WO2012068939A1 - 一种数据分流***中的切换方法和*** - Google Patents

一种数据分流***中的切换方法和*** Download PDF

Info

Publication number
WO2012068939A1
WO2012068939A1 PCT/CN2011/081258 CN2011081258W WO2012068939A1 WO 2012068939 A1 WO2012068939 A1 WO 2012068939A1 CN 2011081258 W CN2011081258 W CN 2011081258W WO 2012068939 A1 WO2012068939 A1 WO 2012068939A1
Authority
WO
WIPO (PCT)
Prior art keywords
isgw
target
core network
information
user
Prior art date
Application number
PCT/CN2011/081258
Other languages
English (en)
French (fr)
Inventor
王静
吴瑟
陆光辉
周娜
霍玉臻
梁爽
王志海
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012068939A1 publication Critical patent/WO2012068939A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/24Interfaces between hierarchically similar devices between backbone network devices

Definitions

  • the present invention relates to the field of mobile communications, and in particular to a handover method and system in a mobile network data offload system.
  • the air interface rate continues to increase and the number of data users increases, the amount of future user data will increase explosively. This will inevitably impact the existing core network.
  • the existing core network elements have to be expanded. Provide users with satisfactory service. Considering that the increased data is mostly caused by the Internet service, the mobile operator hopes to perform local internet data offloading without changing the existing network, avoiding a large amount of data impacting the network upgrade problem brought by the core network and satisfying the user data service. demand.
  • a core network architecture based on 3G and Long Term Evolution (LTE) provides a data offloading system as shown in Figure 1.
  • Figure la shows the implementation architecture of the data offloading system in the 3G network
  • Figure lb shows the implementation architecture of the data offloading system in the LTE network.
  • Table la is the name of the network element and the Chinese interpretation appearing in the network architecture.
  • Table lb is the description of the interface between the network elements.
  • the Integrated Serving Gateway (ISGW) in the network architecture is a newly defined network element. It has the functions of the standard GGSN or S-GW and the GTP (GPRS Tunneling Protocol) proxy and proxy. (Network Address Translation) The function of the gateway is deployed on the data transmission path for data offloading. It is connected with other standardized network elements such as SGSN and GGSN in the network, and between the two ISGWs. Use the newly defined Gn, or S5, to connect.
  • the newly defined interface has GTP messages and user data forwarding functions. The specific names are not standardized yet, and can be defined.
  • the ISGW performs the data offloading principle as follows:
  • the UTRAN accessing the network in the 3G network is connected to the ISGW through a standard DT (Direct Tunnel), and the E-UTRAN accessing the network in the LTE network is connected to the ISGW through the standard S1-U. , and send user data to the ISGW.
  • the ISGW performs packet processing according to the local configuration or the user offload policy delivered from the policy server, and translates the NAT address of the data conforming to the offload policy to the Internet or other carrier external network.
  • the data that the business wants to control is sent to the core network gateway GGSN or P-GW, and routed to the operator's own business network.
  • the deployment of the new NEs ISGW can not affect the function of the NEs in the existing network, thus achieving the purpose of data distribution.
  • the SGSN or the MME passes a special selector (supplied with the existing network element or separately deployed) or an upgraded domain name system (Domain Name System, according to the Access Point Name (APN)).
  • the DNS server finds the ISGW.
  • the ISGW can be used as a normal core network gateway.
  • the ISGW finds the real core network gateway GGSN or P- according to the APN through a dedicated selector or an upgraded DNS server.
  • GW and establish a connection between the ISGW and the real core network gateway.
  • the introduction of ISGW can shield the impact on existing networks, and can complete data offloading functions at the same time, which has certain advantages in network deployment and evolution.
  • the ISGW In order to offload data to the Internet or other external networks of operators as early as possible to reduce the burden on the core network, the ISGW should be as close as possible to the user side in physical deployment. As the user moves, the ISGW that the original user accesses may not be able to meet the data splitting needs of the user's current location. Therefore, the ISGW relocation operation needs to be performed according to the user's location, as shown in Figure 2. After the ISGW is relocated, since the real core network gateway is selected by the source ISGW, the core network mobility management unit does not perceive and cannot guarantee the continuity of the core network data, and the prior art cannot currently do this.
  • Gateway GPRS supports access to business-operated business networks or the Internet.
  • E-UTRAN Evolved Universal consists of eNodeBs that provide LTE for user terminal equipment
  • MME Mobility Management user subscription data is responsible for the current network storage location.
  • Non-Access Stratum Non-access stratum
  • SGW Serving Gateway the gateway from the core network of the monthly service gateway to the wireless system, responsible for user plane bearer from the terminal to the core network, data buffer in the terminal idle mode, function of initiating service request on the network side, lawful interception and packet data routing and forwarding Features
  • P-GW PDN Gateway Evolved Packet Domain System (EPS) and the gateway of the system's external network packet data network gateway are responsible for the terminal's IP address allocation, accounting function, packet filtering, policy application and other functions.
  • Table lb PDN Gateway Evolved Packet Domain System (EPS) and the gateway of the system's external network packet data network gateway are responsible for the terminal's IP address allocation, accounting function, packet filtering, policy application and other functions.
  • the external interface of the Gi core network gateway provides users with access to the operator's own business network or the Internet.
  • SGW User plane interface between Sl-U E-UTRAN and core network gateway SGW Sl l interface between the core network mobility management entity MME and the media plane gateway SGW
  • the present invention provides a handover method in a data offloading system, which includes:
  • the core network mobility management unit sends the source ISGW information to the target ISGW in the session establishment message sent to the target ISGW;
  • the target ISGW obtains information of the core network gateway from the source ISGW, and performs tunnel update with the core network gateway.
  • the core network mobility management unit is a mobility management entity (MME) or a serving universal packet radio service support node (SGSN).
  • MME mobility management entity
  • SGSN serving universal packet radio service support node
  • the session establishment message further includes indication information, configured to notify the target ISGW to acquire user context information from the source ISGW;
  • the step of the target ISGW acquiring the information of the core network gateway from the source ISGW includes: obtaining, by the target ISGW, user context information from the source ISGW according to the indication information, and acquiring the core from the user context information.
  • Network gateway information includes: obtaining, by the target ISGW, user context information from the source ISGW according to the indication information, and acquiring the core from the user context information.
  • the information of the core network gateway includes a core network gateway address and/or a tunnel identifier.
  • the user context information further includes a user address and/or a traffic off policy, where the user address and the offload policy are used for data offloading by the target ISGW.
  • the target ISGW obtains the user context information from the source ISGW through an extended general packet radio service tunneling protocol message or an interface message between the newly defined ISGWs.
  • the session establishment message is a Create Packet Data Protocol (PDP) Context Request message or a Create Session Request message.
  • PDP Packet Data Protocol
  • the present invention also provides a data offload switching system, where the system includes a core network mobility management unit and a target ISGW, where:
  • the core network mobility management unit is configured to send information of the source ISGW to the target ISGW in a session establishment message sent to the target ISGW;
  • the target ISGW is configured to obtain information of a core network gateway from the source ISGW, and perform tunnel update with the core network gateway.
  • the core network mobility management unit is a mobility management entity (MME) or a serving universal packet radio service support node (SGSN).
  • MME mobility management entity
  • SGSN serving universal packet radio service support node
  • the core network mobility management unit is further configured to: carry the indication information in the session establishment message, to notify the target ISGW to acquire user context information from the source ISGW;
  • the target ISGW is configured to acquire information about the core network gateway by: acquiring user context information from the source ISGW according to the indication information, and acquiring information about the core network gateway from the user context information. .
  • the information of the core network gateway includes a core network gateway address and/or a tunnel identifier.
  • the target ISGW is further configured to: obtain a user address and/or a traffic off policy from the user context information, and perform data offload according to the user address and/or the offload policy.
  • the target ISGW is configured to acquire the user context information from the source ISGW by an extended generic packet radio service tunneling protocol message or an interface message between newly defined ISGWs.
  • the session establishment message is a create PDP context request message or a create session request message.
  • Figure la is a schematic diagram of a system architecture for implementing data offloading in a 3G network
  • Figure lb is a schematic diagram of a system architecture for implementing data offloading in an LTE network
  • FIG. 2 is a schematic diagram of data splitting when the ISGW is relocated during user mobility
  • Embodiment 1 of the present invention is a flowchart of Embodiment 1 of the present invention.
  • FIG. 5 is a flowchart of Embodiment 3 of the present invention.
  • FIG. 8 is a flowchart of Embodiment 6 of the present invention. Preferred embodiment of the invention
  • the present invention provides a handover method in a data offloading system, including:
  • the core network mobility management unit sends the source ISGW information to the target ISGW in the session establishment message sent to the target ISGW;
  • the target ISGW obtains core network gateway information from the source ISGW, and performs tunnel update with the core network gateway.
  • the session establishment message is a Create Packet Data Protocol (PDP) Context Request message or a Create Session Request message.
  • PDP Packet Data Protocol
  • the core network gateway information may be carried by the user context information, and the method includes: the core network mobility management unit further carries the indication information in the session establishment message, to notify the target ISGW to obtain the user context from the source ISGW;
  • the target ISGW acquires user context information from the source ISGW according to the indication information, and acquires core network gateway information from the user context information.
  • the core network mobility management unit is a mobility management entity (MME) or a serving GPRS support node (SGSN).
  • MME mobility management entity
  • SGSN serving GPRS support node
  • the user context information further includes: a user address and/or a traffic off policy.
  • the core gateway information includes: a core network gateway address and/or a tunnel identifier (TEID).
  • TEID tunnel identifier
  • the user address and the offloading policy are used by the target ISGW to perform data offloading.
  • the core network gateway is a GGSN or a P-GW.
  • the obtaining of the user context information may be implemented by defining a new interface message between the ISGWs or by extending the GTP message. That is, the target ISGW obtains user context information from the source ISGW through the extended GTP message or the interface message between the newly defined ISGWs.
  • the source ISGW information includes one or a combination of an address, an identifier, and a tunnel identity (TEID) information of the ISGW.
  • TEID tunnel identity
  • FIG. 3 is a first embodiment of the present invention. This embodiment is described by taking a process of initiating a service request by a 3G network user as an example, and specifically includes the following steps:
  • Step 301 Initiate a service request message when the user has uplink data transmission or needs to establish a signaling connection with the core network.
