WO2012070917A2 - Ofdm receiver capable of receiving a single carrier transmission signal to which guard intervals are added, and receiving method therefor - Google Patents

Ofdm receiver capable of receiving a single carrier transmission signal to which guard intervals are added, and receiving method therefor Download PDF

Info

Publication number
WO2012070917A2
WO2012070917A2 PCT/KR2011/009096 KR2011009096W WO2012070917A2 WO 2012070917 A2 WO2012070917 A2 WO 2012070917A2 KR 2011009096 W KR2011009096 W KR 2011009096W WO 2012070917 A2 WO2012070917 A2 WO 2012070917A2
Authority
WO
WIPO (PCT)
Prior art keywords
signal
receiving
receiver
channel
fast fourier
Prior art date
Application number
PCT/KR2011/009096
Other languages
French (fr)
Korean (ko)
Other versions
WO2012070917A3 (en
Inventor
정혁구
Original Assignee
Jung Hyeok Koo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110109115A external-priority patent/KR101256864B1/en
Application filed by Jung Hyeok Koo filed Critical Jung Hyeok Koo
Publication of WO2012070917A2 publication Critical patent/WO2012070917A2/en
Publication of WO2012070917A3 publication Critical patent/WO2012070917A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Definitions

  • the present invention provides an OMD receiver capable of receiving a single carrier transmission signal in which a guard interval is added in response to a channel delay longer than a normal guard interval determined by a 1/4 to 1/8 length of a data symbol, and a method thereof. It is about.
  • Orthogonal Frequency Division Multiple (OFDM) technology is commonly used in digital audio broadcasting (DAB), digital television, wireless local area networks (WLANs), and wireless asynchronous transmission. It is widely applied to digital transmission technologies such as wireless asynchronous transfer mode (WATM).
  • DAB digital audio broadcasting
  • WLANs wireless local area networks
  • WATM wireless asynchronous transfer mode
  • the OFDM method is a multi-carrier technology in which data to be transmitted is bundled into a certain number of groups, modulated, and then converted into a time domain signal and transmitted in parallel.
  • the OFDM scheme is similar to the conventional FDM, but above all, the transmission efficiency is maintained by maintaining orthogonality between subcarriers.
  • the technical problem to be solved by the present invention is to receive a single carrier transmission signal that adds a guard interval for a channel delay longer than a normal guard interval defined by 1/4 to 1/8 length of a data symbol.
  • a time convolution method is proposed differently according to the delay of the channel length, and thus a method of securing data transmission efficiency regardless of the length of the channel delay.
  • the transmitter sets a guard interval for a certain number of signals (hereinafter, referred to as 'number of subcarriers' in the receiver).
  • the OMD receiving method for receiving a single carrier transmission signal additionally transmitted Receiving a signal received at the RF block 10 through the receiving antenna via the A / D converter 20 (S100); A first receiving step (S200) of receiving the received signal to the first receiver (30); A second receiving step (S300) of receiving the same input signal to the second receiver 40 at the same time as the first receiving step; And a selecting step (S400) of selecting a receiver having less data error in the promised preamble among the first receiver 30 and the second receiver 40, wherein the channel delay is shorter than the guard period and the channel delay. Even if the protection period is formed longer than the OS is characterized in that the performance of the receiver can be improved.
  • the first receiving step includes an A / D converter (A / D converter) for receiving a signal received from the RF block 10 through a receiving antenna.
  • a data deterministic deconvolution step (S210) performed to compensate for the influence of the channel in response to a channel delay longer than the normal guard interval in the signal received through the input 20);
  • the signal compensated in the data deterministic inverse convolution step (S210) is divided into the number of subcarriers, and after each data of each divided group signal, (number of subcarriers-1) zeros ('0') are inserted into each subcarrier in the frequency domain.
  • the second receiving step receives a signal received from an RF block through an A / D converter through a receiving antenna.
  • a channel compensation step (S330) for compensating for the channel of the signal converted into the frequency domain signal;
  • a fast Fourier inverse transforming step for outputting a received signal through a second data determining unit by inverse fast Fourier transforming to convert the signal compensated for the channel back into a time domain signal.
  • the transmitter transmits a guard interval for a certain number of signals (hereinafter, referred to as 'number of subcarriers' in the receiver).
  • 'number of subcarriers' a guard interval for a certain number of signals
  • Data received from the RF block 10 through the receiving antenna through the A / D converter 20 to compensate for the effect of the channel in response to the channel delay longer than the normal guard interval in the received signal The number of subcarriers for the signal compensated by the deterministic deconvolution section 31 and the data deterministic deconvolution section 31.
  • a first receiver 30 comprising an MRRC unit 34 for outputting a signal; Cut the channel output signal beyond the number of subcarriers to perform the process of receiving the signal received from the RF block 10 through the receiving antenna through the A / D converter 20 to compensate for the influence of the channel in the received signal
  • a channel compensator 43 for compensating for the channel of the signal converted into the frequency domain signal and a fast Fourier inverse transform to convert the signal compensated for the channel into a time domain signal again through the second data determiner 45.
  • a second receiver 40 configured as a fast Fourier inverse transform unit 44 for outputting the first and second transform units; And a receiver selector 50 which compares the preambles comparing the data errors of the first receiver 30 and the second receiver 40 to select the receivers 30 and 40 having fewer preamble errors to receive a signal.
  • the first receiver 30 and the second receiver 40 are configured in parallel to each other.
  • the present invention implements the OFDM channel compensation receiver of the second receiver in parallel to compensate for the performance improvement in the shortening and expansion method of operating as the first receiver and the disadvantage of the first receiver in which performance is degraded in a specific channel.
  • the receiver can obtain the same performance even if the transmitter transmits with less power than the conventional transceiver.
  • the channel delay is formed longer than the normal protection period, which is defined as 1/4 to 1/8 of the data symbol, there is an effect that the performance of the OMD receiver can be improved.
  • 1 is a block diagram illustrating a transmitter for transmitting a single carrier transmission signal with a guard interval added.
  • FIG. 2 is a block diagram illustrating an OMD receiver capable of receiving a single carrier transmission signal with an additional guard interval according to an embodiment of the present invention.
  • FIG. 3 illustrates the data deterministic deconvolution unit 31 of FIG. 2 and is a data deterministic deconvolution unit configured to cope with a case where a channel delay is long or short.
  • FIG. 4 is a flowchart illustrating a method of receiving an OMDDM capable of receiving a single carrier transmission signal including a guard interval according to an embodiment of the present invention.
  • FIG. 5 is a graph illustrating the performance according to the number of preamble symbols of an OMD receiver capable of receiving a single carrier transmission signal including a guard interval according to an embodiment of the present invention.
  • 1 is a block diagram illustrating a transmitter for transmitting a single carrier transmission signal with a guard interval added. First, before describing the operation of the receiver, the change in the signal of the transmitter is described to check the flow of the receiver.
  • a user signal is made as a complex symbol by the number of subcarriers and transmitted.
  • a fast Fourier inverse transformer and a fast Fourier transformer capable of processing the number of subcarriers at once are used.
  • the complex symbol generated as described above is IFFT to form a time domain signal.
  • a constant number of the last part of the time domain signal is copied and added to the beginning of the time domain signal.
  • Cyclic Prefix and a signal obtained by adding a time domain signal to a CP is called an OMD symbol.
  • ZPS Zero Padded Suffix
  • This method is also a kind of OFDM system, and in this case, the wrapping around adder 41 Separately required.
  • a GP signal is added to each signal of the number of subcarriers in a single carrier signal to make and transmit one transmission signal.
  • this signal generates a transmission signal that repeats as many subcarriers in the frequency domain, removes zero from the signal generated when IFFT is performed, and then connects the signals together to form a single carrier signal. ] To [Equation 3].
  • the symbol vectors are N - one for IFFT operation divided into N blocks, if the IFFT IFFT output is no longer zero, only the first symbol ( "0"), all of the remaining (N -1) of the output of the subsequent It becomes 0 by the property of IFFT.
  • the first symbol value is equal to the value of N repeated signals, respectively.
  • n and k Represent the indices indicating the time and frequency domain signals, respectively.
  • the final signal produced is the one you want to transmit first. It becomes a signal.
  • the transmitter becomes a signal of [Equation 3] in which a guard interval signal GP composed of a constant length zero ('0') is inserted into a signal to be transmitted.
  • FIG. 2 is a block diagram illustrating an OMD receiver capable of receiving a single carrier transmission signal including a guard interval according to an embodiment of the present invention.
  • the OMD receiver includes an RF block 10, an A / D converter 20, a first receiver 30, a second receiver 40, and a receiver. It consists of the selection part 50.
  • the first receiver 30 includes a data deterministic inverse convolution unit 31, a time domain signal recovery unit 32, a first fast Fourier transform unit 33, a maximum rate reception combiner 34, and a first The data determination unit 35,
  • the second receiver 40 is a wrapping around adder 41, a second fast Fourier transform 42, a channel compensator 43, a fast Fourier inverse transform 44, and a second data determiner 45. Configure.
  • the RF block 10 and the A / D converter 20 convert an analog signal into a digital signal through the A / D converter 20 by converting a signal received from the RF block 10 through a receiving antenna.
  • the data deterministic inverse convolution unit 31 of the first receiver 30 compensates for the influence of the channel regardless of a channel delay longer or shorter than the guard interval in the received signal.
  • the time domain signal recovery unit 32 divides the signal compensated for the influence of the channel by the data deterministic inverse convolution unit into the number of subcarriers and adds (number of subcarriers-1) zeros to each of the divided group signals. By inserting '0'), a time-domain signal of a signal repeated as many subcarriers in the frequency domain is created, and an impulse response and convolution of a channel are performed to virtually generate a time-domain signal.
  • the first fast Fourier transform unit 33 sequentially performs fast Fourier transform of the plurality of group signals restored by the time domain signal recovery unit 32.
  • the maximum rate receiving combiner 34 combines a plurality of fast Fourier transformed group signals by the first fast Fourier transform unit 33 to maximize the ratio ratio receive combining (MRRC) to determine the first data determiner 35. Output the received signal through.
  • MRRC ratio ratio receive combining
  • the wrapping around adder 41 of the second receiver 40 cuts the channel output signal beyond the number of subcarriers to compensate for the influence of the channel in the received signal, and adds the signal to the first part of the channel output to add the subcarrier. Match by number.
  • the second fast Fourier transform unit 42 converts the fast Fourier transform to convert the output signal of the wrapping around adder 41 into a frequency domain signal.
  • the channel compensator 43 compensates the channel of the signal converted into the frequency domain signal.
  • the fast Fourier inverse transform unit 44 outputs a received signal through the second data determiner 45 by performing a fast Fourier inverse transform so as to convert the signal compensated for the channel into a time domain signal.
  • the receiver selector 50 compares the preambles comparing the data errors of the first receiver 30 and the second receiver 40, selects the receivers 30 and 40 with less preamble errors, and then selects the receivers having the low error. Receive the signal.
  • the first receiver 30 and the second receiver 40 connected to the receiver selector 50 are configured in parallel, in order to compensate for the disadvantage that the shortening and expansion techniques gain only a specific channel. to be.
  • FIG. 3 relates to the data deterministic inverse convolution unit 31 of FIG. 2.
  • Equation 7 is expressed when the channel delay is longer than (protection interval + 1).
  • Data deconvolution is performed by applying 8, and data deconvolution is performed by demodulating and remodulating the data.
  • FIG. 4 is a flowchart illustrating a method of receiving OMDDM capable of receiving a single carrier transmission signal with an additional guard interval according to an embodiment of the present invention
  • FIG. 5 is a single additional guard interval according to an embodiment of the present invention.
  • a graph showing the performance according to the number of preamble symbols of the OMD receiver capable of receiving a carrier transmission signal.
  • the method of receiving an OMD die first, the A / D converter 20 converts a signal received from the RF block 10 through a reception antenna. Received through (S100).
  • the received signal is received by the first receiver 30 (S200).
  • the first receiving step S200 in which the first receiver 30 receives an input signal is performed in the following order.
  • a signal received from the RF block 10 through the receiving antenna is input through the A / D converter 20 and performed to compensate for the influence of the channel in response to a channel delay longer than a normal guard interval in the received signal.
  • the channel-compensated signal is divided into the number of subcarriers in response to a short or long channel delay, and each (number of subcarriers-1) zeros after each data of each divided group signal.
  • a process of receiving a transmission signal transmitted through a transmitter shown in FIG. 1 through a first receiver may be described as follows.
  • Equation 5 Symbol interval index of Equation 4 Omitted to express the equation, it can be expressed as [Equation 5].
  • w denotes Additive White Gaussian Noise (AWGN).
  • AWGN Additive White Gaussian Noise
  • the time domain user signal can be estimated as follows.
  • mod means symbol mapping the data bit value to a predetermined constellation to make a data symbol
  • demod means converting the symbol mapped to digital bits
  • Equation 6 the channel impulse response length M is greater than (GP + 1), which corresponds to the case of channel C (22 taps) of FIG.
  • the five symbols belong to the preamble region of the immediately preceding OFDM symbol, and using this, the first five symbols of the current OFDM symbol Can be estimated.
  • the number of AWGNs involved in the process increases by the length of the channel, and in order to prevent the propagation of errors due to sequential signal detection, Determining the signal as a digital signal has an effect of preventing the propagation of the deconvolution error.
  • the digital signal is first determined and then modulated again using the determined digital signal. If we obtain, we can obtain the IFFT output signal of the repetitive signal by adding ( N -1) zeros ('0') afterwards for each symbol. This configured signal If it can be expressed as shown in [Equation 9].
  • Virtually convolution is performed using the impulse response of the signal and the channel configured as described above, and the output beyond the subcarrier length among the results of the linear convolution is used to perform the circular convolution in the frequency domain using the result. It cuts out and adds to the front of the linear convolution.
  • the transmitted signal is a signal repeated N times. It is assumed that is transmitted.
  • the same received signal is received to the second receiver 40 at the same time as the first receiving step (S300).
  • the second receiving step S300 in which the second receiver 40 receives an input signal is performed in the following order.
  • the second receiving step (S300) receives a signal received at the RF block 10 through the receiving antenna through the A / D converter 20 and cuts the channel output signal exceeding the number of subcarriers from the received signal A wrapping around adding step S310 added to the beginning of the channel output;
  • the fast Fourier inverse transform step (S340) for outputting the received signal through the second data determiner 45 by performing a fast Fourier inverse transform to convert the signal compensated for the channel back to a time domain signal.
  • a receiver having less data error in the promised preamble is selected among the first receiver 20 and the second receiver 30 (S400).
  • the detection error of the short-duplex transmission technique tends to propagate due to the error propagation characteristic of the deconvolution, so it is accurate to detect the error detecting position at the end of the OFDM symbol.
  • the performance difference is as shown in FIG.
  • a and C refer to HiperLAN / 2 channels A and C, respectively. In case of A, the channel delay is smaller than the guard interval, and in case of C, the channel delay is longer than the guard interval.
  • the gain means that the transmit power can be reduced to achieve the same performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

