WO2012073300A1 - ガス化設備 - Google Patents

ガス化設備 Download PDF

Info

Publication number
WO2012073300A1
WO2012073300A1 PCT/JP2010/071212 JP2010071212W WO2012073300A1 WO 2012073300 A1 WO2012073300 A1 WO 2012073300A1 JP 2010071212 W JP2010071212 W JP 2010071212W WO 2012073300 A1 WO2012073300 A1 WO 2012073300A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
gasification
pulverized coal
combustible gas
supply hopper
Prior art date
Application number
PCT/JP2010/071212
Other languages
English (en)
French (fr)
Inventor
溝越 康隆
弘実 石井
崇 岩橋
横濱 克彦
山元 崇
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US13/810,550 priority Critical patent/US9890331B2/en
Priority to PCT/JP2010/071212 priority patent/WO2012073300A1/ja
Publication of WO2012073300A1 publication Critical patent/WO2012073300A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B41/00Safety devices, e.g. signalling or controlling devices for use in the discharge of coke
    • C10B41/08Safety devices, e.g. signalling or controlling devices for use in the discharge of coke for the withdrawal of the distillation gases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/02Feed or outlet devices therefor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/30Fuel charging devices
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/004Sulfur containing contaminants, e.g. hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/0035Periodical feeding or evacuation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0906Physical processes, e.g. shredding, comminuting, chopping, sorting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/165Conversion of synthesis gas to energy integrated with a gas turbine or gas motor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/1653Conversion of synthesis gas to energy integrated in a gasification combined cycle [IGCC]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1671Integration of gasification processes with another plant or parts within the plant with the production of electricity
    • C10J2300/1675Integration of gasification processes with another plant or parts within the plant with the production of electricity making use of a steam turbine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • C10J2300/1823Recycle loops, e.g. gas, solids, heating medium, water for synthesis gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/466Entrained flow processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Definitions

