WO2012072311A1 - Verfahren und vorrichtung zum betreiben einer durch einen wechselrichter gesteuerten elektrischen maschine im falle einer störung - Google Patents

Verfahren und vorrichtung zum betreiben einer durch einen wechselrichter gesteuerten elektrischen maschine im falle einer störung Download PDF

Info

Publication number
WO2012072311A1
WO2012072311A1 PCT/EP2011/067036 EP2011067036W WO2012072311A1 WO 2012072311 A1 WO2012072311 A1 WO 2012072311A1 EP 2011067036 W EP2011067036 W EP 2011067036W WO 2012072311 A1 WO2012072311 A1 WO 2012072311A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
short
circuit mode
supply voltage
voltage potential
Prior art date
Application number
PCT/EP2011/067036
Other languages
English (en)
French (fr)
Inventor
Andreas Koenig
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2012072311A1 publication Critical patent/WO2012072311A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the invention relates to a method and a device for operating an electric machine controlled by an inverter, in particular a pulse inverter, in the event of a fault.
  • inverter - For the drive in hybrid or electric vehicles electrical machines in the form of induction machines are usually used, which in conjunction with inverters - often referred to as inverter - are operated.
  • the electrical machines are operated either in motor or generator mode.
  • the electric machine generates a drive torque which, when used in a hybrid vehicle, supports an internal combustion engine, for example in an acceleration phase.
  • generator mode the electric machine generates electrical energy that is stored in an energy storage such as a battery or a super-cab. Operating mode and power of the electrical machine are set via the inverter.
  • Known inverters comprise a series of switching elements with which the individual phases (U, V, W) of the electrical machine are selectively switched to a high supply voltage potential or to a low supply voltage potential.
  • two series-connected switching elements form a half-bridge branch, wherein a first switching element with the high supply voltage potential and a second switching element with the low supply voltage potential are connected.
  • Each phase of the electric machine is then equipped with one half-bridge connected.
  • the switching elements are controlled in normal operation, that is without the occurrence of a fault, by an external control unit, which calculates a desired operating point for the electric machine depending on the driver's request (acceleration or braking).
  • the inverter is connected to the control unit and receives from this the corresponding operating data or control commands.
  • the inverter In the event of a fault, e.g. may be due to excessive battery current or too high supply current, the inverter is switched to a safe state to prevent possible damage to electrical components.
  • two different turn-off methods are known from the prior art, which are used alternatively.
  • a first method all switches connected to the low supply voltage potential (low-side switch) are closed and all switches (high-side switch) connected to the high supply voltage potential are opened. This mode is also referred to as a short circuit mode.
  • all switches of the inverter In another shutdown procedure, all switches of the inverter are opened. This is also known as unlock mode.
  • From DE 10 2006 003 254 A1 discloses a method for operating an electrical machine with a pulse inverter in the event of a fault is known, in which the electrical machine is switched in the event of a malfunction first in a disconnection mode and subsequently in a short-circuit mode.
  • the invention provides a method for operating an electric machine controlled by an inverter, in particular a pulse-controlled inverter, in which a short-circuit mode for the electrical machine is realized by alternately switching the electrical machine into a first short-circuit mode and switched to a second short-circuit mode.
  • a short-circuit mode for the electrical machine is realized by alternately switching the electrical machine into a first short-circuit mode and switched to a second short-circuit mode.
  • the first short-circuit mode all switching elements of the inverter connected to a high supply voltage potential are closed and all switching elements of the inverter connected to a low supply voltage potential are opened.
  • the second short-circuit mode all switching elements of the inverter connected to the high supply voltage potential are opened, and all switching elements of the inverter connected to the low supply voltage potential are closed.
  • the invention also provides an apparatus for operating an electric machine controlled by an inverter, in particular a pulse inverter, in the event of a fault.
  • a control unit controls the inverter to implement a short-circuit mode for the electric machine so that it alternately switches the electric machine in a first short-circuit mode and in a second short-circuit mode.
  • the first short-circuit mode all connected to a high supply voltage potential switching elements of the inverter are closed and all connected to a low supply voltage potential switching elements of the inverter open.
  • the switching elements connected to the high supply voltage potential are the first short-circuit mode.
  • Inverter closed and closed all connected to the low supply voltage potential switching elements of the inverter.
  • the invention is based on the basic idea of avoiding excessive loading of components of the inverter and / or busbars in uncontrolled short-circuit mode by switching between two short-circuit modes, the short-circuit current in the first short-circuit mode via the short-circuit mode High-side switch and in the second short-circuit
  • Mode flows through the low-side switch.
  • the current load and thus the thermal load of the components and the busbars are distributed over several components, so that a one-sided load of the inverter components in the short-circuit mode is avoided.
  • This has a positive effect both on the dimensioning of the power units of the inverter and on their service life.
  • It can be changed with a predetermined switching frequency between the first and the second short-circuit mode.
  • the switching frequency can be specified in such a way that, in each case, after a predefined period of time has elapsed, a change is made between the two short-circuit modes.
  • the switching frequency is specified as a function of a thermal behavior of at least one module to be protected.
  • a corresponding sensor system can be used which detects a variable characterizing the thermal behavior of the at least one module to be protected.