  • Step 302 If the user initiates the data offload function, the SGSN determines whether the ISGW is suitable according to the current location of the user (that is, the Routing Area Identifier (RAI) or the RNC id information carried by the RNC when forwarding the service request message). The user is provided with a traffic offloading service. If not, the SGSN initiates the ISGW reselection process. Specifically, the SGSN inputs the user location information to a dedicated selector (either in conjunction with an existing network element or deployed separately) or the upgraded DNS server to find a new ISGW.
  • RAI Routing Area Identifier
  • RNC id information carried by the RNC when forwarding the service request message
  • Step 303 The SGSN sends a Create PDP Context Request message to the found target ISGW to create a user session, where the message carries the source ISGW information and an indication to indicate that the target ISGW obtains the user context from the source ISGW.
  • Step 304 The target ISGW acquires the user context from the source ISGW through the newly defined context request message on the Gn' interface.
  • Gn can also be extended, and the GTP message on the interface, such as adding a parameter in the normal creation or updating of the PDP context message, indicates that the operation is to obtain the context.
  • the interface between the two ISGWs is defined as a Gn' interface, and the implementation does not define the name.
  • TEID tunnel identifier
  • the user address and the offloading policy enable the target ISGW to perform data offloading normally.
  • Step 306 The target ISGW finds the core network gateway GGSN according to the core network gateway GGSN address or the core network gateway tunnel identifier (TEID) in the user context information sent by the source ISGW, and sends an update PDP context request message to update the target ISGW and the core network gateway.
  • the message includes information such as the address and tunnel identifier of the target ISGW.
  • Step 307 The core network gateway GGSN replies and updates the PDP context response message to the target ISGW after recording the new ISGW information.
  • Step 308 The target ISGW replies to the SGSN to create a PDP context response message, where the message carries the tunnel identifier information allocated by the target ISGW.
  • Step 309 The SGSN sends a radio access bearer (RAB) assignment request message to the radio network controller (RNC), where the message includes the air interface bearer to be established, the address of the target ISGW, and the tunnel identifier information to establish the RNC and the Uplink direct tunnel between target ISGWs.
  • RNC radio access bearer
  • Step 310 The RNC establishes an air bearer bearer with the MS according to the air interface bearer information obtained in step 309.
  • Step 311 The RNC replies to the SGSN with an RAB Assignment Response message, where the RNC carries the address of the RNC and the tunnel identification information.
  • Step 312 The SGSN sends an update PDP context request message to the target ISGW, where the address of the RNC and the tunnel identifier information are used to establish a downlink direct tunnel between the RNC and the target ISGW.
  • Step 313 The target ISGW replies with an update PDP context response message to the SGSN.
  • Step 314 the SGSN sends a delete PDP context request message to the source ISGW.
  • Step 315 The source ISGW sends a delete PDP context response message to the SGSN.
  • Step 314 and step 315 are optional. After the SGSN receives the PDP context response message created in step 308, step 314 can be performed. You can also get the user up and down in step 304. After the text, the source ISGW starts a timer and deletes the user context information saved by itself after the timer expires.
  • steps 303 to 308 are not limited as the logical steps implemented in the present invention, and the process deformation caused by the different positions should be within the same protection.
  • FIG. 4 is a second embodiment of the present invention.
  • a 3G network user is invited to initiate a route update process, and the following steps are specifically included:
  • Step 401 Initiate a routing area update request message when the user moves to an area other than the routing area.
  • Step 402 If the user initiates the data offload function, the SGSN determines, according to the current location of the user (that is, the RAI or RNC id information carried by the RNC when forwarding the routing area update request message), whether the ISGW is still suitable for providing the user with the offload service, if not The SGSN initiates the ISGW reselection process. Specifically, the SGSN inputs the user location information to a dedicated selector (either in conjunction with an existing network element or deployed separately) or the upgraded DNS server to find a new ISGW.
  • a dedicated selector either in conjunction with an existing network element or deployed separately
  • the upgraded DNS server to find a new ISGW.
  • Step 403 The SGSN sends a Create PDP Context Request message to the found target ISGW to create a user session, where the message carries the source ISGW information and an indication to indicate that the target ISGW obtains the user context from the source ISGW.
  • Step 404 The target ISGW acquires the user context from the source ISGW through the newly defined context request message on the Gn' interface.
  • Gn can also be extended, and GTP messages on the interface, such as adding parameters in the normal creation or updating of the PDP context message, indicate that the operation is to obtain the context.
  • GTP messages on the interface such as adding parameters in the normal creation or updating of the PDP context message, indicate that the operation is to obtain the context.
  • the interface between the two ISGWs is defined as a Gn' interface, and the implementation is not limited in name.
  • Step 405 The source ISGW replies the user context information to the target ISGW by using a context response message or an extended existing GTP message, where the message includes a core network gateway GGSN address, a tunnel identifier (TEID), a user address, and a traffic off policy.
  • TEID tunnel identifier
  • the user address and the offloading policy enable the target ISGW to perform data offloading normally.
  • Step 406 The target ISGW finds the core network gateway GGSN according to the core network gateway GGSN address or the tunnel identifier in the user context information sent by the source ISGW, and sends an update PDP context request message to the core network gateway GGSN, and updates the target ISGW and the core network gateway GGSN. Between Tunnel.
  • the message includes information such as the address and tunnel identifier of the target ISGW.
  • Step 407 The core network gateway GGSN replies and updates the PDP context response message to the target ISGW after recording the new ISGW information.
  • Step 408 The target ISGW replies to the SGSN to create a PDP context response message, where the message carries the tunnel identifier information allocated by the target ISGW.
  • Step 409 The SGSN sends a routing area update accept message to the MS.
  • Step 410 The MS sends a routing area update complete message to the SGSN, and the routing area update process initiated by the MS is completed.
  • Step 411 and step 412 are optional.
  • the SGSN may initiate a delete PDP context request message to the source ISGW.
  • the source ISGW starts the timer, and deletes the user context information saved by itself after the timer expires.
  • steps 403 to 408 are implemented as the logical steps of the present invention, and the positions appearing in the process are not limited. The process deformation caused by the different positions should be within the same protection.
  • FIG. 5 is a third embodiment of the present invention. This embodiment is described by taking a handover process of a 3G network user as an example, and specifically includes the following steps:
  • Step 501 The user periodically sends a measurement report to the RNC, and when the RNC finds that the current location of the user has a more suitable RNC serving according to the wireless signal strength, the RNC performs a handover process.
  • the source RNC informs the SGSN of the target RNC selected by the user through the relocation request message.
  • Step 502 If the user initiates the data offloading function, the SGSN determines, according to the current location of the user (that is, the RAI or RNC id information to which the target RNC carried in the relocation request message is sent by the RNC), whether the ISGW is further suitable for providing the user with the offloading service. If not, then the SGSN initiates the ISGW reselection process. Specifically, the SGSN inputs the user location information to a dedicated selector (co-located with the existing network element or deployed separately) or the upgraded DNS server to find a new ISGW.
  • the SGSN determines, according to the current location of the user (that is, the RAI or RNC id information to which the target RNC carried in the relocation request message is sent by the RNC), whether the ISGW is further suitable for providing the user with the offloading service. If not, then the SGSN initiates the ISGW reselection process. Specifically, the SGSN inputs the user location information to a dedicated selector
  • Step 503 The SGSN sends a Create PDP Context Request message to the found target ISGW to create a user session.
  • the message carries the source ISGW information and an indication to indicate that the target ISGW acquires the user context from the source ISGW.
  • Step 504 The target ISGW acquires the user context from the source ISGW through the newly defined context request message on the Gn' interface.
  • Gn can also be extended, and the GTP message on the interface, such as adding a parameter in the normal creation or updating of the PDP context message, indicates that the operation is to obtain the context.
  • the interface between the two ISGWs is defined as a Gn' interface, and the implementation does not define the name.
  • Step 505 The source ISGW replies the user context information to the target ISGW by using a context response message or an extended existing GTP message, where the message includes a core network gateway GGSN address, a tunnel identifier (TEID), a user address, and a traffic off policy.
  • TEID tunnel identifier
  • the user address and the offloading policy enable the target ISGW to perform data offloading normally.
  • Step 506 The target ISGW finds the core network gateway GGSN according to the core network gateway GGSN address or the tunnel identifier in the user context information sent by the source ISGW, and sends an update PDP context request message to update the tunnel between the target ISGW and the core network gateway GGSN.
  • the message includes information such as the address of the target ISGW and the tunnel identifier.
  • Step 507 The core network gateway GGSN replies and updates the PDP context response message to the target ISGW after recording the new ISGW information.
  • Step 508 The target ISGW replies to the SGSN to create a PDP context response message, where the message carries the tunnel identifier information allocated by the target ISGW.
  • Step 509 The SGSN sends a relocation request message to the target RNC, where the message includes the air interface to be established, the address of the target ISGW, and the tunnel identifier information to establish an uplink direct tunnel between the RNC and the target ISGW.
  • Step 510 Perform an air interface synchronization process of the existing MS to the target RNC, and no comment is made here.
  • Step 511 The SGSN sends an update PDP context request message to the target ISGW, where the address of the RNC and the tunnel identifier information are used to establish a downlink direct tunnel between the RNC and the target ISGW.
  • Step 512 The target ISGW replies to the update PDP context response message to the SGSN.
  • Step 513 and step 514 are optional.
  • the SGSN may initiate a delete PDP context request message to the source ISGW.
  • the timer is started by the source ISGW, and the user saved by the timer is deleted after the timer expires. Contextual information.
  • steps 503 to 508 are not limited as the logical steps implemented in the present invention, and the process deformation caused by the different positions should be within the same protection.
  • FIG. 6 is a fourth embodiment of the present invention.
  • an LTE network user initiates a service request process as an example, and specifically includes the following steps:
  • Step 601 Initiate a service request message when the user has uplink data transmission or needs to establish a signaling connection with the core network.
  • Step 602 If the user initiates the data offload function, the MME determines whether the ISGW is still suitable for the user according to the current location of the user (that is, the Tracking Area Identifier (TAI) or the eNB id information carried by the eNB when forwarding the service request message). The offloading service is provided. If not, the MME starts the ISGW reselection process. Specifically, the MME inputs the user location information to a dedicated selector (either in conjunction with an existing network element or deployed separately) or the upgraded DNS server to look up a new ISGW.
  • TAI Tracking Area Identifier
  • eNB id information carried by the eNB when forwarding the service request message
  • Step 603 The MME sends a create session request message to the found target ISGW to create a user session, where the message carries the source ISGW information and an indication to indicate that the target ISGW obtains the user context from the source ISGW.
  • Step 604 The target ISGW obtains the user context from the source ISGW through the newly defined context request message on the S5' interface.