  • the present invention is applied to a gasification facility equipped with a gasification furnace for coal gasification combined power generation, a chemical coal gasification furnace, and the like, and relates to a gasification facility that uses a combustible gas as a carrier medium for the gasification raw material.
  • an air-blown gasification furnace having excellent efficiency is known as a gasification furnace for an integrated coal gasification combined cycle facility (IGCC).
  • IGCC integrated coal gasification combined cycle facility
  • reference numeral 1 in the figure is raw material (fuel) coal
  • 3 is a mill for pulverizing coal into pulverized coal
  • 5 is a pulverized coal storage hopper
  • 7 is pulverized coal supply.
  • the pulverized coal, which is a hopper and serves as a raw material for gasification is transported by nitrogen gas 9 which is a transport gas (transport medium) and is introduced into an air-blown gasification furnace 11.
  • nitrogen gas 9 which is a transport gas (transport medium) and is introduced into an air-blown gasification furnace 11.
  • an inert gas such as air can be used in addition to the nitrogen gas 9 as the carrier gas.
  • the combustible gas generated in the gasification furnace 11 is supplied to the combustor of the gas turbine equipment 19 through the gas cooler 13, the char recovery / recycling device 15, and the desulfurization device 17.
  • the off-gas separated and recovered by the desulfurization device 17 is guided to the off-gas combustion furnace 21 and incinerated.
  • the gas turbine equipment 19 generates power by driving a gas turbine generator (not shown) with gas turbine output, and supplies high-temperature combustion exhaust gas to the steam turbine equipment 23.
  • the steam turbine equipment 23 includes an exhaust heat recovery boiler (not shown), and generates steam by recovering the heat of the combustion exhaust gas supplied from the gas turbine 19 and the combustion exhaust gas supplied from the off-gas combustion furnace 21.
  • the steam turbine operated with this steam generates power by driving a steam turbine generator (not shown).
  • the combustion exhaust gas used for steam generation in the steam turbine equipment 23 is discharged from the chimney 25 to the atmosphere after performing necessary processing.
  • the carrier gas of the pulverized coal supply hopper 7 described above is an inert gas such as nitrogen gas 9 or air
  • the carrier gas (exhaust gas) recovered from the pulverized coal supply hopper 7 is dust-removed through the exhaust bag filter 27. Released into the atmosphere.
  • a plurality of pulverized coal supply hoppers 7 are arranged in parallel, and each of the pulverized coal supply hoppers 7 has a reduced pressure for receiving the pulverized coal from the atmospheric pressure mill 3 and the pulverized coal into the gasification furnace 11.
  • the exhaust gas from the pulverized coal supply hopper 7 can be directly released to the atmosphere through the exhaust bag filter 27.
  • a flammable gas is used as a carrier gas for carrying pulverized fuel such as pulverized coal in an air stream
  • the exhaust gas which is a flammable gas
  • the plurality of fuel supply hoppers remove the combustible gas of the carrier medium discharged from the fuel supply hopper at the time of pressure reduction. It must be handled safely.
  • Gasification furnaces that use flammable gas as the carrier gas for transporting pulverized coal improve efficiency by eliminating the inert gas that inhibits gasification when compared to methods that use inert gas
  • the present invention has been made in view of the above circumstances, and the object of the present invention is to use it as a transport medium in the case of pulverized fuel such as pulverized coal serving as a gasification raw material to a gasification furnace. It is an object of the present invention to provide a gasification facility capable of safely releasing combustible gas exhausted from a fuel supply hopper into the atmosphere.
  • the gasification facility according to the present invention is a gasification facility that uses combustible gas as a transport medium for transporting pulverized fuel from a fuel supply hopper to a gasification furnace, and the combustible gas discharged from the fuel supply hopper is incinerated. And then released into the atmosphere.
  • the incineration treatment is performed by using an off-gas combustion furnace installed downstream of the gasification furnace, a flare stack installed downstream of the gasification furnace, or a gas turbine combustor installed downstream of the gasification furnace. It is desirable to be performed at.
  • the combustible gas is used by introducing a part of the combustible gas generated in the gasification furnace.
  • the combustible gas having a high gasification efficiency is used as a transport medium for transporting the pulverized fuel to the gasification furnace, and the used combustible gas discharged from the fuel supply hopper is incinerated. Therefore, a significant effect of ensuring safety and improving the efficiency of gasification equipment can be obtained.
  • FIG. 5 is a system diagram showing a third embodiment (during steady operation) as a configuration example of a fuel supply hopper according to the present invention. It is a systematic diagram which shows the structural example which concerns on the conventional gasification installation.
  • the present invention can also be applied to a gasification facility including a gasification furnace that gasifies pulverized coal or other powder as a raw material (fuel), such as a gasification furnace.
  • pulverized fuels include biomass, and also include pulverized fuels in which a plurality of types of powders are mixed, such as pulverized coal and biomass.
  • the coal gasification combined power generation facility uses a combustible gas obtained by gasifying pulverized coal as a fuel for a gas turbine combustor (not shown) in the gas turbine facility 19, and uses a gas turbine generator (not shown) by gas turbine output. While driving to generate electric power, steam is generated in the steam turbine equipment 23 using exhaust heat such as combustion exhaust gas discharged from the gas turbine equipment 19, and a steam turbine (not shown) and a steam turbine generator (Not shown) is driven to generate electricity.
  • the gasification facility of the embodiment shown in FIG. 1 is a constituent element of the coal gasification combined power generation facility.
  • the system diagram of FIG. 1 shows the main components used during steady operation, and the main components used during startup are shown in FIG. 4 described later.
  • Coal 1 serving as a raw material for gasification is put into a mill 3 serving as a pulverized coal machine and pulverized, and pulverized coal having a desired fineness is temporarily stored in a pulverized coal storage hopper 5. Thereafter, the pulverized coal gasified in the gasification furnace 11 uses the combustible gas 9A as a carrier gas (conveyance medium), and the required amount of the pulverized coal is air-blown through the pulverized coal supply hopper 7 of the fuel supply hopper. 11 is supplied.
  • the pulverized coal supply hopper 7 needs to accept the pulverized coal from the atmospheric pressure mill 3 and to introduce the pulverized coal into the gasification furnace 11 whose internal pressure is higher than the atmospheric pressure. Therefore, in the pulverized coal supply hopper 7, if the pressure in the gasification furnace 11 is Pg, the pressure is increased or decreased in the range from the atmospheric pressure when pulverized coal is received to the pressure “Pg + ⁇ ” at the time of charging. That is, a plurality of pulverized coal supply systems including the pulverized coal supply hopper 7 are provided, and the pulverized coal supply hopper 7 that sequentially inputs the pulverized coal is sequentially switched so that the pulverized coal is continuously input to the gasification furnace 11.
  • the carrier gas in this case is not particularly limited in the type and supply source of the combustible gas.
  • a part of the combustible gas generated in the gasification furnace 11 is extracted from an appropriate position on the downstream side of the gasification furnace 11. Can be introduced and used.
  • the pulverized coal charged into the gasification furnace 11 becomes combustible gas (coal gas) mainly composed of carbon monoxide and hydrogen by partial oxidation.
  • the gasification product flowing out from the gasification furnace 11 contains char (unburned), sulfur, and the like in addition to the combustible gas. Accordingly, these gasification products are cooled through the gas cooler 13 and then passed through the char recovery / recycling device 15 and the desulfurization device 17 to separate and remove components such as char and sulfur.
