400、KR-410、KR-550、KR-566、KR-567、BY-320B((株)ADEKA製);コーエイハードA-101-KK、A-101-WS、C-302、C-401-N、C-501、M-101、M-102、T-102、D-102、NS-101、FT-102Q8、MAG-1-P20、AG-106、M-101-C(広栄化学(株)製);セイカビームPHC2210(S)、PHC X-9(K-3)、PHC2213、DP-10、DP-20、DP-30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(大日精化工業(株)製);KRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(ダイセル・ユーシービー(株)製);RC-5015、RC-5016、RC-5020、RC-5031、RC-5100、RC-5102、RC-5120、RC-5122、RC-5152、RC-5171、RC-5180、RC-5181(DIC(株)製);オーレックスNo.340クリヤ(中国塗料(株)製);サンラッドH-601、RC-750、RC-700、RC-600、R-500、RC-611、RC-612(三洋化成工業(株)製);SP-1509、SP-1507(昭和高分子(株)製);RCC-15C(グレース・ジャパン(株)製)、アロニックスM-6100、M-8030、M-8060、アロニックスM-215、アロニックスM-315、アロニックスM-313、アロニックスM-327(東亞合成(株)製)、NK-エステルA-TMM-3L、NK-エステルAD-TMP、NK-エステルATM-35E、NKハードB-420、NKエステルA-DOG、NKエステルA-IBD-2E、A-9300、A-9300-1CL(新中村化学工業(株))、PE-3A(共栄社化学(株)製)等が挙げられる。 As these commercial products, Adekaoptomer KR / BY series: KR-400, KR-410, KR-550, KR-566, KR-567, BY-320B (manufactured by ADEKA Corporation); 101-KK, A-101-WS, C-302, C-401-N, C-501, M-101, M-102, T-102, D-102, NS-101, FT-102Q8, MAG- 1-P20, AG-106, M-101-C (manufactured by Guangei Chemical Co., Ltd.); Seika Beam PHC2210 (S), PHC X-9 (K-3), PHC2213, DP-10, DP-20, DP- 30, P1000, P1100, P1200, P1300, P1400, P1500, P1600, SCR900 (manufactured by Dainichi Seika Kogyo Co., Ltd.); KRM7033, KRM 039, KRM 7130, KRM 7131, UVECRYL 29201, UVECRYL 29202 (manufactured by Daicel UC Corporation); RC-5015, RC-5016, RC-5020, RC-5031, RC-5100, RC-5102, RC-5120, RC- 5122, RC-5152, RC-5171, RC-5180, RC-5181 (manufactured by DIC Corporation); 340 clear (manufactured by China Paint Co., Ltd.); Sunrad H-601, RC-750, RC-700, RC-600, R-500, RC-611, RC-612 (manufactured by Sanyo Chemical Industries); SP -1509, SP-1507 (manufactured by Showa Polymer Co., Ltd.); RCC-15C (manufactured by Grace Japan KK), Aronix M-6100, M-8030, M-8060, Aronix M-215, Aronix M- 315, Aronix M-313, Aronix M-327 (manufactured by Toagosei Co., Ltd.), NK-ester A-TMM-3L, NK-ester AD-TMP, NK-ester ATM-35E, NK hard B-420, NK Ester A-DOG, NK ester A-IBD-2E, A-9300, A-9300-1CL (Shin Nakamura Chemical Co., Ltd.), PE-3 (Manufactured by Kyoeisha Chemical Co., Ltd.), and the like.
 また、上記活性線硬化樹脂を単独又は2種以上混合しても良い。また活性線硬化型樹脂の25℃における粘度は、好ましくは20mPa・s以上、2000mPa・s以下である。このような低粘度の樹脂を用いることで、前述した突起形状が得られやすく、本発明の目的効果を好適に得られる。また、樹脂の粘度が30mPa・s以上の粘度であれば高官能数のモノマーを用いることができ、十分に優れた硬化性が得られ、2000mPa・s以下の粘度であれば、乾燥工程において樹脂組成物(活性線硬化型樹脂と溶剤以外の添加剤からなる組成物)の十分な流動性が得られやすい。 In addition, the actinic radiation curable resin may be used alone or in combination of two or more. The viscosity at 25 ° C. of the actinic radiation curable resin is preferably 20 mPa · s or more and 2000 mPa · s or less. By using such a low-viscosity resin, the above-described protrusion shape can be easily obtained, and the object effects of the present invention can be suitably obtained. Moreover, if the viscosity of the resin is 30 mPa · s or more, a monomer having a high functionality can be used, and sufficiently excellent curability can be obtained. If the viscosity is 2000 mPa · s or less, the resin is used in the drying step. Sufficient fluidity of the composition (composition comprising an active ray curable resin and an additive other than a solvent) is easily obtained.
 活性線硬化型樹脂の粘度は、樹脂をディスパーにて攪拌混合し25℃の条件にてB型粘度計を用いて粘度測定を行うことができる。 The viscosity of the actinic radiation curable resin can be measured using a B-type viscometer under the condition of 25 ° C. after stirring and mixing the resin with a disper.
 このような低粘度樹脂としては、グリセリントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート等を挙げることが出来る。なお、上記粘度は、25℃の条件にてB型粘度計を用いて粘度測定を行うことができる。 Examples of such low viscosity resins include glycerin triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate and the like. The viscosity can be measured using a B-type viscometer at 25 ° C.
 また、機能性層は単官能アクリレートを更に含有しても良い。単官能アクリレートとしては、イソボロニルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、イソステアリルアクリレート、ベンジルアクリレート、エチルカルビトールアクリレート、フェノキシエチルアクリレート、ラウリルアクリレート、イソオクチルアクリレート、テトラヒドロフルフリルアクリレート、ベヘニルアクリレート、4-ヒドロキシブチルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、シクロヘキシルアクリレート等が挙げられる。このような単官能アクリレートは、日本化成工業(株)、新中村化学工業(株)、大阪有機化学工業(株)等から入手できる。 The functional layer may further contain a monofunctional acrylate. Monofunctional acrylates include isobornyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, isostearyl acrylate, benzyl acrylate, ethyl carbitol acrylate, phenoxyethyl acrylate, lauryl acrylate, isooctyl acrylate, tetrahydrofurfuryl acrylate, behenyl Examples thereof include acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, cyclohexyl acrylate, and the like. Such monofunctional acrylates can be obtained from Nippon Kasei Kogyo Co., Ltd., Shin-Nakamura Chemical Co., Ltd., Osaka Organic Chemical Co., Ltd., etc.
 単官能アクリレートを用いる場合には、多官能アクリレートと単官能アクリレートの含有質量比で、多官能アクリレート:単官能アクリレートが80:20~99:1で含有することが好ましい。 When a monofunctional acrylate is used, it is preferable that polyfunctional acrylate: monofunctional acrylate is contained in a mass ratio of polyfunctional acrylate to monofunctional acrylate of 80:20 to 99: 1.
 また、機能性層には活性線硬化樹脂の硬化促進のため、光重合開始剤を含有することが好ましい。光重合開始剤量としては、質量比で、光重合開始剤:活性線硬化樹脂が20:100~0.01:100で含有することが好ましい。光重合開始剤としては、具体的には、アルキルフェノン系、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α-アミロキシムエステル、チオキサントン等、及び、これらの誘導体を挙げることができるが、特にこれらに限定されるものではない。 In addition, it is preferable that the functional layer contains a photopolymerization initiator in order to accelerate the curing of the actinic radiation curable resin. The amount of the photopolymerization initiator is preferably 20: 100 to 0.01: 100 in terms of mass ratio. Specific examples of the photopolymerization initiator include alkylphenone series, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, α-amyloxime ester, thioxanthone, and derivatives thereof, but are not particularly limited thereto. Is not to be done.
 このような光重合開始剤は市販品を用いてもよく、例えば、BASFジャパン(株)製のイルガキュア184、イルガキュア907、イルガキュア651等が好ましく挙げられる。 Commercially available products may be used as such photopolymerization initiators, and preferred examples include Irgacure 184, Irgacure 907, and Irgacure 651 manufactured by BASF Japan.
 機能性層には、帯電防止性を付与するために導電剤が含まれていても良い。好ましい導電剤としては、金属酸化物微粒子又はπ共役系導電性ポリマーが挙げられる。また、イオン液体も導電性化合物として好ましく用いられる。 The functional layer may contain a conductive agent in order to impart antistatic properties. Preferable conductive agents include metal oxide fine particles or π-conjugated conductive polymers. An ionic liquid is also preferably used as the conductive compound.
 機能性層には、塗布性の観点から、シリコーン系界面活性剤、フッ素系界面活性剤、アニオン界面活性剤、及びフッ素-シロキサングラフトポリマーを含有させても良い。また機能性層は HLB値が3~18の化合物を含有しても良い。HLB値が3~18の化合物について説明する。HLB値とは、Hydrophile-Lipophile-Balance、親水性-親油性-バランスのことであり、化合物の親水性又は親油性の程度を示す値である。HLB値が小さいほど親油性が高く、値が大きいほど親水性が高くなる。また、HLB値は以下のような計算式によって求めることができる。 The functional layer may contain a silicone-based surfactant, a fluorine-based surfactant, an anionic surfactant, and a fluorine-siloxane graft polymer from the viewpoint of coatability. The functional layer may contain a compound having an HLB value of 3 to 18. A compound having an HLB value of 3 to 18 will be described. The HLB value is Hydrophile-Lipophile-Balance, hydrophilic-lipophilic-balance, and is a value indicating the degree of hydrophilicity or lipophilicity of a compound. The smaller the HLB value, the higher the lipophilicity, and the higher the value, the higher the hydrophilicity. The HLB value can be obtained by the following calculation formula.
 HLB=7+11.7Log(Mwa/Mo)
(式中、Mwaは親水基の分子量、Moは親油基の分子量を表し、Mwa+Mo=M(化合物の分子量)である)。
HLB = 7 + 11.7Log (Mwa / Mo)
(In the formula, Mwa represents the molecular weight of the hydrophilic group, Mo represents the molecular weight of the lipophilic group, and Mwa + Mo = M (molecular weight of the compound)).
 或いはグリフィン法によれば、以下のような計算式によって求めることができる(J.Soc.Cosmetic Chem.,5(1954),294)。 Alternatively, according to the Griffin method, it can be obtained by the following calculation formula (J. Soc. Cosmetic Chem., 5 (1954), 294).
 HLB値=20×親水部の式量の総和/分子量 HLB value = 20 × total formula weight of hydrophilic part / molecular weight
 HLB値が3~18の化合物の具体例を下記に挙げるが、本発明はこれらに限定されるものでない。( )内はHLB値を示す。 Specific examples of the compound having an HLB value of 3 to 18 are given below, but the present invention is not limited thereto. Figures in parentheses indicate HLB values.
 花王(株)製:エマルゲン102KG(6.3)、エマルゲン103(8.1)、エマルゲン104P(9.6)、エマルゲン105(9.7)、エマルゲン106(10.5)、エマルゲン108(12.1)、エマルゲン109P(13.6)、エマルゲン120(15.3)、エマルゲン123P(16.9)、エマルゲン147(16.3)、エマルゲン210P(10.7)、エマルゲン220(14.2)、エマルゲン306P(9.4)、エマルゲン320P(13.9)、エマルゲン404(8.8)、エマルゲン408(10.0)、エマルゲン409PV(12.0)、エマルゲン420(13.6)、エマルゲン430(16.2)、エマルゲン705(10.5)、エマルゲン707(12.1)、エマルゲン709(13.3)、エマルゲン1108(13.5)、エマルゲン1118S-70(16.4)、エマルゲン1135S-70(17.9)、エマルゲン2020G-HA(13.0)、エマルゲン2025G(15.7)、エマルゲンLS-106(12.5)、エマルゲンLS-110(13.4)、エマルゲンLS-114(14.0)、日信化学工業(株)製:サーフィノール104E(4)、サーフィノール104H(4)、サーフィノール104A(4)、サーフィノール104BC(4)、サーフィノール104DPM(4)、サーフィノール104PA(4)、サーフィノール104PG-50(4)、サーフィノール104S(4)、サーフィノール420(4)、サーフィノール440(8)、サーフィノール465(13)、サーフィノール485(17)、サーフィノールSE(6)、信越化学工業(株)製:X-22-4272(7)、X-22-6266(8)、KF-351(12)、KF-352(7)、KF-353(10)、KF-354L(16)、KF-355A(12)、KF-615A(10)、KF-945(4)、KF-618(11)、KF-6011(12)、KF-6015(4)、KF-6004(5)。シリコーン系界面活性剤としては、ポリエーテル変性シリコーンなどを挙げる事ができ、上記信越化学工業社製のKFシリーズなどを挙げる事が出来る。アクリル共重合物としては、ビックケミー・ジャパン社製のBYK-350、BYK-352などの市販品化合物を挙げる事が出来る。フッ素系界面活性剤としては、DIC株式会社製のメガファック RSシリーズ、メガファックF-444メガファックF-556などを挙げる事が出来る。 Manufactured by Kao Corporation: Emulgen 102KG (6.3), Emulgen 103 (8.1), Emulgen 104P (9.6), Emulgen 105 (9.7), Emulgen 106 (10.5), Emulgen 108 (12 .1), Emulgen 109P (13.6), Emulgen 120 (15.3), Emulgen 123P (16.9), Emulgen 147 (16.3), Emulgen 210P (10.7), Emulgen 220 (14.2) ), Emulgen 306P (9.4), Emulgen 320P (13.9), Emulgen 404 (8.8), Emulgen 408 (10.0), Emulgen 409PV (12.0), Emulgen 420 (13.6), Emulgen 430 (16.2), Emulgen 705 (10.5), Emulgen 707 (12.1), Emulgen 7 9 (13.3), Emulgen 1108 (13.5), Emulgen 1118S-70 (16.4), Emulgen 1135S-70 (17.9), Emulgen 2020G-HA (13.0), Emulgen 2025G (15. 7), Emulgen LS-106 (12.5), Emulgen LS-110 (13.4), Emulgen LS-114 (14.0), manufactured by Nissin Chemical Industry Co., Ltd .: Surfinol 104E (4), Surfy Nord 104H (4), Surfinol 104A (4), Surfinol 104BC (4), Surfinol 104DPM (4), Surfinol 104PA (4), Surfinol 104PG-50 (4), Surfinol 104S (4), Surfinol 420 (4), Surfinol 440 (8), Surfinol 465 13), Surfinol 485 (17), Surfinol SE (6), manufactured by Shin-Etsu Chemical Co., Ltd .: X-22-4272 (7), X-22-6266 (8), KF-351 (12), KF-352 (7), KF-353 (10), KF-354L (16), KF-355A (12), KF-615A (10), KF-945 (4), KF-618 (11), KF -6011 (12), KF-6015 (4), KF-6004 (5). Examples of the silicone surfactant include polyether-modified silicone, and the KF series manufactured by Shin-Etsu Chemical Co., Ltd. can be used. Examples of the acrylic copolymer include commercially available compounds such as BYK-350 and BYK-352 manufactured by BYK Japan. Examples of the fluorosurfactant include MegaFuck® RS series manufactured by DIC Corporation, MegaFuck F-444 MegaFuck F-556, and the like.
 フッ素-シロキサングラフトポリマーとは、少なくともフッ素系樹脂に、シロキサン及び/又はオルガノシロキサン単体を含むポリシロキサン及び/又はオルガノポリシロキサンをグラフト化させて得られる共重合体のポリマーをいう。このようなフッ素-シロキサングラフトポリマーは、後述の実施例に記載されているような方法で調製することができる。あるいは、市販品としては、富士化成工業(株)製のZX-022H、ZX-007C、ZX-049、ZX-047-D等を挙げることができる。また、これら成分は、塗布液中の固形分成分に対し、0.005質量%以上、5質量%以下の範囲で添加することが好ましい。また、機能性層は、後述する基材フィルムで説明する紫外線吸収剤を更に含有しても良い。紫外線吸収剤を含有する場合のフィルムの構成としては、機能性層が2層以上で構成され、かつ基材フィルムと接する機能性層に紫外線吸収剤を含有することが好ましい。 The fluorine-siloxane graft polymer refers to a copolymer polymer obtained by grafting polysiloxane and / or organopolysiloxane containing siloxane and / or organosiloxane alone on at least a fluorine resin. Such fluorine-siloxane graft polymers can be prepared by methods as described in the examples below. Alternatively, commercially available products include ZX-022H, ZX-007C, ZX-049, ZX-047-D manufactured by Fuji Kasei Kogyo Co., Ltd. Moreover, it is preferable to add these components in 0.005 mass% or more and 5 mass% or less with respect to the solid content component in a coating liquid. Moreover, the functional layer may further contain an ultraviolet absorber described in the base film described later. When the ultraviolet absorber is contained, the film is preferably composed of two or more functional layers, and the functional layer in contact with the base film preferably contains the ultraviolet absorber.
 紫外線吸収剤の含有量としては、質量比で、紫外線吸収剤:機能性層構成樹脂が0.01:100~10:100で含有することが好ましい。2層以上設ける場合、基材フィルムと接する機能性層の膜厚は、0.05~2μmの範囲であることが好ましい。2層以上の積層は、逐次重層で形成するか、同時重層で形成しても良い。同時重層とは、乾燥工程を経ずに基材フィルム上に2層以上の機能性層をwet on wetで塗布して、機能性層を形成する方法である。第一機能性層の上に乾燥工程を経ずに、第二機能性層をwet on wetで積層するには、押し出しコーターにより逐次重層するか、若しくは複数のスリットを有するスロットダイにて同時重層を行えばよい。 As the content of the ultraviolet absorber, it is preferable that the ultraviolet absorber: functional layer constituting resin is contained in a mass ratio of 0.01: 100 to 10: 100. When two or more layers are provided, the thickness of the functional layer in contact with the base film is preferably in the range of 0.05 to 2 μm. Two or more stacked layers may be formed by sequential multilayers or by simultaneous multilayers. The simultaneous multi-layering is a method of forming a functional layer by applying two or more functional layers on a base film in a wet-on-wet manner without going through a drying step. In order to stack the second functional layer on the first functional layer without going through the drying process, the layers are stacked one after another with an extrusion coater or simultaneously with a slot die having a plurality of slits. Can be done.
 機能性層は、上記した機能性層を形成する成分を、基材フィルムを膨潤又は一部溶解する溶剤で希釈して機能性層組成物とし、この機能性層組成物を以下の方法でフィルム基材上に塗布、乾燥、硬化して設けることが好ましい。溶剤としては、ケトン(メチルエチルケトン、アセトン、シクロヘキサノン、メチルイソブチルケトン等)、酢酸エステル(酢酸メチル、酢酸エチル、酢酸ブチル等)、アルコール(メタノール、エタノール等)、グリコールエーテル(プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル等)等が好ましく、これら溶剤の中でもケトン、エステル、グリコールエーテルが好ましい。これら好ましい溶剤の少なくとも1種を活性線硬化樹脂100質量部に対して、20~200質量部の範囲で用いることで、機能性層組成物を基材フィルムに塗布後、機能性層組成物の溶剤が蒸発しながら、機能性層を形成していく過程で、樹脂の対流が生じやすく、その結果、長手方向に不規則で、かつ基材フィルム上にも不規則な突起形状を有する表面粗れが発現しやすく、算術平均粗さRaも制御しやすいため好ましい。 The functional layer is a functional layer composition obtained by diluting the above-mentioned components forming the functional layer with a solvent that swells or partially dissolves the base film, and this functional layer composition is formed into a film by the following method. It is preferably provided by applying, drying and curing on a substrate. Solvents include ketones (methyl ethyl ketone, acetone, cyclohexanone, methyl isobutyl ketone, etc.), acetate esters (methyl acetate, ethyl acetate, butyl acetate, etc.), alcohols (methanol, ethanol, etc.), glycol ethers (propylene glycol monomethyl ether, diethylene glycol monomethyl) Ethers, etc.) are preferred, and among these solvents, ketones, esters and glycol ethers are preferred. By using at least one of these preferred solvents in the range of 20 to 200 parts by mass with respect to 100 parts by mass of the actinic radiation curable resin, the functional layer composition is applied to the base film, and then the functional layer composition In the process of forming the functional layer while the solvent evaporates, convection of the resin is likely to occur, and as a result, the surface roughness is irregular in the longitudinal direction and has irregular projections on the base film. This is preferable because it easily develops and the arithmetic average roughness Ra is easy to control.
 機能性層を形成する機能性層組成物の塗布量は、ウェット膜厚として0.1~40μmが適当であり、好ましくは、0.5~30μmである。また、平均膜厚がドライ膜厚として0.05~20μmが適当であり、好ましくは1~10μmである。機能性層を形成する機能性層組成物の塗布方法としては、グラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等の公知の方法を用いることが出来る。機能性層は、これら塗布方法を用いて機能性層を形成する機能性層組成物を塗布し、塗布後、乾燥し、活性線を照射(UV硬化処理とも言う)し、更に必要に応じて、UV硬化後に加熱処理することにより形成できる。UV硬化後の加熱処理温度としては80℃以上が好ましく、更に好ましくは100℃以上であり、特に好ましくは120℃以上である。このような高温でUV硬化後の加熱処理を行うことで、膜強度に優れた機能性層を得ることができる。 The coating amount of the functional layer composition forming the functional layer is suitably 0.1 to 40 μm, preferably 0.5 to 30 μm, as the wet film thickness. The average film thickness is suitably 0.05 to 20 μm, preferably 1 to 10 μm, as a dry film thickness. As a method for applying the functional layer composition for forming the functional layer, known methods such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, and an ink jet method can be used. The functional layer is coated with a functional layer composition that forms a functional layer using these coating methods, dried after application, and irradiated with actinic radiation (also referred to as UV curing treatment), and further if necessary. It can be formed by heat treatment after UV curing. The heat treatment temperature after UV curing is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and particularly preferably 120 ° C. or higher. By performing the heat treatment after UV curing at such a high temperature, a functional layer having excellent film strength can be obtained.
 乾燥は、減率乾燥区間の温度を90℃以上の高温処理で行うことが好ましい。更に好ましくは、減率乾燥区間の温度は90℃以上、140℃以下である。減率乾燥区間の温度を高温処理とすることにより、機能性層の形成時に塗膜樹脂中において対流が生じるため、機能性層表面に不規則な表面粗れが発現しやすく、前記した算術平均粗さRaに制御しやすいため好ましい。 Drying is preferably performed by high-temperature treatment at a temperature of 90 ° C. or higher in the rate of drying section. More preferably, the temperature of the decreasing rate drying section is 90 ° C or higher and 140 ° C or lower. By making the temperature of the rate-decreasing drying section high-temperature treatment, convection occurs in the coating resin during the formation of the functional layer, so that irregular surface roughness is likely to appear on the surface of the functional layer, and the arithmetic mean described above This is preferable because it is easy to control the roughness Ra.
 一般に乾燥プロセスは、乾燥が始まると、乾燥速度が一定の状態から徐々に減少する状態へと変化していくことが知られており、乾燥速度が一定の区間を恒率乾燥区間、乾燥速度が減少していく区間を減率乾燥区間と呼ぶ。恒率乾燥区間においては流入する熱量はすべて塗膜表面の溶媒蒸発に費やされており、塗膜表面の溶媒が少なくなると蒸発面が表面から内部に移動して減率乾燥区間に入る。これ以降は塗膜表面の温度が上昇し熱風温度に近づいていくため、活性線硬化型樹脂組成物の温度が上昇し、樹脂粘度が低下して流動性が増すと考えられる。 In general, it is known that the drying process changes from a constant state to a gradually decreasing state when drying starts. The decreasing section is called the decreasing rate drying section. In the constant rate drying section, the amount of heat flowing in is all consumed for solvent evaporation on the coating film surface, and when the solvent on the coating film surface decreases, the evaporation surface moves from the surface to the inside and enters the decreasing rate drying section. Thereafter, the temperature of the coating film surface rises and approaches the hot air temperature, so that the temperature of the actinic radiation curable resin composition rises, the resin viscosity decreases, and the fluidity increases.
 UV硬化処理の光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。 As a light source for UV curing treatment, any light source that generates ultraviolet rays can be used without limitation. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
 照射条件はそれぞれのランプによって異なるが、活性線の照射量は、通常50~1000mJ/cm、好ましくは50~300mJ/cmである。 Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is usually 50 to 1000 mJ / cm 2 , preferably 50 to 300 mJ / cm 2 .