  • the implementation may also extend S5, the GTP message on the interface, such as adding a parameter in the normal creation session or updating the bearer message to indicate that the context is acquired.
  • the interface between the two ISGWs is defined as an S5' interface, and the implementation does not have a name limitation.
  • Step 605 The source ISGW replies the user context information to the target ISGW by using a context response message or an extended existing GTP message, where the message includes a core network gateway P-GW address, a tunnel identifier (TEID), a user address, and a traffic off policy.
  • TEID tunnel identifier
  • the user address and the offloading policy enable the target ISGW to perform data offloading normally.
  • Step 606 The target ISGW finds the core network gateway P-GW according to the core network gateway P-GW address or the tunnel identifier in the user context information sent by the source ISGW, and sends an update bearer request.
  • the message updates the tunnel between the target ISGW and the core network gateway P-GW.
  • the message includes information such as the address and tunnel identifier of the target ISGW.
  • Step 607 The core network gateway P-GW returns a new response message to the target ISGW after recording the new ISGW information.
  • Step 608 The target ISGW replies to the SGSN with a create session response message, where the message carries the tunnel identifier information allocated by the target ISGW.
  • Step 609 The MME sends an initial context setup request message to the eNB, where the message includes the air interface bearer to be established, the address of the target ISGW, and the tunnel identifier information to establish an uplink direct tunnel between the eNB and the target ISGW.
  • Step 610 The eNB establishes an air bearer bearer with the MS according to the air interface bearer information obtained in step 609.
  • Step 611 The eNB returns an initial context setup response message to the MME, where the address of the eNB and the tunnel identifier information are carried.
  • Step 612 The MME sends an update bearer message to the target ISGW, where the address of the eNB and the tunnel identifier information are used to establish a downlink direct tunnel between the eNB and the target ISGW.
  • Step 613 The target ISGW replies to the update bearer response message to the MME.
  • Step 614 and step 615 are optional.
  • the MME may initiate a delete session request message to the source ISGW.
  • the timer is started by the source ISGW, and the user context information saved by itself is deleted after the timer expires.
  • steps 603 to 608 are not limited as the logical steps implemented in the present invention, and the process deformation caused by the different positions should be within the same protection.
  • FIG. 7 is a fifth embodiment of the present invention. This embodiment is described by using an LTE network user request to initiate a tracking area update process, and specifically includes the following steps:
  • Step 701 A tracking area update request message is initiated when the user moves to an area other than the tracking area list.
  • Step 702 if the user initiates the data offload function, the MME is based on the current location of the user (also That is, the TAI or eNB id information carried by the eNB when forwarding the tracking area update request message is determined whether the ISGW is also suitable for providing the user with the offloading service. If not, the MME starts the ISGW reselection process. Specifically, the MME inputs the user location information to a dedicated selector (co-located with an existing network element or deployed separately) or the upgraded DNS server to find a new ISGW.
  • a dedicated selector co-located with an existing network element or deployed separately
  • the upgraded DNS server to find a new ISGW.
  • Step 703 The MME sends a create session request message to the found target ISGW to create a user session, where the message carries the source ISGW information and an indication to indicate that the target ISGW obtains the user context from the source ISGW.
  • Step 704 The target ISGW obtains the user context from the source ISGW through the newly defined context request message on the S5' interface.
  • the implementation may also extend S5, the GTP message on the interface, such as adding a parameter in the normal creation session or updating the bearer message to indicate that the context is acquired.
  • the interface between the two ISGWs is defined as an S5' interface, and the implementation does not have a name limitation.
  • Step 705 The source ISGW sends the user context information to the target ISGW by using a context response message or an extension of the existing GTP message.
  • the message includes a core network gateway P-GW address, a tunnel identifier (TEID), a user address, and a traffic off policy.
  • TEID tunnel identifier
  • the user address and the offloading policy enable the target ISGW to perform data offloading normally.
  • Step 706 The target ISGW finds the core network gateway P-GW according to the core network gateway P-GW address or the tunnel identifier in the user context information sent by the source ISGW, and sends an update bearer request message, and updates the target ISGW and the core network gateway P-GW. Between the tunnels.
  • the message includes information such as the address and tunnel identifier of the target ISGW.
  • Step 707 The core network gateway P-GW records the new ISGW information and replies to the update response message to the target ISGW.
  • Step 708 The target ISGW replies with the MME to create a session response message, where the message carries the tunnel identifier information allocated by the target ISGW.
  • Step 709 The MME sends a tracking area update accept message to the UE.
  • Step 710 The UE sends a tracking area update complete message to the MME, and the tracking area update process initiated by the UE is completed.
  • Step 711 and step 712 are optional, and the MME may receive the response message of step 708.
  • a delete session request message is initiated to the source ISGW. After the user context is obtained in step 704, the timer is started by the source ISGW, and the user context information saved by itself is deleted after the timer expires.
  • steps 703 to 708 are implemented as the logical steps of the present invention, and the positions appearing in the process are not limited, and the process deformation caused by the different positions should be within the same protection.
  • FIG. 8 is a sixth embodiment of the present invention. This embodiment is described by taking an LTE network user handover process as an example, and specifically includes the following steps:
  • Step 801 The user periodically sends a measurement report to the eNB, and when the eNB finds that the user's current location has a more suitable eNB to serve according to the wireless signal strength, the eNB performs a handover process.
  • the source eNB informs the MME of the target eNB selected by the user through a relocation request message.
  • Step 802 If the user initiates the data offloading function, the MME determines, according to the current location of the user (that is, the TAI or eNB id information that the target eNB belongs to in the eNB sending the relocation request message), whether the ISGW is further suitable for providing the user with the offloading service. If not, then the MME initiates the ISGW reselection process. Specifically, the MME inputs the user location information to a dedicated selector (either in conjunction with an existing network element or deployed separately) or the upgraded DNS server to find a new ISGW.
  • a dedicated selector either in conjunction with an existing network element or deployed separately
  • the upgraded DNS server to find a new ISGW.
  • Step 803 The MME sends a create session request message to the found target ISGW to create a user session, where the message carries the source ISGW information and an indication to indicate that the target ISGW obtains the user context from the source ISGW.
  • Step 804 The target ISGW obtains the user context from the source ISGW through the newly defined context request message on the S5' interface.
  • the implementation may also extend S5, the GTP message on the interface, such as adding a parameter in the normal creation session or updating the bearer message to indicate that the context is acquired.
  • the interface between the two ISGWs is defined as an S5' interface, and the implementation does not have a name limitation.
  • Step 805 The source ISGW sends the user context information to the target ISGW by using a context response message or an extension of the existing GTP message, and the message includes a core network gateway P-GW address, a tunnel identifier (TEID), a user address, and a traffic off policy.
  • TEID tunnel identifier
  • the user address and the offloading policy enable the target ISGW to perform data offloading normally.
  • Step 806 The core network in the user context information sent by the target ISGW according to the source ISGW
  • the gateway P-GW address or the tunnel identifier finds the core network gateway P-GW, and sends an update bearer request message to update the tunnel between the target ISGW and the core network gateway P-GW.
  • the message includes information such as the address and tunnel identifier of the target ISGW.
  • Step 807 The core network gateway P-GW records the new ISGW information and replies to the update response message to the target ISGW.
  • Step 808 The target ISGW replies with the MME to create a session response message, where the message carries the tunnel identifier information allocated by the target ISGW.
  • Step 809 The MME sends a handover request message to the target eNB, where the message includes the air interface bearer to be established, the address of the target ISGW, and the tunnel identifier information to establish an uplink direct tunnel between the eNB and the target ISGW.
  • Step 810 Perform an air interface synchronization process of the existing UE to the target eNB, and do not make a comment here.
  • Step 811 The MME sends a modify bearer request message to the target ISGW, where the address of the eNB and the tunnel identifier information are used to establish a downlink direct tunnel between the eNB and the target ISGW.
  • Step 812 The target ISGW replies to modify the bearer response message to the MME.
  • Step 813 and step 814 are optional.
  • the MME may initiate a delete session request message to the source ISGW.
  • the source ISGW starts a timer, and deletes the user context information saved by itself after the timer expires.
  • steps 803 to 808 are not limited as the logical steps implemented in the present invention, and the process deformation caused by the different positions should be within the same protection.
  • the present invention also provides a data offload switching system, where the system includes a core network mobility management unit and a target ISGW, where:
  • the core network mobility management unit is configured to send source ISGW information to the target ISGW in a session establishment message sent to the target ISGW;
  • the target ISGW is configured to acquire core network gateway information from the source ISGW, and perform tunnel update with the core network gateway.
  • the session establishment message is to create a PDP context request message or create a session request. Message.
  • the core network mobility management unit is a mobility management entity (MME) or a serving general packet radio service support node (SGSN).
  • MME mobility management entity
  • SGSN serving general packet radio service support node
  • the core network mobility management unit is further configured to: carry the indication information in the session establishment message, to notify the target ISGW to acquire user context information from the source ISGW; the target ISGW is set according to the Instructing information, acquiring user context information from the source ISGW, and acquiring the core network gateway information from the user context information.
  • the core network gateway information includes a core network gateway address and/or a tunnel identifier.
  • the target ISGW is further configured to obtain a user address and/or a traffic off policy from the user context information, and perform data offload according to the user address and/or the offload policy.
  • the target ISGW is configured to acquire the user context information from the source ISGW by using an extended general packet radio service tunneling protocol message or a newly defined interface message between ISGWs.
  • the handover method and system in the data offloading system of the present invention are not limited to the 3G or LTE network described above, and are equally applicable to existing mobile communication networks such as CDMA, Wimax networks and the like.
  • the data offloading network element ISGW when the data offloading network element ISGW is relocated, the data sent to the core network is not interrupted, thereby improving user satisfaction and feeling.
  • the present invention can prevent data sent to the core network from being uninterrupted when the data offloading network element ISGW is relocated, thereby improving user satisfaction and feeling.
  • the present invention is applicable not only to a 3G or LTE network, but also to the present invention.
  • Some mobile communication networks such as CDMA, Wimax networks, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种数据分流***中的切换方法和数据分流***,该方法包括:核心网移动性管理单元在向目标综合服务网关(ISGW)发送的会话建立消息中将源ISGW的信息发送给目标ISGW;以及所述目标ISGW从所述源ISGW获取核心网网关的信息,并与所述核心网网关进行隧道更新。本发明可以使数据分流网元ISGW发生重定位时发送至核心网的数据不中断,提高用户满意度和感受。