The present invention relates to an OFDM receiver capable of receiving a single carrier transmission signal to which guard intervals are added, and to a receiving method therefor. More particularly, the present invention relates to an OFDM receiving method capable of receiving a single carrier transmission signal to which guard intervals are added, wherein the OFDM receiving method involves receiving a single carrier transmission signal to which a transmitter adds guard intervals at every predetermined number of signals (hereinafter, "number of sub-carriers" in a receiver) in response to a channel delay longer than a general guard interval, wherein the OFDM receiving method comprises: a step (S100) of taking, as an input through an A/D converter (20), a signal received in an RF block (10) via a receiving antenna; a first receiving step (S200) of receiving the input signal by a first receiver (30); a second receiving step (S300) of receiving the same input signal by a second receiver (40) simultaneously with the first receiving step (S200); and a selecting step (S400) of selecting either the first receiver (30) or the second receiver (40) which has less data errors in an agreed preamble. Thus, the receiving performance of the OFDM receiver can be improved even when a channel delay is shorter or longer than a guard interval. Particularly, the present invention relates to a method for performing data-decoding in response to a channel delay longer than a general guard interval having 1/4 to 1/8 of the length of a data symbol.

Description

보호구간을 추가한 단일 반송파 송신 신호를 수신할 수 있는 오에프디엠 수신기 및 그 수신방법UFDM receiver capable of receiving single carrier transmission signal with guard interval and receiving method
본 발명은 데이터 심볼의 1/4~1/8 길이로 정해지는 통상의 보호구간보다 긴 채널지연에 대응하여 보호구간을 추가한 단일 반송파 송신 신호를 수신할 수 있는 오에프디엠 수신기 및 그 수신방법에 관한 것이다.The present invention provides an OMD receiver capable of receiving a single carrier transmission signal in which a guard interval is added in response to a channel delay longer than a normal guard interval determined by a 1/4 to 1/8 length of a data symbol, and a method thereof. It is about.
일반적으로 직교주파수분할다중(Orthogonal Frequency Division Multiple: 이하 'OFDM'이라 함) 기술은 디지털 오디오 방송(Digital Audio Broadcasting: DAB)과 디지털 텔레비전, 무선 근거리 통신망(Wireless Local Area Network: WLAN) 그리고 무선 비동기 전송 모드(Wireless Asynchronous Transfer Mode: WATM) 등의 디지털 전송 기술에 광범위하게 적용 되고 있다.Orthogonal Frequency Division Multiple (OFDM) technology is commonly used in digital audio broadcasting (DAB), digital television, wireless local area networks (WLANs), and wireless asynchronous transmission. It is widely applied to digital transmission technologies such as wireless asynchronous transfer mode (WATM).
OFDM 방식은 전송하려는 데이터를 일정한 개수의 그룹으로 묶어서 변조한 후 시간영역 신호로 변환하여 병렬로 전송하는 다중 반송파 기술이다. OFDM 방식은 종래의 FDM과 비슷하나 무엇보다도 부반송파 간의 직교성을 유지하여 전송함으로써 고속 데이터 전송 시 최적의 전송 효율을 얻을 수 있는 특징을 갖는다.The OFDM method is a multi-carrier technology in which data to be transmitted is bundled into a certain number of groups, modulated, and then converted into a time domain signal and transmitted in parallel. The OFDM scheme is similar to the conventional FDM, but above all, the transmission efficiency is maintained by maintaining orthogonality between subcarriers.
그러나, 종래의 단일 반송파 송수신 시스템 및 오에프디엠 시스템에서는 영('0')단축 및 영('0')복원 기술이 적용되지 않음으로 인해 전송 효율이 낮은 단점이 있으며, 특히 통상의 보호구간보다 긴 채널지연에 경우에는 데이터 복호오류가 큰 경향이 있으므로 전송효율이 낮은 단점이 있다.However, in the conventional single carrier transmission and reception system and the FM system, since zero (0) reduction and zero (0) restoration techniques are not applied, the transmission efficiency is low. In the case of a long channel delay, data decoding error tends to be large, resulting in low transmission efficiency.
따라서 본 발명이 해결하고자 하는 기술적 과제는 데이터 심볼의 1/4~1/8길이로 정해지는 통상의 보호구간보다 긴 채널지연에 대하여 "보호구간을 추가한 단일 반송파 송신 신호를 수신할 수 있는 오에프디엠 수신기 및 그 수신방법"이 성능이 열화되는 것을 극복하기 위하여 시간 컨벌루션 방법을 채널 길이의 지연에 따라 각각 다르게 제안하여 채널 지연의 길이에 무관하게 데이터 전송효율을 확보하는 방법에 관한 것이다.Therefore, the technical problem to be solved by the present invention is to receive a single carrier transmission signal that adds a guard interval for a channel delay longer than a normal guard interval defined by 1/4 to 1/8 length of a data symbol. In order to overcome the deterioration of the performance of the FDM receiver and its reception method, a time convolution method is proposed differently according to the delay of the channel length, and thus a method of securing data transmission efficiency regardless of the length of the channel delay.
본 발명의 한 특징에 따른 보호구간을 추가한 단일 반송파 송신 신호를 수신할 수 있는 오에프디엠 수신방법은 송신기가 일정 개수의 신호(이하, 수신기에서는 ‘부반송파 개수’라 칭한다.)마다 보호구간을 추가하여 송신하는 단일 반송파 송신 신호를 수신하는 오에프디엠 수신방법에 있어서,수신안테나를 통해 RF블록(10)에서 수신된 신호를 A/D변환기(20)를 통해 입력 받는 단계(S100)와; 상기 입력 받은 신호를 제1 수신기(30)로 수신하는 제1 수신단계(S200)와; 상기 제1 수신단계와 동시에 동일한 입력 받은 신호를 제2 수신기(40)로 수신하는 제2 수신단계(S300); 및 상기 제1 수신기(30)와 제2 수신기(40) 중 약속된 프리앰블 내의 데이터 오류가 적은 수신기를 선택하는 선택단계(S400)로 이루어지되, 채널지연이 보호구간보다 짧게 형성되는 경우 및 채널지연이 보호구간보다 길게 형성되는 경우에도 오에프디엠 수신기의 성능 개선이 가능한 것을 특징으로 한다.In the method of receiving OMD receiver capable of receiving a single carrier transmission signal with an additional guard interval according to an aspect of the present invention, the transmitter sets a guard interval for a certain number of signals (hereinafter, referred to as 'number of subcarriers' in the receiver). In the OMD receiving method for receiving a single carrier transmission signal additionally transmitted, Receiving a signal received at the RF block 10 through the receiving antenna via the A / D converter 20 (S100); A first receiving step (S200) of receiving the received signal to the first receiver (30); A second receiving step (S300) of receiving the same input signal to the second receiver 40 at the same time as the first receiving step; And a selecting step (S400) of selecting a receiver having less data error in the promised preamble among the first receiver 30 and the second receiver 40, wherein the channel delay is shorter than the guard period and the channel delay. Even if the protection period is formed longer than the OS is characterized in that the performance of the receiver can be improved.
상기 특징에 따른 보호구간을 추가한 단일 반송파 송신 신호를 수신할 수 있는 오에프디엠 수신방법에서, 상기 제1 수신단계는 수신 안테나를 통해 RF 블록(10)에서 수신된 신호를 A/D변환기(20)를 통해 입력 받아 수신된 신호에서 통상의 보호구간보다 긴 채널 지연에 대응하여 채널의 영향을 보상하기 위해 수행하는 데이터 결정적 역컨벌루션(Deconvolution) 단계(S210)와; 상기 데이터 결정적 역컨벌루션단계(S210)에서 보상한 신호를 부반송파 개수로 분할하고 분할된 각 그룹신호의 각 데이터 뒤에 각각 (부반송파 개수-1)개의 영(‘0’)들을 삽입하여 주파수 영역에서 부반송파 개수만큼 반복한 신호의 시간 영역 신호를 만들고 채널의 임펄스 응답과 컨벌루션을 수행하여 가상적으로 시간영역 신호를 만드는 시간영역신호 복원단계(S220)와; 상기 시간영역신호 복원단계(S220)에서 복원된 복수의 그룹신호를 차례로 빠른 푸리에 변환하는 제1 빠른 푸리에 변환(FFT)단계(S230)와;상기 빠른 푸리에 변환(FFT)단계(S230)에서 빠른 푸리에 변환된 복수의 그룹신호를 MRRC(Maximum Ratio Receive Combining) 결합하여 제1 데이터 결정부를 통해서 수신신호를 출력하는 최대 율 수신결합 단계(S240)로 이루어지는 것을 특징으로 한다.In the OMD receiving method capable of receiving a single carrier transmission signal including a guard interval according to the feature, the first receiving step includes an A / D converter (A / D converter) for receiving a signal received from the RF block 10 through a receiving antenna. A data deterministic deconvolution step (S210) performed to compensate for the influence of the channel in response to a channel delay longer than the normal guard interval in the signal received through the input 20); The signal compensated in the data deterministic inverse convolution step (S210) is divided into the number of subcarriers, and after each data of each divided group signal, (number of subcarriers-1) zeros ('0') are inserted into each subcarrier in the frequency domain. A time domain signal restoration step (S220) of making a time domain signal of the repeated signal as much as possible and performing a convolution with an impulse response of a channel to virtually create a time domain signal; A first fast Fourier transform (FFT) step (S230) of sequentially fast Fourier transforming the plurality of group signals restored in the time domain signal restoration step (S220); and a fast Fourier transform (FFT) step (S230) The maximum ratio reception combining step (S240) of combining the plurality of converted group signals by MRRC (Maximum Ratio Receive Combining) and outputting the received signal through the first data determination unit.