  • the purified combustible gas is supplied to the gas turbine equipment 19 as fuel, and the separated and recovered char is returned to the gasification furnace 11 and gasified again. Further, the off-gas separated by the desulfurization device 17 is supplied to the off-gas incinerator 21 and incinerated.
  • gas turbine equipment 19 combustible gas is burned in a gas turbine combustor to generate high-temperature and high-pressure combustion gas, and the rotor of the gas turbine is rotated by the energy held by the combustion gas.
  • the gas turbine output generated in this way becomes a drive source for the gas turbine generator, and the first stage of power generation is performed by the gas turbine generator.
  • the combustion gas obtained by rotating the rotor of the gas turbine is supplied to the steam turbine equipment 23 as high-temperature combustion exhaust gas.
  • the high-temperature combustion exhaust gas supplied to the steam turbine equipment 23 is used as a heating source for an exhaust heat recovery boiler (not shown). Further, since the high-temperature combustion exhaust gas is also discharged from the off-gas combustion furnace 21, this combustion exhaust gas is also supplied to the steam turbine equipment 23 and used as a heating source for the exhaust heat recovery boiler.
  • the exhaust heat recovery boiler generates steam by being heated by high-temperature combustion exhaust gas. The energy held by the steam rotates the rotor of the steam turbine, and the output of the steam turbine thus generated becomes a drive source for the steam turbine generator. Therefore, since the second stage power generation is performed by the steam turbine generator, highly efficient power generation is possible.
  • the combustion exhaust gas used for steam generation in the steam turbine equipment 23 is released from the chimney 25 to the atmosphere after being subjected to a known necessary treatment.
  • the combustible gas 9A is used as a carrier gas for conveying the pulverized coal from the pulverized coal supply hopper 7 to the gasification furnace 11 described above.
  • the exhaust gas generated from the pulverized coal supply hopper 7, that is, a part of the combustible gas 9 ⁇ / b> A supplied as the carrier medium is discharged by pressure reduction when shifting from the pulverized coal charging process to the pulverized coal receiving process.
  • This exhaust gas is supplied to the off-gas incinerator 21 after removing particulate components and the like through the exhaust bag filter 27. Accordingly, the combustible gas exhaust recovered from the pulverized coal supply hopper 7 is incinerated in the off-gas incinerator 21 together with the off-gas supplied from the desulfurization device 17, and the exhaust heat is effectively used for steam generation in the steam turbine equipment 23. be able to.
  • the combustible gas used as the carrier gas for the pulverized coal and recovered as the exhaust gas of the pulverized coal supply hopper 7 becomes the off-gas combustion furnace 21 at the exhaust destination of the pulverized coal supply hopper 7.
  • the incinerated combustion exhaust gas is discharged from the chimney 25 through the system of the steam turbine equipment 23 to the atmosphere.
  • the combustible gas used as carrier gas can be safely discharged
  • the high-temperature combustion exhaust gas discharged by the incineration process is released to the atmosphere, it is used for steam generation via the steam turbine equipment 23. Therefore, the thermal efficiency of the gasification facility and the coal gasification combined power generation facility can be improved by recovering the calorie (calorie) of the combustible gas.
  • the type and the supply source are not specified for the combustible gas serving as the carrier medium.
  • the same reference numerals are given to the same parts as those in the embodiment shown in FIG. 1, and the detailed description thereof will be omitted. That is, the gasification facilities of the first modification and the second modification differ only in the configuration relating to the combustible gas supply source. Therefore, the combustible gases 9B and 9C used as the pulverized coal transport medium can be safely discharged from the chimney 25 to the atmosphere through the same process as that of the above-described embodiment.
  • the combustible gas 9B of the carrier medium a part of the combustible gas introduced from the downstream side of the char recovery / recycling device 15 is used as the combustible gas 9B of the carrier medium. Therefore, the combustible gas 9B becomes a combustible gas containing a sulfur content before desulfurization, and the gas temperature is increased to about 300 ° C., for example.
  • the second modification shown in FIG. 3 a part of the combustible gas introduced from the downstream side of the desulfurization device 17 is used as the combustible gas 9 ⁇ / b> C of the carrier medium.
  • the combustible gas 9C becomes a combustible gas from which sulfur is removed after desulfurization, and the temperature is lowered in the course of the desulfurization treatment, so that the gas temperature is relatively low, for example, about 200 ° C.
  • the low temperature combustible gas 9C is preferable as a carrier medium for pulverized coal in which spontaneous ignition is a concern. Further, since the combustible gas 9C as the carrier medium is put into the gasification furnace 11 together with the pulverized coal, the smaller the sulfur content, the more advantageous in the post-treatment.
  • a second embodiment applied to the gasification facility according to the present invention when the gasification furnace is started will be described with reference to FIG. Portions similar to those in the above-described embodiment and its modifications are given the same reference numerals, and detailed descriptions thereof are omitted.
  • a combustible gas is used as a carrier gas for pulverized coal even when the gasifier 11 is unstable and gas generation is started.
  • the exhaust destination of the combustible gas recovered as the exhaust gas of the pulverized coal supply hopper 7, that is, the exhaust destination of the pulverized coal supply hopper 7 is changed from the off-gas combustion furnace 21 of the above-described embodiment to the flare stack 29. Has been.
  • the combustible gas generated in the gasification furnace 11 is cooled by the gas cooler 11 and then char is recovered by the char recovery / recycling device 15.
  • the combustible gas generated in the gasification furnace 11 at the time of start-up has many problems when used as fuel for the gas turbine equipment 19 because the composition and gas amount are not stable.
  • the combustible gas after collecting the char is guided to the flare stack 29 and incinerated until it enters a steady operation where gas generation is stable. Therefore, the exhaust of the combustible gas generated from the pulverized coal supply hopper 7 is also guided to the flare stack 29 after being removed through the exhaust bag filter 27 and then incinerated together with the surplus gas.
  • the combustible gas of the carrier medium becomes a ground flare system at the exhaust destination of the pulverized coal supply hopper 7, and therefore the combustible gas is grounded even when the off-gas incinerator 21 is not started up.
  • the flare 29 can be incinerated and released safely to the atmosphere.
  • a part of the combustible gas is introduced from the downstream side of the char recovery / recycling device 15 or the desulfurization device 17 in the same manner as the first and second modifications described above, so that the combustibility of the carrier medium is increased. Gases 9B and 9C may be used.
  • the combustible gas of the carrier medium becomes the gas turbine equipment 19 at the exhaust destination of the pulverized coal supply hopper 7. Accordingly, the combustible gas can be incinerated by the gas turbine combustor and can be safely discharged from the chimney 25 to the atmosphere. In this case, the combustion exhaust gas discharged from the gas turbine facility 17 is not particularly problematic because known necessary processing is performed before being released into the atmosphere. Also in this embodiment, a part of the combustible gas is introduced from the downstream side of the char recovery / recycling device 15 or the desulfurization device 17 as in the first and second modifications according to the first embodiment described above. However, the combustible gas 9B or 9C of the carrier medium may be used.
  • combustible gas is used for the conveyance medium which conveys pulverized coal (powder fuel) used as a gasification raw material to gasification furnace 11.
  • pulverized fuel is not limited to pulverized coal, For example, it can change suitably in the range which does not deviate from the summary.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