Description

一种数据分流***中的切换方法和***
技术领域
本发明涉及移动通信领域, 具体涉及移动网络数据分流***中的切换方 法和***。
背景技术
随着空口速率的不断提升, 加之数据用户的增加, 未来用户数据量会呈 现爆发性的增长, 这不可避免地会对现有核心网网络造成冲击, 现有核心网 网元不得不进行扩容才能为用户提供满意的服务。 考虑到增长的数据多为 Internet 业务造成的, 移动运营商希望在不改变现有网络的基础上进行本地 internet数据分流, 避免大量数据冲击核心网所带来的网络升级问题并且能够 满足用户数据业务需求。
基于 3G和长期演进( Long Term Evolution, LTE )的核心网网络架构提供 了一种数据分流***如图 1所示。 图 la为 3G网络中数据分流***的实现架 构, 图 lb为 LTE网络中数据分流***的实现架构。 表 la为网络架构中出现 的网元名称和中文解释, 表 lb为网元间接口的说明。
网络架构中的综合服务网关( Integrated Serving Gateway, ISGW )为新定 义的网元, 它具有标准规定的 GGSN或者 S-GW 的功能以及 GTP ( GPRS Tunneling Protocol, GPRS隧道协议)代理( proxy )和 NAT ( Network Address Translation, 网络地址转换)网关的功能, 部署于数据传输路径上用于数据分 流, 它和网络中其它的标准化网元如 SGSN、 GGSN等釆用标准接口进行连 接, 两个 ISGW之间釆用新定义的 Gn,或者 S5,进行连接。 新定义的接口具有 GTP 消息和用户数据转发功能, 具体名称暂未标准化, 可不做限定。 ISGW 执行数据分流原理如下:在 3G网络中接入网络的 UTRAN通过标准 DT( Direct Tunnel, 直接隧道)方式与 ISGW相连, 在 LTE网络中接入网络的 E-UTRAN 通过标准 S1-U与 ISGW相连, 并将用户数据发送至 ISGW。 ISGW根据本地 配置或者从策略服务器下发的用户分流策略进行数据包处理, 将符合分流策 略的数据的 NAT地址转换后发送到 Internet或者其它运营商外部网络, 将运 营商希望控制的数据发送给核心网网关 GGSN或者 P-GW, 并路由至运营商 自营业务网络。
新网元 ISGW的部署可以不影响现有网络中的网元功能, 从而达到数据 分流的目的。 在用户建立网络连接时, SGSN或者 MME根据接入点名称 ( Access Point Name, APN )通过专门的选择器(与现有网元合设或者单独部 署)或者升级后的域名***( Domain Name System, DNS )服务器查找到 ISGW, 对 SGSN或者 MME来说 ISGW可以当作正常的核心网网关使用,随后 ISGW 根据 APN通过专门的选择器或者升级后的 DNS服务器查找到真正的核心网 网关 GGSN或者 P-GW,并建立 ISGW和真正的核心网网关之间的连接。 ISGW 的引入能够屏蔽对现有网络的影响, 并且能同时完成数据分流功能, 在网络 部署和演进上有一定的优势。
为了尽早的将数据分流至 Internet或者其它运营商外部网络以降低核心 网负担, ISGW在物理部署上要尽量靠近用户侧。 随着用户的移动, 原来用 户接入的 ISGW可能无法满足用户当前位置的数据分流需要, 因此需要根据 用户的位置进行 ISGW的重定位操作, 如图 2所示。 ISGW重定位后, 由于 真正的核心网网关是由源 ISGW选定的, 核心网移动性管理单元并不感知, 无法保证核心网数据的连续性, 现有技术目前无法做到这一点。
表 la
Figure imgf000004_0001
Node, 网关 GPRS支持节 商自营业务网络或者 Internet的访问。
UE User Equipment , 用户设备 LTE网络的用户终端设备
E-UTRAN Evolved Universal 由 eNodeB组成,为用户终端设备提供 LTE
Terrestrial Radio Access 网络的接入。
Network, 演进的通用陆地
无线接入网络
MME Mobility Management 用户签约数据在当前网络的存放地点,负责
Entity, 移动性管理实体 终端到网络的 NAS层 (Non- Access Stratum, 非接入层)信令管理、 用户空闲模式下的跟 踪和寻呼管理功能和承载管理
SGW Serving Gateway,月艮务网关 核心网到无线***的网关,负责终端到核心 网的用户面承载、终端空闲模式下的数据緩 存、 网络侧发起业务请求的功能、合法监听 和分组数据路由和转发功能
P-GW PDN Gateway 演进的分组域***(EPS )和该***外部网 分组数据网络网关 络的网关, 负责终端的 IP地址分配、 计费 功能、 分组包过滤、 策略应用等功能。 表 lb
接口 接口说明
Uu 用户设备和 3G接入网络之间的接口
Iu UTRAN和 SGSN之间的接口
Gn 核心网网元之间的接口
Gi 核心网网关对外的接口,为用户提供到运营商自营业务网络或者 Internet 的访问。
LTE-Uu UE和 LTE接入网络 E-UTRAN之间的接口
Sl-MME E-UTRAN和移动性管理实体 MME之间的接口
Sl-U E-UTRAN和核心网网关 SGW之间的用户面接口 Sl l 核心网移动性管理实体 MME和媒体面网关 SGW之间的接口
S5 媒体面网关 SGW和 P-GW之间的接口
发明内容
本发明的目的是提供一种数据分流***中的切换方法和***, 保证切换 后业务的连续性。
为了解决上述问题, 本发明提供了一种数据分流***中的切换方法, 包 括:
核心网移动性管理单元在向目标 ISGW发送的会话建立消息中将源 ISGW的信息发送给目标 ISGW; 以及
所述目标 ISGW从所述源 ISGW获取核心网网关的信息, 并与所述核心 网网关进行隧道更新。
所述核心网移动性管理单元为移动性管理实体(MME )或者服务通用分 组无线业务支持节点 (SGSN ) 。
所述会话建立消息中还携带指示信息, 用于告知所述目标 ISGW向所述 源 ISGW获取用户上下文信息;
所述目标 ISGW从所述源 ISGW获取核心网网关的信息的步骤包括: 所述目标 ISGW根据所述指示信息, 从所述源 ISGW获取用户上下文信 息, 从所述用户上下文信息中获取所述核心网网关的信息。
所述核心网网关的信息包括核心网网关地址和 /或隧道标识。
所述用户上下文信息中还包括用户地址和 /或分流策略, 其中所述用户地 址和分流策略用于所述目标 ISGW进行数据分流。
所述目标 ISGW通过扩展的通用分组无线业务隧道协议消息或者新定义 的 ISGW之间的接口消息从所述源 ISGW获取所述用户上下文信息。
所述会话建立消息为创建分组数据协议(PDP )上下文请求消息或者创 建会话请求消息。 本发明还提供一种数据分流切换***, 所述***包括核心网移动性管理 单元和目标 ISGW, 其中:
所述核心网移动性管理单元设置成在向目标 ISGW发送的会话建立消息 中将源 ISGW的信息发送给目标 ISGW;
所述目标 ISGW设置成从所述源 ISGW获取核心网网关的信息, 并与所 述核心网网关进行隧道更新。
所述核心网移动性管理单元为移动性管理实体(MME )或者服务通用分 组无线业务支持节点 (SGSN ) 。
所述核心网移动性管理单元还设置成: 在所述会话建立消息中携带指示 信息, 用于告知所述目标 ISGW从源 ISGW获取用户上下文信息;
所述目标 ISGW是设置成通过如下方式获取所述核心网网关的信息: 根 据所述指示信息, 从所述源 ISGW获取用户上下文信息, 从所述用户上下文 信息中获取所述核心网网关的信息。
所述核心网网关的信息包括核心网网关地址和 /或隧道标识。
所述目标 ISGW还设置成: 从所述用户上下文信息中获取用户地址和 /或 分流策略, 根据所述用户地址和 /或分流策略进行数据分流。