  • the control unit can then set the switching frequency between the first and the second short-circuit mode depending on the thermal behavior of the at least one module to be protected.
  • the thermal load of the components is essentially determined by the corresponding
  • the thermal behavior of a module to be protected can also be determined model-based.
  • the sensor system can comprise one or more temperature sensors which directly detect the temperature in the region of the components to be protected, that is to say in particular of the switching elements.
  • the detected temperatures can then be evaluated by an evaluation unit to the effect that is switched when a predeterminable temperature threshold to the other short circuit mode is exceeded.
  • a required switching frequency may also be e.g. be determined by counting a number of zero crossings of at least one of the phase currents of the electric machine and the switching frequency is predetermined in dependence on the number of zero crossings. Specifically, it can be switched between the two short-circuit mode, as soon as a predetermined number of zero crossings is reached. It makes use of the fact that the phase current oscillates at an active short circuit around the zero point.
  • the application of the method according to the invention and the device according to the invention is basically useful and advantageous in all operating phases, in which the electric machine is operated in a short circuit mode.
  • this includes cases of failure and operating phases in which the electrical machine is not actively controlled by the inverter.
  • a first control unit controls the inverter in normal operation and a second control unit controls the inverter in case of failure.
  • FIG. 1 shows a schematic representation of a three-phase electrical machine 1, which may be designed, for example, as a synchronous, asynchronous or reluctance machine, with a pulse-controlled inverter 2 connected thereto.
  • the pulse-controlled inverter 2 comprises switching elements 3a-3f in the form of
  • Power switches which are connected to individual phases U, V, W of the electric machine 1 and the phases U, V, W switch either against a high supply voltage potential T + or a low supply voltage potential T-.
  • the switching elements 3a-3c which are connected to the high supply voltage potential T + are also referred to as “high-side switches” and the switches 3d-3f connected to the low supply voltage potential T- are referred to as “low-side switches” and can be referred to, for example
  • the pulse inverter 2 further comprises a plurality of freewheeling diodes 4 a - 4 f, each of which parallel to one of the
  • Switching elements 3a-3f are arranged.
  • the switching elements 3a and 3d, 3b and 3e and 3c and 3f each form a half-bridge 10a, 10b and 10f, which are each associated with one of the phases U, V, W of the electric machine 1.
  • the pulse-controlled inverter 2 determines the power and operating mode of the electric machine 1 and is controlled by a first control circuit (shown only schematically). unit 5, which may also be integrated into the inverter 2, driven accordingly.
  • the electric machine 1 can be operated either in the engine or generator mode.
  • a so-called DC link capacitor 6 is arranged, which can also be integrated into the pulse inverter 2 and which essentially serves to stabilize a voltage of an energy store, so for example a battery voltage.
  • the electric machine 1 is designed in the illustrated embodiment, three-phase, but may also have fewer or more than three phases.
  • the pulse-controlled inverter 2 triggered by a second control unit 7, automatically switches the electric machine 1 into a first short-circuit mode in order to damage the electric machine 1 or voltage-sensitive components avoid.
  • the first short-circuit mode all high-side switches 3a-3c of the pulse-controlled inverter 2 are closed and all low-side switches 3d-3f of the pulse-controlled inverter 2 are opened.
  • a second short-circuit mode in which all the high-side switches 3a-3c of the Pulse inverter 2 open and all low-side switches 3d-3f of the pulse inverter 2 are closed.
  • the second control unit 7 then controls the pulse-controlled inverter 2 so that it alternately switches the electric machine 1 into a first short-circuit mode and into a second short-circuit mode. In this respect, of course, initially also be switched to the second short-circuit mode.
  • the switching frequency is predetermined by the second control unit 7 as a function of the current load of the electrical components to be protected. To determine the current load and thus the thermal load phase currents using a sensor in the form of current sensors 1 1 -U, 1 1-V and 11-W are detected. In the second control unit 7 then zero throughputs of the phase currents or at least one phase current and initiating a change of the short circuit mode as soon as the number of zero crossings reaches a predetermined threshold value.
  • the temperature at the electrical components to be protected can also be measured.
  • a change of the short-circuit mode can then be initiated as soon as a predeterminable temperature threshold is exceeded.
  • the second control unit 7 is realized separately from the first control unit 5, which controls the pulse inverter 2 in normal operation. In principle, the second control unit 7 can also be integrated into the first control unit 5.
  • the first control unit 5 controls the pulse-controlled inverter 2 in such a way that it switches the electric machine 1 alternately into the first short-circuit mode and into a second short-circuit mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Betreiben einer durch einen Wechselrichter (2) gesteuerten elektrischen Maschine (1) im Falle einer Störung, bei dem ein Kurzschluss-Modus für die elektrische Maschine (1) dadurch realisiert wird, dass die elektrische Maschine (1) durch eine Steuereinheit (5; 7) wechselweise in einen ersten Kurzschluss-Modus und in einen zweiten Kurzschluss-Modus geschaltet wird. Dabei sind in dem ersten Kurzschluss-Modus alle mit einem hohen Versorgungsspannungspotential (T+) verbundenen Schaltelemente (3a-3c) des Wechselrichters (2) geschlossen und alle mit einem niedrigen Versorgungsspannungspotential (T-) verbundenen Schaltelemente (3d-3f) des Wechselrichters (2) geöffnet sind und in dem zweiten Kurzschluss-Modus alle mit dem hohen Versorgungsspannungspotential (T+) verbundenen Schaltelemente (3a-3c) des Wechselrichters (2) geöffnet und alle mit dem niedrigen Versorgungsspannungspotential (T-) verbundenen Schaltelemente (3d-3f) des Wechselrichters (2) geschlossen.