ガス化原料となる粉体燃料をガス化炉まで気流搬送する搬送媒体として可燃性ガスを使用し、燃料供給ホッパから排気された可燃性ガスを安全に大気放出できるガス化設備を提供する。粉体燃料の微粉炭を微粉炭供給ホッパ(7)からガス化炉(11)へ搬送する搬送媒体として可燃性ガスを用いるガス化設備においては、微粉炭供給ホッパ(7)から排出される可燃性ガスは焼却処理してから大気へ放出されるため、安全に大気へ放出することができる。

Description

ガス化設備
 本発明は、石炭ガス化複合発電用ガス化炉や化学用石炭ガス化炉等を備えたガス化設備に適用され、ガス化原料の搬送媒体として可燃性ガスを使用するガス化設備に関する。
 従来、石炭ガス化複合発電設備(IGCC)用のガス化炉として、効率に優れる空気吹きのガス化炉が知られている。
 図6に示す石炭ガス化複合発電設備において、図中の符号1は原料(燃料)の石炭、3は石炭を粉砕して微粉炭とするミル、5は微粉炭貯蔵ホッパ、7は微粉炭供給ホッパであり、ガス化の原料となる微粉炭は、搬送ガス(搬送媒体)である窒素ガス9により搬送されて空気吹きのガス化炉11内に投入される。この場合の搬送ガスとしては、窒素ガス9の他にも空気等の不活性ガスが使用可能である。
 ガス化炉11で生成された可燃性ガスは、ガス冷却器13、チャー回収・リサイクル装置15、脱硫装置17を通ってガスタービン設備19の燃焼器に供給される。
 一方、脱硫装置17で分離回収されたオフガスは、オフガス燃焼炉21に導かれて焼却処理される。
 ガスタービン設備19は、ガスタービン出力でガスタービン発電機(不図示)を駆動して発電するとともに、高温の燃焼排ガスを蒸気タービン設備23へ供給する。
 蒸気タービン設備23は、図示しない排熱回収ボイラを備えており、ガスタービン19から供給された燃焼排ガス及びオフガス燃焼炉21から供給される燃焼排ガスの熱を回収して蒸気を生成する。この蒸気で運転される蒸気タービンは、図示しない蒸気タービン発電機を駆動して発電する。
 蒸気タービン設備23で蒸気生成に使用された燃焼排ガスは、必要な処理を施した後に煙突25から大気に放出される。
 上述した微粉炭供給ホッパ7の搬送ガスは、窒素ガス9や空気等の不活性ガスであるため、微粉炭供給ホッパ7から回収した搬送ガス(排気ガス)は、排気バグフィルタ27を通して除塵した後、大気へ放出される。この場合、複数の微粉炭供給ホッパ7が並列に配置されており、各微粉炭供給ホッパ7は、大気圧のミル3から微粉炭を受け入れるための減圧と、ガス化炉11内へ微粉炭を投入するための搬送媒体による加圧とを順次繰り返して行うことにより、ガス化炉11に対する微粉炭の連続投入を実現している。
 石炭ガス化システムにおいては、微粉炭及びチャーをガス化炉に供給する搬送ガスとして、可燃性ガスを用いることが提案されている。すなわち、この場合の搬送ガスには、ガス化炉で生成された可燃性ガスからチャー回収後の一部を取り出したものが使用されている。(たとえば、特許文献1参照)
特開2000-328074号公報
 上述したように、微粉炭の搬送ガスに不活性ガスを使用した場合、微粉炭供給ホッパ7の排気ガスは、排気バグフィルタ27を通してそのまま大気へ放出することができる。
 しかし、微粉炭のような粉体燃料を気流搬送する搬送ガスとして可燃性ガスを使用する場合には、可燃性ガスである排気ガスをそのまま大気へ放出することができない。従って、微粉炭供給ホッパ7のような燃料供給ホッパを備えたガス化設備においては、粉体燃料の搬送媒体として使用した可燃性ガスを安全に大気放出する技術の開発が望まれる。すなわち、複数の燃料供給ホッパは、各燃料供給ホッパが順番に加減圧を行って粉体燃料をガス化炉へ連続投入するので、減圧時に燃料供給ホッパから排出される搬送媒体の可燃性ガスを安全に処理することが必要となる。
 微粉炭を搬送する搬送ガスとして可燃性ガスを使用する方式のガス化炉は、不活性ガスを使用する方式と比較した場合、ガス化の阻害要因となる不活性ガスがなくなることで効率の向上に有利といわれているが、現状での実績はない。
 本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、ガス化原料となる微粉炭等の粉体燃料をガス化炉まで気流搬送する場合、搬送媒体として使用し燃料供給ホッパから排気された可燃性ガスを安全に大気放出できるガス化設備を提供することにある。
 本発明は、上記の課題を解決するため、下記の手段を採用した。
 本発明に係るガス化設備は、粉体燃料を燃料供給ホッパからガス化炉へ搬送する搬送媒体として可燃性ガスを用いるガス化設備において、前記燃料供給ホッパから排出される可燃性ガスが焼却処理してから大気へ放出されることを特徴とするものである。
 このような本発明のガス化設備によれば、燃料供給ホッパから排出される可燃性ガスが焼却処理してから大気へ放出されるため、安全に大気へ放出することができる。
 上記の発明において、前記焼却処理は、ガス化炉の下流に設置されたオフガス燃焼炉、ガス化炉の下流に設置されたフレアスタック、または、ガス化炉の下流に設置されたガスタービン燃焼器で行われることが望ましい。
 また、上記の発明において、前記可燃性ガスは、前記ガス化炉で生成された可燃性ガスの一部を導入して使用されることが望ましい。
 上述した本発明によれば、粉体燃料をガス化炉へ搬送する搬送媒体としてガス化効率のよい可燃性ガスを使用し、燃料供給ホッパから排出される使用済みの可燃性ガスを焼却処理して安全に大気へ放出するので、安全を確保してガス化設備の効率を向上させるという顕著な効果が得られる。
本発明に係るガス化設備の構成例として、第1の実施形態(定常運転時)を示す系統図である。 図1の実施形態に係るガス化設備の第1変形例を示す系統図である。 図1の実施形態に係るガス化設備の第2変形例を示す系統図である。 本発明に係る燃料供給ホッパの構成例として、第2の実施形態(起動時)を示す系統図である。 本発明に係る燃料供給ホッパの構成例として、第3の実施形態(定常運転時)を示す系統図である。 従来のガス化設備に係る構成例を示す系統図である。