所述目标 ISGW是设置成通过扩展的通用分组无线业务隧道协议消息或 者新定义的 ISGW之间的接口消息从所述源 ISGW获取所述用户上下文信息。
所述会话建立消息为创建 PDP上下文请求消息或者创建会话请求消息。 通过本发明可以使数据分流网元 ISGW发生重定位时发送至核心网的数 据不中断, 提高用户满意度和感受。 附图概述
附图说明用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明的实施例一起用于解释本发明, 并不构成对本发明的限制。 在附图 中:
图 la为 3G网络实现数据分流的***架构示意图; 图 lb为 LTE网络实现数据分流的***架构示意图;
图 2为用户移动过程中 ISGW重定位时的数据分流示意图;
图 3为本发明实施方式一流程图;
图 4为本发明实施方式二流程图;
图 5为本发明实施方式三流程图;
图 6为本发明实施方式四流程图;
图 7为本发明实施方式五流程图;
图 8为本发明实施方式六流程图。 本发明的较佳实施方式
本发明提出一种数据分流***中的切换方法, 包括:
核心网移动性管理单元在向目标 ISGW发送的会话建立消息中将源 ISGW信息发送给目标 ISGW; 以及
所述目标 ISGW从所述源 ISGW获取核心网网关信息, 并与所述核心网 网关进行隧道更新。
其中, 所述会话建立消息为创建分组数据协议(PDP )上下文请求消息 或者创建会话请求消息。
其中: 核心网网关信息可以通过用户上下文信息携带, 具体包括: 核心网移动性管理单元在所述会话建立消息中还携带指示信息, 用以告 知目标 ISGW向源 ISGW获取用户上下文;
目标 ISGW根据所述指示信息, 向所述源 ISGW获取用户上下文信息, 从所述用户上下文信息中获取核心网网关信息。
其中核心网移动性管理单元为移动性管理实体(MME )或者服务 GPRS 支持节点 (SGSN ) 。
其中所述用户上下文信息中还包括: 用户地址和 /或分流策略。 所述核心 网关信息包括: 核心网网关地址和 /或隧道标识( TEID )。 所述用户地址和分 流策略用于所述目标 ISGW进行数据分流。 其中, 所述核心网网关为 GGSN或者 P-GW。
其中, 用户上下文信息的获取可以通过在 ISGW间定义新接口消息或者 通过扩展 GTP消息来实现。 即目标 ISGW通过扩展的 GTP消息或者新定义 的 ISGW之间的接口消息从源 ISGW获取用户上下文信息。
其中源 ISGW信息包括 ISGW的地址、 标识和隧道标识(TEID )信息之 一或其组合。
下面结合附图和具体实施例对本发明所述技术方案作进一步的详细描 述, 以使本领域的技术人员可以更好的理解本发明并能予以实施, 但所举实 施例不作为对本发明的限定。
图 3为本发明实施方式一, 本实施例以 3G网络用户发起业务请求过程 为例进行说明, 具体包括以下步骤:
步骤 301 , 当用户有上行数据发送或者需要建立与核心网的信令连接时 发起业务请求消息。
步骤 302 ,如果用户启动了数据分流功能, SGSN才艮据用户当前的位置(也 即 RNC转发业务请求消息时携带的路由区标识( Routing Area Identifier, RAI ) 或者 RNC id信息)判定 ISGW是否还适合为用户提供分流服务,如果不能那 么 SGSN启动 ISGW重选过程。 具体地, SGSN将用户位置信息输入到专门 的选择器(与现有网元合设或者单独部署)或者升级后的 DNS服务器查找新 的 ISGW。
步骤 303 , SGSN向查找到的目标 ISGW发送创建 PDP上下文请求消息 用以创建用户会话, 消息中携带源 ISGW信息和用以指示目标 ISGW向源 ISGW获取用户上下文的指示。
步骤 304 , 目标 ISGW通过 Gn'接口上新定义的上下文请求消息向源 ISGW获取用户上下文。 或者在实现上也可以扩展 Gn,接口上的 GTP消息, 如在正常的创建或者更新 PDP上下文消息中增加参数表明是获取上下文的操 作。 需要说明的是, 两个 ISGW之间的接口本发明定义为 Gn'接口, 实现上 不做名称上的限定。 步骤 305, 源 ISGW通过上下文响应消息或者扩展现有 GTP消息回复用 户上下文信息给目标 ISGW, 消息中包括核心网网关 GGSN地址、 隧道标识 ( TEID )、用户地址和分流策略等。其中用户地址和分流策略使得目标 ISGW 能够正常进行数据分流。
步骤 306, 目标 ISGW根据源 ISGW发送的用户上下文信息中的核心网 网关 GGSN地址或者核心网网关隧道标识( TEID )找到核心网网关 GGSN, 并发送更新 PDP上下文请求消息,更新目标 ISGW和核心网网关 GGSN之间 的隧道。 消息中包括目标 ISGW的地址和隧道标识等信息。
步骤 307, 核心网网关 GGSN记录新的 ISGW信息后回复更新 PDP上下 文响应消息给目标 ISGW。
步骤 308, 目标 ISGW向 SGSN回复创建 PDP上下文响应消息, 消息中 携带目标 ISGW分配的隧道标识信息。
步骤 309, SGSN向无线网络控制器(RNC )发送无线接入承载(Radio Access Bearer, RAB )指派请求消息, 消息中包括需要建立的空口承载、 目标 ISGW的地址和隧道标识信息用以建立 RNC和目标 ISGW之间的上行直接隧 道。
步骤 310, RNC根据步骤 309获得的空口承载信息建立与 MS之间的空 口承载。
步骤 311 , RNC向 SGSN回复 RAB指派响应消息, 其中携带 RNC的地 址和隧道标识信息。
步骤 312, SGSN发送更新 PDP上下文请求消息给目标 ISGW,其中携带 RNC的地址和隧道标识信息用以建立 RNC和目标 ISGW之间的下行直接隧 道。
步骤 313 , 目标 ISGW回复更新 PDP上下文响应消息给 SGSN。
步骤 314, SGSN发送删除 PDP上下文请求消息至源 ISGW;
步骤 315, 源 ISGW发送删除 PDP上下文响应消息至 SGSN。
其中, 步骤 314和步骤 315是可选的, 在 SGSN收到步骤 308中创建的 PDP上下文响应消息后就可以执行步骤 314。 也可以在 304步获取用户上下 文之后, 源 ISGW启动定时器, 在定时器超时后删除自身保存的用户上下文 信息。
需要说明的是步骤 303至步骤 308作为本发明实现的逻辑步骤在流程中 出现的位置不做限定, 由于位置不同而带来的流程变形应在同等保护之内。
图 4为本发明实施方式二, 本实施例以 3G网络用户请发起路由更新过 程为例进行说明, 具体包括以下步骤:
步骤 401 , 当用户移动到路由区以外的区域时发起路由区更新请求消息。 步骤 402 ,如果用户启动了数据分流功能, SGSN根据用户当前的位置(也 即 RNC转发路由区更新请求消息时携带的 RAI或者 RNC id信息)判定 ISGW 是否还适合为用户提供分流服务,如果不能那么 SGSN启动 ISGW重选过程。 具体地, SGSN将用户位置信息输入到专门的选择器(与现有网元合设或者 单独部署)或者升级后的 DNS服务器查找新的 ISGW。
步骤 403 , SGSN向查找到的目标 ISGW发送创建 PDP上下文请求消息 用以创建用户会话, 消息中携带源 ISGW信息和用以指示目标 ISGW向源 ISGW获取用户上下文的指示。
步骤 404 , 目标 ISGW通过 Gn'接口上新定义的上下文请求消息向源 ISGW获取用户上下文。 或者在实现上也可以扩展 Gn,接口上的 GTP消息, 如在正常的创建或者更新 PDP上下文消息中增加参数表明是获取上下文的操 作。 需要说明的是, 两个 ISGW之间的接口本发明定义为 Gn'接口, 实现上 不做名称上的限定。
步骤 405, 源 ISGW通过上下文响应消息或者扩展现有 GTP消息回复用 户上下文信息给目标 ISGW, 消息中包括核心网网关 GGSN地址、 隧道标识 ( TEID )、用户地址和分流策略等。其中用户地址和分流策略使得目标 ISGW 能够正常进行数据分流。