 活性線を照射する際には、フィルムの搬送方向に張力を付与しながら行うことが好ましく、更に好ましくは幅方向にも張力を付与しながら行う。付与する張力は、30~300N/mが好ましい。張力を付与する方法は特に限定されず、バックロール上で搬送方向に張力を付与してもよく、テンターにて幅方向、又は2軸方向に張力を付与してもよい。これによって更に平面性の優れたフィルムを得ることができる。 When irradiating the actinic radiation, it is preferably performed while applying tension in the film conveyance direction, more preferably while applying tension in the width direction. The tension to be applied is preferably 30 to 300 N / m. The method for applying the tension is not particularly limited, and the tension may be applied in the conveying direction on the back roll, or the tension may be applied in the width direction or biaxial direction by a tenter. Thereby, a film having further excellent flatness can be obtained.
 (ハードコート層)
 次にハードコート層について説明する。ハードコート層を形成する成分としては、機能性層の説明で記載した成分を用いることが出来る。また、膜厚も機能性層で前述した範囲が好ましい。ハードコート層は機能性層を設けるフィルム基材上に塗布、乾燥、硬化、更に必要に応じて熱処理する方法で、ハードコート層を形成することが出来る。ハードコート層は算術平均粗さRaが、10nm未満が好ましく、2nm未満がより好ましい。Raが前記範囲であれば、非常に平滑な面が得られ、画像表示装置に用いた際の視認性が好適に得られる。
(Hard coat layer)
Next, the hard coat layer will be described. As a component which forms a hard-coat layer, the component described by description of the functional layer can be used. The film thickness is preferably in the range described above for the functional layer. The hard coat layer can be formed by a method of coating, drying, curing, and heat-treating, if necessary, on the film substrate on which the functional layer is provided. The hard coat layer has an arithmetic average roughness Ra of preferably less than 10 nm, and more preferably less than 2 nm. If Ra is the said range, a very smooth surface will be obtained and the visibility at the time of using for an image display apparatus will be obtained suitably.
 <光学フィルムの物性>
 (ヘイズ)
 光学フィルムの内部散乱に起因するヘイズ(以後、内部ヘイズとも記載する)は、0~1%であることが好ましい。内部散乱を良好に抑性することで、本発明に係る光学フィルムを画像表示装置に用いた場合、優れた視認性が得られる。内部ヘイズは以下の手順で測定することができる。光学フィルムの表面及び裏面にシリコーンオイルを数滴滴下し、厚さ1mmのガラス板(ミクロスライドガラス、品番S 9111、松浪硝子工業(株)製)2枚で、裏表より光学的に密着するよう挟み、この状態でヘイズ(Ha)をJIS K7136に準じて測定する。次に、同様のガラス板2枚を準備し、これらガラス板2枚の間にシリコーンオイルのみ数滴滴下して挟みこんでガラスヘイズ(Hb)を測定する。ヘイズ(Ha)から、ガラスヘイズ(Hb)を引くことで、内部ヘイズ(Hi)を算出する。また、光学フィルムの内部ヘイズは0.2~20%であることが好ましい。
<Physical properties of optical film>
(Haze)
The haze resulting from internal scattering of the optical film (hereinafter also referred to as internal haze) is preferably 0 to 1%. By satisfactorily suppressing internal scattering, excellent visibility can be obtained when the optical film according to the present invention is used in an image display device. The internal haze can be measured by the following procedure. A few drops of silicone oil are dropped on the front and back surfaces of the optical film so that they are optically intimately attached from the front and back with two 1 mm thick glass plates (micro slide glass, product number S9111, manufactured by Matsunami Glass Industry Co., Ltd.) In this state, haze (Ha) is measured according to JIS K7136. Next, two similar glass plates are prepared, and a few drops of silicone oil are dropped between these two glass plates, and the glass haze (Hb) is measured. The internal haze (Hi) is calculated by subtracting the glass haze (Hb) from the haze (Ha). The internal haze of the optical film is preferably 0.2 to 20%.
 (硬度)
 本発明での光学フィルムは、硬度の指標で有る鉛筆硬度がH以上、より好ましくは3H以上である。3H以上であれば、屋外用途で用いられることが多い、大型の画像表示装置や、デジタルサイネージ用画像表示装置の表面保護フィルムとして用いた際も優れた機械特性を示す。鉛筆硬度は、作製した光学性フィルムを温度23℃、相対湿度55%の条件で2時間以上調湿した後、加重500g条件でJIS S 6006が規定する試験用鉛筆を用いて、ハードコート層及び/又は機能性層をJIS K5400が規定する鉛筆硬度評価方法に従い測定した値である。
(hardness)
The optical film in the present invention has a pencil hardness, which is an index of hardness, of H or higher, more preferably 3H or higher. If it is 3H or more, it exhibits excellent mechanical properties when used as a surface protective film for large image display devices and digital signage image display devices that are often used in outdoor applications. The pencil hardness is determined by adjusting the humidity of the produced optical film at a temperature of 23 ° C. and a relative humidity of 55% for 2 hours or more, and then using a test pencil specified by JIS S 6006 under a load of 500 g. It is the value which measured the functional layer according to the pencil hardness evaluation method prescribed | regulated by JISK5400.
 次いで、基材フィルムについて説明する。 Next, the base film will be described.
 <基材フィルム>
 基材フィルムは製造が容易であること、機能性層やハードコート層と接着し易いこと、光学的に等方性を有することが好ましい。
<Base film>
It is preferable that the base film is easy to manufacture, easily adheres to the functional layer and the hard coat layer, and has optical isotropy.
 上記性質を有する基材フィルムであれば何れでもよく、例えば、トリアセチルセルロースフィルム、セルロースアセテートプロピオネートフィルム、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム等のセルロースエステル系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ノルボルネン樹脂系フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、シクロオレフィンポリマーフィルム、ポリメチルメタクリレートフィルム又はアクリルフィルム等を使用することができる。 Any base film having the above properties may be used. For example, cellulose ester film such as triacetyl cellulose film, cellulose acetate propionate film, cellulose diacetate film, cellulose acetate butyrate film, polyethylene terephthalate, polyethylene naphthalate, etc. Polyester film such as phthalate, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene film, polypropylene film, cellophane, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, Shinji Otectic polystyrene film, norbornene resin film, polymethylpente Films, polyether ketone films, polyether ketone imide film, a polyamide film, a fluorine resin film, nylon film, can be used cycloolefin polymer film, a polymethylmethacrylate film, or an acrylic film.
 これらの内、セルロースエステルフィルム(例えば、コニカミノルタタックKC8UX、KC4UX、KC5UX、KC8UCR3、KC8UCR4、KC8UCR5、KC8UY、KC4UY、KC4UE、及びKC12UR(以上、コニカミノルタオプト(株)製))、ポリカーボネートフィルム、シクロオレフィンポリマーフィルム、ポリエステルフィルムが好ましく、本発明においては、セルロースエステルフィルムが機能性層で上記した突起形状が得られやすいこと、製造性、コスト面から好ましい。 Among these, cellulose ester films (for example, Konica Minoltac KC8UX, KC4UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC4UE, KC4UE, and KC12UR (above, manufactured by Konica Minolta Opto, Polycarbonate Film) An olefin polymer film and a polyester film are preferable, and in the present invention, the cellulose ester film is preferable from the viewpoint of ease of obtaining the above-described protrusion shape from the functional layer, productivity, and cost.
 基材フィルムの屈折率は、1.30~1.70であることが好ましく、1.40~1.65であることがより好ましい。屈折率は、(株)アタゴ製 アッベ屈折率計2Tを用いてJIS K7142の方法で測定する。 The refractive index of the base film is preferably 1.30 to 1.70, and more preferably 1.40 to 1.65. The refractive index is measured by the method of JIS K7142 using an Abbe refractometer 2T manufactured by Atago Co., Ltd.
 (セルロースエステルフィルム)
 次に、基材フィルムとして好ましいセルロースエステルフィルムについて、より詳細に説明する。
(Cellulose ester film)
Next, a cellulose ester film preferable as a substrate film will be described in more detail.
 セルロースエステルフィルムは、上記特性を有するものであれば特に限定はされないが、セルロースエステル樹脂(以下、セルロースエステルともいう)は、セルロースの低級脂肪酸エステルであることが好ましい。セルロースの低級脂肪酸エステルにおける低級脂肪酸とは炭素原子数が6以下の脂肪酸を意味し、例えば、セルロースアセテート、セルロースジアセテート、セルローストリアセテート、セルロースプロピオネート、セルロースブチレート等や、セルロースアセテートプロピオネート、セルロースアセテートブチレート等の混合脂肪酸エステルを用いることができる。 The cellulose ester film is not particularly limited as long as it has the above properties, but the cellulose ester resin (hereinafter also referred to as cellulose ester) is preferably a lower fatty acid ester of cellulose. The lower fatty acid in the lower fatty acid ester of cellulose means a fatty acid having 6 or less carbon atoms. For example, cellulose acetate, cellulose diacetate, cellulose triacetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, etc. Further, mixed fatty acid esters such as cellulose acetate butyrate can be used.
 これらの中でも、特に好ましく用いられるセルロースの低級脂肪酸エステルはセルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネートである。これらのセルロースエステルは単独或いは混合して用いることができる。 Among these, cellulose lower fatty acid esters particularly preferably used are cellulose diacetate, cellulose triacetate, and cellulose acetate propionate. These cellulose esters can be used alone or in combination.
 セルロースジアセテートは、平均酢化度(結合酢酸量)51.0~56.0%が好ましく用いられる。また、市販品としては、(株)ダイセル製のL20、L30、L40、L50、イーストマンケミカルジャパン(株)製のCa398-3、Ca398-6、Ca398-10、Ca398-30、Ca394-60Sが挙げられる。 Cellulose diacetate preferably has an average degree of acetylation (amount of bound acetic acid) of 51.0 to 56.0%. Commercially available products include L20, L30, L40, and L50 manufactured by Daicel Corporation, and Ca398-3, Ca398-6, Ca398-10, Ca398-30, and Ca394-60S manufactured by Eastman Chemical Japan Co., Ltd. Can be mentioned.
 セルローストリアセテートは、平均酢化度(結合酢酸量)54.0~62.5%のものが好ましく用いられ、更に好ましいのは、平均酢化度が58.0~62.5%のセルローストリアセテートである。 The cellulose triacetate preferably has an average degree of acetylation (bound acetic acid amount) of 54.0 to 62.5%, and more preferably cellulose triacetate having an average degree of acetylation of 58.0 to 62.5%. is there.
 セルローストリアセテートとしては、アセチル基置換度が2.80~2.95であり、数平均分子量(Mn)が125000以上、155000未満であり、重量平均分子量(Mw)が265000以上310000未満であり、Mw/Mnが1.9~2.1であるセルローストリアセテートA、アセチル基置換度が2.75~2.90であり、Mnが155000以上、180000未満であり、Mwが290000以上、360000未満であり、Mw/Mnが1.8~2.0であるセルローストリアセテートBを含有することが好ましい。 Cellulose triacetate has an acetyl group substitution degree of 2.80 to 2.95, a number average molecular weight (Mn) of 125,000 or more and less than 155000, a weight average molecular weight (Mw) of 265,000 or more and less than 310,000, Mw Cellulose triacetate A / Mn of 1.9 to 2.1, acetyl group substitution degree of 2.75 to 2.90, Mn of 155000 or more and less than 180,000, Mw of 290000 or more and less than 360,000 It is preferable to contain cellulose triacetate B having Mw / Mn of 1.8 to 2.0.
 セルロースアセテートプロピオネートは、炭素原子数2~4のアシル基を置換基として有し、アセチル基の置換度をXとし、プロピオニル基又はブチリル基の置換度をYとした時、下記式(I)及び(II)を同時に満たすものが好ましい。 Cellulose acetate propionate has an acyl group having 2 to 4 carbon atoms as a substituent, and when the substitution degree of acetyl group is X and the substitution degree of propionyl group or butyryl group is Y, the following formula (I ) And (II) are preferably satisfied at the same time.
 式(I) 2.6≦X+Y≦3.0
 式(II) 0≦X≦2.5
Formula (I) 2.6 ≦ X + Y ≦ 3.0
Formula (II) 0 ≦ X ≦ 2.5
 中でも1.9≦X≦2.5、0.1≦Y≦0.9であることが好ましい。セルロースエステルのMn及びMwは、高速液体クロマトグラフィーを用いて測定できる。測定条件は以下の通りである。 Among them, it is preferable that 1.9 ≦ X ≦ 2.5 and 0.1 ≦ Y ≦ 0.9. The Mn and Mw of the cellulose ester can be measured using high performance liquid chromatography. The measurement conditions are as follows.
 溶媒:メチレンクロライド
 カラム:Shodex K806、K805、K803G
(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度:0.1質量%
 検出器:RI Model 504(GLサイエンス社製)
 ポンプ:L6000(日立製作所(株)製)
 流量:1.0ml/min
 校正曲線:標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mwが1000000~500の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
Solvent: Methylene chloride Column: Shodex K806, K805, K803G
(Used by connecting three Showa Denko Co., Ltd.)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (GL Science Co., Ltd.)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0 ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corporation) A calibration curve of 13 samples with Mw of 1,000,000 to 500 was used. The 13 samples are preferably used at approximately equal intervals.
 (セルロースエステル樹脂・熱可塑性アクリル樹脂含有フィルム)
 基材フィルムは、熱可塑性アクリル樹脂とセルロースエステル樹脂とを含有し、熱可塑性アクリル樹脂とセルロースエステル樹脂の含有質量比が、熱可塑性アクリル樹脂:セルロースエステル樹脂が95:5~50:50であるセルロースエステル樹脂・熱可塑性アクリル樹脂含有フィルムを用いても良い。
(Cellulose ester resin / thermoplastic acrylic resin-containing film)
The base film contains a thermoplastic acrylic resin and a cellulose ester resin, and the mass ratio of the thermoplastic acrylic resin and the cellulose ester resin is 95: 5 to 50:50 of the thermoplastic acrylic resin: cellulose ester resin. A cellulose ester resin / thermoplastic acrylic resin-containing film may be used.
 アクリル樹脂には、メタクリル樹脂も含まれる。アクリル樹脂としては、特に制限されるものではないが、メチルメタクリレート単位50~99質量%、及びこれと共重合可能な他の単量体単位1~50質量%からなるものが好ましい。共重合可能な他の単量体としては、アルキル数の炭素数が2~18のアルキルメタクリレート、アルキル数の炭素数が1~18のアルキルアクリレート、アクリル酸、メタクリル酸等のα,β-不飽和酸、マレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸、スチレン、α-メチルスチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル、無水マレイン酸、マレイミド、N-置換マレイミド、グルタル酸無水物等が挙げられ、これらは単独で、あるいは2種以上の単量体を併用して用いることができる。 Acrylic resin includes methacrylic resin. The acrylic resin is not particularly limited but is preferably composed of 50 to 99% by mass of methyl methacrylate units and 1 to 50% by mass of other monomer units copolymerizable therewith. Examples of other copolymerizable monomers include alkyl methacrylates having 2 to 18 alkyl carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, alkyl acrylates such as acrylic acid and methacrylic acid. Unsaturated group-containing divalent carboxylic acids such as saturated acid, maleic acid, fumaric acid and itaconic acid, aromatic vinyl compounds such as styrene and α-methylstyrene, α, β-unsaturated nitriles such as acrylonitrile and methacrylonitrile, Examples thereof include maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride and the like, and these can be used alone or in combination of two or more monomers.
 これらの中でも、共重合体の耐熱分解性や流動性の観点から、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、s-ブチルアクリレート、2-エチルヘキシルアクリレート等が好ましく、メチルアクリレートやn-ブチルアクリレートが特に好ましく用いられる。また、Mwは80000~500000であることが好ましく、更に好ましくは、110000~500000の範囲内である。 Among these, methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like are preferable from the viewpoint of thermal decomposition resistance and fluidity of the copolymer. n-Butyl acrylate is particularly preferably used. Further, Mw is preferably from 80000 to 500000, more preferably from 110000 to 500000.
 アクリル樹脂のMwは、ゲルパーミエーションクロマトグラフィーにより測定することができる。アクリル樹脂の重合方法としては、特に制限は無く、懸濁重合、乳化重合、塊状重合、あるいは溶液重合等の公知の方法を採用しても良い。重合開始剤としては、通常のパーオキサイド系の重合開始剤及びアゾ系の重合開始剤を用いることができ、また、レドックス系の重合開始剤を用いることもできる。重合温度については、懸濁又は乳化重合では30~100℃、塊状又は溶液重合では80~160℃を採用することができる。得られた共重合体の還元粘度を制御するために、アルキルメルカプタン等の連鎖移動剤を用いて重合を実施することもできる。また、市販の連鎖移動剤も使用することができる。例えば、デルペット60N、80N(旭化成ケミカルズ(株)製)、ダイヤナールBR52、BR80,BR83,BR85,BR88(三菱レイヨン(株)製)、KT75(電気化学工業(株)製)等を使用することができる。アクリル樹脂は2種以上を併用することもできる。また、アクリル樹脂には、(メタ)アクリル系ゴムと芳香族ビニル化合物の共重合体に(メタ)アクリル系樹脂がグラフトされたグラフト共重合体を用いてもよい。前記グラフト共重合体は、(メタ)アクリル系ゴムと芳香族ビニル化合物の共重合体がコア(core)を構成し、その周辺に前記(メタ)アクリル系樹脂がシェル(shell)を構成するコア-シェルタイプのグラフト共重合体であることが好ましい。 The Mw of the acrylic resin can be measured by gel permeation chromatography. There is no restriction | limiting in particular as a polymerization method of an acrylic resin, You may employ | adopt well-known methods, such as suspension polymerization, emulsion polymerization, block polymerization, or solution polymerization. As the polymerization initiator, a normal peroxide polymerization initiator and an azo polymerization initiator can be used, and a redox polymerization initiator can also be used. Regarding the polymerization temperature, 30 to 100 ° C. can be employed for suspension or emulsion polymerization, and 80 to 160 ° C. can be employed for bulk or solution polymerization. In order to control the reduced viscosity of the obtained copolymer, polymerization can be carried out using a chain transfer agent such as an alkyl mercaptan. Commercially available chain transfer agents can also be used. For example, Delpet 60N, 80N (Asahi Kasei Chemicals Co., Ltd.), Dianal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electric Chemical Co., Ltd.), etc. are used. be able to. Two or more acrylic resins can be used in combination. The acrylic resin may be a graft copolymer obtained by grafting a (meth) acrylic resin to a copolymer of (meth) acrylic rubber and an aromatic vinyl compound. In the graft copolymer, a copolymer of (meth) acrylic rubber and an aromatic vinyl compound forms a core, and the (meth) acrylic resin forms a shell around the copolymer. -A shell-type graft copolymer is preferred.
 基材フィルムにおけるアクリル樹脂とセルロースエステル樹脂の総質量は、基材フィルムの55質量%以上であることが好ましく、更に好ましくは60質量%以上であり、特に好ましくは、70質量%以上である。基材フィルムは、熱可塑性アクリル樹脂、セルロースエステル樹脂以外の樹脂や添加剤を含有して構成されていても良い。 The total mass of the acrylic resin and the cellulose ester resin in the base film is preferably 55% by mass or more of the base film, more preferably 60% by mass or more, and particularly preferably 70% by mass or more. The base film may be configured to contain resins and additives other than thermoplastic acrylic resins and cellulose ester resins.
 (アクリル粒子)
 基材フィルムは、脆性を改善する観点から、アクリル粒子を含有しても良い。アクリル粒子とは、前記熱可塑性アクリル樹脂及びセルロースエステル樹脂を相溶状態で含有する基材フィルム中に粒子の状態(非相溶状態ともいう)で存在するアクリル成分を表す。
(Acrylic particles)
The base film may contain acrylic particles from the viewpoint of improving brittleness. An acrylic particle represents the acrylic component which exists in the state of particle | grains (it is also called an incompatible state) in the base film containing the said thermoplastic acrylic resin and cellulose-ester resin in a compatible state.
 アクリル粒子は特に限定されるものではないが、多層構造アクリル系粒状複合体であることが好ましい。多層構造アクリル系粒状複合体の市販品としては、例えば、三菱レイヨン(株)製“メタブレン”、鐘淵化学工業(株)製“カネエース”、呉羽化学工業(株)製“パラロイド”、ロームアンドハース社製“アクリロイド”、ガンツ化成工業(株)製“スタフィロイド”及びクラレ(株)製“パラペットSA”等が挙げられ、これらは、単独ないし2種以上を用いることができる。基材フィルムにアクリル粒子を添加する場合は、アクリル樹脂とセルロースエステル樹脂との混合物の屈折率とアクリル粒子の屈折率が近いことが、透明性が高いフィルムを得る点では好ましい。具体的には、アクリル粒子とアクリル樹脂との屈折率差が0.05以下であることが好ましく、より好ましくは0.02以下、さらに好ましくは0.01以下である。 The acrylic particles are not particularly limited, but are preferably multi-layered acrylic granular composites. Examples of commercially available multi-layered acrylic granular composites include “Metablene” manufactured by Mitsubishi Rayon Co., Ltd., “Kaneace” manufactured by Kaneka Chemical Co., Ltd., “Paraloid” manufactured by Kureha Chemical Industry Co., Ltd., Rohm and Examples include “Acryloid” manufactured by Haas, “Staffyroid” manufactured by Gantz Kasei Kogyo Co., Ltd., “Parapet SA” manufactured by Kuraray Co., Ltd., and the like. These may be used alone or in combination of two or more. When adding acrylic particles to the base film, it is preferable that the refractive index of the mixture of the acrylic resin and the cellulose ester resin is close to the refractive index of the acrylic particles in order to obtain a highly transparent film. Specifically, the refractive index difference between the acrylic particles and the acrylic resin is preferably 0.05 or less, more preferably 0.02 or less, and still more preferably 0.01 or less.
 アクリル微粒子は、該フィルムを構成するアクリル樹脂とセルロースエステル樹脂の総質量に対して、含有質量比でアクリル微粒子:アクリル樹脂とセルロースエステル樹脂総質量が0.5:100~30:100の範囲で含有させることで、目的効果がより良く発揮される点から好ましく、更に好ましくは、アクリル微粒子:アクリル樹脂とセルロースエステル樹脂の総質量が1.0:100~15:100の範囲である。 The acrylic fine particles have a total mass ratio of acrylic fine particles: acrylic resin and cellulose ester resin in the range of 0.5: 100 to 30: 100 with respect to the total mass of the acrylic resin and cellulose ester resin constituting the film. The content is preferably from the viewpoint that the intended effect is better exhibited, and more preferably, the total mass of the acrylic fine particles: acrylic resin and cellulose ester resin is in the range of 1.0: 100 to 15: 100.
 (微粒子)
 本実施形態に係る基材フィルムには、取扱性を向上させる為、例えば二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、カオリン、タルク、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム等の無機微粒子や架橋高分子等のマット剤を含有させることが好ましい。中でも二酸化ケイ素がフィルムのヘイズを小さくできるので好ましく用いられる。
(Fine particles)
In order to improve the handleability, the base film according to the present embodiment includes, for example, silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydrated calcium silicate, silica It is preferable to contain a matting agent such as inorganic fine particles such as aluminum oxide, magnesium silicate and calcium phosphate, and a crosslinked polymer. Among these, silicon dioxide is preferably used because it can reduce the haze of the film.
 微粒子の1次平均粒子径としては、20nm以下が好ましく、更に好ましくは、5~16nmであり、特に好ましくは、5~12nmである。 The primary average particle diameter of the fine particles is preferably 20 nm or less, more preferably 5 to 16 nm, and particularly preferably 5 to 12 nm.