 以下、本発明に係るガス化設備の一実施形態を図面に基づいて説明する。以下の実施形態では、石炭ガス化複合発電設備用のガス化炉を備えたガス化設備に適用した構成例を説明するが、本発明はこれに限定されることはなく、たとえば化学用石炭ガス化炉等のように、微粉炭や他の粉体を原料(燃料)としてガス化するガス化炉を備えたガス化設備にも適用可能なことはいうまでもない。
 なお、他の粉体燃料としては、たとえばバイオマス等があり、たとえば微粉炭とバイオマスのように、複数種の粉体を混合した粉体燃料も包含する。
<第1の実施形態>
 石炭ガス化複合発電設備は、微粉炭をガス化した可燃性ガスをガスタービン設備19でガスタービン燃焼器(不図示)の燃料として使用し、ガスタービン出力によりガスタービン発電機(不図示)を駆動して発電するとともに、ガスタービン設備19から排出される燃焼排ガス等の排熱を利用して蒸気タービン設備23で蒸気を生成し、この蒸気により蒸気タービン(不図示)及び蒸気タービン発電機(不図示)を駆動して発電する。図1に示す実施形態のガス化設備は、前記石炭ガス化複合発電設備の構成要素となっている。図1の系統図は定常運転時に使用する主な構成要素を示すものであり、起動時に使用する主な構成要素は後述する図4に示されている。
 ガス化の原料となる石炭1は、微粉炭機となるミル3に投入して粉砕され、所望の微粉度の微粉炭が微粉炭貯蔵ホッパ5に一時貯蔵される。この後、ガス化炉11でガス化される微粉炭は、可燃性ガス9Aを搬送ガス(搬送媒体)として、必要量が燃料供給ホッパの微粉炭供給ホッパ7を介して空気吹きのガス化炉11に供給される。
 この場合の微粉炭供給ホッパ7は、大気圧のミル3から微粉炭を受け入れ、内圧が大気圧より高圧のガス化炉11内へ微粉炭を投入する必要がある。従って、微粉炭供給ホッパ7では、ガス化炉11内の圧力をPgとすれば、微粉炭の受け入れる際の大気圧から投入時の圧力「Pg+α」までの範囲で加減圧が行われている。すなわち、微粉炭供給ホッパ7を含む微粉炭供給系は複数設けられ、順次微粉炭を投入する微粉炭供給ホッパ7を切り換えていくことで、ガス化炉11に対して微粉炭を連続投入するようになっている。この場合の搬送ガスは、可燃性ガスの種類や供給源が特に限定されるものではなく、たとえばガス化炉11で生成された可燃性ガスの一部を、ガス化炉11の下流側適所から導入して使用できる。
 ガス化炉11に投入された微粉炭は、部分酸化により一酸化炭素や水素を主成分とする可燃性ガス(石炭ガス)となる。しかし、ガス化炉11から流出するガス化生成物は、可燃性ガスの他にもチャー(未燃分)や硫黄分等を含んでいる。従って、これらのガス化生成物は、ガス冷却器13を通って冷却された後、チャー回収・リサイクル装置15及び脱硫装置17を通り、チャーや硫黄分等の成分が分離除去される。
 こうして精製された可燃性ガスは、ガスタービン設備19に燃料として供給され、分離回収したチャーは、ガス化炉11に戻して再度ガス化される。また、脱硫装置17で分離されたオフガスは、オフガス焼却炉21に供給して焼却される。
 ガスタービン設備19では、可燃性ガスをガスタービン燃焼器で燃焼させることにより高温高圧の燃焼ガスを発生させ、この燃焼ガスが保有するエネルギーによりガスタービンのロータを回転させる。こうして発生したガスタービンの出力は、ガスタービン発電機の駆動源となり、ガスタービン発電機による第1段階の発電が行われる。
 一方、ガスタービンのロータを回転させた燃焼ガスは、高温の燃焼排ガスとして蒸気タービン設備23へ供給される。
 蒸気タービン設備23に供給された高温の燃焼排ガスは、図示しない排熱回収ボイラの加熱源として使用される。また、オフガス燃焼炉21からも高温の燃焼排ガスが排出されるので、この燃焼排ガスも蒸気タービン設備23に供給されて、排熱回収ボイラの加熱源として使用される。
 排熱回収ボイラは、高温の燃焼排ガスによる加熱を受けて蒸気を生成する。この蒸気が保有するエネルギーは蒸気タービンのロータを回転させ、こうして発生した蒸気タービンの出力は、蒸気タービン発電機の駆動源となる。従って、蒸気タービン発電機による第2段階の発電が行われるため、高効率の発電が可能となる。
 蒸気タービン設備23で蒸気生成に使用された燃焼排ガスは、公知の必要な処理を施した後に煙突25から大気に放出される。
 一方、本実施形態では、上述した微粉炭供給ホッパ7からガス化炉11に微粉炭を搬送する搬送ガスとして可燃性ガス9Aを用いている。このため、粉炭供給ホッパ7から発生する排気は、すなわち搬送媒体として供給される可燃性ガス9Aの一部は、微粉炭投入工程から微粉炭受け入れ工程に移行する際の減圧により排出される。この排気は、排気バグフィルタ27を通して粒子成分等を除去した後、オフガス焼却炉21へ供給される。従って、粉炭供給ホッパ7から回収された可燃性ガスの排気は、脱硫装置17から供給されるオフガスとともにオフガス焼却炉21で焼却処理され、その排熱を蒸気タービン設備23の蒸気生成に有効利用することができる。
 すなわち、本実施形態のガス化設備において、微粉炭の搬送ガスとして使用され、粉炭供給ホッパ7の排気ガスとして回収された可燃性ガスは、微粉炭供給ホッパ7の排気先がオフガス燃焼炉21となり、焼却処理した燃焼排ガスが蒸気タービン設備23の系統を介して煙突25から大気へ放出される。
 このため、搬送ガスとして使用した可燃性ガスは、オフガス燃焼炉21で焼却処理したことにより、煙突25から大気へ安全に放出することができる。しかも、焼却処理により排出される高温の燃焼排ガスを大気へ放出する際には、蒸気タービン設備23を介して蒸気生成に使用する。したがって、可燃性ガスが有する熱量(カロリー)の回収により、ガス化設備及び石炭ガス化複合発電設備の熱効率を向上させことができる。