步骤 406, 目标 ISGW根据源 ISGW发送的用户上下文信息中的核心网 网关 GGSN地址或者隧道标识找到核心网网关 GGSN, 向核心网网关 GGSN 发送更新 PDP上下文请求消息,更新目标 ISGW和核心网网关 GGSN之间的 隧道。 消息中包括目标 ISGW的地址和隧道标识等信息。
步骤 407, 核心网网关 GGSN记录新的 ISGW信息后回复更新 PDP上下 文响应消息至目标 ISGW。
步骤 408, 目标 ISGW向 SGSN回复创建 PDP上下文响应消息, 消息中 携带目标 ISGW分配的隧道标识信息。
步骤 409, SGSN向 MS发送路由区更新接受消息。
步骤 410, MS发送路由区更新完成消息给 SGSN, 此时 MS发起的路由 区更新过程执行完毕。
步骤 411和步骤 412是可选的, SGSN在收到步骤 408的响应消息后可 以发起至源 ISGW的删除 PDP上下文请求消息。 也可以在 404步获取用户上 下文之后, 由源 ISGW启动定时器, 并在定时器超时后删除自身保存的用户 上下文信息。
需要说明的是步骤 403至步骤 408作为本发明实现的逻辑步骤在流程中 出现的位置不做限定, 由于位置不同而带来的流程变形应在同等保护之内。
图 5为本发明实施方式三, 本实施例以 3G网络用户发生切换过程为例 进行说明, 具体包括以下步骤:
步骤 501 , 用户定期向 RNC发送测量报告, 当 RNC根据无线信号强度 发现用户当前位置有更适合的 RNC为之服务时就发起跨 RNC的切换过程。 源 RNC通过重定位请求消息告知 SGSN为用户选定的目标 RNC。
步骤 502 ,如果用户启动了数据分流功能, SGSN根据用户当前的位置(也 即 RNC发送重定位请求消息中携带的目标 RNC所属的 RAI或者 RNC id信 息)判定 ISGW是否还适合为用户提供分流服务, 如果不能那么 SGSN启动 ISGW重选过程。 具体地, SGSN将用户位置信息输入到专门的选择器(与现 有网元合设或者单独部署 )或者升级后的 DNS服务器查找新的 ISGW。
步骤 503 , SGSN向查找到的目标 ISGW发送创建 PDP上下文请求消息 用以创建用户会话, 消息中携带源 ISGW信息和用以指示目标 ISGW向源 ISGW获取用户上下文的指示。 步骤 504 , 目标 ISGW通过 Gn'接口上新定义的上下文请求消息向源 ISGW获取用户上下文。 或者在实现上也可以扩展 Gn,接口上的 GTP消息, 如在正常的创建或者更新 PDP上下文消息中增加参数表明是获取上下文的操 作。 需要说明的是, 两个 ISGW之间的接口本发明定义为 Gn'接口, 实现上 不做名称上的限定。
步骤 505, 源 ISGW通过上下文响应消息或者扩展现有 GTP消息回复用 户上下文信息给目标 ISGW, 消息中包括核心网网关 GGSN地址、 隧道标识 ( TEID )、用户地址和分流策略等。其中用户地址和分流策略使得目标 ISGW 能够正常进行数据分流。
步骤 506, 目标 ISGW根据源 ISGW发送的用户上下文信息中的核心网 网关 GGSN地址或者隧道标识找到核心网网关 GGSN,并发送更新 PDP上下 文请求消息, 更新目标 ISGW和核心网网关 GGSN之间的隧道。 消息中包括 目标 ISGW的地址和隧道标识等信息。
步骤 507, 核心网网关 GGSN记录新的 ISGW信息后回复更新 PDP上下 文响应消息给目标 ISGW。
步骤 508, 目标 ISGW向 SGSN回复创建 PDP上下文响应消息, 消息中 携带目标 ISGW分配的隧道标识信息。
步骤 509, SGSN向目标 RNC发送重定位请求消息, 消息中包括需要建 立的空口 7 载、 目标 ISGW 的地址和隧道标识信息用以建立 RNC 和目标 ISGW之间的上行直接隧道。
步骤 510,执行现有的 MS至目标 RNC的空口同步过程,在此不做赞述。 步骤 511 , SGSN发送更新 PDP上下文请求消息给目标 ISGW,其中携带 RNC的地址和隧道标识信息用以建立 RNC和目标 ISGW之间的下行直接隧 道。
步骤 512, 目标 ISGW回复更新 PDP上下文响应消息给 SGSN。
步骤 513和步骤 514是可选的, SGSN在收到步骤 508的响应消息后可 以发起至源 ISGW的删除 PDP上下文请求消息。 也可以在 504步获取用户上 下文之后, 由源 ISGW启动定时器, 并在定时器超时后删除自身保存的用户 上下文信息。
需要说明的是步骤 503至步骤 508作为本发明实现的逻辑步骤在流程中 出现的位置不做限定, 由于位置不同而带来的流程变形应在同等保护之内。
图 6为本发明实施方式四, 本实施例以 LTE网络用户发起业务请求过程 为例进行说明, 具体包括以下步骤:
步骤 601 , 当用户有上行数据发送或者需要建立与核心网的信令连接时 发起业务请求消息。
步骤 602 ,如果用户启动了数据分流功能, MME根据用户当前的位置(也 即 eNB转发业务请求消息时携带的跟踪区域标识(Tracking Area Identifier, TAI )或者 eNB id信息)判定 ISGW是否还适合为用户提供分流服务, 如果 不能那么 MME启动 ISGW重选过程。具体地, MME将用户位置信息输入到 专门的选择器(与现有网元合设或者单独部署)或者升级后的 DNS服务器查 找新的 ISGW。
步骤 603 , MME向查找到的目标 ISGW发送创建会话请求消息用以创建 用户会话, 消息中携带源 ISGW信息和用以指示目标 ISGW向源 ISGW获取 用户上下文的指示。
步骤 604 ,目标 ISGW通过 S5'接口上新定义的上下文请求消息向源 ISGW 获取用户上下文。 或者在实现上也可以扩展 S5,接口上的 GTP消息, 如在正 常的创建会话或者更新承载消息中增加参数表明是获取上下文的操作。 需要 说明的是, 两个 ISGW之间的接口本发明定义为 S5'接口, 实现上不做名称上 的限定。
步骤 605, 源 ISGW通过上下文响应消息或者扩展现有 GTP消息回复用 户上下文信息至目标 ISGW, 消息中包括核心网网关 P-GW地址、 隧道标识 ( TEID )、用户地址和分流策略等。其中用户地址和分流策略使得目标 ISGW 能够正常进行数据分流。
步骤 606, 目标 ISGW根据源 ISGW发送的用户上下文信息中的核心网 网关 P-GW地址或者隧道标识找到核心网网关 P-GW, 并发送更新承载请求 消息, 更新目标 ISGW和核心网网关 P-GW之间的隧道。 消息中包括目标 ISGW的地址和隧道标识等信息。
步骤 607 , 核心网网关 P-GW记录新的 ISGW信息后回复更新 载响应 消息给目标 ISGW。
步骤 608 , 目标 ISGW向 SGSN回复创建会话响应消息, 消息中携带目 标 ISGW分配的隧道标识信息。
步骤 609, MME向 eNB发送初始上下文建立请求消息, 消息中包括需 要建立的空口承载、 目标 ISGW的地址和隧道标识信息用以建立 eNB和目标 ISGW之间的上行直接隧道。
步骤 610, eNB根据步骤 609获得的空口承载信息建立与 MS之间的空 口承载。
步骤 611 , eNB回复初始上下文建立响应消息给 MME, 其中携带 eNB 的地址和隧道标识信息。
步骤 612, MME发送更新承载消息给目标 ISGW, 其中携带 eNB的地址 和隧道标识信息用以建立 eNB和目标 ISGW之间的下行直接隧道。
步骤 613 , 目标 ISGW回复更新承载响应消息给 MME。
步骤 614和步骤 615是可选的 , MME在收到步骤 608的响应消息后可以 发起至源 ISGW的删除会话请求消息。也可以在 604步获取用户上下文之后, 由源 ISGW启动定时器,并在定时器超时后删除自身保存的用户上下文信息。
需要说明的是步骤 603至步骤 608作为本发明实现的逻辑步骤在流程中 出现的位置不做限定, 由于位置不同而带来的流程变形应在同等保护之内。