 (その他の添加剤)
 基材フィルムには、組成物の流動性や柔軟性を向上するために、可塑剤を併用することもできる。可塑剤としては、フタル酸エステル系、脂肪酸エステル系、トリメリット酸エステル系、リン酸エステル系、ポリエステル系、糖エステル系、アクリル系ポリマー等が挙げられる。この中では、ポリエステル系、糖エステル系及びアクリル系ポリマーの可塑剤が好ましく用いられる。ポリエステル系可塑剤は、フタル酸ジオクチル等のフタル酸エステル系の可塑剤に比べて非移行性や耐抽出性に優れる。用途に応じてこれらの可塑剤を選択、あるいは併用することによって、広範囲の用途に適用できる。アクリル系ポリマーとしては、アクリル酸又はメタクリル酸アルキルエステルのホモポリマー又はコポリマーが好ましい。アクリル酸エステルのモノマーとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル(i-、n-)、アクリル酸ブチル(n-、i-、s-、t-)、アクリル酸ペンチル(n-、i-、s-)、アクリル酸ヘキシル(n-、i-)、アクリル酸ヘプチル(n-、i-)、アクリル酸オクチル(n-、i-)、アクリル酸ノニル(n-、i-)、アクリル酸ミリスチル(n-、i-)、アクリル酸(2-エチルヘキシル)、アクリル酸(ε-カプロラクトン)、アクリル酸(2-ヒドロキシエチル)、アクリル酸(2-ヒドロキシプロピル)、アクリル酸(3-ヒドロキシプロピル)、アクリル酸(4-ヒドロキシブチル)、アクリル酸(2-ヒドロキシブチル)、アクリル酸(2-メトキシエチル)、アクリル酸(2-エトキシエチル)等、又は上記アクリル酸エステルをメタクリル酸エステルに変えたものを挙げることが出来る。アクリル系ポリマーは上記モノマーのホモポリマー又はコポリマーであるが、アクリル酸メチルエステルモノマー単位が30質量%以上であることが好ましく、またメタクリル酸メチルエステルモノマー単位が40質量%以上であることが好ましい。特にアクリル酸メチル又はメタクリル酸メチルのホモポリマーが好ましい。
(Other additives)
A plasticizer can also be used in combination with the base film in order to improve the fluidity and flexibility of the composition. Examples of the plasticizer include phthalate esters, fatty acid esters, trimellitic esters, phosphate esters, polyesters, sugar esters, acrylic polymers, and the like. Of these, polyester, sugar ester and acrylic polymer plasticizers are preferably used. Polyester plasticizers are superior in non-migration and extraction resistance compared to phthalate ester plasticizers such as dioctyl phthalate. It can be applied to a wide range of uses by selecting or using these plasticizers according to the use. The acrylic polymer is preferably a homopolymer or copolymer of acrylic acid or methacrylic acid alkyl ester. Examples of the acrylate monomer include methyl acrylate, ethyl acrylate, propyl acrylate (i-, n-), butyl acrylate (n-, i-, s-, t-), pentyl acrylate ( n-, i-, s-), hexyl acrylate (n-, i-), heptyl acrylate (n-, i-), octyl acrylate (n-, i-), nonyl acrylate (n-, i-), myristyl acrylate (n-, i-), acrylic acid (2-ethylhexyl), acrylic acid (ε-caprolactone), acrylic acid (2-hydroxyethyl), acrylic acid (2-hydroxypropyl), acrylic Acid (3-hydroxypropyl), acrylic acid (4-hydroxybutyl), acrylic acid (2-hydroxybutyl), acrylic acid (2-methoxyethyl), acrylic acid 2-ethoxyethyl), etc., or the acrylic acid ester can be exemplified those obtained by changing the methacrylic acid ester. The acrylic polymer is a homopolymer or copolymer of the above-mentioned monomers, but the acrylic acid methyl ester monomer unit is preferably 30% by mass or more, and the methacrylic acid methyl ester monomer unit is preferably 40% by mass or more. In particular, a homopolymer of methyl acrylate or methyl methacrylate is preferred.
 ポリエステル系可塑剤は、一価ないし四価のカルボン酸と一価ないし六価のアルコールとの反応物であるが、主に二価カルボン酸とグリコールとを反応させて得られたものが用いられる。代表的な二価カルボン酸としては、グルタル酸、イタコン酸、アジピン酸、フタル酸、アゼライン酸、セバシン酸等が挙げられる。またポリエステル系可塑剤は、好ましくは、芳香族末端エステル系可塑剤である。芳香族末端エステル系可塑剤としては、フタル酸、アジピン酸、少なくとも一種のベンゼンモノカルボン酸及び少なくとも一種の炭素数2~12のアルキレングリコールとを反応させた構造を有するエステル化合物が好ましく、最終的な化合物の構造としてアジピン酸残基及びフタル酸残基を有していればよい。エステル化合物を製造する際には、ジカルボン酸の酸無水物又はエステル化物として反応させてもよい。 The polyester plasticizer is a reaction product of a monovalent or tetravalent carboxylic acid and a monovalent or hexavalent alcohol, and is mainly obtained by reacting a divalent carboxylic acid with a glycol. . Representative divalent carboxylic acids include glutaric acid, itaconic acid, adipic acid, phthalic acid, azelaic acid, sebacic acid and the like. The polyester plasticizer is preferably an aromatic terminal ester plasticizer. The aromatic terminal ester plasticizer is preferably an ester compound having a structure obtained by reacting phthalic acid, adipic acid, at least one benzene monocarboxylic acid and at least one alkylene glycol having 2 to 12 carbon atoms. It is sufficient that the structure of such a compound has an adipic acid residue and a phthalic acid residue. When manufacturing an ester compound, you may make it react as an acid anhydride or esterified substance of dicarboxylic acid.
 ベンゼンモノカルボン酸成分としては、例えば、安息香酸、パラターシャリブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸等があり、安息香酸であることが最も好ましい。また、これらはそれぞれ1種又は2種以上の混合物として使用することができる。 Examples of the benzene monocarboxylic acid component include benzoic acid, para-tert-butylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethylbenzoic acid, ethylbenzoic acid, normal propylbenzoic acid, aminobenzoic acid, acetoxybenzoic acid and the like. Most preferred is benzoic acid. Moreover, these can each be used as a 1 type, or 2 or more types of mixture.
 炭素数2~12のアルキレングリコール成分としては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,2-プロパンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3-プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール等が挙げられる。これらの中では特に1,2-プロピレングリコールが好ましい。これらのグリコールは、1種又は2種以上の混合物として使用してもよい。芳香族末端エステル系可塑剤は、オリゴエステル、ポリエステルの型のいずれでもよく、分子量は100~10000の範囲が良いが、好ましくは350~3000の範囲である。また酸価は1.5mgKOH/g以下、水酸基価は25mgKOH/g以下、より好ましくは酸価は0.5mgKOH/g以下、水酸基価は15mgKOH/g以下である。 Examples of the alkylene glycol component having 2 to 12 carbon atoms include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,2-propanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 2,2-diethyl-1 , 3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-dimethylolheptane), 3-methyl-1,5-pentane Diol, 1,6-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl 1,3-hexane Ol, 2-methyl-1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-octadecane diol. Of these, 1,2-propylene glycol is particularly preferred. These glycols may be used as one kind or a mixture of two or more kinds. The aromatic terminal ester plasticizer may be either an oligoester type or a polyester type, and the molecular weight is preferably in the range of 100 to 10,000, but is preferably in the range of 350 to 3000. The acid value is 1.5 mgKOH / g or less, the hydroxyl value is 25 mgKOH / g or less, more preferably the acid value is 0.5 mgKOH / g or less, and the hydroxyl value is 15 mgKOH / g or less.
 具体的には以下に示す化合物等が挙げられるがこれらに限定されない。 Specific examples include the following compounds, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 糖エステル系化合物としては、下記単糖、二糖、三糖又はオリゴ糖等の糖のOH基のすべてもしくは一部をエステル化した化合物であり、より具体的な例示としては、一般式(1)で表される化合物等をあげることができる。
Figure JPOXMLDOC01-appb-C000002
The sugar ester compound is a compound obtained by esterifying all or a part of OH groups of sugars such as the following monosaccharides, disaccharides, trisaccharides or oligosaccharides. ) And the like.
Figure JPOXMLDOC01-appb-C000003
(式中、R~Rは、置換又は無置換の炭素数2~22のアルキルカルボニル基、或いは、置換又は無置換の炭素数2~22のアリールカルボニル基を表し、R~Rは、同じであっても、異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000003
(Wherein R 1 to R 8 represent a substituted or unsubstituted alkylcarbonyl group having 2 to 22 carbon atoms, or a substituted or unsubstituted arylcarbonyl group having 2 to 22 carbon atoms, and R 1 to R 8 May be the same or different.)
 以下に一般式(1)で示される化合物をより具体的(化合物1-1~化合物1-23)に示すが、これらに限定はされない。 Hereinafter, the compounds represented by the general formula (1) are shown more specifically (compound 1-1 to compound 1-23), but are not limited thereto.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 これら可塑剤は、基材フィルム100質量部に対して、0.5~30質量部を添加するのが好ましい。基材フィルムは、紫外線吸収剤を含有することが好ましく、用いられる紫外線吸収剤としては、ベンゾトリアゾール系、2-ヒドロキシベンゾフェノン系又はサリチル酸フェニルエステル系等の紫外線吸収剤が挙げられる。例えば、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール等のトリアゾール類、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン等のベンゾフェノン類を挙げることができる。 These plasticizers are preferably added in an amount of 0.5 to 30 parts by mass with respect to 100 parts by mass of the base film. The base film preferably contains an ultraviolet absorber. Examples of the ultraviolet absorber used include benzotriazole-based, 2-hydroxybenzophenone-based, and salicylic acid phenyl ester-based ultraviolet absorbers. For example, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole, 2- (3 Triazoles such as 5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone Benzophenones such as
 なお、紫外線吸収剤のうちでも、分子量が400以上の紫外線吸収剤は、高沸点で揮発しにくく、高温成形時にも飛散しにくいため、比較的少量の添加で効果的に耐候性を改良することができる。 Among UV absorbers, UV absorbers with a molecular weight of 400 or more are difficult to volatilize at high boiling points and are difficult to disperse even during high temperature molding, so that the weather resistance can be effectively improved with a relatively small amount of addition. Can do.
 分子量が400以上の紫外線吸収剤としては、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2-ベンゾトリアゾール、2,2-メチレンビス[4-(1,1,3,3-テトラブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]等のベンゾトリアゾール系、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート等のヒンダードアミン系、更には2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)、1-[2-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]エチル]-4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]-2,2,6,6-テトラメチルピペリジン等の分子内にヒンダードフェノールとヒンダードアミンの構造を共に有するハイブリッド系の紫外線吸収剤が挙げられ、これらは単独で、あるいは2種以上を併用して使用することができる。これらのうちでも、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2-ベンゾトリアゾールや2,2-メチレンビス[4-(1,1,3,3-テトラブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]が特に好ましい。これらは、市販品を用いてもよく、例えば、BASFジャパン(株)製のチヌビン109、チヌビン171、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン928等のチヌビン類を好ましく使用できる。 Examples of the ultraviolet absorber having a molecular weight of 400 or more include 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2-benzotriazole, 2,2-methylenebis [4- (1, 1,3,3-tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol], bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis ( Hindered amines such as 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonic acid Bis (1,2,2,6,6-pentamethyl-4-piperidyl), 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl L] -4- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine and the like, hindered phenol and hindered amine Examples include hybrid ultraviolet absorbers having both structures, and these can be used alone or in combination of two or more. Among these, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2-benzotriazole and 2,2-methylenebis [4- (1,1,3,3- Tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol] is particularly preferred. Commercially available products may be used, and for example, TINUVIN such as TINUVIN 109, TINUVIN 171, TINUVIN 234, TINUVIN 326, TINUVIN 327, TINUVIN 328, and TINUVIN 928 manufactured by BASF Japan Ltd. can be preferably used.
 更に、基材フィルムには、成形加工時の熱分解性や熱着色性を改良するために各種の酸化防止剤を添加することもできる。また帯電防止剤を加えて、基材フィルムに帯電防止性能を与えることも可能である。 Furthermore, various antioxidants can also be added to the base film in order to improve the thermal decomposability and thermal colorability during molding. It is also possible to add an antistatic agent to give the base film antistatic performance.
 基材フィルムには、リン系難燃剤を配合した難燃アクリル系樹脂組成物を用いても良い。ここで用いられるリン系難燃剤としては、赤リン、トリアリールリン酸エステル、ジアリールリン酸エステル、モノアリールリン酸エステル、アリールホスホン酸化合物、アリールホスフィンオキシド化合物、縮合アリールリン酸エステル、ハロゲン化アルキルリン酸エステル、含ハロゲン縮合リン酸エステル、含ハロゲン縮合ホスホン酸エステル、含ハロゲン亜リン酸エステル等から選ばれる1種、あるいは2種以上の混合物を挙げることができる。具体的な例としては、トリフェニルホスフェート、9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン-10-オキシド、フェニルホスホン酸、トリス(β-クロロエチル)ホスフェート、トリス(ジクロロプロピル)ホスフェート、トリス(トリブロモネオペンチル)ホスフェート等が挙げられる。 For the base film, a flame retardant acrylic resin composition containing a phosphorus flame retardant may be used. Phosphorus flame retardants used here include red phosphorus, triaryl phosphate ester, diaryl phosphate ester, monoaryl phosphate ester, aryl phosphonate compound, aryl phosphine oxide compound, condensed aryl phosphate ester, halogenated alkyl phosphorus. Examples thereof include one or a mixture of two or more selected from acid esters, halogen-containing condensed phosphates, halogen-containing condensed phosphonates, halogen-containing phosphites, and the like. Specific examples include triphenyl phosphate, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, phenylphosphonic acid, tris (β-chloroethyl) phosphate, tris (dichloropropyl) Examples thereof include phosphate and tris (tribromoneopentyl) phosphate.
 基材フィルムは張力軟化点としては、近年、液晶表示装置に代表される画像表示装置が大型化され、バックライト光源の輝度が益々高くなっていることに加え、デジタルサイネージ等の屋外用途への利用により、基材フィルムはより高温の環境下での使用に耐えられることが求められている観点から、105~145℃であれば、十分な耐熱性を示すと判断でき好ましく、特に110~130℃であることが好ましい。張力軟化点の具体的な測定方法としては、例えば、テンシロン試験機(ORIENTEC社製、RTC-1225A)を用いて、光学フィルムを120mm(縦)×10mm(幅)で切り出し、10Nの張力で引っ張りながら30℃/minの昇温速度で昇温を続け、9Nになった時点での温度を3回測定し、その平均値により求めることができる。ガラス転移温度とは、示差走査熱量測定器(Perkin Elmer社製DSC-7型)を用いて、昇温速度20℃/分で測定し、JIS K7121(1987)に従い求めた中間点ガラス転移温度(Tmg)である。 In recent years, as the softening point of the base film, an image display device typified by a liquid crystal display device has been increased in size, and the luminance of the backlight light source has been increasing, and in addition to outdoor applications such as digital signage. From the viewpoint that the base film is required to withstand use in a higher temperature environment, it is preferable that the base film has a heat resistance of 105 to 145 ° C., particularly 110 to 130. It is preferable that it is ° C. As a specific method for measuring the tension softening point, for example, a Tensilon tester (ORIENTEC Co., RTC-1225A) is used to cut out the optical film at 120 mm (length) × 10 mm (width) and pull it with a tension of 10 N. However, the temperature can be continuously increased at a temperature increase rate of 30 ° C./min, and the temperature at 9 N can be measured three times, and the average value can be obtained. The glass transition temperature is determined by using a differential scanning calorimeter (DSC-7, manufactured by Perkin Elmer) at a heating rate of 20 ° C./min, and determined in accordance with JIS K7121 (1987). Tmg).
 基材フィルムは、直径5μm以上の欠点が1個/10cm四方以下であることが好ましい。更に好ましくは0.5個/10cm四方以下、一層好ましくは0.1個/10cm四方以下である。ここで欠点の直径とは、欠点が円形の場合はその直径を示し、円形でない場合は欠点の範囲を下記方法により顕微鏡で観察して決定し、その最大径(外接円の直径)とする。 The substrate film preferably has a defect of 5 μm or more in diameter of 1 piece / 10 cm square or less. More preferably, it is 0.5 piece / 10 cm square or less, more preferably 0.1 piece / 10 cm square or less. Here, the diameter of the defect indicates the diameter when the defect is circular, and when the defect is not circular, the range of the defect is determined by observing with a microscope by the following method, and the maximum diameter (diameter of circumscribed circle) is determined.
 欠点の範囲は、欠点が気泡や異物の場合は、欠点を微分干渉顕微鏡の透過光で観察したときの影の大きさである。欠点が、ロール傷の転写や擦り傷等、表面形状の変化の場合は、欠点を微分干渉顕微鏡の反射光で観察して大きさを確認できる。 The range of the defect is the size of the shadow when the defect is observed with the transmitted light of the differential interference microscope when the defect is a bubble or a foreign object. When the defect is a change in the surface shape such as transfer of a roll flaw or an abrasion, the size can be confirmed by observing the defect with the reflected light of a differential interference microscope.
 欠点の個数が1個/10cm四方より多いと、例えば後工程での加工時等でフィルムに張力がかかると、欠点を基点としてフィルムが破断して生産性が低下する場合がある。また、欠点の直径が5μm以上になると、偏光板観察等により目視で確認でき、光学部材として用いたとき輝点が生じる場合がある。 If the number of defects is larger than 1/10 cm square, for example, if the film is tensioned during processing in a later process, the film may be broken and the productivity may be lowered with the defects as a starting point. Moreover, when the diameter of a defect becomes 5 micrometers or more, it can confirm visually by polarizing plate observation etc., and when used as an optical member, a bright spot may arise.
 また、目視で確認できない場合でも、機能性層やハードコート層等を形成したときに、塗膜が均一に形成できず欠点(塗布抜け)となる場合がある。ここで、欠点とは、溶液製膜の乾燥工程において溶媒の急激な蒸発に起因して発生するフィルム中の空洞(発泡欠点)や、製膜原液中の異物や製膜中に混入する異物に起因するフィルム中の異物(異物欠点)を言う。また、基材フィルムは、JIS-K7127-1999に準拠した測定において、少なくとも一方向の破断伸度が、10%以上であることが好ましく、より好ましくは20%以上である。破断伸度の上限は特に限定されるものではないが、現実的には250%程度である。破断伸度を大きくするには異物や発泡に起因するフィルム中の欠点を抑制することが有効である。 In addition, even when it cannot be visually confirmed, when a functional layer, a hard coat layer, or the like is formed, the coating film may not be formed uniformly, resulting in defects (coating defects). Here, the defect is a void in the film (foaming defect) generated due to the rapid evaporation of the solvent in the drying process of the solution casting, a foreign substance in the film forming stock solution, or a foreign substance mixed in the film forming process. This refers to the foreign matter (foreign matter defect) in the film. Further, the base film preferably has a breaking elongation in at least one direction of 10% or more, more preferably 20% or more, in the measurement based on JIS-K7127-1999. The upper limit of the elongation at break is not particularly limited, but is practically about 250%. In order to increase the elongation at break, it is effective to suppress defects in the film caused by foreign matter and foaming.
 (光学特性)
 基材フィルムは、その全光線透過率が90%以上であることが好ましく、より好ましくは93%以上である。また、現実的な上限としては、99%程度である。ヘイズ値は2%以下が好ましく、より好ましくは1.5%以下である。全光線透過率、ヘイズ値はJIS K7361及びJIS K7136に準じて測定することが出来る。
(optical properties)
The base film preferably has a total light transmittance of 90% or more, more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%. The haze value is preferably 2% or less, more preferably 1.5% or less. The total light transmittance and haze value can be measured according to JIS K7361 and JIS K7136.
 かかる全光線透過率にて表される優れた透明性を達成するには、可視光を吸収する添加剤や共重合成分を導入しないようにすることや、ポリマー中の異物を高精度濾過により除去し、フィルム内部の光の拡散や吸収を低減させることが有効である。また、製膜時のフィルム接触部(冷却ロール、カレンダーロール、ドラム、ベルト、溶液製膜における塗布基材、搬送ロール等)の表面粗さを小さくしてフィルム表面の表面粗さを小さくすることや、アクリル樹脂の屈折率を小さくすることによりフィルム表面の光の拡散や反射を低減させることが有効である。 In order to achieve excellent transparency expressed by such total light transmittance, it is necessary not to introduce additives and copolymerization components that absorb visible light, or to remove foreign substances in the polymer by high-precision filtration. It is effective to reduce the diffusion and absorption of light inside the film. Also, reduce the surface roughness of the film surface by reducing the surface roughness of the film contact portion (cooling roll, calender roll, drum, belt, coating substrate in solution casting, transport roll, etc.) during film formation. It is also effective to reduce the diffusion and reflection of light on the film surface by reducing the refractive index of the acrylic resin.
 また、基材フィルムの波長590nmにおける、面内リターデーションRoが0~5nm、厚み方向のリターデーションRthが-10~10nmの範囲である基材フィルムが好ましい。更にRthは-5~5nmの範囲であることがより好ましい。 Further, it is preferable that the substrate film has an in-plane retardation Ro of 0 to 5 nm and a thickness direction retardation Rth of −10 to 10 nm at a wavelength of 590 nm. Further, Rth is more preferably in the range of −5 to 5 nm.
 Ro及びRthは下記式(III)及び(IV)で定義された値である。 Ro and Rth are values defined by the following formulas (III) and (IV).
 式(III) Ro=(nx-ny)×d
 式(IV) Rth={(nx+ny)/2-nz}×d
(式中、nxは基材フィルム面内の遅相軸方向の屈折率、nyは基材フィルム面内で遅相軸に直交する方向の屈折率、nzは基材フィルムの厚み方向の屈折率、dは基材フィルムの厚み(nm)をそれぞれ表す)。
Formula (III) Ro = (nx−ny) × d
Formula (IV) Rth = {(nx + ny) / 2−nz} × d
(Where nx is the refractive index in the slow axis direction in the base film surface, ny is the refractive index in the direction perpendicular to the slow axis in the base film surface, and nz is the refractive index in the thickness direction of the base film) , D represents the thickness (nm) of the base film, respectively).
 上記リターデーションは、例えばKOBRA-21ADH(王子計測機器(株)製)を用いて、23℃、55%RH(相対湿度)の環境下で、波長が590nmで求めることができる。 The retardation can be obtained at a wavelength of 590 nm in an environment of 23 ° C. and 55% RH (relative humidity) using, for example, KOBRA-21ADH (manufactured by Oji Scientific Instruments).
 上記リターデーションに制御した基材フィルムを用いることで、より過酷な耐久性試験において、本発明の目的効果が得られやすい事やインナータッチパネルなどに用いた際の視認性に優れる点から好ましい。リターデーションは、前述した可塑剤の種類や添加量、及び基材フィルムの膜厚や延伸条件等で、調整できる。 It is preferable to use a substrate film controlled to the above-mentioned retardation because it is easy to obtain the objective effect of the present invention in a more severe durability test and is excellent in visibility when used for an inner touch panel or the like. Retardation can be adjusted by the kind and addition amount of a plasticizer mentioned above, the film thickness of a base film, stretching conditions, and the like.
 (基材フィルムの製膜)
 次に、基材フィルムの製膜方法の例を説明するが、これに限定されるものではない。基材フィルムの製膜方法としては、インフレーション法、T-ダイ法、カレンダー法、切削法、流延法、エマルジョン法、ホットプレス法等の製造法が使用できる。
(Formation of base film)
Next, although the example of the film forming method of a base film is demonstrated, it is not limited to this. As a method for forming the base film, a production method such as an inflation method, a T-die method, a calendar method, a cutting method, a casting method, an emulsion method, a hot press method, or the like can be used.
 (有機溶媒)
 基材フィルムを溶液流延製膜法で製造する場合の樹脂溶液(ドープ組成物)を形成するのに有用な有機溶媒は、アクリル樹脂、セルロースエステル樹脂などの樹脂、その他の添加剤を同時に溶解するものであれば制限なく用いることが出来る。例えば、塩素系有機溶媒としては、塩化メチレン、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノール等を挙げることが出来、塩化メチレン、酢酸メチル、酢酸エチル、アセトンを好ましく使用し得る。前記溶媒は、アクリル樹脂やセルロースエステル樹脂などの樹脂、及びその他の添加剤を計15~45質量%溶解させたドープ組成物であることが好ましい。
(Organic solvent)
Organic solvents useful for forming a resin solution (dope composition) when a base film is produced by a solution casting film forming method simultaneously dissolve resins such as acrylic resin and cellulose ester resin, and other additives. If it does, it can be used without limitation. For example, as a chlorinated organic solvent, methylene chloride, as a non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, tert-butanol, etc. Years, methylene chloride, methyl acetate, ethyl acetate, may be used preferably acetone. The solvent is preferably a dope composition in which a total of 15 to 45% by mass of a resin such as an acrylic resin or a cellulose ester resin and other additives are dissolved.