Description

Beschreibung Titel
Verfahren und Vorrichtung zum Betreiben einer durch einen Wechselrichter gesteuerten elektrischen Maschine im Falle einer Störung
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Betreiben einer durch einen Wechselrichter, insbesondere Pulswechselrichter, gesteuerten elektrischen Maschine im Falle einer Störung.
Stand der Technik
Für den Antrieb in Hybrid- oder Elektrofahrzeugen werden in der Regel elektrische Maschinen in Form von Drehfeldmaschinen eingesetzt, welche in Verbindung mit Wechselrichtern - häufig auch als Inverter bezeichnet - betrieben werden. Die elektrischen Maschinen werden dabei wahlweise im Motor- oder Generatorbetrieb betrieben. Im Motorbetrieb erzeugt die elektrische Maschine ein Antriebsmoment, welches beim Einsatz in einem Hybridfahrzeug einen Verbrennungsmotor, zum Beispiel in einer Beschleunigungsphase, unterstützt. Im Generatorbetrieb erzeugt die elektrische Maschine elektrische Energie, die in einem Energiespeicher, wie zum Beispiel einer Batterie oder einem Super-Cab gespeichert wird. Betriebsart und Leistung der elektrischen Maschine werden über den Wechselrichter eingestellt.
Bekannte Wechselrichter umfassen eine Reihe von Schaltelementen, mit denen die einzelnen Phasen (U, V, W) der elektrischen Maschine wahlweise gegen ein hohes Versorgungsspannungspotential oder gegen ein niedriges Versorgungs- spannungspotential geschaltet werden. Dabei bilden jeweils zwei in Reihe geschaltete Schaltelemente einen Halbbrückenzweig, wobei ein erstes Schaltelement mit dem hohen Versorgungsspannungspotential und ein zweites Schaltelement mit dem niedrigen Versorgungsspannungspotential verbunden sind. Jede Phase der elektrischen Maschine ist dann mit jeweils einem Halbbrücken- zweig verbunden. Die Schaltelemente werden im Normalbetrieb, das heißt ohne Auftreten einer Störung, von einer externen Steuereinheit angesteuert, welche in Abhängigkeit vom Fahrerwunsch (Beschleunigen oder Bremsen) einen Soll- Betriebspunkt für die elektrische Maschine berechnet. Der Wechselrichter ist mit der Steuereinheit verbunden und erhält von diesem die entsprechenden Betriebsdaten bzw. Steuerbefehle.
Im Falle einer Störung, die z.B. durch einen zu hohen Batteriestrom oder einen zu hohen Zuleitungsstrom entstehen kann, wird der Wechselrichter in einen sicheren Zustand geschaltet, um eine mögliche Schädigung elektrischer Komponenten zu verhindern. Aus dem Stand der Technik sind im Wesentlichen zwei verschiedene Abschaltverfahren bekannt, die alternativ angewendet werden. Bei einem ersten Verfahren werden sämtliche mit dem niedrigen Versorgungsspan- nungspotential verbundenen Schalter (Low-Side-Schalter) geschlossen und alle mit dem hohen Versorgungsspannungspotential verbundenen Schalter (High- Side-Schalter) geöffnet. Diese Betriebsart wird auch als Kurzschluss-Modus bezeichnet. Bei einem anderen Abschaltverfahren werden sämtliche Schalter des Wechselrichters geöffnet. Dies wird auch als Freischalt-Modus bezeichnet.
Aus der DE 10 2006 003 254 A1 ist ein Verfahren zum Betreiben einer elektrischen Maschine mit einem Pulswechselrichter im Falle einer Störung bekannt, bei dem die elektrische Maschine im Falle einer Störung zunächst in einen Freischalt-Modus und nachfolgend in einen Kurzschluss-Modus geschaltet wird.
Auch im Normalbetrieb treten aber Betriebsphasen auf, in welchen die elektrische Maschine nicht aktiv durch den Wechselrichter gesteuert wird. Während dieser Betriebsphasen wird die elektrische Maschine häufig auch in den Kurzschluss-Modus geschaltet.
Offenbarung der Erfindung
Die Erfindung schafft ein Verfahren zum Betreiben einer durch einen Wechselrichter, insbesondere Pulswechselrichter, gesteuerten elektrischen Maschine, bei dem ein Kurzschluss-Modus für die elektrische Maschine dadurch realisiert wird, dass die elektrische Maschine wechselweise in einen ersten Kurzschluss-Modus und in einen zweiten Kurzschluss-Modus geschaltet wird. Dabei sind in dem ersten Kurzschluss-Modus alle mit einem hohen Versorgungsspannungspotential verbundenen Schaltelemente des Wechselrichters geschlossen und alle mit einem niedrigen Versorgungsspannungspotential verbundenen Schaltelemente des Wechselrichters geöffnet. In dem zweiten Kurzschluss-Modus sind alle mit dem hohen Versorgungsspannungspotential verbundenen Schaltelemente des Wechselrichters geöffnet und alle mit dem niedrigen Versorgungsspannungspotential verbundenen Schaltelemente des Wechselrichters geschlossen. Die Erfindung schafft außerdem eine Vorrichtung zum Betreiben einer durch einen Wechselrichter, insbesondere Pulswechselrichter, gesteuerten elektrischen Maschine im Falle einer Störung. Eine Steuereinheit steuert den Wechselrichter zur Realisierung eines Kurzschluss-Modus für die elektrische Maschine so an, dass dieser die elektrische Maschine wechselweise in einen ersten Kurzschluss- Modus und in einen zweiten Kurzschluss-Modus schaltet. Dabei sind in dem ersten Kurzschluss-Modus alle mit einem hohen Versorgungsspannungspotential verbundenen Schaltelemente des Wechselrichters geschlossen und alle mit einem niedrigen Versorgungsspannungspotential verbundenen Schaltelemente des Wechselrichters geöffnet. In dem zweiten Kurzschluss-Modus sind alle mit dem hohen Versorgungsspannungspotential verbundenen Schaltelemente des