상기 특징에 따른 보호구간을 추가한 단일 반송파 송신 신호를 수신할 수 있는 오에프디엠 수신방법에서, 상기 제2 수신단계는 수신안테나를 통해 RF 블록에서 수신된 신호를 A/D변환기를 통해 입력 받아 수신된 신호에서 부반송파 개수를 넘어가는 채널 출력신호를 잘라내어 채널 출력의 처음부분에 더하는 랩핑 어라운드 추가단계(S310)와; 상기 랩핑 어라운드 추가단계의 출력신호를 주파수 영역 신호로 변환하도록 빠른 푸리에 변환하는 제2 빠른 푸리에 변환단계(S320)와; 상기 주파수 영역신호로 변환된 신호의 채널을 보상하는 채널 보상단계(S330)와; 상기 채널을 보상한 신호를 다시 시간 영역신호로 변환하도록 빠른 푸리에 역변환하여 제2 데이터 결정부를 통해서 수신신호를 출력하는 빠른 푸리에 역변환단계(S340);로 이루어지는 것을 특징으로 한다.In the OMD receiving method capable of receiving a single carrier transmission signal added with a guard interval according to the feature, the second receiving step receives a signal received from an RF block through an A / D converter through a receiving antenna. A wrapping around adding step (S310) of cutting out the channel output signal exceeding the number of subcarriers from the received signal and adding it to the beginning of the channel output; A second fast Fourier transforming step (S320) for fast Fourier transforming to convert the output signal of the wrapping around adding step into a frequency domain signal; A channel compensation step (S330) for compensating for the channel of the signal converted into the frequency domain signal; And a fast Fourier inverse transforming step (S340) for outputting a received signal through a second data determining unit by inverse fast Fourier transforming to convert the signal compensated for the channel back into a time domain signal.
본 발명의 또 다른 특징에 따른 보호구간을 추가한 단일 반송파 송신 신호를 수신할 수 있는 오에프디엠 수신기는 송신기가 일정 개수의 신호(이하, 수신기에서는 ‘부반송파 개수’라 칭한다.)마다 보호구간을 추가하여 송신하는 단일 반송파 송신 신호를 수신하는 오에프디엠 수신기에 있어서,In the OMD receiver capable of receiving a single carrier transmission signal with an additional guard interval according to another aspect of the present invention, the transmitter transmits a guard interval for a certain number of signals (hereinafter, referred to as 'number of subcarriers' in the receiver). In the OMD receiver receiving a single carrier transmission signal to be transmitted further,
수신 안테나를 통해 RF블록(10)에서 수신된 신호를 A/D변환기(20)를 통해 입력 받아 수신된 신호에서 통상의 보호구간보다 긴 채널지연에 대응하여 채널의 영향을 보상하기 위하여 수행하는 데이터 결정적 역컨벌루션(Deconvolution)부(31)와, 상기 데이터 결정적 역컨벌루션부(31)에서 보상한 신호를 부반송파 개수Data received from the RF block 10 through the receiving antenna through the A / D converter 20 to compensate for the effect of the channel in response to the channel delay longer than the normal guard interval in the received signal The number of subcarriers for the signal compensated by the deterministic deconvolution section 31 and the data deterministic deconvolution section 31.
로 분할하고 분할된 복수의 각 그룹신호의 데이터 뒤에 각각 (부반송파 개수-1)개의 영(‘0’)들을 삽입하여 주파수 영역에서 부반송파 개수만큼 반복한 신호의 시간영역신호를 만들고 채널의 임펄스 응답과 컨벌루션을 수행하여 가상적으로 시간영역 신호를 만드는 시간영역신호 복원부(32)와, 상기 시간영역신호 복원부(32)에서 복원된 복수의 그룹신호를 차례로 빠른 푸리에 변환하는 제1 빠른 푸리에 변환부(FFT)(33), 및 상기 제1 빠른 푸리에 변환부(FFT)(33)에서 빠른 푸리에 변환된 복수의 그룹신호를 MRRC(Maximum Ratio Receive Combining) 결합하여 제1 데이터 결정부(35)를 통해서 수신신호를 출력하는 MRRC부(34)로 구성하는 제1 수신부(30)와; 수신안테나를 통해 RF블록(10)에서 수신된 신호를 A/D변환기(20)를 통해 입력받아 수신된 신호에서 채널의 영향을 보상하는 과정을 수행하도록 부반송파 개수를 넘어가는 채널 출력신호를 잘라내어 채널 출력의 맨 처음부분에 더하는 랩핑 어라운드 추가부(41)와, 상기 랩핑 어라운드 추가부(41)의 출력신호를 주파수 영역신호로 변환하도록 빠른 푸리에 변환하는 제2 빠른 푸리에 변환부(42)와, 상기 주파수 영역신호로 변환된 신호의 채널을 보상하는 채널 보상부(43)와, 상기 채널을 보상한 신호를 다시 시간 영역신호로 변환하도록 빠른 푸리에 역변환하여 제2 데이터 결정부(45)를 통해서 수신신호를 출력하는 빠른 푸리에 역변환부(44)로 구성하는 제2 수신부(40); 및 상기 제1 수신부(30)와 제2 수신부(40)의 데이터 오류를 비교하는 프리앰블을 비교하여 프리앰블 오류가 적은 수신부(30, 40)를 선택하여 신호를 수신하는 수신기 선택부(50);로 구성하되, 상기 제1 수신부(30)와 제2 수신부 (40)는 서로 병렬구조로 구성하는 것을 특징으로 한다.After subdivided into each of the divided group signals, (0 subcarriers-1) zeros ('0') are inserted to create a time-domain signal of a signal repeated as many subcarriers in the frequency domain, and the impulse response and A time domain signal recovery unit 32 that performs a convolution and virtually generates a time domain signal, and a first fast Fourier transform unit that performs fast Fourier transform of a plurality of group signals restored by the time domain signal recovery unit 32 in sequence ( FFT) 33 and a plurality of fast Fourier transformed group signals in the first fast Fourier transform unit (FFT) 33 are combined by MRRC (Maximum Ratio Receive Combining) to receive them through the first data determiner 35. A first receiver 30 comprising an MRRC unit 34 for outputting a signal; Cut the channel output signal beyond the number of subcarriers to perform the process of receiving the signal received from the RF block 10 through the receiving antenna through the A / D converter 20 to compensate for the influence of the channel in the received signal A wrapping around adder 41 for adding to the beginning of the output, a second fast Fourier transform 42 for fast Fourier transforming to convert the output signal of the wrapping around adder 41 into a frequency domain signal, and A channel compensator 43 for compensating for the channel of the signal converted into the frequency domain signal and a fast Fourier inverse transform to convert the signal compensated for the channel into a time domain signal again through the second data determiner 45. A second receiver 40 configured as a fast Fourier inverse transform unit 44 for outputting the first and second transform units; And a receiver selector 50 which compares the preambles comparing the data errors of the first receiver 30 and the second receiver 40 to select the receivers 30 and 40 having fewer preamble errors to receive a signal. The first receiver 30 and the second receiver 40 are configured in parallel to each other.
이러한 본 발명의 특징에 따르면,According to this feature of the invention,
본 발명은 제 1 수신기로 동작하는 단축 및 확장 방법에서의 성능 개선효과와 특정 채널에서 성능이 열화되는 제 1수신기의 단점을 보완하는 제 2 수신기의 OFDM 채널 보상 수신기를 병렬로 구현하여 두 수신기중 성능이 좋은 수신기의 수신 데이터를 선택적으로 사용하도록 하여 종래의 송수신기와 비교하여 송신기에서 적은 전력으로 송신하여도 수신기에서는 동일한 성능을 얻을 수 있도록 하는 효과가 있다.The present invention implements the OFDM channel compensation receiver of the second receiver in parallel to compensate for the performance improvement in the shortening and expansion method of operating as the first receiver and the disadvantage of the first receiver in which performance is degraded in a specific channel. By selectively using the received data of the receiver having good performance, the receiver can obtain the same performance even if the transmitter transmits with less power than the conventional transceiver.
또한, 채널 지연이 데이터 심볼의 1/4~1/8 길이로 정해지는 통상의 보호구간보다 길게 형성되는 경우에도 오에프디엠 수신기의 성능 개선이 가능하다는 효과가 있다.In addition, even if the channel delay is formed longer than the normal protection period, which is defined as 1/4 to 1/8 of the data symbol, there is an effect that the performance of the OMD receiver can be improved.
도 1은 보호구간을 추가한 단일 반송파 송신신호를 송신하는 송신기를 나타낸 블록도이다.1 is a block diagram illustrating a transmitter for transmitting a single carrier transmission signal with a guard interval added.
도 2는 본 발명의 실시 예에 따른 보호구간을 추가한 단일 반송파 송신 신호를 수신할 수 있는 오에프디엠 수신기를 나타낸 블록도이다.2 is a block diagram illustrating an OMD receiver capable of receiving a single carrier transmission signal with an additional guard interval according to an embodiment of the present invention.
도 3은 도 2의 데이터 결정적 역컨벌루션부(31)에 관한 것으로 채널지연이 긴 경우와 짧은 경우에 대응할 수 있도록 구성된 데이터 결정적 역컨벌루션부이다.3 illustrates the data deterministic deconvolution unit 31 of FIG. 2 and is a data deterministic deconvolution unit configured to cope with a case where a channel delay is long or short.
도 4는 본 발명의 실시 예에 따른 보호구간을 추가한 단일 반송파 송신 신호를 수신할 수 있는 오에프디엠 수신방법을 나타낸 흐름도이다.4 is a flowchart illustrating a method of receiving an OMDDM capable of receiving a single carrier transmission signal including a guard interval according to an embodiment of the present invention.
도 5는 본 발명의 실시 예에 따른 보호구간을 추가한 단일 반송파 송신 신호를 수신할 수 있는 오에프디엠 수신기의 프리앰블 심볼 수에 따른 성능을 나타낸 그래프이다.FIG. 5 is a graph illustrating the performance according to the number of preamble symbols of an OMD receiver capable of receiving a single carrier transmission signal including a guard interval according to an embodiment of the present invention.
도 1은 보호구간을 추가한 단일 반송파 송신신호를 송신하는 송신기를 나타낸 블록도이다. 먼저, 수신기의 동작을 설명하기 전에 송신기의 신호 변화를 설명하여 수신기의 흐름을 확인한다.1 is a block diagram illustrating a transmitter for transmitting a single carrier transmission signal with a guard interval added. First, before describing the operation of the receiver, the change in the signal of the transmitter is described to check the flow of the receiver.