 〔溶液流延製膜法〕
 溶液流延製膜法では、樹脂及び添加剤を溶剤に溶解させてドープを調製する工程、ドープをベルト状もしくはドラム状の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸又は幅保持する工程、更に乾燥する工程、仕上がったフィルムを巻き取る工程により行われる。
[Solution casting film forming method]
In the solution casting film forming method, a step of preparing a dope by dissolving a resin and an additive in a solvent, a step of casting the dope on a belt-shaped or drum-shaped metal support, and drying the cast dope as a web It is performed by the process of carrying out, the process of peeling from a metal support body, the process of extending | stretching or maintaining width, the process of drying further, and the process of winding up the finished film.
 金属支持体としては、ステンレススティールベルト若しくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。 As the metal support, a stainless steel belt or a drum whose surface is plated with a casting is preferably used.
 キャストの幅は1~4mとすることができる。流延工程の金属支持体の表面温度は-50℃~溶剤が沸騰して発泡しない温度以下に設定される。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高すぎるとウェブが発泡したり、平面性が劣化する場合がある。 The cast width can be 1 ~ 4m. The surface temperature of the metal support in the casting step is set to −50 ° C. to below the temperature at which the solvent boils and does not foam. A higher temperature is preferred because the web can be dried faster, but if it is too high, the web may foam or the flatness may deteriorate.
 好ましい支持体温度としては0~100℃で適宜決定され、5~30℃が更に好ましい。又は、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。金属支持体の温度を制御する方法は特に制限されないが、温風又は冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。 A preferable support temperature is appropriately determined at 0 to 100 ° C., and more preferably 5 to 30 ° C. Alternatively, it is also a preferable method that the web is gelled by cooling and peeled from the drum in a state containing a large amount of residual solvent. The method for controlling the temperature of the metal support is not particularly limited, and there are a method of blowing warm air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short.
 温風を用いる場合は溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。 When using warm air, considering the temperature drop of the web due to the latent heat of vaporization of the solvent, while using warm air above the boiling point of the solvent, there may be cases where wind at a temperature higher than the target temperature is used while preventing foaming. .
 特に、流延から剥離するまでの間で支持体の温度及び乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。 In particular, it is preferable to perform drying efficiently by changing the temperature of the support and the temperature of the drying air during the period from casting to peeling.
 基材フィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量が10~150質量%であることが好ましく、更に好ましくは20~40質量%又は60~130質量%であり、特に好ましくは、20~30質量%又は70~120質量%である。 In order for the base film to exhibit good planarity, the amount of residual solvent when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass or 60 to It is 130% by mass, particularly preferably 20 to 30% by mass or 70 to 120% by mass.
 残留溶媒量は下記式で定義される。 The amount of residual solvent is defined by the following formula.
 残留溶媒量(質量%)={(M-N)/N}×100 Residual solvent amount (% by mass) = {(MN) / N} × 100
 なお、Mはウェブ又はフィルムを製造中又は製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱後の質量である。 Note that M is the mass of a sample collected during or after the production of the web or film, and N is the mass after heating M at 115 ° C. for 1 hour.
 また、基材フィルムの乾燥工程においては、ウェブを金属支持体より剥離し、更に乾燥し、残留溶媒量を1質量%以下にすることが好ましく、更に好ましくは0.1質量%以下であり、特に好ましくは0~0.01質量%以下である。 Further, in the drying process of the base film, the web is peeled from the metal support, and further dried, and the residual solvent amount is preferably 1% by mass or less, more preferably 0.1% by mass or less, Particularly preferred is 0 to 0.01% by mass or less.
 フィルム乾燥工程では一般にロール乾燥方式(上下に配置した多数のロールにウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。 In the film drying process, generally, a roll drying method (a method in which webs are alternately passed through a plurality of rolls arranged above and below) and a method in which the web is dried while being conveyed by a tenter method are employed.
 延伸工程では、フィルムの長手方向(MD方向)、及び幅手方向(TD方向)に対して、逐次又は同時に延伸することができる。互いに直交する2軸方向の延伸倍率は、それぞれ最終的にはMD方向に1.0~2.0倍、TD方向に1.05~2.0倍の範囲とすることが好ましく、MD方向に1.0~1.5倍、TD方向に1.05~2.0倍の範囲で行うことが好ましい。例えば、複数のロールに周速差をつけ、その間でロール周速差を利用してMD方向に延伸する方法、ウェブの両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げてMD方向に延伸する方法、同様に横方向に広げてTD方向に延伸する方法、或いはMD方向およびTD方向を同時に広げて両方向に延伸する方法等が挙げられる。 In the stretching step, the film can be sequentially or simultaneously stretched in the longitudinal direction (MD direction) and the lateral direction (TD direction). The draw ratios in the biaxial directions perpendicular to each other are preferably in the range of 1.0 to 2.0 times in the MD direction and 1.05 to 2.0 times in the TD direction, respectively. It is preferably performed in the range of 1.0 to 1.5 times and 1.05 to 2.0 times in the TD direction. For example, a method in which peripheral speed differences are applied to a plurality of rolls and a roll peripheral speed difference is used to stretch in the MD direction, both ends of the web are fixed with clips and pins, and the distance between the clips and pins is increased in the traveling direction. A method of stretching in the MD direction, a method of stretching in the transverse direction and stretching in the TD direction, a method of stretching the MD direction and the TD direction simultaneously, and stretching in both directions.
 製膜工程のこれらの幅保持或いは幅手方向の延伸はテンターによって行うことが好ましく、ピンテンターでもクリップテンターでもよい。 It is preferable to perform the width maintenance or the stretching in the width direction in the film forming process by a tenter, and it may be a pin tenter or a clip tenter.
 テンター等の製膜工程でのフィルム搬送張力は温度にもよるが、120~200N/mが好ましく、140~200N/mが更に好ましい。140~160N/mが最も好ましい。 The film transport tension in the film forming process such as a tenter depends on the temperature, but is preferably 120 to 200 N / m, and more preferably 140 to 200 N / m. 140 to 160 N / m is most preferable.
 延伸する際の温度は、基材フィルムのガラス転移温度をTgとすると(Tg-30)~(Tg+100)℃、より好ましくは(Tg-20)~(Tg+80)℃、更に好ましく(Tg-5)~(Tg+20)℃である。 The stretching temperature is (Tg-30) to (Tg + 100) ° C., more preferably (Tg-20) to (Tg + 80) ° C., and more preferably (Tg-5), where Tg is the glass transition temperature of the base film. ~ (Tg + 20) ° C.
 基材フィルムのTgは、フィルムを構成する材料種及び構成する材料の比率によって制御することができる。本発明の用途においてはフィルムの乾燥時のTgは110℃以上が好ましく、更に120℃以上が好ましい。特に好ましくは150℃以上である。 The Tg of the base film can be controlled by the type of material constituting the film and the ratio of the constituting materials. In the application of the present invention, the Tg when the film is dried is preferably 110 ° C. or higher, more preferably 120 ° C. or higher. Especially preferably, it is 150 degreeC or more.
 従ってガラス転移温度は190℃以下、より好ましくは170℃以下であることが好ましい。フィルムのTgはJIS K7121に記載の方法等によって求めることができる。 Therefore, the glass transition temperature is preferably 190 ° C. or lower, more preferably 170 ° C. or lower. The Tg of the film can be determined by the method described in JIS K7121.
 延伸する際の温度は150℃以上、延伸倍率は1.15倍以上にすると、表面が適度に粗れる為好ましい。フィルム表面を粗らすことにより、滑り性が向上するとともに、表面加工性、特に防眩層の密着性が向上するため好ましい。 When the stretching temperature is 150 ° C. or more and the stretching ratio is 1.15 times or more, the surface is preferably roughened. By roughening the film surface, the slipperiness is improved and the surface workability, particularly the adhesion of the antiglare layer is improved.
 〔溶融流延製膜法〕
 基材フィルムは、溶融流延製膜法によって製膜しても良い。溶融流延製膜法は、樹脂及び可塑剤等の添加剤を含む組成物を、流動性を示す温度まで加熱溶融し、その後、流延することをいう。
[Melt casting method]
The base film may be formed by a melt casting film forming method. The melt casting film forming method means that a composition containing an additive such as a resin and a plasticizer is heated and melted to a temperature showing fluidity, and then cast.
 溶融流延製膜法では、機械的強度及び表面精度等の点から、溶融押出し法が好ましい。溶融押出しに用いる複数の原材料は、通常予め混錬してペレット化しておくことが好ましい。 In the melt casting film forming method, the melt extrusion method is preferable from the viewpoint of mechanical strength and surface accuracy. It is preferable that a plurality of raw materials used for melt extrusion are usually kneaded in advance and pelletized.
 ペレット化は、公知の方法でよく、例えば、乾燥セルロースエステルや可塑剤、その他添加剤をフィーダーで押出し機に供給し1軸や2軸の押出し機を用いて混錬し、ダイからストランド状に押出し、水冷又は空冷し、カッティングすることでできる。 Pelletization may be performed by a known method. For example, dry cellulose ester, plasticizer, and other additives are fed to an extruder with a feeder and kneaded using a single-screw or twin-screw extruder, and formed into a strand from a die. It can be done by extrusion, water cooling or air cooling and cutting.
 添加剤は、押出し機に供給する前に混合しておいてもよいし、それぞれ個別のフィーダーで供給してもよい。 Additives may be mixed before being supplied to the extruder, or may be supplied by individual feeders.
 粒子や酸化防止剤等の少量の添加剤は、均一に混合するため、事前に混合しておくことが好ましい。 A small amount of additives such as particles and antioxidants are preferably mixed in advance in order to mix uniformly.
 押出し機は、剪断力を抑え、樹脂が劣化(分子量低下、着色、ゲル生成等)しないように、ペレット化できる程度になるべく低温で加工することが好ましい。例えば、2軸押出し機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。 The extruder is preferably processed at a temperature as low as possible so that it can be pelletized so that the shearing force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.). For example, in the case of a twin screw extruder, it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
 以上のようにして得られたペレットを用いてフィルム製膜を行う。もちろんペレット化せず、原材料の粉末をそのままフィーダーで押出し機に供給し、そのままフィルム製膜することも可能である。 Film formation is performed using the pellets obtained as described above. Of course, the raw material powder can be directly fed to the extruder by a feeder without being pelletized to form a film as it is.
 上記ペレットを1軸や2軸タイプの押出し機を用いて、押出す際の溶融温度を200~300℃程度とし、リーフディスクタイプのフィルター等で濾過し異物を除去した後、Tダイからフィルム状に流延し、冷却ロールと弾性タッチロールでフィルムをニップし、冷却ロール上で固化させることにより、フィルムを製膜する。 Using a single-screw or twin-screw extruder, the pellets are melted at a temperature of about 200 to 300 ° C, filtered through a leaf disk filter, etc. to remove foreign matter, and then formed into a film from the T die. Then, the film is nipped with a cooling roll and an elastic touch roll and solidified on the cooling roll to form a film.
 供給ホッパーから押出し機へ導入する際は真空下又は減圧下や不活性ガス雰囲気下にして酸化分解等を防止することが好ましい。 When introducing into the extruder from the supply hopper, it is preferable to prevent oxidative decomposition or the like under vacuum, reduced pressure, or inert gas atmosphere.
 押出し流量は、ギヤポンプを導入する等して安定に調整することが好ましい。また、異物の除去に用いるフィルターは、ステンレス繊維焼結フィルターが好ましく用いられる。ステンレス繊維焼結フィルターは、ステンレス繊維体を複雑に絡み合った状態を作り出した上で圧縮し接触箇所を焼結し一体化したもので、その繊維の太さと圧縮量により密度を変え、濾過精度を調整できる。 The extrusion flow rate is preferably adjusted stably by introducing a gear pump or the like. Further, a stainless fiber sintered filter is preferably used as a filter used for removing foreign substances. The stainless steel fiber sintered filter is a united stainless steel fiber body that is intricately intertwined and compressed, and the contact points are sintered and integrated. The density of the fiber is changed depending on the thickness of the fiber and the amount of compression, and the filtration accuracy is improved. Can be adjusted.
 可塑剤や粒子等の添加剤は、予め樹脂と混合しておいてもよいし、押出し機の途中で練り込んでもよい。均一に添加するために、スタチックミキサー等の混合装置を用いることが好ましい。 Additives such as plasticizers and particles may be mixed with the resin in advance, or may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as a static mixer.
 冷却ロールと弾性タッチロールでフィルムをニップする際のタッチロール側のフィルム温度はフィルムのTg以上(Tg+110℃)以下にすることが好ましい。このような目的で使用する弾性体表面を有するロールは、公知のロールが使用できる。 The film temperature on the touch roll side when the film is nipped between the cooling roll and the elastic touch roll is preferably set to Tg or more (Tg + 110 ° C.) or less of the film. A well-known roll can be used for the roll which has the elastic body surface used for such a purpose.
 弾性タッチロールは挟圧回転体ともいう。弾性タッチロールとしては、市販されているものを用いることもできる。 The elastic touch roll is also called a pinching rotator. As the elastic touch roll, a commercially available one can be used.
 冷却ロールからフィルムを剥離する際は、張力を制御してフィルムの変形を防止することが好ましい。 When peeling the film from the cooling roll, it is preferable to control the tension to prevent deformation of the film.
 また、上記のようにして得られたフィルムは、冷却ロールに接する工程を通過後、前記延伸操作により延伸することが好ましい。 Moreover, it is preferable that the film obtained as described above is stretched by the stretching operation after passing through the step of contacting the cooling roll.
 延伸する方法は、公知のロール延伸機やテンター等を好ましく用いることができる。延伸温度は、通常フィルムを構成する樹脂のTg~(Tg+60)℃の温度範囲で行われることが好ましい。 As the stretching method, a known roll stretching machine or tenter can be preferably used. The stretching temperature is usually preferably in the temperature range of Tg to (Tg + 60) ° C. of the resin constituting the film.
 巻き取る前に、製品となる幅に端部をスリットして裁ち落とし、巻き中の貼り付きやすり傷防止のために、ナール加工(エンボッシング加工)を両端に施してもよい。ナール加工の方法は凸凹のパターンを側面に有する金属リングを用いて加熱や加圧をすることにより加工することができる。なお、フィルム両端部のクリップの把持部分は通常、フィルムが変形しており製品として使用できないので切除され、再利用される。 Before winding, the end may be slit and cut to the product width, and knurled (embossed) may be applied to both ends to prevent sticking or scratching during winding. The knurling method can be performed by heating or pressurizing using a metal ring having an uneven pattern on the side surface. Note that the gripping portions of the clips at both ends of the film are usually cut out and reused because the film is deformed and cannot be used as a product.
 (基材フィルムの物性)
 本実施形態における基材フィルムの膜厚は、特に限定はされないが10~250μmが好ましく、より好ましくは10~100μmであり、更に好ましくは20~60μmである。前記範囲とすることで、基材フィルムの取り扱い性に優れる。本発明に係る基材フィルムの幅は、1~4mのものが好ましく用いられ、より好ましくは1.4~4mであり、更に好ましくは1.6~3mである。4mを超えると搬送が困難となる。
(Physical properties of base film)
The film thickness of the substrate film in the present embodiment is not particularly limited, but is preferably 10 to 250 μm, more preferably 10 to 100 μm, and still more preferably 20 to 60 μm. By setting it as the said range, it is excellent in the handleability of a base film. The width of the substrate film according to the present invention is preferably 1 to 4 m, more preferably 1.4 to 4 m, and still more preferably 1.6 to 3 m. If it exceeds 4 m, conveyance becomes difficult.
 また、基材フィルムの長さは、1000~10000mが好ましく、より好ましくは3000~8000mである。前記長さの範囲とすることで、機能性層等の塗布における加工適正や基材フィルム自体のハンドリング性に優れる。 In addition, the length of the base film is preferably 1000 to 10,000 m, more preferably 3000 to 8000 m. By setting it as the range of the said length, it is excellent in the processability in application | coating of a functional layer etc., and the handleability of the base film itself.
 また、基材フィルムの算術平均粗さRaは、好ましくは2.0~4.0nm、より好ましくは2.5~3.5nmである。算術平均粗さRaは、JIS B0601:1994に準じて測定できる。 Further, the arithmetic average roughness Ra of the base film is preferably 2.0 to 4.0 nm, more preferably 2.5 to 3.5 nm. The arithmetic average roughness Ra can be measured according to JIS B0601: 1994.
 <その他の層>
 本発明の光学フィルムには、反射防止層や透明導電性薄層等、その他の層を設けることができる。
<Other layers>
The optical film of the present invention can be provided with other layers such as an antireflection layer and a transparent conductive thin layer.
 〈反射防止層〉
 本発明に係る光学フィルムは、ハードコート層又は機能性上層に反射防止層を塗設して、外光反射防止機能を有する反射防止フィルムとして用いることができる。
<Antireflection layer>
The optical film according to the present invention can be used as an antireflection film having an external light antireflection function by coating an antireflection layer on a hard coat layer or a functional upper layer.
 反射防止層は、光学干渉によって反射率が減少するように屈折率、膜厚、層の数、層順等を考慮して積層されていることが好ましい。反射防止層は、支持体である保護フィルムよりも屈折率の低い低屈折率層、もしくは支持体である保護フィルムよりも屈折率の高い高屈折率層と低屈折率層とを組み合わせて構成されていることが好ましい。特に好ましくは、3層以上の屈折率層から構成される反射防止層であり、支持体側から屈折率の異なる3層を、中屈折率層(支持体よりも屈折率が高く、高屈折率層よりも屈折率の低い層)/高屈折率層/低屈折率層の順に積層されているものが好ましく用いられる。又は、2層以上の高屈折率層と2層以上の低屈折率層とを交互に積層した4層以上の層構成の反射防止層も好ましく用いられる。反射防止フィルムの層構成としては下記のような構成が考えられるが、これに限定されるものではない。 The antireflection layer is preferably laminated in consideration of the refractive index, the film thickness, the number of layers, the layer order, and the like so that the reflectance is reduced by optical interference. The antireflection layer is composed of a low refractive index layer having a refractive index lower than that of the protective film as a support, or a combination of a high refractive index layer and a low refractive index layer having a higher refractive index than that of the protective film as a support. It is preferable. Particularly preferably, it is an antireflection layer composed of three or more refractive index layers, and three layers having different refractive indexes from the support side are divided into medium refractive index layers (high refractive index layers having a higher refractive index than the support). Are preferably laminated in the order of a layer having a lower refractive index) / a high refractive index layer / a low refractive index layer. Alternatively, an antireflection layer having a layer structure of four or more layers in which two or more high refractive index layers and two or more low refractive index layers are alternately laminated is also preferably used. As the layer structure of the antireflection film, the following structure is conceivable, but is not limited thereto.
 機能性層/基材フィルム/ハードコート層/低屈折率層
 機能性層/基材フィルム/ハードコート層/高屈折率層/低屈折率層
 機能性層/基材フィルム/ハードコート層/中屈折率層/高屈折率層/低屈折率層
 ハードコート層/基材フィルム/機能性層/低屈折率層
 ハードコート層/基材フィルム/機能性層/高屈折率層/低屈折率層
 ハードコート層/基材フィルム/機能性層/中屈折率層/高屈折率層/低屈折率層
 低屈折率層/機能性層/基材フィルム/ハードコート層/低屈折率層
Functional layer / Base film / Hard coat layer / Low refractive index layer Functional layer / Base film / Hard coat layer / High refractive index layer / Low refractive index layer Functional layer / Base film / Hard coat layer / Medium Refractive index layer / high refractive index layer / low refractive index layer hard coat layer / base film / functional layer / low refractive index layer hard coat layer / base film / functional layer / high refractive index layer / low refractive index layer Hard coat layer / base film / functional layer / medium refractive index layer / high refractive index layer / low refractive index layer low refractive index layer / functional layer / base film / hard coat layer / low refractive index layer
 <低屈折率層>
 低屈折率層は、シリカ系微粒子を含有することが好ましく、その屈折率は、23℃、波長550nmにおける測定で、1.30~1.45の範囲であることが好ましい。
<Low refractive index layer>
The low refractive index layer preferably contains silica-based fine particles, and the refractive index is preferably in the range of 1.30 to 1.45 as measured at 23 ° C. and wavelength of 550 nm.
 低屈折率層の膜厚は、5nm~0.5μmであることが好ましく、10nm~0.3μmであることが更に好ましく、30nm~0.2μmであることが最も好ましい。 The film thickness of the low refractive index layer is preferably 5 nm to 0.5 μm, more preferably 10 nm to 0.3 μm, and most preferably 30 nm to 0.2 μm.
 低屈折率層形成用組成物については、シリカ系微粒子として、外殻層を有し、内部が多孔質又は空洞の粒子を少なくとも1種類以上含むことが好ましい。特に、外殻層を有し、内部が多孔質又は空洞である粒子(中空シリカ系微粒子)であることが好ましい。 The composition for forming a low refractive index layer preferably contains at least one kind of particles having an outer shell layer and porous or hollow inside as silica-based fine particles. In particular, particles (hollow silica-based fine particles) that have an outer shell layer and are porous or hollow inside are preferable.
 なお、低屈折率層形成用組成物には、下記一般式(OSi-1)で表される有機珪素化合物もしくはその加水分解物、或いは、その重縮合物を併せて含有させても良い。 Note that the composition for forming a low refractive index layer may contain an organosilicon compound represented by the following general formula (OSi-1), a hydrolyzate thereof, or a polycondensate thereof.
 一般式(OSi-1):Si(OR) General formula (OSi-1): Si (OR) 4
 前記一般式で表される有機珪素化合物は、式中、Rは炭素数1~4のアルキル基を表す。具体的には、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等が好ましく用いられる。 In the organic silicon compound represented by the general formula, R represents an alkyl group having 1 to 4 carbon atoms. Specifically, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane and the like are preferably used.
 他に溶剤、必要に応じて、シランカップリング剤、硬化剤、界面活性剤等を添加してもよい。またフッ素原子を35~80質量%の範囲で含み、且つ架橋性若しくは重合性の官能基を含む含フッ素化合物を主としてなる熱硬化性及び/又は光硬化性を有する化合物を含有しても良い。具体的には含フッ素ポリマー、あるいは含フッ素ゾルゲル化合物等である。含フッ素ポリマーとしては、例えばパーフルオロアルキル基含有シラン化合物(例えば(ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシル)トリエトキシシラン)の加水分解物や脱水縮合物の他、含フッ素モノマー単位と架橋反応性単位とを構成単位とする含フッ素共重合体が挙げられる。 In addition, a solvent, and if necessary, a silane coupling agent, a curing agent, a surfactant and the like may be added. Further, it may contain a thermosetting and / or photocurable compound mainly containing a fluorine-containing compound containing a fluorine atom in a range of 35 to 80% by mass and containing a crosslinkable or polymerizable functional group. Specifically, it is a fluorine-containing polymer or a fluorine-containing sol-gel compound. Examples of the fluorine-containing polymer include a hydrolyzed product and a dehydrated condensate of a perfluoroalkyl group-containing silane compound (for example, (heptadecafluoro-1,1,2,2-tetrahydrodecyl) triethoxysilane), as well as a fluorine-containing monomer. Examples thereof include fluorine-containing copolymers having units and cross-linking reactive units as constituent units.
 <高屈折率層>
 高屈折率層の屈折率は、23℃、波長550nmにおける測定で、屈折率を1.4~2.2の範囲に調整することが好ましい。また、高屈折率層の厚さは5nm~1μmが好ましく、10nm~0.2μmであることが更に好ましく、30nm~0.1μmであることが最も好ましい。屈折率は、金属酸化物微粒子等を添加することにより調整できる。用いる金属酸化物微粒子の屈折率は1.80~2.60であるものが好ましく、1.85~2.50であるものが更に好ましい。
<High refractive index layer>
The refractive index of the high refractive index layer is preferably adjusted to a range of 1.4 to 2.2 as measured at 23 ° C. and a wavelength of 550 nm. The thickness of the high refractive index layer is preferably 5 nm to 1 μm, more preferably 10 nm to 0.2 μm, and most preferably 30 nm to 0.1 μm. The refractive index can be adjusted by adding metal oxide fine particles and the like. The metal oxide fine particles to be used preferably have a refractive index of 1.80 to 2.60, more preferably 1.85 to 2.50.