Wechselrichters geöffnet und alle mit dem niedrigen Versorgungsspannungspotential verbundenen Schaltelemente des Wechselrichters geschlossen.
Vorteile der Erfindung
Die Erfindung basiert auf der Grundidee, eine übermäßige Belastung von Bauelementen des Wechselrichters und/oder von Stromschienen im ungeregelten Kurzschluss-Modus dadurch zu vermeiden, dass zwischen zwei Kurzschluss- Modus umgeschaltet wird, wobei der Kurzschlussstrom in dem ersten Kurz- schluss-Modus über die High-Side-Schalter und in dem zweiten Kurzschluss-
Modus über die Low-Side-Schalter fließt. Auf diese Weise werden die Strombelastung und damit auch die thermische Belastung der Bauelemente und der Stromschienen auf mehrere Komponenten verteilt, so dass eine einseitige Belastung der Wechselrichterkomponenten im Kurschluss-Modus vermieden wird. Dies hat sowohl auf die Dimensionierung der Leistungsbaugruppen des Wechselrichters als auch auf deren Lebensdauer positive Auswirkungen. Dabei kann mit einer vorgebbaren Umschalt-Frequenz zwischen dem ersten und dem zweiten Kurzschluss-Modus gewechselt werden. Die Umschaltfrequenz kann dabei derart vorgegeben werden, dass jeweils nach Ablauf einer vordefi- nierten Zeitspanne zwischen den beiden Kurzschluss-Modus gewechselt wird.
Um einen besonders effektiven Schutz gegen dauerhafte Beschädigungen aufgrund thermischer Überlastungen zu erreichen, ist es aber vorteilhaft, die Umschalt-Frequenz in Abhängigkeit von einem thermischen Verhalten mindestens einer zu schützenden Baugruppe vorzugeben. Dazu kann eine entsprechende Sensorik eingesetzt werden, welche eine das thermische Verhalten der mindestens einen zu schützenden Baugruppe charakterisierende Größe erfasst. Die Steuereinheit kann dann die Umschaltfrequenz zwischen dem ersten und dem zweiten Kurzschluss-Modus in Abhängigkeit von dem thermischen Verhalten der mindestens einen zu schützenden Baugruppe einstellen. Die thermische Belas- tung der Bauelemente wird dabei im Wesentlichen durch die entsprechende
Strombelastung bestimmt. Alternativ zu einer Sensorik kann das thermische Verhalten einer zu schützenden Baugruppe auch modellbasiert ermittelt werden.
Die Sensorik kann dabei einen oder mehrere Temperatursensoren umfassen, welche die Temperatur im Bereich der zu schützenden Bauelemente, also insbesondere der Schaltelemente direkt erfassen. Die erfassten Temperaturen können dann durch eine Auswerteinheit dahingehend ausgewertet werden, dass bei Überschreiten einer vorgebbaren Temperaturschwelle auf den jeweils anderen Kurzschlussmodus umgeschaltet wird.
Eine erforderliche Umschaltfrequenz kann aber auch z.B. dadurch ermittelt werden, dass eine Anzahl von Nulldurchgängen von zumindest einem der Phasenströme der elektrischen Maschine gezählt wird und die Umschaltfrequenz in Abhängigkeit von der Anzahl der Nulldurchgänge vorgegeben wird. Konkret kann dabei zwischen den beiden Kurzschluss-Modus umgeschaltet werden, sobald eine vorgebbare Anzahl von Nulldurchgängen erreicht ist. Dabei macht man sich zunutze, dass der Phasenstrom bei einem aktiven Kurzschluss um den Nullpunkt oszilliert.
Die Anwendung des erfindungsgemäßen Verfahrens und der erfindungsgemäßen Vorrichtung ist grundsätzlich in allen Betriebsphasen sinnvoll und vorteilhaft, in welchen die elektrische Maschine in einem Kurzschluss-Modus betrieben wird. Insbesondere sind davon Störungsfälle und Betriebsphasen, in welchen die elektrische Maschine nicht aktiv durch den Wechselrichter gesteuert wird, betroffen.
Um die Funktionsfähigkeit der Steuerung auch im Störungsfall sicher zu stellen, ist es vorteilhaft, zwei separate Steuereinheiten vorzusehen, von denen eine erste Steuereinheit den Wechselrichter im Normalbetrieb steuert und eine zweite Steuereinheit den Wechselrichter im Falle einer Störung steuert.
Weitere Merkmale und Vorteile von Ausführungsformen der Erfindung ergeben sich aus der nachfolgenden Beschreibung mit Bezug auf die beigefügte Figur, welche ein schematisches Blockschaltbild einer durch einen Wechselrichter gesteuerten elektrischen Maschine zeigt. Beschreibung der Ausführungsbeispiele
Figur 1 zeigt eine schematische Darstellung einer dreiphasigen elektrischen Maschine 1 , welche beispielsweise als Synchron-, Asynchron- oder Reluktanz- Maschine ausgeführt sein kann, mit einem daran angeschlossenen Pulswechsel- richter 2. Der Pulswechselrichter 2 umfasst Schaltelemente 3a-3f in Form von