오에프디엠 시스템의 기저대역에서는 사용자 신호를 부반송파 개수만큼 복소수 심볼로 만들어서 전송하게 되며, 이때 부반송파 개수를 한번에 처리할 수 있는 빠른 푸리에 역변환기와 빠른 푸리에 변화기를 사용하게 된다. 통상 이렇게 생성되는 복소수 심볼을 IFFT하여 시간 영역 신호로 만드는데, 이렇게 만들어진 시간 영역 신호의 마지막 부분의 일정한 개수를 복사하여 시간영역 신호의 맨 앞부분에 추가하는데 이렇게 복사한 부분을 사이크릭 프레픽스(CP;Cyclic Prefix)라 부르고 CP에 시간 영역 신호를 합한 신호를 오에프디엠 심볼이라고 한다. 여기서, 상기 CP가 GP신호라고 말하는 0이 일정한 개수로 계속된 신호로 대치되는 경우에는 ZPS(Zero Padded Suffix) OFDM 이라 부르고, 이 방식 또한 OFDM 시스템의 일종이며 이 경우 랩핑 어라운드 추가부(41)가 별도로 필요하다.In the baseband of the OMD system, a user signal is made as a complex symbol by the number of subcarriers and transmitted. At this time, a fast Fourier inverse transformer and a fast Fourier transformer capable of processing the number of subcarriers at once are used. Normally, the complex symbol generated as described above is IFFT to form a time domain signal. A constant number of the last part of the time domain signal is copied and added to the beginning of the time domain signal. Cyclic Prefix) and a signal obtained by adding a time domain signal to a CP is called an OMD symbol. In this case, when the CP, which is called the GP signal, is replaced with a signal having a constant number, it is called ZPS (Zero Padded Suffix) OFDM. This method is also a kind of OFDM system, and in this case, the wrapping around adder 41 Separately required.
본 발명의 실시 예에서는 단일 반송파 신호에서 부반송파 개수의 신호마다 GP 신호를 첨가하여 하나의 전송 신호를 만들어 전송하게 된다.In an embodiment of the present invention, a GP signal is added to each signal of the number of subcarriers in a single carrier signal to make and transmit one transmission signal.
특별히, 이 신호는 주파수 영역에서 부반송파 개수만큼 반복하는 전송신호를 만들고, 이것을 IFFT 하였을 때 생성되는 신호에서 0을 제거한 후 신호들을 모두 연결하여 만들어지는 신호가 바로 단일 반송파 신호와 같다는 것을 [수학식 1] 내지 [수학식 3]으로 증명한다.In particular, this signal generates a transmission signal that repeats as many subcarriers in the frequency domain, removes zero from the signal generated when IFFT is performed, and then connects the signals together to form a single carrier signal. ] To [Equation 3].
먼저,
Figure PCTKR2011009096-appb-I000001
-번째 심볼 구간에 전송되는 N-차원의 OFDM 심볼을
Figure PCTKR2011009096-appb-I000002
라고 가정하자.
first,
Figure PCTKR2011009096-appb-I000001
N -dimensional OFDM symbols transmitted in the -th symbol period
Figure PCTKR2011009096-appb-I000002
Assume that
수학식 1
Figure PCTKR2011009096-appb-M000001
Equation 1
Figure PCTKR2011009096-appb-M000001
이때, 심볼들을 반복하여 구성한
Figure PCTKR2011009096-appb-I000003
, 심볼 벡터는 N-개의 IFFT 연산을 위해서 N개의 블록으로 나누고,IFFT를 하면 IFFT 출력은 첫 번째 심볼만 영('0')이 아니게 되고, 그 이후의 나머지 (N-1)개의 출력은 모두 IFFT의 성질에 의하여 0이 된다.
At this time, repeated symbols
Figure PCTKR2011009096-appb-I000003
, The symbol vectors are N - one for IFFT operation divided into N blocks, if the IFFT IFFT output is no longer zero, only the first symbol ( "0"), all of the remaining (N -1) of the output of the subsequent It becomes 0 by the property of IFFT.
또한, 그 첫 번째 심볼 값은 각각 N개의 반복된 신호의 값과 같게 된다.Also, the first symbol value is equal to the value of N repeated signals, respectively.
수학식 2
Figure PCTKR2011009096-appb-M000002
Equation 2
Figure PCTKR2011009096-appb-M000002
이때,
Figure PCTKR2011009096-appb-I000004
Figure PCTKR2011009096-appb-I000005
은 각각
Figure PCTKR2011009096-appb-I000006
-번째 심볼 구간의 시간 및 주파수 영역 신호를 각각 의미하고, nk
Figure PCTKR2011009096-appb-I000007
각각 시간 및 주파수 영역신호를 가리키는 인덱스를 나타낸다.
At this time,
Figure PCTKR2011009096-appb-I000004
and
Figure PCTKR2011009096-appb-I000005
Are each
Figure PCTKR2011009096-appb-I000006
Mean time and frequency domain signals in the -th symbol interval, and n and k
Figure PCTKR2011009096-appb-I000007
Represent the indices indicating the time and frequency domain signals, respectively.
상기 [수학식2]에서 생성된 0은 데이터 전송을 하지 않는 것을 의미하여 낭비 요인으로 볼 수 있으므로 제거한다. The zero generated in [Equation 2] means not transmitting data, and thus can be regarded as a waste factor and thus removed.
그리고, 나머지 영('0')이 아닌 심볼들을 모두 연결하면, 만들어지는 최종 신호는 바로 처음에 전송하고자 했던
Figure PCTKR2011009096-appb-I000008
신호가 된다.
And, if you connect all the remaining non-zero symbols, the final signal produced is the one you want to transmit first.
Figure PCTKR2011009096-appb-I000008
It becomes a signal.
따라서, 송신기에서는 전송하고자 했던 신호에 일정한 길이의 영('0')으로 구성되는 보호구간 신호 GP를 삽입한 [수학식 3]의 신호가 된다. Therefore, the transmitter becomes a signal of [Equation 3] in which a guard interval signal GP composed of a constant length zero ('0') is inserted into a signal to be transmitted.
수학식 3
Figure PCTKR2011009096-appb-M000003
Equation 3
Figure PCTKR2011009096-appb-M000003
이하, 본 발명의 바람직한 실시 예를 첨부한 도면을 참고로 하여 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described in detail.
도 2은 본 발명의 실시 예에 따른 보호구간을 추가한 단일 반송파 송신 신호를 수신할 수 있는 오에프디엠 수신기를 나타낸 블록도이다. 2 is a block diagram illustrating an OMD receiver capable of receiving a single carrier transmission signal including a guard interval according to an embodiment of the present invention.
도 2에 도시한 바와 같이, 본 발명의 실시 예에 따른 오에프디엠 수신기는 RF블록(10), A/D변환기(20), 제1 수신부(30), 제2 수신부(40), 및 수신기 선택부(50)로 구성한다. As shown in FIG. 2, the OMD receiver according to an embodiment of the present invention includes an RF block 10, an A / D converter 20, a first receiver 30, a second receiver 40, and a receiver. It consists of the selection part 50.
여기서, 상기 제1 수신부(30)는 데이터 결정적 역컨벌루션부(31), 시간영역신호 복원부(32), 제1 빠른 푸리에 변환부(33), 최대 율 수신 결합부(34), 및 제1 데이터 결정부(35)로 구성하고, Here, the first receiver 30 includes a data deterministic inverse convolution unit 31, a time domain signal recovery unit 32, a first fast Fourier transform unit 33, a maximum rate reception combiner 34, and a first The data determination unit 35,
상기 제2 수신부(40)는 랩핑 어라운드 추가부(41), 제2 빠른 푸리에 변환부(42), 채널 보상부(43), 빠른 푸리에 역변환부(44), 제2 데이터 결정부(45)로 구성한다. The second receiver 40 is a wrapping around adder 41, a second fast Fourier transform 42, a channel compensator 43, a fast Fourier inverse transform 44, and a second data determiner 45. Configure.
상기 RF블록(10) 및 A/D변환기(20)는 수신 안테나를 통해 RF블록(10)에서 수신된 신호를 A/D변환기(20)를 통하여 아날로그 신호를 디지털 신호로 변환한다.The RF block 10 and the A / D converter 20 convert an analog signal into a digital signal through the A / D converter 20 by converting a signal received from the RF block 10 through a receiving antenna.
상기 제1 수신부(30)의 데이터 결정적 역컨벌루션부(31)는 수신된 신호에서 보호구간보다 길거나 짧은 채널지연에 관계없이 채널의 영향을 보상한다. The data deterministic inverse convolution unit 31 of the first receiver 30 compensates for the influence of the channel regardless of a channel delay longer or shorter than the guard interval in the received signal.
상기 시간영역신호 복원부(32)는 상기 데이터 결정적 역컨벌루션부에서 채널의 영향을 보상한 신호를 부반송파 개수로 분할하고 분할된 복수의 각 그룹신호의 데이터 뒤에 각각 (부반송파 개수-1)개의 영('0')들을 삽입하여 주파수 영역에서 부반송파 개수만큼 반복한 신호의 시간영역신호를 만들고 채널의 임펄스 응답과 컨벌루션을 수행하여 가상적으로 시간영역 신호를 만든다. The time domain signal recovery unit 32 divides the signal compensated for the influence of the channel by the data deterministic inverse convolution unit into the number of subcarriers and adds (number of subcarriers-1) zeros to each of the divided group signals. By inserting '0'), a time-domain signal of a signal repeated as many subcarriers in the frequency domain is created, and an impulse response and convolution of a channel are performed to virtually generate a time-domain signal.
상기 제1 빠른 푸리에 변환부(33)는 상기 시간영역신호 복원부(32)에서 복원된 복수의 그룹신호를 차례로 빠른 푸리에 변환한다.The first fast Fourier transform unit 33 sequentially performs fast Fourier transform of the plurality of group signals restored by the time domain signal recovery unit 32.
상기 최대 율 수신 결합부(34)는 상기 제1 빠른 푸리에 변환부(FFT)(33)에서 빠른 푸리에 변환된 복수의 그룹신호를 MRRC(Maximum Ratio Receive Combining) 결합하여 제1 데이터 결정부(35)를 통해서 수신신호를 출력한다.The maximum rate receiving combiner 34 combines a plurality of fast Fourier transformed group signals by the first fast Fourier transform unit 33 to maximize the ratio ratio receive combining (MRRC) to determine the first data determiner 35. Output the received signal through.
상기 제2 수신부(40)의 랩핑 어라운드 추가부(41)는 수신된 신호에서 채널의 영향을 보상하는 과정을 수행하도록 부반송파 개수를 넘어가는 채널 출력신호를 잘라내어 채널 출력의 처음부분에 더하여 신호를 부반송파 개수로 일치 시킨다. The wrapping around adder 41 of the second receiver 40 cuts the channel output signal beyond the number of subcarriers to compensate for the influence of the channel in the received signal, and adds the signal to the first part of the channel output to add the subcarrier. Match by number.
상기 제2 빠른 푸리에 변환부(42)는 상기 랩핑 어라운드 추가부(41)의 출력신호를 주파수 영역신호로 변환하도록 빠른 푸리에 변환한다.The second fast Fourier transform unit 42 converts the fast Fourier transform to convert the output signal of the wrapping around adder 41 into a frequency domain signal.