图 7为本发明实施方式五, 本实施例以 LTE网络用户请求发起跟踪区更 新过程为例进行说明, 具体包括以下步骤:
步骤 701 , 当用户移动到跟踪区列表以外的区域时发起跟踪区更新请求 消息。
步骤 702 ,如果用户启动了数据分流功能, MME根据用户当前的位置 (也 即 eNB转发跟踪区更新请求消息时携带的 TAI或者 eNB id信息)判定 ISGW 是否还适合为用户提供分流服务,如果不能那么 MME启动 ISGW重选过程。 具体地, MME将用户位置信息输入到专门的选择器 (与现有网元合设或者单 独部署)或者升级后的 DNS服务器查找新的 ISGW。
步骤 703 , MME向查找到的目标 ISGW发送创建会话请求消息用以创建 用户会话, 消息中携带源 ISGW信息和用以指示目标 ISGW向源 ISGW获取 用户上下文的指示。
步骤 704 ,目标 ISGW通过 S5'接口上新定义的上下文请求消息向源 ISGW 获取用户上下文。 或者在实现上也可以扩展 S5,接口上的 GTP消息, 如在正 常的创建会话或者更新承载消息中增加参数表明是获取上下文的操作。 需要 说明的是, 两个 ISGW之间的接口本发明定义为 S5'接口, 实现上不做名称上 的限定。
步骤 705, 源 ISGW通过上下文响应消息或者扩展现有 GTP消息的回复 用户上下文信息给目标 ISGW, 消息中包括核心网网关 P-GW地址、 隧道标 识( TEID )、用户地址和分流策略等。其中用户地址和分流策略使得目标 ISGW 能够正常进行数据分流。
步骤 706, 目标 ISGW根据源 ISGW发送的用户上下文信息中的核心网 网关 P-GW地址或者隧道标识找到核心网网关 P-GW, 并发送更新承载请求 消息, 更新目标 ISGW和核心网网关 P-GW之间的隧道。 消息中包括目标 ISGW的地址和隧道标识等信息。
步骤 707, 核心网网关 P-GW记录新的 ISGW信息后回复更新 载响应 消息给目标 ISGW。
步骤 708 , 目标 ISGW向 MME回复创建会话响应消息, 消息中携带目标 ISGW分配的隧道标识信息。
步骤 709, MME向 UE发送跟踪区更新接受消息。
步骤 710, UE发送跟踪区更新完成消息给 MME, 此时 UE发起的跟踪 区更新过程执行完毕。
步骤 711和步骤 712是可选的, MME在收到步骤 708的响应消息后可以 发起至源 ISGW的删除会话请求消息。也可以在 704步获取用户上下文之后, 由源 ISGW启动定时器,并在定时器超时后删除自身保存的用户上下文信息。
需要说明的是步骤 703至步骤 708作为本发明实现的逻辑步骤在流程中 出现的位置不做限定, 由于位置不同而带来的流程变形应在同等保护之内。
图 8为本发明实施方式六, 本实施例以 LTE网络用户发生切换过程为例 进行说明, 具体包括以下步骤:
步骤 801 , 用户定期向 eNB发送测量报告, 当 eNB根据无线信号强度发 现用户当前位置有更适合的 eNB为之服务时就发起跨 eNB的切换过程。 源 eNB通过重定位请求消息告知 MME为用户选定的目标 eNB。
步骤 802 ,如果用户启动了数据分流功能, MME根据用户当前的位置(也 即 eNB发送重定位请求消息中携带的目标 eNB所属的 TAI或者 eNB id信息 ) 判定 ISGW是否还适合为用户提供分流服务,如果不能那么 MME启动 ISGW 重选过程。 具体地, MME将用户位置信息输入到专门的选择器(与现有网元 合设或者单独部署)或者升级后的 DNS服务器查找新的 ISGW。
步骤 803 , MME向查找到的目标 ISGW发送创建会话请求消息用以创建 用户会话, 消息中携带源 ISGW信息和用以指示目标 ISGW向源 ISGW获取 用户上下文的指示。
步骤 804 ,目标 ISGW通过 S5'接口上新定义的上下文请求消息向源 ISGW 获取用户上下文。 或者在实现上也可以扩展 S5,接口上的 GTP消息, 如在正 常的创建会话或者更新承载消息中增加参数表明是获取上下文的操作。 需要 说明的是, 两个 ISGW之间的接口本发明定义为 S5'接口, 实现上不做名称上 的限定。
步骤 805, 源 ISGW通过上下文响应消息或者扩展现有 GTP消息的回复 用户上下文信息给目标 ISGW, 消息中包括核心网网关 P-GW地址、 隧道标 识( TEID )、用户地址和分流策略等。其中用户地址和分流策略使得目标 ISGW 能够正常进行数据分流。
步骤 806, 目标 ISGW根据源 ISGW发送的用户上下文信息中的核心网 网关 P-GW地址或者隧道标识找到核心网网关 P-GW, 并发送更新承载请求 消息, 更新目标 ISGW和核心网网关 P-GW之间的隧道。 消息中包括目标 ISGW的地址和隧道标识等信息。
步骤 807, 核心网网关 P-GW记录新的 ISGW信息后回复更新 载响应 消息给目标 ISGW。
步骤 808 , 目标 ISGW向 MME回复创建会话响应消息, 消息中携带目标 ISGW分配的隧道标识信息。
步骤 809, MME向目标 eNB发送切换请求消息, 消息中包括需要建立 的空口承载、 目标 ISGW的地址和隧道标识信息用以建立 eNB和目标 ISGW 之间的上行直接隧道。
步骤 810, 执行现有的 UE至目标 eNB的空口同步过程, 在此不做赞述。 步骤 811 , MME发送修改承载请求消息给目标 ISGW, 其中携带 eNB的 地址和隧道标识信息用以建立 eNB和目标 ISGW之间的下行直接隧道。
步骤 812 , 目标 ISGW回复修改承载响应消息给 MME。
步骤 813和步骤 814是可选的, MME在收到步骤 808的响应消息后可以 发起至源 ISGW的删除会话请求消息。也可以在 804步获取用户上下文之后, 由源 ISGW启动定时器, 在定时器超时后删除自身保存的用户上下文信息。
需要说明的是步骤 803至步骤 808作为本发明实现的逻辑步骤在流程中 出现的位置不做限定, 由于位置不同而带来的流程变形应在同等保护之内。
本发明还提供一种数据分流切换***, 所述***包括核心网移动性管理 单元和目标 ISGW, 其中:
所述核心网移动性管理单元设置成在向目标 ISGW发送的会话建立消息 中将源 ISGW信息发送给目标 ISGW;
所述目标 ISGW设置成从所述源 ISGW获取核心网网关信息, 并与所述 核心网网关进行隧道更新。
其中, 所述会话建立消息为创建 PDP上下文请求消息或者创建会话请求 消息。
其中, 所述核心网移动性管理单元为移动性管理实体(MME )或者服务 通用分组无线业务支持节点 (SGSN ) 。
其中, 所述核心网移动性管理单元还设置成在所述述会话建立消息中携 带指示信息, 用于告知所述目标 ISGW从源 ISGW获取用户上下文信息; 所述目标 ISGW是设置成根据所述指示信息, 从所述源 ISGW获取用户 上下文信息, 从所述用户上下文信息中获取所述核心网网关信息。
其中, 所述核心网网关信息包括核心网网关地址和 /或隧道标识。
其中, 所述目标 ISGW还设置成从所述用户上下文信息中获取用户地址 和 /或分流策略, 根据所述用户地址和 /或分流策略进行数据分流。
其中, 所述目标 ISGW是设置成通过扩展的通用分组无线业务隧道协议 消息或者新定义的 ISGW之间接口消息从所述源 ISGW获取所述用户上下文 信息。
本发明的数据分流***中的切换方法和***不限于以上所描述的 3G或 者 LTE网络, 其同样适用于现有的移动通信网络如 CDMA、 Wimax网络等。
通过本发明可以在数据分流网元 ISGW发生重定位时, 发送给核心网的 数据不中断, 提高用户满意度和感受。
工业实用性
与现有技术相比, 本发明可以使数据分流网元 ISGW发生重定位时发送 至核心网的数据不中断, 提高用户满意度和感受, 本发明不仅适用于 3G或 者 LTE网络, 还可用于现有的移动通信网络如 CDMA、 Wimax网络等。