Leistungsschaltern, welche mit einzelnen Phasen U, V, W der elektrischen Maschine 1 verbunden sind und die Phasen U, V, W entweder gegen ein hohes Versorgungsspannungspotential T+ oder ein niedriges Versorgungsspannungspotential T- schalten. Die mit dem hohen Versorgungsspannungspotential T+ ver- bundenen Schaltelemente 3a-3c werden dabei auch als„High-Side-Schalter" und die mit dem niedrigen Versorgungsspannungspotential T- verbundenen Schalter 3d-3f als„Low-Side-Schalter" bezeichnet und können beispielsweise als
Insulated Gate Bipolar Transistor (IGBT) oder als Metal Oxide Semiconductor Field-Effect Transistor (MOSFET) ausgeführt sein. Der Pulswechselrichter 2 um- fasst ferner mehrere Freilaufdioden 4a-4f, welche jeweils parallel zu einem der
Schaltelemente 3a-3f angeordnet sind. Die Schaltelemente 3a und 3d, 3b und 3e sowie 3c und 3f bilden dabei jeweils eine Halbbrücke 10a, 10b bzw. 10f, welche jeweils einer der Phasen U, V, W der elektrischen Maschine 1 zugeordnet sind.
Der Pulswechselrichter 2 bestimmt Leistung und Betriebsart der elektrischen Maschine 1 und wird von einer lediglich schematisch dargestellten ersten Steuer- einheit 5, welche auch in den Wechselrichter 2 integriert sein kann, entsprechend angesteuert. Die elektrische Maschine 1 kann dabei wahlweise im Motor- oder Generatorbetrieb betrieben werden.
Parallel zum Pulswechselrichter 2 ist ein so genannter Zwischenkreis- Kondensator 6 angeordnet, welcher auch in den Pulswechselrichter 2 integriert sein kann und welcher im Wesentlichen zur Stabilisierung einer Spannung eines Energiespeichers, also beispielsweise einer Batteriespannung dient.
Die elektrische Maschine 1 ist im dargestellten Ausführungsbeispiel dreiphasig ausgeführt, kann aber auch weniger oder mehr als drei Phasen aufweisen.
Bei einer Störung des Systems, die z.B. in zu hohen Strom- oder Spannungswerten oder in einer zu hohen Temperatur begründet sein kann, schaltet der Pulswechselrichter 2, getriggert von einer zweiten Steuereinheit 7, die elektrische Maschine 1 automatisch in einen ersten Kurzschlussmodus, um eine Schädigung der elektrischen Maschine 1 oder spannungsempfindlicher Bauteile zu vermeiden. In dem ersten Kurzschluss-Modus sind alle High-Side-Schalter 3a-3c des Pulswechselrichters 2 geschlossen und alle Low-Side-Schalter 3d-3f des Pulswechselrichters 2 geöffnet.
Um die Strombelastung an den High-Side-Schaltern 3a-3c sowie weiteren in einem sich ergebenden Kurzschlussstromkreis liegenden Bauelementen aber nicht zu groß werden zu lassen, ist ein zweiter Kurschluss-Modus vorgesehen, in welchem alle High-Side-Schalter 3a-3c des Pulswechselrichters 2 geöffnet und alle Low-Side-Schalter 3d-3f des Pulswechselrichters 2 geschlossen sind. Die zweite Steuereinheit 7 steuert dann den Pulswechselrichter 2 so an, dass dieser die elektrische Maschine 1 wechselweise in einen ersten Kurzschluss-Modus und in einen zweiten Kurzschluss-Modus schaltet. Insofern kann selbstverständlich zunächst auch in den zweiten Kurzschluss-Modus geschaltet werden.
Die Umschaltfrequenz wird dabei durch die zweite Steuereinheit 7 in Abhängigkeit von der Strombelastung der zu schützenden elektrischen Bauelemente vorgegeben. Zur Bestimmung der Strombelastung und damit der thermischen Belastung werden Phasenströme mit Hilfe einer Sensorik in Form von Stromsensoren 1 1-U, 1 1-V und 11-W erfasst. In der zweiten Steuereinheit 7 werden dann Null- durchgänge der Phasenströme oder zumindest eines Phasenstroms gezählt und ein Wechsel des Kurzschlussmodus initiiert, sobald die Anzahl der Nulldurchgänge einen vorgegebenen Schwellenwert erreicht.
Alternativ oder zusätzlich zur Erfassung der Phasenströme kann auch die Temperatur an den zu schützenden elektrischen Bauelementen gemessen werden. Durch die zweite Steuereinheit 7 kann dann ein Wechsel des Kurzschlussmodus initiiert werden, sobald ein vorgebbarer Temperaturschwellwert überschritten wird.
Um die Verfügbarkeit der Steuerung auch im Störungsfall sicher zu stellen, ist die zweite Steuereinheit 7 separat zu der ersten Steuereinheit 5 realisiert, welche den Pulswechselrichter 2 im Normalbetrieb steuert. Grundsätzlich kann die zweite Steuereinheit 7 auch in die erste Steuereinheit 5 integriert sein.
Auch ist es für die Anwendbarkeit der Erfindung unerheblich, ob die elektrische Maschine 1 nach Erkennen eines Störungsfalls unmittelbar in einen Kurzschlussbetrieb geschaltet wird oder ob dem Kurzschlussbetrieb eine andere Betriebsweise, wie bspw. ein Freilaufbetrieb vorgeschaltet ist.
Auch im Normalbetrieb treten Betriebsphasen auf, in welchen die elektrische Maschine nicht aktiv durch den Wechselrichter gesteuert wird. Während dieser Betriebsphasen wird die elektrische Maschine ebenfalls in den Kurzschluss-Modus geschaltet. Analog zur zweiten Steuereinheit 7 im Störungsfall steuert dann die erste Steuereinheit 5 den Pulswechselrichter 2 so an, dass dieser die elektrische Maschine 1 wechselweise in den ersten Kurzschluss-Modus und in einen zweiten Kurzschluss-Modus schaltet.