상기 채널 보상부(43)는 상기 주파수 영역신호로 변환된 신호의 채널을 보상한다.The channel compensator 43 compensates the channel of the signal converted into the frequency domain signal.
상기 빠른 푸리에 역변환부(44)는 상기 채널을 보상한 신호를 다시 시간 영역신호로 변환하도록 빠른 푸리에 역변환하여 제2 데이터 결정부(45)를 통해서 수신신호를 출력한다.The fast Fourier inverse transform unit 44 outputs a received signal through the second data determiner 45 by performing a fast Fourier inverse transform so as to convert the signal compensated for the channel into a time domain signal.
수신기 선택부(50)는 상기 제1 수신부(30)와 제2 수신부(40)의 데이터 오류를 비교하는 프리앰블을 비교하여 프리앰블 오류가 적은 수신부(30, 40)를 선택하여 오류가 낮은 수신기를 통해 신호를 수신한다. The receiver selector 50 compares the preambles comparing the data errors of the first receiver 30 and the second receiver 40, selects the receivers 30 and 40 with less preamble errors, and then selects the receivers having the low error. Receive the signal.
여기서, 상기 수신기 선택부(50)에 연결된 상기 제1 수신부(30)와 제2 수신부(40)는 병렬로 구성되는데, 그 이유는 단축 및 확장 기술이 특정 채널에만 이득을 얻는 단점을 보완하기 위해서이다. Here, the first receiver 30 and the second receiver 40 connected to the receiver selector 50 are configured in parallel, in order to compensate for the disadvantage that the shortening and expansion techniques gain only a specific channel. to be.
도 3은 도 2의 데이터 결정적 역컨벌루션부(31) 관한 것으로 채널지연이 (보호구간+1) 보다 같거나 작은 경우에는 수학식 7이 채널지연이 (보호구간+1) 보다 긴 경우에는 수학식 8을 적용하여 데이터 역컨벌루션을 수행하고, 이것을 가지고 복조 및 재변조의 과정을 거쳐 데이터 결정적 역컨벌루션을 수행한다. FIG. 3 relates to the data deterministic inverse convolution unit 31 of FIG. 2. When the channel delay is equal to or less than (protection interval + 1), Equation 7 is expressed when the channel delay is longer than (protection interval + 1). Data deconvolution is performed by applying 8, and data deconvolution is performed by demodulating and remodulating the data.
도 4는 본 발명의 실시 예에 따른 보호구간을 추가한 단일 반송파 송신 신호를 수신할 수 있는 오에프디엠 수신방법을 나타낸 흐름도이고, 도 5는 본 발명의 실시 예에 따른 보호구간을 추가한 단일 반송파 송신 신호를 수신할 수 있는 오에프디엠 수신기의 프리앰블 심볼 수에 따른 성능을 나타낸 그래프이다. FIG. 4 is a flowchart illustrating a method of receiving OMDDM capable of receiving a single carrier transmission signal with an additional guard interval according to an embodiment of the present invention, and FIG. 5 is a single additional guard interval according to an embodiment of the present invention. A graph showing the performance according to the number of preamble symbols of the OMD receiver capable of receiving a carrier transmission signal.
도 2, 도 3 및 도4에 도시한 바와 같이, 본 발명의 실시 예에 따른 오에프디엠 수신방법은 먼저, 수신안테나를 통해 RF블록(10)에서 수신된 신호를 A/D변환기(20)를 통해 입력 받는다(S100).As shown in FIGS. 2, 3, and 4, the method of receiving an OMD die according to an embodiment of the present invention, first, the A / D converter 20 converts a signal received from the RF block 10 through a reception antenna. Received through (S100).
이어서, 상기 입력 받은 신호를 제1 수신기(30)로 수신한다(S200).Subsequently, the received signal is received by the first receiver 30 (S200).
상기 제1 수신기(30)가 입력신호를 수신하는 제1 수신단계(S200)는 다음과 같은 순서로 이루어진다. The first receiving step S200 in which the first receiver 30 receives an input signal is performed in the following order.
먼저, 수신 안테나를 통해 RF블록(10)에서 수신된 신호를 A/D변환기(20)를 통해 입력 받아 수신된 신호에서 통상의 보호구간보다 긴 채널지연에 대응하여 채널의 영향을 보상하기 위해 수행하는 데이터 결정적 역컨벌루션(Deconvolution) 단계(S210)와; First, a signal received from the RF block 10 through the receiving antenna is input through the A / D converter 20 and performed to compensate for the influence of the channel in response to a channel delay longer than a normal guard interval in the received signal. A data deterministic deconvolution step (S210);
그리고, 상기 데이터 결정적 역컨벌루션단계(S210)에서 채널 지연이 짧거나 긴 경우에 대응하여 채널 보상한 신호를 부반송파 개수로 분할하고 분할된 각 그룹신호의 각 데이터 뒤에 각각 (부반송파 개수-1)개의 영('0')들을 삽입하여 주파수 영역에서 부반송파 개수만큼 반복한 신호의 시간 영역 신호를 만들고 채널의 임펄스 응답과 컨벌루션을 수행하여 가상적으로 시간영역 신호를 만드는 시간영역신호 복원단계(S220)와;In the data-deterministic deconvolution step (S210), the channel-compensated signal is divided into the number of subcarriers in response to a short or long channel delay, and each (number of subcarriers-1) zeros after each data of each divided group signal. A time domain signal restoration step (S220) of generating a time domain signal of a signal repeated by the number of subcarriers in the frequency domain by inserting ('0') and virtually creating a time domain signal by performing an impulse response and convolution of a channel;
그리고, 상기 시간영역신호 복원단계(S220)에서 복원된 복수의 그룹신호를 차례로 빠른 푸리에 변환하는 제1 빠른 푸리에 변환(FFT)단계(S230)와;A first fast Fourier transform (FFT) step (S230) of sequentially fast Fourier transforming the plurality of group signals restored in the time domain signal recovery step (S220);
끝으로, 상기 빠른 푸리에 변환(FFT)단계(S230)에서 빠른 푸리에 변환된 복수의 그룹신호를 MRRC(Maximum Ratio Receive Combining) 결합하여 제1 데이터 결정부(35)를 통해서 수신신호를 출력하는 최대 율 수신결합 단계(S240)로 이루어진다.Finally, a maximum ratio of outputting a received signal through the first data determiner 35 by combining MRRC (Maximum Ratio Receive Combining) of the plurality of fast Fourier transformed group signals in the fast Fourier transform (FFT) step (S230). Receive combining step (S240) is made.
상기 도 1과 같이 나타낸 송신기를 통해 전달된 전송신호를 제1 수신기를 통해 수신과정을 아래와 같이 설명할 수 있다. A process of receiving a transmission signal transmitted through a transmitter shown in FIG. 1 through a first receiver may be described as follows.
Figure PCTKR2011009096-appb-I000009
-번째 심볼 구간의 사용자의 전송신호
Figure PCTKR2011009096-appb-I000010
은 [수학식 3]에 정의되어 있다.
Figure PCTKR2011009096-appb-I000009
User's transmission signal in the -th symbol period
Figure PCTKR2011009096-appb-I000010
Is defined in [Equation 3].
Figure PCTKR2011009096-appb-I000011
-번째 심볼 구간의 채널 임펄스 응답을
Figure PCTKR2011009096-appb-I000012
이라 하고, 채널의 출력을
Figure PCTKR2011009096-appb-I000013
이라 하면, 이는 [수학식 4]와 같다.
Figure PCTKR2011009096-appb-I000011
The channel impulse response of the -th symbol interval
Figure PCTKR2011009096-appb-I000012
The output of the channel
Figure PCTKR2011009096-appb-I000013
This is the same as [Equation 4].
수학식 4
Figure PCTKR2011009096-appb-M000004
Equation 4
Figure PCTKR2011009096-appb-M000004
상기 [수학식 4]의 심볼 구간 인덱스
Figure PCTKR2011009096-appb-I000014
을 생략하여 수식을 나타내며, [수학식 4]를 [수학식 5]와 같이 나타낼 수 있다.
Symbol interval index of Equation 4
Figure PCTKR2011009096-appb-I000014
Omitted to express the equation, it can be expressed as [Equation 5].
수학식 5
Figure PCTKR2011009096-appb-M000005
Equation 5
Figure PCTKR2011009096-appb-M000005
상기의
Figure PCTKR2011009096-appb-I000015
는 컨벌루션을 의미하고, w는 AWGN(Additive White Gaussian Noise)를 의미한다.
Above
Figure PCTKR2011009096-appb-I000015
Denotes convolution, and w denotes Additive White Gaussian Noise (AWGN).
수학식 6
Figure PCTKR2011009096-appb-M000006
Equation 6
Figure PCTKR2011009096-appb-M000006
이 때, 만일 채널 임펄스 응답 길이 M 이 (GP+1) 보다 같거나 작을 경우는 도 5의 채널 A의 경우에 해당한다.
Figure PCTKR2011009096-appb-I000016
은 바로 전 OFDM 심볼의 GP 영역에 속하게 되고,
Figure PCTKR2011009096-appb-I000017
은 현재의 OFDM 심볼의 GP 에 속하게 되어, [수학식 6]에서
At this time, if the channel impulse response length M is equal to or smaller than (GP + 1), this corresponds to the case of channel A of FIG.
Figure PCTKR2011009096-appb-I000016
Belongs to the GP region of the previous OFDM symbol,
Figure PCTKR2011009096-appb-I000017
Is the GP of the current OFDM symbol, and in Equation 6
Figure PCTKR2011009096-appb-I000018
Figure PCTKR2011009096-appb-I000018
이 되고, 시간영역 사용자 신호는 다음과 같이 추정 가능하다.The time domain user signal can be estimated as follows.
수학식 7
Figure PCTKR2011009096-appb-M000007
Equation 7
Figure PCTKR2011009096-appb-M000007
여기서, mod는 데이터 비트값을 정해진 성상도로 심볼 맵핑하여 데이터 심볼로 만드는 것을 의미하며, demod는 심볼 맵핑된 것을 디지털 비트로 변환하는 것을 의미한다.Here, mod means symbol mapping the data bit value to a predetermined constellation to make a data symbol, and demod means converting the symbol mapped to digital bits.
[수학식 6]에서 채널 임펄스 응답 길이 M 이 (GP+1) 보다 큰 경우는 도 5의 채널 C(22 taps) 의 경우에 해당한다.
Figure PCTKR2011009096-appb-I000019
다섯 심볼은 바로 전 OFDM 심볼의 프리앰블 영역에 속하게 되고, 이를 이용하여 현재 OFDM 심볼의 처음 다섯 심볼
Figure PCTKR2011009096-appb-I000020
을 추정할 수 있다.
In Equation 6, the channel impulse response length M is greater than (GP + 1), which corresponds to the case of channel C (22 taps) of FIG.
Figure PCTKR2011009096-appb-I000019
The five symbols belong to the preamble region of the immediately preceding OFDM symbol, and using this, the first five symbols of the current OFDM symbol