Claims

权 利 要 求 书
1、 一种数据分流***中的切换方法, 包括:
核心网移动性管理单元在向目标综合服务网关( ISGW )发送的会话建立 消息中将源 ISGW的信息发送给目标 ISGW; 以及
所述目标 ISGW从所述源 ISGW获取核心网网关的信息, 并与所述核心 网网关进行隧道更新。
2、 如权利要求 1所述的方法, 其中,
所述核心网移动性管理单元为移动性管理实体(MME )或者服务通用分 组无线业务支持节点 (SGSN ) 。
3、 如权利要求 1所述的方法, 其中,
所述会话建立消息中还携带指示信息, 用于告知所述目标 ISGW向所述 源 ISGW获取用户上下文信息;
所述目标 ISGW从所述源 ISGW获取核心网网关的信息的步骤包括: 所述目标 ISGW根据所述指示信息, 从所述源 ISGW获取用户上下文信 息, 从所述用户上下文信息中获取所述核心网网关的信息。
4、 如权利要求 1或 3所述的方法, 其中, 所述核心网网关的信息包括核 心网网关地址和 /或隧道标识。
5、 如权利要求 3所述的方法, 其中, 所述用户上下文信息中还包括用户 地址和 /或分流策略, 其中所述用户地址和分流策略用于所述目标 ISGW进行 数据分流。
6、 如权利要求 3所述的方法, 其中, 所述目标 ISGW通过扩展的通用分 组无线业务隧道协议消息或者新定义的 ISGW之间的接口消息从所述源 ISGW获取所述用户上下文信息。
7、 如权利要求 1-3、 5和 6中任一所述的方法, 其中, 所述会话建立消 息为创建分组数据协议(PDP )上下文请求消息或者创建会话请求消息。
8、一种数据分流切换***, 包括核心网移动性管理单元和目标综合服务 网关 (ISGW ) , 其中: 所述核心网移动性管理单元设置成在向目标 ISGW发送的会话建立消息 中将源 ISGW的信息发送给目标 ISGW;
所述目标 ISGW设置成从所述源 ISGW获取核心网网关的信息, 并与所 述核心网网关进行隧道更新。
9、 如权利要求 8所述的***, 其中,
所述核心网移动性管理单元为移动性管理实体(MME )或者服务通用分 组无线业务支持节点 (SGSN ) 。
10、 如权利要求 8所述的***, 其中,
所述核心网移动性管理单元还设置成: 在所述会话建立消息中携带指示 信息, 用于告知所述目标 ISGW从源 ISGW获取用户上下文信息;
所述目标 ISGW是设置成通过如下方式获取所述核心网网关的信息: 根 据所述指示信息, 从所述源 ISGW获取用户上下文信息, 从所述用户上下文 信息中获取所述核心网网关的信息。
11、 如权利要求 8或 10所述的***, 其中, 所述核心网网关的信息包括 核心网网关地址和 /或隧道标识。
12、 如权利要求 10所述的***, 其中,
所述目标 ISGW还设置成: 从所述用户上下文信息中获取用户地址和 /或 分流策略, 根据所述用户地址和 /或分流策略进行数据分流。
13、 如权利要求 10所述的***, 其中, 所述目标 ISGW是设置成通过扩 展的通用分组无线业务隧道协议消息或者新定义的 ISGW之间的接口消息从 所述源 ISGW获取所述用户上下文信息。
14、 如权利要求 8-10、 12和 13中任一所述的***, 其中, 所述会话建 立消息为创建分组数据协议(PDP )上下文请求消息或者创建会话请求消息。
PCT/CN2011/081258 2010-11-24 2011-10-25 一种数据分流***中的切换方法和*** WO2012068939A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010558390.6A CN102480712B (zh) 2010-11-24 2010-11-24 一种数据分流***中的切换方法和***
CN201010558390.6 2010-11-24

Publications (1)

Publication Number Publication Date
WO2012068939A1 true WO2012068939A1 (zh) 2012-05-31

Family

ID=46093159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081258 WO2012068939A1 (zh) 2010-11-24 2011-10-25 一种数据分流***中的切换方法和***

Country Status (2)

Country Link
CN (1) CN102480712B (zh)
WO (1) WO2012068939A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103959855B (zh) * 2012-11-07 2018-01-12 华为技术有限公司 数据分流方法及数据分流控制设备、传输点、终端
CN104349380B (zh) 2013-08-08 2018-12-04 中兴通讯股份有限公司 信息交互、分流处理方法、装置、基站、rnc及终端
CN104202778B (zh) * 2014-08-05 2017-12-19 电信科学技术研究院 一种承载接纳控制方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1842049A (zh) * 2005-03-30 2006-10-04 向为 重定位通用分组无线业务网关支撑节点的方法
CN1984436A (zh) * 2005-12-15 2007-06-20 上海原动力通信科技有限公司 不同接入***之间移动性管理***及管理方法
CN201057653Y (zh) * 2006-04-19 2008-05-07 美商内数位科技公司 用于支持路由区域更新的设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572928B (zh) * 2008-04-30 2011-05-04 华为技术有限公司 一种切换方法及通讯***以及相关设备
CN101610462B (zh) * 2008-06-16 2013-01-02 华为技术有限公司 一种数据报文发送方法、装置及通信***
CN101674223B (zh) * 2008-09-13 2012-07-04 华为技术有限公司 网关设备负载处理方法、网络设备和网络***

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1842049A (zh) * 2005-03-30 2006-10-04 向为 重定位通用分组无线业务网关支撑节点的方法
CN1984436A (zh) * 2005-12-15 2007-06-20 上海原动力通信科技有限公司 不同接入***之间移动性管理***及管理方法
CN201057653Y (zh) * 2006-04-19 2008-05-07 美商内数位科技公司 用于支持路由区域更新的设备

Also Published As

Publication number Publication date
CN102480712B (zh) 2015-06-03
CN102480712A (zh) 2012-05-30

Similar Documents

Publication Publication Date Title
US10674420B2 (en) Method, apparatus, and system for routing user plane data in mobile network
EP2469930B1 (en) Method, system and transmission distribution network element for indicating data-distribution
US9357571B2 (en) Local network and method for establishing connection between local gateway and home base station
KR101519547B1 (ko) 사용자 장비의 위치 정보를 갱신하기 위한 방법 및 장치
US9668293B2 (en) Relocation of mobility anchor for nomadic subscribers
JP5497890B2 (ja) フェムトセルを含む無線通信ネットワークにおけるローカルipアクセスサポート方法及び装置
CN105338655B (zh) 一种用户平面承载建立的方法及装置
CN101990247B (zh) 数据传输方法、装置和通信***
WO2013010415A1 (zh) 一种实现ip地址属性通知的方法、***和sgw
CN102111748B (zh) 本地ip连接建立方法及***
EP3457662B1 (en) Data transmission method and apparatus
WO2012041073A1 (zh) 一种实现流迁移的方法及***
EP2996388A1 (en) Handover method and device without default bearer
EP2296418A1 (en) Processing method, system and apparatus for mobility management
WO2014194672A1 (zh) 一种异***间重选或切换处理方法和设备
EP3506677B1 (en) Method and device for establishing bearer
US20180255481A1 (en) Service flow transmission method and apparatus
WO2012130018A1 (zh) 一种ip分流连接移动性支持的方法及***
JP6446546B2 (ja) データ処理方法、装置、端末、モビリティ管理エンティティ、およびシステム
CN102387490B (zh) 一种查询本地网关的方法和***
WO2017049458A1 (zh) 一种控制方法及本地控制面设备
WO2012068939A1 (zh) 一种数据分流***中的切换方法和***
CN102457958B (zh) 一种服务网关重定位的判定方法及***
WO2009152757A1 (zh) 一种数据报文发送方法、装置及通信***
SG194834A1 (en) Service frequency based 3gdt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11843960

Country of ref document: EP

Kind code of ref document: A1