Claims

Ansprüche
Verfahren zum Betreiben einer durch einen Wechselrichter (2), insbesondere Pulswechselrichter, gesteuerten elektrischen Maschine (1), bei dem ein Kurz- schluss-Modus für die elektrische Maschine (1) dadurch realisiert wird, dass die elektrische Maschine wechselweise in einen ersten Kurzschluss-Modus und in einen zweiten Kurzschluss-Modus geschaltet wird, wobei in dem ersten Kurzschluss-Modus alle mit einem hohen Versorgungsspannungspotenti- al (T+) verbundenen Schaltelemente (3a-3c) des Wechselrichters (2) geschlossen und alle mit einem niedrigen Versorgungsspannungspotential (T-) verbundenen Schaltelemente (3d-3f) des Wechselrichters (2) geöffnet sind und in dem zweiten Kurzschluss-Modus alle mit dem hohen Versorgungsspannungspotential (T+) verbundenen Schaltelemente (3a-3c) des Wechselrichters (2) geöffnet und alle mit dem niedrigen Versorgungsspannungspotential (T-) verbundenen Schaltelemente (3d-3f) des Wechselrichters (2) geschlossen sind.
Verfahren nach Anspruch 1 , wobei mit einer vorgebbaren Umschalt-Frequenz zwischen dem ersten und dem zweiten Kurzschluss-Modus gewechselt wird.
Verfahren nach Anspruch 2, wobei die Umschalt-Frequenz in Abhängigkeit von einem thermischen Verhalten mindestens einer zu schützenden Baugruppe vorgegeben wird.
Verfahren nach Anspruch 3, wobei die Umschaltfrequenz in Abhängigkeit von einer Temperatur an mindestens einer zu schützenden Baugruppe vorgegeben wird.
Verfahren nach Anspruch 3, wobei die Umschaltfrequenz in Abhängigkeit von einer Anzahl von Nulldurchgängen von zumindest einem der Phasenströme der elektrischen Maschine (1) vorgegeben wird.
6. Vorrichtung zum Betreiben einer durch einen Wechselrichter (2), insbesondere Pulswechselrichter, gesteuerten elektrischen Maschine (1) mit einer Steu- ereinheit (5; 7), welche den Wechselrichter (2) zur Realisierung eines Kurz- schluss-Modus für die elektrische Maschine (1) so ansteuert, dass dieser die elektrische Maschine (1) wechselweise in einen ersten Kurzschluss-Modus und in einen zweiten Kurzschluss-Modus schaltet, wobei in dem ersten Kurz- schluss-Modus alle mit einem hohen Versorgungsspannungspotential (T+) verbundenen Schaltelemente (3a-3c) des Wechselrichters (2) geschlossen und alle mit einem niedrigen Versorgungsspannungspotential (T-) verbundenen Schaltelemente (3d-3f) des Wechselrichters (2) geöffnet sind und in dem zweiten Kurzschluss-Modus alle mit dem hohen Versorgungsspannungspo- tential (T+) verbundenen Schaltelemente (3a-3c) des Wechselrichters (2) geöffnet und alle mit dem niedrigen Versorgungsspannungspotential (T-) verbundenen Schaltelemente (3d-3f) des Wechselrichters (2) geschlossen sind.
Vorrichtung nach Anspruch 6, wobei eine Sensorik (1 1a-1 1c) zum Erfassen einer das thermische Verhalten mindestens einer zu schützenden Baugruppe charakterisierenden Größe vorgesehen ist und die Steuereinheit (5; 7) eine Umschaltfrequenz zwischen dem ersten und dem zweiten Kurzschluss- Modus in Abhängigkeit von dem thermischen Verhalten der mindestens einen zu schützenden Baugruppe einstellt.
Vorrichtung nach einem der Ansprüche 6 oder 7, wobei eine zweite Steuereinheit (7), welche den Wechselrichter (2) im Falle einer Störung steuert, separat von einer ersten Steuereinheit (5) realisiert ist, welche den Wechselrichter (2) im Normalbetrieb steuert.