Figure PCTKR2011009096-appb-I000020
Can be estimated.
수학식 8
Figure PCTKR2011009096-appb-M000008
Equation 8
Figure PCTKR2011009096-appb-M000008
이고,
Figure PCTKR2011009096-appb-I000021
이다.
ego,
Figure PCTKR2011009096-appb-I000021
to be.
데이터 역컨벌루션이 진행함에 따라 그 과정에 관여하는 AWGN 수는 채널의 길이만큼 증가하게 되고, 순차적인 신호 검출에 따른 오류의 전파를 막기 위하여,
Figure PCTKR2011009096-appb-I000022
를 디지털 신호로 결정하게 되면, 디컨벌루션 오류의 전파를 막을 수 있는 효과가 있게 된다.
As data deconvolution proceeds, the number of AWGNs involved in the process increases by the length of the channel, and in order to prevent the propagation of errors due to sequential signal detection,
Figure PCTKR2011009096-appb-I000022
Determining the signal as a digital signal has an effect of preventing the propagation of the deconvolution error.
따라서, 디지털 신호를 먼저 결정한 후 결정한 디지털 신호를 사용하여 다시 변조하여
Figure PCTKR2011009096-appb-I000023
를 얻게 되면, 각 심볼 마다 그 이후에 (N-1)개의 영('0')을 추가함으로써, 반복 신호의 IFFT 출력 신호를 얻을 수 있게 된다. 이렇게 구성된 신호를
Figure PCTKR2011009096-appb-I000024
라 한다면 [수학식 9]와 같이 나타낼 수 있다.
Therefore, the digital signal is first determined and then modulated again using the determined digital signal.
Figure PCTKR2011009096-appb-I000023
If we obtain, we can obtain the IFFT output signal of the repetitive signal by adding ( N -1) zeros ('0') afterwards for each symbol. This configured signal
Figure PCTKR2011009096-appb-I000024
If it can be expressed as shown in [Equation 9].
수학식 9
Figure PCTKR2011009096-appb-M000009
Equation 9
Figure PCTKR2011009096-appb-M000009
상기와 같이 구성된 신호와 채널의 임펄스 응답을 이용하여 가상적으로 컨벌루션을 수행하고, 그 결과를 이용하여 주파수 영역에서 회전 컨벌루션(Circular Convolution)을 수행하기 위하여 선형 컨벌루션의 결과 중에서 부반송파 길이를 넘어가는 출력을 잘라 내어 선형 컨벌루션의 앞부분에 더하는 기능을 수행한다. Virtually convolution is performed using the impulse response of the signal and the channel configured as described above, and the output beyond the subcarrier length among the results of the linear convolution is used to perform the circular convolution in the frequency domain using the result. It cuts out and adds to the front of the linear convolution.
이 기능은 [수학식 10]과 같다.This function is the same as [Equation 10].
수학식 10
Figure PCTKR2011009096-appb-M000010
Equation 10
Figure PCTKR2011009096-appb-M000010
상기와 같이 구성한 각각의
Figure PCTKR2011009096-appb-I000025
을 가지고 FFT를 수행하면, MRRC 연산을 위한
Figure PCTKR2011009096-appb-I000026
을 얻을 수 있으며,
Figure PCTKR2011009096-appb-I000027
은 [수학식 11]과 같다.
Each configured as above
Figure PCTKR2011009096-appb-I000025
If you perform the FFT with, the MRRC
Figure PCTKR2011009096-appb-I000026
You can get
Figure PCTKR2011009096-appb-I000027
Is the same as [Equation 11].
수학식 11
Figure PCTKR2011009096-appb-M000011
Equation 11
Figure PCTKR2011009096-appb-M000011
Figure PCTKR2011009096-appb-I000028
Figure PCTKR2011009096-appb-I000028
상기
Figure PCTKR2011009096-appb-I000029
가 가상적으로 구성한 주파수 영역에서 수신한 신호 벡터가 되는데, 송신한 신호는 N번 반복한 신호인
Figure PCTKR2011009096-appb-I000030
가 전송되었다고 가정한 경우이다.
remind
Figure PCTKR2011009096-appb-I000029
Becomes the signal vector received in the virtually configured frequency domain, and the transmitted signal is a signal repeated N times.
Figure PCTKR2011009096-appb-I000030
It is assumed that is transmitted.
상기 이 신호를 이용하면
Figure PCTKR2011009096-appb-I000031
을 얻을 수 있는 MRRC의 수행이 가능하다.
Using this signal above
Figure PCTKR2011009096-appb-I000031
It is possible to perform MRRC to obtain.
상기
Figure PCTKR2011009096-appb-I000032
은 [수학식 12]와 같다.
remind
Figure PCTKR2011009096-appb-I000032
Is the same as [Equation 12].
수학식 12
Figure PCTKR2011009096-appb-M000012
Equation 12
Figure PCTKR2011009096-appb-M000012
이어서, 상기 제1 수신단계와 동시에 동일한 입력 받은 신호를 제2 수신기(40)로 수신한다(S300). Subsequently, the same received signal is received to the second receiver 40 at the same time as the first receiving step (S300).
상기 제2 수신기(40)가 입력신호를 수신하는 제2 수신단계(S300)는 다음과 같은 순서로 이루어진다. The second receiving step S300 in which the second receiver 40 receives an input signal is performed in the following order.
먼저, 상기 제2 수신단계(S300)는 수신 안테나를 통해 RF블록(10)에서 수신된 신호를 A/D변환기(20)를 통해 입력 받아 수신된 신호에서 부반송파 개수를 넘어가는 채널 출력신호를 잘라내어 채널 출력의 처음부분에 더하는 랩핑 어라운드 추가단계(S310)와;First, the second receiving step (S300) receives a signal received at the RF block 10 through the receiving antenna through the A / D converter 20 and cuts the channel output signal exceeding the number of subcarriers from the received signal A wrapping around adding step S310 added to the beginning of the channel output;
그리고, 상기 랩핑 어라운드 추가단계의 출력신호를 주파수 영역신호로 변환하도록 빠른 푸리에 변환하는 제2 빠른 푸리에 변환단계(S320)와;And a second fast Fourier transforming step (S320) for fast Fourier transforming to convert the output signal of the wrapping around adding step into a frequency domain signal;
그리고, 상기 주파수 영역신호로 변환된 신호의 채널을 보상하는 채널 보상단계(S330)와;A channel compensation step (S330) for compensating for the channel of the signal converted into the frequency domain signal;
끝으로, 상기 채널을 보상한 신호를 다시 시간 영역신호로 변환하도록 빠른 푸리에 역변환하여 제2 데이터 결정부(45)를 통해서 수신신호를 출력하는 빠른 푸리에 역변환단계(S340);로 이루어진다.Finally, the fast Fourier inverse transform step (S340) for outputting the received signal through the second data determiner 45 by performing a fast Fourier inverse transform to convert the signal compensated for the channel back to a time domain signal.
마지막으로, 상기 제1 수신기(20)와 제2 수신기(30) 중 약속된 프리앰블 내의 데이터 오류가 적은 수신기를 선택한다(S400).Finally, a receiver having less data error in the promised preamble is selected among the first receiver 20 and the second receiver 30 (S400).
더 상세하게는 단축 전송 기법의 검출 오류는 디컨벌루션의 오류 전파 특성 때문에 전파되는 경향이 있게 되므로, 오류를 검출하는 위치는 OFDM 심볼의 끝부분에서 검출하는 것이 정확하다. More specifically, the detection error of the short-duplex transmission technique tends to propagate due to the error propagation characteristic of the deconvolution, so it is accurate to detect the error detecting position at the end of the OFDM symbol.
즉, P 심볼 개의 프리앰블이라고 하면, 그 위치는
Figure PCTKR2011009096-appb-I000033
로 할당한다.
That is, if the P symbol preamble, the position is
Figure PCTKR2011009096-appb-I000033
To be assigned.
이때, 제1 수신부(30)와 제2 수신부(40)에 프리앰블 할당 개수에 따라 그 성능에 차이가 있으며, 그 성능 차이는 도 5에 도시한 바와 같다. At this time, there is a difference in the performance according to the number of preamble allocations to the first receiver 30 and the second receiver 40, the performance difference is as shown in FIG.
프리앰블로 5개를 할당한 경우인 Proposed scheme(5 symbols of preamble)와 프리앰블로 32개를 할당한 경우인 Proposed scheme(32 symbols of preamble)을 살펴 보면 성능의 차이가 크게 나타나지 않은 것을 알 수 있으나, 프리앰블로 1개를 할당한 경우인 Proposed scheme(1 symbol of preamble)과는 현격한 성능의 차이를 보이므로 이 정도의 프리앰블 할당은 성능이 향상되는 것과 비교하여 작은 것으로 볼 수 있다. 여기에서 A 와 C 는 각각 HiperLAN/2 채널 A 와 C 를 말하며 A 의 경우에는 채널지연이 보호구간 보다 작은 경우이고, C 인 경우는 채널 지연이 보호구간 보다 긴 경우이다. If you look at the Proposed scheme (5 symbols of preamble), which is the case of allocating five preambles, and the Proposed scheme (32 symbols of preamble), which is the case of allocating 32 preambles, you can see that the performance difference is not significant. The performance difference is significantly different from that of the proposed scheme (1 symbol of preamble), which is a case of allocating one preamble. Thus, this preamble allocation is small compared to the performance improvement. Here, A and C refer to HiperLAN / 2 channels A and C, respectively. In case of A, the channel delay is smaller than the guard interval, and in case of C, the channel delay is longer than the guard interval.
또한, 본 발명의 실시 예는 대부분의 Eb/NO영역에서 성능이 우수하며, 이때 얻게 되는 이득은 BER=10-5에서 약 17dB정도이다. In addition, the embodiment of the present invention is excellent in most of the Eb / NO region, the gain obtained is about 17dB at BER = 10 -5 .
상기 이득은 같은 성능을 얻기 위해 송신 전력이 감소 될 수 있는 것을 의미 한다.The gain means that the transmit power can be reduced to achieve the same performance.
이상에서 설명한 바와 같이, 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시 예에 관하여 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 따라서 본 발명의 권리 범위는 설명된 실시 예에 국한되어 정해져서는 안되며, 후술하는 청구범위뿐만 아니라, 이와 균등한 것들에 의해 정해져야 한다.As described above, in the detailed description of the present invention has been described with respect to preferred embodiments of the present invention, those skilled in the art to which the present invention pertains various modifications without departing from the scope of the present invention Of course this is possible. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined by the equivalents as well as the claims to be described later.