 上述した実施形態では、搬送媒体となる可燃性ガスについて、種類や供給源を特定していないが、図2に示す第1変形例及び図3に示す第2変形例では、ガス化炉11で生成した可燃性ガスの一部を導入して使用する。図2及び図3の構成例では、図1に示す実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
 すなわち、第1変形例及び第2変形例のガス化設備は、可燃性ガスの供給源に関する構成が異なるだけである。従って、微粉炭の搬送媒体として使用した可燃性ガス9B,9Cについては、上述した実施形態と同様の過程を経て、煙突25から安全に大気へ放出することができる。
 図2に示す第1変形例では、チャー回収・リサイクル装置15の下流側から導入された可燃性ガスの一部は、搬送媒体の可燃性ガス9Bとして使用される。従って、この可燃性ガス9Bは、脱硫前の硫黄分を含む可燃性ガスとなり、たとえば300℃程度とガス温度が高めになる。
 図3に示す第2変形例では、脱硫装置17の下流側から導入された可燃性ガスの一部は、搬送媒体の可燃性ガス9Cとして使用される。従って、この可燃性ガス9Cは、脱硫後で硫黄分が除去された可燃性ガスとなり、しかも脱硫処理の過程において温度低下するので、たとえば200℃程度と比較的ガス温度が低い。このため、第1変形例の可燃性ガス9Bと比較すれば、低温の可燃性ガス9Cは、自然発火が懸念される微粉炭の搬送媒体としては好ましい。また、搬送媒体の可燃性ガス9Cは、微粉炭とともにガス化炉11内に投入されるものであるから、硫黄分が少ないほど後処理等において有利になる。
<第2の実施形態>
 次に、本発明に係るガス化設備について、ガス化炉起動時に適用される第2の実施形態を図4に基づいて説明する。上述した実施形態と及びその変形例と同様の部分には同じ符号を付し、その詳細な説明は省略する。
 この実施形態では、ガス化炉11のガス生成が不安定なガス化炉起動時においても、微粉炭の搬送ガスとして可燃性ガスが使用される。この場合、微粉炭供給ホッパ7の排気ガスとして回収された可燃性ガスの排気先は、すなわち、微粉炭供給ホッパ7の排気先は、上述した実施形態のオフガス燃焼炉21からフレアスタック29に変更されている。
 このガス化設備でも、ガス化炉11で生成された可燃性ガスは、ガス冷却器11で冷却した後、チャー回収・リサイクル装置15でチャーが回収される。しかし、起動時のガス化炉11で生成される可燃性ガスは、組成やガス量が安定しないため、ガスタービン設備19の燃料として使用するには問題が多い。このため、チャーを回収した後の可燃性ガスは、ガス生成が安定する定常運転に入るまでの間、フレアスタック29に導かれて焼却処理される。
 従って、微粉炭供給ホッパ7から発生する可燃性ガスの排気についても、排気バグフィルタ27を通して粒子成分等を除去した後、フレアスタック29へ導かれて余剰ガスとともに焼却処理される。
 この結果、ガス化設備の起動時において、搬送媒体の可燃性ガスは微粉炭供給ホッパ7の排気先がグランドフレア系統となり、従って、オフガス焼却炉21を運転しない起動時にも、可燃性ガスをグランドフレア29で焼却処理して安全に大気へ放出することができる。
 この実施形態においても、上述した第1変形例及び第2変形例と同様に、チャー回収・リサイクル装置15または脱硫装置17の下流側から可燃性ガスの一部を導入し、搬送媒体の可燃性ガス9B,9Cとしてもよい。
<第3の実施形態>
 次に、本発明に係るガス化設備について、第3の実施形態を図5に基づいて説明する。上述した実施形態と及びその変形例と同様の部分には同じ符号を付し、その詳細な説明は省略する。
 この実施形態では、微粉炭の搬送ガスとして使用され、微粉炭供給ホッパ7の排気ガスとして回収された可燃性ガスの排気先が、すなわち、微粉炭供給ホッパ7の排気先が、上述した実施形態のオフガス燃焼炉21またはフレアスタック29から、ガスタービン設備19に変更されている。
 すなわち、ガスタービン設備19のガスタービン燃焼器(不図示)で燃焼させる燃料として、ガス化炉11で生成された脱硫後の可燃性ガスと、可燃性ガスである微粉炭供給ホッパ7の排気とが用いられる。従って、微粉炭供給ホッパ7から発生する可燃性ガスの排気は、排気バグフィルタ27を通して粒子成分等を除去した後、脱硫装置17を通って脱硫された主燃料の可燃性ガスとともに、ガスタービン燃焼器で焼却処理される。
 この結果、搬送媒体の可燃性ガスは、微粉炭供給ホッパ7の排気先がガスタービン設備19となる。従って、可燃性ガスをガスタービン燃焼器で焼却処理して煙突25から安全に大気へ放出することができる。この場合、ガスタービン設備17から排出される燃焼排ガスは、大気放出前に公知の必要な処理が施されるので、特に問題となることはない。
 この実施形態においても、上述した第1の実施形態に係る第1変形例及び第2変形例と同様に、チャー回収・リサイクル装置15または脱硫装置17の下流側から可燃性ガスの一部を導入し、搬送媒体の可燃性ガス9B,9Cとしてもよい。
 このように、上述した各実施形態及び変形例のガス化設備によれば、ガス化原料となる微粉炭(粉体燃料)をガス化炉11まで搬送する搬送媒体に可燃性ガスを使用しても、オフガス焼却炉11,フレアスタック29またはガスタービン設備19で焼却処理される。したがって、ガス化の効率が向上するとともに、使用した可燃性ガスを安全に大気へ放出することができる。
 なお、本発明は上述した実施形態に限定されることはなく、たとえば粉体燃料が微粉炭に限定されないなど、その要旨を逸脱しない範囲内において適宜変更することができる。
  1  石炭(ガス化の原料)
  3  ミル(微粉炭機)
  5  微粉炭貯蔵ホッパ
  7  微粉炭供給ホッパ(燃料供給ホッパ)
  9  窒素ガス(搬送媒体)
  9A~C  可燃性ガス(搬送媒体)
 11  ガス化炉
 13  ガス冷却器
 15  チャー回収・リサイクル装置
 17  脱硫装置
 19  ガスタービン設備
 21  オフガス燃焼炉
 23  蒸気タービン設備
 25  煙突
 27  排気バグフィルタ
 29  フレアスタック