 金属酸化物微粒子の種類は特に限定されるものではなく、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSから選択される少なくとも一種の元素を有する金属酸化物を用いることができ、これらの金属酸化物微粒子はAl、In、Sn、Sb、Nb、ハロゲン元素、Ta等の微量の原子をドープしてあっても良い。また、これらの混合物でもよい。本発明においては、中でも酸化ジルコニウム、酸化アンチモン、酸化錫、酸化亜鉛、ITO、アンチモンドープ酸化スズ(ATO)、及びアンチモン酸亜鉛から選ばれる少なくとも1種の金属酸化物微粒子を主成分として用いることが好ましい。特にアンチモン酸亜鉛粒子を含有することが好ましい。 The kind of metal oxide fine particles is not particularly limited, and Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P and S A metal oxide having at least one element selected from the group consisting of Al, In, Sn, Sb, Nb, a halogen element, Ta and the like is doped with a trace amount of atoms. May be. A mixture of these may also be used. In the present invention, at least one metal oxide fine particle selected from zirconium oxide, antimony oxide, tin oxide, zinc oxide, ITO, antimony-doped tin oxide (ATO), and zinc antimonate is used as a main component. preferable. In particular, it is preferable to contain zinc antimonate particles.
 これら金属酸化物微粒子の一次粒子の平均粒子径は10~200nmの範囲であり、10~150nmであることが特に好ましい。金属酸化物微粒子の平均粒子径は、走査電子顕微鏡(SEM)等による電子顕微鏡写真から計測することができる。動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測してもよい。粒径が小さ過ぎると凝集しやすくなり、分散性が劣化する。粒径が大き過ぎるとヘイズが著しく上昇し好ましくない。金属酸化物微粒子の形状は、米粒状、球形状、立方体状、紡錘形状、針状或いは不定形状であることが好ましい。 The average particle diameter of the primary particles of these metal oxide fine particles is in the range of 10 to 200 nm, particularly preferably 10 to 150 nm. The average particle diameter of the metal oxide fine particles can be measured from an electron micrograph taken with a scanning electron microscope (SEM) or the like. You may measure by the particle size distribution meter etc. which utilize a dynamic light scattering method, a static light scattering method, etc. If the particle size is too small, aggregation tends to occur and the dispersibility deteriorates. If the particle size is too large, the haze is remarkably increased. The shape of the metal oxide fine particles is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape, a needle shape, or an indefinite shape.
 金属酸化物微粒子は有機化合物により表面処理してもよい。金属酸化物微粒子の表面を有機化合物で表面修飾することによって、有機溶媒中での分散安定性が向上し、分散粒径の制御が容易になるとともに、経時での凝集、沈降を抑えることもできる。このため、好ましい有機化合物での表面修飾量は金属酸化物微粒子に対して0.1%~5質量%、より好ましくは0.5%~3質量%である。表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が含まれる。この中でもシランカップリング剤が好ましい。二種以上の表面処理を組み合わせてもよい。また高屈折率層は、π共役系導電性ポリマーを含有しても良い。π共役系導電性ポリマーとは、主鎖がπ共役系で構成されている有機高分子であれば使用することができる。例えば、ポリチオフェン類、ポリピロール類、ポリアニリン類、ポリフェニレン類、ポリアセチレン類、ポリフェニレンビニレン類、ポリアセン類、ポリチオフェンビニレン類、及びこれらの共重合体が挙げられる。重合の容易さ、安定性点からは、ポリチオフェン類、ポリアニリン類、ポリアセチレン類が好ましい。 The metal oxide fine particles may be surface-treated with an organic compound. By modifying the surface of the metal oxide fine particles with an organic compound, the dispersion stability in an organic solvent is improved, the dispersion particle size can be easily controlled, and aggregation and sedimentation over time can be suppressed. . Therefore, the surface modification amount with a preferable organic compound is 0.1% to 5% by mass, more preferably 0.5% to 3% by mass with respect to the metal oxide fine particles. Examples of the organic compound used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents, and titanate coupling agents. Of these, silane coupling agents are preferred. Two or more kinds of surface treatments may be combined. The high refractive index layer may contain a π-conjugated conductive polymer. The π-conjugated conductive polymer can be used as long as it is an organic polymer having a main chain composed of a π-conjugated system. Examples thereof include polythiophenes, polypyrroles, polyanilines, polyphenylenes, polyacetylenes, polyphenylene vinylenes, polyacenes, polythiophene vinylenes, and copolymers thereof. From the viewpoint of ease of polymerization and stability, polythiophenes, polyanilines, and polyacetylenes are preferable.
 π共役系導電性ポリマーは、無置換のままでも十分な導電性やバインダー樹脂への溶解性が得られるが、導電性や溶解性をより高めるために、アルキル基、カルボキシ基、スルホ基、アルコキシ基、ヒドロキシ基、シアノ基等の官能基を導入してもよい。また、イオン性化合物を含有しても良い。イオン性化合物としては、イミダゾリウム系、ピリジウム系、脂環式アミン系、脂肪族アミン系、脂肪族ホスホニウム系の陽イオンとBF 、PF 等の無機イオン系、CFSO 、(CFSO、CFCO 等のフッ素系の陰イオンとからなる化合物等が挙げられる。該ポリマーとバインダーの比率はポリマー100質量部に対して、バインダーが10~400質量部が好ましく、特に好ましくは、ポリマー100質量部に対して、バインダーが100~200質量部である。 The π-conjugated conductive polymer can provide sufficient conductivity and solubility in a binder resin even if it is not substituted, but in order to further improve conductivity and solubility, an alkyl group, a carboxy group, a sulfo group, an alkoxy group. A functional group such as a group, a hydroxy group, or a cyano group may be introduced. Moreover, you may contain an ionic compound. Examples of the ionic compound include imidazolium-based, pyridium-based, alicyclic amine-based, aliphatic amine-based, aliphatic phosphonium-based cations and inorganic ion-based compounds such as BF 4 and PF 6 , CF 3 SO 2 −, and the like. , (CF 3 SO 2 ) 2 N , CF 3 CO 2 —, etc. The ratio of the polymer to the binder is preferably 10 to 400 parts by mass with respect to 100 parts by mass of the polymer, and particularly preferably 100 to 200 parts by mass of the binder with respect to 100 parts by mass of the polymer.
 <透明導電性薄層>
 光学フィルムには、ハードコート層又は機能性層上に透明導電性薄層を形成しても良い。設けられる透明導電性薄層としては、一般的に広く知られた透明導電性材料を用いることができる。例えば、酸化インジウム、酸化錫、ITO、金、銀、パラジウム等の透明導電性物質を用いることができる。これらは、真空蒸着法、スパッタリング法、イオンプレーティング法、溶液塗布法等により、ハードコート層上に薄膜として形成することができる。また、前記したπ共役系導電性ポリマーである有機導電性材料を用いて、透明導電性薄層を形成することも可能である。特に、透明性、導電性に優れ、比較的低コストに得られる酸化インジウム、酸化錫又はITOのいずれかを主成分とした透明導電性材料を好適に使用することができる。透明導電性薄膜の厚みは、適用する材料によっても異なるため一概には言えないが、表面抵抗率で1000Ω以下、好ましくは500Ω以下になるような厚みであって、経済性をも考慮すると、10nm以上、好ましくは20nm以上、80nm以下、好ましくは70nm以下の範囲が好適である。このような薄膜においては透明導電性薄層の厚みムラに起因する可視光の干渉縞は発生しにくい。
<Transparent conductive thin layer>
In the optical film, a transparent conductive thin layer may be formed on the hard coat layer or the functional layer. As the transparent conductive thin layer to be provided, generally known transparent conductive materials can be used. For example, a transparent conductive material such as indium oxide, tin oxide, ITO, gold, silver, or palladium can be used. These can be formed as a thin film on the hard coat layer by vacuum deposition, sputtering, ion plating, solution coating, or the like. Moreover, it is also possible to form a transparent conductive thin layer using the organic conductive material which is the above-described π-conjugated conductive polymer. In particular, a transparent conductive material that is excellent in transparency and conductivity, and that has a main component of any of indium oxide, tin oxide, and ITO obtained at a relatively low cost can be suitably used. Although the thickness of the transparent conductive thin film varies depending on the material to be applied, it cannot be said unconditionally. However, the surface resistivity is 1000Ω or less, preferably 500Ω or less. A range of 20 nm or more and 80 nm or less, preferably 70 nm or less is preferable. In such a thin film, visible light interference fringes due to uneven thickness of the transparent conductive thin layer are unlikely to occur.
 <画像表示装置>
 本発明の光学フィルムは、画像表示装置に使用することで、視認性(クリア性)に優れた性能が発揮される点で好ましい。画像表示装置としては、反射型、透過型、半透過型液晶表示装置又は、TN型、STN型、OCB型、VA型、IPS型、ECB型等の各種駆動方式の液晶表示装置、有機EL表示装置やプラズマディスプレイ等が挙げられる。これら画像表示装置の中でもタッチパネルを含む液晶表示装置のタッチパネル用部材に本発明の光学フィルムを用いた場合、高い視認性、及びペン入力に対する耐久性(摺動による傷等)に優れる点で好ましい。
<Image display device>
The optical film of this invention is preferable at the point by which the performance excellent in visibility (clearness) is exhibited by using it for an image display apparatus. As an image display device, a reflection type, a transmission type, a transflective type liquid crystal display device, a liquid crystal display device of various driving methods such as a TN type, an STN type, an OCB type, a VA type, an IPS type, and an ECB type, an organic EL display Examples thereof include a device and a plasma display. Among these image display devices, when the optical film of the present invention is used for a touch panel member of a liquid crystal display device including a touch panel, it is preferable in terms of excellent visibility and durability against pen input (scratches due to sliding, etc.).
 次に、タッチパネルに用いた場合の一例を図2に示す。本発明の透明光学フィルム11上に透明導電性薄膜12を形成し、これを透明導電性薄膜15が形成されたガラス基板13と、透明導電性薄膜同士が向き合うように一定の間隔をあけて対向させることにより、抵抗膜方式のタッチパネル10を構成することができる。光学フィルム11及びガラス基板13の端部には不図示の電極が配置されている。ユーザが、透明導電性薄膜12付きの光学フィルム11を指やペン等で押下することにより、透明導電性薄膜12が、ガラス基板13上の透明導電性薄膜15と接触する。この接触を端部の電極を介して電気的に検出することにより、押下された位置が検出される構成である。ガラス基板13の透明導電性薄膜15上には、必要に応じてドット状のスペーサ14が配置される。また、図3に示されるように、図2のタッチパネル10をカラー液晶表示パネル20の上に搭載することにより、タッチパネル付き液晶表示装置を構成することができる。 Next, an example when used for a touch panel is shown in FIG. The transparent conductive thin film 12 is formed on the transparent optical film 11 of the present invention, and this is opposed to the glass substrate 13 on which the transparent conductive thin film 15 is formed with a certain interval so that the transparent conductive thin films face each other. By doing so, the resistive film type touch panel 10 can be configured. Electrodes (not shown) are arranged at the ends of the optical film 11 and the glass substrate 13. When the user presses down the optical film 11 with the transparent conductive thin film 12 with a finger or a pen, the transparent conductive thin film 12 comes into contact with the transparent conductive thin film 15 on the glass substrate 13. The pressed position is detected by electrically detecting this contact through the electrode at the end. On the transparent conductive thin film 15 of the glass substrate 13, dot-shaped spacers 14 are arranged as necessary. Further, as shown in FIG. 3, a liquid crystal display device with a touch panel can be configured by mounting the touch panel 10 of FIG. 2 on a color liquid crystal display panel 20.
 上記光学フィルム、画像表示装置および液晶表示装置の技術的特徴を下記にまとめる。 The technical features of the optical film, image display device and liquid crystal display device are summarized below.
 本発明の一局面による光学フィルムは、基材フィルム上の一方の面にハードコート層、及びもう一方の面に機能性層を有する光学フィルムにおいて、該機能性層が長さ方向に周期を持たない不規則な突起形状を有し、かつ微粒子又は非反応性ポリマーを実質的に含有しないことを特徴とする。 An optical film according to one aspect of the present invention is an optical film having a hard coat layer on one surface of a base film and a functional layer on the other surface, the functional layer having a period in the length direction. It has no irregular protrusion shape and is substantially free of fine particles or non-reactive polymer.
 この構成によれば、ハードコート層と機能性層が重なり有った場合(フィルム同士が重なり合った場合)でも、応力が分散しやすいため、フィルムをロール状に巻いた状態でのブロッキング防止の効果が得られる点で好ましい。また、機能性層は微粒子等を含まずに相溶性の高い樹脂成分だけで構成されているため、耐久性試験においても劣化等が生じず、屋外使用を想定した耐久性試験後も優れた可とう性を有する光学フィルムを提供することができる点で好ましい。 According to this configuration, even when the hard coat layer and the functional layer are overlapped (when the films are overlapped), since the stress is easily dispersed, the effect of preventing blocking in a state where the film is wound in a roll shape Is preferable in that it is obtained. In addition, since the functional layer is composed only of highly compatible resin components that do not contain fine particles, etc., there is no deterioration in the durability test, and it is excellent even after the durability test assuming outdoor use. It is preferable at the point which can provide the optical film which has flexibility.
 更に、前記した光学フィルムは内部散乱に起因するヘイズが殆どない為、画像表示装置に用いた際に視認性に優れ、長時間見ていても目の疲れることがない画像表示装置を提供することができる点で好ましい。また、タッチパネルを含む液晶表示装置の表面用フィルムは、情報入力時にペンや指等が押し込まれる動作環境を想定した耐ペン摺動性にも優れた光学フィルムを提供することができる点で好ましい。 Furthermore, since the optical film described above has almost no haze due to internal scattering, it provides an image display device that has excellent visibility when used in an image display device and does not cause eye fatigue even when viewed for a long time. It is preferable at the point which can do. In addition, the surface film of a liquid crystal display device including a touch panel is preferable in that it can provide an optical film excellent in pen sliding resistance assuming an operating environment in which a pen, a finger, or the like is pushed when inputting information.
 上記光学フィルムにおいて、前記機能性層の突起形状の算術平均粗さRaが10~130nmであることが好ましい。この構成によれば、より過酷な耐久性試験において、本発明の目的効果が好適に得られるばかりか、密着性にも優れる点で好ましい。上記光学フィルムにおいて、前記機能性層が少なくとも活性線硬化型樹脂を含有し、かつ当該活性線硬化型樹脂の粘度が20~2000mPa・sの範囲内であることが好ましい。この構成によれば、耐ブロッキング性と可とう性の両立に特に優れた光学フィルムを得ることができる点で好ましい。上記光学フィルムにおいて、前記ハードコート層の算術平均粗さRaが2nm未満であることが好ましい。この構成によれば、非常に平滑な面が得られ、画像表示装置に用いた際の視認性が好適に得られる点で好ましい。上記光学フィルムにおいて、前記基材フィルムの波長590nmにおける、面内リターデーションRoが0~5nm、厚み方向のリターデーションRthが-10~10nmであることが好ましい。 In the optical film, the arithmetic average roughness Ra of the protrusion shape of the functional layer is preferably 10 to 130 nm. According to this configuration, in a more severe durability test, the object and effects of the present invention can be suitably obtained, and this is preferable in terms of excellent adhesion. In the optical film, it is preferable that the functional layer contains at least an actinic radiation curable resin, and the viscosity of the actinic radiation curable resin is in the range of 20 to 2000 mPa · s. According to this structure, it is preferable at the point which can obtain the optical film which was especially excellent in coexistence of blocking resistance and flexibility. In the above optical film, the arithmetic average roughness Ra of the hard coat layer is preferably less than 2 nm. According to this configuration, a very smooth surface is obtained, which is preferable in that visibility when used in an image display device can be suitably obtained. In the optical film, it is preferable that the in-plane retardation Ro is 0 to 5 nm and the retardation Rth in the thickness direction is −10 to 10 nm at a wavelength of 590 nm of the base film.
 なお、本発明におけるRo及びRthは以下の式により定義される。 Note that Ro and Rth in the present invention are defined by the following equations.
Ro=(nx-ny)×d
Rth=((nx+ny)/2-nz)×d
(式中、nxは基材フィルム面内の遅相軸方向の屈折率、nyは基材フィルム面内で遅相軸に直交する方向の屈折率、nzは基材フィルムの厚み方向の屈折率、dは基材フィルムの厚み(nm)をそれぞれ表す)。
Ro = (nx−ny) × d
Rth = ((nx + ny) / 2−nz) × d
(Where nx is the refractive index in the slow axis direction in the base film surface, ny is the refractive index in the direction perpendicular to the slow axis in the base film surface, and nz is the refractive index in the thickness direction of the base film) , D represents the thickness (nm) of the base film, respectively).
 この構成によれば、より過酷な耐久性試験において、本発明の目的効果が得られやすい点で好ましい。上記光学フィルムにおいて、前記基材フィルムがセルロースエステルフィルムであることが好ましい。この構成によれば、本発明の突起形状が得られやすいこと、製造性、コスト面の点で好ましい。また、本発明の一局面による画像表示装置は、上記いずれかに記載の光学フィルムを構成に含むことを特徴とする。この構成によれば、長時間見ていても目の疲れることがない画像表示装置を提供することができる点で好ましい。また、本発明の一局面による画像表示装置は、タッチパネルを含む画像表示装置であって、該タッチパネルの構成に上記いずれかに記載の光学フィルムが含まれていることを特徴とする。この構成によれば、情報入力時のペン摺動による表面の傷つきや剥がれに優れるタッチパネルを含む画像表示装置を提供することができる点で好ましい。 This configuration is preferable in that the objective effect of the present invention can be easily obtained in a more severe durability test. In the optical film, the base film is preferably a cellulose ester film. According to this configuration, it is preferable from the viewpoint of ease of obtaining the protrusion shape of the present invention, manufacturability, and cost. An image display device according to an aspect of the present invention includes any one of the above optical films in its configuration. This configuration is preferable in that it can provide an image display device that does not cause eye fatigue even when viewed for a long time. An image display device according to an aspect of the present invention is an image display device including a touch panel, and the structure of the touch panel includes any one of the optical films described above. This configuration is preferable in that it can provide an image display device including a touch panel that is excellent in scratching and peeling of the surface due to pen sliding during information input.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 実施例1
 <基材フィルム1の作製>
 (二酸化珪素分散液の調製)
 アエロジルR812(日本アエロジル(株)製、一次粒子の平均径7nm)
                          10質量部
 エタノール                    90質量部
 以上をディゾルバーで30分間攪拌混合した後、マントンゴーリンで分散を行った。二酸化珪素分散液に88質量部のメチレンクロライドを攪拌しながら投入し、ディゾルバーで30分間攪拌混合し、二酸化珪素分散希釈液を作製した。微粒子分散希釈液濾過器(アドバンテック東洋(株):ポリプロピレンワインドカートリッジフィルターTCW-PPS-1N)で濾過した。
Example 1
<Preparation of base film 1>
(Preparation of silicon dioxide dispersion)
Aerosil R812 (Nippon Aerosil Co., Ltd., average primary particle diameter of 7 nm)
10 parts by mass Ethanol 90 parts by mass The above was stirred and mixed with a dissolver for 30 minutes, and then dispersed with Manton Gorin. 88 parts by mass of methylene chloride was added to the silicon dioxide dispersion while stirring, and the mixture was stirred and mixed with a dissolver for 30 minutes to prepare a silicon dioxide dispersion dilution. The mixture was filtered with a fine particle dispersion dilution filter (Advantech Toyo Co., Ltd .: polypropylene wind cartridge filter TCW-PPS-1N).
 (ドープ組成物1)
 セルローストリアセテート             90質量部
(リンター綿から合成されたセルローストリアセテート、アセチル基置換度2.88、 Mn:140000)
 ポリエステル系可塑剤(B-5)          10質量部
 チヌビン928(BASFジャパン(株)製)   2.5質量部
 二酸化珪素分散希釈液                4質量部
 メチレンクロライド               432質量部
 エタノール                    38質量部
 以上を密閉容器に投入し、加熱し、攪拌しながら、完全に溶解し、安積濾紙(株)製の安積濾紙No.24を使用して濾過し、ドープ組成物1を調製した。
(Dope composition 1)
90 parts by mass of cellulose triacetate (cellulose triacetate synthesized from linter cotton, acetyl group substitution degree 2.88, Mn: 140000)
Polyester plasticizer (B-5) 10 parts by weight Tinuvin 928 (manufactured by BASF Japan Ltd.) 2.5 parts by weight Silicon dioxide dispersion diluent 4 parts by weight Methylene chloride 432 parts by weight Ethanol 38 parts by weight The solution was completely dissolved while being heated and stirred, and Azumi Filter Paper No. No. 24 was used for filtration to prepare a dope composition 1.
 次に、ベルト流延装置を用い、ステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶媒量が100%になるまで溶剤を蒸発させ、ステンレスバンド支持体上からウェブを剥離した。セルロースエステルフィルムのウェブ中の溶剤を35℃で蒸発させ、1.65m幅にスリットし、テンターでTD方向に1.15倍、MD方向に1.01倍で延伸しながら、160℃で乾燥させた。乾燥を始めたときの残留溶媒量は20%であった。その後、120℃の乾燥装置内を多数のロールで搬送させながら15分間乾燥させた後、1.33m幅にスリットし、フィルム両端に幅10mm、高さ10μmのナーリング加工を施し、巻芯に巻き取り、基材フィルム1を得た。基材フィルムの残留溶媒量は0.2%であり、膜厚は40μm、巻数は6000mであった。 Next, the belt was cast evenly on a stainless steel band support using a belt casting apparatus. With the stainless steel band support, the solvent was evaporated until the residual solvent amount reached 100%, and the web was peeled from the stainless steel band support. Solvent in the web of cellulose ester film is evaporated at 35 ° C, slit to 1.65m width, and dried at 160 ° C while stretching with a tenter at 1.15 times in the TD direction and 1.01 times in the MD direction. It was. The residual solvent amount at the start of drying was 20%. Then, after being dried for 15 minutes while being transported in a drying device at 120 ° C. by a number of rolls, slitting to 1.33 m width, knurling processing of 10 mm width and 10 μm height on both ends of the film, and winding on the core The base film 1 was obtained. The residual solvent amount of the base film was 0.2%, the film thickness was 40 μm, and the winding number was 6000 m.
 <光学フィルム1の作製>
 上記作製した基材フィルム1(セルローストリアセテートフィルム)上に、下記の機能性層組成物1を孔径0.2μmのポリプロピレン製フィルターで濾過したものを、減圧押出しコーターを用いて塗布し、恒率乾燥区間温度105℃、減率乾燥区間温度105℃で乾燥した後、酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら、紫外線ランプを用い照射部の照度が100mW/cmで、照射量を0.3J/cmとして塗布層を硬化させ、ドライ膜厚6.5μmの機能性層1を形成した。次いで、ターンバーにより機能性層1を形成したフィルムを反転させ、機能性層1が設けられた面とは逆の面に、下記ハードコート層組成物を孔径0.2μmのポリプロピレン製フィルターで濾過したものを、減圧押出しコーターを用いてセルローストリアセテートフィルム上に塗布し、恒率乾燥区間温度115℃、減率乾燥区間温度115℃で乾燥した後、紫外線ランプを用い照射部の照度が100mW/cmで、照射量を0.15J/cmとして塗布層を硬化させドライ膜厚5μmのハードコート層を形成した。次いで、ロール状に巻き取り、光学フィルム1を作製した。光学フィルム1の機能性層1の表面を光学干渉式表面粗さ計(Zygo社製 New View 5030)で観察した結果、図4のように不規則な突起形状が不規則に長さ方向及び幅方向に配列していることが分かった。
<Preparation of optical film 1>
On the prepared base film 1 (cellulose triacetate film), the following functional layer composition 1 filtered through a polypropylene filter having a pore size of 0.2 μm is applied using a vacuum extrusion coater, and dried at a constant rate. After drying at a section temperature of 105 ° C. and a reduced rate drying section temperature of 105 ° C., the irradiance of the irradiated part is 100 mW / cm 2 using an ultraviolet lamp while purging with nitrogen so that the atmosphere has an oxygen concentration of 1.0% by volume or less. Then, the coating layer was cured with an irradiation dose of 0.3 J / cm 2 to form a functional layer 1 having a dry film thickness of 6.5 μm. Next, the film on which the functional layer 1 was formed was inverted with a turn bar, and the following hard coat layer composition was filtered through a polypropylene filter having a pore diameter of 0.2 μm on the surface opposite to the surface on which the functional layer 1 was provided. The product is coated on a cellulose triacetate film using a vacuum extrusion coater, dried at a constant rate drying zone temperature of 115 ° C. and a reduced rate drying zone temperature of 115 ° C., and then the illuminance of the irradiated part is 100 mW / cm 2 using an ultraviolet lamp. Then, the applied layer was cured with an irradiation amount of 0.15 J / cm 2 to form a hard coat layer having a dry film thickness of 5 μm. Subsequently, it wound up in roll shape and produced the optical film 1. FIG. As a result of observing the surface of the functional layer 1 of the optical film 1 with an optical interference type surface roughness meter (New View 5030, manufactured by Zygo), irregular projection shapes irregularly in the length direction and width as shown in FIG. It turns out that it is arranged in the direction.