Claims (4)

  1. 통상의 보호구간보다 긴 채널지연에 대응하여 송신기가 일정 개수의 신호(이하, 수신기에서는 '부반송파 개수'라 칭한다.)마다 보호구간을 추가하여 송신하는 단일 반송파 송신 신호를 수신하는 오에프디엠 수신방법에 있어서,In response to a channel delay longer than a normal guard interval, the OMD receiver receives a single carrier transmission signal in which a transmitter adds a guard interval for a certain number of signals (hereinafter, referred to as the number of subcarriers in the receiver). To
    수신안테나를 통해 RF블록(10)에서 수신된 신호를 A/D변환기(20)를 통해 입력 받는 단계(S100)와;Receiving a signal received from the RF block 10 through the reception antenna through the A / D converter 20 (S100);
    상기 입력 받은 신호를 제1 수신기(30)로 수신하는 제1 수신단계(S200)와;A first receiving step (S200) of receiving the received signal to the first receiver (30);
    상기 제1 수신단계와 동시에 동일한 입력 받은 신호를 제2 수신기(40)로 수신하는 제2 수신단계(S300); 및 A second receiving step (S300) of receiving the same input signal to the second receiver 40 at the same time as the first receiving step; And
    상기 제1 수신기(30)와 제2 수신기(40) 중 약속된 프리앰블 내의 데이터 오류가 적은 수신기를 선택하는 선택단계(S400)로 이루어지되, 채널 지연이 보호구간보다 짧게 형성되는 경우 및 채널 지연이 보호구간보다 길게 형성되는 경우에도 오에프디엠 수신기의 성능 개선이 가능한 것을 특징으로 하는 보호구간을 추가한 단일 반송파 송신 신호를 수신할 수 있는 오에프디엠 수신방법.The first receiver 30 and the second receiver 40 is a selection step (S400) of selecting a receiver with less data error in the promised preamble, the channel delay is formed shorter than the guard interval and the channel delay is A method of receiving an OMD receiver capable of receiving a single carrier transmission signal having a guard interval added thereto, wherein the OMD receiver may have improved performance even when formed longer than the guard interval.
  2. 제1항에 있어서, The method of claim 1,
    상기 제1 수신단계는 수신 안테나를 통해 RF블록(10)에서 수신된 신호를 A/D변환기(20)를 통해 입력 받아 수신된 신호에서 통상의 보호구간 보다 긴 채널 지연에 대응하여 채널의 영향을 보상하기 위해 수행하는 데이터 결정적 역컨벌루션(Deconvolution) 단계(S210)와;The first receiving step receives a signal received at the RF block 10 through the receiving antenna through the A / D converter 20 in response to a channel delay longer than the normal guard interval in the received signal A data deterministic deconvolution step (S210) performed to compensate for the influence of the channel;
    상기 데이터 결정적 역컨벌루션단계(S210)에서 보상한 신호를 부반송파 개수로 분할하고 분할된 각 그룹신호의 각 데이터 뒤에 각각 (부반송파 개수-1)개의 영('0')들을 삽입하여 주파수 영역에서 부반송파 개수만큼 반복한 신호의 시간 영역 신호를 만들고 채널의 임펄스 응답과 컨벌루션을 수행하여 가상적으로 시간영역 신호를 만드는 시간영역신호 복원단계(S220)와;The signal compensated in the data deterministic inverse convolution step (S210) is divided into the number of subcarriers, and after each data of each divided group signal, (number of subcarriers-1) zeros ('0') are inserted into each subcarrier in the frequency domain. A time domain signal restoration step (S220) of making a time domain signal of the repeated signal as much as possible and performing a convolution with an impulse response of a channel to virtually create a time domain signal;
    상기 시간영역신호 복원단계(S220)에서 복원된 복수의 그룹신호를 차례로 빠른 푸리에 변환하는 제1 빠른 푸리에 변환(FFT)단계(S230)와;A first fast Fourier transform (FFT) step (S230) of sequentially fast Fourier transforming the plurality of group signals restored in the time domain signal recovery step (S220);
    상기 빠른 푸리에 변환(FFT)단계(S230)에서 빠른 푸리에 변환된 복수의 그룹신호를 MRRC(Maximum Ratio Receive Combining) 결합하여 제1 데이터 결정부를 통해서 수신신호를 출력하는 최대 율 수신결합 단계(S240)로 이루어지는 것을 특징으로 하는 보호구간을 추가한 단일 반송파 송신 신호를 수신할 수 있는 오에프디엠 수신방법.In the fast Fourier transform (FFT) step (S230), a plurality of fast Fourier transformed group signals are combined with MRRC (Maximum Ratio Receive Combining) to output a received signal through a first data determining unit (S240). The OMD receiving method capable of receiving a single carrier transmission signal with a guard interval, characterized in that made.
  3. 제1항에 있어서, The method of claim 1,
    상기 제2 수신단계는 수신안테나를 통해 RF블록에서 수신된 신호를 A/D변환기를 통해 입력 받아 수신된 신호에서 부반송파 개수를 넘어가는 채널 출력신호를 잘라내어 채널 출력의 처음 부분에 더하는 랩핑 어라운드 추가단계(S310)와;In the second receiving step, a wrapping around adding step of receiving a signal received from an RF block through a receiving antenna through an A / D converter and cutting out a channel output signal exceeding the number of subcarriers from the received signal and adding it to the first portion of the channel output (S310);
    상기 랩핑 어라운드 추가단계의 출력신호를 주파수 영역신호로 변환하도록 빠른 푸리에 변환하는 제2 빠른 푸리에 변환단계(S320)와;A second fast Fourier transforming step (S320) of fast Fourier transforming to convert the output signal of the wrapping around addition step into a frequency domain signal;
    상기 주파수 영역신호로 변환된 신호의 채널을 보상하는 채널 보상단계(S330)와;A channel compensation step (S330) for compensating for the channel of the signal converted into the frequency domain signal;
    상기 채널을 보상한 신호를 다시 시간 영역신호로 변환하도록 빠른 푸리에 역변환하여 제2 데이터 결정부를 통해서 수신신호를 출력하는 빠른 푸리에 역변환단계(S340);로 이루어지는 것을 특징으로 하는 보호구간을 추가한 단일 반송파 송신 신호를 수신할 수 있는 오에프디엠 수신방법.A fast Fourier inverse transforming step (S340) for outputting a received signal through a second data determining unit by fast Fourier inverse transforming the signal compensated for the channel to a time domain signal again; OMD receiving method capable of receiving a transmission signal.
  4. 송신기가 일정 개수의 신호(이하, 수신기에서는'부반송파 개수'라 칭한다.)마다 보호구간을 추가하여 송신하는 단일 반송파 송신 신호를 수신하는 오에프디엠 수신기에 있어서,In an OMD receiver that receives a single carrier transmission signal in which a transmitter adds a guard interval for each predetermined number of signals (hereinafter, referred to as 'number of subcarriers' in a receiver),
    수신 안테나를 통해 RF블록(10)에서 수신된 신호를 A/D변환기(20)를 통해 입력 받아 수신된 신호에서 보호구간보다 긴 채널 지연에 대응하여 채널의 영향을 보상하기 위하여 수행하는 데이터 결정적 역컨벌루션(Deconvolution)부(31)와,Data deterministic inverse to perform the signal received from the RF block 10 through the receiving antenna through the A / D converter 20 to compensate the effect of the channel in response to the channel delay longer than the guard interval in the received signal A convolution unit 31,
    상기 데이터 결정적 역컨벌루션부(31)에서 보상한 신호를 부반송파 개수로 분할하고 분할된 복수의 각 그룹신호의 데이터 뒤에 각각 (부반송파 개수-1)개의 영('0')들을 삽입하여 주파수 영역에서 부반송파 개수만큼 반복한 신호의 시간영역신호를 만들고 채널의 임펄스 응답과 컨벌루션을 수행하여 가상적으로 시간영역 신호를 만드는 시간영역신호 복원부(32)와,The signal compensated by the data deterministic inverse convolution unit 31 is divided into the number of subcarriers, and each subcarrier is inserted in the frequency domain by inserting (number of subcarriers-1) zeros ('0') after the data of each of the divided plurality of group signals. A time domain signal recovery unit 32 which virtually creates a time domain signal by generating a time domain signal of a signal repeated as many times and performing an impulse response and convolution of a channel;
    상기 시간영역신호 복원부(32)에서 복원된 복수의 그룹신호를 차례로 빠른 푸리에 변환하는 제1 빠른 푸리에 변환부(FFT)(33), 및A first fast Fourier transform (FFT) 33 for fast Fourier transforming the plurality of group signals restored by the time domain signal recovery unit 32, and
    상기 제1 빠른 푸리에 변환부(FFT)(33)에서 빠른 푸리에 변환된 복수의 그룹신호를 MRRC(Maximum Ratio Receive Combining) 결합하여 제1 데이터 결정부(35)를 통해서 수신신호를 출력하는 MRRC부(34)로 구성하는 제1 수신부(30)와;An MRRC unit for combining a plurality of fast Fourier transformed group signals by the first fast Fourier transform unit (FFT) 33 and outputting a received signal through the first data determiner 35 by combining MRRC (Maximum Ratio Receive Combining) A first receiving unit 30 composed of 34;
    수신안테나를 통해 RF블록(10)에서 수신된 신호를 A/D변환기(20)를 통해 입력 받아 수신된 신호에서 채널의 영향을 보상하기 위하여 수행하도록 부반송파 개수를 넘어가는 채널 출력신호를 잘라내어 채널 출력의 맨 처음부분에 더하는 랩핑 어라운드 추가부(41)와,Cut out the channel output signal beyond the number of subcarriers to perform the signal received from the RF block 10 through the receiving antenna through the A / D converter 20 to compensate for the influence of the channel in the received signal to output the channel A wrapping around addition (41) added to the beginning of the
    상기 랩핑 어라운드 추가부(41)의 출력신호를 주파수 영역신호로 변환하도록 빠른 푸리에 변환하는 제2 빠른 푸리에 변환부(42)와,A second fast Fourier transforming unit 42 for fast Fourier transforming the output signal of the wrapping around adding unit 41 into a frequency domain signal;
    상기 주파수 영역신호로 변환된 신호의 채널을 보상하는 채널 보상부(43)와,A channel compensator 43 for compensating for the channel of the signal converted into the frequency domain signal;
    상기 채널을 보상한 신호를 다시 시간 영역신호로 변환하도록 빠른 푸리에 역변환하여 제2 데이터 결정부(45)를 통해서 수신신호를 출력하는 빠른 푸리에 역변환부(44)로 구성하는 제2 수신부(40); 및 A second receiver 40 configured to perform a fast Fourier inverse transform to convert the signal compensated for the channel into a time domain signal and output a received signal through the second data determiner 45; And
    상기 제1 수신부(30)와 제2 수신부(40)의 데이터 오류를 비교하는 프리앰블을 비교하여 프리앰블 오류가 적은 수신부(30, 40)를 선택하여 신호를 수신하는 수신기 선택부(50);로 구성하되,A receiver selector 50 configured to receive a signal by comparing the preambles comparing the data errors of the first receiver 30 and the second receiver 40 to select the receivers 30 and 40 having less preamble errors; But
    상기 제1 수신부(30)와 제2 수신부(40)는 서로 병렬구조로 구성하는 것을 특징으로 하는 보호구간을 추가한 단일 반송파 송신 신호를 수신할 수 있는 오에프디엠 수신기.The first receiving unit (30) and the second receiving unit (40) is an OMD receiver capable of receiving a single carrier transmission signal with a guard interval, characterized in that configured in parallel with each other.
PCT/KR2011/009096 2010-11-26 2011-11-25 Ofdm receiver capable of receiving a single carrier transmission signal to which guard intervals are added, and receiving method therefor WO2012070917A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20100118432 2010-11-26
KR10-2010-0118432 2010-11-26
KR10-2011-0109115 2011-10-25
KR1020110109115A KR101256864B1 (en) 2010-11-26 2011-10-25 Ofdm receiver and receving method which can receive single-carrier transmission signal with guard period for long delay spread of channel