PCT/EP2011/067036 2010-12-02 2011-09-29 Verfahren und vorrichtung zum betreiben einer durch einen wechselrichter gesteuerten elektrischen maschine im falle einer störung WO2012072311A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010062334A DE102010062334A1 (de) 2010-12-02 2010-12-02 Verfahren und Vorrichtung zum Betreiben einer durch einen Wechselrichter gesteuerten elektrischen Maschine im Falle einer Störung
DE102010062334.2 2010-12-02

Publications (1)

Publication Number Publication Date
WO2012072311A1 true WO2012072311A1 (de) 2012-06-07

Family

ID=44719989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/067036 WO2012072311A1 (de) 2010-12-02 2011-09-29 Verfahren und vorrichtung zum betreiben einer durch einen wechselrichter gesteuerten elektrischen maschine im falle einer störung

Country Status (2)

Country Link
DE (1) DE102010062334A1 (de)
WO (1) WO2012072311A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9093929B2 (en) 2012-12-17 2015-07-28 Infineon Technologies Ag Circuit arrangements and methods for operating an electrical machine
CN111602330A (zh) * 2018-01-15 2020-08-28 罗伯特·博世有限公司 用于电动机的电子短路制动装置
JP2020537861A (ja) * 2017-10-12 2020-12-24 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフトZf Friedrichshafen Ag 電気機械の安全な状態

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014214639A1 (de) * 2014-07-25 2016-01-28 Robert Bosch Gmbh Verfahren zum Betreiben einer zumindest generatorisch betreibbaren elektrischen Maschine und Mittel zu dessen Implementierung
DE102015208302A1 (de) 2014-07-25 2016-01-28 Robert Bosch Gmbh Verfahren zum Betreiben einer zumindest generatorisch betreibbaren elektrischen Maschine und Mittel zu dessen Implementierung
DE102018209243A1 (de) 2018-06-11 2019-12-12 Audi Ag Antriebssystem für ein Fahrzeug
DE102019218881A1 (de) * 2019-12-04 2021-06-10 Zf Friedrichshafen Ag Verfahren zum Abschalten einer durch einen Wechselrichter angesteuerten elektrischen Maschine im Falle einer Störung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1655829A2 (de) * 2004-11-04 2006-05-10 Diehl AKO Stiftung & Co. KG Schaltungsanordnung und Verfahren zur Steuerung eines Elektromotors, insbesondere einer Waschmaschine
DE102006003254A1 (de) 2006-01-24 2007-07-26 Robert Bosch Gmbh Verfahren zum Abschalten einer elektrischen Maschine im Falle einer Störung
US20080116840A1 (en) * 2006-11-20 2008-05-22 Brian Welchko Pwm pattern sequence to reduce losses in voltage source inverters
KR100887843B1 (ko) * 2007-10-04 2009-03-09 현대자동차주식회사 하이브리드 차량용 인버터의 캐패시터 보호 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1655829A2 (de) * 2004-11-04 2006-05-10 Diehl AKO Stiftung & Co. KG Schaltungsanordnung und Verfahren zur Steuerung eines Elektromotors, insbesondere einer Waschmaschine
DE102006003254A1 (de) 2006-01-24 2007-07-26 Robert Bosch Gmbh Verfahren zum Abschalten einer elektrischen Maschine im Falle einer Störung
US20080116840A1 (en) * 2006-11-20 2008-05-22 Brian Welchko Pwm pattern sequence to reduce losses in voltage source inverters
KR100887843B1 (ko) * 2007-10-04 2009-03-09 현대자동차주식회사 하이브리드 차량용 인버터의 캐패시터 보호 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9093929B2 (en) 2012-12-17 2015-07-28 Infineon Technologies Ag Circuit arrangements and methods for operating an electrical machine
JP2020537861A (ja) * 2017-10-12 2020-12-24 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフトZf Friedrichshafen Ag 電気機械の安全な状態
JP7189946B2 (ja) 2017-10-12 2022-12-14 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフト 電気機械の安全な状態
CN111602330A (zh) * 2018-01-15 2020-08-28 罗伯特·博世有限公司 用于电动机的电子短路制动装置