 [機能性層組成物1]
 下記材料を攪拌、混合し機能性層組成物1とした。
[Functional layer composition 1]
The following materials were stirred and mixed to obtain a functional layer composition 1.
 (反応性基含有樹脂)
  ペンタエリスリトールトリ/テトラアクリレート 100質量部
  (NKエステルA-TMM-3L、新中村化学工業(株)製)
 (光重合開始剤)
  イルガキュア184(BASFジャパン(株)製)  5質量部
 (レベリング剤)
  ポリエーテル変性シリコーン(信越化学工業(株)製、商品名:KF-352)                     1.5質量部
 (溶剤)
  プロピレングリコールモノメチルエーテル     10質量部
  酢酸メチル                   45質量部
  メチルエチルケトン               45質量部
 なお、表1の記載において、多官能アクリレートであるペンタエリスリトールトリ/テトラアクリレートはPETAと示した。
(Reactive group-containing resin)
100 parts by mass of pentaerythritol tri / tetraacrylate (NK ester A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd.)
(Photopolymerization initiator)
Irgacure 184 (manufactured by BASF Japan) 5 parts by mass (leveling agent)
Polyether-modified silicone (trade name: KF-352, manufactured by Shin-Etsu Chemical Co., Ltd.) 1.5 parts by mass (solvent)
Propylene glycol monomethyl ether 10 parts by mass Methyl acetate 45 parts by mass Methyl ethyl ketone 45 parts by mass In addition, in Table 1, pentaerythritol tri / tetraacrylate, which is a polyfunctional acrylate, was indicated as PETA.
 [ハードコート層組成物]
 〈フッ素-シロキサングラフトポリマーの調製〉
 以下に、フッ素-シロキサングラフトポリマーの調製に用いた素材の市販品名を示す。
[Hard coat layer composition]
<Preparation of fluorine-siloxane graft polymer>
The following shows the names of commercially available materials used for preparing the fluorine-siloxane graft polymer.
 ラジカル重合性フッ素樹脂(A):セフラルコートCF-803(ヒドロキシル基(水酸基)価60、Mn:15,000;セントラル硝子(株)製)
 片末端ラジカル重合性ポリシロキサン(B):サイラプレーンFM-0721(Mn:5,000;チッソ(株)製)
 ラジカル重合開始剤:パーブチルO(t-ブチルパーオキシ-2-エチルヘキサノエート;日本油脂(株)製)
 硬化剤:スミジュールN3200(ヘキサメチレンジイソシアネートのビウレット型プレポリマー;住化バイエルウレタン(株)製)
Radical polymerizable fluororesin (A): Cefal coat CF-803 (hydroxyl group (hydroxyl group) value 60, Mn: 15,000; manufactured by Central Glass Co., Ltd.)
One-end radical-polymerizable polysiloxane (B): Silaplane FM-0721 (Mn: 5,000; manufactured by Chisso Corporation)
Radical polymerization initiator: Perbutyl O (t-butylperoxy-2-ethylhexanoate; manufactured by NOF Corporation)
Curing agent: Sumidur N3200 (biuret type prepolymer of hexamethylene diisocyanate; manufactured by Sumika Bayer Urethane Co., Ltd.)
(ラジカル重合性フッ素樹脂の合成)
 機械式攪拌装置、温度計、コンデンサー及び乾燥窒素ガス導入口を備えたガラス製反応器に、セフラルコートCF-803(1554質量部)、キシレン(233質量部)、及び2-イソシアナトエチルメタクリレート(6.3質量部)を入れ、乾燥窒素雰囲気下で80℃に加熱した。80℃で2時間反応し、サンプリング物の赤外吸収スペクトルによりイソシアネートの吸収が消失したことを確認した後、反応混合物を取り出し、ウレタン結合を介して50質量%のラジカル重合性フッ素樹脂を得た。
(Synthesis of radical polymerizable fluororesin)
A glass reactor equipped with a mechanical stirrer, a thermometer, a condenser and a dry nitrogen gas inlet was added to cefal coat CF-803 (1554 parts by mass), xylene (233 parts by mass), and 2-isocyanatoethyl methacrylate (6 3 parts by mass) and heated to 80 ° C. in a dry nitrogen atmosphere. After reacting at 80 ° C. for 2 hours and confirming that the absorption of isocyanate disappeared by the infrared absorption spectrum of the sampled material, the reaction mixture was taken out to obtain 50% by mass of a radically polymerizable fluororesin via a urethane bond. .
(フッ素-シロキサングラフトポリマーの調製)
 機械式攪拌装置、温度計、コンデンサー及び乾燥窒素ガス導入口を備えたガラス製反応器に、上記合成したラジカル重合性フッ素樹脂(26.1質量部)、キシレン(19.5質量部)、酢酸n-ブチル(16.3質量部)、メチルメタクリレート(2.4質量部)、n-ブチルメタクリレート(1.8質量部)、ラウリルメタクリレート(1.8質量部)、2-ヒドロキシエチルメタクリレート(1.8質量部)、FM-0721(5.2質量部)、及びパーブチルO(0.1質量部)を入れ、窒素雰囲気中で90℃まで加熱した後、90℃で2時間保持した。パーブチルO(0.1質量部)を追加し、更に90℃で5時間保持することによって、Mwが171,000である35質量%フッ素-シロキサングラフトポリマーの溶液を得た。MwはGPCにより求めた。また、フッ素-シロキサングラフトポリマーの質量%はHPLC(液体クロマトグラフィー)により求めた。
(Preparation of fluorine-siloxane graft polymer)
In a glass reactor equipped with a mechanical stirrer, thermometer, condenser and dry nitrogen gas inlet, the above synthesized radical polymerizable fluororesin (26.1 parts by mass), xylene (19.5 parts by mass), acetic acid n-butyl (16.3 parts by mass), methyl methacrylate (2.4 parts by mass), n-butyl methacrylate (1.8 parts by mass), lauryl methacrylate (1.8 parts by mass), 2-hydroxyethyl methacrylate (1 8 parts by mass), FM-0721 (5.2 parts by mass), and perbutyl O (0.1 parts by mass) were heated to 90 ° C. in a nitrogen atmosphere, and held at 90 ° C. for 2 hours. Perbutyl O (0.1 part by mass) was added, and the mixture was further maintained at 90 ° C. for 5 hours to obtain a 35% by mass fluorine-siloxane graft polymer solution having an Mw of 171,000. Mw was determined by GPC. The mass% of the fluorine-siloxane graft polymer was determined by HPLC (liquid chromatography).
 下記材料を攪拌、混合しハードコート層組成物とした。 The following materials were stirred and mixed to obtain a hard coat layer composition.
 (反応性基含有樹脂)
  ジペンタエリスリトールヘキサアクリレート   100質量部
  (NKエステルA-DPH、新中村化学工業(株)製)
 (光重合開始剤)
  イルガキュア184(BASFジャパン(株)製)  5質量部
 (レベリング剤)
  フッ素-シロキサングラフトポリマー(35質量%) 1.5質量部
 (溶剤)
  プロピレングリコールモノメチルエーテル     10質量部
  酢酸メチル                   45質量部
  メチルエチルケトン               45質量部
(Reactive group-containing resin)
100 parts by mass of dipentaerythritol hexaacrylate (NK ester A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.)
(Photopolymerization initiator)
Irgacure 184 (manufactured by BASF Japan) 5 parts by mass (leveling agent)
Fluorine-siloxane graft polymer (35% by mass) 1.5 parts by mass (solvent)
Propylene glycol monomethyl ether 10 parts by weight Methyl acetate 45 parts by weight Methyl ethyl ketone 45 parts by weight
 <光学フィルム2の作製>
 光学フィルム1の作製において、機能性組成物1を下記機能性組成物2に変更し、減率乾燥区間温度を95℃に変更した以外は同様にして、光学フィルム2を作製した。
<Preparation of optical film 2>
In the production of the optical film 1, the optical film 2 was produced in the same manner except that the functional composition 1 was changed to the following functional composition 2 and the decreasing rate drying zone temperature was changed to 95 ° C.
 [機能性層組成物2]
 下記材料を攪拌、混合し機能性層組成物2とした。
[Functional layer composition 2]
The following materials were stirred and mixed to obtain a functional layer composition 2.
 (反応性基含有樹脂)
  トリメチロールプロパントリアクリレート     80質量部
 (ライトアクリレートTMP-A、共栄社化学(株)製)
  4-ヒドロキシブチルアクリレート        20質量部
  (4-HBA、大阪有機化学工業(株)製)
 (光重合開始剤)
  イルガキュア184(BASFジャパン(株)製)  5質量部
 (レベリング剤)
  ポリエーテル変性シリコーン(信越化学工業(株)製、商品名:KF-352)
                         1.5質量部
 (溶剤)
  プロピレングリコールモノメチルエーテル     10質量部
  酢酸メチル                   45質量部
  メチルエチルケトン               45質量部
(Reactive group-containing resin)
80 parts by mass of trimethylolpropane triacrylate (Light acrylate TMP-A, manufactured by Kyoeisha Chemical Co., Ltd.)
20 parts by mass of 4-hydroxybutyl acrylate (4-HBA, manufactured by Osaka Organic Chemical Industry Co., Ltd.)
(Photopolymerization initiator)
Irgacure 184 (manufactured by BASF Japan) 5 parts by mass (leveling agent)
Polyether-modified silicone (trade name: KF-352, manufactured by Shin-Etsu Chemical Co., Ltd.)
1.5 parts by mass (solvent)
Propylene glycol monomethyl ether 10 parts by weight Methyl acetate 45 parts by weight Methyl ethyl ketone 45 parts by weight
 <光学フィルム3の作製>
 光学フィルム1の作製において、機能性層組成物1を下記機能性層組成物4に変更し、減率乾燥区間温度を100℃に変更した以外は、同様にして、光学フィルム3を作製した。
<Preparation of optical film 3>
In the production of the optical film 1, the optical film 3 was produced in the same manner except that the functional layer composition 1 was changed to the following functional layer composition 4 and the decreasing rate drying zone temperature was changed to 100 ° C.
 [機能性層組成物3]
 下記材料を攪拌、混合し機能性層組成物3とした。
[Functional layer composition 3]
The following materials were stirred and mixed to obtain a functional layer composition 3.
 (反応性基含有樹脂)
  エトキシ化ペンタエリスリトールテトラアクリレート 100質量部
  (NKエステルATM-4E、新中村化学工業(株)製)
 (光重合開始剤)
  イルガキュア184(BASFジャパン(株)製)  5質量部
 (レベリング剤)
  ポリエーテル変性シリコーン(信越化学工業(株)製、商品名:KF-352)
                         1.5質量部
 (溶剤)
  プロピレングリコールモノメチルエーテル     10質量部
  酢酸メチル                   45質量部
  メチルエチルケトン               45質量部
(Reactive group-containing resin)
100 parts by mass of ethoxylated pentaerythritol tetraacrylate (NK ester ATM-4E, manufactured by Shin-Nakamura Chemical Co., Ltd.)
(Photopolymerization initiator)
Irgacure 184 (manufactured by BASF Japan) 5 parts by mass (leveling agent)
Polyether-modified silicone (trade name: KF-352, manufactured by Shin-Etsu Chemical Co., Ltd.)
1.5 parts by mass (solvent)
Propylene glycol monomethyl ether 10 parts by weight Methyl acetate 45 parts by weight Methyl ethyl ketone 45 parts by weight
 <光学フィルム4の作製>
 光学フィルム4の作製において、機能性層組成物1を下記機能性層組成物4に変更し、減率乾燥区間温度を130℃に変更した以外は同様にして、光学フィルム4を作製した。
<Preparation of optical film 4>
In the production of the optical film 4, the optical film 4 was produced in the same manner except that the functional layer composition 1 was changed to the following functional layer composition 4 and the decreasing rate drying zone temperature was changed to 130 ° C.
 [機能性層組成物4]
 下記材料を攪拌、混合し機能性層組成物4とした。
[Functional layer composition 4]
The following materials were stirred and mixed to obtain a functional layer composition 4.
 (反応性基含有樹脂)
  ジペンタエリスリトールペンタ/ヘキサアクリレート 100質量部
  (NKエステルA-DPH、新中村化学工業(株)製)
 (光重合開始剤)
  イルガキュア184(BASFジャパン(株)製)  5質量部
 (レベリング剤)
  ポリエーテル変性シリコーン(信越化学工業(株)製、商品名:KF-352)
                         1.5質量部
 (溶剤)
  プロピレングリコールモノメチルエーテル     10質量部
  酢酸メチル                   45質量部
  メチルエチルケトン               45質量部
(Reactive group-containing resin)
100 parts by mass of dipentaerythritol penta / hexaacrylate (NK ester A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.)
(Photopolymerization initiator)
Irgacure 184 (manufactured by BASF Japan) 5 parts by mass (leveling agent)
Polyether-modified silicone (trade name: KF-352, manufactured by Shin-Etsu Chemical Co., Ltd.)
1.5 parts by mass (solvent)
Propylene glycol monomethyl ether 10 parts by weight Methyl acetate 45 parts by weight Methyl ethyl ketone 45 parts by weight
 なお、表1の記載において、多官能アクリレートであるジペンタエリスリトールペンタ/ヘキサアクリレートはDPHAと示した。 In Table 1, the polyfunctional acrylate dipentaerythritol penta / hexaacrylate is shown as DPHA.
 <光学フィルム5の作製>
 光学フィルム1の作製において、機能性層組成物1を下記機能性層組成物5に変更し、減率乾燥区間温度を120℃に変更した以外は、同様にして、光学フィルム5を作製した。
<Preparation of optical film 5>
In the production of the optical film 1, the optical film 5 was produced in the same manner except that the functional layer composition 1 was changed to the following functional layer composition 5 and the decreasing rate drying zone temperature was changed to 120 ° C.
 [機能性層組成物5]
 下記材料を攪拌、混合し機能性層組成物5とした。
[Functional layer composition 5]
The following materials were stirred and mixed to obtain a functional layer composition 5.
 (反応性基含有樹脂)
  ジペンタエリスリトールペンタ/ヘキサアクリレート(DPHA)
                          50質量部
  (NKエステルA-DPH、新中村化学工業(株)製)
  ペンタエリスリトールトリ/テトラアクリレート(PETA)
                          50質量部
  (NKエステルA-TMM-3L、新中村化学工業(株)製)
 (光重合開始剤)
  イルガキュア184(BASFジャパン(株)製)  5質量部
 (レベリング剤)
  ポリエーテル変性シリコーン(信越化学工業(株)製、商品名:KF-352)
                         1.5質量部
 (溶剤)
  プロピレングリコールモノメチルエーテル     10質量部
  酢酸メチル                   45質量部
  メチルエチルケトン               45質量部
(Reactive group-containing resin)
Dipentaerythritol penta / hexaacrylate (DPHA)
50 parts by mass (NK ester A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.)
Pentaerythritol tri / tetraacrylate (PETA)
50 parts by mass (NK ester A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd.)
(Photopolymerization initiator)
Irgacure 184 (manufactured by BASF Japan) 5 parts by mass (leveling agent)
Polyether-modified silicone (trade name: KF-352, manufactured by Shin-Etsu Chemical Co., Ltd.)
1.5 parts by mass (solvent)
Propylene glycol monomethyl ether 10 parts by weight Methyl acetate 45 parts by weight Methyl ethyl ketone 45 parts by weight
 <光学フィルム6の作製>
 光学フィルム1の作製において、機能性層組成物1を下記機能性層組成物6に変更し、減率乾燥区間温度を95℃に変更した以外は、同様にして、光学フィルム6を作製した。
<Preparation of optical film 6>
In the production of the optical film 1, the optical film 6 was produced in the same manner except that the functional layer composition 1 was changed to the following functional layer composition 6 and the decreasing rate drying zone temperature was changed to 95 ° C.
 [機能性層組成物6]
 下記材料を攪拌、混合し機能性層組成物6とした。
[Functional layer composition 6]
The following materials were stirred and mixed to obtain a functional layer composition 6.
 (反応性基含有樹脂)
  エトキシ化ペンタエリスリトールテトラアクリレート 50質量部
  (NKエステルATM-4E、新中村化学工業(株)製)
  4-ヒドロキシブチルアクリレート        50質量部
  (4-HBA、大阪有機化学工業(株)製)
 (光重合開始剤)
  イルガキュア184(BASFジャパン(株)製)  5質量部
 (レベリング剤)
  ポリエーテル変性シリコーン(信越化学工業(株)製、商品名:KF-352)
                         1.5質量部
 (溶剤)
  プロピレングリコールモノメチルエーテル     10質量部
  酢酸メチル                   45質量部
  メチルエチルケトン               45質量部
(Reactive group-containing resin)
50 parts by mass of ethoxylated pentaerythritol tetraacrylate (NK ester ATM-4E, manufactured by Shin-Nakamura Chemical Co., Ltd.)
4-hydroxybutyl acrylate 50 parts by mass (4-HBA, manufactured by Osaka Organic Chemical Industry Co., Ltd.)
(Photopolymerization initiator)
Irgacure 184 (manufactured by BASF Japan) 5 parts by mass (leveling agent)
Polyether-modified silicone (trade name: KF-352, manufactured by Shin-Etsu Chemical Co., Ltd.)
1.5 parts by mass (solvent)
Propylene glycol monomethyl ether 10 parts by weight Methyl acetate 45 parts by weight Methyl ethyl ketone 45 parts by weight
 <光学フィルム7の作製>
 光学フィルム1の作製において、機能性層組成物1を下記機能性層組成物7に変更し、減率乾燥区間温度を135℃に変更した以外は、同様にして、光学フィルム7を作製した。
<Preparation of optical film 7>
In the production of the optical film 1, the optical film 7 was produced in the same manner except that the functional layer composition 1 was changed to the following functional layer composition 7 and the decreasing rate drying zone temperature was changed to 135 ° C.
 [機能性層組成物7]
 下記材料を攪拌、混合し機能性層組成物7とした。
[Functional layer composition 7]
The following materials were stirred and mixed to obtain a functional layer composition 7.
 (反応性基含有樹脂)
  ウレタンプレポリマーとペンタエリスリトールテトラアクリレートの混合物
  (UA-306H、共栄社化学(株)製)    100質量部
 (光重合開始剤)
  イルガキュア184(BASFジャパン(株)製)  5質量部
 (レベリング剤)
  ポリエーテル変性シリコーン(信越化学工業(株)製、商品名:KF-352)
                         1.5質量部
 (溶剤)
  プロピレングリコールモノメチルエーテル     10質量部
  酢酸メチル                   45質量部
  メチルエチルケトン               45質量部
(Reactive group-containing resin)
Mixture of urethane prepolymer and pentaerythritol tetraacrylate (UA-306H, manufactured by Kyoeisha Chemical Co., Ltd.) 100 parts by mass (photopolymerization initiator)
Irgacure 184 (manufactured by BASF Japan) 5 parts by mass (leveling agent)
Polyether-modified silicone (trade name: KF-352, manufactured by Shin-Etsu Chemical Co., Ltd.)
1.5 parts by mass (solvent)
Propylene glycol monomethyl ether 10 parts by weight Methyl acetate 45 parts by weight Methyl ethyl ketone 45 parts by weight
 <光学フィルム8の作製>
 光学フィルム1の作製において、機能性層組成物1を特開2008-225195号公報の実施例1と同様にして調製した機能性層組成物8に変更し、更に乾燥温度を特開2008-225195号公報の実施例1と同じ70℃とした以外は同様にして、光学性フィルム8を作製した。
<Preparation of optical film 8>
In the production of the optical film 1, the functional layer composition 1 was changed to the functional layer composition 8 prepared in the same manner as in Example 1 of JP 2008-225195 A, and the drying temperature was further changed to JP 2008-225195 A. An optical film 8 was produced in the same manner except that the temperature was set at 70 ° C. as in Example 1 of the publication.
 [機能性層組成物8]
 下記材料を攪拌、混合し機能性層組成物8とした。
[Functional layer composition 8]
The following materials were stirred and mixed to obtain a functional layer composition 8.
 (反応性基含有樹脂)
 サイクロマーP(ACA)Z320(不飽和基含有アクリル樹脂混合物、ダイセル化学工業(株)製)     5.65質量部
 ジペンタエリスリトールヘキサアクリレート(DPHA、ダイセル・サイテック(株)製)
                         6.3質量部
 (添加剤:樹脂非相溶成分)
 ポリメタクリル酸メチル(重量平均分子量480000;三菱レイヨン(株)製、BR88)
                         0.9質量部
 (光重合開始剤)
 イルガキュア184(BASFジャパン(株)製) 0.5質量部
 (溶剤)
 メチルエチルケトン(MEK)          0.1質量部
 1-ブタノール                 5.4質量部
 1-メトキシ-2-プロパノール        1.89質量部
(Reactive group-containing resin)
Cyclomer P (ACA) Z320 (unsaturated group-containing acrylic resin mixture, manufactured by Daicel Chemical Industries, Ltd.) 5.65 parts by mass Dipentaerythritol hexaacrylate (DPHA, manufactured by Daicel Cytec Co., Ltd.)
6.3 parts by mass (additive: resin incompatible component)
Polymethyl methacrylate (weight average molecular weight 480000; manufactured by Mitsubishi Rayon Co., Ltd., BR88)
0.9 parts by mass (photopolymerization initiator)
Irgacure 184 (manufactured by BASF Japan) 0.5 parts by mass (solvent)
Methyl ethyl ketone (MEK) 0.1 parts by mass 1-butanol 5.4 parts by mass 1-methoxy-2-propanol 1.89 parts by mass
 なお、表1の記載において、サイクロマーP(ACA)Z320をACA、ポリメタクリル酸メチルをMMAと示した。 In Table 1, the cyclomer P (ACA) Z320 is indicated as ACA, and the polymethyl methacrylate is indicated as MMA.
 <光学フィルム9の作製>
 光学フィルム1の作製において、機能性層組成物1を特開2007-58204号公報の実施例3と同様にして調製した機能性層組成物9に変更し、更に乾燥温度を特開2007-58204号公報の実施例3と同じ80℃に変更した以外は同様にして、光学フィルム9を作製した。
<Preparation of optical film 9>
In the production of the optical film 1, the functional layer composition 1 was changed to the functional layer composition 9 prepared in the same manner as in Example 3 of JP-A-2007-58204, and the drying temperature was further changed to JP-A-2007-58204. An optical film 9 was produced in the same manner except that the temperature was changed to 80 ° C., which was the same as Example 3 of the publication.
 [機能性層組成物9]
 下記材料を攪拌、混合し機能性層組成物9とした。
[Functional layer composition 9]
The following materials were stirred and mixed to obtain a functional layer composition 9.
 (反応性基含有樹脂)
 ジペンタエリスリトールヘキサアクリレート
 (DPHA、ダイセル・サイテック(株)製)    92質量部
 (添加剤:樹脂非相溶成分)
 メタアクリレート共重合ポリマー(サフトマーST3600,三菱化学株式会社)
                          15質量部
 (光重合開始剤)
 イルガキュア184(BASFジャパン(株)製)   4質量部
 (溶剤)
 エタノール                    45質量部
 トルエン                     15質量部
(Reactive group-containing resin)
Dipentaerythritol hexaacrylate (DPHA, manufactured by Daicel Cytec Co., Ltd.) 92 parts by mass (additive: resin incompatible component)
Methacrylate copolymer (Saftmer ST3600, Mitsubishi Chemical Corporation)
15 parts by mass (photopolymerization initiator)
Irgacure 184 (manufactured by BASF Japan) 4 parts by mass (solvent)
Ethanol 45 parts by mass Toluene 15 parts by mass
 なお、表1の記載において、メタアクリレート共重合ポリマーをACPと示した。 In Table 1, the methacrylate copolymer was indicated as ACP.