Publications (2)

Publication Number Publication Date
WO2012070917A2 true WO2012070917A2 (en) 2012-05-31
WO2012070917A3 WO2012070917A3 (en) 2012-09-27

Family

ID=46146342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009096 WO2012070917A2 (en) 2010-11-26 2011-11-25 Ofdm receiver capable of receiving a single carrier transmission signal to which guard intervals are added, and receiving method therefor

Country Status (1)

Country Link
WO (1) WO2012070917A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107484253A (en) * 2016-06-08 2017-12-15 中兴通讯股份有限公司 Method for sending information and device, user equipment and base station
CN108063657A (en) * 2017-12-13 2018-05-22 电子科技大学 Well logging data NC-OFDM sonic transmissions methods based on compressed sensing
CN111953437A (en) * 2019-05-15 2020-11-17 中兴通讯股份有限公司 Signal transmission control method, signal transmission control device, communication equipment and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040107830A (en) * 2003-06-13 2004-12-23 삼성전자주식회사 Carrier synchronization device for TDS-OFDM systems using guard interval and sync sengment signal and method thereof
KR20060114590A (en) * 2005-05-02 2006-11-07 엘지전자 주식회사 Method and apparatus for receiving signal in multiple access system using multple carriers
KR20070071713A (en) * 2005-12-30 2007-07-04 삼성전자주식회사 Apparatus and method for transmitting/receiving signal in a wireless communication system
KR20090013929A (en) * 2007-08-03 2009-02-06 에스케이 텔레콤주식회사 Signal fold mesuring installation and method for receiving signal of ofdm

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040107830A (en) * 2003-06-13 2004-12-23 삼성전자주식회사 Carrier synchronization device for TDS-OFDM systems using guard interval and sync sengment signal and method thereof
KR20060114590A (en) * 2005-05-02 2006-11-07 엘지전자 주식회사 Method and apparatus for receiving signal in multiple access system using multple carriers
KR20070071713A (en) * 2005-12-30 2007-07-04 삼성전자주식회사 Apparatus and method for transmitting/receiving signal in a wireless communication system
KR20090013929A (en) * 2007-08-03 2009-02-06 에스케이 텔레콤주식회사 Signal fold mesuring installation and method for receiving signal of ofdm

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107484253A (en) * 2016-06-08 2017-12-15 中兴通讯股份有限公司 Method for sending information and device, user equipment and base station
CN107484253B (en) * 2016-06-08 2022-06-21 中兴通讯股份有限公司 Information sending method and device, user equipment and base station
CN108063657A (en) * 2017-12-13 2018-05-22 电子科技大学 Well logging data NC-OFDM sonic transmissions methods based on compressed sensing
CN108063657B (en) * 2017-12-13 2021-01-26 电子科技大学 Logging-while-drilling data NC-OFDM sound wave transmission method based on compressed sensing
CN111953437A (en) * 2019-05-15 2020-11-17 中兴通讯股份有限公司 Signal transmission control method, signal transmission control device, communication equipment and storage medium
CN111953437B (en) * 2019-05-15 2023-02-24 中兴通讯股份有限公司 Signal transmission control method, signal transmission control device, communication equipment and storage medium

Also Published As

Publication number Publication date
WO2012070917A3 (en) 2012-09-27

Similar Documents

Publication Publication Date Title
KR100878720B1 (en) A modified SLM scheme with low complexity for PAPR reduction of OFDM systems
JP6918157B2 (en) Transmitter
AU2005285593B2 (en) Apparatus and method for frequency synchronization in OFDM system
JP5867932B2 (en) Channel description feedback in communication systems
JP4358271B2 (en) Subcarrier allocation method and apparatus in broadband wireless communication system using multiple carriers
WO2009134061A2 (en) Apparatus and method for reducing papr of preamble signal in digital broadcasting system
US8532204B2 (en) Peak-to-average power ratio (PAR) reduction based on active-set tone reservation
KR20070082048A (en) Methdo and apparatus for estimating a channel using linear interpolation in an orthogonal frequency division multiplexing system and receiver using the same
AU2003264994A1 (en) Apparatus and method for generating preamble sequence in an ofdm communication system
KR20060008576A (en) Ofdm transmission system and method for effective adaptive modulation using known cyclic prefix
WO2004039026A1 (en) Apparatus and method for generating a preamble sequence in an ofdm communication system
KR101022753B1 (en) OFDM System and Data Transmission Method Therefor
CN111865533B (en) Signal processing method and device and communication equipment
WO2015064127A1 (en) Transmission device, reception device, and communication system
JP5486734B2 (en) Transmission signal generating apparatus and method in single carrier communication system
WO2012070917A2 (en) Ofdm receiver capable of receiving a single carrier transmission signal to which guard intervals are added, and receiving method therefor
WO2012030028A1 (en) Apparatus and method for i/q offset cancellation in sc-fdma system
WO2010087667A2 (en) Digital video broadcasting - cable system and method for processing reserved tone
KR20040035291A (en) Multi-carrier transmission system having the pilot tone in frequence domain and a method inserting pilot tone thereof
CN106572042A (en) Method and equipment for data transmission
JP3357663B2 (en) Carrier constellation information in a multicarrier system
KR20090059315A (en) Appratus and method for inverse fast fourier transform in communication system
WO2010079980A2 (en) Method and apparatus for transmitting sequence in wireless communication system
KR101256864B1 (en) Ofdm receiver and receving method which can receive single-carrier transmission signal with guard period for long delay spread of channel
JP3875118B2 (en) Orthogonal frequency division multiplexing communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843877

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11843877

Country of ref document: EP

Kind code of ref document: A2