Also Published As

Publication number Publication date
DE102010062334A1 (de) 2012-06-06

Similar Documents

Publication Publication Date Title
EP2516198B1 (de) Verfahren zur fehlererkennung bei einer durch einen wechselrichter angesteuerten elektrischen maschine in einem kraftfahrzeug und vorrichtung zur überwachung eines betriebs der elektrischen maschine
EP2893604B1 (de) Betriebszustandsschaltung für wechselrichter und verfahren zum einstellen von betriebszuständen eines wechselrichters
EP1980015B1 (de) Verfahren zum abschalten einer elektrischen maschine im falle einer störung
EP2588340B1 (de) Verfahren zum betrieb eines antriebsaggregates in einem kraftfahrzeug mit einer mindestens dreiphasigen elektrischen maschine und steuergerät für einen wechselrichter
WO2012072311A1 (de) Verfahren und vorrichtung zum betreiben einer durch einen wechselrichter gesteuerten elektrischen maschine im falle einer störung
EP2697094B1 (de) Steuereinrichtung und verfahren zum betrieb einer durch einen wechselrichter angesteuerten elektrischen maschine
EP2480426B1 (de) Wechselrichter für eine elektrische maschine und verfahren zum betreiben eines wechselrichters für eine elektrische maschine
DE102011081173A1 (de) Betriebszustandsschaltung für Wechselrichter und Verfahren zum Einstellen von Betriebszuständen eines Wechselrichters
WO2012048939A2 (de) Verfahren zum überwachen des ladebetriebs eines energiespeichers in einem fahrzeug und ladesystem zum laden eines energiespeichers in einem fahrzeug
EP3083321B1 (de) Vorrichtung und verfahren zum betreiben einer elektrischen maschine
EP3449557B1 (de) Wechselrichteranordnung, elektrisches antriebssystem und verfahren zum entladen eines zwischenkreiskondensators in einer wechselrichteranordnung
WO2015090746A1 (de) Sicherheitsschaltungsanordnung für eine elektrische antriebseinheit
DE112017000287T5 (de) Invertervorrichtung
WO2012103993A1 (de) Verfahren und vorrichtung zum kalibrieren mindestens eines stromsensors
EP2552727B1 (de) Wechselrichter für eine elektrische maschine und verfahren zum betreiben eines wechselrichters für eine elektrische maschine
WO2010046156A1 (de) Verfahren zum betreiben einer elektrischen dreh- oder wanderfeldmaschine
DE102019210926A1 (de) Verfahren und Steuergerät zum Kurzschließen von zumindest zwei Phasen einer elektrischen Maschine eines Fahrzeugs
WO2012072317A1 (de) Wechselrichteranordnung und verfahren zum detektieren eines brückenkurzschlusses in einem halbbrückenzweig eines wechselrichters
EP3075593B1 (de) Verfahren zum entladen eines elektrischen energiespeichers eines kraftfahrzeugs
DE102016202169A1 (de) Betreiben einer Anordnung aus generatorisch betriebener elektrischer Maschine und aktivem Brückengleichrichter
EP3172831A1 (de) Verfahren zum betreiben einer zumindest generatorisch betreibbaren elektrischen maschine und mittel zu dessen implementierung
DE102015202912B3 (de) Verfahren und Vorrichtung zum Ansteuern eines aktiven Brückengleichrichters bei Aufhebung eines Phasenkurzschlusses
DE102022113207A1 (de) Wechselrichtervorrichtung
DE102021129144A1 (de) Verfahren zum Betreiben einer elektrischen Schaltungsanordnung, elektrische Schaltung und Kraftfahrzeug
DE102014219923A1 (de) Verfahren zum Betreiben einer Anordnung mit elektrischer Maschine und aktivem Umrichter, Anordnung und Mittel zur Implementierung des Verfahrens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11763690

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 11763690

Country of ref document: EP

Kind code of ref document: A1