 <光学フィルム10の作製>
 光学フィルム1の作製において、機能性層組成物1を特開2007-182519号公報の実施例5と同様にして調製した機能性層組成物10に変更し、更に乾燥温度を特開2007-182519号公報の実施例5と同じ80℃に変更した以外は同様にして、光学フィルム10を作製した。
<Preparation of optical film 10>
In the production of the optical film 1, the functional layer composition 1 was changed to the functional layer composition 10 prepared in the same manner as in Example 5 of JP-A-2007-182519, and the drying temperature was further changed to JP-A-2007-182519. The optical film 10 was produced in the same manner except that the temperature was changed to 80 ° C., which was the same as Example 5 of the publication.
 [機能性層組成物10]
 (不飽和二重結合含有アクリル共重合体の調製)
 イソボロニルメタクリレート187.2g、メチルメタクリレート2.8g、メタクリル酸10.0gからなる混合物を混合した。この混合物を、攪拌羽根、窒素導入管、冷却管及び滴下漏斗を備えた1000ml反応容器中の、窒素雰囲気下で110℃に加温したプロピレングリコールモノメチルエーテル360gにターシャリーブチルペルオキシ-2-エチルヘキサエート2.0gを含むプロピレングリコールモノメチルエーテルの80.0g溶液と同時に3時間かけて等速滴下し、その後、1時間、110℃で反応させた。
[Functional layer composition 10]
(Preparation of unsaturated double bond-containing acrylic copolymer)
A mixture consisting of 187.2 g of isobornyl methacrylate, 2.8 g of methyl methacrylate and 10.0 g of methacrylic acid was mixed. This mixture was mixed with 360 g of propylene glycol monomethyl ether heated to 110 ° C. under a nitrogen atmosphere in a 1000 ml reaction vessel equipped with a stirring blade, a nitrogen introducing tube, a cooling tube and a dropping funnel. At the same time as an 80.0 g solution of propylene glycol monomethyl ether containing 2.0 g of ate, the solution was dropped at a constant rate over 3 hours, and then reacted at 110 ° C. for 1 hour.
 その後、ターシャリーブチルペルオキシ-2-エチルヘキサエート0.2gを含むプロピレングリコールモノメチルエーテル17g溶液を滴下して、110℃で30分反応させた。その反応溶液にテトラブチルアンモニウムブロマイド1.5gとハイドロキノン0.1gを含む6gのプロピレングリコールモノメチルエーテル溶液を加え、空気バブリングしながら、更に4-ヒドロキシブチルアクリレートグリシジルエーテル24.4gとプロピレングリコールモノメチルエーテル5.0gの溶液を1時間かけて滴下し、その後5時間かけて更に反応させ、数平均分子量5500、重量平均分子量18000の不飽和結合含有アクリル共重合体を得た。 Thereafter, a 17 g solution of propylene glycol monomethyl ether containing 0.2 g of tertiary butyl peroxy-2-ethyl hexaate was added dropwise and reacted at 110 ° C. for 30 minutes. To the reaction solution, 6 g of a propylene glycol monomethyl ether solution containing 1.5 g of tetrabutylammonium bromide and 0.1 g of hydroquinone was added. While air bubbling, 24.4 g of 4-hydroxybutyl acrylate glycidyl ether and propylene glycol monomethyl ether 5 0.0 g of the solution was added dropwise over 1 hour, and further reacted over 5 hours to obtain an unsaturated bond-containing acrylic copolymer having a number average molecular weight of 5500 and a weight average molecular weight of 18000.
 下記材料を攪拌、混合し機能性層組成物10とした。 The following materials were stirred and mixed to obtain a functional layer composition 10.
 (反応性基含有樹脂)
 ペンタエリスリトールトリ/テトラアクリレート(SP値:12.7)
                        98.5質量部
 不飽和結合含有アクリル共重合体(SP値:9.7、Mw:18000)
                         1.5質量部
 (添加剤:粒子)
 オルガノシリカゾル(MIBK-ST:シリカ粒子径20nm、シリカ濃度30%、日産化学工業株式会社製)
                          10質量部
 (光重合開始剤)
 イルガキュア907(2-メチル-1[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、BASFジャパン(株)製)
                           7質量部
 (溶剤)
 メチルイソブチルケトン             114質量部
 なお、表1の記載において、不飽和結合含有アクリル共重合体はACOPと示した。
(Reactive group-containing resin)
Pentaerythritol tri / tetraacrylate (SP value: 12.7)
98.5 parts by mass Unsaturated bond-containing acrylic copolymer (SP value: 9.7, Mw: 18000)
1.5 parts by mass (additive: particles)
Organosilica sol (MIBK-ST: silica particle diameter 20 nm, silica concentration 30%, manufactured by Nissan Chemical Industries, Ltd.)
10 parts by mass (photopolymerization initiator)
Irgacure 907 (2-methyl-1 [4- (methylthio) phenyl] -2-morpholinopropan-1-one, manufactured by BASF Japan Ltd.)
7 parts by mass (solvent)
114 parts by mass of methyl isobutyl ketone In Table 1, the unsaturated bond-containing acrylic copolymer was indicated as ACOP.
 <光学フィルム11の作製>
 特開2006-53371号公報の実施例1と同様にして凹凸付きロールを作製した。次に、特開2006-53371号公報の実施例1と同様にして、基材フィルム1上に機能性層組成物1を塗布後、恒率乾燥区間温度60℃、減率乾燥区間温度60℃で乾燥の後、更に機能性層表面にロールの凹凸を押し当て、機能性層とロールを密着させた。この密着した状態で、酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら、紫外線ランプを用い照射部の照度が100mW/cmで、照射量を0.3J/cmとして塗布層を硬化させ、ドライ膜厚6.5μmの機能性層11を形成した。次いで、ターンバーにより機能性層を形成したフィルムを反転させ、機能性層11が設けられた面とは逆の面に、光学フィルム1で調製したハードコート層組成物を孔径0.2μmのポリプロピレン製フィルターで濾過したものを、減圧押出しコーターを用いて基材フィルム1上に塗布し、恒率乾燥区間温度115℃、減率乾燥区間温度115℃で乾燥の後、紫外線ランプを用い照射部の照度が100mW/cmで、照射量を0.15J/cmとして塗布層を硬化させドライ膜厚5μmのハードコート層を形成した。次いで、ロール状に巻き取り、光学フィルム11を作製した。光学フィルム11の機能性層11の表面を光学干渉式表面粗さ計(Zygo社製 New View 5030)で観察した結果、長さ方向に周期を有する突起形状が配列されていた。
<Preparation of optical film 11>
An uneven roll was produced in the same manner as in Example 1 of JP-A-2006-53371. Next, in the same manner as in Example 1 of Japanese Patent Application Laid-Open No. 2006-53371, after applying the functional layer composition 1 on the base film 1, a constant rate drying zone temperature of 60 ° C. and a reduced rate drying zone temperature of 60 ° C. After drying, the unevenness of the roll was further pressed against the surface of the functional layer, thereby bringing the functional layer and the roll into close contact. In this tight contact state, while purging with nitrogen so that the oxygen concentration becomes 1.0 volume% or less, the illuminance of the irradiated part is 100 mW / cm 2 and the irradiation amount is 0.3 J / cm 2 using an ultraviolet lamp. Then, the coating layer was cured to form a functional layer 11 having a dry film thickness of 6.5 μm. Next, the film on which the functional layer is formed is inverted by a turn bar, and the hard coat layer composition prepared with the optical film 1 is made of polypropylene having a pore diameter of 0.2 μm on the surface opposite to the surface on which the functional layer 11 is provided. The material filtered through a filter is applied onto the base film 1 using a vacuum extrusion coater, dried at a constant rate drying zone temperature of 115 ° C. and a reduced rate drying zone temperature of 115 ° C., and then irradiated with an ultraviolet lamp. Was 100 mW / cm 2 , the irradiation amount was 0.15 J / cm 2 , and the coating layer was cured to form a hard coat layer having a dry film thickness of 5 μm. Subsequently, it wound up in roll shape and produced the optical film 11. FIG. As a result of observing the surface of the functional layer 11 of the optical film 11 with an optical interference type surface roughness meter (New View 5030, manufactured by Zygo), protrusion shapes having a period in the length direction were arranged.
 <光学フィルム12の作製>
 特開2010-241937号公報の製造例1と同様にしてフッ素処理したシリカ微粒子分散液を調整した。前記調製したシリカ微粒子分散液と反応性基含有樹脂とを攪拌して混合し、機能性層組成物12を調整した。次に、機能性層組成物12を用いて、乾燥温度を特開2010-241937の実施例3と同じ70℃に変更した以外は光学フィルム1の作製と同様にして、光学フィルム12を得た。
<Preparation of optical film 12>
A fluorinated silica fine particle dispersion was prepared in the same manner as in Production Example 1 of JP 2010-241937. The prepared silica fine particle dispersion and the reactive group-containing resin were stirred and mixed to prepare a functional layer composition 12. Next, using the functional layer composition 12, the optical film 12 was obtained in the same manner as the production of the optical film 1 except that the drying temperature was changed to 70 ° C. as in Example 3 of JP2010-241937. .
 [機能性層組成物12]
 (フッ素処理したシリカ微粒子分散液の調製)
 シリカ微粒子SP-03F(扶桑化学工業(株)製、粒径0.2~0.3μm)3.00gにKBM7103(信越化学工業(株)製、フルオロアルキルアルコキシシラン)0.15g、MIBK26.85gを混合した。この混合成分と粒径0.1mmのジルコニアビーズとを混ぜて、3時間分散したのち、ジルコニアビーズを取り除き、更に分散液を50℃で1時間加熱処理することで、フッ素処理したシリカ微粒子分散液を得た。
[Functional layer composition 12]
(Preparation of fluorinated silica fine particle dispersion)
Silica fine particles SP-03F (manufactured by Fuso Chemical Industry Co., Ltd., particle size 0.2-0.3 μm) 3.00 g and KBM7103 (manufactured by Shin-Etsu Chemical Co., Ltd., fluoroalkylalkoxysilane) 0.15 g, MIBK 26.85 g Were mixed. This mixed component and zirconia beads having a particle diameter of 0.1 mm are mixed and dispersed for 3 hours, after which the zirconia beads are removed, and the dispersion is further heated at 50 ° C. for 1 hour to obtain a fluorine-treated silica fine particle dispersion. Got.
 下記材料を攪拌、混合し機能性層組成物12とした。 The following materials were stirred and mixed to obtain a functional layer composition 12.
 (反応性基含有樹脂)
 ジペンタエリスリトールヘキサアクリレート     30質量部
 (NKエステルA-DPH、新中村化学工業(株)製)
 (光重合開始剤)
 イルガキュア184              0.02質量部
 (添加剤:粒子)
 アクリロイル基を有するシリカ微粒子(シリカ微粒子30質量部、MIBK分散液、粒径40nm)      66質量部
 フッ素処理したシリカ微粒子分散液(シリカ微粒子濃度10.9%)
                         5.5質量部
 (溶剤)
 メチルイソブチルケトン               5質量部
 《評価》
 上記作製した機能性層組成物及び光学フィルム1~12について下記の評価を行った。
(Reactive group-containing resin)
30 parts by mass of dipentaerythritol hexaacrylate (NK ester A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.)
(Photopolymerization initiator)
Irgacure 184 0.02 parts by mass (additive: particles)
Silica fine particles having an acryloyl group (silica fine particles 30 parts by mass, MIBK dispersion, particle size 40 nm) 66 parts by mass Fluorinated silica fine particle dispersion (silica fine particle concentration 10.9%)
5.5 parts by mass (solvent)
Methyl isobutyl ketone 5 parts by mass << Evaluation >>
The functional layer composition and the optical films 1 to 12 produced above were evaluated as follows.
 i.樹脂粘度測定
 機能性層組成物1~12について、各組成物の樹脂だけをディスパーにて攪拌混合して、25℃の条件にてB型粘度計を用いて粘度測定を行った。結果を表1に示す。
i. Measurement of Resin Viscosity For the functional layer compositions 1 to 12, only the resin of each composition was stirred and mixed with a disper, and the viscosity was measured using a B-type viscometer at 25 ° C. The results are shown in Table 1.
 (光学フィルム)
 a.算術平均粗さRaの測定
 上記作製した光学フィルム1~12の機能性層、及びハードコート層を光学干渉式表面粗さ計(RST/PLUS、WYKO社製)を用いて10回測定し、その測定結果の平均から各機能性層及びハードコート層の算術平均粗さRaを求めた。なお、光学フィルム1~12のハードコート層の算術平均粗さRaは、全て1.5nmであった。各機能性層の算術平均粗さRaの結果を表1に示す。
(Optical film)
a. Measurement of Arithmetic Average Roughness Ra The functional layers and hard coat layers of the optical films 1 to 12 prepared above were measured 10 times using an optical interference type surface roughness meter (RST / PLUS, manufactured by WYKO), The arithmetic average roughness Ra of each functional layer and hard coat layer was determined from the average of the measurement results. The arithmetic average roughness Ra of the hard coat layers of the optical films 1 to 12 was all 1.5 nm. The results of arithmetic average roughness Ra of each functional layer are shown in Table 1.
 b.耐ブロッキング性
 上記作製したロール状光学フィルム1~12を、アルミ防湿シートに包み、長期輸送を想定して70℃相対湿度80%の恒温槽で20日保存した。20日間保存後、アルミ防湿シートを剥がしてブロッキング性を表面からの目視観察にて、以下の基準で評価した。結果を表1に示す。
b. Blocking Resistance The roll optical films 1 to 12 produced above were wrapped in an aluminum moisture-proof sheet and stored for 20 days in a thermostatic bath at 70 ° C. and 80% relative humidity assuming long-term transportation. After storage for 20 days, the aluminum moisture-proof sheet was peeled off, and the blocking property was evaluated by visual observation from the surface according to the following criteria. The results are shown in Table 1.
 ◎:くっつき面積0%、ブロッキングは認められない
 ○:くっつき面積が2%未満、僅かにブロッキングが発生している
 △:くっつき面積が2%以上~10%未満、ブロッキングが発生しているものの、実用上問題ないレベル
 ×:くっつき面積が10%以上~40%未満、ブロッキングが発生、実用上極めて問題となる
◎: Sticking area 0%, no blocking observed ○: Sticking area less than 2%, slightly blocking △: Sticking area 2% to less than 10%, although blocking has occurred, Level where there is no practical problem ×: Sticking area is 10% to less than 40%, blocking occurs, which is extremely problematic for practical use.
 c.可とう性
 (耐久性試験)
 上記作製した光学フィルム1~13を、各10cm×10cmサイズで切り出し、屋外での使用を想定してサイクルサーモ(-40℃・30分放置、次いで85℃・30分放置を交互)に500サイクル投入後、85℃相対湿度90%の恒温槽で550時間保存し、更に耐光試験機(アイスーパーUVテスター、岩崎電気(株)製)にて、165時間光照射した。次いで、耐久性試験後の各光学フィルム1~12を23℃55%RHの雰囲気下で12時間調湿後、JIS K5600-5-1に準拠する方法で、タイプ1の試験装置を用いて円筒型マンドレル法により可とう性(マンドレルの直径の数値)を評価した。マンドレルの直径の数値が低い程、可とう性に優れることを示す。なお、JIS K5600-5-1では、円筒型マンドレルは直径2mmまでしかないため、直径1mmは試作した。
c. Flexibility (durability test)
The optical films 1 to 13 produced above are cut out in a size of 10 cm × 10 cm, and are cycled for 500 cycles in a cycle thermo (alternatively left at −40 ° C. for 30 minutes and then at 85 ° C. for 30 minutes) assuming outdoor use. After the charging, it was stored in a constant temperature bath at 85 ° C. and a relative humidity of 90% for 550 hours, and further irradiated with light for 165 hours with a light resistance tester (eye super UV tester, manufactured by Iwasaki Electric Co., Ltd.). Next, after each of the optical films 1 to 12 after the durability test was conditioned for 14 hours in an atmosphere of 23 ° C. and 55% RH, a cylinder using a type 1 test apparatus in accordance with JIS K5600-5-1. The flexibility (numerical diameter of the mandrel) was evaluated by the type mandrel method. It shows that it is excellent in the flexibility, so that the numerical value of the diameter of a mandrel is low. In JIS K5600-5-1, the cylindrical mandrel has a diameter of only 2 mm, so a 1 mm diameter was prototyped.
 d.総合評価
 耐ブロッキング性と可とう性の結果から、以下の基準で総合評価を行った。
d. Comprehensive evaluation Based on the results of blocking resistance and flexibility, comprehensive evaluation was performed according to the following criteria.
 ◎:耐ブロッキング性が◎で、かつ可とう性評価の円筒型マンドレルの直径が2mm以下
 ○:耐ブロッキング性が○で、かつ可とう性評価の円筒型マンドレルの直径が2mm以下 或いは、耐ブロッキング性が◎で、かつ可とう性評価の円筒型マンドレルの直径が、3mm以上、6mm以下
×:耐ブロッキング性が△以下、或いは可とう性評価の円筒型マンドレルの直径が8mm以上
◎: The diameter of a cylindrical mandrel with a blocking resistance of ◎ and a flexible evaluation is 2 mm or less. ○: The diameter of a cylindrical mandrel with a blocking resistance of ○ and a flexible evaluation is 2 mm or less. Or, blocking resistance. The diameter of the cylindrical mandrel evaluated for flexibility and the flexibility is 3 mm or more and 6 mm or less ×: The blocking resistance is Δ or less, or the diameter of the cylindrical mandrel for flexibility evaluation is 8 mm or more
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から判るようにフィルム基材上の一方の面にハードコート層及びもう一方の面に機能性層を有する光学フィルムにおいて、機能性層が長さ方向に不規則な(周期を持たない)突起形状を有し、かつ微粒子又は非反応性ポリマーを実質的に含有しない構成とすることで、耐ブロッキング性と可とう性の両立に優れた光学フィルムを得ることができた。本発明の中でも機能性層が、反応基を含有する活性線硬化型樹脂を含有し、かつ活性線硬化型樹脂粘度を20~3000mPa・sの範囲とすることで、耐ブロッキング性と可とう性の両立に特に優れた光学フィルムを得ることができた。 As can be seen from the results in Table 1, in an optical film having a hard coat layer on one side and a functional layer on the other side of the film substrate, the functional layer is irregular in the length direction (has a period. No) An optical film excellent in both blocking resistance and flexibility could be obtained by having a projection shape and substantially not containing fine particles or non-reactive polymer. Among the present invention, the functional layer contains an actinic radiation curable resin containing a reactive group, and the actinic radiation curable resin has a viscosity in the range of 20 to 3000 mPa · s, thereby preventing blocking and flexibility. It was possible to obtain an optical film particularly excellent in both of the above.
 実施例2
 実施例1の光学フィルム1の作製において、機能性層の減率乾燥区間温度を表2に記載したように変更した以外は、同様にして光学フィルム13~17を作製した。次に、実施例1で作製した光学フィルム1、及び光学フィルム13~17について、耐ブロッキング性評価の保存期間を30日に変更し、更に密着評価を行った以外は、実施例1と同様にして評価をした。得られた結果を表2に示す。
Example 2
Optical films 13 to 17 were produced in the same manner as in the production of the optical film 1 of Example 1, except that the decreasing rate drying zone temperature of the functional layer was changed as described in Table 2. Next, with respect to the optical film 1 and the optical films 13 to 17 produced in Example 1, the storage period of the blocking resistance evaluation was changed to 30 days, and the adhesion evaluation was further performed in the same manner as in Example 1. And evaluated. The obtained results are shown in Table 2.
 耐久後の密着評価
 (耐候性試験)
 光学フィルム1、及び光学フィルム13~17を、各10cm×10cmサイズで切り出し、屋外での使用を想定してオゾン10ppm、30℃、60%RHの環境下に100時間保管後、サイクルサーモ(-40℃・45分放置、次いで110℃・45分放置を交互)で500サイクル投入し、更に耐光試験機(アイスーパーUVテスター、岩崎電気株式会社製)にて、200時間光照射した。
Adhesion evaluation after endurance (weather resistance test)
The optical film 1 and the optical films 13 to 17 were cut out in a size of 10 cm × 10 cm, stored for 100 hours in an environment of ozone 10 ppm, 30 ° C., 60% RH, assuming outdoor use, and cycle thermo (− 500 cycles were carried out at 40 ° C. for 45 minutes and then 110 ° C. for 45 minutes alternately, and further irradiated with light for 200 hours with a light resistance tester (I Super UV Tester, manufactured by Iwasaki Electric Co., Ltd.).
 (密着性試験)
 上記耐候性試験を実施した光学フィルムの機能性層表面に、片刃のカミソリの刃を面に対して90°の角度で切り込みを1mm間隔で縦横に11本入れ、1mm角の碁盤目を100個作製した。この上に市販のセロハン製テープを貼り付け、その一端を手で持って垂直に力強く引っ張って剥がし、切り込み線からの貼られたテープ面積に対する薄膜が剥がされた面積の割合を目視で観察し、下記の基準で評価した。
(Adhesion test)
On the surface of the functional layer of the optical film subjected to the above weather resistance test, 11 razor blades are cut at 90 ° angles with respect to the surface, and 11 cuts are made at 1 mm intervals vertically and horizontally. Produced. A commercially available cellophane tape is affixed on this, holding one end by hand and pulling it forcefully vertically, and visually observing the ratio of the area where the thin film was peeled off to the tape area affixed from the score line, Evaluation was made according to the following criteria.
 ◎:全く剥離されなかった
 ○:剥離された面積割合が5%未満であった
 △:剥離された面積割合が10%未満であり、実用上問題無いレベル
 ×:剥離された面積割合が10%以上であり、実用上問題となるレベル
◎: No peeling at all ○: The peeled area ratio was less than 5% △: The peeled area ratio was less than 10% and practically no problem ×: The peeled area ratio was 10% That is the level that is problematic in practice
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果から判るように本発明の光学フィルムにおいて、機能性層の突起形状の算術平均粗さRaを10~130nmとすることで、より過酷な耐久性試験後も耐ブロッキング性と可とう性の両立に特に優れた性能を発揮することが判る。更には、耐候性試験後の密着性にも優れた性能を発揮する。 As can be seen from the results in Table 2, in the optical film of the present invention, the arithmetic average roughness Ra of the protrusion shape of the functional layer is set to 10 to 130 nm, so that the blocking resistance is flexible even after a more severe durability test. It can be seen that it exhibits particularly excellent performance in coexistence of properties. Furthermore, it exhibits excellent performance in adhesion after the weather resistance test.
 実施例3
 実施例1の基材フィルム1のドープ組成物1の調製において、ポリエステル系可塑剤(B-5)の添加量を5質量部に変更し、更に以下に合成したアクリル系ポリマー1を13質量部添加した以外は同様にしてドープ組成物2を調製した。次いで、基材フィルム1の作製において、テンターによるTD方向の延伸条件を表3に記載したように変更した以外は、同様にして基材フィルム2~5を作製した。前記作製した基材フィルム2~5に実施例2の光学フィルム17の作製と同様にしてハードコート層と機能性層を設け、光学フィルム18~21を作製した。
Example 3
In the preparation of the dope composition 1 for the base film 1 of Example 1, the amount of the polyester plasticizer (B-5) added was changed to 5 parts by mass, and 13 parts by mass of the acrylic polymer 1 synthesized below was further added. Dope composition 2 was prepared in the same manner except that it was added. Subsequently, in the production of the base film 1, the base films 2 to 5 were produced in the same manner except that the stretching conditions in the TD direction by the tenter were changed as described in Table 3. The prepared base films 2 to 5 were provided with a hard coat layer and a functional layer in the same manner as the production of the optical film 17 of Example 2, and optical films 18 to 21 were produced.