Claims (5)

  1.  粉体燃料を燃料供給ホッパからガス化炉へ搬送する搬送媒体として可燃性ガスを用いるガス化設備において、
     前記燃料供給ホッパから排出される可燃性ガスが焼却処理してから大気へ放出されるガス化設備。
  2.  前記焼却処理がガス化炉の下流に設置されたオフガス燃焼炉で行われる請求項1に記載のガス化設備。
  3.  前記焼却処理がガス化炉の下流に設置されたフレアスタックで行われる請求項1に記載のガス化設備。
  4.  前記焼却処理がガス化炉の下流に設置されたガスタービン燃焼器で行われる請求項1に記載のガス化設備。
  5.  前記可燃性ガスが前記ガス化炉で生成された可燃性ガスの一部を導入して使用される請求項1から4のいずれかに記載のガス化設備。
PCT/JP2010/071212 2010-11-29 2010-11-29 ガス化設備 WO2012073300A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/810,550 US9890331B2 (en) 2010-11-29 2010-11-29 Gasification facility
PCT/JP2010/071212 WO2012073300A1 (ja) 2010-11-29 2010-11-29 ガス化設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/071212 WO2012073300A1 (ja) 2010-11-29 2010-11-29 ガス化設備

Publications (1)

Publication Number Publication Date
WO2012073300A1 true WO2012073300A1 (ja) 2012-06-07

Family

ID=46171288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071212 WO2012073300A1 (ja) 2010-11-29 2010-11-29 ガス化設備

Country Status (2)

Country Link
US (1) US9890331B2 (ja)
WO (1) WO2012073300A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9719038B2 (en) 2013-02-13 2017-08-01 Mitsubishi Hitachi Power Systems, Ltd. Gasifier start-up method, gasifier, and integrated gasification combined cycle facility
CN107541298A (zh) * 2017-08-04 2018-01-05 宝钢集团新疆八钢铁有限公司 欧冶炉煤制气紧凑型工艺结构