 (アクリル系ポリマー1の合成)
 メチルアクリレート                10質量部
 2-ヒドロキシエチルアクリレート          1質量部
 アゾビスイソブチロニトリル(AIBN)       1質量部
 トルエン                     30質量部
 上記組成物を四つ口フラスコ(投入口、温度計、環流冷却管、窒素導入口、攪拌機を装着)に投入し、徐々に80℃まで昇温し、攪拌しながら5時間重合を行い、重合終了後ポリマー溶液を多量のメタノールに投入して沈殿させ、更にメタノールで洗浄し、精製して乾燥し重量平均分子量5,000(GPCにて測定)のアクリル系ポリマー1を得た。
(Synthesis of acrylic polymer 1)
Methyl acrylate 10 parts by weight 2-hydroxyethyl acrylate 1 part by weight Azobisisobutyronitrile (AIBN) 1 part by weight Toluene 30 parts by weight Four-necked flask (input, thermometer, reflux condenser, nitrogen introduction) And the temperature is gradually raised to 80 ° C., and polymerization is performed for 5 hours while stirring. After the polymerization, the polymer solution is poured into a large amount of methanol to precipitate, and further washed with methanol. Purification and drying gave an acrylic polymer 1 having a weight average molecular weight of 5,000 (measured by GPC).
 次に、前記作製した光学フィルム18~21及び光学フィルム1に、以下の方法で導電性薄膜を形成し、導電性光学フィルム18~21及び導電性光学フィルム1を作製した。 Next, a conductive thin film was formed on the produced optical films 18 to 21 and the optical film 1 by the following method to produce the conductive optical films 18 to 21 and the conductive optical film 1.
 光学フィルム18~21及び光学フィルム1の機能性層31及びハードコート層32の両面に表面抵抗率が約400Ωである酸化インジウム錫(ITO)の導電性薄膜33を、スパッタリング法を用いて設け、図6に示した構成の導電性光学フィルム18~21及び導電性光学フィルム1を作製した。 A conductive thin film 33 of indium tin oxide (ITO) having a surface resistivity of about 400Ω is provided on both surfaces of the optical films 18 to 21 and the functional layer 31 and the hard coat layer 32 of the optical film 1 using a sputtering method. Conductive optical films 18 to 21 and conductive optical film 1 having the configuration shown in FIG. 6 were produced.
 次に上記作製した導電性光学フィルム18~21及び導電性光学フィルム1を各二枚ずつ用いて、インナータッチパネルを作製した。図7は、インナータッチパネルPの模式図である。二枚のうちの片方の導電性光学フィルムのハードコート層32に導電性薄膜33を設けた面に予めドット・スペーサ14を形成してから、二枚の導電層膜を対向させてインナータッチパネルPを作製した。 Next, an inner touch panel was produced by using each of the two conductive optical films 18 to 21 and the conductive optical film 1 produced above. FIG. 7 is a schematic diagram of the inner touch panel P. The dot touch panel 14 is formed in advance on the surface of the two conductive optical films provided with the conductive thin film 33 on the hard coat layer 32 of the conductive optical film, and then the inner touch panel P Was made.
 前記作製した光学フィルム18~21及び光学フィルム1について実施例2と同様にして評価を行った。また、以下の方法で基材フィルムのリターデーションを測定した。更に、導電性光学フィルム18~21及び導電性光学フィルム1を用いて作製したインナータッチパネルの視認性について以下の条件で評価した。得られた結果を表3に示した。 The produced optical films 18 to 21 and the optical film 1 were evaluated in the same manner as in Example 2. Moreover, the retardation of the base film was measured by the following method. Furthermore, the visibility of the inner touch panel produced using the conductive optical films 18 to 21 and the conductive optical film 1 was evaluated under the following conditions. The obtained results are shown in Table 3.
 (アクリル系ポリマー1の合成)
 メチルアクリレート                10質量部
 2-ヒドロキシエチルアクリレート          1質量部
 アゾビスイソブチロニトリル(AIBN)       1質量部
 トルエン                     30質量部
 上記組成物を四つ口フラスコ(投入口、温度計、環流冷却管、窒素導入口、攪拌機を装着)に投入し、徐々に80℃まで昇温し、攪拌しながら5時間重合を行い、重合終了後ポリマー溶液を多量のメタノールに投入して沈殿させ、更にメタノールで洗浄し、精製して乾燥し重量平均分子量5,000(GPCにて測定)のアクリル系ポリマー1を得た。
(Synthesis of acrylic polymer 1)
Methyl acrylate 10 parts by weight 2-hydroxyethyl acrylate 1 part by weight Azobisisobutyronitrile (AIBN) 1 part by weight Toluene 30 parts by weight Four-necked flask (input, thermometer, reflux condenser, nitrogen introduction) And the temperature is gradually raised to 80 ° C., and polymerization is performed for 5 hours while stirring. After the polymerization, the polymer solution is poured into a large amount of methanol to precipitate, and further washed with methanol. Purification and drying gave an acrylic polymer 1 having a weight average molecular weight of 5,000 (measured by GPC).
 《評価》
a.リターデーション測定
 前記作製した基材フィルム1~5の面内リターデーションRo及び厚み方向リターデーションRthを以下の方法で測定した。
<Evaluation>
a. Retardation Measurement The in-plane retardation Ro and the thickness direction retardation Rth of the produced base films 1 to 5 were measured by the following methods.
 面内リターデーションRo及び厚み方向リターデーションRth測定自動複屈折計KOBRA-21ADH(王子計測機器(株)製)を用いて、23℃、55%RHの環境下で、波長590nmにおいて、3次元屈折率測定を行い、縦、横、厚さの各方向の屈折率nx、ny、nzを求め、下記式よりRo及びRthを求めた。 In-plane retardation Ro and thickness direction retardation Rth measurement automatic birefringence meter KOBRA-21ADH (manufactured by Oji Scientific Instruments Co., Ltd.) is used for three-dimensional refraction at a wavelength of 590 nm in an environment of 23 ° C. and 55% RH. The refractive index nx, ny, and nz in the vertical, horizontal, and thickness directions were determined, and Ro and Rth were determined from the following formulas.
 Ro=(nx-ny)×d
 Rth=((nx+ny)/2-nz)×dである。
(式中、nxは基材フィルム面内の遅相軸方向の屈折率、nyは基材フィルム面内で遅相軸に直交する方向の屈折率、nzは基材フィルムの厚み方向の屈折率、dは基材フィルムの厚み(nm)をそれぞれ表す。)。
Ro = (nx−ny) × d
Rth = ((nx + ny) / 2−nz) × d.
(Where nx is the refractive index in the slow axis direction in the base film surface, ny is the refractive index in the direction perpendicular to the slow axis in the base film surface, and nz is the refractive index in the thickness direction of the base film) , D represents the thickness (nm) of the base film, respectively.
 b.視認性評価
 得られたインナータッチパネルを、上面側偏光板/液晶セル/下面側偏光板の構成を有する液晶表示装置の上面側偏光板の下に組み込んで液晶表示装置を作製し、暗室にて、インナータッチパネルを黒表示画面で正面方向や視野方向を変えて見て、視認性を以下の基準で評価した。
b. Visibility evaluation The obtained inner touch panel was incorporated under the upper surface side polarizing plate of the liquid crystal display device having the configuration of the upper surface side polarizing plate / liquid crystal cell / lower surface side polarizing plate to produce a liquid crystal display device, and in a dark room, The inner touch panel was viewed on a black display screen while changing the front direction and the visual field direction, and the visibility was evaluated according to the following criteria.
 視認性評価
 ○:タッチパネルの色味変化が無い
 Δ:タッチパネルの色味変化が多少観察される
 ×:タッチパネルの色味変化が大きい
Visibility evaluation ○: No change in color of touch panel Δ: Some change in color of touch panel is observed ×: Large change in color of touch panel
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 面内リターデーションRoを0~5nm、厚み方向のリターデーションを-10~10nmの範囲に調整した基材フィルムを用い本発明の光学フィルムは、より過酷な耐久試験後も耐ブロッキング性と可とう性の両立に特に優れた性能を発揮することが判る。更に、耐候性試験後の密着性にも優れた性能を発揮する。 The optical film of the present invention using a base film in which the in-plane retardation Ro is adjusted to 0 to 5 nm and the retardation in the thickness direction is within a range of −10 to 10 nm is flexible and has blocking resistance even after a more severe durability test. It can be seen that it exhibits particularly excellent performance in coexistence of properties. Furthermore, it exhibits excellent performance in adhesion after the weather resistance test.
 また、面内リターデーションRoを0~5nm、厚さ方向のリターデーションを-10~10nmの範囲に調整した基材フィルムからなる本発明の光学フィルムを用いた導電性光学フィルムをインナータッチパネルに用いることで、特に優れた視認性が得られる点で好ましいことが判る。 In addition, a conductive optical film using the optical film of the present invention comprising a base film in which the in-plane retardation Ro is adjusted to 0 to 5 nm and the thickness direction retardation is adjusted to a range of −10 to 10 nm is used for the inner touch panel. Thus, it can be seen that it is preferable in that particularly excellent visibility can be obtained.
 実施例4
 <導電性光学フィルム1~12の作製>
 光学フィルム1~12のハードコート層に表面抵抗率が約400Ωである酸化インジウム錫(ITO)の透明導電性薄膜を、スパッタリング法を用いて設け、図5に示した構成の導電性光学フィルム1~12を作製した。
Example 4
<Preparation of conductive optical films 1-12>
A transparent conductive thin film of indium tin oxide (ITO) having a surface resistivity of about 400Ω is provided on the hard coat layers of the optical films 1 to 12 by sputtering, and the conductive optical film 1 having the configuration shown in FIG. To 12 were produced.
 <抵抗膜方式タッチパネル液晶表示装置1~13の作製>
 市販の抵抗膜方式タッチパネル液晶表示装置(型名:LCD-USB10XB-T、(株)アイ・オー・データ機器製)の導電性ハードコートフィルムを剥がし、上記作製した各導電性光学フィルム1~12を図6のように機能性層が視認側となるように貼合して、抵抗膜方式タッチパネル液晶表示装置1~12を作製し、以下項目について評価を行い、表4に結果を示す。
<Preparation of resistive touch panel liquid crystal display devices 1 to 13>
The conductive hard coat film of a commercially available resistive film type touch panel liquid crystal display device (model name: LCD-USB10XB-T, manufactured by IO Data Equipment Co., Ltd.) is peeled off, and each of the produced conductive optical films 1 to 12 is prepared. As shown in FIG. 6, the functional layer is bonded to the viewing side to produce resistive film type touch panel liquid crystal display devices 1 to 12, and the following items are evaluated. Table 4 shows the results.
 《評価》
a.視認性評価(文字ボケ・ムラ)
(文字ボケ評価)
 天井部に、昼色光直管蛍光灯(FLR40S・D/M-X パナソニック(株)製)40W×2本を1セットとして、1.5m間隔で10セット配置した室内で、抵抗膜方式タッチパネル液晶表示装置を様々な角度から観察し、文字ボケを以下の基準で評価した。
○:蛍光灯の写り込みが気にならず、フォントの大きさ8以下の文字もはっきりと読める
×:蛍光灯の写り込みが気にならないが、フォントの大きさ8以下の文字がボケ、読むのが困難である
<Evaluation>
a. Visibility evaluation (character blur / unevenness)
(Character blur evaluation)
Resistance film type touch panel liquid crystal in a room where two sets of 40W x 2 daylight direct fluorescent lamps (FLR40S · D / MX Panasonic Corporation) are placed on the ceiling, with 10 sets arranged at 1.5m intervals The display device was observed from various angles, and character blur was evaluated according to the following criteria.
○: You don't mind the reflection of fluorescent light, and you can clearly read characters with a font size of 8 or less ×: You don't care about reflection of fluorescent light, but the font size of 8 or less is blurred Difficult to
 (ムラ評価)
上記作製した各抵抗膜方式タッチパネル液晶表示装置を、60℃、90%RHの条件で1000時間放置した後、23℃、55%RHに戻した。様々な角度から観察し、以下の基準でムラを評価した。
(Evaluation of unevenness)
Each resistive film type touch panel liquid crystal display device produced as described above was allowed to stand for 1000 hours under conditions of 60 ° C. and 90% RH, and then returned to 23 ° C. and 55% RH. Observation was made from various angles, and unevenness was evaluated according to the following criteria.
 ○:ムラが全く認められない
 △:細かなムラが認められる(実害性有り)
 ×:ムラが認められる
○: No unevenness is observed at all △: Fine unevenness is observed (has a real harm)
X: Unevenness is observed
 b.耐ペン摺動性
抵抗膜方式タッチパネル液晶表示装置に用いた各導電性光学フィルムの機能性層の表面上を先端部が0.08mmφのポリアセタール製のペンを使用し、荷重250g、ペン摺動速度100mm/秒で直線40mmを15万回往復後の摺動部における機能性層の傷つき及び剥れを目視により評価した。
b. Using a pen made of polyacetal with a tip of 0.08 mmφ on the surface of the functional layer of each conductive optical film used in the resistance film type touch panel liquid crystal display device for pen sliding resistance, load 250 g, pen sliding speed The damage and peeling of the functional layer in the sliding portion after reciprocating 150,000 times on a straight line 40 mm at 100 mm / second were evaluated visually.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 評価の結果、本発明の導電性光学フィルムを使用した抵抗膜方式タッチパネル液晶表示装置は視認性、及び耐ペン摺動性共に良好であった。 As a result of the evaluation, the resistance film type touch panel liquid crystal display device using the conductive optical film of the present invention was excellent in both visibility and pen sliding resistance.
 10 タッチパネル
 11 本発明の光学フィルム
 12 透明導電性薄膜
 13 ガラス基板
 14 スペーサ
 20 カラー液晶表示パネル
 30 基材フィルム
 31 機能性層
 32 ハードコート層
 33 ITO層(導電性薄膜)
 40 導電性光学フィルム
 P インナータッチパネル
DESCRIPTION OF SYMBOLS 10 Touch panel 11 Optical film of this invention 12 Transparent conductive thin film 13 Glass substrate 14 Spacer 20 Color liquid crystal display panel 30 Base film 31 Functional layer 32 Hard coat layer 33 ITO layer (conductive thin film)
40 Conductive optical film P Inner touch panel

Claims (9)

  1.  基材フィルム上の一方の面にハードコート層、及びもう一方の面に機能性層を有する光学フィルムにおいて、該機能性層が長さ方向に周期を持たない不規則な突起形状を有し、かつ微粒子又は非反応性ポリマーを実質的に含有しないことを特徴とする光学フィルム。 In the optical film having a hard coat layer on one surface on the base film and a functional layer on the other surface, the functional layer has an irregular protrusion shape having no period in the length direction, And the optical film characterized by not containing microparticles | fine-particles or a non-reactive polymer substantially.
  2.  前記機能性層の突起形状の算術平均粗さRaが10~130nmであることを特徴とする請求項1に記載の光学フィルム。 The optical film according to claim 1, wherein the arithmetic average roughness Ra of the protrusion shape of the functional layer is 10 to 130 nm.
  3.  前記機能性層が少なくとも活性線硬化型樹脂を含有し、かつ当該活性線硬化型樹脂の粘度が20~2000mPa・sの範囲内であることを特徴とする請求項1又は2項に記載の光学フィルム。 3. The optical system according to claim 1, wherein the functional layer contains at least an actinic radiation curable resin, and the viscosity of the actinic radiation curable resin is in a range of 20 to 2000 mPa · s. the film.
  4.  前記ハードコート層の算術平均粗さRaが2nm未満であることを特徴とする請求項1~3のいずれか1項に記載の光学フィルム。 The optical film according to any one of claims 1 to 3, wherein the arithmetic average roughness Ra of the hard coat layer is less than 2 nm.
  5.  前記基材フィルムの波長590nmにおける、下記式で規定される面内リターデーションRoが0~5nm、厚み方向のリターデーションRthが-10~10nmであることを特徴とする請求項1~4のいずれか1項に記載の光学フィルム。
     Ro=(nx-ny)×d
     Rth=((nx+ny)/2-nz)×d
    (式中、nxは基材フィルム面内の遅相軸方向の屈折率、nyは基材フィルム面内で遅相軸に直交する方向の屈折率、nzは基材フィルムの厚み方向の屈折率、dは基材フィルムの厚み(nm)をそれぞれ表す)
    5. The in-plane retardation Ro defined by the following formula at a wavelength of 590 nm of the base film is 0 to 5 nm, and the retardation Rth in the thickness direction is −10 to 10 nm. 2. The optical film according to item 1.
    Ro = (nx−ny) × d
    Rth = ((nx + ny) / 2−nz) × d
    (Where nx is the refractive index in the slow axis direction in the base film surface, ny is the refractive index in the direction perpendicular to the slow axis in the base film surface, and nz is the refractive index in the thickness direction of the base film) D represents the thickness (nm) of the base film)
  6.  前記基材フィルムがセルロースエステルフィルムであることを特徴とする請求項1~5のいずれか1項に記載の光学フィルム。 6. The optical film according to claim 1, wherein the base film is a cellulose ester film.
  7.  請求項1~6のいずれか一項に記載の光学フィルムを製造する光学フィルムの製造方法であって、活性線硬化型樹脂を含有する機能性層を少なくとも塗布工程、乾燥工程及び硬化工程を経由して形成し、かつ前記乾燥工程における減率乾燥区間の温度を85~140℃の範囲内に維持した条件下で処理することを特徴とする光学フィルムの製造方法。 An optical film manufacturing method for manufacturing the optical film according to any one of claims 1 to 6, wherein the functional layer containing an actinic radiation curable resin is passed through at least a coating process, a drying process, and a curing process. The method for producing an optical film is characterized in that the film is processed under the condition that the temperature of the decreasing rate drying section in the drying step is maintained within a range of 85 to 140 ° C.
  8.  請求項1~6のいずれか1項に記載の光学フィルムを構成に含むことを特徴とする画像表示装置。 An image display device comprising the optical film according to any one of claims 1 to 6 in its configuration.
  9.  タッチパネルを含む画像表示装置であって、該タッチパネルの構成に請求項1~6のいずれか1項に記載の光学フィルムが含まれていることを特徴とするタッチパネル付き表示装置。 An image display device including a touch panel, wherein the optical film according to any one of claims 1 to 6 is included in the configuration of the touch panel.
PCT/JP2011/006394 2010-11-29 2011-11-16 Optical film, image display device, and image display device comprising touch panel WO2012073437A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012546678A JP5971121B2 (en) 2010-11-29 2011-11-16 Manufacturing method of optical film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-264710 2010-11-29
JP2010264710 2010-11-29

Publications (1)

Publication Number Publication Date
WO2012073437A1 true WO2012073437A1 (en) 2012-06-07

Family

ID=46171414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006394 WO2012073437A1 (en) 2010-11-29 2011-11-16 Optical film, image display device, and image display device comprising touch panel

Country Status (2)

Country Link
JP (1) JP5971121B2 (en)
WO (1) WO2012073437A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038180A (en) * 2012-08-15 2014-02-27 Konica Minolta Inc Optical film, production method of optical film, polarizing plate and liquid crystal display device
JP2014115473A (en) * 2012-12-10 2014-06-26 Konica Minolta Inc Roll body of optical film, manufacturing method therefor, package, polarization plate and liquid crystal display device
JP2014174745A (en) * 2013-03-08 2014-09-22 Dainippon Printing Co Ltd Touch panel sensor and input output device
WO2014185345A1 (en) * 2013-05-14 2014-11-20 コニカミノルタ株式会社 Method for producing hard-coat film
KR20170051188A (en) * 2015-11-02 2017-05-11 동우 화인켐 주식회사 Film Touch Sensor
WO2017078247A1 (en) * 2015-11-02 2017-05-11 동우화인켐 주식회사 Film touch sensor
US20210114924A1 (en) * 2018-07-04 2021-04-22 AGC Inc. Glass plate, glass plate having anti-reflection layer, and method for producing glass plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616851A (en) * 1991-11-25 1994-01-25 Dainippon Printing Co Ltd Mar-resistant antiglaring film, polarizing plate and production thereof
JP2003182252A (en) * 2001-12-19 2003-07-03 Fuji Photo Film Co Ltd Material and method for forming multicolor image
JP2004151937A (en) * 2002-10-30 2004-05-27 Kimoto & Co Ltd Manufacturing method of touch panel, touch panel, and hard coat film
JP2006106224A (en) * 2004-10-01 2006-04-20 Daicel Chem Ind Ltd Method of manufacturing antiglare film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5015462B2 (en) * 2006-01-11 2012-08-29 株式会社ダイセル Anti-glare film and method for producing the same
JP5033740B2 (en) * 2007-10-26 2012-09-26 帝人株式会社 Transparent conductive laminate and touch panel
JP5237745B2 (en) * 2007-10-26 2013-07-17 日本ビー・ケミカル株式会社 Weather-resistant anti-glare coating composition, weather-resistant anti-glare film and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616851A (en) * 1991-11-25 1994-01-25 Dainippon Printing Co Ltd Mar-resistant antiglaring film, polarizing plate and production thereof
JP2003182252A (en) * 2001-12-19 2003-07-03 Fuji Photo Film Co Ltd Material and method for forming multicolor image
JP2004151937A (en) * 2002-10-30 2004-05-27 Kimoto & Co Ltd Manufacturing method of touch panel, touch panel, and hard coat film
JP2006106224A (en) * 2004-10-01 2006-04-20 Daicel Chem Ind Ltd Method of manufacturing antiglare film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038180A (en) * 2012-08-15 2014-02-27 Konica Minolta Inc Optical film, production method of optical film, polarizing plate and liquid crystal display device
JP2014115473A (en) * 2012-12-10 2014-06-26 Konica Minolta Inc Roll body of optical film, manufacturing method therefor, package, polarization plate and liquid crystal display device
JP2014174745A (en) * 2013-03-08 2014-09-22 Dainippon Printing Co Ltd Touch panel sensor and input output device
WO2014185345A1 (en) * 2013-05-14 2014-11-20 コニカミノルタ株式会社 Method for producing hard-coat film
KR20170051188A (en) * 2015-11-02 2017-05-11 동우 화인켐 주식회사 Film Touch Sensor
WO2017078247A1 (en) * 2015-11-02 2017-05-11 동우화인켐 주식회사 Film touch sensor
CN108351722A (en) * 2015-11-02 2018-07-31 东友精细化工有限公司 Film touch sensing
KR101966634B1 (en) * 2015-11-02 2019-04-08 동우 화인켐 주식회사 Film Touch Sensor
US10809864B2 (en) 2015-11-02 2020-10-20 Dongwoo Fine-Chem Co., Ltd. Film touch sensor
US20210114924A1 (en) * 2018-07-04 2021-04-22 AGC Inc. Glass plate, glass plate having anti-reflection layer, and method for producing glass plate
US11807572B2 (en) * 2018-07-04 2023-11-07 AGC Inc. Glass plate, glass plate having anti-reflection layer, and method for producing glass plate

Also Published As

Publication number Publication date
JPWO2012073437A1 (en) 2014-05-19
JP5971121B2 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
KR101589883B1 (en) Display device with touch panel
JP5751249B2 (en) Hard coat film, method for producing the same, polarizing plate, and liquid crystal display device
JP5971121B2 (en) Manufacturing method of optical film
JP5935802B2 (en) Method for producing antiglare film
JP5799954B2 (en) Antiglare film, method for producing antiglare film, polarizing plate and liquid crystal display device
WO2012124323A1 (en) Anti-glare film, method for producing anti-glare film, anti-glare anti-reflection film, polarizing plate, and image display device
JP5598308B2 (en) Method for producing antireflection film
JP6048419B2 (en) Method for producing hard coat film and method for producing polarizing plate
JP5423382B2 (en) Method for producing hard coat film
JP2013083795A (en) Antiglare film, antiglare film manufacturing method, polarizer and image display unit
KR101342183B1 (en) Polarizing plate and liquid crystal display device
JP2013064821A (en) Hard coat film, polarizing plate and image display apparatus
WO2012026192A1 (en) Hardcoat film, polarizing plate, and liquid crystal display device
JP5943070B2 (en) Hard coat film, method for producing hard coat film, and touch panel display device
JP5980465B2 (en) Polarizing plate and liquid crystal display device using the same
WO2010150577A1 (en) Polarizing plate and liquid crystal display device
JP6048506B2 (en) Optical film
JP2013088438A (en) Optical film, production method of the same, and image display device
JP2012068562A (en) Image display apparatus
JP2014061643A (en) Production method of optical film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844499

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012546678

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11844499

Country of ref document: EP

Kind code of ref document: A1