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2526819B (en) * 2014-06-03 2018-07-04 Chinook End Stage Recycling Ltd Waste management
US11519601B2 (en) 2020-03-10 2022-12-06 General Electric Company System and method for inerting a biomass feed assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254695A (ja) * 1985-05-07 1986-11-12 Mitsubishi Heavy Ind Ltd 酸素吹き石炭ガス化炉への石炭、チヤ−の供給方法
JPH01278597A (ja) * 1988-03-24 1989-11-08 Krupp Koppers Gmbh 微粒状ないし粉塵状燃料を高めた圧力下にあるガス化反応器中へ運搬する方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3698882A (en) * 1970-09-30 1972-10-17 Occidental Petroleum Corp Continuous process for the conversion of carbonaceous solids into pipeline gas
US3775071A (en) * 1971-06-20 1973-11-27 Hydrocarbon Research Inc Method for feeding dry coal to superatmospheric pressure
CA1208258A (en) * 1982-06-23 1986-07-22 Bernardus H. Mink Process for conveying a particulate solid fuel
FR2664506B1 (fr) * 1990-07-13 1993-05-07 Bp Chemicals Snc Procede et dispositif d'introduction d'une poudre dans un reacteur.
US5851246A (en) * 1992-05-07 1998-12-22 Hylsa, S.A. De C.V. Apparatus for gasifying organic materials
JPH08500850A (ja) * 1992-05-08 1996-01-30 ステイト・エレクトリシテイ・コミツシヨン・オブ・ビクトリア 炭素性燃料を乾燥しガス化する統合された方法および装置
JPH08296975A (ja) 1995-04-28 1996-11-12 Kansai Electric Power Co Inc:The 有機物のガス化方法
JP3988008B2 (ja) 1999-05-21 2007-10-10 バブコック日立株式会社 石炭ガス化システム及び該システムの運用方法
JP4095829B2 (ja) 2002-05-21 2008-06-04 三菱重工業株式会社 チャー循環型の石炭ガス化発電プラントシステム
JP4179816B2 (ja) 2002-07-04 2008-11-12 新日本製鐵株式会社 廃プラスチックの気流搬送方法およびその装置
JP3993490B2 (ja) 2002-08-30 2007-10-17 三菱重工業株式会社 粉粒体供給装置
US7575613B2 (en) * 2005-05-26 2009-08-18 Arizona Public Service Company Method and apparatus for producing methane from carbonaceous material
JP2008132409A (ja) 2006-11-27 2008-06-12 Nippon Steel Corp 汚泥のガス化溶融方法および汚泥のガス化溶融装置
JP2009096895A (ja) 2007-10-17 2009-05-07 Nippon Steel Engineering Co Ltd ガス化方法及びガス化装置
JP5214314B2 (ja) 2008-04-17 2013-06-19 新日鉄住金エンジニアリング株式会社 ガス化方法及びガス化装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254695A (ja) * 1985-05-07 1986-11-12 Mitsubishi Heavy Ind Ltd 酸素吹き石炭ガス化炉への石炭、チヤ−の供給方法
JPH01278597A (ja) * 1988-03-24 1989-11-08 Krupp Koppers Gmbh 微粒状ないし粉塵状燃料を高めた圧力下にあるガス化反応器中へ運搬する方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9719038B2 (en) 2013-02-13 2017-08-01 Mitsubishi Hitachi Power Systems, Ltd. Gasifier start-up method, gasifier, and integrated gasification combined cycle facility
CN107541298A (zh) * 2017-08-04 2018-01-05 宝钢集团新疆八钢铁有限公司 欧冶炉煤制气紧凑型工艺结构

Also Published As

Publication number Publication date
US9890331B2 (en) 2018-02-13
US20130112543A1 (en) 2013-05-09

Similar Documents

Publication Publication Date Title
JP4981771B2 (ja) 石炭ガス化複合発電設備
JP5578907B2 (ja) 石炭ガス化複合発電プラント
US7805923B2 (en) Integrated coal gasification combined cycle plant
US20080141647A1 (en) Integrated coal gasification combined cycle plant
JP2012087974A (ja) 石炭火力発電システム
US20130298465A1 (en) Pulverized-coal supply system for coal gasification furnace
US9719038B2 (en) Gasifier start-up method, gasifier, and integrated gasification combined cycle facility
WO2012073300A1 (ja) ガス化設備
US20140175803A1 (en) Biomass conversion reactor power generation system and method
JP5963239B2 (ja) 石炭ガス化設備及び石炭ガス化発電システム
JP5606045B2 (ja) ガス化設備
US20120324790A1 (en) Method and apparatus to transport solids
JP2005291524A (ja) バイオマス燃料の燃焼装置及び方法
JP5750054B2 (ja) ガス化のための自己生成出力統合
JP5675297B2 (ja) ガス化設備および石炭ガス化複合発電設備
JP2014137978A (ja) 燃料電池を用いた複合発電装置および複合発電方法
CN112594695A (zh) 一种用于工业垃圾的超临界水气化装置
JP5859213B2 (ja) ガス化炉、ガス化複合発電設備及びガス化炉の未燃分回収方法
JP6556639B2 (ja) ガス化システム及びガス化システムの運転方法
JP2000328074A (ja) 石炭ガス化システム
JP4089079B2 (ja) 廃棄物処理方法及び廃棄物処理システム
JP6008514B2 (ja) ガス化ガスのガス精製装置
RU2277638C1 (ru) Способ и устройство для получения электроэнергии путем использования конденсированных топлив
JP4089080B2 (ja) 廃棄物処理方法及び廃棄物処理システム
JP2986901B2 (ja) 作動流体供給方法および燃焼設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860125

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13810550

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10860125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP